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P R E F A C E 

This treatise tries to give a coherent account of part of the 

work that has been done during recent years at the "Fachrichtung 

Operations Research" of the Free University Berlin. It is 

dealing with what shall be called the "linear policy approach" 

to stochastic inventory-production problems: The treatise 

investigates the efficiency of certain types of inventory­

production models in which the optimal non-linear ordering or 

production policy is replaced by a linear one. 

A linear policy not only reduces the computational burden 

considerably, but also allows to a certain extent for the 

existence of dynamic certainty equivalents. I.e., roughly 

speaking, the optimal production policy remains optimal if one 

replaces the stochastic sequence of demand by its forecasts. 

Thus, if for a stochastic dynamic optimization problem only 

forecasts are available the question arises whether a linear 

policy can be shown to be more adaquate than a non-linear policy. 

Part of this account has been written··-auring the author's stay 

at the University of Cambridge. He is particularly grateful for 

the hospitality of the Control Engineering Group of the 

University Engineering Department and to Clare Hall, the college 

to which the author was an Associated Member during winter 

1974/75. 

Furthermore the author wants to express his gratitude to the 

members of the Fachrichtung Operations Research of the Free 

University of Berlin for numerous stimulating discussions. Special 

acknowledgements are due to Dr. Karl Inderfurth for many valuable 

comments and to Mrs. E. Weber who did the irksome task of typing 

the manuscript. 

Berlin, Marz 1977 

Ch. SchneeweiB 
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INTRODUCTION 

The term inventory-production theory is not well defined. It com­

prises e.g. such models like cash balance models, production 

smoothing models and pure inventory models. We shall here mainly 

be concerned with stochastic dynamic problems and shall give exact 

definitions in the next section. Most of our work will concentrate 

on cash balance models. However, production smoothing situations 

and pure inventory problems will also be investigated. 

Since we are faced in principle with dynamic stochastic situa­

tions a dynamic programming approach would be appropriate. This 

approach, however, due to computational restraints, is limited to 

only but the simplest models. Therefore, in practice, one ruduces 

stochastics just in taking forecasts of demand and then treating 

the problem as a deterministic optimization problem. In addition 

one often introduces certain safety stocks to safeguard the 

system from possible forecasting errors. In gene~al, this proce­

dure is suboptimal. However, there exists one particular situa­

tion when a separation in a forecasting procedure and a subse­

quent optimization of the remaining deterministic model is not 

suboptimal. This is known as the linear-quadratic model, i.e. a 

model having linear system equations and a quadr.atic cost crite­

rion. For this type of model H. A. Simon [_23] and later H. Theil 

[25] have shown that the above separation property holds. In fact, 

Simon's and Theil's results are nothing else but what has later 

and more generally become known to control engineers as Kalman's 

famous separation principle. The above forecasts, being minimum 

mean square, Theil called dynamic certainty equivalents. 

Thus we shall first be concerned in Chap.2 with linear-quadratic 

models and shall show the certainty equivalence property in 

applying dynamic programming. The linear-quadratic approach has 

been applied by Holt et al. [7] to problems in production and work­

force smoothing. However, in most real situations cost dependen-

ces will not be quadratic. Fitting quadratic functions to non­

quadratic costs could therefore lead to seriously suboptimal 

results. 



2 

Consequently we shall develop in Chap.3 a theory of linear-non­

guadratic models. For these models it will be shown that in the 

main the separation theorem still holds. However, the system has 

still to be linear which particularly has as a consequence that 

we can only deal with linear production policies. Thus this 

approach will in general only be an approximation to the optimal 

case for which, of course, also non-linear decision rules have to 

be taken into account. 

The effect of the restriction to linear decision rules will be 

studied in detail in Chap.4. Uncorrelated and exponentially corre­

lated sequences of demand will be investigated and we shall 

particularly consider the important case of cost dependences 

having production set-up costs. 

As has already been mentioned above the linear-nonquadratic 

approach allows to a certain respect for the existence of dynamic 

certainty equivalents. Also we know that in general this approach 

is suboptimal. On the other hand one could replace the stochastic 

sequence of demand by its forecasts from the outset and then apply 

a deterministic dynamic programming approach. In fact, it turns 

out that (for the cases we studied [see Chap, 5]) this a~proach 

which is usually to be met in practice is inferior to the linear­

nonquadratic approach*). This again indicates that in view of the 

stochastics involved linear decision rules should seriously be 

taken into consideration. 

Chap,6 finally deals with the pure inventory case. I.e. in this 

case production is only allowed to take on positive values, The 

main economic idea is to regard an inventory problem as a parti­

cular production smoothing model and to optimize this model using 

the linear-nonquadratic approach. Our results show that at least 

in case of no-set up costs the LNQ - approximation is nearly 

optimal. Thus also in this case taking forecasts and applying a 

linear decision rule turns out to be a reasonable procedure. 

Enlarging the inspection period these results hold at least appro­
ximately also for set-up costs. 

*)Henceforth also called LNQ - approach 
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Summarizing the results leads us to the following conclusion. The 

linear-nonquadratic approach allows to a certain respect for the 

existence of dynamic certainty equivalents thus reducing the 

information needed mainly to a sequence of demand forecasts (see 

p. 41). For situations incurring no set-up costs this approach is 

not only nearly optimal for the cash balance but also for the pure 

inventory case. The deterministic approach usually applied in 

practical problems can at least in cases having no set-up costs 

be considerably more suboptimal than the linear-nonquadratic 

approach. For models incurring set-up costs non-linearities have 

to be taken into account more seriously. Depending on the rela­

tive size of the cost parameters involved and the variance of 

the stochastic sequence of demand the LNQ - approach can in 

many cases still be applied successfully. 



Chapter 1 

THE GENERAL MODEL 

We shall be concerned with the following stochastic dynamic 

inventory-production model 

(1) xk: stock on hand at the beginning of period k,(k=1,2, ••• ,N+1) 

xk E 1R Vk, x
1 

: initial stock: N: planning horizon 

(2) uk: production decision at the beginning of period k which 

results in a shipment in this period 

uk E Uk (k=1,2, ••. ,N), where (1) Uk:=lR(cash balance case) 

(2) Uk:=TR+(inventory case) 

(3) rk: stochastic demand in period k. All conditional 

expectations subsequently used are assumed to exist. 

{rk} is not to be influenced by the initial value x 1 . 

Inventory balance equation 

( 1 .1) 

(5) Cost criterion 

(5) C = E{~ Y {I(xk+1> + P(uk) }lx1L-> min. (1.2) 
k=1 if 

I(·) and P(·) denoting inventory and production costs 

respectively, 

Remarks 

Ad (1) The general linear-quadratic and linear-nonquadratic 

approach is not restricted to the one dimensional case. 

However, in the numerical calculations to be reported in 

subsequent chapters we are confined to a one-comodity-one­

inventory situation. Thus lR will generally belR,• 
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Ad (2) In most of the treatise we will be concerned with the 

case in which uk is not restricted, i.e. uk is allowed 

to take any real value. Only in our discussion of a pure 

inventory problem we will have to restrict uk to be non­

negative. 

Ad (3) We shall mainly concentrate on two stochastic demand 

sequences 

(1) White Gaussian noise with mean E{rk} = 0 
2 2 and variance E{rk} = a 

(2) Gauss-Markov process with mean E{rk} 0 

and covariance 
- 2 111 - + E{rk,rk+i} - arr a , i - O, -1, ••• , O <a< 1. 

Ad (2) and (3) 

In most cases discussed below uk and rk are considered 

to be deviations from certain given mean levels. 

Ad (4) The balance Equ.(1.1) describes the back-logging case. In 

one subsection leadtimes will also be taken into account. 

Ad (5) In the next chapter Equ.(1.2) will be taken to be quadra­

tic, i.e. I(·) and P(,) will be assumed to be quadratic 

functions. However, in the chapters to follow costs will 

be assumed to be piecewise linear and particularly of the 

form 

I(x) 

for x 

for x 

~ O {P + pu for u > 0 
and P(u) = o for u = O (1.3) 

< O Q - qu for u < O 

h, v, p and q being positive parameters describing propor­

tional inventory carrying (h), stock out (v), production 

(p) and production deminishing (q) costs respectively; 

moreover P and Q (both positive) denote set-up costs. 

(In some sections we shall also consider costs not having 

exactly the structure of (1.2)). 
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In most of what follows we will be concerned with the 

asymptotic situation N ->m. Only the next chapter will 

consider the finite horizon case. 

The situation we basicly have in mind may be described as follows. 

There is a production facility producing one good (or an aggregate 

of several similar goods) which is stored and sold. According to 

reasons outside the scope of the production and inventory manager 

a mean production is fixed to meet (long term) mean demand. The 

task of the production-inventory manager now is to cope with 

short term sales fluctuations. I.e. the production level has to 

be chosen higher or lower than the long term "normal" level such 

that the total costs of the system be minimum. The costs given in 

(1.3) thus describe a penalty 

equilibrium situation. 

for not being in a long term 

A cash balance problem would be an adaquate illustration of our 

main model. In this case one has to pay interests for holding 

(too much) cash (hx) and penalty interest costs (-vx) for being 

out of cash. Moreover P(u) would represent linear transfer costs 

for liquidation (u > 0) and investment (u < O) of cash~) According­

ly {rk} would describe a stochastic sequence of net expenses (of 

cash). 

Not all of the models discussed below will be of this basic struc­

ture. In Sec.3,3.3 we shall consider a model taking into account 

costs for changing a production level: Pl uk - uk_ 11, whereas costs 

(1.3) prescribe costs only for being out of an equilibrium situa­

tion. Models taking into account the above production changing 

costs are usually denoted as "pure" production smoothing models. 

Besides cash-balance and production smoothing models we also shall 

investigate (pure) inventory problems, where uk can only take 

positive values and the costs attached are to be interpretated 

as ordering costs. 

*) 
In this case the above mentioned mean production would be 
identically zero. 



Chapter 2 

THE LINEAR-QUADRATIC MODEL 

The main object of this treatise is to investigate the capability 

of linear decision rules for models defined in the last chapter. 

As will be shown later (Chap.3) this ultimately amounts to a re­

duction of the non-quadratic cost structure (1.3) to a quadratic 

one. Thus it seems to be reasonable to study first the quadratic 

case in some detail. 

This will be done by first investigating a finite horizon model 

(Sec.2.1). In optimizing this model by dynamic programming we can 

easily introduce the notion of dynamic certainty equivalence 

leading in the next section to a discussion of the forecasting 

problem. Sec.2.3 will then study an example being of some relevance 

for our later investigations. Finally, Sec.2.4 will discuss the 

steady state case N ->m which is of particular importance for the 

whole of our approach. This is because the non-quadratic model to 

be investigated in the next chapter will be shown to be reducible 

to a steady state quadratic model. 

2.1 Finite Horizon Case 

Given the general model of chapter 1 with xk, uk £ 'fK 1 , 

N finite and 

C = E {~ 
N 

~ 
k=1 

(2 .1) 

we shall minimize (2 .1) using a dynamic programming approach (see 

e.g. [21]). 
k k-1 k Defining a value function fk(x, r ), where e.g. x denotes as 

usual (xk, xk_ 1 , ... , x 1), Bellman's functional equation is readi­

ly given by 

k k-1 fk (x ,r ) 

I 
k-1 r , (k=1, .•• ,N) (2. 2) 

N+1 N 
fN+ 1 (x , r) 5 O 
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Solving this equation we start at k = N working back to k = o. 
Step 1 (k = N) 

N N-1 { 2 2 2 I N-1 } fN (x , r ) min E (xN+uN-rN) + P UN r , x1 
UN 

{ 2 2 2 "(1) 2} = min E xN+2xNuN+(1+p )uN-2(xN+uN)rN_1+nN (2. 3) 
UN 

where 
2 = E { r~I rN-1} (2.4) nN 

and 
E { rN I rN-1} r c1, = (2. 5) 

N-1 

(Note that according to our above assumotion there is no depen­

dence on the initial value x 1 ) 

Determining the optimal decision u~ we immediately obtain from 

differentiating (2.3) with respect to uN 

u* = * N-1 /\ 

N uN(xN,r ) --2 (xN-rN) 

or 
1 +p 

u,¥, = 
N SN (xN+QN) 

where for later reference we defined 

and 

N N-1 Determination of fN(x, r ) 

Substituting (2. 6) in (2. 3) yields 

fN(xN, 
N-1 2 2 r . ) - SN p XN + TN XN + 

with 

TN 2p2 SN ON 
and 

¾ : = SN Q2 + 2 
N nN 

Step 2 (k = N-1) 

¾ 

Bellman's functional equations (2.2) yield 

N-1 N-2 1 { 2 2 } fN-1 (x ,r ) = min E 2 (x +p u2 +f (xN rN-1) lrN-2 x 
u N N-1 N ' • 1 

N-1 

(2. 6) 

(2. 7) 

(2. 8) 

(2 .9) 

(2 .10) 

(2. 11) 

(2 .12) 

Substituting (2,9) and the inventory balance 

(2.12) and introducing the abriviation 
equation (1.1) into 

2 
WN : 1-p SN ( 2. 1 3) 



one obtains 

(2. 14) 

h 2 " were nN_1 and rN_ 2 (1) are defined in analogy to (2.4) and (2 _5) 
and 

For the optimal decision one obtains 

u~-1 = 8N-1 (XN-1+0N-1) 
where 

8N-1 

and 

i\ (1) 1 A 

QN-1 : = rN-2 + 2W TN-1 
N 

N-1 N-2 Determination of fN_ 1 (x ,Y ) 

Analog to step 1 one has from (2.14) 
N-1 N-2 2 2 

fN-1 (x 'r ) = - 8N-1 P XN-1 + TN-1 XN-1 + ¾-1 

where we introduced the definitions 

TN-1 2p 2 8N-1 QN-1 = -

= E{ TNrN-1 I rN-2} 

(2 .15) 

(2. 16) 

(2 .17) 

(2 .18) 

(2. 19) 

(2 .20) 

2 -2 
¾-1 = WN 8N-1 QN-1 

~ (1) 2 8N-1 ON-1 WN N-2 +nN-1 WN 

+ SN-1 QN-1 ~N-1 - DN-1 + ¾-1 (2. 21) 

In general we obtain the following algorithm for the optimal 

policy 



u* k 

Qk 

"' Tk 

Tk 

= 

10 

(k 1 , ••• , N) 

rk-1 (1) + 1 
.,... 

2 Wk+1 Tk+1 

{ k-1} E Tk+ 1 1r 

- 2p 2 sk Ok 

The starting values being (2.7) and (2.8): 

1 
- 1+p 2 

- rN-1 (1) 

(2.22) 

Resubstituting some of the above definitions which have only been 

introduced to simplify the derivation, algorithm (2.22) can be 

written more compactly 

Uk = Sk(xk+Qk) 

2 
Sk+1-1 p 

Sk = 2 
1+p (1-Sk+ 1 ) 

where yk is defined by 

2 
P Sk 

= 2 
1-p Sk 

(k = 1,2, ••• ,N) (2. 22) 

(2. 23) 

2,3, ••• ,N) (2. 24) 

(2. 25) 

(Note that it is reasonable to define r0 (1): = E{r1 }and QN+
1

=0). 

The above algorithm constitutes an interesting and important re­

sult. It can be seen that the optimal decision only depends on 

conditional means 

rk(i) : = E{rk+ilrk} (2. 26) 
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of the stochastic demand sequence. I.e. the probability distribu­

tions of the random variables are reduced to their first condi­

tional moments. Otherwise stated: having no more information 

about the sequence of demand than just the above mean values we 

would be able to derive the same results as if we knew the total 

probability structure. This important result can be made 

explicit in solving (2.24) and substituting in (2.22). 

Let us start with 

Similarly, for N-3 one obtains 

QN-3 = - rN-4( 1 ) + YN-2 ~QN-2irN-
4

} 

even more 

(2.27) 

= - rN-4(1) + YN-2 E{rN-3(1) + YN-1 ~QN-11rN-3}1rN-4} 

= -rN-4 (1) - YN-2 rN-4 (2) + YN-2 YN-1 E{ QN-11 rN-4} (2. 28) 

where the relation 

E{rN-3(1) lrN-4} = E{E{rN-21rN-3}1rN-4} 

has been used. 

{ I N-4} E rN_ 2 r 

(2. 29) 

Substituting the initial condition (2. 8) (or QN+
1 
:0), (2. 28) 

becomes 

QN-3 = - ~N-4( 1 ) - YN-2 ~N-4( 2 ) + YN-2 YN-1 E{-1N-2( 1 ) 

+ YN E{-~N-1 (1) lrN-2}1rN-4} 

- ~N-4( 1 ) - YN-2 ~N-4( 2 ) - YN-2 YN-1 ~N-4()) 

- YN-2 YN-1 YN ~N-4( 4)" 

Finally, for period k one obtains 

This can be written more compactly in the form 

(2.30) 
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N- (k-1) " 
Q = - l wi rk-1 (i) 

k i=1 

where the weighting factors wi are defined by 

i-1 

wi = n Yk+j 

and 
j=1 

i 2,3, ••• ,N-(k-1) 

w1 = 1 

As we shall see below, 1 !!:. wi ~wi+1 ~ O'<:/i 

Resubstituting (3.31) into (3.22) finally yields 

N-(k-1) ) u* = s (x - l w i ~k-1 (i) , (k = 1, ••• ,N). 
k k k i= 1 

(2. 31) 

(2. 32) 

(2. 33) 

(2.34) 

E ( 2 34) constitutes a remarkable result. The conditional mean 
qu. • k 1} 

values 1k_
1 

(i) : = E{rk-,+ilr - can be interpreted as forecasts 

i periods ahead based on the information gained up to period k-1. 

Thus the optimal production decision not only depends on the pre­

sent amount of stock on hand but also on a decreasingly weighted 

sequence of demand forecasts up to planning horizon N. These fore­

casts Theil called dynamic certainty equivalents. The certainty 

equivalence property says that one would have obtained the same 

optimal policy result (2.34) if one had replaced from the outset 

the stochastic sequence of demand by a sequence of conditional 

means. (The reader should himself convince of this property in 

looking again at the derivation of the above algorithm (see also 

[21])). I.e. for linear-quadratic models the procedures of taking 

forecasts and optimizing the system can be separated without loss 

of optimality. 

As we could see, this extraordinary property generally holds for 

linear-quadratic models having additive (non stationary) sto­

chastic disturbances. Therefore, whenever possible one would try 

to cast a real inventory-production problem into a linear-quadra­

tic model. This was done by Holt et.al for a problem in production 

planning and workforce smoothing [7]. In many situations, however, 

it turns out not to be reasonable to approximate costs by quadra­

tic functions. We therefore shall develop in the next chapter a 

theory which still allows to a certain respect for the existence 
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of dynamic certainty equivalents for which, however, costs have 

no longer to be quadratic. 

It should be noticed that the existence of dynamic certainty equi­

valents not only diminishes the computational load considerably 

but that also it reduces to a high extend the amount of informa­

tion needed. Thus, in practice, a stochastic dynamic optimization 

problem is always treated as a deterministic problem with the sto­

chastic demand sequence being replaced by its forecasts. As we 

know, this procedure usually is suboptimal depending on how well 

the separation property holds. Starting from a situation for which 

dynamic certainty equivalents exist all subsequent chapters may be 

regarded as a discussion of the separation property of various 

important inventory-production models. 

Concluding, let us look at the forecasts occuring in (2.34) in 

some detail. Let us consider two examples which will be of some 

importance in subsequent sections. 

Example 1 

Let {r} be a sequence of independent random variables ~1th mean 

E{rk} ~ Qqk. This implies ~k-i (1) :=E{rk-l+ilrk-
1
}=E{rk-l+i}= O 

so that the optimal policy reduces to 

(k=1, ..• ,N) (2. 35) 

This result was to be expected since in case of a white noise 

disturbance no forecasts a:repossible. 

Example 2 

a Gauss-Markov process generated by the autoregressive 
Let {rk} be 

__ r + £ where tk is white Gaussian noise and 
scheme rk+l a k k' 

0 <a< 1. In this case 

r'k-1 (1) : = E{ rk-1 +i I rk-1} 

i 
= a ~k-1 

Hence (2.34) reduces to 
N-(k-1) 

ut = Sk(xk-rk-1 f=1 wi 

(2.36) 

(2. 37) 
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where 
N-(k-1) 

= I wi ai 
i=1 

Remark: Introducing a state vector by (xk,rk_1 ) this result was 

to be expected since in this case (2.37) may be written 

(2. 38) 

which shows the same structure as (2.35) for the simple case of a 

Markov sequence of 0-th order. (See also appendix to this chapter) 

2.2 Least Square Forecasts 

Before persuing the implication of the optimal policy (2.34) 

further, let us investigate some properties of the forecasts 

rk(i). First, we show rk(i) to be a minimum mean-square forecast. 

secondly, in Sec.2.2.2, we derive a recursive procedure to calcu­

late rk (i). 

" 2.2.1 Least Square Property of rkJ..!l 

We defined rk(i) by the conditional mean 

rk(i) = E{rk+ilrk} (2.39) 

we now show that rk(i) has the property of minimizing the mean 

square pred1ction error ( [24] p-164). 

Let ~k(i) be a forecast of rk+i' then the prediction error is de­

fined by rk+i - xk(i), and the mean quadratic error is given by 

E{(rk+i - xk(i~ 21rk} (2.40) 

Let us now determine xk(i) such that (2.40) be minimiz d * e • 
Introducing a density function )f(rk+ilrk) equ. (2.40) may be 

written 

E{(rk+i-~k(il)21rk} = I..,(rk+i-~k(il) 2 f(rk+ilrk)drk+i 
--,----
*>Note that for convenience our notation does not di stinguish be-

tween random variable and adjoined realization. 
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Differentiating with respect to 2k(i) and setting equal to zero we 

obtain m 

- 2 £_ (rk+i-Qk(i~ f (rk+ilrk) drk+i = o 
or 

~k(i) = ~rr+1 f(rk+ilrk) drk+i = E {rk+ilrk} 

which clearly shows xk(i) = fk(i) 

(2.41) 

i.e. mean conditional forecasts have the property of being mean 

square optimal. 

2.2.2 Recursive Calculation of rk(i) 

The calculation of forecasts may be performed recursively; i.e. 

knowing rk(1) we would like to calculate 1k+1 (1) using the old 

forecast rk(1). A typical recursive formula of this kind :!.s the 

well known exponential smoothing recursive equation 

(2 .42) 

(We shall soon return to this equation in a somewhat rnor2 general 

context). 

It is an essential of our general model of chapter 1 that the 

stochastic structure of the demand sequence has already been de­

termined from past data. As we shall show later many time series 

{rk} occurring in inventory problems may be represented by the 
*l following set of equations 

)Note that setting nk+ 1=0 and Ak=A, Ck=C, Bk+1=8 ~k (seep. 16) 

one obtains the usual ARMA (autoregressive-rnooving average) input­

output representation of a stochastic process: 

Let 
£.k+1 

= A f;k + C !.Jc 

= B fk+1 
-1 

Using the time shifting operator z 

from the first equation 

== [r-z- 1AJ-
1 

C !.k 
ik+1 

-1 
z Yk =: Yk_1 one obtains 

ARMA-representation follows immediately from which the 

[zI-A] B-
1 

!.k = C !.k 

(See also appendix to th is chapter) 



16 

~k+1 ("state" equation) 

("output" equation) 

where the bar denotes column vectors 

n - vector Ak nxn-matrix 

r - vector Bk rxn-matrix 

p - vector Ck nxp-matrix 

p - vector 

and {.!J..k} representing Gauss - sequences 

E {_~k} = E{ !lk} = 0 'o' k 
I 

E { £..k E; • } = Qk okj -J 
I 

E {rik . n . } = Rk okj - -J 
I 

and j E {nk -E; .} = gv k a 
- X J 

(2. 43) 

(k o, 1, 2, ••• ) 

Q represents a p-nullvector, Qk and Rk are known positive definite 

matricesand g denotes a pxp-null-matrix. Moreover 

In fact,the general scheme (2.43) describes a large number of mo­

dels which have been proposed and estimated in inventory theory 

[ 15, 26 J. One of the most prominent models is that of Theil and 

Wage [26J wh.ich is given by 

E;k+1 E;k + 'l'k } ("process") (2.44) 
'l'k+1 'Pk + Ek = 

rk = E;k + r;k (observation) 

(all variables being scalars). Clearly, (2.44) is a sµecial case 

of~~2:r:~ w~t:,,-r,, A,,=t ~ • c,,= l~J • ••'= (1,0l 
The model (2.44) has a simple intuit~e m€aning. E;k may be inter­

preted as a trend variable and 'Pk as a change in trend. {Ek} then 
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describes pernament disturbances (being processed to the next 

period k+1), whereas nk describes transient disturbances. 

An even more simple model is that of a (non-stationary) random 

walk 

for which we shall show exponential smoothing will be a least 

square forecasting procedure. 

Let us now develop forecasting formulae for a time series repre­

sented by (2.43). This can easily be done by using Kalman's re­

cursive estimation scheme which is also known as Kalman filter~~-

The Kalman filter gives a recursive formula for a predictor 

ik+i== E{ik+il~k} which minimizes the quadratic expression 

E { cfk+1-Ik+1) ' <ik+1-Ik+1)} , where ik+1-Ik+1 represents the 

estimation error. 

Actually, we are not interested in the best predictor, ik , but 
- +1 

in the best forecast Ek+ 1 of the sequence. However, fk+i can 

easily be obtained from !k+,· Knowing from (2.41) that a least 

square estimator can be represented by 

ik+1 = E{ Ik+ 1 1l} and fk+1 = E{ !.k+1 ll}*), we obtain from the 

observation equation of (2.43) 

!.k+1 = 8k+1 E{ ik+1 i.l} + E{ .!!.k+11,l} = 8k+1 Ik+1 (2. 45) 

i.e. the forecast fk+ 1 :=rk(1) can be expressed by the predictor 

ik+i which in turn will be derived from Kalman's algorithm below. 

From (2.43) then follow all further predictions £k(i), (i > 1). 

This can easily be seen C[24]p.171) by taking conditional expec­

tations fork:= k+i-1 

*> Note that~ is an abriviationfor our more precise notation 
!.k+1 

Ek (1). 
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or equivalently 

,"-. A 

~k(i) = Ak+i-1 ~k(i-1) (i 2, 3, ••• ) 

Solving for ik(i) we obtain 

,,... 
~k (i) 

A 

= Ak+i-1 Ak+i-2 ~k(i- 2) 

Premultiplying by Bk+i finally yields 

A 

= Bk+i Ak+i-1 Ak+i-2 ••• Ak+1 ik(i) 

In the simple case where all matrices are time inva~iant 

(stationarity!) and Bis the unit matrix this reduces to (see 

also Equ.(2.36)) 

A i-1 A E.k (i) = A E.k (1) (2 .46) 

The Kalman filter which in principle can be derived by dynamic 

programming minimizing a quadratic functional (representing the 

prediction error) [13] is given by the following set of equations 

P X. 
k . 

1 
E r f; I rk-1 r' l-k - J 

(predictor) 

(estimator) 

(conditional covariance-matrix of fk repren­

ting the quadratic estimation error) 

Pk = cov{fk+ 1 1Ek} (quadratic (mean conditional) forecasting 

error) 

;, 

ik+1 = fk+1 + Kk+1(Ek+1 - Bk+1 ik+1) (k O, 1, ••• ,N) (2. 47) 

(2. 48) 

(2. 49) 



pk+1 = Ak p: A~+ ck Qk c~ 

starting with~~ and P~. 
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(2. SO) 

(2. 51) 

The algorithm essentially consists of two parts. The first part 

(Equs. (2.47) and (2.48)) generates a recursive improvement of the 

estimator f:+i relying on the estimator ft one period before. 

This improvement is due to new measurement data (of the time 

series) at k+1 

forecasts Ek+i 

£k+,· Equ. (2.47) then compares £k+ 1 with its 

Bk+1 1k+1 forming the difference Ek+i - Hk+iik+1 

which is multiplied by the (so-called) gain matrix Kk+
1

. This 

recursive scheme, obtained by a quadratic optimization procedure 

is very similar to the exponential smoothing formula (2.42). In 

deed, in Sec. 2.3, we shall retrieve (2.42) from a Kalman filter­

ing procedure applied to a particular time series. 

The second part of the algorithm then determines the qain matrix 

Kk+i recursively. 

To illustrate the above algorithm let us again consider the simple 

random walk 

For this example we readily identify 

2 
0 e: , R = o 2 , where o 2 and o

2 
k n e: n 

(2. 52) 

are 

the variances of {e:k} and {nk} respectively. Hence, the Kalman 

filter reduces to 

* A 

(rk+1 - ik+1) (k=O, 1,2, ..• ,N) (2. 5 3) 
~k+1 ~k+1 + Kk+1 

" ~* (2. 54) 
~k+1 = k 

¥ 1 (2. 55) 
Kk+1 Pk+1 --2 

0 
n 
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-lf--1 -1 + _1_ 
Pk+1 Pk+1 2 a 

n 

Pk+1 = p-lf + 2 a k E 

In view of (2.52) Equ. (2.53) can also be written 

rk+2 = ( 1 - Kk+1) rk+1 + Kk+1 rk+1 

or, more precisely 

( 2. 56) 

(2.57) 

(2. 58) 

(2. 59) 

showing a close analogy to the exponential smoothing formula 

(2.42). Thus the Kalman filter equations lead to a recursive 

updating of the forecasts of a demand sequence (being modelled by 

(2.43) .) Hence, in principle, the aim of this section is reached. 

However, let us in addition look at the dependence on the start­

ing values~ and~- It seems to be plausible to set~ := E{~} 
a nd ~: ={5-o ~}• This choice implies the Kalman estimates to be 

unbiased [24]. The initial values represent the a-priori infor­

mation one has with respect to the initial predictor~ and the 

mean quadratic forecasting error~- It can be shown that this 

information is "dieing out" if k ->m and the adjoined (deter­
ministic) system 

ik+1 = A ., k ik 

!.k+1 = Bk+1 ik+1 

is bbservable" (i.e., roughly speaking, if 

rank [H H "' 
1' 2'+'0,0' • • • ,HN<!>o,N-2' • • •] 'f 0 

wt.ere 

~O,k: =A0 •A1 ••Ak) (see e.g. [12]). 

Let us a i 
ga n consider the simple random walk example (2.52). 

From (2.56) and (2.57) we obtain 

pi!--1 r. ill- ) 
k+1 = ~k + a; -1 + ~ 

a 
n 



or 2 (P)I'. + a 2) a 

P{+1 
11 k £ 

2 + a 2 + p* a 
11 £ k 

Letting k ->a, the asymptotic 

clearly is 

P~= (1-a) a 2 
11 

where 2 
1 a£ 

a :=1 + 2 --2 
a 

11 
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error covariance matrix P 
asymp =: P* 

(2. 60) 

Hence, in view of (2.55) the "asymptotic gain factor" K is given 
by 

K = 1-a 

Finally, (re)substituting K = 1-a into (2.59) yields the exponen­

tial smoothing equation 

or, in closed form 

I'\ 
rk+1 (1) = (1-a) r 

j=o 

where the linear operator (1-a) r aj,,, could be denoted as the 
j=o 

(input-output form of the)asymptotic Kalman forecasting filter for 

a random walk sequence one step ahead, 
-" ,I\. Note that, in view of (2.46), rk+1 (i) = rk+

1 
(1). 

(In applying this theory to real data one would first identify 

the structure of the system (2.43). However, instead of estima­

ting the system parameters one would try to optimize right ahead 

the parameters in the forecasting formula.) 
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2.3 An ideal Situation 

Let us again return to our main problem in Sec- 2.1. As we al­

ready mentioned above inventory-production problems are often 

solved in practice by first taking forecasts of demand and then 

optimizing the remaining deterministic problem. This optimization 

is repeated whenever new information gives rise to new forecasts. 

Moreover, in the absence of seasonal fluctuations often a simple 

exponential smoothing formula is used in avaluating demand fore­

casts. 

As we have seen in preceeding sections such a procedure is indeed 

possible. However, we are restricted to the following situation: 

1. The cost criterion has to be quadratic. 

2. There are no capacity constraints to be taken into account. 

3. The demand sequence has to be a random walk (with known 

variances cr 2 and cr 2). 
e: n 

In all what follows we shall try to reduce more realistic models 

to this simple situation. 

We shall particularly be concerned with (1). The existence of 

constraints will not be considered until Chap.6. Since other fore­

casting methods than exponential smoothing are known and, in fact, 

amply used we will not be confined to a random walk process. 

However, since forecasts have to be certainty equivalents 

they should always be conditional means. 

2.4 Infinite Horizon Case 

Our main concern in later chapters will be the infinite horizon 

case. Therefore we shall now consider the quadratic model of 

Sec.2.1 for N ->m, More precisely, we shall consider the general 

model of Chap.1 with xk, uk e:~1 , {rk} being a stationary stocha­

stic sequence with known conditional means and 

C : = lim -
N->mN 

min. 
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Since we have already solved the finite horizon case we have 

solely to study the limiting behavior of the finite horizon 

policy (2.34). Starting with yk' defined by (2.25), we shall now 

write more carefully 

denoting by N the finite (N) horizon case. Similarly, we have in­

stead of (2.23) 

Now, 

defining S 

s = 

or 

s = 

and 

y = 

= lim SN we observe 
N ->m k 

2 e s - 1 
I 

1 + p2 (1-S) 

1 (1 - Ci') 
2p2 

p2 s 1 
(1 

2 
2 = 

2p2 
+ 2p -

1 - p s 
/, + 4p2) = S + 1 < 1 

(2.61) 
N 

with y being the limiting value of Yk • Hence, (2.34) becomes 

(2 .62) 

Note that in deriving (2 .62) we have to assume { Yi rk_ 1 (i+1)} 

to decrease sufficiently fast, (guaranteeing the convergence of 

the above infinite sum). This is usually the case for stationary 

sequences met in practice. 

Next, we sha.ll derive expressions for total asymptotic costs. This 

could be done by simply letting N->m in the dynamic programming al-
k k-1 gorithm for the value function f(x ,r ) . However, it seems to 
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be analytically easier to observe that C is nothing else but a 

variance criterion 

2 2 2 
C = ox + P Ou (2. 63) 

Thus we have only to determine the variances of the stationary 

processes {xk} and fuk}_*l 

We shall consider two cases being of importance for later refe­

rence 

(1) White noise *lfl 

As we already know from (2.35) and (2.61) u: (xk) reduces to 

u: = (y-1) xk. 

Hence, o 2 = (y-1) 2o 2 
U X 

Further, from (2.64) and the balance equation it follows 

or 

=-I 
j=1 

implying 
2 1 

Yj r 
k-j 

2 
0 --2 0 

X 1-y 

Finally, from (2.65) 

2 1-y 
0 

1+y 0 u 
2 

(2. 64) 

(2. 65) 

(2 .66) 

(2.67) 

These results could have also been obtained by a Wiener-filtering 

approach [17] minimizing the variance criterion (2.63) (see also 
[,a]) . 
Hence the minimal costs are 

c* = [__J_
2 

+ p 2 -2.=.r...jl O 2 
1-y 1 +y 

1 2 
1-y 0 

( 2. 68) 

*) 
This idea will frequently be used for more complicated situa-

tions in later chapters 
**) 

See Chapter 1 
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Since ~k-l (i+1 l 

to 

i+1 
a rk-l Equ.(2.62) reduces 

(2.69) 

Let us derive ax
2 

and au
2 

using z-transforms. With ~xx(z) and 

~uu(z) being the spectral density functions of {xk} and {uk} 

respectively one has (see e.g. [1 o] J 

2 = 'P ~xx (Z) z-1 
dz (2. 70) a ---.-

X ZUJ 

2 
~ IPuu (Z) 

-1 
dz au zuj 

z (2.71) 

where j = l=T and ~ denotes the integration on the ,1nit circle. 

Let us first express 1Pxx(z) and $uu(z) by $rr(z), which for a 

Gauss-Markov sequence is given byiHt 

2 2 
(1-a ) arr 

1Prr(z) = 1 
(z-a) (z - -a) 

(2.72) 

From the balance equation and (2.69) one obtains using z-trans­

forms 

x(z) = - (~~~) ½ r(z) (2. 73) 

with 
a (y-1) 

11 : = 1-ay 

Similarly, 

u(z) = - <§:~> [c1+ 1:ay) z - 1:ay] ½ r(z). (2.74) 

*l See Chap. 1 

**)Note that a z-transform of a sequence {yk} is defined by 
ID 

, -k -1 z {yk} : = L yk z = : y(z). Obviously, Z{yk-l }=z y(z). 
k=o 
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Hence, from (2.70), (2.71) and (2.72) 

2 
ox 

_, 
z 

l'l+Z-1 
~(-z---y~)-(_z ___ a_) --':-..:..::.--~- dz 

(z - 1 -y) (z - 1 -a) 

l'l+Z 
(2. 75) 

2 
au 

(1-a2) o2 (y-1) 2 -1 [!1~) z-~ "1~)-1 a J r ~ z 1-ay 1 -ayJ ~ 1-ay -~J dz 
2irj (z-y) (z-a) (z -1 _y) (z -1 _a) 

Using, e.g., the table in [10] one finds the results 

2 a = u 

Hence the optimal costs are found to be 

Q = 2 j } 0 r 2 3 2 2 3 4 3 2 (1-a )+y(1-a+a )-ay -a Y +a3y 
(1-ay) (1-y ) 

(2.76) 

(2.79) 
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2.5 Appendix to Chapter 2 

2.5.1 State Space Representation and Separation Theorem 

Up to now we have not made use of a state space representation. 

For our special linear model this implies that the system (plant) 

equation is represented by a first order stochastic difference 

equation having white noise disturbances Ek. 

(2.80) 

A state space representation has the advantage that the optimal 

policy is immediately given by 

i.e. the optimal decision does only depend on the "last" state. 

This is intuitively obvious, since the state of a system in time 

k contains all information about the system up to k. For a linear­

quadratic model (2.81) specializes to the linear relationship (with 

matrix Lk) 

yk = Lk ~k (2.82) 

Thus, knowing the state space representation of a system an opti­

mization is a comparatively simple task. 

We shall here discuss two problems. First we shall derive a state 

space representation for an ARMA-process and secondly the relation­

ship between the property of certainty equivalence and Kalman's 

separation principle will be investigated. 

(a) Deriving a State Space Representation (2.80) 

In Chapter 1 we had the plant equation 

(2. 83) 

with {rk} being a general Auto-Regressive Moving Average (ARMA)­

process. In deriving a state space representation for this situa-
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tion let us first consider {rk} separately. 

Let {rk} be represented by 

(2.84) 

where at least av+o and c
0

,j=o. (I.e. in deriving a state space re­

presentation we assume the AR-polynomial being of higher degrP.e 

than the MA-polynomial. This will be sufficient for our purposses). 

Introducing a "lag-operator" L by Lyk : = yk_ 1 , Equ.(2.84) 

may also be written 

(

C + c
1

L 
r - o 

k -
1 + a 1 L 

+--- + 

+--- + 
(2 .85) 

Defining ( 

wk : = \j+a, (2.86) 

i.e. 
(2.87) 

(2.85) can be written 

(2. 88) 

Defining 

(2. 89) 
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and 

H (co' c ,--- c ) 1 ' v-1 

Equ.(2.88) can be written 

rk = H E.k (2 .90) 

Particularly, in case of a pure AR-process, i.e. c 
Cj=O,Vj+o o 

= 1 and 

E.k reduces to 

(2. 91) 

Instead of (2.87) one could also write 

or, 
r 

- a2------ av Wk-1 I 1 I 

0 0 Wk-2 
! 

0 

' 1 ' ' ' 
' 

+ Ek 

' ' 
' ' 

0 ' ' ' 'j '1 0 wk-v 0 

l l (2 .92) 

Using E.k as difined in (2.89) and abriviations j and r for the 

above matrices, (2.92) can be written more compactly 

( 2. 93) 
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(which together with (2.90) : rk = H ~k) 

gives a state space representation of the ARMA-process (2.84). 

Note that (2.90) is only~ possible representation of the 

above ARMA-process. Other representations may be derived [28] • 

Comparing (2.90) with (2.43) one (again) realizes that the ARMA 

process (2.84) is a special case of the process defined by (2.43). 

We are now in a position to derive a state space representation 

for our original problem (2.83). 

Defining a state vector 

~k+l 

(2.83) together with (2.93) may be written 

or 

with 

A -:J, B ' • u , and C , {:J 

(2 .94) 

(2 .95) 

(2.96) 

Equ.(2.9Q is the state space representation of (2.83) we were 

looking for. It is an equation of the type given in c2 • 80). 

(b) Separation Theorem 

Let us next show that for our situation of complete measurability 
dynamic certainty equivalence and the i 

to the same. 

(1) Input - Output representation 

Consider the plant equation 

separat on theorem amount 
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with {rk} being an ARMA process. Roughly speaking dynamic certain­
ty equivalence then says: being in time kit is optimal to replace 

all variables by their means conditional on the information up 
to k: 

(i=1,2, ••• ,N-k) (2. 97) 

and to optimize with respect to the deterministic criterion 

N-k-1 { 2 2 2 } 
Q = l_ ~k+1 (i) + P uk+i => 

i-1 
min. (2. 98) 

(2) State Space representation 

Instead of (2.83) we now consider (2.93). 

The separation property says: replace the state vector by 1ts 
I 

conditional mean and optimize with respect to (2.98)., 

Hence, form (2.95) we have 

or 

~k-1 (i~ 

lEk-1 <1j 
(2 .99) 

(2 .100) 

the second equation being of no relevance for our present investi­

gation, 
Since, because of (2.90), H Ek-1 (i) = rk-1 (i), Egu. (2.100) reduces 

to (2.97) which was to be shown. 
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2.5.2 Optimal Policies for ARMA-Processes 

In Sec. 2.4 we derived optimal results only for the white noise 

and the Gauss-Markov case. These results were obtained by value 

iteration of Dynamic Programming. Equivalently one can start with 

the variance criterion (2.63) and derive necessary and sufficient 

optimality conditions known as Wiener-Hopf equations D7]. These 

equations have to be solved yielding the optimal production 

policy. In (discrete) Wiener-Theory this solution is performed in 

the z-transform domain [17] , (a,s defined in Sec. 2. 4) . Obtaining 

analytic results for more complicated stationary processes than 

the two above examples (white noise and Gauss-Markov Process) 

which will be used throughout our later investigations is 

extremely difficult. These difficulties can, however, be overcome 

by solving the Wiener-Hopf equation not in the frequency but in 

the time domain [ 3] • This involves the solution of an infinite 

system of linear equations. I.e. the inversion of an infinite 

dimensional matrix has to be found. It can in fact be shown that 

for arbitrary AR~-processes analytic results can be obtained in 

a straight foreward way. 

Let us express the linear decision rule by 

u = k l G. rk . 
j=1 J -J 

with weighting factors Gj which have to be optimized. 

Similarly, since the system is linear, one has 

a, 

with l JHJ.J < a, from stability requirements. 
j=1 

( 2. 101) 

( 2 .102) 

One can easily show [ 3] (by substituting (2.102) in the balance 

equation) that 

a, 

(2.103) 

with H1 = - 1. The problem now is to determine Hj 'ef j. 

Substituting (2.102) and (2.103) in the variance criterion (2.63): 

C = crx 2 + p 2 cru 2 one obtains Casa function of Hj (j=1 ,2, •.• ). 
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Differentiating with respect to Hj(j=1,2, •.. } yields the time 

domain Wiener-Hopf equation 

.. .. 
' H Ri-J" + p

2 
' (H - H) (R - R ) j;1 j j;1 j+1 j i-j-1 i-j 

0 (2.104) 

with Rk . being the covariance 
-J 

of the stationary sequence {rk}. 

This infinite set of linear equations represents the necessary 

and sufficient conditions for Hj ¥ j to be optimal. In solving 

(2.104) for Hj,(2.104) may be rewritten as an infinite 

dimensional matrix equation 
(2.105) 

(1-p2} -p2 
~ 

Hi) 
R1 RO R_1 0 0 

R2 R1 RO - p2 (1+2p 2) - p2 H2, 0 

R3 R2 R1 - p2 (1+2P 2} _p2 
= 

\ 0 
\. 

' 
The rows of (2.105) can easily be identified as the Wiener-Hopf 

equations (2.104). 

In solving (2.105) for (H1 ,H 2 ,---}' one has to find the inverse 

matrices of the "p 2-matrix" and the infinite covariance-matrix 

Ro R1 
__ _:'\ 

R = R -1 Ro 

' ' 
' 

If R-1 exists (H
1

,H
2
,---}' can be isolated and one finds [ 3] 
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01 00 01 
P1 1+p 

"2 02 01 00 2 
P2 -P 

1 
03 02 01 (a ) H3 = . 

P3 + 0 (2.106) 
/,+4p2' 

I \ 0 

\ 

\ 

I, 4p 
2, 

1 0 . 2 - 2 - , + - p p 
with 0 := I a := 

I, I 
2 CD 

i-1 + 4p + 1 I 0 . pi 
i=1 

_, -
being the first row of R . (z denotes the conjugate 

complex of z). Equ. (2.106) is the first and most important step 

in deriving (H 1 ,H 2 , •.. ) '. It gives Hj as a function of the 

inverse R-1 of the covariance matrix of the {rk} sequence. The 

derivation of R-l is not easy but nevertheless it can be found 

by a straight foreward procedure. The inverse of the 11 p2-matrix" 

which defines the economic structure of the problem, however, can 

only be found by "trial and error". It should be mentioned that 

for finding the inverse of the P
2
-matrix its special structure 

(and consequently the special structure of the inventory­

production problem) was of great help. 

The second step now consists in the calculation of the first row 

of R-
1

. If {rk} is an ARMA-process defined by 

j 0 
and if the polynomial c 0 x + ••• + cj x has j different zeros 
w 1 , ..• , w j , we find 
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a 0 w1 
0 ------w. 0 

P1 0 J 
ao a 

w1 
1 1 

P2 = 0 ------wj 
a 

co 0 

ak 

0 
ak 

ak 

-1 -1 ( 2. 107) 

0 
0 

I \ 

\ 

\ 

\ 

\ 

c. -----c. J-1 J 
0 

Equs. (2,106) and (2,107) showthatHj (j=1,2, ... ) can be 

calculated analytically for arbitrary ARMA-processes. The only 

problem remaining is the inversion of two finite dimensional 

matrices. Since the MA-part is for practical problems of low 

dimension (at most j=S) the optimal production policy can be 

derived for all one item inventory production problems. For 

further results and examples see [ 3] • 



Chapter 3 

THE LINEAR NON-QUADRATIC MODEL 

With the preliminary studies in the last chapter we are now in a 

position to deal with the main object of this treatise. Let us re­

turn to the general model defined in Chap.1. For this model we 

now give optimal solutions within the class of linear production 

policies. As will be shown in the sequel, restricting admissible 

production policies to be linear has as an important advantage 

that many results of the quadratic theory still hold: in parti­

cular its property of allowing for the existence of dynamic cer­

tainty equivalents~)The crucial linearity assumption will be 

studied in detail in later chapters. 

Let us proceed as follows. First we define the model we shall be 

concerned with and subsequently a general derivation of the linear 

non-quadratic approach will be presented~*) Then we investigate 

some special types of important cost functions and finally two 

different stochastic demand sequences will be studied in some 

detail. 

3.1 The general Linear Non-Quadratic Model 

Let us specialize the general model of Chap.1 in the following 

way. Constituents (1), (2) and (3) remain almost the same. We 

require {rk} to be a stationary Gaussian random sequence and 

uk E IK• Be.sides the balance equation 

(3 .1) 

we now assume the policy to be linear, i.e. 

CD 

uk = - k•=oGk,•(xk-k'-µx) 
(3 .2) 

where µxis an unknown parameter and {Gk} denotes a sequence of 

*) 
But see remark on P· 41 

·IH~) 
Hitherto referred to as "LNQ"-approach. 
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likewise unknown weighting factors. It will be shown that 

JJx = E{xk} v' k. Thus (xk-k, -µx) in (3. 2) has the intuitive meaning 
of a deviation of inventory from its mean value. 

Assuming (3.2), the optimization problem thus reduces to the 

problem of determining {Gk} and JJx· Equs. (3.1) and (3.2) form a 

linear system which is shown as a block diagram in Fiq. 3.1 

rk ->o xk+1 Unit xk 
Delay 

+uk 

m 

- r Gk'(• -µx) 
k'=o 

Fig. 3. 1 The linear system (3 .1) and (3. 2J 

The cost criterion is given by 

C = E { I(x) + P(u)} (3. 3) 

with I(x) and P(u) representing inventory and production costs 

respectively. 

The optimization problem now reads as follows. Find {Gk} and JJx 

such that the expected costs C be minimum. 

Remarks 

Since the above assumptions are essential for the whole approach 

we should already now give some comments particularly on the eco­

nomic relevance of the model. 

(a) The most serious assumption of the model is its restriction to 

linear policies (Equ. (3.2)). As will be seen in later chap­

ters the validity of this assumption largely depends on the 

special cost structure of the model. For costs having relati­

vely small (fixed production) set up costs, assumption (3.2) 
will turn out not to be too restrictive. 
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Furthermore, system (3.1), (3.2) takes into account an infini­

te series of past values of inventory; i.e. together with the 

stationarity assumption of {rk} we are restricting our in­

vestigations to a steady state situation. This assumption is 

not unusual in theory. Markovian decision processes, e.g., are 

also considering only the steady state situation. In fact, it 

turns out that in general the steady state is reached only 

after a few periods. (See, e.g., footnote p. 65) 

(b) Assuming stationarity of the series of demand seems in general 

not to be restrictive for a short term inventory-production 

model. If, however, important deterministic components have 

(c) 

to be taken into account, the above model has to be modified. 

The second assumption, i.e. the assumption that {rk} be a 

Gaussian random sequence seems also not to be too restrictive. 

First, many demand sequences encountered in practice are, in­

deed,found to be Gaussian or at least nearly Gaussian. Second­

ly, as will be shown later, numerical results are fairly 

insensitive with respect to the normality postulate. (See 

Sec. 3,6 and Chap. 6) 

The cost criterion describes expected costs per period. In-

stead of (3 .3) one can write 

C = lim ·{ ! r (I(xk+l) + P(uk)) Jx,} (3. 3a) 
N-> CD N k=l 

The existence of the above limit is guaranteed by the statio­

narity of {uk} and {xk}. This, in turn, is warranted by at 

least one sequence of weighting factors {Gk}. 

Not all functions I(•) and P(•) will be admissible. Certain 

economically reasonable assumptions will be required. (See the 

derivation of Equs. (3.8) and (3.9) below.) 

3.2 The general Solution 

Having stated and discussed the various assumptions of the general 
model we will be cone d ith erne w , let us now develop a general solu-
tion procedure. 
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Consider Equ. (3.3). Because of the linearity of the system equa­

tions (3.1) and (3.2) it follows from the assumption of {rk} being 

stationary and Gaussian that {uk} and {xk} are also stationary 

Gaussian processes. This implies that C is solely a function of 

the variances, covariances, and mean values of {uk} and {xk},i.e. 

C (3. 4) 

However, in view of the special (additive) structure of the costs, 

F does not depend on the covariance crux· Moreover, from (3.1) it 

follows µu E {uk} = o~>. Hence, (3.4) reduces to 

(3 .5) 

c is a function of µx and via ox
2 

and ou
2 

of the weighting sequen­

ce {Gk}. Hence, a necessary condition for C to be minimum is given 

by 

= 0 (3 .6) 

and 
} ac 6G {o 2} + 2f_ 6G {ou2} = o 

6G{c = aox2 x aou2 
(3.7) 

where 6G{•} denotes the first variation with respect to {Gk}. 6G{•} 

may also be replaced by (infinitely many) differentiations with 

Ct t o G (See also Sec. 2.5.2) respe k" 
ac 

Let us now in additon assume that ao 2 and 
ac -- be positive (an 

ao 2 
X u 

hi h in many cases seems to 
assumption, w c 

be economically most 

reasonable)• Hence, 
(3.7) can be written 

(3 .8) 

t ogether with (3.2) µx=E{xk}, so that using the 
*)This also implies 

P
arameter in (3.2) from the outset isjustified. 

symbol µx for the 



where 

ac 
a cr 

2 
X 
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(3. 9) 

and 0 2>0. The index Gr at (3.9) says that 0 2 is defined for a 

weighting sequence {G~} for which (3.8) is fulfilled. 

Equ. (3.8) represents an important result. Treating for the time 
2 being 0 as a fixed parameter, the left hand side of Equ. (3.8) 

represents the first variation of the quadratic criterion crx
2 

+ 

0 2 cr 2 . Hence, the originally non-quadratic criterion has been 
u 

reduced to a quadratic one. 

In solving the above optimization problem we may now proceed as 

follows. First one solves for fixed 0 2 the (adjoined) quadratic 

optimization problem. This can be done by solving a Wiener-Hopfequ. 

[21] (see also Sec.2.5.2) by value iteration of dynamic programning 

as shown in Chap.2 (c.o.Equ. (2.62)). One obtains (mean square) op-
2 2 timal variances cr and cr which of course depend on 0. In a se-

u X 2 2 
cond step one then substitutes cr (0) and cr (0) into (3.9) 

U X 
which together with (3.6) allows for determining the optimal 

values of ux and 0 2 . In case that several values of 0
2 

occur one 

has to take that 0 2 which results in the lowest value of C. 

Let us summarize the results thus far obtained stating the follow­

ing proposition. 

Subject to the above assumptions a dynamic non-quadratic opti­

mization problem can be separated into two parts. The first 

part involves a quadratic dynamic optimization procedure (ta­

king into account the dynamics of the model). The remaining 

part then accounts for the special non-quadratic features of 

the model's criterion requiring only a solution of Equs. (3.9) 

and (3.6). 

Since, as we know from Chap.2, for linear quadratic models dynamic 

certainty equivalents do exist, the above makes sure the existence 

of certainty equivalents also in the non-quadratic case. However, 
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with respect to the above derivation this statement should be in­

terpreted carefully. Dynamic certainty equivalents exist only in 

the sense that one can find an adjoined quadratic problem. In de­

riving this adjoined quadratic problem the knowledge of variance 

and covariance of the disturbance sequence was necessary. It is 

therefore not correct to say that also in the LNQ-Problem dynamic 

certainty equivalents exist in the sense that only the sequence 

of forecasts has to be known. However, in the stationary case, we 

consider, variances and covariances have only to be fixed once 

and determine together with the cost parameters certain constants 

in the optimal policy. Hence the only information which is really 

used is the sequence of forecasts which more or less may be re­

garded as dynamic certainty equivalents of the LNQ-problem. These 

arguments will become more clear by the examples given in the 

next section. 

Remarks 

(1) The above procedure may be regarded as a rational procedure of 

fitting quadratic functions to the non-quadratic cost functions 

I(x) and P(u). In fact, we are not fitting quadratic functions, 

e.g., by a mean square type of procedure (as was done by [ 7]), 

but with respect to the cost criterion of the model. 

(2) The procedure we used in deriving an optimal policy may be con­

sidered as a special example of a far more general problem 

which is known as the reduction of a composed functional in a 

dynamic optimization problem ( [ 1], see also O 7]) • 

(3) For special cost functions and demand sequences it will not be 

necessary to use the above "two-step" procedure. Knowing the 

structure of the optimal policy one can immediately derive an 

explicit expression for F (cr 2 , cr 2 , µ) and can optimize F 
X U X 

with respect to the unknown parameters in the production policy. 

(See e.g. Q4]) This procedure will be illustrated in later sec­

tions. 
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3.3 Special Cost Functions 

According to the proposition stated in the last section the 

effect particular cost functions exert on the optimization can be 

investigated independently from assumptions on the demand sequen­

ce. Thus we shall first study special types of important cost 

functions and then, in Sec. 3.4, different kinds of demand sequen­

ces will be investigated. 

The special feature of different cost functions only affects 

Equs. (3.6) and (3.9). Hence, let us determine these equations for 

particular costs. 

3.3.1 Piecewise Linear Costs 

Consider the following piecewise linear cost functions speciali­

zing the general criterion (3.3) 

I(x) 

and 

P(u) 

for x ~ o 

for x < o 
h > O, v > 0 

= f p u for u > o 

l -q u for u < o 

(3 .10) 

X 

( 3. 11) 

P > o, q > 0 u 

The cost parameters u, v, p and q may be inter-

) 

) 

preted as "costs per item and period". h x represents proportio­

nal stock holding costs, whereas - v x gives" penalty costs" 

if one is out of stock. (Note that "negative stock" means back 

logqed orders.) Pu and - q u represent costs for producin~ more 

and less than at a given mean production level. 

Deriving specific formulae for (3.6) and (3.9) we first have to 

express the expected costs c by (3.10) and (3.11). From (3.5) one 
immediately has 
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m 

exp { - (x-u,) 
2

} dx C f I(x) 1 
✓-'Irr a - 2a 2 

X X 

+-- f P(u) exp{ __i, u
2

} du 

where 

y 

= 

/2ir' a -m 2a u u 

- VI.Jx + (h+v) { IJX <p (y) + a <I>' (y)} X 

and q> (y) : = /fir Jmy exp { 

+ p+q a 
12n u 

1 , 2} d , 2 y y 

(For a derivation of (3.12) see also [17, p. 180 f.f.]) 

From (3.12) we obtain the following partial derivatives 

ac = - V + (h+v) ~(y) 
ajjx 

ac h+v cl> I (y) 
ac;c2 -2- a 

X 

ac = .e:t_g_ 
--2 

2/211 a 
aa u 

u 

Substituting these expressions in (3.6) and (3.9) yields 

(3. 12) 

(3. 13) 

(3. 14) 

(3. 1 5) 

(3. 16) 

- v + (h+v) <!>(y) = 0 (3.6a) 

h"n (h+v) <I>' (y) au 0
2 

- (p+q) ax 

or, indicating the dependance of the 

IJX = a (0) <l>-1 
(v:ti) X 

B 
a (0) 

92 X = a: a (0) 
u 

where 

ex ;TI~• !yl y 

0 

variances on 

~-l (h:v) and a 

0 

p+q 
h+v 

(3 .9a) 

( 3. 17) 

(3 .18) 

( 3. 19) 
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Equs. (3.17) and (3.18) are expressions (3.6) and (3.9) for the 

above special cost structure. (It now remains to calculate ox (0) 

and ou (0) for special demand sequences : see next section). 

Another important cost function, closely related to (3.10) and 

(3.11), is given by (3.10) and instead of (3.11) one has 

for u > O 

for u = o 
for u < O 

(3.20) 

p and Q represent (fixed) production set-up costs. As one can 

easily see in this case one has to add to the costs (3.12) the 
P+Q i f (constant) term - 2-. This express on, o course, will not affect 

our basic equations (3.17) and (3.18). Hence one obtains the same 

linear policy irrespective of the presence of set-up costs. This 

already indicates that for problems having set-up costs the linear 

policy will in general be a poor approximation (but see Sec. 4.2). 

3.3.2 Probability Constraints 

Often it will be extraordinary difficult to specify the negative 

branch of the cost function (3.10). What seems to be easier, 

however, is to specify a certain service level. There are many 

definitions of different kinds of service levels used in litera­

ture [11] and industry. We shall here concentrate on a service 

level defined by the probability of being out of stock; 

i.e. Prob.{x <_ o} = ln' where ln is called "a-service level". 
~nstead of (3.10) and (3.11) we now have 

I(x) hx 

Prob 

'pu 
P(u) =, - qu 

for x ~ 

{x 5. o} 

for u 1 

for u < 

0 

l 

0 

0 

Cl 

(3. 21) 

(3. 22) 

( 3. 2 3) 

Since stock on hand is a Gaussian d 
ran om variable, (3.22) can 

also be written 

(3. 22a) 
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Hence, in view of (3.12) mean costs are given by 

C h Iµ <!>Cy) + cr <p' (y)} + .E.:!:.9. cr +). (1-(j)(y) - 1) (3.24) L x x 12n u a 

where). is a Lagrange parameter. 
2 2 

Differentiating with respect to)., µx, crx and au now leads to 

ac "' IT= 1 - ~Cyl - a 

ac 
a cr 2 

X 

th O' (y) -+ 
CJ 

X 

µx 
). <)>'(y) --

20 3 
X 

Hence, necessary conditions imply 

or 

with 

and 

y = (j>-l (1-a) 

h crx ~ 

___E:!:S_ 

/2rr' h ©' (yl + y<D(yl 

CJ 
X 

CJ 
u 

p+q 
= IN' h <)>' (<j>- 1 (1-a)) + (1-a)<j>- 1 (1-a) 

(0) 
02 B crx 

= 6 (0) au 

0 cj>' (cp- 1 (1-a)) + (1-a) <t,- 1 (1-a) 

B = 7;ff'h 

(3 .25) 

(3. 26) 

(3. 27) 

(3. 28) 

(3.29) 

(3. 30) 
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Like (3.17) and (3.18) Equs. (3.28) and (3.29) are specifications 

of the general expressions (3.6) and (3.9). The similarity of the 

necessary conditions (3.17), (3.18} and (3.28), (3.29} is obvious. 

A direct analogy, however, could be constructed if we replaced the 

proportional penalty costs by constant costs, i.e. if we had 

instead of (3.21) and (3.22) 

h X X > 0 

I (x) = { 
x < O (pf: fixed penalty costs) 

In this case the expected costs are given by 

with the necessary condition 

ac 
clµx 

leading to 

pf = h ox 
<I> (y) 

<I>' (y) 

0 

a 2 
u 

(4. 32) 

(3. 22) 

(3.33) 

(3. 34) 

Hence, comparing (3.34) with (3.28), A turns out to be identical 

with , i.e. A represents constant inventory penalty costs. 

3.3.3 A Production Smoothing Problem 

A cost function which does no longer fit completely the general 
pattern defined in Chap. is given by ( [14J) 

for xk > o 

for xk < o 
(3. 35) 
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(3. 36) 

In contrary to our former production costs Equ. (3.36) describes 

costs to be dependent on the last production level, which for a 

genuine production smoothing problem seems to be a reasonable 

assumption. 

Defining 

Dk : = uk+1 - Uk (3.37) 

expected costs are given by (see (3. 12)) 

m 

exp { - -
1
- (x - 11 ) 

2 
} dx C I I (x) 

n;'ox -m 20'X2 X 

m 

exp{-½ D
2

} dD + 1 I plDI 
/2n'oD -m 2oD 

= -V)Jx + (h+v) { llx ~ (y) + O' <!> I (y) l + ~ 
X J ,ri;' O'D (3. 38) 

Following exactly the same arguments as in Sec, 3.3.1 one obtains 

instead of (3.17) and (3.18) 

(3. 39) <!>-1 V 

llx = ox (0) (v+h) 

02 ~ 
ox (0) 

= (0) Cl OD 
(3. 40) 

where 6 is now given by 6 = Le._ 
h+v 

3.4 Special Stochastic Demand Sequences 

As we know from our proposition stated in Sec. 3.2 the specifi­

cation of Equs. (3.6) and (3.9) is only one step towards the 

solution of the total problem. Two important steps still remain. 

First, we have to solve the quadratic problem giving us ox an~ ou 

as functions of 0. Secondly, Equ. (3.9) has to be solved for 0 . 
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We shall concentrate on two sequences of demand. One will be an 

uncorrelated sequence of random variables (White noise) and the 

other an exponentially correlated sequence of demand (Gauss -

Markov sequence). Both sequences have already been introduced in 

Chap.2. 

Also we shall concentrate on the case of piecewise linear costs 

dealt with in Sec. 3.3.1. Hence, Sec. 3.4 will derive solutions 

of (3.17) and (3.18) in the cases of white noise (Sec.3.4.1)and of 

a Gauss-Markov sequence (Sec. 3.4.2). 

3.4.1 Non - Correlated Demand 

Solving the adjoined quadratic variation problem (3.8) for the 

white noise case we arrive at formulas already given in Sec.2.4. 

These fonnulas may again be summarized for better reference. The 

(mean square) optimal policy as a function of 0 is given by 

Uk (0) = (y (0) - 1) xk 

and the variances are known to be (see (266) and (2 .67)) 

2 (0) 1 er2 er = 
X 2 1-y (0) 

2 (0) 1-y (0) er2 er = u 1+y(0) 

where 

y (0) 1 = 
20 2 

Substituting (3 .42) and (3.43) into (3.18) one obtains 

1-y (0") 

or, in view of (3.44) 

B (B+a) 
a2 

Hence, 

= y(0*) = B 
a+B 

(3. 41) 

(3 .42) 

(3 .43) 

(3. 44) 

(3 .45) 

(3 .46) 



which implies 

0 *2._ 2 ce*) = (a+Bl
2 

0 2 
x ·- 0 x a(a+2B) 

(3.47) 

a 2 
a+2B 0 (3.48) 

and from (3 .17) 

-X- ,+,-1 V 
0 x '+' (h+v> (3 .49) 

Finally, in view of (3.41) and (3.2), the optimal ("non-quadratic") 

policy is given by 

U 
l{. 

k . (3. 50) 

The optimal costs can now be calculated from (3.12). Rewriting 

(3 .12) one obtains for the optimal costs C x-

which, taking advantage of the necessary condition (3.6a), re­

duces to 

or, in view of definitions (3.19) 

Substituting (3.47) and (3.48) one finally has 

c* = h+v /~ (a+2B), o 
rin 

Policy (3.50) may be illustrated as follows (Fig.3.2) 
,,... 

Fig. 3.2 Linear Policy (3.50) 

(3. 51) 

(3.52) 
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The parameter µ; may be interpreted as an optimal "dynamic safety 

stock" [19]. The slope K* has been used as an abriviation, since 

from (3. 50) 

K* = - a 
a+B 

Note that -1 ~ Kr. ~ o 

(3 .53) 

In discussing the above results somewhat further let us first con­

sider some special cases of cost parameters. 

(1) h = v impliesµ~ o, i.e. the optimal safety inventory 

should be zero; a result which was reasonably to be 

expected. 

(2) h = v = p = q implies u~ 
1 
2 xk which reflects the com-

plete summetry of the model. 

(3) p = q = O implies slope K* = -

(4) p -> m or q -> m * implies uk -> O 

Next, let us give some results of a sensitivity analysis of some 

of the above quantities with respect to certain cost parameters. 

( 1) For increasing p (and the same holds for q) it can be shown [BJ 

r > 0 for V > h 
clK>f 

O and 
clµ* 

0 for h - > 
clp 1: V = clp 

0 for V < h 

(2) For increasing hone obtains 

c)K:... 

clh < O and 
a/ 
clh < O 

(3) For increasing v one finds 
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3.4.2 Exponentially Correlated Demand 

As in the non-correlated case the results for the adjoined quadra­

tic problem have already been given in Sec. 2.4. Again (2.78) and 

(2.79) have (as functions of 0) to be substituted into (3.17) and 

(3.18) from which 0* andµ: and all other optimal quantities of 

interest follow. The calculation of 0* can, of course, no longer 

be performed analytically. However, numerically it is an easy and 

straight forward task to determine zeros of the polynomical in 0 

or in A (0) given in (3.18) 

Let us now summarize the analytic results of Sec. 2.4. 

In view of (3.2) and (2.62) the ("non-quadratic") optimal policy 

is given by 

{
x-µ*-'i' 

k X i=o 
(i+l)} ( 3. 54) 

Note that the white noise case and the Gauss-Marko? case essentially 

differ in the last term in (3.54) which gives an exponentially 
if) 

weighted sequence of forecasts of future demand. r,_s we already 
I'\ 

know rk-i (1+1) are called dynamic certainty equivalents (of the 

adjoined quadratic problem). Hence, also in the non-quadratic case 

dynamic certainty equivalents exist in the sense discussed at the 

end of Sec. 3.2. 

The optimal costs are again given by (3.51). 

c* = h+v [ -- a 
8 

with the optimal variances (see (2.78) and (2.79)) 

(3. 55) 

2 
0

r { (1-a 2 ) + y (0~) (-3a+3a2 ) 

(1-i<0*>) (1-ay(0*)) 3 
2 it 2 3 + y (0 ) (2a+2a -4a ) 

*) . 
Note that µ * and y (0*) are of course not the same 

X 
as in (3.50) 

(3. 56) 



au2 ce*) 
a 2 (y (0*) -1) 2 

r 
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{c1+2a-2a3 ) +y (0*) (-3a-2a
2

+4a
3

) 

+ y 2 (0*) (a 2 -2a
3

) 

+ y 3 (0*)a3 } (3.57) 

Numerical results are given in the following table [20] 

Table 3.1 

a 2 = (1-a2 ) 

p = q µ * 
X 

0,0 h 0,43 

0, 1 h 0,43 

1 ,o h 0,48 

10,0 h o, 97 

Remark 

1, V 2h, p 

a = 0 1 . 
1-y,ll Ci(- µ * X 

1.00 1 .091 0,43 

0.94 1 • 175 0,43 

0.60 1. 787 0,47 

0.12 4.730 1 , 34 

q 

a = 0 5 . a= o. 9 

1-Y~ c* µ* 
X 

1-Y~ c* 

1.00 1 .091 o,43 1 .00 1 .091 

0.95 1. 210 0,43 0.97 1. 302 

0.69 2.170 0,44 0.81 3 .174 

0.14 7.769 0,80 0,34 20.756 

In a recent paper Gaalman [6] studied the multi-variate case 

by modern co~trol-analytic methods. Since one of our main objects 

is the investigation of the validity of the linear decision rule 

approximation we shall concentrate on scalar models with white 

noise and Gauss-Markov processes as demand sequences. This 

limitation is necessary since DP solutions which will be presented 

in the next chapter usually cannot be derived for higher dimen­

sional state spaces and more complicated disturbance processes. 
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3.5 A direct Approach solving a LNO-Problem 

A slightly more direct approach to the LNQ-problem can be applied 

by exploiting from the outset the knowledge of the structure of 

the optimal linear policy. In fact, knowing the type of the sto­

chastic demand sequence the optimal policy is given immediately. 

For an uncorrelated sequence, e.g., one has 

(3.58) 

with parameters Kandµ which have to be 

mizing the cost criterion of the problem. 

determined by opti-

For an autoregressive process of order v, e.g., one has 

(3. 59) 

(See Appendix to Chap.2) 

The general procedure of the "direct approach" now is as follows. 
2 2 

First, calculate variances crx and cru as functionsof the unknown 

policy parameters, say a, a
0
,---, av. This could in principle be 

done by solving a stationary Matrix Riccati Equa~lon. Secondly, 
2 2 substitute these variances into the cost criterion c (cr ,cr ,µ). 

X U X 
Finally, optimize C with respect to a, a

0
,---, av. 

The "direct approach" appears to be somewhat less sophisticated 

than the theory developed in Sec.3.2. It should, however, be 

clear that Sec. 3.2 provides a deeper insight into the general 

nature of the problem. 

We shall illustrate the procedure for an uncorrelated sequence of 

demand leading to the general linear policy (3.58). Two models 

will be considered. First, in Sec. 3.5.1, the model described in 

Sec. 3.3.1 having piecewise linear costs will again be investi­

gated and secondly, in Sec. 3.5.2, the production smoothing pro­

blem of Sec. 3.3.3 will be studied. 

3.5.1 Piecewise linear Costs 

Following the 3 steps indicated in the last section we first cal­

culate ox
2 

and ou
2 

as functions of K. From Sec. 2.4 we readily 
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have (setting y-1 = K) 

2 
ax (K) 

1 2 
K (K+2) a (3 .60) 

and 

( 3. 61) 

Substituting, in a second step, these variances into the cost cri­

terion (3.12) gives 

C = -w + (h+v){µ 

ax (K) 
where y: = µ 

<I> (y) + ax (K) <I>' (y) } + p+q a (K) 
h'1T u 

(3. 62) 

Finally, differentiating (3.62) with respect to the two policy 

parametersµ and Kand setting equal to zero, one obtains (see 

derivation of (3.17) and (3.18)) 

and 

or 

dC 
dK 

ac 
aa 2 

X 

+ ___!f___ 
aa 2 

u 

(3.63) 

- (h+v) q>' (y) • ax2 (K) (K+1 ) + E±S a (K) 1 = 
K (K+2) /27r U K(K+2) Q 

a 
a+B (3. 64) 

with a and B defined by (3.19). Substituting K* in (3.63) one ob­

tains the optimalµ 

-)( µ = (a+B) a 
/a (a+2B) 

Hence, the optimal policy is given by 

(3 .65) 

uk = Kx (xk-µ~) (3.66) 

with K"- andµ--" determined by (3.64) and (3.65) from which optimal 

costs follow immediately (see also (3.53)) 
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3.5.2 Production Smoothing Problem 

The dynamics of the production smoothing model as defined in 

Sec. 3.3.3 is given by the two equations 

or, in matrix notation 

Defining~:) as an (extended) state vector, the optimal 

policy is immediately given by (see Appendix to Cq3p.2) 

I 

(3.67) 

(3 .68) 

(3 .69) 

whereµ turns again out to be mean inventory. Policy (3.69) says 

that a charge-over in production depends on stock on hand and on 

the last production level. 

The variances of xk and Dk which have to be substituted into the 

optimal costs (3.38) may be calculated as follows: 

Defining xk = xk-µ Equ. (3.67) may be written 

Using z-transforrns, as defined in Sec. 2.4 (see footnote), one has 

Z X (z) = X (z) + u (z) - r (z) 
(3. 70) 

z u (z) = (1+K1) u (z) + K2 X (z) 

or, 

(1 +K 1 ) - z 
X (z) = 2 

r (z) 
z - (2+K

1
)z + (1+K 1-K 2 ) 

( 3. 71) 
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and, in view of (3.37) 

D (z) r (z) (3.72) 

As in Sec. 2.4 (see (2.75) and (2.76)) the variances are now given 

by 

( 1 +K 1) -z (1+K 1)-z -1 
2 2 1 f -1 dz 

o = o 2irj z 2 2 -1 X z -(2+K 1 )z+(1+K
1

-K
2

) z -(2+K 1)z +(1+K 1+K 2 ) 

(3. 73) 

1-z 1-z -1 
2 2 ,z'J-, dz OD = o 2 irj z 2 2 -1 z -(2+K 1)z+(1+K

1
-K

2
) z -(2+K 1)z +(1+K

1
-K

2
) 

Using a table, as given in [1 o], one readily obtains 

and 

2 
ox 

2 
OD 

(2+2K 1+K 1
2 ) (2+K 1-K 2)-2 (1+K 1 ) (2+K

1
) 

(K2-K1) [(2+K,-K 2 )
2 

- (2+K 1)
2J 

- 2K 
2 

2 

(3. 74) 

(3. 75) 

(3.76) 

These expressions have to be substituted into the expected costs 

(3.38) which then are to be optimized with respect toµ, Kl and 

K2 • This may again be done analytically as in the case of Sec.3.5.1. 
ac 

Or, alternativel~ one can take necessary conditions aic = O and , 
ac = o and has to solve these equations numerically. A third pro­
ilK2 

cedure could be applied by optimizing C = C(µ, K1 , K2) numerically 

without relying on the necessary conditions. 
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3.6 Appendix to Chapter 3 

The Normality Condition 

In deriving the best linear policy in Sec. 3.2 we assumed the 

demand sequence to be Gaussian. We shall now show that in cases 

when this assumption does not hold the effect on our results may 

in general be disregarded. 

Let us proceed as follows. First we derive an integral equation 

for the stationary probability distribution F(x) of inventory X 

assuming a general (non-Gaussian) demand sequence. This integral 

equation can in general not be solved analytically. Consequently, 

we represent F(x) by a Gram Charlier expansion. It turns out that 

generally only the first terms involving mean and variance are 

of importance. Screwness and curtosis usually can be disregarded 

so that only the "normal part" of a demand probability distri­

bution is of importance. 

The derivation can only be sketched here. For a more comprehensive 

presentation see [ 4]. 
I 

Let us again consider the general model stated in Sec. 3.1 with 

costs (3.20) and an independent non-Gaussian stationary sequence 

of demand with mean E{rk} = u. The following discussion will be 

restricted to the case P = Q = O. For more general results see 

[4]. We know that a linear policy has the general structure 

u (x) = K (x - °ii) (3. 77) 

Hence, the balance equation may be written 

xk+1 = K1 xk - KU - rk (3. 78) 

where K1 = 1 + K 

For the mean values of xk' Uk, one has 

Uk+1 = K1 Uk - KU - u (3. 79) 

or 
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Assuming - 1 < K
1 

< 1,limiting mean stock is given by 

µ + ~ 
K 

(3. 80) 

( 3. 81) 

(Note that forµ= o one again finds the result of Sec. 3.2 

lJ.., = µ = µx). 

Since we are only interested in a stationary analysis it is 

convenient to introduce reduced variables 

(3. 82) 

resulting in 

( 3. 81) 

Since xk and rk are stochastically independent (3.81) gives us 

immediately a relation between the probability distribution 
0 0 0 

functions Fk+1(x) and F k(x) of x k+ 1 and xk respectively, 

CX) 

F~-+- 1 (x) = f F~ (3. 82) _.., 

In the homogenous convolution integral equation (3.82)1'0 (z)is the 

probability density of r 0 k. 

Letting k +.., Equ. (3.82) becomes [4] 

'f 0 (z) dz (3.83) 

where F
0 

(x) is the limiting distribution function of x. Generally, 

integral equation (3.83) cannot be solved analytically. However, 

if ~
0

(z) is a Gaussian density,F0 (x) is also Gaussian and the 



59 

results of earlier sections can be confirmed. 

One may try to solve (3,83) approximately. This can be achieved 

by a Gram Charlier expansion. Let F 5 (x) = F0 (x•crx) be the 

standardized distribution function of x, Hence the Gram Charlier 

expansion is defined by 

<I> (i) (x) 
N 

(3. 84) 

where <l>N(i) is the i-th derivation of the standardized normal 

distribution function. For the first 4 coefficients one has, e.g., 

co 1 , c, c2 = 0 

C3 (Fs) = - Y1 
Fs 

(screwness of F 5 (x)) (3. 85) 

C4 (Fs) = 
Fs 

Y2 (curtosis of F 5 (x)) 

A suitable approximation might already be 

F 5 (x) ( C4 (Fs) 
<I> 3) (x) + --- <I> (4) (x) 

N 
41 

N 
(3. 86) 

Up to now screwness and curtosis of F 5 (x) are still unknown. They 

will be determined by expanding both sides of the integral 

equation (3.83) in a Gram Charlier series. It can be shown 

3 
( 1- K 2) 2 

C3 (Fs) = 1 
C3 (¢,s) 

1-K 3 
1 

(3. 87) 

1-K
2 

C4 (Fs) = 
1+K 2 

C4 ((j}s) 

1 

(3.88) 

where c 3 (¢> 5
) and c 4 (<j> 5

) are (negative) screwness and curtosis of 

the standardized distribution function <j> 5 (r) of demand. (For 
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coefficients Ci, i > 4, similar results can be obtained [ 4] ) . 
Equs. (3.87) and (3.88) show an interesting and important result. 

First one has 

(i = 3, 4) (3. 89) 

i.e. if for a demand distribution screwness and curtosis are of 

no great importance, the same holds a fortiori for the stationary 

distribution function of x. Hence Fs(x) ~ $N(x) would be a good 

approximation and, as our nwnerical results will show, the same 

reasonable approximation holds for the costs. 

Secondly, as one observes from (3.87) and (3.88) for K1 ~ 1 

Fs(x), and hence F0 (x), is nearly Gaussian irrespective of the 

form of the distribution function of demand. K1 + 1 implies 

K + 0, i.e. for flat linear aecision rules (see e.g. Fig. 3.2) 

~N(x) represents a good approximation; or, stated in terms of 

cost parameters, p and q should be larger than hand v. 

Average costs and optimality conditions 

Let us now study the effect of the second and third term in (3.86) 

on the optimal costs. Mean average costs, as a function ofµ and 

Kare given by 

C(µ, K) = E{L(x) + P(u)} 

Substituting for the costs Equ. (3.20) (with P = Q = 0) and for 

the distribution function,F
0

(x) from (3.86),one finds 

C (µ, K) ,;:,; (p+q) (-K) 'fN (0) { 1 
ax 

1 s 24 C4(F )} 

+ (h+v){µm$N(µx)+ fN(µm) [1+ t µm C3(Fs) 

- 1
4 

c4 CF 0
) (1-µ

2 
ml]} 

(3.90) 
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with fN(x) being the Gaussian density function and µm := 

(om: standard deviation of F 0 (x)). 

Differentiating C(µ,K) with respect toµ and K, or, equivalently, 

with respect to µm and K
1

, finally yields the approximative 

necessary conditions 

(3.91) 
and 

(3. 92) 

(As one easily realizes, for normally distributed demand, i.e. 

~(v) = ~N(v)' these conditions reduce to (3.63) and (3.64) 
respectively) 

conditions (J.91 ) · and (3.92) have to be solved numerically giving 
approximately 0 Ptimal values for the policy parameters Kandµ. 
Optimal costs a 

re not determined by (3.90) but by a value 
iteration Procea 

. t· Ure. Hence costs are exact with respect to the 
approxima ive Po 

e 3.2 gives licy u = K(x-µ). 
Tabl the values of Kandµ for a forth order Gram 

l j,er expans1 
char 0 n (i.e. taking into account screwness and 

j,Sl• The a ' 
curto 5 ernand distribution was taken to be a standardized 

d j,stribut10 Beta~ n With parameters a= 10 and b = 2, having the 

finite support [-a.062; 1 .612], mean 0.833, standard deviation 
screwness 789 

103, ~o. 921 and curtosis O. • K and µ are given 
O • ctiOn Of c v £:!:SI 

fun Ost parameters .--.-hand v+h • In Table 3.2 we 
as a _$.c"" 0,333. v+ 
chose "+ll 
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Table 3.2 not only shows the forth order valuesµ and K but also 

µ 0 and K
0 being calculated from a second order Gram Charlier 

expansion which corresponds to a Gaussian approximation 

p+q 

h+v 

0.25 

a.so 
0.75 

1.00 

2.00 

3.00 

Table 

\.I K 

- 0.274 - 0.799 - 0.442 

- o. 301 - 0.664 - 0. 4 61 

- 0.330 - 0.567 - 0.483 

- o. 359 - 0.493 - 0.506 

- o. 462 - 0.322 - 0.593 

- 0.550 - 0.238 - 0. 672 

3.2 Comearison with Gaussian 

D 

- 0.785 0.6 

- 0.646 0.4 

- 0.549 0.3 

- 0.477 0.3 

- 0.313 0.2 

- 0.233 0.1 

aeeroximation 

of the demand distribution. The last column in Table 3.2 shows 

C (\.IO, K o) - C ( \.I ,K ) 

the relative deviations in costs: D := ---------- 100 
C(µ ,K) 

Even for demand distributions of considerable screwness it is 

encouraging to notice that a Gaussian approximation does extremely 

well. This result is also affirmed by the investigations for the 

pure inventory case in Chap. 6. Hence our assumption of demand 

to be a Gaussian random series is by no means restrictive. 

More detailed and comprehensive results for other values of cost 

parameters and further Beta-Distributions are given in [ 4 J . 
The values for Dare always of the same order (which shows the 

strong smoothing property of the linear policy). 

In addition, [ 4 J also investigates the suboptimality of the two 

approximations with respect to the optimal (Dynamic Programming) 

solution (see also Chap. 4). It can be seen that the Gram 

Charlier approximation gives satisfactory results. Generally, 

deviations are not larger than 5 or at most 10 %. 



Chapter 4 

COMPARISON WITH OPTIMAL DYNAMIC PROGRAMMING SOLUTIONS 

In Chap. 3 we established the so called LNQ-approach to 

inventory production problems having no quadratic performance 

criterion. This approach, as we know, is suboptimal because of 

the linearity assumption (3.2). It will now be our main concern 

to study the effects of this crucial assumption in some detail. 

I.e. we shall compare the linear approach with the exact 

solution which will be derived by a dynamic programming procedure. 

We refer to the models stated in Chap. 1 and Sec. 3.1. For 

easier reference let us state completely the model we will be 

concerned with in this Chapter. 

(1) Xk E 1R_ 
1 

(2) Uk E 1R 1 

(3) {rk} 

(4) xk+l = xk 

(5) C = lim 
N+m 

where 

I(x) = { 
P(u) = { 

stock on hand, k=1,2, ••. 

production (deviation) 

demand sequence (white noise or Gau::.s-Markov 
sequence) 

+ Uk - rk 

E{i N 

+ P(uk)llx,} -> min. r { I (xk+l ) 
k=l 

h X for x > 0 

( 4. 1 ) 

- V X for x < 0 

p + pu for u > 0 

0 for u = 0 ( 4. 2) 

Q - q u for u < 0 

First, in Sec. 4.1, we shall concentrate on the white noise case 

having no production set-up costs; i.e. P=Q=O. Then, in Sec. 4.2, 

P and Q will be taken to be non-zero. Finally, Sec. 4.3 is 
devoted to the Gauss-Markov case. 
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4.1 Piecewise Linear Costs (no set up costs: P = Q = O) 

Let us first derive a dynamic programming (DP) solution for the 

above model and let us then, in Sec.4.1.2, compare the LNQ- and 

the DP-approach numerically. (See also [ BJ l 

4.1.1 Dynamic Programming Solution 

The DP-solution can only be sketched here (Fora more comprehensive 

representation see [ BJ l . However, the main ideas of deriving 

the optimal policy and optimal costs will be given. 

Defining 

Bellman's functional equation for a finite horizon situation may 

readily be stated to be 

fk (x) = m~n E { ½ [ P (y-x) + I (y-r) + (k-1 l fk-1 (y-r)J} (4. 3) 

fo(xl = o 

Here fk(x) denotes the value function and k the number of steps 

up to horizon N. 

The optimal policy (and optimal costs) for N~m can now be found 

by applying a value iteration procedure. 

Let us first look for the optimizing decision at step k. 

Applying tne expectation operator E, Equ. (4.3) can also be written 

fk (xl = min ½ [ P (y-x) + Hk (y)] (4. 3) 
y 

where 

Hk (y) : = E { I (y-r) + (k-1) fk-1 (y-r)} (4. 4) 

In view of (4.2) (P = Q = O), (4.3) may further be r~formulated 

yielding 

1 min JP (y-x) l 
ic + Hk (y) ~ 

y?x L J 

fk (x) min 

{-
(4. 5) 

1 min q(y-x) Hk (y)} ic + 
y<x 
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Now, for the above costs (4.1) and (4.2) it can be shown that 

expressions p(y-x)+Hk(y) and -q(y-x) + Hk(y) are convex. Hence, 

there exist optimizing parameters sk and sk defined by 

= - p and = q (4.6) 

The optimal decision is therefore given by 

-! :k 
for X < sk 

yk(x) for sk ~ X ~ s' k 

s' for X > s' k k 

(4. 7) 

and the optimal costs are found to be 

1 
[p (sk-x) + Hk (sk)J for X < s' 

ic ,k 

fk (x) 1 
Hk(x) for s. X ~ SI 

ic sk k (4. 8) 

½ [ -q(sk-x) + Hk (sk)] for X > ,., 
~k 

Hence, letting N+m, the optimal policy, written again in terms 

of uk' turns out to be *l 

s-xk for X < s 

Uk (x) -f 0 

for s ~ X < s' ( 4. 9) 

s'-xk for X > s' 

¥)The convergence of the value iteration to the optimal policy 

depends, of course, on the values of cost parameters h, v, p 

and q. However, it was found that in most cases convergence 

took less then 20 periods. This again shows that an asymptotic 

(N+m) model can in many real situations be regarded as a 

reasonable approximation to the finite case. 
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Egu. (4.9) is illustrated by Fig.4.1 below 

_, 

s s 

Fig. 4.1 Optimal cash balance policy 

The optimal costs could in principle be calculated in forming the 

limit N+m of value function (4.8). Convergence, however, turns 

out to be rather poor. Thus, knowing the optimal policy, optimal 

costs were calculated via the limiting distribution of x. This 

turned dut to be more practicable. 

Let c(x) be costs per period and be F(x) the probability 

distribution of (the asymptotic) x, then expected optimal costs 

are given by 

c = J c(x) dF(x) ( 4., 0) 

Let us now determine c(x) and F(x). 

Because of (4.9) the balance equation xk+i = 
xk + uk - rk may 

be written 

·{ 
xk + (s-xk) - r = s-r for xk < s 

xk+1 xk - r for s 5 xk ~ s' (4 .11) 

xk + (s'-xk) - r = s'-r for xk > s 
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Hence, expected*) one-period costs are given by 

for xk < s 

for s ~ xk ~ 

for xk > s' 

(4 .12) 

Defining L(y) : = E {I(y-r)} and dropping the index k (4.12) may 

finally be written 

c(x) l 
p(s-x) + 

L(x) 

-q(s'-x) + L(s') 

L(s) for x < s 

for s < x ~ s' (4. 13) 

for x > s' 

The calculation of the asymptotic probability dis~ribution F(x) is 

more complicated and, for Gaussian demand sequences, can only be 

accomplished numerically. 

Let us first discretize x and r 

x E {x<1l, x( 2l, ... , x(n)} where x(i) xmin +: (i-1) dx, 

(i = 1, ••. ,n) 

rmin + (i-1) dr, 

(i=1, ••• ,q) 

with dx and dr being appropriate step intervals. 

Hence, in view of (4.11), transition probabilities may be defined 

by 

l
'f (s -x (j)) for x (i) <s 

d d d 

P •- Prob {x = x(j) Ix =x(i)}= 'f (x(i)_x(j~ for s <x(i)<s' 
ij .- k+1 k+1 k k d d- - d 

'f (s'-x(j) l for x(i)>s
1 

d d d 

with ~d being a discretized Gaussian density function and 

~The expected value has to be taken into account, since inventory 

costs are attached to the end of the period. 
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Obviously, {x~i)} defines an (ergodic) Markov-chaim. Hence 

stationary probabilities are given by the well-known formulae 

n 
rr.=) p .. rr, 

J 1= 1 l. J i 

n 
Cj=2,---,n>, I 11 j = 

j=l 
(4. 1 5) 

Together with appropriately discretized costs c (x(i)), (4.10) can 

finally be written qivina the optimal total costs 

C 
n 
I 
j=l 

4.1.2 Numerical Results 

( 4. 16) 

We are now in a position to compare both, the DP and the linear 

approach. Let us first consider the optimal policies. Fig.4.2 

shows both policies in their relation to one another. 

u 

X 

Fig. 4.2 Best linear and optimal policy 

The important economic difference between both policies results 

from the fact that for the linear policy there is no region in 

which no production action has to be taken. However, if variance of x 

is large enough (dependingin turn on cr and the cost parameters) i.e. 

at least cr ::::is' -s ,then the difference between both oolicies should 
X -

not be too important. In fact, numerical results for the optimal 

costs support this suggestion. 

To be more specific, let us denote optimal costs incurred by the 

linear approach (Equ. (3.52)) by CL*. Hence, a relative cost 
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deviation D may be defined by 

D := 
C *- c* L 

C * L 

100 [%] ( 4 .17) 

Table 4.1 below shows D for several values of cost parameters. *) 

0.5 h h 1.5 h 2 h 3 h 

o. 1 h 0.5 o. 2 0.2 0.2 0.2 

0.5 h 3.7 2.4 2.0 1. 7 1. 4 

1.0 h 6.5 4.8 4. 1 3.7 3.1 

2.0 h 9.3 7.6 6.9 6.5 6.0 

10.0 h 12.9 11 • 5 11. 2 11. 8 12.6 

20.0 h 13.2 12.0 12.3 12.9 14.2 

Table 4.1 Das defined in (4. 17) 

(Note that equating p and q has only been done for convenience of 

presentation. It is of no major relevance for the results.) 

Table 4.1 clearly shows that for the linear approach deviations 

from the (overall) optimal policy are considerably small. Even 

for large production costs compared to inventory costs deviations 

are not much larger than 10 %. Also, the increase of the deviation 

slows down. 

Considering the fact that for the linear approach the important 

certainty equivalence property holds (c.o.Chap.3), and that the 

computational load is considerably smaller than for the (overall) 

optimal policy one might be well advised to use an LNQ-approach. 

4.2 Piecewise Linear Costs (including set-uo costs: P and/or Q + 0) 

We shall now consider the case when P and Qare not equal to zero. 

Again the optimization problem stated above will be solved 

without restricting the class of admissible policies to be linear. 

In Sec. 4.2.2 we shall than compare the (overall) optimal and 

the LNQ-costs. 

x-)Note that D does not depend on a and the dependence on costs is 

only through cost ratios [BJ. 



4.2.1 Optimal Solution 

Again we refer for more detailed results to [ 8]. As to the 

author's knowledge in case of P*O, Q~O and a Gaussian white noise 

demand sequence no analytical results as to the structure of the 

optimal production policy could be obtained. However, it seems to 

be most likely that as in the pure inventory case (for Gaussian 

white noise) both set-up costs induce an (s,S)-structure 

illustrated in Fig. 4.3. 

u 

s' S' 

s s ' I X 
' ' I ' ' I 

-~ 
Fig. 4.3 Optimal DP-policy for PI Q and QI o 

Numerical results which we will present subsequently can be shown 

to fit Fig. 4.2 fairly well. 

Since we are mainly interested in a comparison of optimal costs 

we shall follow the ideas already used in calculating optimal 

costs for ~=Q=O. The main difference now is that the appropriate 

analogue to (4.10) has to be optimized. 

Following [ 8] let us again discretize x , y and r 
k k k 

x E fl x(1), x( 2
) ,---,x{n)}, where x(j) = x + (" 1) d 

min J- x, 

(j=1,---,n) 

Ymin + (1-1) dy, 

(1=1,---,n) 

rmin + (s-1) dr, 

( s = 0, 1 , n) 



71 

with dx, dy and dr being appropriate step intervals. Hence, since 

the transition probabilities for decision 1 are given by 

{ Pro"{r(s) ~ 
y(l) - X (j)} for j=1 

1 = Prob { r (s) y(l) X (j)} for j=2,3,---,n-1 (4. 18) pij 

Prob { r (s) .s. y(l) x(jl} for j=n 

Similary to (4.12) the expected discretized one-period costs are 

given by 

cil -j 
-px (i) + P + px (1) + Lc'x(l)) for X (i) < X (1) 

L(x (l)) for X (i) X (1) (4. 19) 

q X (i) + Q - q X (1) + L(x (l)) for X (i) > X (1) 

I 

Now, as is well known for the white noise case (Markov-Theorem) 

or, discretized, for the steady state case 

(4 .20) 

where d(.) is called a decision function. Hence, as in Sec.4.1 .1, 

steady state probabilities and optimal costs are given by 

~ •1 d (i) (J'=2 --- n) tr . = l " Pij , , , , 
J i=1 

(4. 21) 

and 

(4. 22) 

Hence, the optimization problem now consists in finding an 

optimal decision function (4.20). According to [s] this may be 

performed by the Simplex-algorithm of Linear Programming. 
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Setting 
n 

lT • = l xJ. 1 
J 1=1 

the problem (4.21), (4.22) may readily be seen to be a Linear 

Programming problem of the following structure. 

Objective function: 

n 
C = l 

i=1 

Side conditions: 

n n 
I I xil 1 
i=1 1=1 

n n n 1 
I xjl - I I xil Pij 0 j=2,3,---,n 

1=1 i=1 1=1 

Non-negativity constraints 

(j ,1=1,---,n) 

Solving this problem the computational load may be reduced 

considerably by exploiting the special structure of the problem. 

The results are given in the next section. 

4.2.2 Nume~ical Results 

Since, as we know from Sec,3.3.1, the optimal linear policy is 

not affected by the presence of production set-up costs, a 

comparison can readily be performed taking into account 

(see (3. 52)) 

C * = h+v 
L fiir" 

/a (a+2Bi a + P;Q (4. 23) 

Again (over-all) optimal costs can be shown (by a simple dimen­

sional analysis) only to depend on cost ratios E g ~ h ' h ' h 
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Similarly, (for E{rk} = 0) only the ratios~ and~ affect C. 

Hence, choosing the special case v = 3h, the following cost 

deviations, as defined in (4.17) for P = Q + O, can be calcu­

lated (see Table 4.2) 

~ Q 0 h 5 h 10 h 

0.0 0 3 10 13 

o. 1 h o 1 6 12 14 

0.5 h o 1 3 18 22 22 

1.0 h o 31 34 34 32 

10.0 h o 286 274 232 200 

100.0 h o 1637 1608 1499 1387 

Table 4.2 Das defined by (4.17) for P - Q + O 

Note that, again for convenience of presentation, we have chosen 

p=q and Q=P. 
As can readily be seen the results are no longe::- as favorable as 

in the non-set-up cost case. This is because set-up costs enlarge 

considerably the region in which no action is taken (see Fig. 4.2} 

If, however, o is sufficiently large, again the LNQ-approach 

turns out to be a fairly good approximation. This was to be 

expected, since in the presence of a considerably fluctuating 

demand sequence production actions will have to be taken in 

almost each period. 
The bad performance of the linear approach, however, can be 

improved considerably if we enlarge the length of the 

(inspection) period. This allows for a certain region about µx 

in which generally no actions will be taken. Or, otherwise 

stated, allowing for a larger period, e.g. aggregating 1 original 

periods, amounts to a larger o ; in facto~ : = 10! 0 

Consequently, if no restraints with respect to the inspection 

period have to be regarded one might introduce the length of the 

period as an additional optimization parameter [ 8]. 
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4.3 Piecewise Linear Costs Gauss-Markov Case 

Up to now we only considered models with non-correlated demand. 

Optimal DP results were comparatively easy to obtain. Now we shall 

investigate the Gauss-Markov case. Here optimal DP results have 

not been known until recently [Sa] • This is due to the fact that 

in the Gauss-Markov case the state space has to be enlarged by one 

further demension which, as is well known, generally results in 

considerable computational difficulties. Only the no-set-up cost 

case shall be discussed here. 

Again we give first in Sec. 4.3.1 the DP-result and in Sec. 4.3.2 

linear and optimal DP-policy will be compared. 

4.3.1 Dynamic Programming Solution 

The optimal policy will be obtained in two steps. First the 

general structure of the policy will be derived with still un­

known parameters. In a second step these parameters will be 

determined. 

The optimal policy will for the Gauss-Markov case generally be 

given by 

(4. 24) 

For notational simplicity let us drop all indices and define 

=: d (4.25) 

so that 

u = u (x, d) (4. 26) 

Similarly to (4.3) Bellman's functional equation can be written 

=~min {P(y-x)+L(y,d)+(k-1) f 
Y -m 

fk_ 1 (y-r, r) f (r Id) dr 

k=1 ,2, •.. (4. 27) 
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with conditional expected inventory costs 
( 4. 28) 

L(y,d) = E {I(y-r)Jd} =hr (y-r)f(r,d)dr-v fm (y-r)f(rld)dr 
- m Y 

and the conditional probability density f(rldl. Since a Gauss­

Markov sequence is given by the autoregressive scheme 

(4. 29) 

with {Ek} being white Gaussian noise with probability density 

~(E), f(rldl can be expressed by 

f(rldl = ~(r-a d) 

As in Sec. 4.1.1 (4.4) let us define 

m 

Hk(y,d) = L(y,d) + (k-1) J fk_1 (y-r,r) f(rldl dr.' 
-m 

which results in (c. o. (4.5)) 

1 
= k min 

min {P(y-x) + Hk (y,d)} l 
y~x 

.., 

min {- q(y-x) + Hk (y,d)}j 
y.:x 

(4.30) 

(4.31) 

(4 .32) 

Again one can show [Ba] the convexity of the above expressions 

from which one concludes that the optimal policy has an (s,s')-

structure, i.e. fork+ m one has 

u*(x,d) 

and 

{ 

s (d) : x 

s' (d) - x 

s (d) < s I (d) 

for x < s(d) 

for s (d) < x < s' (d) 

for x > s' (d) 

(4. 33) 
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In the above mentioned second step it now remains to determine 

s(d) ands' (d). The general structure of the optimal policy (for 

all cost para.meters) is illustrated in Fig. 4.4 

' (d) 

X 

-
Fig. 4. 4 Structure of optimal policy 

Note that s(d) ands' (d) are monotone ind; similarly the 

distances' (d) - s(d) is monotone in ldl. 

In the hatched area no action has to be taken. If, however, a 

point (x,d) is on the left (or right) of the s(d) (s' ca» line, 

an a.mount given by the distance from the s(d) (s' (d» line has to 

be produced as shown in Fig. 4.4 (The straight line in Fig. 4.4 

will be explained in the next section) 

4.3.2 Numerical Results 

According -to (3.54) and (2.69) the optimal linear policy may 

be written 

* (x - (µ + 

or, using a slightly simpler notation 

u.;: = K * (x - 'IJ (d)) 

a 
1-y-lla d) (4 .34) 

(4. 35) 

(Note that for the uncorrelated case (a~o) we find again µ(d)=µ*) 

µ(d) is illustrated in Fig. 4.4. As in the white noise case (c.o. 

Fig. 4.2) µ(d) is situated between s(d) ands' (d). 
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The relative cost deviation between the 

approach may again be measured by D := 

optimal 

CL - C 
CL 

DP- and the LNQ-

100 [%]. Table 4 .3 

gives D for some typical cost parameter constellations. 

V = h v = 2 h 

p=q a=O a=0.1 a=0.5 a=0.9 a=O a=0.1 a=0.5 a=0.9 

o. 1 h 0,2 0,2 0,2 0, 1 0,2 0, 1 0, 1 o, 1 

1 .o h 5 5 5 3 4 4 4 3 

10.0 h 1 2 1 2 1 2 1 2 1 2 1 2 1 3 11 

Table 4.3 Cost deviations D 

Table 4.3 shows that the influence of the strength of correlation, , 
represented by the value of a, is insignificant., It exhibits that 

the linear decision rule works in the Gaus5-Markov case just as 

well as in the uncorrelated case. This result may be extended to 

higher order autoregressive processes. It shows that the deviation 

of the two policies does not depend primarily on the special type 

of demand process but on the special cost structure of the problem 



Chapter 5 

COMPARISON WITH DETERMINISTIC APPROXIMATIONS 

In Chapter 3 we derived best linear decision rules in the presence 

of non-quadratic criteria. These decision rules have been shown to 

posses the "certainty equivalence property", i.e. in case of line­

ar decision rules it was shown to be not suboptimal to reduce the 

stochastic sequence of demand to a sequence of (optimal) demand 

forecasts. (However, to be precise, recall remark on p. 41). 

Restricting admissible policies to be linear one has to put up 

with a loss of optimality. This loss was studied in the last chap­

ter for non-correlated and exponentially correlated demand 

sequences for which (over all) optimal results were presented. 

In this chapter we now study another suboptimal procedure. This 

procedure is usually met in practice. Instead of restricting the 

class of admissible policies to be linear and hence allowing for 

the separation property, one replaces from the outset the sequence 

of demand by its forecasts and then uses a (non policy restricted) 

rolling horizon optimization procedure [BbJ • 

Our main object is to compare both suboptimal policies in case of 

piecewise linear costs. It will be shown that even if we introduce 

optimal safety stocks the deterministic approach is for all para­

meter constellations less favorable than the LNQ-approach. This 

clearly indicates that the deterministic approach usually applied 

in practice should not be used without takinq into account a possi­

ble application of a linear decision rule approach. I.e. in spite 

of obvious shortcomings of a linear decision rule there is its 

important advantage of allowing for the existence of the separation 

property. 

Let us proceed as follows. First we consider the white noise case, 

i.e. we assume the sequence of demand {rk} to be a sequence of 

independent random variables. Then, in Sec.5.2, we will study the 

exponentiallly correlated case for which a derivation of the 

'Beterministic policy" is given in the appendix. 
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5.1 White Noise Case 

The main idea of the deterministic approximation to a stochastic 

dynamic optimization problem can be summarized as follows: First 

one reduces the given stochastic sequence of demand to a sequence 

of demand forecasts. Then one calculates an optimal production 

policy with respect to an adjoined "deterministic" criterion. This 

optimization procedure has to be repeated after each period using 

updated forecasts. Thus in each period only the first decision will 

be taken into account. Finally, this sequence of first decisions 

will be used as an (approximately optimal) policy for the original 

stochastic case. 

Let us now describe the procedure in detail. suppose for the 

time being we are at time k = o. Taking forecasts implies that we 

have to replace {rk} by a sequence of conditional means 

{rk} ~ {1
0

(k)}, where, for the white noise case, 

2
0

(k): = E {rklr
0

} = E {rk} = o. 

Now, since the initial values are assumed to be finite and further-
"" 

more the total amount of forecasted demand, l ~ 1(k), is zero, 
k=1 o 

projected costs can always be determined to he finite. Therefore, 

in view of (3.3a), a reasonable adjoined "deterministic" criterion 

would be 

= ~ {p(ilk) + I (xk+l\)}=> 
k=1 

min. ( 5.,) 

where a bar has been introduced in order to distinquish these 

variables from the stochastic situation. 

The first decision of the above deterministic dynamic optimization 

problem is readily given by 

or, for arbitrary starting time k 

(5.2) 

This simple decision function is depicted in Fiq. 5.1 
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-1 

Fig. 5 .1 Decision rule (5.2) 

Egu. (5.2) is evident. It simply is a consequence of the fact 

that future demand is O and production costs are linear. Not com­

pensating initial stock completely at the first possible occasion 

would incur additional inventory shortage or carryin9) costs. 

Decision (5.2) has now to be substituted into the "expectation 

criterion" (3.3) with P(u) and I (x) representinq piecewise 

linear costs. In comparing the U0 (xk) and the NLO-policy we have 

to consider the costs incurred in both cases. However, it is 

obvious that the LNQ-approximation is always better than the 

deterministic approach. This is already due to the fact that 

uD(xk) is a linear policy which, of course, cannot lead to better 

results than the best linear policy. Also the introduction of an 

optimal safety stock to be discussed subsequently cannot chanqe 

this general qualitative result. This is because a safety stock(µ) 

does only shift the line in Fig. 5.1 to the left or the riqht 

(depending on the values of the cost parameters). 

5.1.1 Numerical Results 

To be specific let us define ct to be the value of the cost 

criterion (3.12) if the "optimal deterministic" production policy 

(5.2) is applied. Comparing (5.2) with (3.50) one findsµ:= o 
and y(0*) = O from which in view of (3.42) and (3.43) it follows 

ou = o and ox= o. Hence expression (3.12) reduces to 

c* = ( h+v+p+q) 
D 

0 

/211 
(5 .3) 
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These costs may now be compared with the costs C incurred by the 

LNQ-approximation. Some characteristic results are shown in 

Table 5.1 where DC measures the deviation in percentages defined 

by 

c* - c* 
D L. 

c* 
L 

100 [%] (5.4) 

~ V h 2•h 

p=q~' c* 
D 

c* L DC 
c~ 

D 
c* L DC DJJ 

C 

O•h 0,798 0,798 0 1 , 197 1,090 9,8 0 

O, 1 •h 0,878 0,874 0,4 1,277 1 , 168 9,3 o, 3 
0,5•h 1 , 197 1, 128 6, 1 1,596 1 , 435 11 , 2 3,8 

h 1 , 596 1,382 15,5 1,995 1 , 712 16,5 10,3 

2 •h 2,394 1 , 784 34,2 2,793 2,161 
I 

29,2 24,3 

10 •h 8,777 3,656 140,0 9,176 4,312 112,8 110,3 

20 •h 16,756 5,109 228,0 17,154 6,000 : 185,9 184, 1 

Table 5.1 Costs and cost deviations 

If, e.g. p=q=v=h, the LNQ-approach leads to costs being De= 15,5 % 

smaller than the costs due to the deterministic aoproach. 

For p=q=10h and v=2h this deviation already is 112,8 %. Note that 

giving only values for ~=q is entirely for convenience of presen­

tation. Essentially the same results can be obtained for p*o· 

In practice, however, the deterministic aooroach would usually 

not be applied without taking advantage of certain safety stocks. 

These safety stocks are generally taken to be proportional to the 

variance of the demand seouence. ~athematically, as already 

mentioned, safety stocks merely move the straiqht line in Fig. 5.1 

to the right (or the left) whereas the slope remains -1. 

Let JJ be a safety stock. Hence Equ. (5.2) reads 

(5.5) 

Substituting into (3.12) yields 

0 xx 
E:t-9. 
,- OU 

/2n 
(5 .6) 
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~oreover, substituting (5.5) into the balance equation 

xk+l = xk + uk - rk one obtains 

Hence,µ= E {xk} and crx = cru cr 

Thus an optimal safety stock is given by the necessary condition 

0 

or 

µ* = cr ~-1 (h!v) (5.7) 

Resubstituting (5.7) into (5.6) we obtain the optimal costs 

µ* cr { (h+v) <l>' (m) + p+a l 
CD G~ 

1 2 

a f e-~ + p+q} = - l(h+v) s 
(5. 8) 

where 

m: (5. 9) 

comparing these costs with costs (4.11) incurred without taking 

into account a safety stock one obtains 
1 2 

* a ~ c:i.- - cu = ~ (h+v) (1 - e ) ~ o 
D · D ✓2 7T 

(5 .10) 

Hence, the right hand side of the equality in (5.10) qives the 

cost reduction due to the optimal safety stock.Note that this 

reduction does not depend on production costs p and q. 

The last column of Table 5.1 gives the relative cost deviation o~* 
of the deterministic approximation and the LNQ-approach in case 

of an optimal safety stock. (Note that for h=v: µ=O). 

As can clearly be seen, for small production costs (p and q) 

compared to inventory costs (hand v) a considerable imorovement 

is achieved. However, for p and q being large the results are 

almost identical with the former case not accounting for a safety 

stock. As production becomes more and more expensive the presence 

of a safety stock is of decreasing significance on costs; they 

are essentially production costs. 
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5.2 Gauss - Markov Case 

As in the white noise case of the last section we have to deter­

mine the optimal first decision of a deterministic optimization 

problem. Since we now have 

m 

total demand I r (k) is again finite and it is reasonable to 
k=1 ° 

take the adjoined deterministic criterion 

Solving the deterministic dynamic optimization problem one can 

take advantage of the fact that demand has a very reqular struc­

ture. We have therefore been able to derive analytic results for 

the first decision. The results we obtained (see Appendix to this 

chapter) can be summarized as follows: 

where 

{ 
s(rk_1 ) - xk for fk < s(rk_1 ) 

0 for s(rk_1 ) s. X < s'(rk-1) ,k 

s' (rk-1) - xk for :<k > s'(rk_1 ) 

r 

n" 
( 5. 11) 

I i for < 0 a rk-1 rk-1 
i=1 

1 
( 5. 12) 

a rk-1 for rk-1 ~ 0 

l 

a rk-1 for rk-1 < 0 

( 5. 13) 
n' 

ai I rk-1 for rk-1 ~ 0 
i=1 

.... 

n ,. = 'E:!S] . n"·. = . L h +' ( 5. 14) 

[zJ+denoting the "smallest inteqer ~ z" 
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Fig. 5.2 illustrates uO for r ~ 0 

-1 

--+----___,.__ _______ ...J..-----+--) 

s=ar s' a -- r 1-a 

-1 

Fig. 5.2 Policy U0 (x,r) defined by (5.11) 

X 

Note that the simple policy (5.2) can also be derived from (5.11) 

setting a=O. For the special case p+q9llin[h;v] it follows from 

(5.14) that the piecewise linear policy (5.11) deqenerates to a 

linear policy given by 

This result is entirely reasonable since, when oroduction costs 

are small compared to inventory carrying and stock out costs there 

will be no region in which stock will not be adjusted. 

As in the white noise case we now have to substitute U 0 into the 

"expectation criterion" (3.12). Because of the structure of the 

policy we have to distinguish two cases 

(a) Linear policy (5.15) (p+q < min [h,v]) 

Comparing (5.15) with (3.54) yields µ~=O and 

in view of (3.56) and (3.57), it follows ox
2 

and 
2 

au = (1+2a-2a3) a 2 = 1+2a-2a3 
r 1-a2 

Hence Equ. (3.12) reduces to 

c* = _£_ II (h+v) + (p+q) /1+2a-2a3 '] 
D & . 1-a2 

y(0*)=O, from which, 

= a 2 (1-a 2) = o
2 

r 

( 5. 16) 
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(Note that setting a=O one again obtains (5.3)). 

(bl Piecewise linear policy (5.11) (o+cr>min [h,v]l 

In this case analytical results can no longer be obtained. Instead 

we have to calculate optimal costs numerically. This can in 

principle be done by first discretizinq x and rand then (takinq 

into account (5.9)) calculatinq stationary probabilities for x 

and u. These probabilities will then be used to evaluate the 

adjoined expected costs. This procedure will now be described in 

more detail. Let us first discretize x and r. 

X E { 
( 1) 

X , 

r E { r ( 1) , 

(2) 
X , 

(2) r , 

... , 

... , 
x(n)} where xi 

r(q)} where ri 

xmin + (i-1) dx,(i=1, ..• ,n) 

r. + (i-1) dr,(i=1, ..• ,q) min 

with dx and dr being appropriate step intervals. Defining state 

variables zk:= {xk' rk_ 1}, (k=1,2, ... ), the seque~ce {zk}consti­

tutes a Markov-process having transition probabilities given by 

{ 
(ml (j) I 11) (i)} 

P(i,l) (j,m) := Prob xk+1 = x , rk = r xk = x · , rk_ 1=r 

Prob {x =x (ml Ix =x (1) r =r (j) r =r (i)} • 
k+1 k 'k 'k'-1 

Prob { r = r ( j) Ix =x (1) r =r ( i l } 
• k k ' k-1 

Since 

Prob {x =x(m) Ix =x(l) r =r(j) r =r(i)} 
k+1 k ' k ' k-1 

and rk is 

= { 1 if 

0 if 

x (m) =x (l) +u (x (l) ,r (i)) -r (j) 
D 

x (m>+x (l) +u
0 

(x (1) ,r (i)) -r (j) 

independent of xk, P(i,l) (j,m) reduces to 

Prob{r =r(j) Ir =r(i)}for x(m)=x(ll+u (x(l) r(i)) 
k k-1 D ' 

-r(j) 
P(i,1) (j,m) = 

0 elsewhere 

(5. 17) 

The transition probabilities Prob {rk=r (j) lrk_
1
=r (i)} are given 

by the demand structure and can easily be calculated by discre-
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tizinq the conditional normal distribution havinq mean value 

a r (i) d i 2(1 2) -- cr2. an var ance crr -a 

Since the above defined ~arkov-chain is ergodic the stationary 

probabilities IT. are given by the well-kno~m formula 
J ,rn 

r n 
rr . = I rri,1 p (i, l (j ,ml 

for (j=1,---,q; 
J, rn i=1 1=1 and rn=1, ••• ,n) ( 5. 18) 

and q n 
I I IT • 
j=1 m=1 J, rn 

Hence, the expected (optimal deterministic policy) costs can be 

written 

where 

c* 
D 

q 

= I 
j=1 

n 
I 
rn=1 

c. 
J ,rn 

C. = P. + IJ.,m J,rn J,m 

IT • 
J , rn 

More explicitely, production costs Pj,rn are qiven by 

p[scr(j)) - X (rn) J for x(m) < s(r(j)) 

(5 .19) 

(5.20) 

P. 0 for s(r(j)) :;: X (m) 
~ s' (r (j)) (5. 21) 

J ,m 

-q[s• 
_ x(rnl] Cr (j)) for x(m) > s' (r(j)) 

and the expected~) inventory carrying and stock out costs 

conditional on x (stock on hand after replenishment) and r (last 

period's demand) are known to be 

X 

L(r,x) =hf 
-co 

... 
f (x -p) d <l>r (P) 
X 

= (h+v) [ (x -µr) <l>r ( x) + cr
2 cpr' (x)] - v (x-u .c> 

where µr=a r 

and 
<l>r (x) = 

X 

f 

'-') 

mo 

The expected value with respect to d (p(r) has to be taken into 

account since inventory costs are attached to the end of a 

period. 
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Hence, inventory costs for policy (5.11) are given by 

u 
(r ( j l , s (r(jlll for x (ml < s (r ( j l l 

Ij ,m = (r ( j l , X (ml l for s(r(jll < x(ml < SI (r ( j l ) 

(r(j), s'(r(j))) for X (m) >s'(r(j)) 

( 5. 22) 

5.2.1 Nwnerical Results 

Because of the two cases (a) and (bl the nwnerical comparisons 

will be performed separately for each case 

(a) Linear policy (5.15) (p + 1 .::_ min Jh:vl). 

In this case again the LNQ-approximation must lead to better 

results. For a= 0.1, a= 0.5 and a= 0.9 the deviations DC (see 

Equ. (5.4)) are given in Table 5.2 up top= q = o.5 h 

a = o. 1 a = o. 5 a = 0.9 

~ V h 2h h 2h h 2h 

p=q ~ DC DC 
µ* 

DC DC DC µ * DC DC DC µ * DC 

0 h o,o 9,8 o,o o,o 9,8 o,o o,o 9,8 o,o 

o, 1 h 0,4 9,3 0,3 0,3 9,0 0,2 0, 1 8,2 0, 1 

0,5 h 5,9 10,9 3,8 3,0 8,8 2,4 o,8 5,4 0,5 

Table 5.2 Cost deviations DC and 
µ~ 

DC 

Introducing optimal safety stocks as we have done in the white 

noise case readily leads fo formulae similar to (5.7l, (5.8) and 

(5.10). In fact, (5.7) remains the same and the optimal costs are 

1 2 

(h+v) 
-2 m 

e + (p+q) 
1 +2a - 2a 3 

2 - a } 
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which in view of (5.16) leads to the same cost difference as in 

(5.10). This, (in addition to the white noise case) shows that the 

improvement in costs obtained by introducing a safety stock does 

not depend on the value of the correlation parameter a. The 
ll* 

corresponding (relative) deviations from the LNQ-approximation DC 

can be found in the last columns of Table 5.2 

(b) Piecewise linear policy (5.11) (p + q > min [h; v]). 

Also in this case the numerical results show (see Table 5.3) that 

the LNQ-approach leads to better results than the deterministic 

approximation. For comparatively low correlations (a~ 0.5) the 

cost deviations are considerable and almost of the same magnitude 

as in the uncorrelated case. For high correlations (a= 0.9) 

differences are substantially smaller. 

a = o. 1 a = 0.5 a = 0.9 

~ V h 2h h 2h h 2h 

p=~ DC DC 
µ* 

DC DC DC 
µ* 

DC DC DC ll * DC 

h 1 5 16 10 9 11 6 1 4 1 

2h 33 28 24 20 17 14 2 4 2 

10h 138 111 109 90 71 69 8 7 7 
·----

20h 225 183 182 1 54 123 122 17 1 2 1 2 

Table 5. 3 Cost deviations DC and o~* 

As in the former cases an optimal safety stock has been intro­

duced. This can no longer be done analytically. Instead we 

introduced a safety stockµ into the optimal policy (5.11) 

writing 

{ s+ 

ll - xk for· xk < s + ll 

UD (xk, rk-1' ll ) - 0 for s + ll .$. xk 5.. s'+ ll 

s'+ µ - xk for xk > s'+ ll 
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Optimizing numerically with respect to the parameter u leads to 

the results shown in the last columns of Table 5.3. As was to be 

expected (see also Table 5.1 for the white noise case) the 

introduction of an optimal safety stock does not improve 

substantially the deterministic policy for (production) cost 

values equal or larger then h. 
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5.3 Appendix to Chapter 5: 

Derivation of the "deterministic" policy (5.11) 

In deriving (5.11) we shall not use any of the known algorithms. 

Because of the special structure of the demand sequence we shall 

use a direct approach. 

Let us define X 

r (jl = = 

initial stock on hand 

initial demand 

ro ( j ) = E { r . I r } = a j r 
J 0 

First we observe that the sum of initial stock and total produc­

tion must be equal to total demand 

"' "' a 
-- r 1-a (5.23) 

otherwise inventory costs will amount to infinity in the course 

of time. 

In what follows, we shall first consider the case r ~ o. 
Furthermore, we have to distinguish several cases depending on 

the particular value the initial stock takes on. 

( 1 ) X < ar = r ( 1 ) 

Since ar ~ ~ • r it follows from(S.23) 1-a 
"' L u = ~ r-x > O; 
k=i k 1-a 

i.e. for each strategy we get production costs not smaller than 

p <,:a r - x). Clearly, the strategy minimizing inventory costs is 

given by a sequence of production decisions which exactly meet 

demand: uk = r (k) - xk 'v k. For this strategy, which shall be 

called s 1 , no inventory costs occur. Hence, total costs for s
1 a are given by K1 = p( 1 _a r - x). 

More generally: If xk i r(k), then the optimal (remaining) 
policy is given by 

r (k+1), ... }. 



(2) ar < x ~ ~. r 
1-a 

CD 

}: r <j> 
j=l 

Subcase 2.1 ar < x < ar + a 2r 
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In this case two strategies S and S a 1 o have to be taken into 

ccount. Furthermore we investigate a mixed strategy Sa : 

s trategy Period 1 Period 2 

u, ar X u2 = a 2r 

s, 
x2 = 0 XJ = 0 

u, - 0 u2 = -(x-ar)+a2r 

s 
0 

x2 = X - ar XJ = 0 

u, - a(ar-x) u2 = -(1-a)(x-ar) 

Sa 
+ a 2r 

x2 = ( 1-a) (x-ar) XJ = 0 

The associated costs are given by 

2 
K

1 
= q(x-ar) +par+ CJ' where CJ 

2 
K

0 
= h(x-ar) + p(ar + a r-x) + CJ 

I Period J . 

aJr UJ = . 

X4 = 0 . 

UJ = aJr . 

x4,' = 0 . 

UJ = aJr 

X4 = 0 . 

Ka= aq(x-ar) + (1-a) h(x-ar) + pa
2

r - (1-a) ?(x-ar) + C J 

. . 

. 

. . 

. 
-

It can easily be shown that the mixed strategy Sa is suboptimal: 

I<a = aK
1 

+ ( 1-a) K
0

; hence Ka ~ min [K 1 ; K0 ] • Similarly, all other 

can be shown to he suboptimal. 

s for which one obtains 
possible strategies 

There remain s1 and 0 

(x-ar), i.e. the choice between the two 
Ko = Kl + [h- (p+q)] 
strategies depends on the values of the cost parameters. Since 

x-ar > o one obtains s
1 

for p+q ~hand S0 for p+q > h. 
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In this case 3 strategies have to be investigated: 

Strategy Period 1 Period 2 Period 3 Period 

2 3 
u, = ar-x u2 = a r U3 = a r U4 = 

s, 

x2 = 0 X3 = 0 X4 = 0 X5 = 

= ar+a 2 
0 3 u, r-x u2 = U3 = a r U4 = 

s2 
2 

x2 = a r X3 = 0 X4 = 0 X5 = 

u, = 0 = 0 = ar+a 2 = u2 U3 r U4 
3 +a r-x 

s 
0 2 

x2 = x-ar X3 = x-ar-a r X4 = 0 XS = 

Also in this case one can show that mixed strategies are 

suboptimal. The associated costs are given by 

2 3 q(x-ar) +par+ par+ c 4 , where c 4 

2 3 2 = q(x-ar-a r) +par+ ha r + c 4 

= p(ar+a2r+a 3r-x) + h(x-ar) + h(x-ar-a2r) + c 4 

Hence 

Since 

h 

+ [ 2h- (p+qlj 

2 a r 

2 (x-ar-a r) 

>Owe obtain for the optimal policy 

Cost region Optimal Strategy 

p+q < h s, u, ar-x 

< p+q ~2h s2 u, ar+a 2r-x 

p+g > 2h s u, = 0 
0 

4 a 

0 

4 a 

0 

4 a 

0 

4 ... 
r ... 

... 

r ... 

... 

r ... 

... 
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Subcase 2.n 
2 n n+1 ar+a r + ... + a r < x S. ar + .•• + a r 

Analogue to the preceeding cases one obtains 

Cost region Optimal Strategy 

p+g s. h s, u, = ar-x 

h 2h s2 = ar+a 2 < p+q ~ u, r-x 

2h < p+g s. 3h S3 u, ar+a 2 r+a 3r-x 

(3) X 

(n-1)h < p+q ~ nh 

p+q > nh 

a -- r 1-a 

In this case the results of subcase 2.n also 

for p+g > nh has of course to be dropped, 

"' 
(4) > a = r r ( j > X -- r 1-a j=1 

0 

apply. The last 

One has almost the same situation as in case (3). There occur 

only additional costs for reducing the initial stock x to the 
a 

amount i-a r • 

line 

Let us summarize our results thus far obtained in cases (1) to 

(4). For r ~ 0 one obtains the following "deterministic" optimal 

policy 



94 

Stock on hand Cost region u
0 

(r,x) 

X ~ ar (no constraints) ar-x 

n 
ajr 

n+1 
ajr I < x~ I p+q $_ h ar-x 

j=1 j=1 
k 

ajr; (k-1) h < p+q $__ k•h I 
j=1 

p+q > nh 0 

m 

ajr > a I p+q ~ h X -- r ar-x 
1-a j=1 

k 
ajr-x; (k-1) h < p+q $_ k•h I 

j=1 

This policy may be rewritten in the following way 

u
0

(r,x)= 

ar-x 

n' 
I 
j=1 

0 

n' 
I 
j=1 

otherwise 

for x $. ar 

a 
for ar < x ~ i-a r 

a 
for x > ,-a r 

= u, 

(k=n=1) 

(k=2,3, .. n) 

(k=2, 3, .. ) 

(5.24) 

where n' =[p~g]+• with [z]+ denoting the "smallest integ-er > z" 

A similar result holds for r < O where essentially h has to be 

replaced by v. Hence, one obtains the optimal (s,s')-policy (5.11). 



Chapter 6 

COMPARISON WITH ARM-INVENTORY MODELS 

Up to now we considered cash balance and production smoothing 

models. In these models the decision variable uk could take on 

any real value. We now investigate models with decision variables 

uk being restricted to positive values : uk ~ O, i.e. we will 

study pure inventory models for which orders can, of course, only 

be positive. 

Inventory models not only differ in the range of the decision 

variable but also in the probability distribution of demand rk. 

Since demand is a positive random variable the probability 

distribution has to be restricted on r ~ o. This implies that the 

mean value µr of demand has always to be positive. Although it 

sometimes appears to be necessary to study the cas~ µr + O also 

in cash holding problems it is only for pure inventory models 

that we investigate probability distributions having µr ~ O. 

Furthermore the restriction on r ~ o also implies that a Gaussian 

probability distribution will no longer be useful to describe 

(positive) demand. Instead we will have to choose e.g. a beta­

distribution being defined on a finite (positive) interval. 

These two properties of a pure inventory problem, i.e. uk ~ O 

and rk ~ o, seem to prevent a description by our LNO-Theory 

developed in Chap.3. However, the situation is not as bad as it 

seems. Consider an item having, e.g., a demand sequence 778, 890, 

1100, 1120, 850, .•.. This case, which is quite common, can be 

considered as a smoothing problem. Letµ be the mean value of the - r 
above demand. To describe the inventory problem by a smoothing 

model we have just to introduce new demand values as deviations 

from mean demand r'k := rk - µr and the order quantity will be 

interpreted as a deviation from a mean production µu (which 

meets µr) u'k := uk - µu· Thus a pure inventory problem might be 

described by a smoothing model for which, as we know, an LNQ­

Approach provides at least in the case of absent set-up costs a 

fully sufficient approximation. 
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We consider two cases. First, in Sec. 6.1, we investigate the 

comparatively simple case where set-up costs have not to be taken 

into account. Next, in Sec. 6.2, problems with set-up costs will 

be discussed. For easier reference let us define the 

ARM-Inventory model which will be approximated by a LNQ-Model. 

Specializing the model we introduced in Chap.1 we have 

(5) 

stock on hand at the beginning of period k, (k=l,2, ..• ) 

xk E 1R. \" k, x 1 : initial stock 

reordering decision at the beginning of period k which 

results in a shipment in this period 

Uk E fK+ 

stochastic demand in period k; identically and 

independently distributed with rk ~ O 

Inventory balance equation 

Cost criterion 

C 

I(x) 

--{h_ X I(x) 

V X 

for x ~ o 

for x < o 
Fig.6.1 

and 

p u for u > o 

for u = o 

h, v, p and P being positive 
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6.1 No-set-up cost case (P = O) 

This case is well-known in literature. Let the probability 

distribution function of rk be F(r). Then the (stationary) 

ordering policy is qiven by an (S,S)-policy 

for xk < S 

with 

( 6. 1) 

(6. 2) 

For a better understanding of the arguments to follow uk is 

depicted in Fig. 6.3 

u 

-1 

X 

s 

Fig. 6.3 (S,S)-policy 

Fig. 6.1 shows a piecewise linear policy. However, once 

inventory xis smaller than Sit cannot become again greater than 

s. Thus, possibly except after a few initial periods xis 

restricted to the range x ~ S; i.e. (6.1) describes in fact a 

linear policy. 

6.1.1 The LNQ-Approach 

Let us now derive policy (6.1) using the LNQ-Approach. Consider 

again Fig. 6.2 with P = O and define a new variable u':= u-µu; 

where, from the balance equation; µu = µ. 
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Fig. 6.4 shows the ordering costs in the u'-coordinate system. 

P (u) P (u') 

u 
Fig. 6.4 Ordering Costs 

Refering to (3.11) this clearly indicates that the inventory 

problem may be approximated by a (linear) smoothinq problem 

with -g = p. 

As we know from Chap.3 the LNQ-Approach relies on the assumption 

of normally distributed demand. Hence, let us assume rk having 

the probability distribution function ~µ,a(P), 

with 

1 p 

exp { -1 (r-µ) 2 }dr 4>µ,a(p) := I 
Sa -m a (6. 3) 

or, r•rv~ a(p'), with standardized r' := r-µ' p I = p-µ k .o, 

1 p' 

exp { r'' } 4> ( p I) := f 1 dr' o,a &a -m - 2 ~ (6.3a) 

(It will be this normality requirement which will be studied 

numerically towards the end of this section). 

Let us now derive results similar to sec.3.3.1 for the case p = -g 

(Note that in Chap. 3 we restricted all cost parameters to be 

positive)• 

From (3.17) we have 

µ~= 
X 

~ .+,.-1 
ax 'I' 

o, 1 (6. 4) 
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Further, one finds, according to (3.19), B = O, which, from (3.46), 

implies y:X- = o. Hence, because of (3 .42) and (3 .43), a:= aJ= a. 
Substituting in (6.4) one has 

and the optimal policy is given by (c.o. (3.50)) 

u ' k = - (x - µ * ) k X 

Instead of (6.5) one can also write 

* µX V 

or 

or 

<l>o,1 ("""'a") = v+h 

V 
= v+h 

Resubstituting the original variable rk 

becomes 

,h (µ *+µ) 
't'µ ,a X 

which finally yields 

V 

v+h 

Similarly, resubstituting uk = uk' + µu 

becomes 

r k ' + µ , Equ . ( 6 • 8 ) 

uk ' + µ , Equ. ( 6 . 6) 

(6. 5) 

(6. 6) 

(6. 7) 

(6. 8) 

(6. 9) 

( 6. 1 O) 

(6.11) 

(6 .12) 

Equs. (6.11) and (6.12) constitute the result we were looking for. 

Defining 

Equs. (6.11) and (6.12) are formally identical to (6.2) and (6,1) 

respectively in case of a normally distributed demand. 
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Let us illustrate the optimal linear policy (6.12) 

in Fig. 6.5 

u 

u = k 

/f\ 
I 

u' 

(6 .12a) 

llu ---7- - - - - -- ---- ---- --- ---) x• 

SN 

Fig. 6.5 Best linear policy (6.12a) 

One will readily discover the smoothing policy of Fig. 3.2 (with 

slope - 1) in the u'-coordinate system. The variables x and u 

fluctuate about the point (µ , µ). However, compared to Fig. 6.3 
X U 

it is not possible to prevent uk from becoming negative. This is 

due to the fact that demand, being Gaussian, can in principle take 

on any real value, i.e. demand can also be negative. In Fig. 6.3 

and in policy (6.1) this could not happen since we worked with 

a correct probability distribution, i.e. with a distribution 

being non-zero only for r ~ o. 
However, working with Gaussian distributions has some advantages. 

First it gives a theoretical insight into the relationship 

between (policy-linear) smoothing models and pure inventory 

models. Hence the results on certainty equivalence also hold 

at least approximately for the inventory case (having no set-up 

costs), The second advantage, closely related to the former, 

is a computational one. Often one is not able to estimate the 

probability distribution function F (r) nor its <h:v) - quantile 
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which is necessary to determine S. It often seems much simpler 

to estimate mean and variance and to assume demand to be Gaussian. 

In that case we have the situation depicted in Fig. 6.5. 

If, however, actual demand is not Gaussian, the question arrises 

how well the actual probability distribution is approximated by 

a Gaussian having the same mean and variance. This problem simply 

boils down to a determination of <h!v>-quantiles and their impact 

on optimal costs. 

6.1.2 Comparison of Demand Distributions 

Assume demand to be beta-distributed with a probability density 

function 

where a and bare positive parameters and 

Beta (a,b) 
:= f ta-1 (1-t) b-1 dt ; 

0 

(6. 14) 

lower and upper bounds respectively. As an example 
b 1 and bu are 

Y' B (r) is 
illustrated in Fig, 6.6 for parameter values a= 2 and 

b = 10 

Pig. 6. 6 
1 4) f a - 2, b = 10 

Beta-density (6.1 or - -
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The shape of ~
8

(r) changes as a and b vary. Hence it is obvious 

that almost all demand distributions occurring in practice can 

be represented by a suitable beta-distribution. 

Our aim now is to compare optimal results obtained by a beta­

distribution of demand with the results we get from an 

approximating normal-distribution 'i'N(r) having the same mean and 

standard deviation. An example is given below (Fig. 6.7) for 

a= 10 and b = 2 

----:-""'---.......:::...... ___ _JL_ __ _JL_-=---------~ r 
1..1 bu 

Fig. 6.7 Beta and approximating normal density 

In studying the degree of suboptimality of the Gaussian 

approximation we have to compare optimal costs c* using the 

beta-distribution and optimal costs CN from the Gaussian 

approximation. The relative deviation will be measured (again) 

by 

DC= 
C - C * N 

c* 
(6. 15) 
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It is well known that mean costs (per period) are given by 

s 
C f C(x) -fB (S-x) dx (6. 16) 

_.., 

where C(x) defines total costs per period and x denotes, as 

usual, inventory at the beginning of the period. C(x) is the 

sum of ordering costs p(S-x) and inventory costs L(S) 

C(x) = p(S'-x) + L(S) (6. 17) 

S bu 
L(S) :=hf (S-r) '-fB(r) dr + V f (r-S) ~B(r) dr 

b 1 s 

= (h+v) [s ~B (S) - 'i'B (S)] + V (µ-S) (6. 18) 

with s 
~B (S) := f 'f B (r) dr 

bl 
(6.19) 

and 
s 

'I' B (S) := f r 'fB (r) dr 
bl 

(6 .20) 

Because of the finite support of the beta-distribution, (6.16) 

may be written 

Substituting (6.18) yields 

bu 

C = f {pr+ (h+v) [s ~8 (S) - '1'
8

(S)] + v(µ-S)} • 'f
8

(r) dr 
bl 

= (p+v) µ + (h+v) [s {>B (S) - 'i'B (S)] - V s 

(6. 21) 

(6.22) 



104 

Optimal costs can now be found by differentiating C with respect 

to s 

:~ = (h+v) [4>a(S) + s i'B(S) - s YB(s)] - V (6 .23) 

Setting equal to zero we find the well known formula for the 

optimal S (c.o. (6.2)) which will be denoted bys*: 

and for the optimal costs C c* we finally find 

(6. 24) 

(6. 25) 

Note that for the normal-distribution we found by a different 

argument (c.o. (6.11) and (6.13)) 

V 

v+h 
(6. 26) 

The costs we now have to compare are optimal costs c* and the 

costs one incures ifs* is replaced by the suboptimal parameter 

SN, i.e. (c.o. (6.22)) 

(6. 27) 

Substituting (6.25) and (6. 2 ?) into (6 .15) finally yields 

D = CN - c* = (h+v) [sN. ~B(SN) - 'l'B(SN) + '1'B(s*>] - V SN 

C c* * (p+v)u - (h+V) 'l'B(S) 
(6. 28) 

Numerical Results 

Numerical results for DC were obtained for different cost para­

meters (p, hand v) and different values of a and b. It appears 

[ 9] that in most cases O < 5 %. only in cases of a rather 
C *) 

oblique beta-distribution the deviation becomes larger. 

*)This is in accordance with the results we derived in Sec. 3.6 

for the "cash-balance" situation. 
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6.2 Set-up Cost Case (P + 0) 

The case with fixed ordering costs P + 0 being present is far 

more complicated. This is due to the fact that optimal results 

cannot easily be obtained, i.e. it is for general demand distri­

butions extremely intricate to calculate values sand S for the 

optimal (s,S)-policy. However, in recent years, remarkable pro­

gress has been made in developing faster algorithms for Markovian 

Decision Processes (see e.g. [ 2] and the references given in[2]) 

which can be used to determine the above policy parameters sand 

s. 
Still the numerical burden in determining optimal DP-policies is 

considerable. Therefore we are again looking for an approximating 

linear policy which, as we know from the last section, reduces 

to the problem of finding an approximating (S,S)-policy. 

Obviously, for large P (and consequently for small -~ariance of 

demand) a linear policy will be a poor approximaticn. However, as 

already mentioned at the end of Sec. 4.2.2, fairly satisfying 

results can be obtained if one enlarges the inspection period by 

aggregating, say T periods to one large period. The resulting 

policy will be called S(T)-policy. 

Thus, the next subsection will give a short derivation of an 

optimal S(T)-policy and subsequently Sec. 6.2.2 will present 

numerical results comparing the (s,S)-policy with its approxi­

mating S(T)-policy. (For further results see 82]) 

6.2.1 Derivation of an optimal S(T)-policy 

As mentioned earlier, one of the main differences between an (s,S)­

and an (S,S)-policy is given by the fact that an (S,S)-policy 

places an order each period whereas an (s,S)-policy has a region 

in which no orders are placed. I.e. there exists for an (s,S)­

policy a mean order cycle being larger than the inspection period 

(i.e. the order cycle of the adjoined (S,S)-policy). Thus it 

seems to be quite natural (and in many real world situations 

possible and desirable) to enlarge the inspection period for the 

(S,S)-policy and to use as an approximating policy an S(T)-policy 

as defined above. 

To derive such a policy let us introduce an index n defining the 

number of the aggregated inspection period, henceforth called 

ordering cycle. Starting point is the model defined at the be-
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ginning of this chapter. 

Aggregated demand in cycle n now is 

T 

l r(n-1)T+i 
i=1 

and the balance equation is given by 

where the bar denotes "cycle variables". 

The S(T)-policy now reads 

{ 
s - X for xn n 

u = n 
0 for xn 

The ordering costs for cycle n are 

-{' + p Un for Un 
p (u > 

n 
0 for Un 

< s 

> s 

> 0 

= 0 

and the expected holding and shortage costs are given by 

(c.o. (6.16)) 

I {h J5 
<s-t)dFi + v f= <t-s)dFi} 

i=1 0 s 

where Fi is the probability distribution function of 

i 
r(i> -- ~ .- l rJ. 

j=1 

(6. 29) 

(6. 30) 

(6.31) 

(6. 32) 

(6. 33) 

(If F' is the probability density function of rk, than the proba­

bility density function F' of r(i) is given by the i-fold con-
i . 

volution of F' : Fi'= (F')* 1 ) 

Equ. (6.33) says that holding and shortage costs are still 

assumed to be charged at the end of each (elementary) inspection 

period. Hence the expected total costs of one cycle are now given 
by 

(6.34) 
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and for one period one has 

1 - 1 C(S,T) := T C(S,T) = T (LT(S)+P) + p I.I (6.35) 

This expression has to be minimized with respect to Sand T. 

Since the last term in (6.35) p I.I does not depend on the optimi­

zation parameters, we drop p I.I and define 

C'(S,T) := C(S,T) - p I.I= T (LT(s)+p) (6. 36) 

As in (6.18), let us reformulate LT,s) and write 

T S 
LT(S) = (h+v) I {s Fi~) - J 

i=l o 

T+l tdFi(t)} +TV (-
2
-µ-s) (6.37) 

Minimizing C(S,T) with respect to Sand T we first look (by 
' partial differentiation) for a stationary minimum with respect to 

S (which as we know from convexity properties exist~.). As in 

(6.23) we have 

ac• cs ,T) 
as 

1 T 
T (h+v) I Fi(S) - v 

i=1 

and for the minimizing S = s*(T) we find 

(6.38) 

(6. 39) 

Finally it remains an optimization with respect to T. Since T 

should not be too large (at most T=lO) c' (s *(T) ,T) is minimized 

by s~~ply letting T = 1,2, .•. and taking that T = T* which leads 

to the lowest costs C' (S~(T*) ,T*). 

6.2.2 Numerical Results 

In deriving numerical results one has to determine Fi(S) which 

is a complicated convolution integral of elementary distribution 

functions. However, as we know from our investigations in previous 

sections, esp. from Sec. 6.1.2, demand distributions may readily 

be approximated by normal probability distributions without much 

loss of optimality. For these distributions Fi (S) can easily be 

obtained. 
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of course the Gaussian distribution is not the only one for which 

Fi(S) may be calculated without difficulties. Another distribution 

is the Poisson-distribution which shall now be used to compare the 

S(T)-policy with the optimal (s,S)-policy. 
Poisson optimal (S ,S) - S (T) -

policy policy policy 
K V h µ s s s 0% T s ti% 

8 9 1 4 3 11 7 31 2 10 12 .o 

8 9 1 36 37 44 44 0 1 44 o.o 

8 99 1 4 6 14 9 20 2 14 14. 2 
8 99 1 36 45 51 51 0 1 51 o.o 

32 9 1 4 2 18 7 123 4 18 13.2 

32 9 1 36 32 44 44 0 1 44 o.o 

32 99 1 4 6 21 9 99 3 19 20.5 
32 99 1 36 42 51 51 0 1 51 o.o 
64 4 1 9 1 35 11 122 4 33 4.4 
64 4 1 16 5 48 19 71 3 46 2.3 
64 4 1 25 12 53 29 40 2 52 0.9 
64 4 1 36 23 74 41 25 2 74 o. 1 

64 4 1 49 34 100 55 12 2 100 o.o 

64 4 1 64 45 1 31 71 1 2 1 31 o.o 

64 9 1 4 1 24 7 206 6 25 11. 7 

64 9 1 9 5 37 1 3 109 4 38 6.8 

64 9 1 1 6 11 52 21 62 3 52 3.2 

64 9 1 25 19 56 32 35 2 56 0.6 

64 9 1 36 30 79 44 21 2 79 0.3 

64 9 1 49 42 106 58 9 2 106 0.3 

64 9 1 64 55 74 74 0 1 74 o.o 

64 99 1 1 1 1 3 4 423 9 14 35.9 

64 99 1 2 3 19 6 279 7 20 27.7 

64 99 1 4 5 27 9 176 5 28 20.3 

64 99 1 9 11 42 17 92 3 37 1 2. 5 

64 99 1 16 19 52 26 51 3 61 7.0 

64 99 1 25 29 64 37 28 2 65 1. 7 

64 99 1 36 41 88 51 16 2 90 1 . 7 
64 99 1 49 55 11 6 66 5 2 119 1 • 8 

64 99 1 64 71 82 83 0 1 83 o.o 

Table 6.1 Comparison of policies 
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Table 6.1 gives for different values of cost parameters P, v, h 

and for different values of mean demandµ the optimal parameters 

of the compared policies and the adjoined cost deviations. These 

deviations are again (as in previous sections) measured by 

D := 100 [%] ( 6. 40) 

* where C S(T) 
costs of the 

Additionally 

= C' (S*(T"'1,T*) + p µ (c.o. (6.36)) are the optimal 

S (T) -policy. 

in Table 6.1, a simple (S,S)-policy has been 

investigated. This policy can be considered as a naive approxi­

mation of the (s,S)-policy without enlarging the insFection 

period. Results have simply been obtained by setting P = o. 
Accordingly 

b. : = 
C *- c* s 

c* 
100 [%] 

measures deviations from the optimal costs. 

(6.41) 

Table 6.1 shows that a simple (S,S)-policy may be a good approxi­

mation for a (s,S)-policy if µ•h>>P. This result has also been 

found for Beta-distributions by [ 9] • In these cases the expected 

order cycle using an optimal (s,S)-policy is nearly 1. The optimal 

T of an S(T)-policy is 1. If on the other hand µ•h<P an (S,S)­

policy turns out to be a poor approximation. 

In all cases being computed, an S(T)-policy considerably improved 

an ordinary (S,S)-policy. If µ•h ~ P and~• 100 < 30 an S(T)-
µ -

policy is a good approximation for an (s,S)-policy. (For more 

detailed results see [22]). 

Summarizing, our investigations show that also in the pure inven­

tory case with P + 0 a linear decision rule turns out to be a 

fairly good approximation. 



SUMMARY AND CONCLUDING REMARKS 

Starting point of our investigations of a linear policy approach 

to inventory-production models was the linear-quadratic theory 

presented in Chapter 2. These models are characterized by the 

linearity of their plant and feedback equations and by the 

assumption of a quadratic performance criterion. One of the out­

standing properties of linear-quadratic models is the small 

amount of information being required. Due to the validity of the 

principle of dynamic certainty equivalence total stochastics of 

the additive inviroment (sequence of demand) can be reduced to 

conditional mean forecasts without any loss of optimality. This 

property has been exploited by Holt et. al. in their work on 

production smoothing and work-force planning. 

Generally, however, linear-quadratic models will not occur in 

real inventory-production systems. For a back-log situation (to 

which we confined our investigations) the plant equation (balance 

equation) of the model per definition is linear, however, there 

will be no quadratic cost dependances and furthermore capacity 

constraints will generally be present. However, for a smoothing 

situation it seems to be appropriate to approximate non-quadratic 

costs by quadratic ones and, in addition, since one has a short 

term feedback control, fluctuations would not be too large so 

that capacity constraints need not be taken into account 

explicitely. Thus Holt et. al. approximated costs by quadratic 

ones and found an optimal linear policy. This approximation was 

performed by a least square regression procedure. Obviously such 

an approximation is not unique. This is due to the fact that one 

does not know in which region costs should be approximated. If, 

e.g., inventory fluctuations are very large, a large region 

should be used to fit a quadratic function. Obviously, the 

approximation region depends on the cost functions to be approxi­

mated. The "optimal" linear policy found with respect to the 

approximated costs then depends on the goodness of fit. In order 

to study the influence of the quadratic approximation on optimal 

costs we had to construct a definite situation. Starting point 
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were well-defined piece-wise linear cost criteria which had to be 

fitted by quadratic functions uniquely. This was done by the so 

called LNQ-approach. The main point in this approach is the 

assumption of a linear feedback equation. With this assumption 

the model could be reduced to a linear-quadratic one (see Sec.3.2). 

However, the non-quadratic costs were approximated in an optimal 

way such that a best linear policy was derived with respect to 

the non-quadratic cost criterion. (It should be mentioned that 

the LNQ-approach and the procedure of Holt et. al. can differ 

considerably. ( See [ BJ ) ) • 

Of course, to derive best linear policies, further assumptions 

are necessary. First we had to assume policies to be stationary. 

This assumption turned out not to be too restrictive for smoothing 

situations. Assuming demand to follow a stationary stochastic 

process it could be shown that the asymptotic stage (N+m) was 

reached only after a few periods. I.e. because oft.he feedback 

structure of the policy initial conditions were found to die out 

rapidly. The second assumption, i.e., the normality assumption of 

demand, could be shown not to be too restrictive. 

This was shown for the cash balance case by a Gram Charlier 

development in Sec. 3.6 aud for the pure inventory case in 

Sec. 6. 1 • 

As could be shown in Sec. 3.2 the LNQ-approach still essentially 

maintains the principle of certainty equivalence. Although a 

knowledge of the variance of the demand sequence is necessary to 

calculate the optimal policy it does not, as discussed in Sec.3.2, 

play an important role. Summarizing, applying the LNQ-approach 

one actually needs conditional mean forecasts of demand processes 

being fairly stationary (but not necessarily Gaussian). 

Forecasts used in practice, however, will generally not be 

conditional means. They are usually exponential smoothing fore­

casts which only in special situations, as discussed in Sec. 2.3, 

coincide with conditional mean forecasts. The effect of these non­

optimal forecasts on the optimal performance is being studied. 
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Since one of our main objects was the investigation of the 

validity of the linearity assumption we concentrated on scalar 

models with white noise and Gauss-Markov processes as demand 

sequences. This limitation was necessary since Dynamic 

Programming solutions usually cannot be derived for higher 

dimensional state spaces and more complicated disturbance pro­

cesses. However, regarding the LNQ-approach, general ARMA- pro­

cesses were taken into account in Sec. 2.5 and the multivariate 

case is treated in a recent paper by Gaalman [ 6] • 

Studying the validity of the linear policy assumption it could be 

shown that in case of no set-up costs (Sec. 4.1) the LNQ-approach 

is not inferior than at most 10 %. For set-up costs being present 

results are less favorable depending on the relation of demand 

variance and cost parameters. However, enlarging the inspection 

period, results can be imprO'll'ed considerably [ 8J. 
These investigations were performed for the case of uncorrelated 

demand. An extension to the exponentially correlated case (and 

zero set-up costs) is presented in Sec. 4.3. It turned out that 

the suboptimality of the LNQ-approach does not depend on the 

degree of correlation and, more generally, on the type of auto­

regressive process being involved. 

LNQ-policies are suboptimal but well adapted to stochastic 

situations. Thus is appeared to be most interesting to compare 

this suboptimal policy with other suboptimal approaches. An often 

used suboptimal policy is the so called ODO-approximation dis­

cussed in Chap. 5. This approximation postulates the existence 

of the principle of certainty equivalence reducing the stochastic 

optimization problem to a deterministic one in which by a rolling 

horizon procedure forecasts are updated after each period. It 

could be shown that the suboptimal LNQ-policy is for all cost and 

demand parameters better than the ODO-policy. Even if we introduce 

an optimal safety stock the LNQ-procedure is still superior. 

However, for comparatively high inventory costs a safety stock 

leads to a considerable improvement of the deterministic approach. 

On the other hand, for low inventory costs also a safety stock 

cannot improve the considerable insufficiency of the DDO­

approximation. 
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The important result of Chap. 5 sheds some light on the following 

general problem. In dynamic production theory two main approaches 

exist. One is a linear (stochastic) control theoretic approach 

and the other a deterministic mathematical programming (usually 

Linear Programming) approach. The control theoretic procedure is 

better adapted to stochastic situations whereas by the deter­

ministic approach constraints can be incorporated more directly. 

The findings of Chap. 5 together with the results of Chap. 6 are 

more in favor of the linear control theoretic approach. They 

show that the effect of stochastics should not be neglected. 

Finally, in Chap. 6, we studied the pure inventory case. With no 

set-up costs being present the inventory problem turns out to be 

the limiting case of a production smoothing problem. The result 

of the LNQ-theory coincides essentially with the well-known 

S-policy result of the AI-IM-theory. This shows the ~pplicability 

of the LNQ-approach also in case of constraints on the decision 

variable. If fixed ordering costs are present the linear appro­

ximation works no longer as good as in the non set-up cost case. 

However, as shown in Sec. 6.2, enlarging the inspe=tion period 

results can be improved considerably. 

The investigation of suboptimal policies for dynamic stochastic 

inventory-production models is a broad and fascinating field of 

great practical importance. Studying linear (suboptimal) policies 

is just one, but an essential facet of the whole problem. 
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