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Modern Logic, like mathematics, is a highly­
specialised subject with an extensive technical 
literature. But unlike mathematics it is a relative 
newcomer to the academic scene. While it is true that 
the initial stages of its development took place 
several hundred years ago, it made its debut only as 
recently as the beginning of the present century. 
Since then it has progressed so rapidly that few text­
books on the subject can hope to be comprehensive. 
A compromise between breadth of coverage and 
depth of treatment seems inevitable. The present 
series is designed to meet this problem. Each mono­
graph devotes separate attention to a particular 
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The propositional calculus is the formal logic of 
such notions as those expressed by certain uses of 
words like "not", "or", "and", and "implies", 
which play an essential role in the making of 
inferences. This basic part of logic is an abstract 
theory developed in a purely formal way. Theorems 
in it are formulae deducible by virtue of explicitly 
stated rules from initially accepted formulae. The 
provable formulae of the system represent principles 
of valid thinking. 

In addition to drawing deductions from axioms, 
it is important to consider the axiomatics of a 
propositional calculus system: one should inquire 
into its consistency, completeness, and the in­
dependence of its axioms. The answers to be given 
to these questions in relation to the system developed 
in the present book are substantiated in it in detail. 

There is not just one system of the propositional 
calculus; many have been devised. However, the 
fundamental techniques are the same for all systems. 
Therefore, this monograph will be useful to those 
who wish to learn about these techniques, either as 
a self-contained part of a training in modern 
philosophy or as a preparation for further study in 
the field of formal logic. 
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PREFACE 
The propositional calculus is the formal logic of state­
ment connections, statement connections being notions 
expressed by certain uses of words like 'not', 'or', 'and', 
and 'implies'. Such notions play an essential part in the 
making of inferences. 

The propositional calculus is called a calculus because 
it is an abstract theory developed in a purely formal 
way. Theorems in it are formulae deducible by virtue 
of explicitly stated rules from initially accepted formu­
lae. The initially accepted formulae represent principles 
of the logic of statement connections, and the rules of 
deduction are so constructed as to allow the derivation 
of only those formulae which are also such principles. 
One criterion for a formula to be a principle in this field 
is given by the method of valuation or so-called 'truth' 
tables, which the reader might be already familiar with. 
(The essentials of the method are expounded in Ch. 
11.) The criterion is that a formula represents a prin­
ciple if and only if it is tautologous, in the technical 
sense of 'tautologous' defined with respect to the 
valuation method. 

The propositional calculus is a basic part of logic; 
other parts build upon it and are extensions of it. 

In addition to drawing deductions from the postu­
lates of a propositional calculus system, it is important 
to consider the axiomatics of the system. One should 
inquire into its consistency: is it free from contradic­
tion? One should inquire into the independence of its 
postulates: are any of them redundant, being deducible 
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Preface 
from the others? One should inquire into its complete­
ness: is every principle of the logic of statement con­
nections provable in the system? In modern logic most 
of the interest is concentrated on the axiomatics of 
individual systems and of types of system. The final 
part of the present work (pages 60---81) is devoted to 
substantiating the answers to be given to the chief 
questions of the axiomatics of the system developed 
here. 

There is not just one system of the propositional 
calculus; many have been devised. One reason for 
choosing the system adopted here is its being rather 
different from those which are to be found in available 
current texts. At the same time, the fundamental tech­
niques are the same for all the systems; therefore, 
having mastered the present one, the reader will have 
little difficulty in dealing with others. 
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Chapter One 

FORMULAE 

The system of the propositional calculus that will be 
developed in this monograph will be referred to as P. 

There are three and only three kinds of symbol in P 
itself: 

(i) p, q, r, sand these same letters with positive integer 
subscripts, as pi, p2 , p 3 , ••• A symbol of this kind is 
called a propositiollal variable. 

(ii) -, V, &, ➔. These four symbols denote respec­
tively certain concepts of negation, disjunction, con­
junction, and implication. A symbol of this kind is 
called a connective. 

(iii) (,). A symbol of this kind is called a parenthesis, 
the former being called a left-hand, and the latter a 
riglzt-lzand, parenthesis. 

Any symbol belonging to (i), (ii), or (iii) will be called 
a P-symbol. 

(1) ( (-s & r)➔(p V q2)) 

and 
(2) (p)-V s &( ➔q2( )r) 

are finite linear sequences of P-symbols. The class of 
all such sequences is divided into two mutually exclu­
sive sub-classes. One sub-class contains all those se­
quences which are, so to speak, the grammatically cor­
rect sentences of P, sequences that are called the well­
formed formulae, or more briefly the formulae, of P; 
(1) is an example of a formula. The other sub-class 
contains all the finite linear sequences that are not 
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Formulae 
formulae; (2) is an example of such a sequence. We 
shall be interested henceforth only in sequences that 
are formulae. 

In defining which finite linear sequences of P­
symbols are formulae, and throughout what follows, 
we use the letters A, B, C, D, E as names of any formu­
lae at all; we shall later use also, for the same purpose, 
these letters with positive integer subscripts or with 
integer variables such as i, j, and 11. These names are 
not, of course, symbols in the calculus P itself; they 
belong to the languages used for speaking about P, not 
for speaking in P. 

Definition 1. (a) A propositional variable is a 
formula. (b) If A is a formula, then -A is a formula. 
(c) If A and B are formulae, then (A V B), (A & B), 
and (A➔B) are formulae. (d) The only formulae are 
those specified to be such by (a), (b), or (c). 

(3) (-p & (q➔p) ) 
is a formula because, by (a) of Definition 1, p and q are 
formulae, so -p is a formula by (b) and (q-,.p) is a 
formula by (c), and thus, by (c) again, (3) is a formula. 

The requirement, in Definition 1 (c), of a pair of 
parentheses to surround A V B, A & B, A➔B, is 
motivated chiefly by the wish to avoid ambiguity in the 
reading of an expression. Consider, for example, 

(4) p & q➔T➔S. 

It _is impossible to determine how this expression is 
built up. Th~re are five possible readings, which can be 
fixed by the msertion of parentheses: 

(5) ( ( (p & q)➔r)➔s); 
(6) ( (p & q)➔(T➔s) ); 
(7) ( (p &(q➔r) )➔s); 
(8) (p &( (q➔r)➔s)); 
(9) (p &(q➔(T➔S)) ). 
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Formulae 
In practice, however, the use of parentheses required 

by Definition I (c) is modified by adopting certain con­
ventions which effect a large reduction in the number 
of parentheses employed-though, when such conven­
tions are adopted and applied, the resulting finite linear 
sequences of P-symbols are not, as they stand, formulae 
of P but are shorthand expressions for such formulae. 
One convention is that the outermost pair of paren­
theses of a whole formula may be omitted. Another is 
that, in the absence of restricting parentheses, the con­
nectives have the following order of priority: - pre­
cedes the others, & precedes V and ➔, while V precedes 
➔• A third convention is to write the negation sign as a 
bar over the formula ( or shorthand expression for the 
formula) to be negated, this bar, called a vinculum, 
having a parenthetical function also. For example, 

(IO)p & q V r+s 
may be written instead of 

(11) ( ( (-p & q) V r)➔s), 
and 

(12) p & q V p & T➔P & q & r 
may be written instead of 

(13) ( ( (p &-q) v (P &-r) )➔(P &-(q & r)) ). 
We shall henceforth adopt the three conventions men­
tioned and shall, for the sake of convenient brevity, 
regard the expressions resulting from their use as 
formulae. 
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Chapter Two 

SUBSTITUTION 

Let us begin the examination of the notion of substi­
tuting a formula C in the place of a propositional vari­
able in a formula A by considering an example. 
Suppose A is P➔(q➔p) and C is r. If C is substituted for 
p throughout A, one obtains ;➔(q->-;). A notation for 
this latter formula, which indicates how it has been or 
may be obtained, is s;(P➔(q➔p) ). 

It is intuitively obvious that the substitution of a 
formula C for each occurrence of a propositional 
variable in a formula A yields again a formula, which is 
similar in form to A. But, although the assertion is thus 
obvious, it is, strictly, in need of proof, and until the 
proof has been given it is illegitimate to define the result 
of substituting C for say pin A as 'the formula' which 
is identical with A except that each occurrence of p in 
A is made an occurrence of C. Because of this circum­
stance, we here define the operation of substitution in a 
somewhat different way, which guarantees that the 
result of a substitution is itself a formula. However, 
before giving this definition as a whole, we shall 
expound its individual clauses separately. 

Let D and E designate propositional variables only, 
so that these letters stand in the present context for 
formulae such as p, q, and r, and not for any more 
complex formulae. (a) If A is D, then S~(A) is C. For 
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Substitution 
example, saVr(p) is q V r. (b) If A is D and Edesig­
nates a pfopositional variable different from that 
designated by D, then Sf(A) is D. For example, 

S~(p) is p. (c) If SE(A) has been defined, 

then sg(A) is sg(A). For example, s;-H(p) is 

q ➔r. (d) If sg(A) and SE(B) have been defined, then 

sg(A v B) is sg(A) v SE(B), sg(A & B) is sg(A) 
& sg(B), and sg(A ➔B) is SE(A) ➔Sii(B). For 
example, 

(1) si➔r( (p +q) & (p V r)) 
lS 

(2) ( (q➔r) ➔q) & ( (q➔r) V r); 
and 

(3) si v r(q V q➔p) 
lS 

(4) sa v r(q) vs~ v r(q)➔Sa v r(p), 
d a 1· . l . a an so, exp 1c1t y, 1s 

(5) q V r V q V r➔p. 

Definition 2. Let D and E designate propositional 
variables. (a) If A is D, then SE(A) is C. (b) If D 
and E designate different propositional variables 
from one another and A is D, then Sf(A) is A. (c) 

If sg(A) has been defined, then sg(A) is sg(A). 
(d) If sg(A) and sg(B) have been defined, then 
sg(A V B) is ~(A) V sg(B), sg(A & B) is Sii(A) 
& sg(B), and Sn(A ➔B) is sg(A)➔Sii(B). 

Since, if A is any formula, and D1 and D 3 are any 
propositional variables, Siii(A) has been defined as 
itself a formula, it is permissible to consider such ex­
pressions for formulae as sg!(Sg!(A) ). This expres-
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Substitution 
sion represents the formula obtainable by firstly 
substituting C2 for D 2 in A and secondly substituting 
C1 for D1 in the formula got by performing the first 
substitution. The order of the substitutions is im­
portant: sg~(sg:(A) ) is not necessarily the same 
formula_as SE!(SE;(A) ). For example, 

(62 S~(S~(p V q➔q V p)) _ _ _ __ 
is s:(p V P ➔P V p), which is turn is p V P➔P V p. On the 
other hand, 

(7) ~~(S~(p V 'j➔q V p)) _ _ 
is S~(p V q➔q V p), which in turn is p V P➔P V p. 
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Chapter Three 

AXIOMS AND RULES OF 
DEDUCTION 

The normal theoretical purpose of constructing a 
propositional calculus is to have a system which incor­
porates valid and only valid logical principles of the 
connectives. One chooses as starting-points a certain 
number of such principles, deducing other principles 
of connectives by use of these starting-points. The 
starting-points of P fall into two groups, one consisting 
of axioms, the other of rules of deduction, the latter 
enabling us to pass from premisses to conclusions. The 
axioms of Pare eleven in number. All involve implica­
tion. The first two involve no other connectives. The 
next three involve disjunction, the following three 
conjunction, and the final three negation. It will be 
shown later (Ch. 12) that the axioms of Pare mutually 
independent, so that if any were eliminated, the system 
would be the poorer: there would be at least one valid 
logical principle of connectives that would be unprov­
able in P. It will also be shown later (Ch. 13), by em­
ploying the notion of truth-table tautology as the 
criterion of validity, that every valid logical principle 
of connectives is provable in P; hence the starting­
points of Pare adequate. 

The axioms of P are: 
I. P➔(q➔p); 

II. (p➔(q➔r) ) ➔( (p➔q)➔(p ➔r) ); 
7 



Axioms and Rules of Deduction 
III.p➔pv q; 
IV. q➔p V q; 

V. (p➔r)➔( (q ➔r)➔(P V q➔r) ); 
VI. p & q->-p; 

vu. p & q➔q; 
VIII. (r-+P)➔( V~q)➔(r➔p & q) ); 

IX. (p--:,q)➔(q➔p); 

x. p➔p; 
XI. P--"1'· 

We now define which formulae are provable in P, the 
second and third clauses of our definition embodying 
the two rules of deduction of P, the former being the 
rule of substitution and the latter the rule of modus 
ponens. A formula that is provable in a system is often 
said to be a true formula of the system. This termino­
logy will not be employed here. 

Definition 3. (a) If A is an axiom, then A is prov­
able. (b) If A is provable, then, D being a proposi­
tional variable, S~(A) is provable. (c) If A and 
A-B are provable, then B is provable. (d) The only 
provable formulae are those specified to be such by 
(a), (b), or (c). 

We shall denote by V any provable formula. 
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ChapteF Four 

EXAMPLES OF PROVABLE 
FORMULAE 

Theorem 1. p➔V is provable. 
Proof: 1. p➔(q➔P) 

2. V->(q➔V) 
3. V +(D➔V) 
4. V 
5.D➔V 
6. p➔v. 

In this proof, t is axiom I, 2 is obtained from 1 by sub­
stituting V for p, 3 is obtained from 2 by substituting 
D (a propositional variable with no occurcnces in V) 
for q, 4 is provable (by notational definition), 5 is 
obtained from 3 and 4 by modus ponens, and 6 is 
obtained from 5 by substituting p for D. With readily 
understood notations, 2 is s;'(t), 3 is S~(2), 5 is 3, 
4, mp, and 6 is SE (5). 

Theorem 2. P->-P is provable. 
Proof: l. (P➔(q➔r) )+( (p+q)->(p+r)) 

2. (p+(q➔p) ) ➔( (p+q)➔(p➔p)) 
3.p➔(q➔p) 
4. (p+q) ➔(p➔p) 
5. (p+V)➔(p+p) 
6.p+V 
7.p+p. 

In this proof, 1 is axiom II, 2 is Sf(I), 3 is axiom I, 4 
B 9 



Examples of Provable Formulae 
is 2, 3, mp, 5 is s; (4), 6 is Theorem 1, and 7 is 5, 6, 
mp. 

Theorem 3. p V q➔q V pis provable. 
Proof: 1. (p->-r)➔( (q➔r)->-(P V q➔r)) 

2. (p➔q V p) ➔( (q➔q V p) ➔(p V q->-q V p)) 
3. q➔p V q 
4. q+ TV q 
5.p➔rV p 
6.p➔q V p 
7. (q➔q V P) ➔(p V q➔q v p) 
8.p➔p V q 
9.p➔p V r 

10. q➔q V r 
11. q+q V p 
12.pVq➔qVp. 

In this proof, 1 is axiom V, 2 is s: v P(l), 3 is axiom 
IV, 4 is s;(3), 5 is S~(4), 6 is si(5), 7 is 2, 6, mp, 8 
is axiom III, 9 is S~(S), 10 is si(9), 11 is S~(lO), 
and 12 is 7, 11, mp. 

Theorem 4. q & p +p & q is provable. 
Proof: 1. (r➔p) ➔( (r➔q)➔(r➔p & q)) 

2. (q &p➔p)➔( (q &p➔q) ➔(q &p+p & q)) 
3.p&q+q 
4. T & q➔q 

5. T &p+p 
6. q &p+p 
7. (q &p+q}-+(q &p+p & q) 
8.p & q➔p 
9.p &r➔p 

10. q & r+q 
11. q &p➔q 

12. q &p➔p & q. 
In this proof, 1 is axiom VIII, 2 is si & P(l), 3 is 
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Examples of Provable Formulae 
axiom VII, 4 is s;(3), 5 is S~(4), 6 is S~(5), 7 is 2, 6, 
mp, 8 is axiom VI, 9 is S~(B), 10 is si(9), 11 is S~(lO), 
and 12is 7, 11, mp. 

Theorem S. p V P➔P is provable. 
Proof: I. (p➔r)➔( (q ➔r) ➔(p V q➔r)) 

2. (P➔P) ➔( (q+p)➔(p V q->P)) 
3.p ➔p 

4. (q➔p)➔(P V q➔p) • 
5. (p+p)➔(p V P➔P) 
6.p V p ➔p. 

In this proof, 1 is axiom V, 2 is S~(l), 3 is Theorem 2, 
4 is 2, 3, mp, 5 is S~(4), and 6 is 3, 5, mp. 

Theorem 6. P➔P & p is provable. 

Proof: 1. (r➔p) ➔( (r➔q)➔(r+p & q)) 
2. (P➔P)➔( (p ➔q)+(p+p & q)) 
3.p+p 
4. (p ➔q) ➔(p+p & q) 
5. (p➔p)+(p+p &p) 
6.p+p &p. 

In this proof, 1 is axiom VIII, 2 is S~ (1), 3 is Theorem 
2, 4 is 2, 3, mp, 5 is S~(4), and 6 is 3, 5, mp. 

Theorem 7. p ➔P V p is provable. 
Proof: I. p+p V q 

2.p+pV p. 
In this proof, 1 is axiom III, and 2 is S~ (1). 

Theorem 8, p & p+p is provable. 
Proof: 1. p & q+p 

2.p &p➔p. 
In this proof, 1 is axiom VI, and 2 is S~(l). 
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Examples of Provable Formulae 

Theorem 9. p+p is provable. 

Proof: 1. p +p 

2.p➔p. 

In this proof 1 is axiom XI, and 2 is S~( 1 ). 

Theorem 10. V ➔Pis provable. 

Proof: 1. (p➔q)➔(q+p) 

2. (p➔V)+(V➔p) 
3.p..,..V 

4. V➔p. 
In this proof, 1 is axiom IX, 2 is s;(1), 3 is Theorem 
1, and 4 is 2, 3, mp. 

Theorem 11. p V q➔p & q is provable. 

Proof: 1. (p➔q)➔(q➔p) 

2. (p+p V q)➔(p V q➔p) 
3. p+p V q 

4.p V q➔p 

5. (r➔q)➔(q+r) 
6. (r+p V q)➔(p V q+r) 

7. (q+p V q)➔(p V q+q) 
8. q+p V q 

9.p V q+q 
10. (r+p)+( (r+q)+(r+p & q)) 

11. (r+p}+( (r+q)+(r-,,.p & q)) 

12. (r+p)➔( (r➔q) ➔(r➔p &-q)) 
12 



Examples of Provable Formulae 
13. (p V q➔p)➔( (p V q➔q)➔(p V q➔p & q)) 

14. (p V q +q)➔(p V q➔P & -q) 

15.p V q+p & q. 
In this proof, 1 is axiom IX, 2 is S~ v a(t), 3 is axiom 
III, 4 is 2, 3, mp, 5 is s;(l). 6 is s~ v a(s), 7 is 
Sq(6), 8 is axiom IV, 9 is 7, 8, mp, IO is axiom VIII, 

r - - --
11 is si(lO), 12 is Sq(ll), 13 is s: v q(12), 14 is 4, 13, 

-.J • q 
mp, anu 15 1s 9, 14, mp. 

We shall give the name lemma to any justifiable asser­
tion that when certain formulae are provable, then a 
certain other formula is also provable. (Such justifiable 
assertions are often called derived rules in the literature.) 

Lemma 1. If A➔B and B➔C are provable, then 
A--+-C is provable. 

Proof: Suppose 
1. A ➔B 
2.B➔C 

are provable. Let D1 designate a propositional variable 
that is not p and that has no occurrences in B ➔C; let 
D 8 designate a propositional variable that is not p and 
that has no occurrences in A; and let D 3 designate a 
propositional variable that is not p or Da and that has 
no occurrences in A or in B. The reasons for these 
restrictions are explained at the end of the present 
chapter (pages 17-18). 

3.p➔(q➔p) 
4.p➔(Di➔P) 
5. (B➔C) ➔(D1 ➔(B➔C)) 
6. (B ➔C)+(A +(B➔C)) 
1. A➔(B ➔C) 
8. (P➔(q➔r) ) ➔( (p➔q)+(p➔r)) 
9. (p➔(Ds➔T)) +( (p➔D8)+(p➔r)) 

10. (p+(Da+D3) ) ➔( (p➔D1)➔(p➔D~)) 
13 



Examples of Provable Formulae 
11. (A+(D2➔D3) )-+( (A-+D2)+(A-+Da)) 
12. (A➔(B➔D3) ) ➔( (A➔B) ➔(A-+D3)) 
13. (A ➔(B➔C) )➔( (A ➔B)➔(A ➔C) ) 
14. (A-+B)-+(A ➔ C) 
15. A-+C. 

In this proof, 3 is axiom I, 4 is S~1(3), 5 is s:➔c(4), 
6 is sties), 7 is 2, 6, mp, 8 is axiom II, 9 is S~2(8), 

10 is S~3(9), II is s:(10), 12 is S!ill), 13 is sZae12), 
14 is 7, 13, mp, and 15 is 1, 14, mp. 

Lemma 1 is usually called the syllogistic principle. We 
shall refer to it as syll. 

Lemma 2. If A➔C is provable, then A & B➔C is 
provable. 

Proof: Suppose 
1. A➔C: 

is provable. Let D1 be a propositional variable different 
from q and having no occurrences in B. 

2.p & q➔p 
3. D1 & q➔D1 
4. D1 &B➔D1 
5.A&B➔A 
6. A & B-+C. 

In this proof, 2 is axiom VI, 3 is ~ 1(2), 4 is s:(3), 5 

is stl(4), and 6 is 1, 5, syll. 

Lemma 3, If A➔(B➔C) is provable, then A & B➔C 
is provable. 

Proof: Suppose 
1. A➔(B-+C) 

is provable. Let D1 be a propositional variable that is 
different from p, q, and rand that has no occurrences 
in A or in B, and let D 2 be a propositional variable that 
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is different from p and D1 and that has no occurrences 
in A or in B. 

2. (p->-(q➔r) )➔( (p➔q)➔(p➔r)) 
3. (p ➔(D1 ➔r) )➔( (p➔D1)➔(p ➔r)) 
4. (p➔(D1 ➔D2) ) ➔( (p➔D1) ➔(p +Ds) ) 
5. (A & B+(D1➔D2) )➔( (A & B+D1) 

➔(A & B➔D2)) 
6. (A & B➔(B+D2) ) ➔( (A & B➔B) 

➔(A & B➔D2)) 
7. (A & B ➔(B➔ C) )->-( (A & B➔B) 

➔(A & B➔C)) 
8. A & B➔(B➔C) 
9. (A & B-➔B)➔(A & B➔ C) 

10. p & q➔q 

11. D1 & q➔q 
12. D1 & B➔B 
13. A &B➔B 
14. A & B➔C. 

In this proof, 2 is axiom II, 3 is S~1(2), 4 is S~2(3), 5 is 

s; & B(4), 6 is s~1(5), 7 is Siii6), 8 is obtained by 
applying Lemma 2 to step 1, 9 is 7, 8, mp, 10 is 

axiom VII, 11 is S~1(10), 12 is s:(11), 13 is si1(12), 
and 14 is 9, 13, mp. 

Lemma 3 is usually called the unification of premisses 
principle. We shall refer to it as unif. 

Theorem 12. V ➔P is provable. 
Proof: 

2. V➔p 
-

3.p➔p 

4. V➔p. 
1S 



Examples of Provable Formulae 
In this proof, 1 is Theorem 10, 2 is s;(l ), 3 is axiom 
XI, 4 is 2, 3, syll. 

Theorem 13. p & p ➔ V is provable. 
Proof: 1. P➔(q➔p) 

2.p➔(V➔p) 

3. (p➔q)➔(q➔p) 

4. (p➔r)➔(r➔p) 
5. (V➔r)+(r➔V) 

6. (V ➔P) ➔(p➔V) 

1.p➔(p➔V) 

s.p &p➔V. 
In this proof, 1 is axiom I, 2 is s;(1), 3 is axiom IX, 
4 is S~(3), 5 is s;(4), 6 is S~(5), 7 is 2, 6, syll, and 8 

is 7, unif. 

Theorem 14. p V p is provable. 
Proof: To simplify the proof, let V be any provable 

formula with no occurrences of p. 
1.p V q+p & q 

2.pv P➔P &p 

3.p &p➔V 

4.p &p➔V 

5.pVp+V 

6. (p ➔q)➔(q➔p) 

1. (p➔V)➔(V➔p) 

8. (p V p+V)-+(V ➔P V p) 
16 
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12. V➔pVp 
13. V 

14. p V p 
-

15.p➔p 

-
16.pVp➔pV p 
11.pvp. 

In this proof, 1 is Theorem 11. 2 is s:(1), 3 is 

Theorem 13, 4 isS~(3), 5 is 2, 4, syll, 6 is axiom IX, 7 

is St(6), 8 is S~ v ii(7), 9 is 5, 8, mp, 10 is axiom X, 
11 is s;(10), 12 is 9, 11, syll, 13 is provable (by 
notational definition), 14 is 12, 13, mp, 15 is axiom XI, 
16 is si v P(15), and 17 is 14, 16, mp. 

The reasons for the restrictions imposed on D1, D 1 , 

and D 3 in the proofs of Lemmas 1, 2, and 3 may be 
explained as follows. 

(i) It was pointed out at the end of Ch. 2 that the 
order in which substitutions are made may materially 
affect the final outcome. The question of order arises 
because our rule of substitution is a weak one. It per­
mits only one propositional variable to be substituted 
for at any one step and does not, therefore, permit 
simultaneous substitutions of several propositional 
variables. Considering an example, if we wish to obtain 

(l)pV q➔(r&p➔pV q) 
as a step in a proof, then we start from 

17 



Examples of Provable Formulae 
(2) P➔(q➔p), 

which is axiom I, and then use the rule of substitution. 
If we substitute first for pin (2) we get 

(3) p V q->-(q➔p V q). 
We cannot now deduce (1) from (3) by substituting r 
& p for q in (3), for S~ & P( (3)) is 

(4) p VT &p➔(T &p➔p VT &p), 
which is not (1). The trouble arises because the first 
substituting formula, p V q, contains the propositional 
variable q which the second substituting formula, r & 
p, is to replace. Our way of overcoming this difficulty 
is to proceed to (1) by substituting say r for q in (2), 
getting 

(5) P➔(r➔p), 
then substituting p V q for p, getting 

(6) p V q➔(r➔p V q), 
finally substituting r & p for r in (6) to obtain (1). Cf. 
the use of r in steps 4 and 9 of the proofs of Theorems' 
3 and 4. The final effect is always as if simultaneou$ 
substitutions were allowed. 

(ii) Considering another example, let us go back to 
the proof of Lemma 1. If, in step 5, the propositional 
variable designated by D1 were to occur in B or C and 
so in B-c, then on substituting A for D1 to get step 6 
either B or C would be altered by each occurrence of 
D1 in it becoming an occurrence of A, with the result 
that B-C would not remain intact. Hence, D1 must 
have no occurrences in B-C and the easiest way to 
ensure this is to choose D1 to be a propositional 
variable that has no occurrences in B or in C; such a 
choice is always possible for there are infinitely many 
variables available, by Ch. I (i). 

18 



ChapteF Five 

HYPOTHETICAL DEDUCTION 

Suppose that, in addition to the axioms of P, we allow 
ad hoc hypotheses as premisses from which to make 
deductions. For example, we may consider problems 
of the kind: (i) if P➔(q➔r) is adopted as a hypothesis, 
would it yield (p➔q)➔(p➔r), and would it yield p & 
q➔r? (ii) if A and B are adopted as hypotheses, would 
they yield A & B? These questions can be expressed by 
using the sign I-, called the turnstile, which is read as 
'yields' or 'yield', according as there is one or more 
than one hypothesis. (i) becomes: is it true that 
P➔(q➔r)l-(p ➔q)➔(p➔r), and that P➔(q➔r)l-p & q➔r? 
(ii) becomes: is it true that A, Bl-A & B? The exact 
sense of I- is determined by the following definition. 
(Some other books employ a rather different definition.) 

Definition 4. (a) A 1 , Aa, .. . , A11I-A1 (j=I, 2, ... , n). 
(b) If Bis provable, then Av As, ... , A 11 1-B. (c) If A1 , 

A 11 , ••• , Anl-B and Av A1, ... , A11 1-B➔ C, then A1 , 

A 2 , ••• , Anl-C. (d) A 1 , A 2 , ••• , A 11 yield no other 
formulae than those specified to be yielded by them 
by (a), (b), or (c). 

It is very convenient to allow 1- to be used when 
there are no hypotheses; this is the case when n=O. 
r-B then signifies that Bis provable. 

It is to be noticed carefully that although Definition 
4 has a clause-( c )-relating to the rule of modus 
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Hypothetical Deduction 
ponens, it has not a corresponding clause relating to the 
rule of substitution. In fact, if certain hypotheses yield 
B, it is not true, in general, that, D being a proposi­
tional variable, they also yield si(B). 

Let us consider some examples. 

Example 1. Is it true that 
(l)p ➔(q➔r),p & q 1-r? 

The working may be set out as follows. 
1. P➔(q➔r)° 
2. p & qo 
3.p & q➔p 
4.p 
S. q➔r 

6.p & q➔q 
1.q 
8. r. 

Steps 1 and 2 here are marked by small superscript 
circles to indicate that they are hypotheses. 3 is axiom 
VI. 4 is 2, 3, mp. 4 is yielded by the hypotheses because 
2 and 3 are themselves yielded by the hypotheses, by 
Definition 4 (a), {b). 5 is 1, 4, mp. Again, 5 is yielded by 
the hypotheses, by Definition 4 (c), because 1 and 4 are 
yielded by the hypotheses. 6 is axiom VII. 7 is 2, 6, 
mp. 7 is yielded by the hypotheses, by Definition (c), 
because 2 and 6 are yielded by the hypotheses, by 
Definition 4 (a), (b). Finally, 8 is 5, 7, mp, and, being 
obtained by modus ponens from steps that are them­
selves yielded by the hypotheses, is itself yielded by the 
hypotheses. Hence, (1) is true. 

Example 2. Is it true that 

(2) P➔(q➔r)l-p & q➔r? 
If our working is 
1. P➔(q ➔r)o 
2. (P ➔(q➔r) ) ➔( (p ➔q)➔(p➔r)} 
3. (p-➔q)➔(p➔r) 
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Hypothetical Deduction 
4. (p & q➔q)➔(P & q➔r) 
5.p & q➔q 
6.p & q➔r, 

then we should not have shown that (2) is true. While 
each of steps l, 2, and 3 is yielded by the hypothesis, (i) 
it has not been shown that 3 is provable (although it 
has been shown that 1 yields 3), (ii) 4 has been obtained 
from 3 by substitution, and (iii) there is no clause in 
Definition 4 which permits us to say that si & 11(3) is 
yielded by the hypothesis. (Why there is no such 
clause will be clarified later; cf. pages 38-40.) 

Nevertheless, (2) is true, as may be shown by con­
structing a proof along the lines of the proof of Ch. 4, 
Lemma 3. 

Example 3. Is it true that 
(3) pl-q➔r? 

If our working is 
I.po 
2.p➔(q+p) 
3. q+p 
4. q➔r, 

then we should not have shown that (3) is true. While 
each of steps l, 2, and 3 is yielded by the hypothesis, 
it has not been shown that 3 is provable, and 4 has been 
obtained from 3 by substitution. In any case, (3) is not 
true. 

Example 4. Is it true that 

(4) qf-r-'l-q? 
If our working is 
1. qo 
2.p➔(q+p) 
3.p➔(r+p) 
4. q➔(r➔q) 
5. r➔q, 

then we should have shown that ( 4) is true. l is a 
hypothesis and 1 yields 1. 2 is axiom I and I yields 2. 
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Hypothetical Deduction 
3 is 8'(2), and since 2 is provable, 3 is provable; so, by 
Definition 4 (b), 1 yields 3. 4 is s:(3), and since 3 is 
provable, 4 is also provab!e, so, again, 1 yields 4. 
Finally 5 is 1, 4, mp, and being got from two steps that 
are yieided by 1, S is itself yielded by 1, by virtue of 
Definition 4 (c). 

Thus, in dealing with hypotheses, the use of the rule 
of substitution is legitimate if it is applied to a formula 
that has been shown_ to be pro_vable or that is provable; 
on the other hand, its use rums what is intended as a 
proof if it is applied to a formula that has not been 
shown to be provable or that is not provable. 
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Chapter Six 

COURSE-OF-VALUES 
INDUCTION 

In proving theorems about P it is frequently necessary 
or advantageous to employ an arithmetical method. 
This method is called course-of-values i11duction. The 
method is applied in proving theorems which involve 
either the non-negative whole numbers 0, 1, 2, 3, ... or 
the positive whole numbers 1, 2, 3, ... Theorems about 
P can involve whole numbers in a variety of ways. One 
way is in the number of occurrences of propositional 
variables that a formula of P contains. Another way is 
in the number of occurrences of connectives that a 
formula of P contains. A third way is in the number of 
hypotheses employed to yield a certain formula. A 
fourth way is in the number of steps in the proof of a,· 
certain formula. A fifth way is in the number of steps 
in a hypothetical deduction of a certain formula from 
such-and-such hypotheses. 

Let T be a theorem which involves numbers. We 
shall write T(0), T(l), T(2), ... , T(n) to signify those 
cases of T when 0, 1, 2, ... , 11 respectively are involved. 
By the notation T(k~m) we shall signify those cases of 
T when any number k not greater than m is involved. 

The method of course-of-values induction may be 
expressed in the form of a rule of reasoning: 

If it has been proved that T(O) is true and it has been 
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Course-of-Values Induction 
proved that T(k~m) implies T(m+ 1) for any 111 1 then it 
is permissible to conclude that T(m) is true for each m. 

In this formulation k and m range over the non­
negative numbers. Another form of the rule has T(l) 
in the place of T(O), and in this second formulation It 
and m range over the positive numbers. 

To justify the method of course-of-values induction 
we assume the truth of the premisses, T(O), and 
T(k~m) implies T(m+l) for any m, and attempt to 
show the truth of the conclusion that T(m) for each m. 
Now, if T(k~m) implies T(m+l) for any m, then 
T(k£:.O) implies T(O+ 1). Since T(k£:.O) is T(O), T(O) 
implies T(l). Ex hypotlzesi, T(O) is true. Therefore, T(l) 
is true, for whatever is implied by a true statement is 
itself true. Next, T(k,;;;;;1) implies T(l+t). But T(k;;;;;;t) 
is true since T(O) and T(l) are true. Therefore, T(2) is 
true. Proceeding similarly, one can show that each of 
T(3), T(4), ... is true, that is one can show the truth 
of T(m) for each m. 

The justification of the form of the method of course­
of-values ind~ction w_hen T(l) instead of T(O) is used 
as a premiss 1s essentially the same as the justification 
just given. 

The value and the functioning of course-of-values 
induction will be better ;1nderstood and appreciated 
when Ch. 7 has been studied. 
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Chapter: Seven 

THE DEDUCTION THEOREM 

In this chapter we prove a basic theorem about P. This 
theorem is called the deduction tl:eorem. According to 
this theorem, if AI-B, then 1-A ➔B; if A, Ct-B, then 
AI-C➔B, and so, by the preceding case, 1-A ➔(C➔B); 
if A, C, DI-B, then A, CI-D➔B, and so, by the pre­
ceding cases, AI-C➔(D➔B) and 1-A ➔(C➔(D➔B) ); 
and similarly for any number of hypotheses. What the 
theorem tells us is that, for example, if 

(1) P➔(q➔r), p & ql-r, 
then 

(2) 1-(p➔(q➔r) ) ➔(p & q➔r); 
therefore if we know that (1) is true (which it is, cf. 
Ch. 5, Example 1), we shall know also that (2) is true, 
that is, we shall know that the formula following the 
turnstile is provable. The help afforded by the deduc­
tion theorem arises from the fact that, for example, (1) 
is very much easier to prove directly than (2) is; 
hypothetical deductions are, in general, incomparably 
more readily performed than deductions that make no 
use of hypotheses as premisses. 

If Ai, A 2, ••• , Anl-B, then there is a hypothetical 
deduction of B from the hypotheses A,, this deduction 
containing Bas the step numbered k (k= 1 or 2 or ... ) ; 
e.g., the hypothetical deduction in Ch. 5, Example 1 of 
r from p➔(q ➔r) and p & q contains r as the step 
numbered 8. For any formula B that is yielded by n 
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The Deduction Theorem 
hypotheses A, there is some hypothetical deduction of 
B from those hypotheses such that B is contained in 
the deduction as the step numbered k. To indicate that 
B is contained as the step numbered k we write A1 , 

A 2 , ••• , Anl--kB, 

The Deduction Theorem. If A11 A2, ••• , Anl--B, then 
A1 , A2 , ••• , An-11--An+B. 

Proof. We proceed by course-of-values induction, 
starting, in the notation of Ch. 6, with T(l). 

T(l): If A1 , A2, ... , Anl--1B, then A1 , A2 , ••• , 

An_1 1--An➔B. 
Before proving that T(l) is true, attention should be 

drawn to the absence of any number being affixed to 
the turnstile in the consequent of T( 1); this means that 
no limitation is placed on the number of steps there 
may be in the hypothetical deduction of An-B from 
the hypotheses A 1 to An-1 , 

The standard way of establishing the truth of a con­
ditional statement, such as T (1), is to suppose the truth 
of the antecedent and to derive the consequent as a 
conclusion from that supposed truth. Therefore we 
begin by supposing that A1 , A2 , ••• , Anl--1B. Then 
either (a) Bis some A1 (i= 1 or 2 or ... or n-1), or (b) 
Bis An, or (c) Bis provable. (These three alternatives 
are not necessarily mutually exclusive.) 

(a) If Bis A1(i=l or 2 or ... or n-1), then a hypo­
thetical deduction of An +B from A 1 to An-i may be 
constructed as follows, where D is a propositional 
variable that is different from p and has no occurrences 
in A1; 

1. 1--1. n-1. A 1 , A 2 , ••• , An-i° 
2. P➔(q➔p) 
3.p+(D+p) 
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The Deduction Theorem 
4. A1➔(D➔A1) 
5. A1➔(An➔A1) 
6. An➔AJ. 

In this deduction, 1 is divided into n-1 sub-steps, one 
for each hypothesis A,, 2 is axiom 1, 3 is S~(2), 4 is 
S~i(3), 5 is st11(4), and 6 is 1.j, 5, mp. 

(b) If B is An, then a hypothetical deduction of 
A11➔B (i.e., of A 11 +An) from A1 to A 11- 1 may be con­
structed as follows: 

L 1--1. n-1. Au A 2 , •• • , An-i° 
2.p➔p 

3. An+An, 
In this deduction, 2 is Ch. 4, Theorem 2, and 3 is 
3',411(2). 

P(c) If Bis provable, then a hypothetical deduction of 
An +B from A1 to An-1 may be constructed as follows, 
where D is a propositional variable that is different 
from p and has no occurrences in B: 

1. 1--1. n-l. Au A 2 , ••• , A 11- 1° 
2. B 
3. P➔(q+p) 
4.p➔(D➔p) 
5. B-,,{D ➔B) 
6. B➔(An-+B) 
1. An-+B. 

In this deduction, 3 is axiom I, 4 is Sq(3), 5 is S!(4), 

6 is stn(S), and 7 is 2, 6, mp. 

Thus, it has been shown that T(I) is true. 
Next, we wish to establish that if T(k~m) is true, 

then T(m+1) is true, k and m being any positive whole 
numbers. Therefore, we suppose 

T(k~m): If Au A2 , ••• , Anl-kLmB, then A1 , A2 , ••• 

An-11-An➔B, -
and attempt to derive as conclusion the truth of 
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The Deduction Theorem 
T(m+l): If Ai, A 2 , ••• , Anf-m+1B, then Ai, A2 , ••• , 

An-if-An➔B. 
If B is yielded by A1 to An in m+ 1 steps, then either 

(a) Bis some A1 (j= 1 or 2 or ... or n-1), or (b) Bis An, 
or ( c) B is provable, or ( d) B is deduced by modus ponens 
from two preceding steps C and C-+B that are them­
selves yielded by A1 to An, Cases (a), (b), and (c) are 
dealt with in exactly the same way as (a), (b), and (c) 
above. It remains to deal with (d). 

(d) If Bis deduced by modus ponens from two preced­
ing steps C and C-B, then, since B occurs as the step 
numbered m+ 1, these steps must bear some number k 
where k~m. By the supposed truth of T(k~m), A1i--'>-C 
and An➔(C➔B) are yielded by the hypotheses A 1 to 
An-i• A hypothetical deduction of An➔B from A1 to 
An-i may be constructed as follows, where D is a 
propositional variable that is not p or r and has no 
occurrences in An, and D1 is a propositional variable 
that is not p or D and has no occurrences in An 
or C: 

1. 1--1. n-1. A1 , A 2, •• • , An-i° 
2. An+C 
3. An➔(C➔B) 
4. (p ➔(q➔r) ) ➔( (p➔q)➔(p ➔r)) 

5. (p ➔(D➔r) ) ➔( (p➔D)➔(p➔r)) 

6. (P➔(D➔D1) ) ➔( (p➔D)➔(p➔D1)) 
7. (An➔(D➔D1) )➔( (An➔D)➔(An➔D1)) 
8. (An➔(C➔D1) )➔( (An➔ C)➔(An➔D1)) 
9. (An➔(C➔B) )➔( (An➔ C)➔(An➔B)) 

10. (An➔ C) ➔(An➔B) 
11. An➔B. 

In this deduction, 2 and 3 are given, by the supposition 
of T(k~m), to be yielded by the initial hypotheses, 4 is 
axiom II, 5 is S~(4), 6 is S~1(5), 7 is s:n(6), 8 is 
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The Deduction Theorem 
si(7), 9 is sgi(s), 10 is 3, 9, mp, and 11 is 2, 10, 
mp. 

We have shown that T(l) is true and that T(k£,m) 
implies T(m+ 1) for any m > 1. We are therefore entitled 
to conclude that T(m) is true for each m > 1, that is, to 
conclude that no matter how many steps it takes for A 1 

to An to yield B, it is true that An➔B is yielded by A 1 

to An-1• 
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Chapter Eight 

SOME APPLICATIONS OF THE 
DEDUCTION THEOREM 

Suppose one wishes to show that a formula (i) A➔B 
[i.e., a formula of the form A ➔B] is provable. If one 
can show that (ii) AI-B, then it will follow, by one 
application of the deduction theorem to (ii), that (i) is 
provable; for the deduction theorem, when n= 1, says: 
if AI-B, then 1-A➔B. Again, suppose one wishes to 
show that a formula A➔(B➔C) is provable. If one can 
show that A, BI-C, then it will follow, by two succes­
sive applications of the deduction theorem, that 
A➔(B➔C) is provable; for by one application of the 
deduction theorem to A, BI-Cone obtains AI-B➔ C, 

and by an application of the deduction theorem to this 
result one obtains 1-A➔(B➔C), i.e., A➔(B➔ C) is 
provable. One may proceed similarly when one wishes 
to show that formulae of the form A ➔(B➔(C➔D) ), 
A ➔(B➔(C➔(D➔E)) ), and so on, are provable. 

Theorem 1S, P➔(q➔p & q) is provable. 
Proof: 1. p0 

2. qo 
3. (r➔p)➔( (r➔q)➔(r➔p & q)) 
4. (q➔p)➔( (q➔q) ➔(q➔p & q)) 
5. P➔(q➔p) 
6. q➔p 
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Some Applications of the Deduction Theorem 
7. (q➔q) ➔(q➔p & q) 
B.p➔p 

9. q➔q 

10. q➔p & q 
11.p & q. 

In this deduction, 3 is axiom VIII, 4 is S~(3), 5 is 
axiom I, 6 is 1, 5, mp, 7 is 4, 6, mp, 8 is Ch. 4, Theorem 
2, 9 is SE(S), 10 is 7, 9, mp, and 11 is 2, 10, mp. 
What this deduction establishes is that p, q~p & q. By 
applying the deduction theorem one obtains p~q➔p & 
q. By applying the deduction theorem to this result one 
obtains ~P➔(q➔p & q). 

Theorem 16, (p➔q) ➔( (p➔(q➔r) )➔(p➔r)) 1s prov­
able. 

Proof: 1. p➔q0 

2. P➔(q➔r)o 
3.po 
4. q➔T 

5. q 
6. T. 

In this deduction, 4 is 2, 3, mp, 5 is 1, 3, mp, and 6 is 
4, 5, mp. What this deduction shows is that 

{1) p-+q, P➔(q➔r), p~r. 
By applying the deduction theorem to {1) one obtains 

{2) P ➔q, P ➔( q➔r)~P➔r. 
By applying the deduction theorem to (2) one obtains 

(3) p➔q~(P➔(q-+r) )➔(p➔r). 
Finally, by applying the deduction theorem to (3) one 
obtains 

(4) ~(p➔q) ➔((p➔(q➔r)) ➔(p-+r) ). 
(4) may be described briefly as being obtainable from 
three successive applications of the deduction theorem 
to (1). 
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Some Applications of the Deduction Theorem 

Theorem 17. (p➔q) ➔( (q➔r) ➔(p➔r)) is provable. 
Proof: 1. p ➔q0 

2. q➔r0 

3. po 
4. q 
5. T. 

In this deduction, 4 is 1, 3, mp, and 5 is 2, 4, mp. What 
this deduction shows is that 

(5) p➔q, q➔r, pl-r. 
The theorem is obtainable from three successive appli­
cations of the deduction theorem to ( 5): 

(6) 1-(p➔q)➔( (q➔r) ➔(p➔r) ). 
From Theorem 17 it follows, by using the rule of 

substitution, that 
(7) (A➔B)➔( (B➔C) ➔(A ➔C)) is provable. 

Compare Ch. 4, Lemma 1 and the proof thereof. 

Theorem 18. (p➔q)➔(p & r➔q) is provable. 
Proof: 1. p ➔q0 

2.p & T0 

3.p & q➔p 
4.p &r➔p 
s.p 
6. q. 

In this deduction, 3 is axiom VI, 4 is 8'(3), 5 is 2, 4, 
mp, and 6 is 1, 5, mp. What this dedu~tion shows is 
that 

(8) p +q, p & T I- q. 
The theorem is obtainable from two successive applica­
tions of the deduction theorem to (8). 

From Theorem 18 it follows, by using the rule of 
substitution, that 

(9) (A➔B) ➔(A & C➔B) is provable. 
Compare Ch. 4, Lemma 2 and the proof thereof. 
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Some Applicatiom t1f the Deduction Theorem 
Of course, the assertions that the symbolic expres­

sions in (7) and (9) are provable are elliptical, the proper 
meaning being that each formula in P that is of the 
form of those symbolic expressions is a provable formula 
in P. 

Theorem 19, (p➔q) ➔( (r➔p)➔(r➔q)) is provable. 
Proof: 1. p➔q0 

2. r+p0 

3. T
0 

4.p 
5. q. 

In this deduction, 4 is 2, 3, mp, and 5 is 1, 4, mp. What 
this deduction shows is that 

(10) p➔q, r➔p, rl-q. 
The theorem is obtainable from three successive appli­
cations of the deduction theorem to (10). 

Theorem 20. (p➔(q➔r) )➔(q➔(p ➔r)) is provable. 
Proof: 1. P➔(q➔r)0 

2. qo 
3.po 
4. q➔r 

5. r. 
In this deduction, 4 is 1, 3, mp, and 5 is 2, 4, mp. What 
this deduction shows is that 

(11) p+(q➔r), q, p~r. 
The theorem is obtainable from three successive appli­
cations of the deduction theorem to ( 11 ). 

Theorem 21. (P➔(P➔q) )➔(p➔q) is provable. 
Proof: 1. p➔(p ➔q)0 

2.po 
3.p➔q 

4. q. 
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Some Applications of the Deduction Theorem 
In this deduction, 3 is 1, 2, mp, and 4 is 2, 3, mp. What 
this deduction shows is that 

(12) p➔(p +q), prq. 
The theorem is obtainable from two successive appli­
cations of the deduction theorem to (12). 

Theorem 22, (p➔q) ➔( (r+(s➔p) ) ➔(r➔(s➔q))) is 
provable. 

Proof: 1. p +q0 

2. T➔(s➔p)0 

3. T
0 

4. s0 

5.s+p 
6.p 
1. q. 

In this deduction, 5 is 2, 3, mp, 6 is 4, 5, mp, and 7 is 
1, 6, mp. What this deduction shows is that 

(13) p +q, r➔(s+p), r, sf-q. 
The theorem is obtainable from four successive appli­
cations of the deduction theorem to (13). 

Theorem 23. ( (p➔q)➔(p➔r) )➔(P➔(q+r)) is prov­
able. 

Proof: 1. (p➔q)+(p➔r)0 

2.po 
3. qo 
4.p+(q➔p) 
5.p➔(r➔p) 
6. q+(r+q) 
7. q +(p +q) 
8.p+q 
9.p➔r 

10. r. 
In this deduction, 4 is axiom I, 5 is S~(4), 6 is Sj(5), 
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Some Applications of the Deduction Theorem 
7 is Sf(6), 8 is 3, 7, mp, 9 is 1, 8, mp, and 10 is 2, 9, 
mp. What this deduction shows is that 

(14) (p➔q) +(p➔r), p, q 1-r. 
The theorem is obtainable from three successive appli­
cation of the deduction theorem to (14). 

Theorem 24. (p➔q)➔(q➔p) is provable. 

Proof: I . p ➔q0 

2. qo 

3. (p➔q)➔(q➔p) 

4. (p➔q)➔(q➔p) 

5. q➔p 

6.p➔p 

7. q➔q 

8. q 

9.p. 
In this deduction, 3 is axiom IX, 4 is Sj(3), 5 is 1, 
4, mp, 6 is axiom X, 7 is si(6), 8 is 2, 7, mp, and 9 is 5, 
8, mp. What this deduction shows is that 

(15) P➔q, ql-p. 
The theorem is obtainable from two successive appli­
cations of the deduction theorem to ( 15). 

Henceforth, proofs will not always be given in full, 
some intermediate steps being omitted. A step that 
depends directly on omitted steps will be indicated by 
the number accompanying the occurring step in the 
proof having an asterisk affixed to it. A clue to how 
such a step is obtained will be given in the piece of text 
immediately following the proof. 
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Some Applications of the Deduction Theorem 

Theorem 25. (p➔q) ➔( (p➔q)+p) is provable. 
Proof: 1. p➔qo 

2. p+qo 
3. (r+p)+( (r➔q)➔(r+p & q)) 

*4. (p+q)➔( (p+q)+(p+q & q)) 

5. (p ➔q)➔(p➔q & q) 

6. p+q&q 

1. p&p+V 

8. q&q➔v 
9. (p ➔q)+( (q+r)➔(p+r)) 

*to. (p+q & q)➔( (q & q+V)+(p+V)) 

*lt. p+V 
- -

*12. (p ➔V)+(V+p) 
- -

13. V+p 

*14. V+V 
15. V 

16. 

17. p. 
In this deduction, 3 is axiom VIII, 4 comes from 3 by 
substitution, 5 is 1, 4, mp, 6 is 2, 5, mp, 7 is Ch. 4, 
Theorem 13, 8 is si(7), 9 is Theorem 17, 10 comes 
from 9 by substitution, 11 comes from 6, 8, and 10 by 
modus ponens, 12 comes from axiom IX by substitution, 
13 is 11, 12, mp, 14 comes from axiom X by substitu­
tion, 15 is provable (by notational definition), 16 is 14, 
15, mp, and 17 is 13, 16, mp. What this deduction 
shows is that 

(16) P➔q, P➔q.,p. 
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Some Applications of the Deduction Theorem 
The theorem is obtainable from two successive appli­
cations of the deduction theorem to (16). 

. ., 
Anl-B, then A1 , A 2 , •• • , An-1 1-An, 

Proof: Applying the deduction theorem once to each 
clause in the antecedent of the Lemma, one obtains 

Av A 2, •• • , An-1 1-An ➔B and A1, A2, ••• , An-1 1-An➔B. 
Hence, 

1. 1--1. n-1. A1, A 2 , •• • , An-1° 
2. An➔B 

3. An➔B 

4. (p➔q) ➔< (p ➔q)➔P) 

*5. (An➔B)➔( (An➔B)➔An) 

6. An, 
where 2 and 3 have been already shown to be yielded by 
the initial hypotheses, 4 is Theorem 25, 5 comes from 
4 by substitution, and 6 comes from 2, 3, and 5 by 
modus ponens. 

Theorem 26. p & p is provable. 

Proof: (i) p & pl-p, for 

1.p &po 

2.p & q➔p 

3.p&p➔p 

4.p, 
where 2 is axiom YI.'.. 3 is Si(2), and 4 is 1, 3, mp. 

(ii) p & pl-p, for 

1. p &po 

2. p & q ➔q 
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Some Applications of the Deduction Theorem 
3.p&p+p 

4.p, 
where 2 is axiom VII, 3 is S~(2), and 4 is J, 3, mp. 

Applying Lemma 4 to (i) and (ii) gives 1-p & p. 

Theorem 27. (P->-P)-->-P is provable. 
Proof: 1. P-->-P0 

2. (p+q)-➔( (p-->-q)-➔p) 

3. (p-->-P)-->-( (p+p)+p) 
4.p+p 

s. (p ➔p > ➔P 
6.p. 

In this deduction, 2 is Theorem 25, 3 is Sf(2), 4 is Ch. 
4, Theorem 2, 5 is 3, 4, mp, and 6 is 1, 5, mp. What this 
deduction shows is that 

(l7)p+pl-p. 
The theorem is obtainable from one application of the 
deduction theorem to (17). 

It was pointed out in Ch. 5 that the rule of substitu­
tion cannot be used in establishing that a formula B is 
yielded by the hypotheses At unless the rule is applied 
to a provable formula (so that B itself is a provable 
formula). The reasons for imposing this restriction in 
the definition of I- can be elucidated by an example. 
Suppose the restriction were not made, so that the 
hypotheses At yield B if Bis deduced from a formula 
C that is yielded by the A,, the deduction of B from C 
taking place by virtue of the rule of substitution. Then 
we should be able to show that pl-r, for 

I.po 
2.p-➔(q+p) 
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Some Applications of the Deduction Theorem 
3. q➔p 
4. q➔r 

5.p➔r 

6. r, 
where 2 is axiom I, 3 is 1, 2, mp, 4 is s;(3), 5 is 
Sf( 4), and 6 is 1, 5, mp. By applying the deduction 
theorem to p~r we obtain that p ➔r is provable. Hence, 
V➔p & p is provable, by the rule of substitution. 

Therefore,p &pis provable, by the definition of Vand 
modus ponens. There are two connected objections to 
this result. One is that we do not wish to have p & p as 
a provable formula in P since it does not represent a 
valid logical principle and we wish all the provable 
formulae of P to represent only valid logical principles 
-otherwise there would be no discrimination in P 
between the valid and the invalid principles of logic. 
Secondly, it has been proved above (Theorem 26) that 

p & p is provable. So if p & p is also provable, P 
would contain two provable formulae which contradict 
one another. From this contradiction it would follow 
that every formula A is provable in P, for 

1.p &p 

2.p &p 
3. P➔(q->p & q) 

*4. (p &p) ➔(p &JJ ➔(p &p) &p &p) 

*5. (p &p) &p &p 

6. p &p➔V 

1. (p &p) &p &p➔V 
S. V 

9. V➔P 
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Some Applications of the Deduction Theorem 
10. p 
11. A. 

Here, 3 is Theorem 15, 4 comes from 3 by substitution, 
S comes from 1, 2, and 4 by modus ponens, 6 is Ch. 4, 
Theorem 13, 7 isS~ & P(6), 8 is S, 7, mp, 9 is Ch. 4, 
Theorem 12, 10 is 8, 9, mp, and 11 is s;(lO). 
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ChapteF Nine 

NEGATIONS OF DISJUNCTIONS 
AND CONJUNCTIONS 

The purpose of the present section is to show that 

{I) (p V q➔p & q) & (P & q➔p V q) 
and 

(2) (p & q➔p V q) & (p V q➔p & q) 
are provable in P. 

Lemma 5. If A1 , A2, ••• , An, B v C, BI- D and A1, 

A 2, ••• , An, B V C, C I- D, then A1 , A 2, ••• , An, 
BVCt-D. 

Proof: Supposing the !--clauses in the antecedent of 
the Lemma, then, by the deduction theorem, B➔D and 
C➔D are yielded by the hypotheses A, and B V C. 

1. 1--1. n. A1, A 2, ••• , An° 
2.BV C0 

3.B➔D 
4. C➔D 
5. (p➔r)➔( (q➔r)➔(P V q➔r) ) 

*6. (B+D) ➔( (C➔D) ➔(B v C➔D)) 
*7.BVC+D 

8.D. 
In this deduction, 5 is axiom V, 6 comes from 5 by sub­
stitution, 7 comes from 3, 4, and 6 by modus ponens, and 
8 is 2, 7, mp. 
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Negations of Disjunctions and Conjunctions 
Theorem 28. p & q➔p v q is provable. 

Proof; To simplify the proof, let V be any provable 
formula with no occurrences of p. 

(3) p & q, p V q, p I- q, 
for 1. p &q0 

2.p V q0 

3.po 

4.p&q➔p 

*5. p & q➔p 

6.p 
1. p ➔(q➔p & q) 

8.p ➔(p➔p &p) 
*9.p&p 
10.p&p➔V 

11. V 

12. V➔P 
n. Ji.,,.q 
14. q, 

where 4 is axiom VI, 5 comes from 4 by substitution, 6 
is 1, 5, mp, 7 is Ch. 8, Theorem 15, 8 is Sj(7), 9 comes 
from 3, 6, and 8 by modus ponens, 10 is Ch. 4, Theorem 
13, 11 is 9, 10, mp, 12 is Ch. 4, Theorem 12, 13 is 
si(12), and 14 is 11, 13, mp. 

But also 

( 4) p & q, p V q, q I- q, 
by Ch. 5, Definition 4 (a). 

The application of Lemma 5 to (3) and (4) gives 

(5) p & q, p V q I- q. 
However, 
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Negations of Disjunctions and Conjunctions 
- - -

(6) p & q, p V q I- q, 

for p & q yields q by virtue of axiom VII. 
The application of Ch. 8, Lemma 4 to (5) and (6) 

gives 
(7) p & q I- p V q. 

'I'he theorem is obtainable by applying the deduction 
theorem to (7). 

-- - - -
Theorem 29. (p v q+p & q) & (p & q+p V q) IS 

provable. 

Proof: I. p V q➔p & q 
- - --

2.p & q+p V q 
3. P➔(q➔p & q) 

*4. (p V q➔p & q)-+( (P & -q ➔p V q) ➔ 

(p V q-+f & q) & (p & q+p V q)) 

*5. (p V q+p & q) & (p & q+p V q). 
In this deduction, 1 is Ch. 4, Theorem 11, 2 is Theorem 
28, 3 is Ch. 8, Theorem 1, 4 comes from 3 by substitu­
tion, and 5 comes from 1, 2, and 4 by modus ponens. 

The next theorem is needed to facilitate the proof of 
Theorem 31. 

Theorem 30. (p+q & r) ➔( (q-+s1)->-( (r➔s2)+(p➔s1 & 
s2) ) ) is provable. 

Proof: 1. p+q & r0 

2. q-+s10 
3. T-+S2° 

4.po 
5. q & T 

*6.q 
7. Sl 

*8.7 
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Negations of Disjunctions and Conjunctions 
9. Sz 

10. P➔(q➔p & q) 
*11. s1 ➔(s2 ➔s1 & s2) 

*12. s1 & s2. 
In this deduction, 5 is 1, 4, mp, 6 comes from 5 by 
virtue of axiom VI, 7 is 2, 6, mp, 8 comes from 5 by 
virtue of axiom VII, 9 is 3, 8, mp, 10 is Ch. 8, Theorem 
1, 11 comes from 10 by substitution, and 12 comes 
from 7, 9, and 11 by moduspone11S. What this deduction 
shows is that 

(8) p ➔q & r, q➔s1 , r➔s2 , pl-s1 & s2• 

The theorem is obtainable from four successive appli­
cations of the deduction theorem to (8). 

Theorem 31. p & q ➔P V q is provable. 
-- - -

Proof: 1. p V q ➔p & q 
-- -

*2.pV q➔P & q 
3. (p➔q & r)➔( (q➔s1)➔( (r➔s2) ➔ 
-- - - - (p ➔Sl & Sz) ) ) 

*4. {p V q➔p & q)➔( (p ➔p)➔ 

( (q➔q)➔ (p V q +p & q) ) ) 
5.p➔p 

6. q➔q 

*7.pV q➔p & q 

8. (p➔q) ➔(q ➔p) 

*9. (p V q+p & q) ➔(p & q➔p V q) 
10.p & q ➔p V q 

- - -
11.p V q+p V q 

12.p&q+pVq. 
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Negations of Disjunctions and Conjunctions 
In this deduction, 1 is Ch. 4, Theorem 11, 2 comes 
from 1 by substitution, 3 is Theorem 30, 4 comes from 
3 by substitution, 5 is axiom XI, 6 is S$(5), 7 comes 
from 2, 4, 5, and 6 by modus ponens, 8 is axiom IX, 9 
comes from 8 by substitution, 10 is 7, 9, mp, 11 
is S~ v"q(5), and 12 is 10, 11, syll. 

Theorem 32. p V q➔p & q is provable. 
Proof: To simplify the proof, let V be any provable 

formula with no occurrences of p. 
(9) p & q, p V q, p I- q, 

for 1. p & q0 

2.p V q0 

3.po 
4.p & q➔p 

5.p 
6. P-+(q➔p & q) 

1. p ➔(p-+p & p) 
*8.p&j, 

9.p &p➔V 

10. V 

11. V➔p 

12. V➔q 
-

13. q, 
where 4 is a_xiom VI, 5 is 1, 4, mp, 6 is Ch. 8, Theorem 
15, 7 is S~(6), 8 comes from 3, 5, and 7 by modus 
ponens, 9 is Ch. 4, Theorem 13, 10 is 8, 9, mp, 11 is 
Ch. 4, Theorem 12, 12 is s;(ll), and 13 is 10, 12, 
mp. 

But also 
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Negations of Disjunctions and Conjunctions 
- - - -

(10) p & q, p V q, q 't-q, 

by Ch. 5, Definition 4 (a). 
The application of Lemma 5 to (9) and (10) gives 

(ll)p & q,pv q't- q. 
However, 
(12)p&q,pVq't-q, 

for p & q yields q by virtue of axiom VII. If q is yielded 
by the hypotheses p & q and p V q in that order, then 
q is yielded by the hypotheses p V q and p & q in this 
latter order, for if a formula B is yielded by hypotheses 
A,, then B is yielded by those hypotheses no matter in 
what order they are listed. (The order of the hypotheses 
is not mentioned in the definition of 't-.) Therefore, 

(13) p V q, p & q 't- q 
and 

(14) p V q, p & q 't- q, 
by (12) and (11) respectively. 

The application of Ch. 8, Lemma 4 to {13) and (14) 
gives 

( 15) p V q 't- p & q. 
The theorem is obtainable by applying the deduction 
theorem to (IS). 

Theorem 33. (P & q ➔p V q) & (p V q➔p & q) is prov­
able. 

-- - -
Proof: 1. p & q +p V q 

- --
2.p V q➔p & q 
3. P ➔(q➔p & q) 

*4. (p & q +p V q) +( (p V q➔p & q)➔ 
(p & q➔p V q) & (p V q+p & q) 

*S. (p & q ➔p V-q) & (p V-q➔p & q). 
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Negations of Disjunctions and Conjunctions 
In this deduction, 1 is Theorem 31, 2 is Theorem 32, 
3 is Ch. 8, Theorem 15, 4 comes from 3 by substitu­
tion, and 5 comes from 1, 2, and 4 by modus ponens. 

Note. Theorems 29 and 33 are frequently referred to 
in the literature as De Morgan's Laws. 
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Chapter Ten 

EQUIVALENCE 

A formula of the form (A +B) & (B+A) will be written, 
for the sake of convenient brevity, as A~B. The sign 
~, called the sign of equivalence, is not, of course, a 
sign in P; it belongs to the languages used for talking 
about P. An expression, of the form A~B, which con­
tains ~ is, therefore, not itself a formula but is an 
abbreviative expression for a formula. 

Two formulae A and B for which it is true that 
(1) A~B is provable 

are called equivalent (to one another). 

Theorem 34, P~P is provable. 
-

Proof: 1. p .:;.p 
=-

2.p+p 
3. p+(q+p & q) 

*4. (p+p)➔( (p+p) .:;.(p+p) & (p .:;.p)) 

*5. (p+p) & (p+p) 
-

6.p~p. 
In this deduction, 1 is axiom X, 2 is axiom XI, 3 is 
Ch. 8, Theorem 15, 4 comes from 3 by substitution, 5 
comes from 1, 2, and 4 by modus ponens, and 6 is 5. 
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Equivalence 
Theorem 35. (p~ q) +( q~ p) is provable. 

Proof: 1. q & p-+p & q 
*2. (p -';q) & (q +p) +(q -';p) & (p +q) 

3. (p~q) +(q~p). 
In this deduction, 1 is Ch. 4, Theorem 4, 2 comes from 
1 by substitution, and 3 is 2. 

Theorem 36. If A and B are provable, then A and B 
are equivalent. 

Proof: Suppose A and B are provable. 
I.A 
2. B 
3. p +(q+p) 

*4. B-+(A +B) 
5. A+B 

*6. A+(B-';A) 
7. B-+A 
8. P-+(q-+p & q) 

*9. (A-+B)➔( (B-+A)-+(A~B)) 
*10. A~B. 

In this deduction, 3 is axiom I, 4 comes from 3 by 
substitution, 5 is 2, 4, mp, 6 comes from 3 by substitu­
tion, 7 is 1, 6, mp, 8 is Ch. 8, Theorem 15, 9 comes 
from 8 by substitution, and 10 comes from 5, 7, and 9, 
by modus ponens. 

Theorem 37, If A is equivalent to Band Bis equiva­
lent to C, then A is equivalent to C. 

Proof: Suppose A is equivalent to Band B to C. 
1.A~B 
2.B~C 

*3. A-+B 
*4. B-+C 

5. A-+C 
*6. B-+A 
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*7. C+B 

8. C+A 
9. P ➔(q ➔p & q) 

* IO. (A +C) +( ( C +A) ➔(A~ C) ) 
*11.A~C. 

In this deduction, 3 comes from 1 by virtue of axiom 
VI, 4 comes from 2 by virtue of axiom VI, 5 is 3, 4, 
syll, 6 comes from 1 by virtue of axiom VII, 7 comes 
from 2 by virtue of axiom VII, 8 is 6, 7, syll, 9 is Ch. 8, 
Theorem 15, 10 comes from 9 by substitution, and 11 
comes from 5, 8, and 10 by modus ponens. 

If D designates a propositional variable, we write 
A(D) when we wish to make explicit that A contains 
some occurrence of D; we then write A(B) instead of 
S~(A). 

Theorem 38. If D is a propositional variable that 
occurs in A and B is equivalent to C, then A(B) is 
equivalent to A( C). 

Proof: We proceed by course-of-values induction on 
the number k(=O or 1 or 2 or ... ) of occurrences of 
connectives in A. Accordingly, we must first prove 

T(O): If D is a propositional variable that occurs in 
A and B is equivalent to C, then, if there are no 
occurrences of connectives in A, A(B) is equivalent to 
A(C). 

Suppose that D is a propositional variable and that 
1-B~ C. If there are no occurrences of connectives in 
A(D), A must be (i.e., designate) a propositional 
variable. Since D occurs in A, A must be D. Then 
A(B) is B and A(C) is C. From the supposition that 
1-B~C it follows that A(B) is equivalent to A(C). 

Thus, it has been shown that T(O) is true. 
Next, we wish to establish that if T(J,,,;;.m) is true, 

50 



Equivalence 
then T(m+ I) is true, k and m being any non-negative 
whole numbers. Therefore, we suppose 

T(kb.m): If D is a propositional variable that occurs 
in A and B is equivalent to C, then, if there are not 
more than 11z occurrences of connectives in A, A(B) is 
equivalent to A( C), 
and attempt to derive as conclusion the truth of 

T( m+ 1): If D is a propositional variable that occurs 
in A and B is equivalent to C, then, if there are m+ 1 
occurrences of connectives in A, A(B) is equivalent to 
A(C). 

Suppose that D is a propositional variable and that 
1-B~C. Let there be m+l occurrences of connectives in 
A(D), so the form of A is either (a) E, or (b) E1 V E2, 

or (c) E1 & E 2, or (d) E1 ➔E2 • (A convenient way of 
referring to these alternatives is to say that - , V, &, 
and-, respectively, is the principal connective.) 

(a) If A(D) is E, then D occurs in E, so Eis E(D) and 
A is E(D). Also, E cannot contain more than m occur­
rences of connectives. Therefore, by T(k,:;;;.m), E(B) is 
equivalent to E(C). Now, if any two formulae E1 and 
E 2 are equivalent, then their negations are equivalent; 
for suppose that E1 and E 2 are equivalent: 

1. E1~E2 
*2. E1➔E2 
*3. E2➔E1 
*4. E2 ➔E1 
*5. El +E2 

6. P ➔(q➔p & q) 

*7. (E1➔~)->-( (E2➔EiJ +(Ei_~E2)) 

*8. E1~E2• 

In this deduction, 2 comes from 1 by virtue of axiom 
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VI, 3 comes from 2 by virtue of axiom IX, 4 comes 
from 1 by virtue of axiom VII, 5 comes from 4 by 
virtue of axiom IX, 6 is Ch. 8, Theorem 15, 7 comes 
from 6 by substitution, and 8 comes from 3, 5, and 7 
by modus ponens. Accordingly, E(B) is equivalent to 
E( C), that is A(B) is equivalent to A( C). 

(b) If A(D) is E1 V E2, then D occurs in E1 V E2• D 
occurs in either (i) E1 only, or (ii) E2 only, or (iii) both 
E1 and E2• 

(i) If D occurs only in E1, then A(D) is E1(D) V E2• 

Since E1 cannot contain more than m occurrences of 
connectives, then, by T(k~m), E1(B) is equivalent to 
E1(C). We next show that 

(2) p➔q, p V r I- q V r. 
(3) p➔q, p V r, p I- q V r, 

for the hypotheses p and p .,,,_q yield q, by modus po11ens, 
and q V r is obtainable from q by virtue of axiom III. 

( 4) p➔q, p V r, r I- q V r, 
for q V r is obtainable from the hypothesis r by virtue 
of axiom IV. (2) follows from (3) and (4), by Ch. 9, 
Lemma 5. 

Applying the deduction theorem to (2) gives 
(5) 1-(p➔q)+(p V r➔q V r). 
Now, if E 3 , E" and A 1 are any formulae, then if E3 

and E, are equivalent, E3 V A1 and E4 V A1 are equiva­
lent; for suppose that Ea and E4 are equivalent: 

1.Ea~E4 

*2. Ea+E4 
3. (p➔q) ➔(p V T➔q V r) 

*4. (Ea➔E4)+(E3 V A1 +E4 V A1) 

5. E3 V A1 +E, V A1 
*6. E4 +E3 

*7. (E4➔E3)➔(E4 V A1 +Ea V A1) 

8. E, V A1 +E3 V A1 
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9. P➔(q-+p & q) 

* 10. (Ea V A1 ➔E4 V A1) +( (E4 V A1 -+Ea V A1)-+ 
( (E3 V A1)~(E4 V A1) ) ) 

* 11. (Ea V A 1)~(E4 V A). 
In this deduction, 2 comes from 1 by virtue of axiom 
VI, 3 is the formula in (5), 4 comes from 3 by substitu­
tion, 5 is 2, 4, mp, 6 comes from 1 by virtue of axiom 
VII, 7 comes from 3 by substitution, 8 is 6, 7, mp, 9 
is Ch. 8, Theorem 15, 10 comes from 9 by substitution, 
and 11 comes from 5, 8, and 10 by modus ponens. 

Since E1(B) is equivalent to E1( C), it follows, by the 
result just proved, that E1(B) V E2 is equivalent to 
E1( C) V E2, that is A(B) is equivalent to A( C). 

(ii) If D occurs only in E2, then it may be shown in a 
way similar to that pursued in (i) that A(B) is equiva­
lent to A( C); this time, however, one first establishes 
(by Ch. 9, Lemma 5) that 

(6) p➔q, TV p I- r V q, 
so that 

(7) I- (p-+q)-+(r V p ➔r V q), 
using this to obtain finally that E1 V ElB) is equivalent 
to E 1 V EiC). 

(iii) If D occurs in E1 and E 2, then A(D) is E1(D) V 
E2(D). Since neither E1 nor E2 can contain more than 
m occurrences of connectives, E1(B) is equivalent to 
E1( C) and EiB) is equivalent to E2( C), by T(k~m). 
Next, we show that 
(S)p➔q, r ➔s,pV r I- qV s. 
(9) p-+q, r➔s, p V r, p I- q Vs, 

for the hypotheses p and p➔q yield q, and q V s is 
obtainable from q. 

(10) p-+q, T➔S, p V r, r 1- q Vs, 
for the hypotheses r and r->-s yield s, and q V s is 
obtainable from s. (8) follows from (9) and (10), by 
Ch. 9, Lemma 5. 
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Applying the deduction theorem to (8) gives 
( 11) f- (p +q)➔( (r➔s)➔(P V r➔q V s) ). 
If A1, A 2, Bi, and B 2 arc any formulae such that A1 

is equivalent to B1 and A 2 is equivalent to B2 , then A1 
V A 2 is equivalent to B1 V B 2 ; for suppose that A1 and 
B1 , and A2 and B2, are equivalent: 

I. A1~B1 
2. A 2~B2 

*3. A1 +B1 
*4. A2 +B2 

5. (p➔q)+( (r➔s)->(P V r+q Vs)) 
*6. (A1 ➔B1) ➔( (A 2 ➔B2)➔(A1 V A 2 +B1 V B2)) 

*7. A 1 V A2➔B1 V B2 

*8. B1 +A1 
*9. B2➔A2 

*IO. (B1➔A1) ➔( (B2➔A2)+ 
(B1 V B2➔A1 V A 2)) 

*II. B 1 V B2➔A1 V A2 
12. P➔(q+p & q) 

*13. (A1 V A 2 ->B1 V B2) ➔( (B1 V B 2 ->A1 V A2) ➔ 
( (A1 V A 2)~(B1 V B 2))) 

* 14. (A1 V A 2)~(B1 V B 2). 

In this deduction, 3 comes from I by virtue of axiom 
VI, 4 comes from 2 by virtue of that axiom, 5 is the 
formula in (I 1), 6 comes from 5 by substitution, 7 
comes from 3, 4, and 6 by modus ponens, 8 comes from 
I by virtue of axiom VII, 9 comes from 2 by virtue of 
that axiom, 10 comes from 5 by substitution, 11 comes 
from 8, 9, and IO by modus ponem, 12 is Ch. 8, Theorem 
15, 13 comes from 12 by substitution, and 14 comes 
from 7, 11, and 13 by modus ponens. 

Since Ei(B) is equivalent to Ei( C) and E2(B) is equi­
valent to E 2( C), it follows, by the result just proved, 
that E 1(B) v Ez(B) is equivalent to E1( C) V Ez( C), that 
is A(B) is equivalent to A( C). 
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(c) If A(D) is E1 & E2, then D occurs in E1 & E2• D 

occurs in either (i) E1 only, or (ii) E2 only, or (iii) both 
E1 and E 2• 

(i) If D occurs only in E11 then A(D) is E1(D) & E2 • 

Since E1 cannot contain more than 111 occurrences of 
connectives, then, by T(k~m), E1(B) is equivalent to 
E1( C). Next, we show that 

(12)p➔q,p & TI- q & T. 

p & r yields p, which with p ➔q produces q; also, p & r 
yields r, so the hypotheses yield q and rand therefore, 
by Ch. 8, Theorem 15, yield q & r. 

Applying the deduction theorem to ( 12) gives 
(13) 1- (p ➔q)➔(p & r➔q & r). 

Now, if two formulae E 3 and E4 are equivalent, then 
Ea & A1 is equivalent to E4 & A1 ; for suppose Ea is 
equivalent to E4 : 

1. Ea~E4 
*2. Ea➔E4 

3. (p +q)➔(p & T➔q & r) 
*4. (Ea ➔E4) +(Ea & A1 ➔E4 & A1) 

5. Ea & A1 ➔E4 & A1 
*6. E4 ➔Ea 
*7. (E4➔Ea)➔(E4 & A1 ➔Ea & A1) 

8. E4 & A1➔Ea & A1 
9. P➔(q➔p & q) 

* 10. (Ea & A1 ➔E4 & A1)➔( (E4 & A1 ➔ 
Ea & A1) ➔( (Ea & A1)~(E4 & A1))) 

* 11. (Ea & A1)~(E4 & A1). 

In this deduction, 2 comes from I by virtue of axiom 
VI, 3 is the formula in ( 13), 4 comes from 3 by substitu­
tion, 5 is 2, 4, mp, 6 comes from I by virtue of axiom 
VII, 7 comes from 3 by substitution, 8 is 6, 7, mp, 9 
is Ch. 8, Theorem 15, 10 comes from 9 by substitution, 
and 11 comes from 5, 8, and 10 by modus po11e11s. 

Since E1{B) is equivalent to Ei( C), then, by the 
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result just proved, Ei(B) & E2 is equivalent to Ei( C) 
& E2, that is A(B) is equivalent to A( C). 

(ii) If D occurs only in E 2 , then it may be shown in a 
way similar to that pursued in (i) that A(B) is equiva­
lent to A(C); this time, however, one first establishes 
that 

(14) p+q, T & p I- T & q, 
so that 

(15) I- (p+q) +(r & p +T & q), 
using this to obtain finally that E1 & EiB) is equivalent 
to E1 & E2( C). 

(iii) If D occurs in E1 and E2, then A(D) is E1(D) & 
E2(D). Since neither E1 nor E2 can contain more than 
m occurrences of connectives, it follows, by T(k~m), 
that E1(B) is equivalent to E1( C) and that E2(B) is 
equivalent to E2(C). Next, we show that 

(16) p+q, r+s, p & r I- q & s. 
The hypothesis p & r yields p, which with p +s enables 
us to deduce s. Also, p & r yields r, which with r+s 
enables us to deduces. Having q ands, we can get q & 
s by applying Ch. 8, Theorem 15. Applying the deduc­
tion theorem to ( 16) gives 

(17) I- (p➔q)➔( (r➔s)➔(P & T➔q & s) ). 
If A1 is equivalent to B1 and A2 to B 2, then A1 & A2 

is equivalent to B1 & B2 ; for suppose that A1 and B1, 
and A2 and B2 , are equivalent: · 

1. A1~B1 
2. A2~B2 

*3. A1 +B1 
*4. A2 +B2 

5. (p➔q)➔( (r➔s) +(p & r➔q & s) ) 
*6. (A1 +B1)➔( (A2➔B2)➔ 

(A1 & A 2 +B1 & B 2)) 

*7. A1 & A2 +B1 & B2 
*8. Bl +A1 
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*9. B2➔A2 

* IO. (B1 ->-A1) +( (B2➔A2) + 
(B1 & B2 +A1 & A2) ) 

*11. B1 & B2➔A1 & A2 
12.p+(q➔p & q) 

*13. (A1 & A2➔B1 & B2)➔( (B1 & B2➔ 
A1 & A2)-+( (A1 & A2)~(B1 & B2) ) ) 

* 14. (A1 & A2)~(B1 & B2). 

In this deduction, 3 comes from 1 by virtue of axiom 
VI, 4 comes from 2 by virtue of that axiom, 5 is the 
formula in (17), 6 comes from 5 by substitution, 7 
comes from 3, 4, and 6 by modus pone,zs. 8 comes from 
1 by virtue of axiom VII, 9 comes from 2 by virtue of 
that axiom, IO comes from 5 by substitution, 11 comes 
from 8, 9, and 10 by modus po11ens, 12 is Ch. 8, Theorem 
15, 13 comes from 12 by substitution, and 14 comes 
from 7, 11, and 13 by modus po11ens. 

Since E1(B) is equivalent to E1( C) and E2(B) is 
equivalent to E2( C), it follows, by the result just 
proved, that E1(B) & E2(B) is equivalent to E1(C) & 
E2( C), that is A(B) is equivalent to A( C). 

(d) If A(D) is E1-➔E2 , then D occurs in E1-➔E2 • D 
occurs in either (i) E1 only, or (ii) E2 only, or (iii) both 
E1 and E2 • 

(i) If D occurs only in E11 then A(D) is E1(D)-➔E2 • 
Since E1 cannot contain more than m occurrences of 
connectives, it follows, by T(k£.m), that E1(B) is equi­
valent to E1( C). 

(18) P~q,p+r, q ~ r, 
for the hypotheses p~q and q yield p, while p and 
p➔r producer; again, 

(19) p~q, q+r, p ~ r, 
for p~q and p yield q, while q and q➔r produce r. 
Applying to ( 18) and ( 19) first the deduction theorem 
and then Ch. 8, Theorem 15, we obtain 
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(20) P~q I- (p➔r)~(q+r), 

(21) I- (p~q)➔( (p➔r)~(q +r) ). 
Since E1(B) is equivalent to E1( C), it follows, by 

(21), that Ei(B)+E2 is equivalent to E1(C)->E2, that is 
A(B) is equivalent to A(C). 

(ii) If D occurs only in E2, then it may be shown in a 
way similar to that pursued in (i) that A(B) is equiva­
lent to A( C); this time, however, one first establishes 
that 

(22) P~q, r+p, r I- q 
and 

(23) p~q, r+q, r I- p, 
so that, by the deduction theorem and Ch. 8, Theorem 
15, 

(24) I- (p~q)➔( (r+p)~(r+q)); 
one uses this to obtain finally that E1 .,_,.E2(B) is equiva­
lent to E1 ➔E2( C). 

(iii) If D occurs in E1 and E2, then A(D) is Ei(D) ➔ 
E2(D). Since neither E1 nor E2 can. contain more than 
m occurrences of connectives, it follows, by T(k~m), 
that E1(B) is equivalent to E1( C) and that E2(B) is 
equivalent to E2( C). 

(25) P~q, r~s, p+r, q I- s, 
for q and p~q yield p; p and P➔r producer; and rand 
r~s produce s; again, 

(26) P~q, r~s, q➔s, p 1- r, 
for p andp~q yield q; q and q+s produces; ands and 
r~s produce r. By the deduction theorem and Ch. 8, 
Theorem 15 applied to (25) and {26) we obtain 

(27) I- (p~q)➔( (r~s) ➔( (p+r)~(q➔s)) ). 
Since E1(B) and E1(C), and E2(B) and E2(C), are 

equivalent, it follows, by (27), that E1(B)->Ez(B) and 
E1( C)➔E2( C) are equivalent, that is A(B) is equivalent 
to A(C). 
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This completes the proof of Theorem 38. 
Theorem 38 says that if a propositional variable D 

occurs in A, then S~(A) and Sii(A) are equivalent if 
B and C arc equivalent. But, in fact, the weaker 

Theorem 39, If a propositional variable D occurs in 
A and Bis equivalent to C, then E1 and E2 arc equiva­
lent, where E1 , is a formula which is the same as A(D) 
except that at least one (but not necessarily every) 
occurrence of D is replaced by an occurrence of B and 
E2 is a formula which is the same as E1 except that C 
occurs in E2 wherever and only wherever B occurs in 
Ei--
is permitted and justified by the proof of Theorem 38; 
for nothing in that proof depends on every occurrence 
of D, but only on some occurrence of D, being replaced 
by Band C, provided that just the occurrences of D that 
are replaced by B are also replaced by C. 

For example, let A(p) be 
(28)P➔P V q. 

Since provable formulae are equivalent (Theorem 36), 
I- A(p➔V)~A(p➔p): 

(29) I- ( (p➔ V)➔(p+V) V q)~( (p+p)➔(p+p) V q), 
by Theorem 38; and 

(30) I- (p+(p+V) V q)~(p➔(p+p) V q), 
by Theorem 39. 
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ChapteF Eleven 

CONSISTENCY 

The letters p, q, r, etc. have been called propositional 
variables. This suggests that they represent any pro­
positions. And this is certainly one legitimate inter­
pretation of them. But it is not the only one that is 
legitimate. For example, they may be given the rather 
wider significance of representing both any proposi­
tions and any propositional functions, the latter being 
statements such as 'xis human' and 'if xis divisible by 
y and y is divisible by z, then x is divisible by z'­
statements containing letters which indicate the pre­
sence of blank places to be filled in by names of 
individual objects. 

Any particular object that is represented by a variable 
is called a value of the variable. We shall now interpret 
the propositional variables as variables having two and 
only two values, t and J. These letters may be regarded 
as names of The True and The False respectively. In 
order that compound formulae may also have the values 
t and J we lay down the following definitions: 

I. t=J f=t; 
II. t V t=t t V J=t JV t=t JV J=J,· 

III. t & t=t t &J=J J & t=J J & J=J; 
IV. t+t=t t-+J=J J➔t=t J➔J=t. 

These four groups of equalities will be referred to as 
the standard valuation tables. (Another common name 
for them is truth tables.) 
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For example, if p and q in 

(I)p➔(qv p & q) 
have the values/ and t respectively, then (1) becomes in 
turn, by the standard valuation tables, 

(2) f +(t V / & t), 

(3)/->-/V /, 
since t=f and/ & t=f, 

(4) f +f, 

since/V /=/, 
(5) t, 

since J-+J=t. Thus, ( 1) has the value t when the value 
of p is/ and the value of q is t. 

A formula that always has the value t no matter what 
combination of values is assigned to its component 
propositional variables is called a t-formula, while one 
that always has the value f is called a f-formula. (A t­
formula is often called a tautology in Anglo-American 
literature on logic.) It must be emphasized that a 
formula is a t-formula, and similarly a /-formula, re­
latively to the standard valuation tables. A formula that 
always has the value t when the valuation is carried out 
by reference to the standard tables might not always 
have the value t when the valuation is carried out by 
reference to valuation tables other than the standard 
ones. 

Theorem 40. Each axiom of Pis a t-formula. 
Proof: We shall show the theorem to be true for 

axioms I and II, leaving the other cases to the reader. 
For axiom I, there are four combinations of values to 

be considered: both p and q have the value t; p has the 
value t and q the value/, and vice versa; and both p and 
q have the value/. These possibilities lead to the follow-
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ing four lines, where the standard valuation tables have 
been used to establish the equalities: 

(6) t +(t+t)=t +t=t; 
(7) t +(f➔t)=t ➔t=t; 
(8)/ +(t+f)=f+f=t; 
(9)/ +(f +f)=f ➔t=t. 

For axiom II, there are eight combinations of values 
to be considered: each of p, q, and r has the value t; p 
and q have the value t and r has the valuef;p and r have 
the value t and q has the value f; p has the value t and 
q and r have the value f; p has the value f and q and r 
have the value t; p and r have the value f and q has the 
value t; p and q have the value/ and r has the value t; 
and, finally, each of p, q, and r has the value/. These 
possibilities lead to the following eight lines: 

(10) (t+(t ➔t) )+( (t+t)+(t-,t) )=(t ➔t) ➔(t ➔t)= 

t+t=t; 
(11) (t +(t +f)) ➔( (t-,t)-,(t ➔f) )=(t➔J) ➔(t ➔f)= 

f +f=t; 
(12) (t➔(f➔t) ) ➔( (t➔f) ➔(t+t)=(t ➔t) ➔(J➔t)= 

t➔t=t; 

(13) (t ➔(f ➔J) ) ➔( (t ➔J) ➔(t ➔f)=(t➔t) ➔(f➔J)= 
t➔t=t; 

(14) (f +(t ➔t)) ➔( (f➔t)-,(f➔t) )=(f➔t) ➔(t ➔t)= 

t ➔t=t; 

(15) (f +(t➔J)) ➔( (f➔t) +(f➔J) )=(+➔f)➔(t➔t)= 
t+t=t; 

(16) (f➔(f ➔t)) ➔( (f➔J)➔(f +t) )=(f➔t)➔(t ➔t)= 
t ➔t=t; 

(17) (f➔(f➔f) ) ➔( (f➔f) ➔(f➔J)=(f➔t)➔(t ➔t)= 
t+t=t. 

Theorem 41. If A is a provable t-formula and B is 
deduced from A by the rule of substitution, then Bis a 
t-formula. 

62 



Consistency 
Proof: If A is a provable !-formula, it has the value t 

no matter what value the propositional variable D, 
which is substituted for in the deduction of B from A, 
has; therefore, if B is sg(A), B is a !-formula, for C's 
having the value tis tantamount to D's having the value 
t in A, while C's having the value f is tantamount to 
D's having the value fin A. 

Theorem 42. If A is a provable !-formula and A +B 
is a provable !-formula, then B is a !-formula. 

Proof: If A and A ➔B are provable !-formulae, they 
always have the value t; therefore, t +B always has the 
value t, so it is impossible for B to have the value fat 
all, for if it did have the value f the result would be that 
t +f would have the value t, and this is incompatible 
with the definition that t +f has the value f. 

Theorem 43. If A is provable, then A is a t-formula. 
Proof: A being any provable formula, consider any 

particular proof of it from the axioms, using the two 
rules of deduction, namely the rule of substitution and 
the rule of modus po11e11s. If A is the very first step of the 
proof, A must be an axiom. By Theorem 40, A is a !­
formula. Suppose next that the theorem is true for any 
proof of a formula A in which A occurs as the step 
numbered k where k~m. Now, if a formula A occurs in 
a proof as the step numbered m+ l, then either (a) A is 
an axiom, or (b) it is deduced from a preceding step by 
the rule of substitution, or (c) it is deduced from two 
preceding steps by the rule of modus ponem. If (a), then 
A is a !-formula, by Theorem 40. If (b), then A is a t­
formula by the supposition of T(k~m) and Theorem 
41. If (c), then A is a t-formula by the supposition of 
T(k~m) and Theorem 42. 
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Theorem 44. There is no formula A such that both A 
and A are provable. 

Proof: If A is provable then, by Theorem 43, A is a 
t-formula. Hence, by the standard valuation table for 
negation, }I must be af-formula._However, if A is also 
provable, then, by Theorem 43, A is ~t-formula. Thus, 
if some formula A and its negation A were both prov­
able, A would be simultaneously a t-formula and a/­
formula; but this is impossible, since the properties of 
being a t-formula and being a /-formula are mutually 
exclusive. We must therefore deny that there is some 
formula A such that both it and its negation are 
provable. 

A system that contains negation and which is such 
that there is no formula A of the system of which it is 
true to say: 'A is provable in the system and the con­
tradictory A of A is provable in the system'-is said to 
be free from contradiction or consistent. Thus, by 
Theorem 44, Pis free from contradiction. 

A system which is such that not each of its formulae 
is provable in it is said to be absolutely consistent. When 
this notation of consistency is being considered, the 
type of consistency referred to in the previous para­
graph is often called relative or simple consistency. P is 
absolutely consistent, because the negations of its 
provable formulae, such as p +p and p V p, are not 
provable; if they were provable, P would not be free 
from contradiction. Hence, 

Theorem 45. P is absolutely consistent. 
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Chapter Twelve 

INDEPENDENCE 

None of the eleven axioms of Pis redundant, for none 
of them can be deduced from the others. In short, each 
of our axioms is independent. The purpose of the present 
chapter is to demonstrate how this assertion of indepen­
dence can be justified. 

Let us begin by considering a particular axiom, say 
axiom VI (p & q➔p ). Our intention is to construct a set 
of conditions under which each of the other axioms and 
each formula deducible from them has a certain pro­
perty, this property, however, not being possessed by 
axiom VI; so that axiom VI cannot be deducible from 
the other axioms. The set of conditions to be con­
structed is allied to the definitions incorporated in the 
standard valuation tables of Ch. 11. 

We regard the propositional variables as variables 
having two possible values, which we shall label J and 
K. In order that compound formulae may also have 
these values, we lay down valuation definitions for each 
of the four connectives-, V, &, and +. The definitions 
for -, V, and ➔ are exactly the same as the definitions 
in I, II, and IV of Ch. 11 except that J replaces t and K 
replaces f. The definition for & is changed to 

(1) J & J=J J & K=K K & J=J, K & K=K 
which can be expressed briefly as 

(2) A & B=B. 
Under the described conditions, each axiom other than 
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axiom VI is a J-formula, that is it always has the value 
J. Since J corresponds to t and K to/, this assertion is 
justified with respect to axioms I-V and IX-XI by 
Ch. 11, Theorem 40. Only the valuation table for & 
has been essentially altered, so that only the axioms 
containing & might have the value K. We shall show 
that axioms VII and VIII do not, in fact, have the 
value K, while axiom VI does have the value K for 
some values of the component propositional variables. 

If axiom VII were to have the value K, then, by the 
table for +, p & q=J and q=K; but this impossible by 
(2), for if q has the value K, p & q must also have the 
value K, not the value J. 

If axiom VIII were to have the value K, then, by the 
table for+, r+p=Jand ( (r-'l,>q)+(r->p & q) )=K; from 
the latter it follows that r➔q=J and r +p & q=K, by 

· the table for ➔; again by that table, since r+p & 
q=K, r=J and p & q=K. From this last equality it 
follows, by (2), that q=K. It has already been estab­
lished that r +q=J; but this is impossible, since it has 
also been established that r=J and q=K. 

On the other hand, axiom VI has the value K for 
some values of its variables: when P=K and q=J, 
K & J->K has the value, by (2), of J➔K, which in tum 
has the value K, by the table for ➔• 

Similarly to the proofs of Ch. 11, Theorems 41 and 
42, proofs may be given that any formula derived by 
substitution from a J-formula is a J-formula and that 
any formula derived by modus ponens from two J­
formulae is a J-formula. Therefore, any formula de­
duced from axioms I-V and VII-XI is a J-formula. 
Since axiom VI is not a J-formula, it follows that it 
cannot be deduced from the other axioms. Hence, 
axiom VI is independent. 

More generally, to prove the independence of each of 
66 



· Independence 
the axioms III-XI, we regard the propositional vari­
ables as having two possible values J and K, and we lay 
down valuation definitions for the connectives. Subject 
to a qualification, these definitions for the connectives 
are the same as those in the standard valuation tables 
of Ch. 11, with J replacing t and K replacing f. The 
qualification is this: the valuation definition for the 
connective other than + which is employed in any 
particular axiom is modified in a special way for proving 
the independence of that particular axiom, the nature 
of the modification, and the values of the variables 
which give that axiom the value K, being indicated in 
the following table. 

Axiom Defi11itio1t of 
Connective Value Kfor 

III AVB=B P=J, q=K 
IV AVB=A p=K, q=J 
V AV B=J P=q=r=K 
VI A&B=B P=K, q=J 
VII A&B=A p=J, q=K 
VIII A&B=K p=q=r=J 
IX A=A P=K, q=J 
X A=K P=J 
XI A=J P=K 

For example, if the value of A is defined to be the 
value of A itself, the valuation definitions of the other 
connectives being as in the standard valuation tables 
(with J for t and K for/), then, when p=K and q=J, 
axiom IX has the value K; for 
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(3) (K +J) +(] +K)=(K +J) +(J +K)=J +K=K. 

With this valuation definition of the negation sign­
none of the other axioms can have the value K. 

The independence of axioms I and II is much more 
difficult to establish than that of axioms III-XI, be­
cause the propositional variables must be allowed to 
have more than two values. The set-up for proving the 
independence of axiom I involves the variables having 
four values, while that for proving the independence of 
axiom II involves the variables having three values. 

Firstly, we lay down some valuation definitions 
which will be used in proving the independence of 
axioms I and II; these definitions need to be supple­
mented to cover all possibilities, but the supplementa­
tions required for the case of axiom I are different from 
those required for the case of axiom II, so the supple­
mentations will be given separately. 

p+p=p+J=K+p=J J+K=K 
p V P=P V K=p p V q=q V p p V J=J 

(4)p&p=p &J=p p&q=q &p p&K=K - -
J=K K=J. 

Next, we concentrate on proving the independence 
of axiom I. For this, we regard propositional variables 
as variables having the four possible values J, K, L, and 
M. The valuation definitions of the connectives are 
given by (4) supplemented by 

J+L=J ➔M=L+K=L+M=M->K=K M+L=J 
(5) LV M=L 

L&M=M 
L=M M=L. 

Axiom I has the value K when p=M and q=J, for, by 
(5), M +(J +M)=M +K=K. It can be shown, though 
it is laborious to do so, that every other axiom always 
has the value J. It can also be shown that if a formula 
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A is deduced by substitution or modus ponens from J­
formulae, then A too is a J-formula. Hence, axiom I 
cannot be deduced from the other axioms. 

Let us turn to the case of axiom II. We regard pro­
positional variables as variables having three possible 
values J, K, and L. The valuation definitions of the 
connectives are given by (4) supplemented by 

( 6) J +L=L +K=L 
L=L. 

Axiom II has the value L when p=q=L and r=K, for, 
by (4) and (6), 

(7) (L+(L+K) )+( (L+L) +(L+K) )= 
(L+L)+(J +L)=J +L=L. 

It can be shown that every other axiom always has the 
value J. It can also be shown that if a formula A is 
deduced by substitution or modus pone1zs from J­
formulae, then A too is a J-formula. Hence, axiom II 
cannot be deduced from the other axioms. 

In view of the material presented in this section we 
are entitled to assert 

Theorem 46, None of the axioms of P can be deduced 
from the remaining axioms by use of the rule of sub­
stitution or the rule of modus pone1zs. 

Finally, it might be asked whether the two rules of 
substitution and modus po11e1zs of Pare independent of 
one another. Without making any pretence at rigour, 
we can say that each rule contributes essentially to 
what is provable in P, so that neither is redundant. If 
the rule of substitution were eliminated, it would be 
impossible to deduce from the axioms a formula such as 

(8) (p+q)+( (r+s)+(p & r+q & s) ), 
( cf. Ch. I 0, ( 17) ), for the letter s does not occur in any 
axiom and obviously modus po11e1zs does not alter con-
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stituent propositional variables of formulae. And if the 
rule of modus ponens were eliminated, it would be im­
possible to deduce from the axioms a formula such as 
p ~p or p V p, for none of the axioms are of these forms 
and substitution can alter only the details but not the 
outline structure of a formula. 
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Chapter Thirteen 

COMPLETENESS 

A system of the propositional calculus in which every 
t-formula (relatively to the standard valuation tables of 
Ch. 11) is provable is called complete. Our system pis 
complete, as we shall now proceed to prove. 

Theorem 47. (P~ V)~P is provable. 
Proof: 1. P~ V0 

*2. V +p 
3. V 
4.p 

In this deduction, 2 comes from 1 by virtue of axiom 
VII, 3 is provable (by notational definition), and 4 is 2, 
3, mp. This deduction shows that 

(I)p~V I- p. 
I. po 
2. p+-V 
3. p +(q+p) 
4. p+(V+p) 
5. V+p 
6. p +(q ~P & q) 

*7. (p +V) +( (V +p) +(p~ V)) 
*S.p~V. 

In this deduction, 2 is Ch. 4, Theorem 1, 3 is axiom I, 
4 is s:(3), 5 is 1, 4, mp, 6 is Ch. 8, Theorem 15, 7 
comes from 6 by substitution, and 8 comes from 2, 5, 
and 7 by modus ponem. This deduction shows that 
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(2)p I- p~V. 

Applying the deduction theorem to (I) and (2) and 
using Ch. 8, Theorem 15 gives 

(3) I- (p~ V)~p. 

Theorem 48, (p~ V)~P is provable. 

Proof: 1.p~V0 

*2.p➔V 

3. (p-+-q)-+(q->-p) 

4. (p->-V)->-(V-+p) 

5. V-+p 
6. V 

1.p. 
In this deduction, 2 comes from I by virtue of axiom 
VI, 3 is Ch. 8, Theorem 24, 4 is S~(3), 5 is 2, 4, mp, 
6 is provable, 7 is 5, 6, mp. This deduction shows that 

(4)p~V I- p. 
1. po 
2. p➔(p-+V) 
3. (p➔(q-+-r) )-+-(q-+-(p-+r)) 

*4. (p➔(p➔ V) )-+(p-+-(p -+-V) ) 

5. p -+-(p +V) 

6.p-+V 

7. V+p 

*8.p~V. 
In this deduction, 2 is step 13 in the proof of Ch. 4, 
Theorem 13, 3 is Ch. 8, Theorem 20, 4 comes from 3 
by substitution, 5 is 2, 4, mp, 6 is 1, 5, mp, 7 is Ch. 4, 
Theorem 12, and 8 comes by substituting 6 and 7 in 
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Ch. 8, Theorem 15 and using modus pone1zs. This 
deduction shows that 

(5)p 1- p~V. 
Applying the deduction theorem to (4) and (5) and 

using Ch. 8, Theorem 15 gives 

(6) 1- (p~ V)~p. 

Theorem 49. (p~ V) V (P~ V) is provable. 
Proof: By Theorem 47, 

(7) p V p, p I- p~ V; 
since, by axiom III, (P~ V) +(p~ V) V (p~ V), 

(8) p V p,p 1-(p~V) V (p~V). 
By Theorem 48, 

(9) p V p, p I- p~ V; 
since, by axiom IV, (p ~ V)➔(P~ V) V (P~ V), - -

(lO)pVp,p 1-(p~V)V(p~V). 
By Ch. 9, Lemma 5 applied to (8) and (10), 

(11) p V p I- (p~ V) V (p~ V). 
Hence, by Ch. 4, Theorem 13, 

(12) I- (p~ V) V (p~ V). 

Theorem SO. [If A(D) is a formula containing any 
propositional variable D, then] 

(13) A(V) & A(V)+( (p~V) ➔A(p)) & ( (p~V)➔ 
A(p)) is provable. 

Proof: One formulation of Ch. IO, Theorem 38 is 
that if D is a propositional variable that occurs in A, 
then 

(14) (B~C)+(A(B)~A(C)) is provable. 
This formulation is justified by the proof of Theorem 
38 together with the deduction theorem. 
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Let E be a propositional variable that does not occur 

in A(p). 
1. (p~E)➔(A(p)~A(E)) 

*2. (A(p)~A(E) )+(A(E)->A(p)) 
3. (p~E)->(A(E)+A(p)) 
4. (P ➔(q➔r) )+(q➔(p+r)) 

*5. A(E) ➔( (p~E)➔A(p)) 
6. A(V) +( (p~ V)->-A(p)) 

*7. A(V) & A(V) +A(V) 
8. A(V) & A(V) +( (p~ V)->-A(p)) 
9. A(V)➔( (p~ V)+A(p)) 

*10. A(V) & A(V)➔A(V) 
11. A(V) & A(V) ➔( (P~ V)->A(p)) 
12. (r➔p) ➔( (r➔q)+(r+p & q)) 

*13. A(V) & A(V)+((p~ V)➔A(p) L& 
( (p~ V) ➔A(p) ). 

In this deduction, 1 is justified by Ch. 10, Theorem 38 
(cf. (14) above), 2 is justified by axiom VII, 3 is 1, 2, 
sylI, 4 is Ch. 8, Theorem 20, 5 comes from applying 
4 to 3, 6 is Sf(S), 7 is justified by axiom VI, 8 is 6, 7, 
syll, 9 is S~5), 10 is justified by axiom VII, 11 is 9, 
10, syll, 12 is axiom VIII, and 13 comes from substitu­
tion in 12 and from modus ponens, using 8 and 11. 

Theorem 51. ((p~ V)->A(p)) & ( (P~ V)->A(p) ) ➔ 
( (P~ V) V (P~ V)->A(p)) is provable. 

Proof: By virtue of axiom V it is true that 

(15) ( (P~ V)➔A(p)) & ( (P~ V) ➔A(p)) I- (P~ V) v 
(p~ V)+A(p). 

Applying the deduction theorem to (15) gives the 
theorem. 
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Theorem 52. A(V) & A(V)➔( (P~ V) V (p~ V)➔ 
A(p)) is provable. 

Proof: The theorem is obtainable by applying the 
syllogistic principle to Theorems 50 and 51. 

Theorem 53. A(V) & A(V) ~A(p) is provable. 
Proof: By Ch. 8, Theorem 20 it follows from 

Theorem 52 that 
(16) (p~V) V (p~V)+A(V)& A(V)~A(p)) is 

provable. 
Since the antecedent in the formula in ( 16) is provable, 
by Theorem 49, the truth of the theorem follows, by 
modus ponens. 

Considering an example, let A be 
(17) (r➔p & q) V r, 

and let us interest ourselves in the variable r. By 
Theorem 53, 

( 18) I- (( V ➔P & q) V V) & ( { V ➔P & q) V V) ➔ 
(r➔p & q) V r. 

To indicate the propositional variables A contains, (17) 
can be expressed briefly as A(p, q, r) and (18) can then 
be put in the form 

(19) 1-A(p, q, V) & A(p, q, V) ➔A(p, q, r). 
Next, suppose a formula A contains at least one 

occurrence of each of the distinct propositional 
variables D1, D2, ••• , Dn and contains no occurrence of 
any other propositional variable. If we wish to make 
explicit the propositional variables contained in A we 
may write A a~ A(D1 , D2, ••• , D11). If A is A(Di, D2), 

then e.g. A(V, V) denotes the formula that is the same 
as A except that each occurrence of D1 and of D2 has 
become an occurrence of V and of V ·respectively; for 

75 



Completeness 

example, if A(p, q) is q+p V q, then A(V, V) is V +V 

V V. 
It is convenient to have a brief notation for 
(20) A(V) & A(V) [when A contains only one 

propositional variable], 
for 

{21) A(V, V) & A(V, V) & A(V, V) & A(V, V) 
[ when A contains exactly two propositional 
variables], 

for 
{22} A(V, V, V) & A(V, V, V) & A(V, V, V) & 

A(V, V, V) & A(V, V, V) & A(V, V, V) & 

A(V, V, V) & A(V, V, V) [when A contains 
exactly three propositional variables], 

and so on. The notation used is 

{23} II A( E1, E2, ••• , En}, Et= V, V. 
By definition, II A( E1}={20}, II A( E1, E2)={21}, 
II A( E1 , E2, E3)={22}, and so on. A general definition of 
{23} is: if n=l, 

(24) II A{E1 , E2 , ••• , En}=A{V) & A(V); 
if {23) has been defined for each n£,m, then 

{25} II A( E1 , E2 , ••• , Em+1)~II A( E1 , E2, ••• , Em, V} & 

II A( E1 , E2, ••• , Em, V). 

Theorem 54.II A{1:i, 1:2, ••• , En)-+A(D1, D2 , •• • , Dn) is 
provable. 

Proof: First, let us consider the case when n= l. 
Then the theorem says that II A( E1}--+A(D1) is provable; 
this is true, by Theorem 53. Assuming the truth of the 
theorem for each k£,m, let us derive as a consequence 
the truth of 
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(26) 1-- ll A(Ei, E2,., ., Em+1)➔A(D1, D2, ••'I Dm+1>· 

By definition, 
(27) II A( e1 , E2,., ., Em+1)~II A( Ei, E2 , •• ,, Em, V) & 

II A( Ei, E2, ••• , Em, V). 
By T(k£om), which is being assumed as true, 

(28) 1-- II A(e1, E2, ••• , Em, V) ➔A(D1, D2, •, •• Dm, V) 
and 

(29) j-, II A( E1, E2, ••• , Em, V)➔A(D1, D2, ••• , Dm, v): 
Therefore, by Ch. 10 (17), 

(30) 1-- II A( E1, E2, ••• , Em+1)➔A(D1 , D 2, •• ,. Dm, V) 
& A(D1 , D2, ••• , Dm, V). 

(26) now follows by Theorem 53. This establishes the 
theorem. 

If the propositional variables contained in a formula 
A are replaced by V or V, each occurrence of the same 
variable being replaced in the same way with occur­
rences of different variables possibly being replaced 
differently, then the resulting formula is denoted by 

A[V, VJ. 

Theorem 55. If the propositional variables of A are 
replaced by V or V, and if the propositional variables 
may have the values t and/, then if tis the value given 
to those propositional variables which are replaced by 
Vand/ is the value given to those which are replaced by 
V, then: if the value of A itself is t, A[V, V] is equiva­
lent to V, while if the value of A itself is/, A[V, V] is 
equivalent to V. (The standard valuation tables are 
assumed.) 

Proof: We shall show first that the theorem is true 
for the case when A contains no occurrences of connec­
tives, that is when A is a propositional variable D. If D 
is replaced by V, then, by the prescribed conditions. A 
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must have the value t; since A[V, V] is V, it is true that 
f-A[V, VJ~ V. If Dis replaced by V, then A must have 
the value f; since A[V, VJ is V, it is true that 
f-A[V, VJ~ V. Thus, in the notation of Ch. 6, T(O) is 
true. 

We now suppose that T(k,t;.m) is true and attempt to 
derive as a consequence the truth of T(m+ 1), that is 
that the theorem is true for any formula A which con­
tains m+ 1 occurrences of connectives. If a formula A 
has m+ 1 occurrences of connectives, the principal 
connective is either (a) -2. (b) V, (c) &, or (d)--+. 

(a) If A is of the form B, then, when A has the value 
t, B must have the value f (by the standard valuation 
table for negation). By T(k,t;.m), f-B[V, V]~ V; there-

fore, f-B[V, V]~ V, by the proof on page 51, and 
hence, by Ch. 10, Theorems 34 and 37, f-A[V, V]~ V. 
When A has the value/, B has the value t. By T(k,t;.m), 
f-B[V, VJ~ V; therefore, f-B [V, VJ~ V, again by the 
proof on page 51; so f-A[V, VJ~ V. 

(b) If A is of the form B V C, then, when A has the 
value/, B and C must have the value/ (by the standard 
valuation table for disjunction). By T(k,t;.m), f-B [V, VJ 
~ V and f-C[V, VJ~ V; therefore, 

(31) f-(B[V, V] V [CV, V])~(VV V), 
by the proof on page 54. By Ch. 4, Theorems 5 
and 7, 

(32) f-[V V VJ~ V. 
It follows from (31), (32), and Ch. 10, Theorem 37 that 
f-A[V, VJ~ V. When A has the value t, either B and 
C have the value tor just one of Band Chas this value. 
We shall deal with the case when B has the value t and 
C has the value/, leaving the other two cases to the 
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reader. If B has the value t and Chas the valuef, then, 
by T(k~m), 1-B[V, V]~Vand 1-C[V, V]~V; hence 
by the proof on page 54, 

(33) 1-(B[V, VJ V C[V, V]}~(VV V), 
that is 1-A[V, V]~(V V V). By the definition of 1-, 

(34) vv V, VI-V; 
also, by Ch. 4, Theorem 12, 

{35) vv v, v 1-v. 
From (34) and (35) and axiom III, it follows that 

(36) 1-(VV V)~V. 
Therefore, 1-A[V, V]~V. 

(c) If A is of the form B & C, then, when A has the 
value t, B and C have that value (by the standard 
valuation table for conjunction). By T(k~m), 1-B [V, V] 
~V and 1-C[V:-VJ~V; hence, by the proof on pages 
56-7, 

(37) 1-(B[V, VJ & C[V, VJ )~(V & V), 
that is t-A[V, VJ~(V & V). By Ch. 4, Theorems 6 
and 8, 

{38) 1-(V & V)~ V. 
Therefore, 1-A[V, VJ~V. When A has the value/, 
either B and C have that value or just one of B and C 
has it. We shall deal with the case when B has the 
value f and C has the value t, leaving the other two 
cases to the reader. If B has the value f and Chas the 

value t, then, by T(k~m), t-B[V, V]~Vand C [V, V] 
~ V; hence, by the proof on pages 56-7, 

(39) 1-(B[V, V] & C[V, V])~(V & V), 
that is 1-A[V, VJ~(V & V). It follows from axiom VI 
and Ch. 4, Theorem 12 that 

(40) t-(V & V)~V. 
Therefore, 1-A[V, VJ~ V. 
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(d) If A is of the form B+C, then, when A has the 

value/, B has the value t and Chas the value J (by the 
standard valuation table for implication). By 1-(k~m), 
1-B[V, V]~V and 1-C[V, V]~V; hence, by Ch. 10 
(27), 

(41) 1-(B[V, V]->-C[V, V])~(V-,,.V), 
that is 1-A[V, V]~(V +V). 

(42) 1-(V+V)+V, 
for, by modus ponens and the fact that I-V, it follows 
that V +Vyields V; also, by axiom I, 

(43) 1-V+(V+V). 
From ( 42) and ( 43) it follows that 

(44) 1-(V+V)~V. 
Therefore, 1-A[V, VJ~ V. When A has the value t, 
either B and C have that value or B has the value f ( C 
having the value t or the value/). We shall deal with 
the case when B and C have the value /, leaving the 
other two cases to the reader. If B and C have the 
value/, then, by T(k~m), 1-B[V, VJ~Vand 1-C [V, V] 
~V; hence, by Ch. 10 (27), 

(45) 1-(B[V, V]+C[V, V])~(V +V), 
that is 1-A[V, V]~(V+V). By Ch. 4, Theorem 2 and 
Ch. 10, Theorem 36, 

(46) 1-(V ➔V)~ V. 
Therefore, 1-A[V, V]~ V. 

Theorem 56. Every t-formula is provable. 
Proof: If A(D1, D2, ••• , Dn) is at-formula (n >1), 

then, by Theorem 55, 1-A[V, VJ~ V for every pos~ble 
replacement of the propositional variables D, by V or 
V. Since Vis provable, each A[V, V] is provable, so that 

(47) II A(E'1 , E'z, ... , E11) is provable. 
80 



Completeness 
It follows from (47) and Theorem 54, by modus po11etis, 
that A(D1 , D2 , ••• , Dn) is provable. 

A consistent system which is such that, if a non­
provable formula were added to the body of provable 
formulae of the system, then the extended system 
would not be consistent, is called saturated or absolutely 
complete. When this notion of completeness is being 
considered, the type of completeness we have been 
establishing for P is called relative completeness. 

Theorem 57. Pis absolutely complete. 
Proof: By Theorem 56, if A(D1 , D2 , • •• , Dn) is a non­

provable formula, it is not a t-formula. Therefore, A 
has the value f for some assignment of values to 
its propositional variables D 1• Replacing each n, that 
has the value t, or f, in such an assignment, by V, or 
V, respectivelr_, the formula A[V, V] that results is 
equivalent to V, by Theorem 55. If A were allowed to 
be provable, it would follow, by use of the rule of sub­
stitution, that A[V, VJ would be provable. Since this 
formula is equivalent to V, any pair of contradictory 
formulae would become provable, by Ch. 4, Theorem 
12. 
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