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Preface

Symmetry is a term that is used extensively in both technical and common
language. It is used across many disciplines ranging from science to the
arts. The idea of symmetry is central to science, particularly modern
physics. In art, symmetry was a necessary aesthetic principle in
architecture and sculpture of all ancient civilisations. Given the breadth
of this notion, it is understandable that there is no single concept which
can cncapsulate its scope. Considering the importance of the idea of
symmetry and its occurrence over a whole range of human activity, it is
important to explicitly clarify its philosophical foundations. This is the
task of this book.

Part One begins with a general overview of the various manifestations
of symmetry in nature, science and art. Symmetry is manifested in a
wide range of objects, from molecules to galaxies. In science, symmetry
plays many roles: for example, to classify crystals, illuminate the nature
of spacetime, describe quantum objects and explain the fundamental
laws of conservation in science.

Part Two of this book uses metaphysical categories to explicate the
nature of symmetry in science. This allows us to consider the meaning
of symmetry in objects, relation berween change, invariance and
symmetry, relation between symmetry and form, metaphysical structure
of groups, the special nature of conserved properties and the link between
symmetry, conservation laws and causality. Through this analysis, we
find that symmetry should be considered as a first-order property of
objects and systems.

There is also another dimension to symmetry, its phenomenological
one. There seems to be something unique in the phenomenology of
symmetrical objects. Balance is a term that sometimes caprures this
uniqueness. Our experiences with symmetrical objects give us a
phenomenological idea of balance, whether in balancing a stick at one
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point or building a paper plane by folding along the axes of symmetry.
The experience of balance is not only tactile; it is also visual and auditory.
Tasty food, for example, generally manifests a balance of different tastes.
There are also other terms which in our common usage captures the
idea of symmetry. These are simplicity, harmony, elegance, unity and so
on. Symmetry, from ancient times, has also been intimately associated
with the notions of beauty and truth. All these terms suggest that we can
attempt to understand the idea of symmetry in art by drawing upon
theories of aesthetics. Part Three offers a discussion on the
phenomenological and aesthetic aspects of symmetry leading to the
conclusion that symmetry in art should be understood as an aestheric
property.

This work is a product of a Fellowship offered by the Indian Institute
of Advanced Study, Shimla, from 1999 — 2001, and would not have
been possible without the excellent academic and administrative support
of the Institure staff. My sincere thanks to Profs M. Miri, S.C.
Bhattacharya and V.C. Srivastava, the three directors who enthusiastically
supported this academic pursuit in the two years I spent there. The
friendship and warmth of the administrative staff at Shimla were
enriching. In particular, I thank Mr A. K. Sharma for all the support in
getting this manuscript published. I am indebted to the intellectual and
personal friendship offered so generously by some of my colleagues at

Shimla. I am also grateful to Prof R. Narasimha, the director of my
parent institute, NIAS, for granting leave for two years.

Balan Nambiar has been gracious enough to allow me to use the
photo of his remarkable sculpture made in steel, a piece titled Valampiri
Shankba, for the cover of this book. I am extremely thankful to him.
This sculpture reflects essential principles of symmetry drawing upon
both scientific and aesthetic aspects. In this respect, it is quite similar to
what I have tried to do in this book and is therefore an ideal representation
of the material in this book. The photograph is by Namas Bhojani and
this piece was commissioned by Texas Instruments, India. I thank them
for permission to use this photo on the cover.

Finally, this work would not have been possible without the emotional
and intellecrual support of Dhanu.



PART ONE

Universality of Symmetry

Symmetry is manifested in diverse ways in the natural and social world.
Figures and objects that occur in the natural world exhibic complex
symmetries. Symmetry has been an important principle in arts and
architecture. Arguably, it is the central principle in modern physics and
is closely linked with some fundamental laws of nature.

Alchough symmetry is so universally manifested, its fundamental
philosophical foundations are unclear. What ideas and concepts underlie
the notion of symmertry? What is common in the ideas of symmetry in
natural objects, arts and music, and its use in the fundamental
formulations of the physical and life sciences? Is symmetry a primary
term or is it derivative of other properties and concepts?

These and similar questions will be addressed by formulating a
‘philosophy of symmetry’. This formulation will be in two parts:
metaphysical and phenomenological. However, before we begin to
understand symmetry, it will be useful to see the wide-ranging
manifestation of symmetry across many domains.

1. SYMMETRY IN NATURE

Symmetry is everywhere around us. Broadly, we can discern two kinds
of approaches to symmetry: one is the phenomenological, which
understands symmetry in terms of the ‘experience’ of symmetry through
a symmetrical object, and the other is in terms of specific actions that
leave invariant some aspect associated with the object. For example, if
we rotate a perfectly round pebble we notice that nothing seems to change
under this transformation. This is one way of looking at symmerry, one
that is privileged in science. However, even if we do not rotate or otherwise
transform an object, we seem to grasp some characteristic of the
symmetrical object, perhaps articulated in terms of the balance and
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harmony of its shape or pattern. A trivial symmetry possessed by all
objects lies in the action of moving an object from one place to another.
Under this change, the object is unchanged. But this is only a simplistic
idea of symmetry and its essential nature will remain unclear until we
clarify what changes, what remains the same and their relations to the
idea of symmetry.

The natural world consists of objects that manifest various kinds of
symmetries. Many objects of everyday experience, like trees, plants and
leaves reflect symmetries. Many flowers have a shape that is, most often,
perfectly symmetrical. Mainzer (1996, 521) gives the example of
inflorescences, which exhibit a high degree of rotation and reflection
symmetries, as well as the giant sunflower (Helianthus maximus) where
‘the small blossoms are arranged in logarithmic spirals, whereby two sets
of spirals occur with opposite directions of rotation’ thereby exhibiting
spiral symmetry. The blossom of the Gladiolus debilis exhibits bilateral
symmetry in the distribution of its colour (Hahn 1998, 48). Given the
predominance of symmetric forms in the plant world, it is reasonable to
believe that symmetry plays a central role in the evolution of these objects.

The animal kingdom too extensively exemplifies the property of
symmetry. The bilateral symmetry of the human form is found in more
than 95% of all types of animals. While it is true that higher organisms
do not exhibirt symmetry in the distribution of the inner organs,
nevertheless the form of most of these creatures is bilaterally symmetric.
The starfish and sand stars are examples of creatures which are clearly
symmetrical. The common starfish is pentagonal symmetric although
other forms are also present.! Snails embody spiral symmetry in their
shells, manifesting either left-handedness or right-handedness. Creatures
such as sponges, rotifers, pterobranchia, echinoderms and jellyfish reflect
rotational symmetry. The honeycomb is a classic example of a structure
that is highly symmetric. Sometimes even the colours and patterns on
insects, birds and animals show complex symmetries, suggesting that
symmetry is manifested not only in the form of the creature bur also in
the distributions of patterns and colours.

Viruses have complex symmetric structures; for example, the adeno-
virus exhibits the symmetry of icosahedrons (Mainzer 1996, 517). In
the case of dynamic change like cell division and reproduction, the plane
of splitting is normally the symmetry plane of che cells (Hahn 1998,
37). Even in multi-cellular organisms, cell division generally follows
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mirror symmetry. Fundamental biological entities manifest complex
symmetries. The DNA with its helical structure illustrates this clearly. It
must be noted here thar this wide manifestation of various symmetries
suggests that these are not accidental forms; rather, they are a consequence
ol natural laws of evolution and formation.?

Naturally occurring (as also synthesised) chemical molecules exhibit
a wide range of symmetries. Benzene, which is a common example, has
hexagonal symmetry. Most naturally occurring carbon compounds have
a high degree of symmetry. Polymers reflect ‘frieze’ symmetries. Naturally
occurring proteins are symmetric, although they occur as left and right-
handed forms. Haemoglobin has a ‘two-fold axis of rotation of irts
molecular chains’ (Mainzer 1996, 507). Even the orbital structures of
molecules, such as sigma and pi orbitals of benzene, are symmetric. The
ubiquitous water molecule is classified by the symmetry group C, .}

It must be menctioned that many of the important, naturally occurring
molccules like fructose, dextrose, tartaric acid, proteins, nucleic acids
etc., exhibit asymmetry of the left and right forms in their natural
occurrences. This asymmerry is extremely important in various bio-
chemical processes. For example, right-handed glucose tastes sweet while
its left-handed form does not. The differences berween the left and right-
handed forms are not always this benign: consumption of left-handed
phenyanaline leads to insanity while the right-handed form does not.*
All these examples suggest that somehow symmetry is a fundamental
property of nature and has causal powers associated with it.

Crystals are a paradigm example of symmetry in naturally occurring
solids. The study of crystalline structures has significantly contributed
to the classification of symmetries. Naturally occurring inanimate
formations also show striking symmetries. Symmetry plays an explanatory
role in understanding why these forms have turned out to the way they
have. The presence of symmetry ranges from the microscopic domain to
the cosmic scale. The beaurtiful forms of galaxies showing spiral and
spherical symmetries, for example, once again reinforce the pervasive
and fundamental nature of symmertry. Thus, nature in its biological,
chemical and physical domains exhibizs various kinds of symmetries.
The purpose of this book is to understand what these symmetries mean,
and how and why they seem to be so central to so many entities of our
world.



4 + PHILOSOPHY OF SYMMETRY

2. SYMMETRY OF FIGURES

Symmetry is most clearly perceived in idealised geometrical figures.
Consider a circle. The circle has many symmetries. If we rotate the circle
around its centre we will find that the form of the circle is unchanged.
This suggests that the circle is rotationally symmetric for rotation through
all angles. If we place a mirror along any of its diameter we find thart the
form of the circle is unchanged and hence it is also mirror symmetric. It
is not true that every change in a circle will be associated with a symmerry.
As an example of a non-symmetric change, consider making a dimple
on the circle. Now the circle no longer looks like one and thus we would
say that the circle is not ‘dimple-symmetric’.

Different figures have different symmetries. For example, consider
an cquilateral triangle. If we rotate this triangle abour its centre point,
we note that it is only rotations of 120 degrees (and integral multiples of
it) that gives us back the ‘original’ triangle. The hexagon is similarly
symmetric under rotation of sixty degrees. In general, a regular polygon
of n sides will be symmetric under rotation about its centre through an
angle of 360/n degrees. A point to be noted about symmetry of
geometrical figures is that the idea of symmetry is dependent on points
or axes around which the symmetry is manifested.

The symmetry of natural forms like the snowflake mentioned earlier
are symmetric not only with respect to their form but also with respect
to some point or axis of symmetry.

The symmetries possessed by these planar figures can be used to classify
different figures. Elements that have the same symmetries can be said to
belong to the same family or class. Groups are mathematical structures
which characterise these symmetries. (Groups will be discussed in more
detail in the section on mathematics and symmetry.) For example, the
symmetries of the regular polygons are described by cyclic groups. Along
with rotational symmetry, figures could also have reflection symmetry.
Dihedral groups exhibit both rotational and reflection symmetries. The
classification of central symmetries of planar figures (in the Euclidean
(flat) space) can b= entirely given by these cyclic and dihedral groups.
More complex figures, especially those that form lattices, possess
translation symmetries in addition to the rotational and reflection
symmetries.

Like planar figures, regular three-dimensional figures are also classified
by symmetries. The cube is a simple example. Crystals are three-
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dimensional ordered figures. These figures also exhibit rotation, reflection
and wranslation symmetries. Just as in the case of planar figures, groups
corresponding to these symmetries classify the different three-dimensional
figures. The idea of symmetry has played a central role in understanding
crystal structures. It also helps in classifying the properties of these solids
based on the kinds of symmetry they possess. Although these perfect
symmetries are most clearly exemplified in ideal figures we have to
remember that when we talk of symmetries of natural objects, like the
snowtlake or crystals, we arec most often talking about the symmerry
propertics of the shape or form of these objects.

3. SYMMETRY AND SCIENCE

A fundamental reason for a philosophical analysis of symmetry is the
central role accorded to symmetry by science. The use of symmetry to
classify two and three-dimensional regular figures was briefly described
above. The discipline of crystallography is indebted to the notion of
symmetry. This discipline not only allowed a description of crystals but
was also instrumental in the development of spectroscopy, wave
mechanics and many other branches of science. The analysis of molecular
structures, Pasteur’s experiment on tartaric acid that showed the left and
right handed nature of certain molecules, analysis of protein structures
etc., are some of the important developments related to crystallography.
Symmetry considerations offered a cogent theoretical framework to
describe and explain these experimental observations.

Even though symmetries were essential to classify crystals, it is only
in particle physics thar the idea of symmetry comes to occupy a seminal
position. The development of gauge theories and particle physics placed
symmetry as a foundational principle of nature. The relation of
conservation laws to symmetry emphasises this foundational nature of
symmetry. It can also be argued that the impetus to relativity theory was
based on symmetry considerations. Quantum mechanics (and furcher
on, quantum field theory) engages with the idea of symmetry in an
essential manner. Even classical Newtonian physics illustrates
fundamental symmetry principles.

Considering the importance of symmetry in all these disciplines of
science, it might seem to imply that there is a common understanding
of symmetry in all of them. Although the use of groups is common in all
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these disciplines where the idea of symmetry is prevalent, there is really
no common conceptual grounding in all of them. Also, there seems to
be some important philosophical ideas that are manifested in the diverse
expressions of symmetry in these disciplines. The task of this book is to
explore these philosophical foundations. Before I do thar, it will be useful
to summarize the various symmetry considerations that appear in physics.
I restrict myself to physics not because I believe that chemistry and biology
can be completely reduced to physics but because symmertry
considerations in chemistry and biology are very similar to that of physics.
In particular, group theory, which describes symmetries, is the common
mathematical tool used in these different disciplines.

In the earlier examples, symmetries were associated with a figure or
the form of objects. While this is useful in the study of crystals, the idea
of symmetry in classical and modern physics is not restricted to the form
of objects alone. A simple example is the time-reversal symmetry exhibited
by Newton’s law, which states that force is equal to mass times acceleration
where acceleration is the second derivative of position with respect to
time. Changing t (standing for time) to —t keeps the equation invariant
if the force is time independent. We can thus say that time reversal (change
of t to —t) is a symmetry of Newron’s equation under certain conditions. ™’
But note that the ideas of change and invariance in this case are not with
respect to a geometrical figure or the form of an object. We can only say
that the form of the equation remains the same under the transformation
t = —t. But then we will have to distinguish the idea of the form of an
equation and of an object or figure. Most of the important symmetries
in physics deal with expanded notions of form, change and invariance.

Time reversal symmetry of Newton’s law has observable consequences.
For a system that strictly obeys this law, time reversal symmetry would
imply reversibility of processes that occur over a time period. There is
also a larger set of transformations that keeps Newton’s law invariant.
Newton's force law incorporates acceleration, which is related to position.
Position itself is defined with respect to some frame of reference. Suppose
there is another frame of reference that is moving with uniform velocity
along the common x-axis of both the frames. Then it can easily be seen
that Newton’s law is invariant under the change of coordinates from one
frame to another. This larger set of transformation is referred to as the
Galilean transformation (Rosen 1995, 77).

This theme of invariance under various sorts of space and time
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transformations is central to symmetry considerations in science. These
are dynamic transformations in the sense that changes take place in the
position and time coordinates. Under such transformarions, certain
features are left invariant, such as the equation of motion. There will
also be observable consequences corresponding to this like the statement
that Newton'’s law will be the same in every frame moving with constant
velocity. Conservation of certain observables, like momentum and energy,
is also a consequence of symmetry. Thus, although the idea of symmetry
in modern physics seems to be indebted to mathematical forms, its
significance is captured in the corresponding physical observations.

Relativity is based’on symmetry considerations. In fact, van Fraassen
(1989) goes to the extent of saying relativity is symmetry. The claim that
‘physics’ must be invariant in different frames of reference implies that
more complex transformations of space and time must keep invariant
(covariant) the laws as well as the observational consequences of dynamic
equations. Lorentz transformation is a specific form of transformation
of the space and time coordinates such that the equations of special
relativity remain covariant. In a particular classical limic (when the velocity
is much smaller than the velocity of light), the Lorentz transformation
reduces to the Galilean transformation. Special relativity is invariant with
respect to ‘global’ Lorentz transformations, thereby meaning that the
‘laws of nature are invariant with respect to them only if the same
transformation is applied to all four points of 4-dimensional space’
(Mainzer 1996, 351). Global here refers to the constancy of velociries of
the different frames of reference.

In relativity, the connection between symmetry and nature arises in
the following way. Euclidean space is ‘flat’ space. Minkowski space is a
four dimensional space, also flat, which considers space and time
coordinates as belonging to the same ‘kind’ but with the crucial difference
that the time coordinates carry a negative sign while the space coordinates
carry a positive sign (or vice versa, according to convention). Minkowski
spacerime is invariant under global Lorentz transformations. Thus, if we
believe that space and time form a continuum and that they are
Minkowskian in character, then the global Lorentz transformation
actually reflect the symmetries of this spacetime. In other words, just as
objects exhibit symmetries as discussed earlier, the spacetime ‘object’ too
has its symmetries.

The general theory of relatlwry goes one step further. While global
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Lorentz transformation was restricted to constant velocity with the
implication that all of Minkowski spacetime changes in the same way,
local Lorentz transformations allow for non-uniform change of spacetime.
Physically, this is the case of comparing physics in accelerated frames of
reference. Generally, the physics will not be the same in accelerated frames
of reference. But if we make a modification to the field equations to
account for this, we get Einstein’s general theory of relativity.

The symmetry corresponding to transformations of space and time
coordinates is exhibited in quantum mechanics also. For example, the
wave function of a particle under Galilean transformation transforms
into another function which differs from the original one only by a
complex phase factor (Landau & Lifshitz 1977, 52). Since observables
in quantum mechanics are bilinear forms, that is, involving products of
the wave function and its conjugate, the Galilean transformation leaves
them invariant.

External symmetries are important in sfudying composite systems
like atoms and molecules. The movement of the electron around the
nucleus of an atom will possess rotational symmetry. This has important
consequences in spectroscopy and in understanding molecular bonding.
In this context, a well-known result is that of Wigner who described the
essential connection between symmetries and the quantum numbers of
the spectra {(Mainzer 1996, 388).

Quantum systems exhibit many interesting symmetries. Three very
important ones are those of charge conjugation, parity and time reversal.
These are discrete symmetries in contrast to continuous symmetries
discussed above, that is, transformations do not range over all possible
values. Typically, a discrete symmetry is defined as a symmetry operation
which ‘if applied twice to any physical system, will leave that system
unchanged’ (Emmerson 1972, 33). Parity (P) isa simple operation which
replaces space coordinates by their negative value, i.e., x by —x, y by —y
and z by —z. In general, parity is a symmetry of nature. But like all
symmetries we will consider, there are certain systems that do nort exhibit

_this symmetry. It is well known that electromagnetic and strong
interactions conserve parity but weak interactions do not (ibid., 46 —
47). '

For every particle with charge q, we can conceive of a particle with
charge —q with all other properties like mass and spin remaining the
same. Such a particle is called the anti-particle of the original particle.
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This operation of replacing a charge by its opposite value is called charge
conjugation (C). If charge conjugation is an exact symmetry of the world,
then it is reasonable to expect a world of antiparticles similar to our
world made of particles. But the universe shows a distinct asymmetry
between particles and antiparticles: the amount of antiparticles occurring
naturally is much less than the particles. For example, there are
innumerably more electrons than positrons (anti-electrons) in our
universe. This suggests that the symmetry between particles and
antiparticles is not manifested in our universe. It must be mentioned
that for strong interactions this remains an exact symmetry but is violated
in weak interactions.

Like parity, time reversal (T) involves changing t to —t. Again, it is
not clear if this is an exact symmetry of the world although it might be:
so for strong interactions (ibid., 55). Note that for discrete symmetries,
there are no corresponding conservation laws as for continuous
symmetries (Itzykson & Zuber 1980, 21).

These three discrete symmetries, P, C and T, are important for one
reason: the combined operation of PCT is always an exact symmetry.
That is, every process of nature, whether they belong to strong or weak
interactions, always obeys PCT symmetry ta.kcn together (Emmerson
1972, 56).

These examples, except for charge conjugation, have to do with
changes in space and time coordinates. These are usually referred to as
- external symmetries. But one of the most important cases of symmetry
* is that of internal symmetry where the transformations are not changes
in spacetime coordinates but of some ‘internal’ parameters. These internal
symmetries have come to occupy a central role in modern science.

A simple but important example of internal symmetry arises in
quantum mechanics. Isopsin symmetry is an important symmetry that
has had great influence in theories that followed. The proton and neutron
are ‘similar’ to each other, except that the proton has a unit positive
charge and the neutron has no charge. Heisenberg suggested that one
could consider the proton and neutron as belonging to one ‘family’ (the
doublet) and the difference in mass can then be derived/explained through
the breakdown of the symmetry. The symmetry of this ‘doublet’ is referred
to as SU(2) symmetry. This idea of family resemblance is used to construct
more fundamental symmcmcs in particle physics, as in the grand unified
theories.
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An extension of this is the SU(3) model, which was used to predict
quarks. For example, the triplet of pions forms a family. In the case of
quark model, the up, down and strange quarks belong to a triplet family.
These kinds of symmetries are idealised symmetries because nature only
manifests them ‘approximately’. (This is similar to exact symmetries of
geometric figures as against symmetries of objects in nature, which only
have these shapes with small deviations.) The notion of ‘internal’ in the
SU(2) and SU(3) cases refers to the symmetry under rotation in the two
and three dimensional internal space of these doublets and triplets
respectively. (It may be noted that the ‘spin’ of elementary particles is
also an internal characteristic of the particles.)

Similar to global and local transformations of spacetime coordinates,
these internal symmetries can also have global and local transformations
in the internal space. If the SU(2) group is dependant on spacetime
coordinates, then the corresponding symmetry is a local, internal
symmetry. In general we may note four kinds of symmetries: external,
global; external, local; internal, global and internal, local (Kosso 2000,
83). These symmetries.are symmetries of nature — of objects, spacetime
and events in both the macro and the microscopic world. Science believes
thar there are observable consequences of these symmetries, as well as
causal roles that can be ascribed to them.

There are two other internal symmetries that need to be mentioned:
permutation symmetry and supersymmetry. Particles in the quantum
world are either fermions (those with half integer spins) or bosons (those
with integer spins). They have a fundamentally different property under
permutation. The famous Pauli principle says that no two fermions can
occupy the same state whereas any number of bosons can do so. The
final project of unification of the forces and particles in nature must also
attempt to unify fermions and bosons. Like the case of the proton-neutron
doubler, we can consider a doublet of a fermion and a boson.
Supersymmetry corresponds to the transformation that changes a fermion
to boson and vice versa. As a consequence, it is postulated that for every
fermion there is a corresponding bosonic partner. For example, an electron
hasa corresponding boson ‘selectron’. We can note the similarity of this
to the particle-antiparticle pairs: for every particle there is an antiparticle
derived through charge conjugation.

As in the earlier cases, there can be both global and local
supersymmetry. What is most interesting is that local supersymmetry
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necessarily involves introduction of gravitational fields naturally into
the model. (This is similar to the local symmetries of general relativiry.)
Thus this allows the possibility of unification of the four fundamental
forces of nature into ‘one’ model. This local supersymmetry theory is
also called supergravity. Of course, physics has not stopped with this
construction but has gone on to develop string and superstring theories.
Even in these models, the idea of symmetry as described here holds.
Thus it is clear that symmetry is central to the formulation of science
and we can agree with Mainzer’s (1996, 477) statement that ‘current
high energy physics and the physical cosmology derived from it are closer
to thé Platonic ideal of exact symmetry in nature than any previous
developmental epoch in the natural sciences.’-

3.1. Broken symmetry and asymmetry

In general, the symmetries described above are exact mathematical
symmetries. When we say the Lagrangian (or equivalently, the equation
of motion) is invariant (or covariant) under some transformation, it is
usually the mathematical symmetry and this is an exact symmetry. But
the natural world does not usually manifest this complete symmetry.
This is similar to the difference between a real circular object and the
idealised geometrical circle. In fact, the real world predominantly
manifests inexact or approximate symmetry. I believe that these
approximate symmetries should be understood as deviations from
symmetry rather than independent of symmetry considerations.

We have already noted the diverse expressions of symmetry in physics
~from symmetries of objects like crystals, symmetries of spacetime,
discrete symmetries like P, C and T, and internal symmetries. In many
physical examples, these symmetries will not hold ‘completely’ and there
are consequences that arise from the deviation from symmetry. These
are most powerfully exemplified in gauge theories.

We must distinguish berween symmetry violation and broken
symmetry. For example, when we say that parity is violated in a process,
it means that the expected symmetry of parity is not to be found in that
particular process. This is not broken symmetry, unless we know that
the system had parity symmetry but lost this symmetry due to some
reason.

Consider a round drdp of water, say formed at the mouth of a tap. As
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it forms, the gravitational pull tends to elongate the surface downwards.
The exact symmetry of the drop is broken by gravity. In the case of
animals, gravity too acts to break the full symmetry.’ These examples
suggest that it is easier and correct to understand many such phenomena
as broken symmetry rather than asymmerry.

In the case of internal symmetries, we considered the example of
proton and neutron as belonging to a single family. Proton and neutron
differ not only in their charges but also in their masses. But physicists
think it more fruitful and elegant to consider them as belonging to the
same family, described as a doublet. The mass difference is then explained
through electromagnetic interaction, seen as a consequence of this perfect
symmetry being broken. All grand unified theories work on this logic. It
is first presumed that nature has a particular ‘larger’ symmetry which
allows different particles to be grouped together into one family. Grouping
them in this way is to gloss over their differences. Then the differences
are explained by saying that this exact symmetry is broken. This view
rests on the belief that nature is fundamentally symmetric and essentially
* ordered. The highest state of symmetry is postulated to be at the moment
of Big Bang and over time various symmetries get broken.

It is to be remembered that the idea of broken symmetry is based on
the idea of loose identity. There is also an important consequence of
broken symmetry which I will discuss in the following section.

3.2. Functions of symmetry in science

According to science, symmetry is a fundamental ‘property’ of nature,
manifested in natural objects and in natural processes. As Weinberg notes,
symmetry ‘is the thing that actually drives the dynamics’ (Crease 8 Mann
1986, 187). The idea that nature is inherently simple is a powerful
mortivating force for theorists. Symmetry, as a central principle, allows
this formulation of simplicity. Weinberg considers Lorentz invariance as
the most important symmetry of all because it ‘is not only a symmetry
which governs the form of the equations, it tells us what the equations
are about.” He goes on to say that ‘the identity of the particle is ﬁxed' by
its symmetry properties. The particle is nothing else but a representation
of its symmetry group’ (ibid., 187).

First of all, it is important to note that symmetry is not an ‘accidental’
property of nature. Even in the case of natural objects which show various
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symmetries, it can be argued that the particular forms and shapes that
they have are due to a prior symmetry principle. In the case of biological
organisms, Hahn argues that symmetry is an important evolutionary
factor. This means that symmetry olays a causal role that explains why

these organism manifest the symmetry they do. Thus symmetry plays a
funcrional role in these organisms.

In the case of inanimate objects that show a wide range of symmetries,
like crystals and molecules, symmetry is an organising principle that
explains not only why the sﬂmapcs of these entities are the way they are
but also how symmetry influences the dynamics associated with them.
For example, chemical bonding used to describe chemical reactions can
be deduced from symmertry considerations. Nature seems to subscribe
to a least action principle. Simply put, this means that natural processes
tend to take a path of least (actually extremal, which could be either
minimum or maximum, but in most cases it is always the minimum)
energy. If we analyse why natural objects have the shapes they do, we
can find this least action principle at work. This principle is closely aligned
with the idea of symmetry. The spherical case is a good example, for not
only small objects but also huge planets, stars and galaxies possess
(approximate) spherical shape. The sphere has a high degree of symmetry.
When nature tends toward natural formations that show a high degree
of symmetry, the influence of various factors such as gravity modify the
shape associated with these highly symmetrical shapes.

In terms of theoretical analysis, the principle of least action is of
fundamental importance. It is this principle that helps us derive the
equations of motion, both in classical and quantum physics. These
equations of motion are derived from the Lagrangian (or equivalently,
the Hamiltonian). The Lagrangian in the classical formulation is given
by the difference of the kinetic and potential energy terms. This
Lagrangian will have some symmetries like invariance under Lorentz
transformation. These symmetries will also be the symmetries of the
equations of motion.

Moving from objects to processes, we note that symmetry
considerations have various phenomenological and observational
consequences. The most important of which is the relation berween
symmetry and conservation laws. In modern physics, this is seen as a
consequence of Noether's theorem. Noether’s theorem states ‘that to any
continuous one-parameter set of invariances of the Lagrangian is
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associated a local conserved current’ (Itzykson 8 Zuber 1980, 23). From
this current, we can find a conserved ‘charge’ by appropriate integration.
This theorem holds both for external and internal symmetries.

Loosely put, what this theorem states is that when there is a
(continuous) symmetry in the system, something is conserved in its
processes. Conservation of momentum is a common example. We know
that when two objects collide and there is a change in velocities or mass,
then the total momentum before collision is the same as after collision,
This sameness of an initial quantity ard the final one is called as
conservation of that quantity. In the case of collision, conservation of
momentum occurs if there are no forces like friction. Conservation of
momentum is a consequence of invariance under translations. Similarly,
if the system is invariant under rotation, the quantity called angular
momentum is conserved. Also, if the system does not depend explicitly
on the time parameter then we can immediately say that the processes of
the system will conserve the total energy.®

While these examples of conservation of linear and angular
momentum are consequences of external symmetries, conservation is
true of internal symmetries also. For example, the conservation of charge
is an extremely important principle that is part of the most basic natural
processes. As before, we can understand this by saying that the total
charge before a process is the same as after the process. For example, in
neutron decay the neutron disintegrates into a proton, an electron and a
neutrino. The initial electric charge of the neutron will be the same as
the sum of the electric charges of the proton, electron and neutrino. In
general, knowing the electric charge of the initial configuration, we can
make a reasonable guess as to what the charges of the final constituencs
should be since they are constrained by the equality of the initial and
final total charge. The principle of conservation of charge can also be
understood as a consequence of some symmetry. For example,

conservation of electric charge is a consequence of the global phase
invariance of electrodynamics.

Charge in modern physics is not restricted to electric charge. From
Noether's theorem, we know that for every continuous symmetry there
is a corresponding charge which is conserved. The word ‘charge’ is used
in a variety of ways and exhibits similarity with electric charge in thar it
is conserved. For example, baryons (heavy fermions like protons) are
given a baryon charge and leptons (light ferrhions like electrons) are
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given a lepton charge. It is believed that in many processes involving
changes of baryons and leptons, their respective charges will be conserved.

These conservation laws are a consequence of the symmetries of nature.
They are manifested over a wide range of processes: from collision of
billiard balls to elementary particle decays. They also rtell us which
processes are possible and which are not, as illustrated in selection and
superselection rules. The idea of symmetry plays a descriptive,
explanatory, causal and predictive role. It is thus rightly a first principle,
a primary property of nature — at least, according to science. '

Even in the case when symmetry is broken, there is a very interesting
consequence. In gauge theories (like the unified theory mentioned eatlier),
it is recognised that perfect symmetry is not manifested. So this symmetry
needs to be broken in order to explain the observations regarding the
elementary particles. The symmetry is explicitly broken in the model by
introducing new terms in the Lagrangian. Gauge particles are those which
carry the force of interaction of the four fundamental forces. These
particles get masses in the theory through the breakdown of symmetry.
This theoretical mechanism is needed because perfect symmetry implies
massless gauge particles. This seems to suggest an essential role to
' symmetry not just as a principle but also as a dynamical mechanism
which is somehow involved in the creation of particles and ultimately

matter!

4. SYMMETRY AND GROUPS

It is difficult to talk about symmetry in science without invoking the
appropriate mathematical terminology. The discussion in the previous
section was to exhibit the different ways in which symmetry is understood
in science. The emphasis there was to list the various symmetries of nature
in order to support the claim that symmetry is indeed an essential
component of natural objects and processes. There was also reference to
various groups that classify these symmetries. In this section, I will give
a brief introduction to groups. In Part Two, I will describe the distinction
between sets and groups in the context of metaphysics and in Part Three,
I will exhibit some common structural similarities between groups and
the Gestalt principles.

Sets are common’ mathematical entities. Sets are a collection of
members which have some criteria for membership in a particular set.
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For example, a set of mammals will have as members creatures that we
recognise as mammals. Groups are also sets but with some difference.
First, groups are sets with an operation defined on them. This means
that not only groups have members but they also have, necessarily, an
operation defined over that collection of members. For example, the set
of all positive and negative integers (including zero) is a group under the

operation of addition. The group members also have to obey certain
other conditions.

1. The closure property: if a, b are two members of the group, then
a * b should also be a member of the group. The group operation
is denoted by *. For example, for the set of all integers mentioned
above, we can take any two elements, say, 5 and 7. Since this is a
group under the operation of addition, then 5+7 (= 12) should
also be a member of the group, as it is.

2. There is an identity element, which is unique, in the group. That
is, there is a member of the group, e, such thatase=a=ec*afor
all members of this group. In the case of the above group, this
identity element is 0, since a + 0 = a for all a.

3. Every member a of the group has an inverse, denoted by a! such .
thara » a” = e = a! * a. In the above example, — a will be the inverse
for every a, since a —a = 0, and 0 is the identity element.

4. The elements of the group obey associativity law. That is, a *

(becy=(a*b)ec

There are various kinds of groups. In the example of the equilateral
triangle discussed in the last section, it was mentioned that the triangle
is invariant under rotation of 120 degrees. As we can easily see, the triangle
is also invariant under rotations of 240 and 360 degrees (and integral
multiples of 120 degrees which are essentially the ‘same’ as these three
angles under rotation). The set of these three angles forms the C, point
group. (Point because in these rotations the central point does not change.)
All planar and higher dimensional symmetric figures can be classified by
groups. For example, the dihedral groups describe rotation and reflection
symmetry. These are discrete groups because notall rotations are possible. \
In the case of the equilateral triangle, the only rotations that leave the
triangle invariant are the three angles mentioned above.

The circle has many symmetries, actually infinite. If we rotate'a circle
around its centre by any amount, however small or big, the circle remains
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invariant. The symmetry of the circle is an example of a continuous
symmetry. This rorational symmetry of the circle is described by the
group U(1) whose members are all of the form e . We can easily check
that for any two members, €” and e* , €7 ¢ €% = €2 = &™. Also the
identity is 1 and inverse is ™

Continuous groups are very lmportant in modern physncs These are
called as Lie groups. For example, the group SO(3) is the set of all rotations
in three dimensional Euclidean space. Although these are abstract
definitions of groups, we can find representations for them. These
representations obey the group equations. For example, the elements of
SO(3) can be represented in terms of 3x3 matrices.

It may be mentioned here that there is an interesting connection
berween groups and shapes. The U(1) group has a manifold structure,
that is, the group is ‘like’ a manifold, meaning that its elements are like
the points of a manifold. In this case, the manifold is the circle. The
SO(3) group has the manifold of a sphere in our usual three dimensional
space. The important complex group SU(2) has the manifold structure
of a four-dimensional sphere.”

5. GENERAL SYMMETRY PRINCIPLES

So far, I have given examples of various kinds of symmetries that occur
in nature. There are also a few general principles that try to explain the
nature of symmetry. These principles are generalisations of some of the
common aspects of symmetry.

Rosen (1995, 104) formulates the symmetry principle as follows: “The
symmetry group of the cause is a subgroup of the symmetry group of
the effect ... Or less precisely, the effect is at least as symmetric as the
cause.” Note that this means that the symmetry of the effect can in
principle be larger than the symmetry of the cause. As a modification, of
particular relevance when symmetry is broken, Rosen, quoting Birkhoff,
adds, ‘nearly symmetric causes need not produce nearly symmetric effects’
(ibid., 130). That is, ‘approximate symmetry of a cause might appear in
the effect as exact symmetry, as approximate symmetry, or as badly broken
symmetry’ (ibid., 133).

In the case of processes and natural faws, Rosen offers a more general
principle of symmetry that captures the evolution of the processes: ‘For
a quasi-isolated physical system the degree of symmetry cannot decrease
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as the system evolves, but 'either remains constant or increases (ibid.,
145).

And a modified ‘special symmetry evolution principle’ stating: “The
degree of symmetry of the state of a quasi-isolated system cannot decrease
during evoliition, but either remains constant or increases’ (ibid., 146).

The Curie symmetry principle is similar to Rosen’s formulation but
does not recognise symmetry of causes as a subgroup of effects. This
principle, while stating that symmetry elements of causes ‘must also occur
in the effects,” also states that the ‘effects cannot contain more elements
of symmetry than the causes’ (Mainzer 1996, 511). There is another
statement that if effects ‘possess a certain dissymmetry,” then the cause
will also manifest it.

Similar arguments are offered by van Fraassen. He points out that
there are two forms of arguments when we consider symmetry principles.
The first one he calls the ‘symmetry requirement: problems which are
essentially the same must receive essentially the same solution,” and the
second being that ‘an asymmetry must always come from an asymrﬁetry'
(van Fraassen 1989, 236 and 239). The similarity of these two
formulations with the ones described above can be noted.

6. SYMMETRY IN ART

It seems clear that symmetry is of fundamental importance to the scientific
description of nature. In the case of arts, the situation is not so clear.
Ancient and medieval cultures have exhibited a high degree of engagement
with the idea of symmetry in the fields of arts, architecture and even
music. But the fundamental problem in enquiring about the nature of
symmetry in these fields, unlike in science, rests on an ambiguiry
concerning the meaning of symmetry. In the case of scientific discourse,
symmetry is understood in terms of invariant transformations. The
description of symmetry by groups further gives a semblance of
uniformity to the notion of symmetry in all its manifestations in nature.
Whether we are talking of symmetry of crystals, or of patterns on an
insect, or of processes we are working within the same formulation of
invariance using mathematical groups. However, this does not mean
that there are no philosophical issues in this approach. All that it shows

is that there is some conceptual and methodological homogeneity in the
study of symmetry in science.
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In art, the situation is somewhat different. Some common
manifestations of symmetry occur across many domains: patterns used
in ornamental art; the use of certain proportions (such as golden section)
in architecture; ideas of balance and harmony in painting; repetition of
certain harmonies at specific intervals in music and so on. In none of
these cases we can understand symmetry in terms of invariant
transformations. In these fields we do not even begin to believe that we
could describe objects of interest through frames of reference with respect
to which transformations can be performed on these objects. Thus we
tend to come across terms like balance, harmony, simplicity, unity and
elegance that somehow seem to keep referring to the idea of symmerry.
Also, since we do not understand objects of art through a mathematical
description, the description of symmetry through groups is also not
possible — thereby negating the simulation of a belief that symmetry is
one clear idea manifested in different ways in nature.

But this does not mean that symmetry was never an important concern
in arts. It is well known that the earliest cultures across the world, whether
they were ancient Indian, Chinese, Greek or the Navajo cultures, created
art forms that exhibited a strong sense of symmetry. In Indian art and
architecture, symmetry principles played an important role. It is well
known that the fire altars used in Vedic rituals were built based on
considerations of symmetries. Vatsyayan (1983, 27) notes that the
different designs of the altars were ‘conceived in the likeness of the human
body.” Both man and bird images were used to delineate the final form
of these altars. These shapes embody geometrical forms and the
importance of these geometrical motifs is-captured in the comment that
these motifs guided the ‘destinies of Indian art for centuries’ (ibid., 33).
The form of the square and the circle (and combinations of these) figure
prominently in the Nagyasastra. These two figures symbolise the ‘coming
together of two opposites’ (ibid., 42). The square is the ‘perfect form
suggesting order’ whereas the circle ‘is the continuum of time’ (ibid.,
42). The example of Sricakra, with its complex conjunction of
symmetrical figures is another example of the importance of symmetry
in ancient Indian thought.

In the Natyasasira, the representation of the body and the many
postures described in it also exhibit preference for symmetry. The navel
of the body is the ‘centre of the wheel (ca£ra) of the Vedic and Upanisadic
image’ (ibid., 52). (Note the similarity with Leonardo da Vinci’s famous



20 <+ PHILOSOPHY OF SYMMETRY

drawing of the human figure inscribed in a circle.) The various postures
of the body, described in the'Natyasastra, used in sculpture and theatre
(including dance) can also be inscribed in the form of symmetrical and
proportional relations within a circle. One of the central positions so
described exhibits a highly ordered symmetry of the various ‘parts’ that
define the postures (ibid., 54).

The geometrical figures are also used as symbolic representations.
For example, the equilateral triangle (the ‘most’ symmetric form of the
triangle) in Vedic thought represents Purusa, agni as also Vispu. The
various Indian dance forms illustrate this engagement with manifestations
of symmetrical figures. As Vatsyayan notes (ibid., 57):

Bhararanaryam is a series of wriangles in space, Kathakalia square, Manipuri
a spiral or an intertwined serpent and Kathak an axis. Orissi evolves its
distincrive basic motif of the tri-bhanga which is also a symmerrical
geometrical figure from the vaifakhba sthina.

The human body was also used as 2 measure in Indian architecture.
In the case of temples, ‘the analogy of the human body is consistently
followed in the structural plan of the temple’ (ibid., 74). In Indian
architecture and sculpture, the principles of composition were determined
by the square and the circle. ' '

. Both in the Indian and Western traditions, the idea of symmetry is
essentially related to proportion and measure. The word ‘Symmetry’ is
derived from the Greek roots sym meaning ‘with’ and metros meaning
‘measure’ (Hahn 1998, 9). Both Indians and Greeks placed an inordinate
emphasis on proportions in art, architecture and music. The Golden
Section, which is nothing but a particular value of a proportion, was
long considared the ‘aesthetic standard’ (Mainzer 1996, 41). Even in
ethics, Aristotle lays emphasis on the proportional as being what is just
(ibid., 48). The ideas of proportion, harmony, balance, simplicity and
unity are generally found wherever symmetries are. In both Indian and
Greek traditions, symmetry (and the above terms that stood for it) has
been associated with beauty and truth. These issues continue to find
expressions in art from ancient to modern times and will be the subject
of more detailed discussion in Part Three,
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7. SO WHAT IS SYMMETRY?

In this brief overview of symmetry, there are various insights into its
complexiry. In its many manifestations, symmetry seems to play multiple
roles and in so doing gets associated with many important scientific and
philosophical concepts. The remaining part of the book will explore
some of these issues in more detail thereby clarifying the relation of
symmetry to many of these concepts. Some of the key terms that are
associated with symmetry and an outline of their relation can be listed
as follows.

1. Property: Is symmetry a property of natural objects, both
microscopic and macroscopic? What kind of a property could it
be? Is it a property of the first-order property of shape or form?
Colour symmetry immediately suggests that the idea of symmertry
is more than a property of shape. Various other conceptual ideas
associated with symmetry preclude the restriction of symmetry to
shape. But even if we don'’t use these arguments and stick to shape
alone, we will see that symmetry is not a property which is derivarive
of shape and in general is not a second-order property.

2. Conserved properties: Is symmetry a property of certain events
and processes? Conservation of charge or energy, for example,
occurs in a process in which the initial and final energy or charge
is the same. These events are characterised by the property of
possessing appropriate symmetries although it is more often phrased
the other way: when symmetry, then conservation. All conserved
events secem to exemplify symmetry as a properry.

3. Causal role: Symmetry seems to behave as a causal agent. It has a
causal role that can be used to explain the formarion of shapes,
evolution of organisms and also the dynamics of processes. The
creation of masses through symmetry breaking, conscrvatlon laws
etc., exhibit a causal logic of symmetry.

4. Transformations: In many examples of symmetry (especially in
science), symmetry is related to transformations. What exactly is
the character of this relationship? Symmetries by themselves are
not transformations. We call transformations associated with
symmetry as symmetrical transformatlons For example, rotation
is an action, a transformatxon..

ansformation, we may
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confused and equated with transformations. But when we say that
a circle has rotational symmetry, the idea of symmetry seems to
‘belong’ to the circle rather than to rotations. Also transformations
by themselves do not say anything about symmetry. The condition

of symmetry arises as a consequence of transformation and
invariance.

Invariance: Symmetry has been understood in terms of invariant
transformations. Particular symmetries specify invariance of
particular transformations. But invariance is a loaded concept.
Invariance of what? In the examples discussed above, invariance
can be with respect to the form of an entity (snowflake); with the
structure of a pattern (ornamental groups); or even the form of
equations (as in most of modern physics — invariance (covariance)
in the ‘written form’ of the Lagrangian, Hamiltonian and the
equations of motion). The problem of invariance is the problem
of understanding similarity and recognizing criteria for comparing
initial and final states in order to claim that there is invariance.
Thus, this issue is related to the metaphysical problems of identity.
As noted earlier, broken symmetries, symmetry breakdown and
approximate symmetries are dependent on some idea of partial
identity. -
Law: As we have seen earlier, conservation laws are a consequence
of symmetry. But what is this nomic role of symmetry? What is
the relationship between the form of a law and symmetry?
Symmetry principles: We have scen some examples of symmetry
principles. These principles, including general statements on beauty,
truth and simplicity, occur extensively in any discussion on
symmetry. Nature illustrates a high degree of simplicity and also
exhibits a wide range of symmetries; so perhaps symmetry is related
to some idea of simplicity. Theories that build on symmetrical
principles have an economy of expression and are seemingly elegant.
The least action principle that explains fundamental natural
processes also exhibits this simplicity and elegance. But how do
we analxtically understand simplicity with reference to nature? If
mathematical symmetries are simple and elegant, should nature
also be so? What is the correspondence between the simplicity of
theoretical models and the simplicity of nature? Also, the relation
berween symmetries in cause and effect is intriguing,
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Mereology: One of the immediate consequences of symmetry is
the natural relation of symmetrical objects with the issue of parts
and wholes. Given a slice of a symmetric object, the whole is easily
imaginable. This is easy to see in ornamental and mosaic
symmerries. Knowing that something is symmetric, we need only
be given a part and we can confidently construct the whole.
Symmetry has the ability to fill in the blanks and to give us a sense
of the whole from its parts. This also has phenomenological
consequences.

Criterion for kind (as ordering): When we form a set, we use some
criteria for membership. Symmetry offers a criterion for the
construction of families. The classification of planar and 3-
dimensional objects is an example. Classification of manifolds (and
shapes) through symmetry is very important in mathematics. The
classification of elementary particles into families that obey some
symmetry considerations is also central to modern physics.
Proportion: This, as we saw eatlier, is one of the dominant senses
of the idea of symmetry in the realms of art and philosophy.
Although this term is phenomenologically loaded with associated
ideas of beauty, harmony etc., the link between symmetry and
proportion needs to be further examined.

Harmony and balance: This is related to the point about simpliciy.
As already mentioned, symmetry is very closely aligned with the
notions of harmony and balance. Balance is a fertile image for
symmetry. Symmetrical objects and events are usually considered
to be ‘balanced’ and ‘in harmony’. Balance of tastes is a simple
phenomenological example of symmetrical distribution of tastes.
But all these terms have to be sharpened to be of further use.
Perception: Do we perceive symmetry? Like we perceive colours?
There seems to be an observational content to symmetry. Some of
the terms in this list like balance, harmony, simplicity, and the
relation of parts and wholes are also those that can be
phenomenologically accessible. To understand symmetry we have
to further look towards phenomenology of perception. The
interesting relation between perceptions of form and Gestalt ‘laws’
of perception also suggests a reason as to why symmetries are
described by groups. '
Epistemology: In the use of symmetry as models for theories, its
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presence in natural laws, in making possible predictive results and
in its explanatory capacity, it seems clear that symmeétry has an
epistemological role.

14. Aesthetics: Related to points 7, 10, 11 above. There is an aesthetic

component to symmetry — both in the case of natural and arc
forms as well as in the construction of theories and experiments,
suggesting its essential role as an aestheric property.

So what is symmetry? This list conveys the complexity of the idea of

symmetry in its most general sense thus suggesting the possibility of a
fertile philosophical analysis. The philosophical discussion of symmetry
offered here is in two parts: metaphysical and phenomenological. The
discussion of symmetry as an aesthetic property is found in the latter.
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For some wonderful picrures relating to the symmetry of these and other
similar creatures, see Field & Golubitsky (1992). See also, Hahn (1998, 168).
For a comprehensive study of patterns in nature, see Ball (2001).

For more on symmetry in chemistry, see Hargitrai & Hargittai (1986) and
Hoffmann (1990)

.Mainzer (1996, 510). See also Close (2000).

For a more detailed discussion, see Hahn (1998).
Mainzer (1996, 297). See also Rosen (1995, 151 — 152).
See Schurtz (1980).



PART TWO

Metaphysics of Symmetry

Metaphysics offers an analysis of various categories that are useful in
understanding symmetry. As the listing at the end of Part One indicated,
there are indeed enough reasons to believe that the idea of symmetry is
quite complex and a metaphysical analysis could elucidate its nature. I
will discuss the relevant metaphysical categories here and analyse the
idea of symmetry in the context of these categories. The meraphysical
categories that are relevant to our study are: object, event, properties,
change, form, identity, quantity, kinds, causes and laws.

1. OBJECTS

Symmetry is manifested in diverse ways across a range of objects. In a
sense, to be clarified further, it indeed seems to be the case that symmetries
are properties of these objects. Thus, to begin this metaphysical analysis
of symmerry it would be useful to clarify the notion of an object.

1.1. What is an object?

In general, we can distinguish between two types of objects, concrete
and abstract. Concrete objects are typically those that are spatiotemporal,
existing in space and time, examples being ordinary material things.
There are different formulations of what it means to be abstract and the
common one is that abstract objects are non spatiotemporal. There are
philosophical problems in this distinction between the concrete and the
abstract, and thus a more concise explication of concrete and abstract
needs to be given. Symmetry is manifested in both concrete and abstract
objects. -

Lowe (1998, 34) disiinguishes two approaches to the question “What
is an object?’ and calls these the Semantic and Metaphysical approaches.'
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In the metaphysical view ‘the term ‘object’ properly applies to any item
which enjoys determinate identity-conditions and hence to any item
falling under some sortal concept supplying a criterion of identity for its
instances’ (ibid., 34). He considers a particular book and a particular
boy as examples of objects in this sense.

Even the simple example of a particular book as an object suggests
that the recognition of an object as a book involves certain criteria of
identity that will enable us to sort books as one kind and this depends
on some criteria of identity for objects. When we consider the semantic
view, there is inflation in the kinds of entities that can be called objects.
A common example is that of a grin: The grin on John's face is broad.
This statement seems to imply that there is ‘something’ which is ‘the
grin on John's face’. One can then consider this sentence as implying
‘John is wearing a broad grin’ but this quantifies over grins. Paraphrasing
is an attempt to remove the reference to grins. For example, we may
paraphrase the above sentence to ‘John is grinning broadly’ but
paraphrasing is symmetrical and does not tell us which of these two
formulations should be taken as correct. Lowe also notes the important
point that such paraphrasing is also possible for objects like books. One
of the ways to deal with this problem is to claim that only those singular
terms that have a criterion of identity can refer to objects, thus
immediarely ruling out grins as objects. Two responses against this are
relevant to our discussion. First, formulating criteria of identity means
moving into the meraphysical domain and away from limitations of
meaning. Second, criteria of identity cannot be provided for all kinds of
objects. The identity of such objects, as the example of persons given by
Lowe, does not consist in giving criteria ‘outside’ them.

The meraphysical answer is that ‘to be an object is to be an entity
possessing determinate identity conditions’ (ibid., 37). Note that this is
a statement about objecthood and not about the existence of entities
that may not have such determinate identity conditions. This view will
imply, for example, that subatomic particles, which manifest wave-particle
duality, cannot be seen as ‘objects’. This is not a statement about existence
but abour what is it to be an object. Thus, there can exist entities like
grins and waves but these are not to be seen as objects.

Lowe extends this metaphysical analysis of objects further by adding
the condition of (1) determinate countability and (2) determinate identicy
conditions. This generates four types of entities. Those that have both
determinate countability and identity conditions he calls ‘individual
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dbjccts’, such as a book. Entities that have (1) but not (2), like quantum
particles, are quasi-objects. Quasi-individuals are those that have (2) but
not (1), that is determinate identity conditions make identification
possible but they are not countable, like mass and energy. We are then
left with entities which have neither (1) nor (2), which he calls as non-
objects, an example being ‘the particular sphericities of individual
spherical objects’ (ibid., 58).

[t may seem that the identity conditions for objects are actually those
of its properties. There are two ways of dealing with this problem. We
can subscribe to an ontology that differentiates objects from the ‘sum’ of
all its properties. This is equivalent to taking the position that properties
aré themselves not objects. Lowe argues that a particular red apple that
belongs to the kind apple exemplifies properties such as redness or
sphericity only ‘in virtue of possessing particular instances of those
properties’ (ibid., 157). That is, properties are adjectival rather than
‘objectual’. Such a position invariably needs an ontology of substance to
uphold it. Substance is that which does not ‘depend for its existence
upon anything other than itself,” in terms of identity dependence. Such
a substance is a (concrete) particular and excludes universals, clearly
suggesting that universals in this view are Aristotelian rather than Platonic.

Lowe’s position then is that particulars and universals can be objects
provided they possess determinate identity-conditions. And also both
can be concrete or abstract. The identity conditions of concrete objects,
since they exist in space and/or time, are ‘necessarily temporal in character’
while abstract objects will have ‘timeless identity conditions’ (ibid., 158).

1.2. Form and objects

We have noted that substances are concrete particulars. These substances
may be composed of other concrete parts as components. Such substances
which are not mereological sum of these component parts are called as
composite substances. This brings us to the important notions of form
and matter that commonly occur in understanding objects. There is an
intrinsic relation between form and identiry.

What a composite substance is composed of ... may be called its matter,
and how it is so composed may be called its form ... It is the form of a
substance, rather than its marter, that must be preserved through qualitative
and relational changes in that substance — such changes being events in
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which that substance participates and through which it persists identically.
Thus sameness of form (or sameness of ‘structure’ or organization’) is the
equivalence relation on a substance’s components which grounds its
diachronic identity: and precisely what this equivalence relation is will
depend on what kind of substance the substance in-question is. To state
what this equivalence relation is for composite substances of a given kind
is precisely to provide a criterion of identity for such substances (ibid.,

168).

A composite substance is made of parts but its composition is not the
mereological sum. Thus these substances instantiate a hierarchy of kinds.
The important point to note here is that ‘the kind which determines a
substance’s form’ for the purposes of providing its criterion of identity
(that is, the form whose sameness must be preserved throughout the
persistence in time of that particular substance) is the highest kind in the
hierarchy of kinds instantiated by that substance’ (ibid., 168).

We can immediately note the relevance of the above formulation to
the idea of symmetry in objects. The symmetries of some natural objects
are typically those that keep the form invariant. The bilateral symmetry
of animals is a symmetry of the form of the animal although its internal
parts are not arranged symmetrically. When we say that a snowflake has
60 degrees symmetry under appropriate rotation, we are essentially talking
about the sameness of form. Form does indeed provide the criterion of
identity over change (transformation) and the symmetry of the object is
a statement abour the persistence of the object over time. If this is the
‘highest kind’ instantiated by that substance, then symmetry — which
provides a stricter criterion of identity — is fundamental to the object.
Symmetry is also used, as we saw in Part One, to classify objects into
certain kinds. The idea of symmetry in natural objects indeed manifests
this priority of the exactness of form.

But Lowe has an expanded definition of form, namely sameness of
form is also equated with sameness of structure. In the case of composite
substances, as in his examples of clock and horse, the diachronic identity
of these objects is based on the sameness of the structural components of
a clock or a horse. When we talk of the symmetry of natural objects and
for the most part they are composite substances, we seem to be restricted
to the form, that is, the shape of the object. Symmetry transformations
of these natural objects do not change the internal structure but this is
incidental to the definition of symmetry. Symmetrical transformations
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by necessity, in the examples discussed, are structure preserving. When a
snowflake is rotated through 60 degrees, its form is invariant (the exact
nature of this invariance will be clarified later) although the position of
its constituent parts, say particula- water molecules, will have moved in
spacetime. In any case, the invariance of the form does not change the
structural relation. That is, symmetry of the form that is privileged in
the symmetries of nature already supplies a stronger criterion of diachronic
identity having as a consequence structural sameness. This is made clearer
in those objects/figures that are ideal geometric forms like a circle or an
equilateral triangle.

The symmetries relevant to the above discussion are those which are
associated with concrete objects. We have seen earlier that they are
manifested even in events. And in particle physics the idea of symmetry
is essentially inspired by and implicated within the domain of
mathematical forms. To understand these formulations, I will consider
symmetry in the context of abstract objects.

1.3. Abstract objects

The metaphysical formulation of objects allows both concrete and
abstract objects. Since objects are defined through determinate identity

" conditions, it implies that abstract entities which possess these identity
conditions should also be objects. There are many abstract entities —
mathematical entities like sets, properties and even propositions. Some
of them lack determinate identity conditions, like the property of colour
or even that of a grin. As noted earlier, this does not imply that these
entities do not exist but only that they should not be given the status of
objects.

There are different ideas of abstractness. One is that abstract entities
are not spatiotemporal, in contrast to concrete entities, which if not
existing in both time and space, exist at least in time. Lowe calls these as
abstract, entities, examples being numbers and universals. Abstract,
entities are those that cannot exist independently of some other entities,
for example, colour. Abstract, entities are derived from abstractions from
concepts such as Fregean extensions. .

It is important to note that the lack of spatiotemporal existence (as
for abstract, entities) in itself cannot preclude objecthood. As Lowe
correctly notes, to exist spatiotemporally is ‘just to have certain sorts of
properties and relations — spatiotemporal ones’ (ibid., 212). This implies
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that abstract, entities can be objects and Lowe, like others who prefer an
ontology of abstract objects, takes recourse to causal powers that such
objects can have. These causal powers are seen as playing an explanatory
role and in this case cerrain universals can be considered as abstract objects
— for example, kind universals like horse possess the required determinate
identity conditions. They also play an essential part in ‘narural laws
governing the behaviour and composition of all particulars which
instantiate those universals’ (ibid., 219). Note that abstralct2 entities do
not have to exhibit the lack of spatiotemporality. They are only those
that cannot exist independently from other entity or entities. Events are
abstract, objects according to Lowe.

Consider the case of symmetry. Sets are abstract objects. Groups are
sets along with an operation and the elements of this group obey some
conditions as described in Part One. Symmetries are described by groups.

Transformations are related to events, abstract, objects. Symmetries play

a causal explanatory role — an important role, which can allow us to see
abstract entiries as abstract objects. So what is the exact relation between
symmetry and abstract objects? Is it similar to the relation between
symmetry and concrete natural objects discussed above?

What kind of abstract entities occur in our understanding of
symmetry? Groups are one such class of entities. Bur there are others
too. Geometrical figures that are symmetric are also abstract entities.

Consider a circle, which has infinite rotational symmetry as also
reflection symmetry. A circle is a geomerric object and is not located
spatiotemporally. We may have a pictorial representation of the circle
but thar does not make the circle a spatiotemporal object. The analogy
with sets is useful here. Sets are abstract objects though we write sets in 5
particular way: {a, b, ...}, for example. The abstract circle need not only
be represented in the usual pictorial form on the page. It can also be
defined E.>y the equation x? + y2 = {2, This equarion itself embodies the
symmetries of the circle. For example, we can easily see that changing x
o-x,yto-y, i{]divifiually or both together, leaves the equation invariant.,
The rotational invariance is also easy to see if written in a matrix form,
The set of these matrices wil] form one representation of the
corrcspom.img group. (Note that the equation in itself is a relation and
not Tn ZbJCthf')Uf the circle defined by that equation is an object. We

maKJ oo; w;r; [t,';sc Z.:ntt:ocr?l:;ttlﬁ:;efcrring'.to th_" object called Fhe circle.)
athematical circle and an object which
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may have circular symmetry? In the case of natural objects, the circle
seems to be instantiated concretely in some sense, unlike the mathematical
circle. But what both these entities have in common is the property of
circularity. This property may be instantiated in particular circular objects
which are spatiotemporal. So both the mathematical circle and a circular
object have a common property and this allows us to view circles as
being present in the natural as well as in the abstract world. Symmetry
of the circle is a property of all particular circles, both in mathematical
and natural objects.

Do shapes of natural objects, usually seen as a first order property,
always have a correspondence with an ‘equivalent’ mathematical shape?
This question is important because I believe shapes have been invested
with an undue priority in considering them as primary properties. Since
all natural objects have shapes, this priority reflects the belief that shapes
are somehow a part of the object. There are reasons to be suspicious of
this position. Shapes of objects (form, contour, boundary are the other
terms we may use) are abstractions from the object. The form or the
boundary delincates the extensionality of the object. This abstraction of
the shape, therefore, must really be seen on the order of abstract entities.
While all shapes are abstracted from the object, certain shapes can have
some equivalent mathematical formulation. For example, the circle is
also defined by the equation given above. An irregular shape may have
no such mathematical form that may refer *o it but can always be so
defined through some patching of more regular shapes.

Thus, mathematical abstraction as against perceptual abstraction is
more exact and describes or maps every part of the form. Our abstraction
of shape when we see an object is more general and only recognises an
‘overall’ picture, as well illustrated when we look at a tree. Perceprual
abstraction in general has the characteristic that the form is seen as part
of the object whereas mathematical abstraction makes form the ultimate
end.

When we usually talk of the symmetry of an object, we are talking
about the symmetry of its form. This form is actually an abstraction and
shares something essential with a corresponding mathematical form.
Symmetric objects have forms that are symmetric. But it is only in the
case of physical objects that we separate form from matter. The
mathematical circle has only its form, which is also defined through
other mathematical ways. Consider a simple example of a physical object
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that has the shape of an equilateral triangle. We can claim thar the shape
of this object is actually a mathematical equilateral triangle, provided
this can be defined mathematically. But how can we define this equilateral
triangle purely mathematically, like the circle for instance? And how can
we extend this to more complex forms?

Symmetry is an answer to these problems. We can define a
mathematical form by defining its symmetries. That is, once we list the
mathematical symmetries of an equilateral triangle, any mathematical
form that has all these symmetries will be ‘equivalent’ to this form.
Symmetries can mathematically classify all equivalent mathemarical
forms. In fact, the classification of manifolds is possible through the
classification of the symmetries of the manifold. In other words, given
the symmetries, we can know what the form is. So now since the
equilateral triangle can be classified by its symmetries, we can believe
that the form of a physical object which has equilateral form is nothing
but the mathematical form.

As a consequence, shapes are not the primary property of objects.
The form of these objects is an ideal form, which is defined through its
symmetries. Therefore symmetries are the ‘entities’ that are primary for
particular descriptions of objects. '

To rephrase it in another way: Lowe argues that identity with respect
to form supplies the determinate identity conditions for composite
substances. But this form, as a mathematical form, derives its identity
not because it continues to ‘look like’ the old form but because of the
symmetries of that form. Thus, symmetry supplies the identity conditions
for most mathematical forms and so is prior to what we call as form.

What about irregular forms that cannot be mathematically defined
in an exact manner (like the equation of a circle) or that do not possess
any exact symmetries? Obviously the shape of these irregular objects is
still an abstract shape, if not a mathematical one. (The real distinction is
between the abstract and the mathematical. While mathematical entities
are all abstract, not all abstract entities are mathematical. Then the
question is whether all shapes are abstract or are they, more precisely,
mathematical? The reason for the reduction from the larger space of the
abstract to that of the mathematical is that it allows us a ‘metaphysical
ordering’.)

In the case of irregular forms, I would suggest that they can always be
decomposed as a ‘sum’ of regular forms, or they can be patched together
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with regular forms like what is done in triangulation of spaces. These
regular forms are those that can be defined by their symmetries and this
patching also allows us to see irregular forms as ‘composition” of
mathematical ones.

In metaphysical analysis, the primacy given to shape does not seem
to be sensitive to the mathematical formulations of it. And in what sense
is a mathemarical description of use in metaphysics? We need look no
further than sets and the important role it plays in metaphysics. My use

of mathematical description of shapes is similar to the use of sets in
metaphysics.

1.4. Shape or symmetry?

Consider the example of the triangle. Armstrong (1997) asks, “What is
it to be a triangle?’ And his answer is: ‘It is to be a thing anchored by
boundaries having just three parts, each of which is a straight line’ (ibid.,
56). His query is placed in the context of determinables and determinates
and the whether determinate shapes can be seen as universals like the
example of length. Length is a determinable and a particular length, say
one meter, is a determinate. There is a problem in extending this analysis
to shapes.? As Armstrong notes, ‘the unity of the class of shapes is a
"much messier affair than the lengths, durations and masses...” (ibid.,
55).

In the case of triangles, the straight lines are three ‘non overlapping
particulars’ and since the idea of.length is inherent in the lines, we are
able to use length as determinable. These three lines of the triangle are
Yrelated to each other in that they intersect and form angles. So, for
Armstrong, the triangle can be described ‘in terms of properties of the
three boundaries and relations of the three boundaries to each other’
(ibid., 56). And a similar analysis follows for shapes with more boundaries
thus allowing Armstrong to exhibit a more complex relationship between
determinables and determinates in the case of shapes.

But mathematics offers a way of classifying shapes and thus suggests
how ‘unity of the class of shapes’ is possible. This is through the use of
symmetry which gives a criterion to put a class of shapes into one family.
Consider the equilateral triangle. The symmetries of the triangle capture
the property of ‘triangularity’. We should remember that our picture of
a triangle with lines and angles is just one representation of the triangle.
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Imagining triangles outside this picture is indee.d difjﬁcult c'on511der]13ng
the fact that we are so immersed in this way of picturing a triangle. But
the mathematical descriptions (through symmetries or equations where
possible) are not limited by this graphic vision. ‘

The case of a circle is simpler to understand. We do not Peed a picture
of a circle to understand everything about a circle. It- is a grapl'flcal
representation of the equation of a circle. The symmetries <.)f tl'le circle
are already given in its equation. So when we talk of c1rculanry,. it wou!d
not be completely dependent on the way we draw it. This is true in.
general for continuous manifolds like a sphere. It is also true for hn.ghcr
dimensional figures like a 3-dimensional cube or even a 4-dimensional
one. In fact just as there are five platonic solids in three dimensions, we
can construct analogues of these platonic solids in four and higher
dimensions (Mainzer 1996, 162).

The key point here is the difference between an abstract shape and
realisations of that shape. The relevant question then is how much
metaphysical investment can one put on one particular realisation, namely
the visual boundaries? Or following the dictates of  posteriori (scientific)
realism, which philosophers like Armstrong hold, shouldn’t the »
metaphysical property of shapes go beyond the particular visual realisation
of shapes?

Let me illustrate it further by considering the theory of manifolds.
We can begin with this definition of a manifold M: ‘A set (of ‘points’) M
is defined to be a manifold if each point of M has an open neighbourhood
which has a continuous 1-1 map onto an open set of R” for some 7’
(Schutz 1980, 23). Consider the example of a sphere. (In metaphysics it
is common to ralk of sphericity as the property of the sphere.) First of all

the sphere is a manifold - here we are referring to only the surface of the
sphere. The equation for a s

phere (similar to that of a circle) is x2 + y* +
20 2 Thi i

2" = r". This has only two degrees of freedom because the third can be
found once we know any two values of x, y or z. This sphere is denoted
as S%. There is more than one mapping from $2 to R?(
stereographic map of the sphere to the plane. The nat
immediately suggests that the sphere has a differe
R? — that is, we cannot find 3 s
surface of the sphere (ibid., 26 —
in capturing the essence of the
the sphericity of the sphere).

plane). One is the
ure of the mapping
nt global topology from
ingle map that is good for the entire
28). The power of this formulation lies
global topology (what we might call as
As Schutz notes, these remarks also apply
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to the surface of a bowl or a wine glass, which are deformarions of $2. As
we can see, shape is not a term that has any significance in this description.
The global properties are captured by maps called diffeomorphisms.
This gives us a class of manifolds that share a common global topology.
Examples of diffeomorphisms are the mappings from a smooth crayon
to the sphere; surface of a teacup and a torus (the exemplar of a torus is
a doughnur) (ibid., 29 — 30). Thus we have an illustration of how ro
form classes of shapes that are defined through diffeomorphic equivalence.
The metaphysical priority to shapes inflates the ontology of shapes
whereas mapping of manifolds generate ‘kinds’ of shapes. Bur also note
that shape as it occurs in metaphysics rarely occurs in this mathematical
analysis.

Although shape is not sngmﬁcant, symmetry considerations are. Not
only do certain manifolds have symmetries, the groups that describe
symmetries are themselves manifolds. Here are some examples of
manifolds that are related to transformations and groups: The set of all
rotations of a rigid object in three dimensions (subset of which are those
rotations that leave such objects ‘invariant’); the set of all pure boost .
Lorentz transformations (that occurs in the symmetries of relativiry
theory); and important for our purposes, Lie groups, which are also
manifolds (ibid., 28 — 29). Lie groups are groups of continuous trans-
formations. Every continuous symmetry is described by a Lie group.
Since Lie groups have a manifold structure, it is entirely reasonable to
believe that the shape of this manifold is nothing but the symmetry of
the group..

I hope that by now we can believe that at least for symmetric figures,
shape is an ill-defined term and symmetry should take its place. In the
case of figures like triangle or for surfaces that are not exactly symmetric
a similar conclusion holds but is expressed somewhat differently. For an
irregularly shaped manifold, we can cover the manifold with a symmetric
figure and thus give an effective description of this manifold.

One may, as a final recourse to save shapes claim that shapes can be
accessed phcnomenologlcally But there are two problems. First, the
recourse to phenomenology at this late stage is unwelcome and arbitrary.
Secondly, it is not clear that we ‘perceive’ shape instead of something
like balance, symmetry etc. It is not even clear that shape is not something
that is essentially abstracted mentally as mentioned earlier.

The upshor of this discussion is the following:
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1. Shapes of concrete objects are abstract entities. (Here is a source of
confusion — shapes as universals are necessarily abstract entities.
Bur here the notion of abstractness is that even particular shapes
are not concrere and are ‘abstracted’ entities. Thar is they do not
‘belong’ to the object like mass and charge do. )

2. Abstract objects have the ‘same’ shapes as their natural counterparts.
As a contrast, consider the example of mass or colour. There are
presumably no red sets or green numbers. Burt abstract shapes have
the same shape as their counterpart concrete objects. A particular
mathematical circle has the ‘same’ circularity as a concrete object
that is circular and which presumably has the ‘property’ of a circle.-
This means that a particular shape and general shapes are properties
that are common to both concrete and abstract particulars. What
other kind of properties is common in this manner?

3. Shapes can be classified in terms of topology for most of the
examples considered earlier. Symmetrical shapes can be classified
with respect to symmetrical groups. We have already seen that Lie
groups, for example, are themselves manifolds.

These are some of the consequences of a metaphysical reflection on
objects and their relation to symmetry. There is yet another mathematical
object that has to be analysed in further detail — groups. Bur before | do
that, more comments on point 2. : : :

1.5. Tropes and symmetry

Campbell (1997, 125) in a critique of universals suggests a trope structur.

for properties. Drawing upon D.C. William’s theory of tropes, Cam belT
claims that properties are not universals but particulars’ Absl:raq
particulars are called tropes. His definition of abstract is with c.>p osition
to concrete — similar to Lowe's abstractl entities. Recollect ou!: earlier
point that shapes are abstractions from concrete objects. Campbell’

notion of abstract is equivalent: ‘an item is abstract if itis g;)t befop thS
mind by an act of abstraction, that is, by concentrating atténti n on
some, but not all, of whar is presented’ (ibid., 126). The shift 1o ct):(l) oc:
s against. universals understands properties as always being instahriafcd
in a particular entity. Since these properties, whether as universals or
tropes, are abstract, the particularity of instantiation of these properties
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leads us to consider them as abstract particulars, which are called tropes.
Tropes are fundamental and Williams calls them ‘the very alphabet of
being’ (ibid., 127).

Tropes appear as ‘terms of the causal relations involved’ and also ‘as
the immediate objects of perception’ (ibid., 130). Campbell points out
that we never see an entire cat — perception of the cat does not involve
seeing its back or its interiors. Trope theory claims that what is perceived
is not the object but the tropes of the object. This does not mean that all
tropes can be perceived. A concrete particular is the ‘maximal sum of
compresent tropes’ where by compresence we mean tropes ‘present at
the same place’ (ibid., 132). Trope theory suggests that a property should
be seen as a set of resembling tropes. This set has as its members all the
instances of the property. The tropes that are members of a particular set
resemble each other. This (seemingly) dilutes the difficulty of comparing
resemblances between concrete particulars by considering the
resemblances of tropes. In particular, Campbell notes that the problems
of co-extensive properties and of ‘imperfect community’ (finding
common characteristics of resemblances in a family, for example) are

avoided by the trope approach.

" The problem of shape is not easily disposed of even by subscribing to
trope theory. As Campbell notes, form and volume are not tropes like
any other’ (ibid., 136). This is because other tropes like colours need
form and volume over which they are spread. But since tropes are
particulars, this means that whether other tropes are present or not, shape
and size are inevitably present and conversely, they are found only in the
company of other tropes. Campbell concludes that ‘geometric features’
like shape and size are ‘essential to ordinary tropes’ but cannot in
themselves be counted as ‘proper beings’. Thus he does not consider
form and volume as ‘tropes in their own right’ (ibid., 137). In other
words, red tropes, for example, are not classified independently of the
shape and size of the particulars in which they occur.

. In this context, we need to clarify what Campbell means by ‘geometric_
features’ that are in general not seen as real tropes, Campbell seems to
imply that all geometric features are like this. Does this mean that lines,
angles and manifolds are not real tropes? While he considers tropes as
abstract particulars, mathematical entities are abstract, both as particulars
and universals. We noted earlier hat shape is the same for concrete objects
as well as their equivalent ideali:ed and/or mathematical objects. These
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shapes are abstract but thoy are not locared in any spatiotemporal region
because they are properties of abstract forms. In the case of abstract
objects then, itseems that their properties capnot be tropes. ‘Geometrical
features’ is only one example of mathematical properties. Sets give rise
to other .marhematical features.

In the context of symmetry, the trope approach seems to be more
immediately sensitive to symmetry than the approach of universals. If
we consider symmetry only as a property of the shape (and this is a
limited view of it) then since shapes thcmsclvps are not real tropes, and
moreover since tropes themselves do not have a particularised property,?
symmetry cannot be a trope. But there are compelling reasons to believe
that symmetry is a good candidate for being a trope. Symmetry seen as
a property of objects (this has to be argued and will be done in a later
section) can be a trope in itself. Since tropes are what are perceived, a
phenomenological response to symmetry in- terms of harmony,
proportion or balance, for example, can be explained by the tropic nature
of symmetry. Moreover, since the problem of co-extensive properties is
manifested in the case of symmetry and tropes avoid this problem, it is
possible that symmetry itself should be seen as a trope.

1.6. Quantum objects

The relation between symmetry and objects is not complete withour a
brief mention of quantum objects and the role of symmetry in classifying
such objects. Within this approach is the genesis of the idea.that
symmetries are more fundamental than objects. French (2001) discusses
the historical developments in the growth of the idea of quantum objects,
in particular with relevance to structure, objccrivity and groups.
Individuality of quantum objects has long been considered a tricky issue.
Cassirer argues thac electrons are not individual objects and believes that
quantum physics supports the ‘shift away from particles as substantival
‘things” (ibid., 5). The debate on individuality of quantum particles is
too long and complex for me to deal with here; I will therefore restrice
myself to a few comments on the group-theoretic formulation ofobjccts.
The beginnings of this view can be traced to the classic paper by Wigner
in 1939 on the irreducible representations of Lorentz group, which had -
a correspondence with the equations of quantum mechanics. This
approach was finally instrumental in classifying quantum particles.
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The association of these representations with objects imply that what
we get are ‘kinds’ of objects and not individual, distinct objects. Thus,
we will have the class of electrons through this classification and not
individual electrons which are marked out in some way through this
group representation. Castellani notes that the group-theoretical
considerations are necessary but not sufficient for unique determinarion
of quantum particles (ibid., 16).* The basic point here is that if intrinsic
properties are derived through symmetry considerations then this is
equivalent to ‘constituting’ the object as a set of invariants (Castellani
1998, 10). The implications and limitations of this approach are still

quite open; nevertheless, it suggests the importance of symmetry as a
fundamental principle in ontology.

2. SETS, GROUPS AND CLASSES

The consideration of sets is central to metaphysics. The most basic
formulations of kinds and classes seem to be naturally associated with
the idea of sets. One of the views of property is that a particular property
is nothing but the set of all its instances. There are also fundamental
problems in-the metaphysical analysis of sets. One, well known, is that
one can construct any set one likes. Given some criteria of membership,
we can construct a set corresponding to it. This becomes a problem
when we consider the ontological status of sets.

A set is an abstract object and satisfies determinate identity conditions.
The equality of two sets is given by the axiom of extensionality. This is a
one-level criterion of identity that states ‘if x and y are sets then x is
identical with y if and only if x and y have the same members’ (Lowe
1998, 41 — 42).> Symmetries are described by groups and groups are
first of all sets in the sense that they collect elements together. But there
are also some important differences berween groups and sets.

2.1. Sets and groups: some differences

Can we supply identity criteria for groups? For example, we can extend
the axiom of extensionality to groups and thus supply an identity criterion
for groups. But there is an added rule here that is needed to not only
equate the members of the groups but also the operation that is defined
on the groups. And this leads to another problem — what does it mean to
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give an identity condition for operations? An operation is typically a
two-place relation (and in the context of groups, they need not be
symmetric = that is, for two elements z and 4 of a group, 2 * 4 need not
be equal to & ® 2). So if we consider a group as consisting of elements
and an operation, then any identity condition must supply ‘identity’ for
this operation. Note that we can also have relations in sets, that is, a
relation berween two elements of a set. For example, we could have a
relation of ordering in a set of elements that is defined bya> b > ¢ > d
for the set {a, b, ¢, d}. But the role of the operation in groups is not of
this ‘kind’. It is a relation that is actually defined by the constiturive
rules of the group, the rules which make the group a group. As we have
seen earlier, these are the rules of closure, identity, inverse and associativity.

We can construct both sets and groups. To construct a set, we choose
a criterion (or some criteria) and collect all members which satisfy this
criterion. In constructing groups we may begin with say two elements
following some criterion and then impose the rules associated with the
operation. The closure property, for example, will necessitate that a third
member of this group could be the result of @ * 4, if this result is not
equal to either 2 or 6. The identity element is specific to the nature of
the operation. For addition it is 0 and for multiplication it is 1. (Note
that 0 and 1 are not necessarily numbers. They can be representations of
0 and 1, as in the form of matrices of appropriate dimensions.) Thus the
membership of the group is constrained by the operation and certain
rules with respect to this operation.

In an important sense, the rules of a group can be seen as rules that
restrict the members of a set. Here, we can use the ideas of internal and
external relations. The elements of a set will have internal relations, those
that constitute the criteria of membership to the set. For example, we
may construct a set based on resemblances and resemblance is itself a
two-place symmetric relation. This is an internal relation in the sense
that it is also the criteria to collect the elements together in the first
place. The group operation may be thought of as external relation but it
is not clear thar this is necessarily so. For, membership to the group
depends essentially on this operation. As an example, consider the
equilateral triangle whose invariant transformations form a group. The
set of elements of this group are angles whose values (in degrees) are
(120, 240, 360). The group operation is addition of these angles which
corresponds to rotation of the triangle. It is the case that (120, 240, 360)

\‘
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is a set — but of whar? We may say that it is a set of three angles which are
the first three multiples of a given angle, namely 120 degrees. Instances
of these sets could just be a collection of angles that have these three
values. As a set this has nothing to do with the equilateral triangle per se.
The many instances of this set could be instantiated by angles made by
two lines of various lengths. This collection is indeed infinite and random
since any combination of the distribution of these angles are instances of
this set.

The role of the group operation is very important. First of all, the
group operation restricts the range of the elements of the group. In fac,
it gives a criterion for aggregation that explains why the three elements
rogether constitute a single set. Note that in the case of ‘pure’ angles, even
the meaning of addition is unclear. What does it mean 1o add two
different values of two different angular forms? Whereas when we consider
the same set as a group, the group nature gives us a criterion for them
not to be seen as a set but as an aggregate that belongs to each other in
some sense.

In order to understand the difference between sets and groups we
will have to consider the many properties of groups. What follows will
be a brief description of some of the important characteristics of a group
which will illustrate the difference between sets and groups.

The rules of membership to the group (always in the context of a
particular group operation) not only restrict the membership to a group
but also the kind of groups we can form. While it is the case that the
examples of groups we have considered earlier correspond to certain
properties, it should be remembered that we can, in general, define a
group abstractly. Particular forms of these groups are particular realisations
of the abstract groups. Given a group there can be many realisations of
it. All these realisations will exemplify the structure of the group which
they realise.

The distinction berween sets and groups, in the context of
membership, can be phrased along the difference between internal and
external relations. The criteria for membership to a set can be ‘external’
and ‘accidental’ whereas for a group, the membership should obey certain
internal and essential relations defined with regard to that group. For
example, it is well known that certain properties of an object are not its
‘essential’ properties and are called as ‘mere Cambridge properties’.
Xantippe's becoming a widow just because Socrates died or somebody
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becoming an uncle merely because his sister gave birth to a child are
mere Cambridge properties. Sets (as against groups) may be seen as mere
Cambridge collection because we collect elements together that may
not have an essential relation between the members. Note that this does
not mean that the elements may not share some property, say being a
planet in the solar system. We should also note another common problem
that arises in the case of sets, namely, whether we should make an
ontological commitment to the existence of a set over and beyond its
elements. If we do not want to make such a commitment then we can
say that a set is supervenient on its members and since, at least according
to Armstrong, supervenience is an ‘ontological free lunch’, we make no
extra commitment to a set beyond the collection of its members.

Is it different in the case of groups? A group is a collection of its
elements. But it is also more than this collection. There is an explanation
for why certain collections can be called groups. This explanation is
necessary, internal and essential to the elements of the group. That is,
the group structure is something more than the collection of its elements.
Consider the part-whole relationship in a set. Given a set, we can choose
any sub collection of its members and this will be a subset of the original
set. So we can form different subsets of the original set. For example, if
{a, b, ¢, d} is a set, then its subsets can be {a, b}, {b, ¢}, {c, d} and various
other combinations of singlets, doublets and triplets. The first point to
note here is that the subsets belong to the same £ind sets as the original
set. That is, each one of these subsets is a set in itself. This may also be
viewed as the partitioning of a set into a collection of subsets. Later, I
will discuss the partition in the case of groups and also whether we can
make an ontological commitment to them.

2.2. Classes

Ler us consider sets and classes first. A set is a collection of elements.
The collection of all elements into ‘one’ set gives rise to the plural-singular
transformation, leading to the question whether this ser exists over and
beyond its members. The way we talk of a collection and of a group of
things in singular manifests this common tendency to singular
quantification. Lewis (1991, 65) notes that plurals ‘are the means whereby
ordinary language talks about classes.” In the case of sets or classes, Russell’s
paradox is well known. Even though we may talk of non-self-membered
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classes in the singular, we know that it is false. But this example does not
repudiate the common shift to singular quantification whenever we talk
of a collection. When we form a collection, we are indeed bringing
together, in a sense to be clarified further, the many different elements.

Mereology is the standard name for this bringing-together. The word
composition or fusion is also commonly used. This language is indebted
to the notions of part and whole. Given a collection of things we say
that the elements of that collection are a part of it. Then loosely we can
say that the whole (collection) is a sum of its parts. The fusion of the
parts into a whole is called mereology. While mereology has its detractors,
philosophers like Lewis and Armstrong take it to be unproblematic. Lewis
writes that mereology, for him, is ‘perfectly understood, unproblematic,
and certain’ (ibid., 75).

To understand mereology, we have to have some definition of a part.
Let me use Lewis' definition here (ibid., 74).

‘x is a part of y iff everything that overlaps x also overlaps y; or iff everything
distinct from y is also distinct from x; or iff y is a fusion of x and some-
thing 2.’

From this, Lewis goes on to state three ‘basic axioms’ of mereology:

" Transitivity: If x is part of some part of y, then x is part of y.
Unrestricted Composition: Whenever there are some things, then chere
exists a fusion of those things.

Uniqueness of Composition: It never happens that the same things have
two different forms.’

Note that these are entirely metaphysical definitions and the
mathematics of set theory is avoided in these definitions. Also note that
fusion and class are to be distinguished here. Armstrong (1997, 185)
calls fusion as aggregate and like Lewis, he claims ‘that to every class
there corresponds its aggregate.” The aggregate is just the toral collection
of its elements but the class depends on how we divide this collection
into specific parts. For Armstrong, this division is predicated on some
principles and is eventually related to states of affairs. Armstrong
subscribes to the unrestricted composition principle but calls it
‘unrestricted mereological composition’. Since this composition only
supervenes on its parts, there is no extra ontological commitment entailed
by the aggregate or fusion. Lewis (1991, 81) phrases it thus: ‘mereology
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is ontologically innocent.” Or equivalently, ‘if you are already commirted
to some things, you incur no further commitment when you affirm the
existence of their fusion’ (ibid., 81 — 82).

Unrestricted composition allows us to construct a fusion whenever
there are some things and it ‘doesnt matter how many or disparate or
scattered or unrelated they are’ (ibid., 79). Because both plural
quantification and mereology are ‘innocent’, we have no further
ontological commitments. Bur the case of sets, in contrast to classes, is
different. Given a collection of elements, we have a set, a singleton by
itself. Then we can construct set of singletons and sets of this set and so
on.

It is important to distinguish between parts and members. This is
also related to the distinction between classes and fusions. A class has
members. For example, the class of all cats will only have cats as members.
But a cat may have many other parts, such as whiskers. These are parts
of a member cat but are not members of the class of cats. Membership is
not the relation of part to whole because a ‘member of a member of
something is not, in general, a member of it; whereas a part of something
is always a part of it’ (ibid., 43).

Lewis suggests that classes also have their subclasses as their parts.
That is, subclasses are not its members. As examples: ‘class of women is
part of the class of human beings, the class of even numbers is part of the
class of natural numbers’ (ibid., 4 — 5). We can distinguish between
members and parts by noting that a whole can be divided into parts in
many ways just like a class into its subclasses but ‘a class divides
exhaustively into members in only one way’ (ibid., 5). Also, mixed classes
and individuals and classes, although allowed by unrestricted
composition, are largely ruled out. Individuals by themselves are never
part of classes. There are one-membered classes called unit classes or
singletons. Singletons have no subclasses, no proper parts and thus are
mereological atoms. Every member of a class has a corresponding
singleton, as does every singleton and every set. Proper classes which are
‘classes that are not members of anything’ do not have singletons.
Singletons are also unique to a member. Thus a class has as many
singletons as its members, in a one-one corrcspondcnée. Singletons are
parts of classes because they are subclasses. But there may be other
subclasses other than the singleton, This structure allows us to view a
class as the fusion of all its singletons. '
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Nort all classes are sets; a class is a set if and only if it is a member of
something. And since there is a one-one correspondence between member
and singleton, this implies that ‘something is a se¢ iff either it is a class
that has a singleton, or else it is the null set’ (ibid., 18). Since a proper
class is one that has no singleton, this allows him to sidestep Russell’s
paradox because non-self-member class is a proper class that has no
singleton and so cannot be a member.

The crucial thing to note here is that a class is not just a fusion of its
members but a fusion of the singletons corresponding to these members.
Since classes are ‘mereological sums of the singletons (unit classes) of
their members,’ a class {a, b, ¢, d} is identical with {a}+{b}+{c}+{d}, where
the + stands for mereological addition. This also gives us a distinction
between fusion and class since a fusion has no ‘unique decomposition
into parts’ whereas a class has in terms of singletons.

The relevance of the above discussion to the analysis of groups is
immediate. Lewis' formulation of class as not being the fusion of its
members is based on the recognition thar class and members belong to
different ‘kinds’, and a part should belong to the ‘same’ kind as the whole.
Since singletons are also sub-classes, they can be parts of a class whereas
members cannot. In the case of groups, we can, in the same spirit, demand
that the parts of a group belong to the same ‘kind’ as groups, that is,
they should be subgroups. Unlike sets, where a singleton of every member
is a legitimate subser, a singleton of a member of a group is ror a subgroup.

Lewis also identifies some fundamental problems in understanding
the nature of singletons. We do not exactly know what these singletons
are nor how they are related to their elements. We do not know where
classes are located — outside space and time or where the members are? Is
there some characreristic that distinguishes one singleton from another?
And so on. I will not discuss the problem of singletons further but now
turn my attention to groups.

2.3. Groups and classes

First of all, note that a group has elements just like a set. It is a set with
an operation defined on its members. There is nothing very mysterious
about the presence of operation within sets. The notions of field and
ring in algebra are precisely those that define operations on a set of
elements. Whar does it mean to have an operation defined over the
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members of a ser? Here is one definition that uses the idea of mapping:
‘In general an z-ary operation in a set Sis a function f= f(a, ..., a) of
n arguments (2, -..,-2,) which are elements of S and whose value f(z,, ...
,a) = bisa unique element of S when fis defined for these arguments.
If, for every choice of 2, ..., a,in S, f(a, ..., a) is defined, we say that
the operation fis well defined or that the set is closed with respect to the
operation f (Hall 1959, 2). Another operation is a mapping of a set into
another which ‘assigns to each x of the set S a unique y of the set T
(ibid., 2). In particular, one can map a set into itself. (This can be a one-
to-one or many-one mapping.)

There is an important consequence of the mapping of a set into itself.
If there are two maps of a set into itself, then we can construct a third
map which is the composition of these two maps. It is well known that
one-to-one (also written as 1-1) mappings of a set into itself in general
form a (noncommutative) group. 1-1 mapping is a permutation of the
elements of the group. Permutation rearranges the members of the set.
Given two permutations of the members, we can easily find their
composition which is also yet another permutation. Although not
generally commutative, this composition is associative. The identity
permutation is- the case of no permutation where the members map
only to themselves. Inverse is also easily defined. So the set of all
permutations of the members of the set forms a group called the
Symmctrlc group.

An interesting consequence follows from Cayley’s theorem which can
be stated as: ‘Every group G is isomorphic to a permutation group of its
own elements’ (ibid., 9). Thus ‘every group of finite order 7 is isomorphic
with a subgroup of S, where S is the symmetric group of degree n
(Rosen 1995, 64). _

So, given a set, a collection of members, the idea of groups is not far
behind and is canonically associated with it. The permutation group
and.Cayley’s theorem immediately reflect this claim. Before we consider
other groups, we can reflect more on this connection between sets and
groups. Consider Lewis’ formulation. A class is nothing but a fusion of ~
its singletons. That is, the class {a, b, , d....} is identical to {a} + {b} + {c}
+ {d} + ... where the + is mereological fusion. Given a class, the
permutation of its members is aflowed naturally. This is equivalent t©
saying that {a, b, ¢, d ...} is identical to {b, d, a, c ...} or any permutation
thereof as long as no member is lost or added. This can be adduceds
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from the fact that mereological addition of singletons is independent of
the order in which the singletons are ‘added’. Note that merely given a
class and not using pair ordering (which is set theoretical), we cannot
necessarily assume the possibility of permutation. But the singleton
decomPOSition of a class allows for permutation. This permutation is
Not a transformation of a singleton to another, that is, it is not {a} being
transformed into {b} because this, given the individual membership or
essence in Bigelow’s term, is not possible. Thus, given a class, we are
given its permutations and all possible permutations give an associated
group’ of that class.

Bur this obviously does not mean sets are the same as groups! It merely
Means that there is a canonical relation between sets and groups. And so
it allows us to understand groups using the language of metaphysics of
sets. At leastup to a point. Given that groups are entities that are central
t© modern physics, it becomes more important to understand the nature
- of groups. |

Among the many differences berween groups and sets is the issue of
Parts. Firstly, note that subclasses are part of classes. Not only that, the
‘Parts of a class are all and only its subclasses’ (Lewis 1991, 7). Moreover,
Lewis adds two further thesis: ‘Reality divides exhaustively into
individuals and classes’ and ‘no class is part of any individuals’ (ibid., 7).

his does not mean that there are no mixed mereological fusions of
individuals and classes but only that they can bz divided exclusively into
individyals (that which has no members but is itself a member) and
classes. The basic lesson in this division is that individuals and classes
divide reality exclusively and that parts of classes can only be subclasses,
and, in particular, individuals are not parts of classes. (This excludes
null set as being a parrt of classes.)

The thesis that only subclasses are parts of classes suggests that a part
of a class can only be that which is of the same ‘kind’ of class as the class
itself. We may justifiably ask whether groups can be seen as classcs' once
We are given the group elements. Say {a, b, ¢, d} is a group. Then is this
also a clags? My point is that once it is known that the elements a, b, ¢, d
Obey the group rules then this collection is equivalent to a set or cla.ss' of
these members, Since in general group elementsare mathematical entities,
€an we say then that groups cannot be classes? There are two rcsponseﬁ
to this. One is that groups more than sets are ‘physical’ as so we:f
xemplified in physics. Second, Lewis in an example of a class talks o
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‘the class of even numbers’ as ‘parr of the class of natural numbers’ (ibid.,
4 —5). What exactly constitutes a class vis 2 vis mathematical entities is
not clear. Gideon Rosen (1995, 619) in his analysis of singletons says
that classes ‘are identified with objects we are supposed to have
independent reason to believe in — items with a place in an ontological
view developed independently of the demands of mathematics.” Jubien
(1989, 96) argues that there is no intrinsic difference berween a set and
class (as an extension) and suggests, for example, that set of dogs and
class of dogs are the same thing.

Lewis distinguishes between class and set by saying that a set has a
singleton, whereas a proper class is one that has no singleton. Similar
arguments can be offered for groups. Let us assume that groups have
singletons of them. We should remember here that an important reason
for wanting proper class not to have a corresponding singleton is to
avoid Russell’s paradox. As Lewis (1991, 18) notes, ‘the class of all sets
that are non-self-members’ cannot be a set but is a proper class. Now it
is the case that for groups there is no equivalent formulation of ‘group of
all groups that do not belong to themselves’. First of all, unlike sets,
there is no way to form ‘group of groups' like ‘set of sets’. Note that if we
are given a group, we can find its subgroups. This is not the same as
group of groups. While sets always allow for a set formation whose
elements are other sets, in general it is not clear how it would be possible
to have a group of groups all of whose elements obey the group rules,
That is, if we are given two groups G and H, it does not follow that (G,
H} is itself a group. The minimum condition for even bringing them
together would be to check if the group operations of G and H are the
same. Let us assume that it is so. Then we have the possibility thac we
can construct a set whose elements are those of G and H with the common
operation. For this set to be a group then we have to check whether the
group rules hold. Typically we can envisage an immediate problem. While
G and H are closed within themselves, the element g » h, g € G and
h € H, need nort belong to this set {G, H} in which case {G, H} is not a
group. Thus, although we can form a ‘set’ of groups, it is not in general
possible to form a group of groups. Also, there is nothing called a null
group — this is excluded immediately by the definition of groups. That
is, if there are no members, there is no identity, no group compositions
that can be used to check for group membership. Thus the category of
groups avoids the two basic problems that beset sets — null sets and
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Russell's paradox. This implies that the problem of accepting singletons
for classes is not really a problem for groups seen as classes.

All classes are not sets. Proper classes differ from sets. Proper classes
are needed to avoid Russell’s paradox. This paradox cannort occur for
groups. So there is really no need to distinguish between classes and

groups. This does not mean that all classes are groups bur only that all
groups are classes.

2.4. Membership

A perennial problem in accepting classes or sets is to explain how and
why we allow members, however disparate and scattered, to form into
one class or set. If we accept unrestricted composition, that is, ‘whenever
there are some things, no matter how many or how unrelated or how
disparate in character they may be, they have a mereological fusion’ (ibid.,
7), then there is really no strong condition that will limit membership to
sets or classes. Gideon Rosen (1995, 622) notes that it ‘is central to the
applications of set theory that there be classes whose members are wildly
scattered and herterogeneous.” Lewis believes that mutilating mereology
is unduly drastic and instead suggests that we can restrict the ‘making
of” singletons. Rather than discuss the merits of either approach, I want
to argue that such a problem does not arise in the case of groups.

Given the operation or the identity element or one member along
with an operation, we cannot have unrestricied membership to a group-
Set membership, subscribing to unrestricted composition, comes at no
cost. For Lewis and Armstrong, at no ontological cost. But group
membership is really a membership and the rules of inclusion are as
much rules of exclusion. We may naively believe that restricted
membership does indeed come with a cost. Perhaps an ontological one?
If there is such an ontological cost, and I tend to believe that there is
one, then it is manifested in the properties related to groups. In physics,
groups correspond to certain symmetries and I will argue later that
symmetry is a genuine property of objects and systems. But for now, let
me discuss the notion of restricted membership.

We have seen two important consequences of this restriction — there
is nothing called a null group or non-self-member group. We have also
seen that in general it is not possible to construct a group of groups
without many special conditions imposed on this ‘fusion’. It is clear that
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in the case of groups, unrcsrrict.ed cor1‘1position docs' not work. Is this
only mathematical? To answer this we wnl'l havg to consider whar it means
to restrict fusion. NOEC hcr,e that unrestricred mereo.logy does not imply
all classes have to be ‘large’. Classes are always restricted in some sense.
When we consider the class of all cats, the membership is restricted to
cats and not dogs. BuF there 'is scfmfthing else that restricts membership
into groups — somcthu?g which is ‘internal’ rather than ‘external’.

Class membership is external. When we form a class of cats, for
example, we conceivably select all those members which are cats. Consider
a class of all cats. Supposing a new cat is born after we have collected (at
Jeast in thought) all the cats. Then this new cat, which has ‘just’ been
born, must be allowed membership into the class of cats. The relationship
is external in the sense that the membership of this new cat does not in
any way depend on th(? other mcmbt.:rs of the class. In other words, the
other cats have no say in whether this new cat should be admitted into
the class or not. It is the membership relation, external in this sense,
which grants membership to the just-born cat. In general, set composition
is dependent on such ‘external’ relations.

There is a potential for confusion here. A collection, a class, a
mereology, will ‘have’ more than one relation. For example, Lewis thinks -
there are ‘intrinsic’ characters of classes. He is concerned not with the
relation of membership to the class — this relation cannot be an important
concern for anybody who subscribes to unrestricted composition — by
with the character of the relation between the member and its singleton.
When Armstrong (1997, 176) in the context of numbers talks of relation,
he is also essentially talking about the relation, an internal one, thar
holds between a property and the aggregate. The criterion of external
relation described above is a relationship that distinguishes membership
based on whether the relation is sensitive to the members of the class or
not. Even Bigelow’s argument that coextensive properties are the source
of sets does not sufficiently capture the internality of the relation. The
internal relation can thus be described as follows: If membership to a
class depends on the prior members of the class who decide on the new
members, then there is an internal relation among the members of the
class. Let me start with this ‘weak’ formulation for it seems to allow
resemblance as an internal relation also.

To strengthen the above points, let me use the idea of generation, an
idea that is central to groups also. Lewis, following Goldman, briefly
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discusses relations that generate. Suppose we start \.vith an ‘ancestor’ that
generates the relations of “ncestral of membership’. Lewis (1991, 39)
notes that Goodman ‘stipulates that the ancestral of membership is a
generating relation in a system founded on set th.em.'y.' Lewis argues that
classes generated ‘via the ancestral o’F r_ne.mbcrshlp is not ... a legmmate
sort of unmereological composition (ibid., 40). His argument is based
on the fact that 2 member of a class is first 2 member of its singleton and
this is not composition but the class as fusion of singletons is mereological.
If I understand him right, just havi_ng an anccstral'n?ember does not
explain composition. I think the basic point for Le.w-ls is that we do not
have sufficient reasons to postulatc compositions that are not
mereological. . o
Now consider groups. Given one clement of tht? group, in principle
all or some of the elements can be gc.ncrat.cd frOfn it. Consider a group
{a, b, ¢, d}. Onc of these must be the identity w.hlch is usually written as
e, so let us write this group as G = {a,byc, C.}- Given g, for example, then
we ask what is the composition of @ with itself — written as 22 Closure
rule of groups implies that 4* must b.c a member of the group, i.c., it
should be one of @, &, ¢ or e. Suppose 1t 1S b. Then we compose a and b,
i.e., ab. What is this equal to? And so on. It may so happen that just one
element is sufficient to generate all the elcments.of the group. Such a
group where a single member, callcd. the generating elcmen‘t, generates
all the other members is called a cyclic group. For example, if {a, b, c, e}
is a cyclic group and a is the generating o::lc.:r.nent, then this group is
nothing but {a, a%, 2*, a* = ¢}. This is one possibility. 1.\Iot‘e that the presence
of the identity element will reduce all other combinations of 2 into one
of the group elements. That is, @ = 4, @=a*and soon. In general, there
will be more than one element that can generate all the other elements
and one can have a minimal set of generators such that all the members
of the group can be got from just this minimal set. Even in the case of
‘infinite groups' or continuous groups, we can find generating elements.
Examples are Lie groups: U(1) has one generator, SU(2) has three and so
on.

Thus, the idea of generating elements is central to groups. The group
rules restrict membership to the set. All members of the group are
generated from one or a minimal set of elements of that set. So now how
do we understand fusion of these elements and these elements alone
which gives us a new ‘kind’ of sets called groups?



52 '+ PHILOSOPHY OF SYMMETRY
2.5. Singletons and partition of groups

Let me approach the question of fusion through parts. Given a group
whose membership is given, we can ask what are the parts of the group?
This is a legitimate question because a group is first and foremost a class.
Given a group, note that no new elements can be added — because all
possible compositions of its members must already belong to that group.
(If a cat is just born then too bad, it missed the group-bus!) It is in this
sense that internal relations define group membership.

We can say that groups are a special kind of class that have an internal
or generating relation among its members. Actually we have to note a
clarification here. A group can be abstract. There can be many different
realisations of this abstract group. This is similar to the traditional
conception of class as extension of a term. These realizations and groups
as seen in physics, are closely related to physical structures. While I ralk
of the group in abstract here, this point about its realisations must be
kept in mind.

So if we consider a group as a special kind of class, then what about
its parts? The thesis of Lewis states that classes can have only subclasses
as its parts. Classes and subclasses belong to the same ‘kind’ as the whole.
In the case of groups, it is reasonable to expect its parts also to belong to
the same kind — that is, be subgroups of groups. So we can import Lewis’
formulation of parts of classes for groups.

What about singletons? Here is where the major problem arises. Is a
group a fusion of its singletons? Let me look at the notion of fusion
from the opposing direction, namely partition. The equivalence of a
class as a mereological sum of its singletons is equivalent to the partition
of a class into its singletons. In the appendix of his book, Lewis (1991,
123) talks about partition in this manner: ‘Suppose that x,and x, are a
partition of x: that is, they are distinct, and their fusion is x.” This sense
of partition is not any different from the partition of a class into its
singletons. In the case of sets and classes, this partition into singletons
seems ‘natural’ — mainly because of the independence of the members
from each other in contrast to the internal, generative sense described
earlier. But given a class, like a group, with necessary relations between its
members, is it obvious that such a partition is possible? One way of
answering this is to look at how groups are partitioned.

Partitioning of groups is an essential part of group theory. We have
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the idea of a subgroup, namely a subcollection of elements of a group
which is a group in itself. All groups have two trivial subgroups — the
group that consists only of the identity element and the whole group
itself. Any other subgroup is called a proper subgroup. Contrast now
with sets. If we ask that the proper partitioning of a group must be a
partition only into subgroups, that its parts should be of the same 4ind
as the whole, then the group structure itself gives us the criterion for
division. Not every subset of a group is a subgroup. Thus if {a, b, ¢, d} is
a group it may not be the case that {a, b} is a subgroup in itself, whereas
if this is a set then {a, b} is always a subset. The group structure imposes
constraints on how we can form the possible subgroups. For example,
there is a result which states that for a finite order group (say of order »,
where order is the number of elements in this case), if its proper subgroup
is of order , then m is a divisor of », i.e. n = ms for some integer s
(Rosen 1995, 34). Thus, for example, we can immediately say that a
group of order four cannort have a subgroup of order three. -

Therefore the ideas of part, whole and mereology have to be further
clarified in the case of groups. It is unclear as to what it means to consider
a group as a ‘sum’ of singletons. Given a group, the only singleton that is
itself a group, a subgroup of order 1, is that of the identity clement.
Consider a group e, a, b, c} where ¢ is the identity element. Then the
orly singleton subgroup is {e}. (If {a} is also a subgroup, then @ should
be the identity.) Now if we look at {e, a, b, c} as a class, neglecting its
group character, then we can identify it with {e} + {a} + {b} + {c}. In the
case of sets, each of these singletons is a set and thus we can conceivably
claim thar this is a whole-part relation. But in the case of a group, there
are no singleton subgroups other than {e}. And we cannot ignore the
group character and decompose the group as a sum of singletons because
the parts no longer belong to the same ‘kind’ as the whole.

As a consequence, we can reject the equivalence of a class with the
sum of its singletons in the case of groups. In general this may also
suggest that groups are more than the sum of its parts if its proper parts
are to be seen as subgroups. Can we make this claim? To understand this
issue further, let me describe some more characteristics of subgroups
and their relation to the group of which they are subgroups.

Given a proper subgroup H of a group G, we can form the set aH,
where 2 belongs to G but not to H. That is, remove those elements of G
which are in H and then choose any 4 that is in the remainder and allow
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it to act on all the elements of H. Since groups in general are not
commutative, the order of the group action is important. The set aH is
called a left coset of H. (Ha is called the right coset.) It is easily seen that
aH is by itself not a subgroup of G, since aH does not contain the identity
element. Moreover, H and aH have no common element. Given G, we
can take the union of H and aH. If there are more elements of G which
do not belong to this union, we can construct another coset bH, where
b does not belong to H or aH. In this way we can continue to construct
cosets until we get back the full G (of some finite order). Thus we can
write (Rosen 1995, 44)

G=HUaHUbHU...UkH

This decomposition is unique and has some resemblance to the
decomposition of sets. But here too the problem of whether only the
subgroups are the proper parts of a group persists. As noted earlier, aH,
bH erc. are not subgroups of G. Also, for the same group G and subgroup
H, we can decompose it in terms of right cosets. The left and right
cosets in general, will be different partitions of G. But for an invariant
subgroup, these are the same. The invariant subgroup is defined as follows:
TfH is a subgroup of G and g'Hg = H forall g in G ... then H is called
an invariant subgroup (also normal subgroup)’ (ibid., 40). It may be noted
that for an abelian group (group all whose elements commute with cach
other) all subgroups are invariant subgroups. Also, for an abelian group,
the left and right coset partitions are the same.

If H is an invariant subgroup of G, we note that the collection of H,
aH, bH etc. form a group structure among themselves. That is, the rules
of a group are satisfied for this collection under the operation of coset
composition. (Note that the group operation defined on G is used for
creating 2H and so on). This collection of H, aH, bH and so on is called
a factor or quotient group and is written as G/H. Thus G/H = {H, aH,
bH, ...}. This group has sets as its elements. The union of these sets is a
unique partition of G. Obviously this partition depends on the subgroup
H. For different subgroups of G, the way G is broken up is different.
Thus there are as many ways of dividing G as the number of subgroups
it has. But in all these different ways of dividing the group, the aggregate
remains the same,

Here is then a fundamental difference between partition of classes
and sets, and that of groups. For Armstrong, a class is the aggregate ‘plus
a strict way of dividing’ this aggregate into parts. Division through
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singletons is one way. What the coset decomposition does is to give us a
strict way of dividing a group into its parts. What the coset decomposition
and the structure of factor group show is that the criterion for dividing a
group G is based on its subgroup (H) and is more a relation of ‘division’
or more appropriately ‘proportion’, as well exemplified in the symbol
G/H. This also suggests that just as a class can be decomposed into a
mereological sum of its singletons, the sets that are formed from the
coset decomposition play the role of singletons in the division of groups.
That is, the group cannot be broken into its smallest constituents — the
singletons comprising of one member alone — but in terms of larger
fundamental units that are generated from the coset decomposition. For
example, if we consider the order 4 group C, whose elements are e, 3, b,

c then its only proper subgroup is H = {e, b}. The unique decomposition
of C, with respect to H is (ibid., 44),

G={e, bl Uf{a,c}

The primary ‘singletons’ in this case are {e, b} and {a, ¢} rather than
{e}, {a}, {b} and {c}.

It is also pertinent to note the use of ‘class’ in group theory. But first,
the following definitions (Hall 1959, 10):

An arbirrary sct of elements in a group is called a complex. If A and B are
two complexes in a group G, we write AB for the complex consisting of all
elements @b, a € A, b € B, and call AB the product of A and B. If K'is any
complex in a group G, we designate by {K} the subgroup consisting of all
finite products x,... x , where each x; is an element of Kor the inverse ofan
clement of K. We say that {K} is generated by K. It is casy to see that {K} is
contained in any subgroup of G which contains X.

The complex gives us a way to understand the correspondence between
an element and subgroup. This should immediately remind us of a
member-singleton relation. Given a group G, take as the complexes sets
which have only one element. For each of this complex K, we can find
{K} and from the above construction we note that this subgroup is always
{e}, where e is the identity element. This is the only singleton possible.
Thus, {e} is generated by all the elements/members of the group. While
this perhaps does not shed any light on the mystery of the member-
singleton relation, at least we see that groups have an internal structure
that allows us to generate a singleton from its members. This means that
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no other singletons are possible as subgroups. This we knew even before
introducing complexes. But what we didn't know was that not only are
members of a group generated from each other but that the identity
singleton is also a generative relation.

Consider a particular way of partitioning a group. Take a set of
elements S in a group G. Form the set g'xg, x € S for a parricular g. If
there is another element y € G, such that g'/xg = y, then x and y are said
to be conjugate to each other. Conjugacy is an equivalence relation and
the conjugacy class of the group is ‘a subset of elements of a group that
consists of a complete set of mutually conjugate elements’ (ibid., 39). In
particular, the identity is always a class. Now, if we take S to have only
one clement, that is take the collection of individual members then for
each member we can form a conjugacy class. For example, if G = {a, b, ¢,
e} then there are four elements 4, 4, c and e and the conjugacy class of 4,
for example, will be given by the set consisting of elements a'aa, b'ab
and so on. Then the partition of the group is givenby G=C_+ C, + C_
+ C, where the Cs are conjugacy classes. In general, we partition G (for
S having one element) as

G=C|+C2+....Cs

The C’s are disjoint classes and every element of G belongs exactly to
one class. It would seem that here we have a natural partition of G as a
partition over ‘classes’ or in Lewis’ terms, a fusion of subclasses C.s. Each
of the C/s actually corresponds to the minimal class which partition the
group. Does this imply that the conjugacy classes play the singleton
role?

Let us look at it in another way. Unrestricted composition implies an
independence thesis. Since any mereological fusion is allowed, the
members of a class are, in general, independent of each other — in the
internal sense that the members by themselves are not used to restrict
membership. In the case of groups, there is also a fusion of members but
there is a restriction that is internal. The independence thesis allows the
class to be seen as a fusion of singletons. Restricted composition does
not.

We can also adduce another argument. Given a class, we see that the
class is not a fusion of its members but of the singleton of these members.
The fusion of members is just an aggregate whereas the fusion of singletons
is a class. Even if it is not explicit, it is clear that singletons belong to the
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same kind as the class and hence the part-whole relation in this is also
the same-kinds relation. If we accept this, then we can also expect that
in special classes, namely groups, their proper parts must also be of the
same kind. But in general it is not possible to partition a group’only in
terms of subgroups, but in terms of equivalence classes. (If it so happens
thar every element of the group is conjugate only with itself then we
have a partition into singleton classes. But this is in general not the case.
Because once a group G has a subgroup H, then we can form g'Hg for
g € G and the result is that g'Hg is also a subgroup of G forany g € G)

In the context of Lewis’ formularion, singletons form the equivalence
classes. In general for sets, if there is a relation xRy for x, y belonging to
the set, then a set can be partitioned by the equivalence classes. WNow
consider the relations of equality. In his book, Halmos (1960, 28) notes
that if R is the equality relation in a set then the equivalence classes are
nothing but the singletons. This implies that the partition of a class into
singletons is based on the relation of identity holding in the class.
Resemblance, in a loose sense, is identity. Thus the view of class as a
fusion of singletons seems to be based on the relation of equality
presumably holding in all classes. It is only in this case that a class can be
partitioned into singletons. This means thar for classes like groups the
correct formulation of fusion is through partition that is sensitive to the
internal relation holding in that class. Here it may be argued that the
idea of relation is borrowed from set theory while Lewis is attempting to
avoid set theoretical principles in his formulation. I think the idea of
relation in terms of ancestral and his own formulation of mapping and
partition suggest that this is not a basic problem. We can therefore
conclude that, in general, a group is not a fusion of singletons (but abelian
groups, for example, are an exception) — implying that not all classes have
to be fusions of singletons.

The above analysis suggests that singletons are not necessarily the aromic
parts of all classes. What it basically implies is that the subclasses (in the
case of groups) for a given partition are not the fusion of their singletons
but are themselves to be seen as basic units, and the larger class is a
fusion of these complex units. What are the implications for the property
of unithood that Armstrong uses to explain the relation berween members
and their singletons? Unithood, in such cases, is more complex, something
on the lines of molecular units and not atomic units.
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2.6. Ontological commitment to groups

Finally, should we make an ontological commitment to groups? Let me
answer it this way. The problem with sets is that they allow disparate
and unconnected members into the set. This more than anything else
makes one hesitant to accept their existence. In other words, if
membership is open to all and sundry, then the club that is formed is
really not a club. By restricting membership, there seems to be a genuine
‘object’ — the club — the exclusive club if you like. Once rules of
membership are given, is there more to the club than its members? There
is no clear answer at this point. But when we consider the property of
symmetry and the property of groups that represents symmetry, then we
may have a better reason to consider the possibility of making an
ontological commitment to groups.

John Bigelow (1993, 73) considers sets as ‘higher-order properties of
their members.” Following his claims that ‘mathematics deals with
universals, with physical properties and relations’ (as in the examples of
ratios and proportion), he situates sets also as universals. And partly
because they ‘play a significant role in physical theory’, he considers sets
as physical. We have already discussed the notion of singletons and the
problem of ﬁnding the relation that relates a member to its singleton.
This relation for Lewis was mysterious; for Armstrong it is nothing but
the reflection of a state of affairs. Bigelow offers a different response.
Individuals are characterised by their essence. The essence of an individual
gives the uniqueness of that individual. An individual’s essence is
something which it should have and is not shared with other individuals.
But this does not mean that the individual cannot have more than one
property that would uniquely mark the status of the individual as such.
As is usually the case, we have to avoid external and accidental properties
and relations thar an individual could have. Thus the individual essence
must include properties that the individual could not lack. But, in general,
conjunctive properties, even if they are internal and ‘essential’, cannot
be an individual essence since for these shareable properties, ‘the
conjunction will in principle be shareable too’ (ibid., 85). And an
individual essence cannot be shareable. So Bigelow suggests that there is
a property which cannot be shared but must also be a primitive and not
analysed as conjunction of other properties. This property is the ‘thisness’
of the thing or what is also known as haecceity. If haecceity is allowed
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then it will be an individual essence of the individual and Bigelow suggests
that it is this individual essence that is ‘identical to the unit set of that
individual® (ibid., 86).

Also for Bigelow, like for Quine, sets are universals. Since universals
are always instantiated in particulars, if we look upon set membership as
a relation of instantiation, then sets could be seen as universals. So when
we say an element belongs to a set, we are perhaps really saying that the
member instantiates the set. When we consider a set that consists of
some elements, then we tend to believe that something is ‘common’ to
the members that allow them to be collected into one set. Just as a
singleton is ‘an individual essence of its only member’ this collection of
members suggests that sets are ‘plural essences’.

Bigelow also makes the important point that the discovery of
coextensive properties is an important project of mathematics. He uses
this insight to note that when there are coextensive properties then there
must be something they share in common. And what ‘they share is their
extension, which is a set’ (ibid., 92). Thus, he argues that historically the
search for coextensive properties in mathematics naturally leads to the
formation of set theory — so coextensiveness ‘is the source of sets’. But to
get a set from coextensiveness needs a furcher analysis of properties.

There is a significant difference in Bigelow’s privileging essence and
haecceiry, and Armstrong’s notion of a set. We saw earlier that the relation
of a member to its singleton, for Armstrong, is that it manifests the unit-
making property called unithood. He rejects the existence of haecceities
because he does not believe ‘that there is something about each different
particular that makes them internally and secretly different’ (1993, 99).
He also does not view sets as universals. The notion of similarity
underlying universals is based on ‘genuine identity’ whereas in the case
of sets this need not be the case.

We can further understand the relation between sets and groups by
considering the nature of the closure property. Armstrong says that the
arithmetic + is same as the mereological +, and we can use state of affairs
to connect 7 + 5 and 12. But whar we want in the case of groups is
something else. Given a, b € G, then under group composition, we can
form aRb. The closure rule is not about aRb burt is rather a check to see
if aRb also belongs to G along with a and b. So once we are given a
group under some composition principle of its members, then for
understanding the metaphysical nature of a group the particular form of
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composition is unimportant. This is similar to tht: a_nalysis of classes.
Once we have the class of cats then the analysis is not abour the
resemblance that affords membership to particular cats in the class of
cats. So to analyse group structure along the notions of set and classes,
fusion and parts, it is enough to know that the members of a group are
‘generated’ from some two other members. (Rcmcml?er that it can also
be generated from one member as in the case of cyclic gro.ups.) .

Bigelow’s formulation of sets affords another way to view th1.s more
complex system of membership. Although he thinks that coextensiveness
is the ‘source of sets’, he argues that we need to find a link berween
coextensiveness and sets. This link is furnished by the ‘connection between
properties of things and properties of their properties’ (Bigelow 19?3,
93). The argument goes as follows. Members of a set have properties
that are similar and which they share, and also properties which they
don't, thereby suggesting the difference berween them. Sharing of some
properties allows them to be taken into o#e collection but having different
properties allows them to be distinct members. His example of points
on conic section illustrates this — the points on the ellipse have (properties)
that they share with points on the hyperbola — that is being points on a
conic section. But being points on ellipse also involves having other
properties that have to do with being an ellipse and these properties are
not shared with the points of a hyperbola.

Further, Bigelow distinguishes between second-order property — a
property of an object and not of another property — and second-degree
property which is a property of a property. And what distinguishes second-
order property from other, for example, first-order properties of an object
is that they stand in ‘distinctive entailment relations to
properties’ (ibid., 94). Thus, he concludes,
coextensiveness by this entailment between secon
order properties. Properties having something in
the instances of these properties have something else
‘membership in the same set’. Bigelow also points

properties of its

sets ‘emerge’ from
d-degree and second-
common imply that
in common — namely

out that random sets
do not fit into this view. In the context of groups we need only note that

there is no possibility of random groups due to the restricted mem

bership
rules.

Bigelow’s view of sets seems more amenable 1o
of a group have some properties in common,
described earlier. That is, all members obey t

groups. The members
and are related by the ryles
he group laws and thys can
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be given membership to the set. There are also properties which they do
not share — the property of having unique inverses (i.e. the inverse of
two members is not the same; note that this does not imply that a member
cannot be its own inverse). An example may make this clearer. Consider
the invariant rotations of an equilateral triangle which form a group
consisting of angles (in degrees) {0, 120, 240}. The members of the group
share the common property that they are the angles of rotation that
mainrain the invariance. They also have a common property that the
composition of any two members (in this case addition) will yield another
member of this collection. This is not a property per se of the members
themselves — it is a property of being members of this group. The
coextensiveness lies in the property that these angles maintain invariance.

Consider rotations of an equilateral triangle. Let us say that we rotate
only in units of 10 degrees. So all these angles — O degrees, 10 degrees,
20 degrees share a common property that in this instance they are all
rotations of an equilateral triangle. Among these there are three angles
0, 120 and 240 degrees which have a further property (a second-degree
property of rotational angles) that these three rotations maintain the
invariance of the triangle. The second-order property is a property of
the object and in this case it is what we may call the oriented form of the
triangle. Then the special subset, the group, emerges from the entailment
berween these second-order and second-degree properties.

Approaching groups via properties sidesteps the trickier problem of
composition, group rules and membership. As in the above example, if
we construct the set of all transformations (or compositions in general)
that retain invariance of a second-order property then we know that this
set will be a group! That is, we do not have to check for closure rule or
other rules of a group. So i.. properties to do with invariance of an
object, the entailed set Aas 1o be a group.

Armstrong has two problems for Bigelow's view of sets as universals.
He thinks that there is a distinct difference between sets and universals
because in the case of universals (at least for a sparse theory) it is ‘quite a
feat for two things to instantiare the very same universal’ whereas ‘nothing
is easier than for two things to be members of the same set’ (Armstrong
1993, 99). Universals are related to ‘genuine identity’ while for sets there
need be no identity. Secondly, random sets have, generally, no universals
(in Armstrong’s sense).

Note that both these objections fail to hold for groups. It is indeed
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quite a feat to get group membership and no two things can arbitrarily
be made members of a group once we are given some members of a
group along with its operation. In this sense, we can say that there cannot
be a random group. So, conceivably groups could be universal in the
way Armstrong understands ir.

3. CHANGE

The first section of this Part was concerned with the snature of objects
and identity. Since groups are the mathematical ‘oBjetts’ corresponding
to symmetry, a detailed discussion on the nature of sets and groups was
given. In this section, we will discuss the metaphysics of change. Any
discussion of symmetry must consider the notion of change in all its
complexity. We have to remember that the general formulation of
symmetry in science was equated with invariance under change. I will
begin this discussion with some preliminary remarks on change.

When we normally say something is changed, we usually mean that
some property has changed. For example, when a green leaf turns brown
we say that its colour has changed. People change — both in their attitudes
and in their ageing process. More drastic changes are also common: paper ¥
when burnt turns into ash; a caterpillar changes into a butterfly and so
on. How can we understand all these different types of changes? What is
it that changes and equally important, what is it that remains unchanged
and which allows changes to be made visible?

To begin with, consider this definition of change, what Lombard
(1986, 80 & 81) calls the Ancient criterion of change (ACC):

An object x changes if and only if

(1) there is a property, B,

(i)  cthereis an object, x,

(i)  there are distinct times, tand t', and

(iv)  x has P at t and fails to have P at ¢’ (or vice versa).

There are various consequences of ACC. The object must exist at
least at t and t' and ‘must survive the loss of the property it changes with
respect to’ (ibid., 82). In the case of symmetry, we are interested in changes
that are invariant. To phrase it another way: an object has a property at

t, fails to have it at t', and regains it at t". Thus the idea of change is more
restricted in this case.
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ACC is too broad a definition of change. It is well known that there
can be changes of a particular property of an object thar are ‘external’ in
nature. A simple example is that of becoming an uncle. One may say
that I have changed, that is, have a new property associated to me, just
because a baby is born to my brother. As is well known, we have to
sharpen the distinction between this kind of change and a change that
happens to me ‘internally’, like my hair turning grey. Changes such as
becoming an uncle are called as ‘mere Cambridge changes’. These types
of change are réferred to as relational as against non-relational changes.
Lombard disting®¥%hes between these two not necessarily in the language
of change but as alteration. Thus, objects which change non-relationally
seem to be ‘altered’ in some way, which is not exhibited by becoming an
uncle.

Lombard argues that when an object undergoes relational change, it
must necessarily imply that another object has undergone non-relational
change. For example, he notes that Xantippe’s becoming a widow because
Socrates died is a relational change for Xantippe but this change occurs
only because Socrates died — a non-relational change of Socrates. Even if
the immediate correlate is a relational change, it is the case that down
the line something has changed non-relationally. He also notes that a//
changes in abstract entities will be relational since by definition their
non-relational properties are essential to them and any change in these
would change the abstract object itself.

What kinds of changes are possible? Usually when we talk of a change,
we are referring to changes that are somehow like each other, i.e., belong
to same ‘kinds’. For example, the green leaf turning brown is a change
from one colour to another. We do not expect a colour to change into a
new shape. Lombard notes that change ‘must involve the having of a
property and the subsequent acquiring of another, contrary property’
(ibid., 112). To formalise this, he considers a quality space as a set
consisting of simple, static, properties and if an object undergoes a change
by losing one of the properties of the set, then it must gain another
property which should be of the same kind. Belonging to same kind
only means that they are contraries. So, we can say that an object changes
‘if and only if it first has one and then another property, where those
properties belong to the same quality space (and where the successive
havings of them is not what that object’s persisting for some period of
time consists in)’ (ibid., 113 — 114). The definition of events follow
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form this: ‘events are non-relational changes in objects; when an ObjL'(.:f
changes non-relationally in a certain respect, there is an event that Is
that object’s changing in that respect’ (ibid., 114). If we look at it
graphically, an object moving in this quality space is an event. .Lombard
also notes that the classification of properties into specific qualicy spaces
is one that is 2 posteriori and suggests that scientific theories will arbitrace
this issue.

What about changes of parts of objects? If a part undergoes some
change, can we say that the object itself undergoes some change in a
non-relational way? Lombard subscribes to a strong version of a thesis
that answers the above question in the affirmative — ‘any event which is
a change in an object (is identical with) a change in any other Obj?(:t of
which the first is a part’ (ibid., 121). Also note that since an event is the
change of an object, one can locate the event in the object. But do we
really have to insist that a change in a proper part of an object should be
identical with a change in the object? He dilutes this condition and
suggests that the ‘subject of an event’ is only the ‘minimally involved
object’ that undergoes change. Thus the location of an event is the location
of the proper part which undergoes change. Note that this does not
refute the above thesis but only specifies the location of an event.

The questions — what is an event, whar is the identity criterion for
events, where is an event located, can multiple events be located at the
same place etc., are similar to the metaphysical questions about object,
properties, identity and so on. Since I wanr to restrict myself to a brief
discussion of change and events, especially in the context of symmetry, I
will very briefly describe some of the answers developed for the above
questions.

Events could be universals. As universals, they will be instantiated in
particular events. Why should we think that events exist? Lowe, for
example, claims that events exist because they are indispensable in
‘singular causal explanations’. For Lowe, events are not abstract entities.
They are concrete objects because they have temporal properties and
relations. In contrast, Chisholm considers events to be abstract universals,
They are instantiated in their repeated occurrences. Lombard (1998,
282) notes that if events are seen as abstract universals then it is
incompatible with the view that events are changes.

Against the view of events as abstract universals, Quine suggests that
they are concrete particulars. As Quine (1960, 170) says, ‘physical objects
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. are not to be distinguished from events.” Like objects, events in this
view are not repeatable. But this leads to the problem of ‘distinct’ multiple
events, like change of colour and shape, to be the same event. Lombard
believes that the inability of an object to ‘change in two different ways at

the same time’ is reason enough to argue against the view of events as
concrete particulars. The third view of event is in between the two
described above, namely, events as abstract particulars.

3.1. Change and symmetry

Consider the idea of change in the context of symmetry. Let me consider
the example of the equilateral triangle. We say that this triangle is invariant
under some particular rotations and reflections.

When we rotate a triangle, something changes. To understand this
further, let us see how Lombard (1986) considers motion as change. He
believes that when an object moves, it changes non-relationally. If this is
so, we will have to show that in moving the object lost some property
and regained another property. But the typical problem in considering
motion is that it is always a change with respect to background space.
We could understand this change by saying that the object occupied one
place at one time, lost that property of location in moving and gained
another property of being located in another place after some time. But
this is not enough if places are only relative to ciher places. In this case,
change incurred during motion is relative change. Usually we talk of a
position of an object as being defined with respect to a frame of reference.
But theory of relativity suggests that motion is relative since a moving
object in one frame of reference can be at rest in another frame of
reference. The case of ‘pure’ rotation cenuplicates this further.

A change is always over an interval of time and ‘maintenance of a
state’ is usually described as non-change.” Non-change is also over an
interval of time. Newron's law in fact suggests that the motion of an
object with constant velocity is actually non-change, thus it is a state.
Corresponding to change of properties, we might say that properties
change only when there is a cause. Something makes change possible.
Otherwise it will be spontaneous.

Let us first consider symmetries of figures. As before, consider the
simple example of an equilateral triangle. We say that this object is
invariant under certain transformations, say rotation. Rotation is a
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transformation and it involves change. What is the distinction between
transformation and change? Conceivably when one transforms
something, a change has taken place. When we talk of transformations
of an object in the context of symmetry, it usually means thart the object
is not transformed into another object but its states and properties are
transformed. So transformation in this context is merely an agent that
causes some Change.

Woodward uses the term ‘interventions’ as synonymous with
transformations. Intervention, for him, is to be specifically tied in wicth
a causal process and he defines it thus: ‘an intervention on some variable
X with respect to some second variable Yis a causal process that changes
X in an appropriately exogenous way, so that if a change in Y occurs, it
occurs only in virtue of the change in Xand not as a result of some other
set of causal factors’ (Woodward 2000, 199 — 200). In principle, the
intervention can be in thought; as Woodward says ‘an idealization of an
experimental manipulation.” The relation between interference (I) and
properties is as follows: the intervention is a manipulation of a property
X. Thus the effect of I on X is to possibly change the property. Since
Woodward is emphasising the causal connection, he is really not
considering the change in X due to I but rather what changes occur in Y
due to changes in X. A feature of this is dependent on the fact that the
intervention changes the ‘value’ of X and this change is entirely due to
the intervention. For this to be so, it must be possible to have a well-
defined notion of change for X. Note the similarity to the static space
defined by Lombard.

Although Woodward uses the terms ‘intervention’, it is clear that this
is equivalent to the idea of transformations without any necessary link
to a further causal connection (although there may be such causal links).
Transformation is a change of some sort and intervention is a change of
some X. To be consistent with terms used in symmetry, I will use the
term transformation.

Transformation in general can be related to change and non-change.
Non-change under transformation can be called as identity
transformation — such as transformations which retain the state as it is.
But since states and changes are not temporally pointlike but involve
intervals of time, to say transformation keeps invariant the state or
property does not necessarily imply that there has been no change at e/
points in the interval. In fact it is this possibility of change that occurs
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in a time interval and the non-change as noticed after this interval that
gives us an idea of invariance and symmetries.

At this point, I would like to distinguish between ‘idealised’
- transformation (in mind, in principle etc.) from ‘real’ transformation. I
will discuss the former separately when I consider changes of
mathematical terms. Real transformations are changes that occur in an
object — here it is unimportant as to what causes these changes. Real
transformation, for example, is the rotation of the equilateral triangle.
Now we can ask what property changes under rotation and what property
is gained. It is after analysing this that we can look at the notion of
invariance.

First of all, for all rotations we need to specify some point or axis or
axes about which rotations take place. It is possible that under rotations
the spatial location of the object (like a sphere) does not change but
those of its parts do. In general, if the rotation does not involve
deformation, then the part-whole structure is retained. Suppose we rorate
an object. It seems at the outset that no property is lost — the object is
still the same, mass and colour, for example, are unchanged and in general
the form or shape is also the same. But the moment we have a frame of
icference, then we can notice one particular change, namely the way in
which the form is oriented with respect to that frame of reference. Say we
have a frame of reference outside the triangle and we rotate the triangle
with respect to that axis. Then we see that the form is indeed oriented
differently and thus we may claim that a particular orientation of the
form has been lost and another one gained after rotation. So rotation
does indeed cause a change to occur.

Is this change relational or non-relational? If the change is noticed
only with respect to some frame of reference, is it not relational? We
don't need to invoke abstract frames of reference in this analysis. I have
a book in front of me on the table. I rotate it in some suitable manner. I
can notice that the orientation of the different parts of the book with
respect to me has changed. The side closest to me has gone elsewhere. So
I can say that a change has occurred in the distance and in general, the
orientation of the different parts of the book. But still the question is
whether this change is entirely relational with respect to me or whether
it has any intrinsic character.

Transformation of something means that something is changing (I
include identity transformarions as being a subset of transformations).
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Whether this change is ‘real’, has a causal role to play or not, whether
there is no effect etc., can only be answered after further analysis. It may
seem that transformations are defined within a context. Take Salmon’s
well-known example of males taking birth control pills (Woodward 2000,
207). Taking the pills may not have any causal effects in the context of
birthing by males bur taking the pills does definitely involve changes in
the male who is taking it - for example, changes in the chemicals present
in his stomach or blood stream after taking the pill.

3.2. Centre of mass and oriented form

We would like to have a way of describing the exact changes involved in
rotation. There is a canonical way of doing this. The problem with using
frames of reference is the apparent implication that change occurring in
rotation is relational. But there is a natural frame of reference. Once we
are given an object, we know that there is a ‘point’ defined by the object
which can function as the origin of any frame. From physics we know
that for every object with some mass and shape, there is a point called
the centre of mass. Every object, extended and massive, has a centre of
mass.® This can be extended to systems of objects also. Every figure has
a central point. This centre of mass is a unique point once we know the
mass distribution in the object. In principle we can calculate it for any
object. It also has phenomenological implications. In general the point
of stability of an object is its centre of mass. If we take a uniform stick we
can balance it at its centre. We can balance a homogenous disk on our
finger only at one point which is its centre, the centre of mass. If one
part of the stick is heavier than the other, then if I want to balance it [
tend to move away from its centre and towards the heavier side, that is,
towards its centre of mass. In physics the centre of mass is what allows
the possibility of point representations. Much of physics is very dependent
on the idea that the effect of a force acting on an extended body is
entirely equivalent to the same force acting at its centre of mass.
Centre of mass (henceforth CM) seems to be an essential property of
any object. It may seem that this is a second-degree property of two
other properties namely mass distribution (not total mass) and the shape
of the object. (We can distinguish mass and density as follows: ‘mass is
an inclusive property and density is an exclusive property’ (Johansson
1989, 45)). But this conclusion would be hasty because it is only the
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location of the centre of mass (i.e. its determinate value) that depends
on the mass distribution and shape. We have to answer whether CM is a
genuine property of the object and not one dependent on mass and
shape. We may argue thus: Given an object, mass and shape are accepted
as first-order properties. Particular masses and shapes are determinates
of the corresponding determinables. In the same way, given an object
there is a centre of mass. Is the fact that it has a centre of mass a property
of other properties or is it a genuine first-order property of objects? Or is
it a property of a relation between mass and shape? An intriguing point
to note here is that an object which has no mass but only shape also has
a centre. Without further discussion on whether CM is a first-order or
higher order property, let me only note that it is a property of every
object.

The basic point then is that the CM is a canonical point of origin
that can be used to fix a frame of reference. So if we consider an equilateral
triangle with equal distribution of mass on the three lengths, then the
centre of mass gives us the axis about which we can rotate the triangle.
In fact, in many cases where symmetry is seen to be manifested, the
transformation will be with respect to some appropriate centre. Once
we fix the centre thus, without taking recourse to arbitrary frames of
reference, then we can understand change in the context of rotation.

When we rotate the triangle around its centre, we note that the position
of the parts change — each point moves to another location with respect
to this centre. To specify this change more rigorously, let me introduce
the notion of oriented form. _

The equilateral triangle has a specific form. Any general rotation,
even around an arbitrary axis, will keep the form the same. Now consider
the form of the triangle around its central point. The form defined with
respect to this point can be called the oriented form. When a rotation,
of say, 10 degrees, is performed abour this point, we notice thar all the
points shift from their original position. In particular, the three vertices .
shift from their original positions. The relation berween the central point
and the regions or parts of the triangle can be defined as the oriented
form. This relation may be specified, for example, by the angle made by
the line connecting the origin and the vertices with respect to the axes.
Under rotation the vertices change location. Changing location is general
and is true for any frame of reference. But specific to the canonical frame,
we can say that the relation between the vertex and the origin given in
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terms of an angle changes value. This relation is an internal relation — it
is a necessary consequence of the structure of the object. Rotation changes
the relational property corresponding to the relation between the origin
and the vertex. Or equivalently, rotation involves change in the oriented
form. The oriented form is itself specified by the triplet of values of the
relation between the centre and the three vertices that define the triangle.

For example, consider an equilateral triangle in the ‘standard’
configuration of one vertex A along the y-axis and two base vertices B
and C. We can specify each of these vertices in terms of the angle made
by the line joining the vertex and the origin with either the vertical or
horizontal axis. If we consider the angle made with respect to the
horizontal axis, then the vertex A in this configuration is specified by an
angle of 90 degrees. Similarly, the vertices B and C correspond to angles
of 210 and 330 degrees. We can also equivalently consider the angles
made with respect to the vertical axis in which case the angles specifying
A, Band Care 0, 120 and 240 degrees respectively. Let me use the latter
specification although it does not martter which ones we use.

Now we can define the oriented form as the form that is specified by
these three angles. The three vertices specify the triangle and these angles
specify the oriented form of the triangle. The oriented form isa particular
‘collection’ of these three angles. In the language of sets, we can say that
the oriented form is defined by the triplet corresponding to {0, 120,
240}, with respect to anticlockwise measure along the vertical axis. This
particular triplet is one configuration that describes the oriented form
of the triangle with respect to the centre. Now rotate the triangle by 10
degrees in the anticlockwise direction. Then the triplet is given by {10,
130, 250}. This triplet defines the shifted form, i.e., a new ‘value’ for the
griented form. This formulation actually tells us how to describe change
in the rotation of the triangle about its centre. That is, the oriented form
in general for the triangle is given by {a, b, c}. After some rotation, it
goes to say {d, e, f}. This change in oriented form actually reflects the
change in the triangle caused by rotation.

As is easy to see, under a rotation of 120 degrees, the oriented form is
specified by the triplet {120, 240, 360} and since rotarion through 360
degrees is the same as through 0 degrees, we can write this as {120, 240,
0}.. Now we see why the oriented form needs a triplet structure. If it is a
triplet, then we know that {0, 120, 240} is the same as {120, 240, O}.
Thus we can confidently claim that under rotation of 120 degrees, the
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oriented form gets back the ‘same’ value. So when we say that this triangle
is invariant under a rotation of 120 degrees, actually what is invariant is
not the triangle per se, burt its oriented form. And what also changes
value under rotation is not the triangle or its form but only its oriented
form.

For rotation of 240 degrees, the oriented form changes value to {240,
360, 480} which is the same as {240, 0, 120} and thus the oriented form
is invariant under 240 degree rotation as well. Similar triplets can be
easily written for angles calculated along the horizontal axis.

This approach holds good for any planar polygons and also for solids.
In general, once we fix the central point, then we give the relation between
the point and the vertices of the two or three-dimensional solids in terms
of a set of angles. The number of elements of the set will be the number
of vertices. This general n-plet corresponds to a particular determinate
value of the property of oriented form. Under rotation there is a change
in the values of the angles belonging to the n-plet. If after a certain
amount of rotation the values reach the initial configuration, then there
is an invariance of the oriented form and this invariance is usually called
the invariance of the form.

Invariance is of secondary concern in this formulation. Any form
which is not symmetrical can also be described as above. Take an arbitrary
triangle and choose its centre. Specify the angle berween the vertex and
the centre with respect to any axis through the centre. There will be a
triplet formed, say {a, b, c}. This triplet is a particular value of the
determinable property — ‘oriented form’. Now rotate the triangle about
its canonical centre. Then we ger a new set {d, ¢, f}. Thus, in rotation, a
specific value of the oriented form is lost and another gained. It is only
when {a, b, ¢} is equal to {d, ¢, £} that we say there is invariance because
a lost property is regained.

Why invoke the central point in this analysis? We could have done
the same with any chosen axis. Or we could have used something other
than angle to specify the relation. I think the fact thar there is a natural
centre given to us, once we are given the figure or objecr, is sufficient
reason to privilege that centre. Also the symmetries, in general, for these
figures are with respect to these central points or axes. For a general axis
‘outside’ the figure, there need be no invariance under rotation. But this
does not mean oriented form as specified by the values of the triplet (for
a triangle) cannort be constructed. Also, angles are the correct relation to
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on. Distance berween origin and vertex is

specify change under rotati '
! ; lengths remain the same for any angle

not helpful since under rotation,

of rotation. . o other
This kind of spetificacion is useful to describe symmetries other than

the rotational ones also. Consider the example of 2 square. For a standard
configuration, we can specify the oriented form as the set {135, 225,
315, 45}. We can note that rotations of 90, 180 _3nd 27'0 degrees only
permute the elements of this 4-plet. Thus we can lmr.ncdlately note that
rotations of 90, 180 and 270 degrees are symmetric transformations,
whereby some change has occurred after which the initial state is regained.
We can also consider other transformations like reflection along the same
line. A reflection about the centre takes {135, 225, 315, 45} to {315, 45,
135, 225} which is once again a permutation of the same elements —
thus, this is a symmetry transformation. So also for reflection abour the
x and y axes.

To summarise: objects and figures have a canonical centre and with
respect to this centre one can give a description of oriented form, a
relational property that holds between the central point and the form or
shape of the object/figure. This is an internal relation specified by a set
structure. Rotation is a change in this set and thus gives us a measure of
recognising change in property and gaining another property. For
arbitrary and continuous shapes, we can either use discrete points or
topological considerations to define the oriented form.

However, in the context of symmetry, cthese kinds of transformations
are only of one kind, although a dominanct kind. This analysis will explain
one way to understand the notion of change in symmetry transformations.
Translation symmetries that occur in patterns can also be understood
along this line.

There are other kinds of transformations related to symmetry. We
will have to consider these types of transformations in order to understand
the meaning of change in these transformations. Symmetries are also
related to transformations that occur in a system as a whole. A system in
this case can be seen as a structure with various parts. Transformations of
parts by themselves are possible. For example, one leg of a table may
rotate while the other parts may not undergo any change. Symmetries
are also related to changes that occur in an event. For example, two
objects collide and scatter: There is a change in the momentum properties
of the two objects before and after collision. Examples of some of the
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other kinds of transformartions are spacetime transformations,
transformations corresponding to symmetries in particle physics and so
on. In these cases we can perceive a priority given to some notion of
form. These are generally represented by mathematical structures.
Transformations correspond to ‘changes’ in this structure. To motivate

an analysis of this, let me consider what we could mean by mathematical
change.

3.3. Mathematical change

Consider an expression of the form y = x%. We can see from the ‘form’ of
this mathematical expression that it is invariant when x is changed to
— x. The idea of change in this case is clear: values of x change to — x.
Invariance is only a possible consequence of this change and does not
depend on the change per se. For example we could change x in any
way we like, say x to sin x. Since the analysis of symmetry in science is so
dependent on invariance of mathematical expressions, it is useful to
understand what it means to talk of change in mathematical entities.
We know there are certain mathematical entities which cannot
undergo change. Let us try and hold onto the idea of change as being
within the same ‘kind’ or the same quality space. If so, then a number
cannot change. 1 cannot become 2 or 1.1 or any other number. But
numbers can be operated upon, like 2 can be multiplied by 5. But we
know that the operation here is a two-place relation, and is not a
transformartion of any property of two. Change is a change of a property
of an object and no property of 2 is changed by multiplying it with 5.
This doesn't seem to be the case for a variable. But then, whar is the
property of a variable other than ‘being a variable’? Transforming x to —
x does not also seem to change its intrinsic property of ‘being a variable’
because — x is also a variable. We can then consider a ‘larger’ entity like a
set. A set has more than one property, its cardinality, for example. We
can ask if it is possible to understand a change in the entity called set. Of
course, there is a basic problem in trying to look for such analogy because
change, as we understood it, was explicitly temporal. Change takes place
over an interval of time. If mathematical entities are abstract and do not
exist in space and time, what could we mean by change? And why stretch

this connection anyway? The latter question is easier to answer because
we do have a notion of change and invariance in mathematical structures.
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They also have deep physical consequences, best exemplified in the
symmetries corresponding to some changes.

The first question is answerable. If we consider the members of a set
as physical objects and if these objects undergo change, what could the
corresponding change in that set be? If mathematical entities and structure
map physical reality in some sense, then changes in physical reality could
help us get an idea of corresponding change in the mathematical entirties
and structures. In this discussion, let me stick primarily to this motivation.
For example, if we have a finite set of all green cats and one green cat for
some reason turns blue then it loses its membership in the set and the set
now has one member less, implying that a property of the set has indeed
changed. This is an example of change in the structure. I believe that

changes in the mathematical terms can usefully be defined for such
structural expressions.

This is of course well known. In all considerations of symmetry, it is
the transformations of certain mathemarical expressions that are generally
considered. And not too surprisingly, these expressions are usually
analogous to forms and indeed the phrase ‘formal similarity’ is commonly
used.

Consider spacetime transformations. Galilean transformations are one =
class of these where a transformation along the x-axis consists of changing
x to x + vt, where v is the velocity. In relativity, we consider the more
complex Lorentz transformations. What is the meaning of spacetime
transformation? Obviously the spacetime coordinates are changed. But
these are a change of whart? Let us say we have an object specified by
some location with respect to some frame of reference. Then a change in
space coordinate, for example, is the change of its frame of reference.
That is, instead of ‘looking’ at an object say from a distance of one
meter, we are looking at it from another distance. So if we call a particular
frame of reference as an ‘object’ then a space-time transformartion is
nothing but a change of the property of location of this ‘object’.

The case of ‘internal’ transformations can also be understood in a
similar manner. We can consider an electromagnetic field and change its
value at every point. Here we are changing not the spacetime values but
the value of the field itself. In the case of quantum theory, we have seen
the example of neutron-proton doubler. These two particles are purt into
one set. Then we allow transformation on this set — multiplication by
matrices is one realisation of the rotation of this doublet. The effect of a
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particular rotation is to create another doublet, a set that consists of
mixed states of those two particles. In the quantum case, the linear
superposition of states that form the wave function allows us to ‘mix’
objects in this form. The grand unified theories follow the same logic.
Internal (also called gauge) transformations are changes in the value of
the appropriate function, or doublets, triplets etc. In each of these cases,
what changes is the state of a system. Following ACC, we can say that a
system has a property of being in a state S, at time t;, and after an
_ interval of time loses this property and gains the property of being in
state 5, at time t,.

Discrete transformations are significantly different. Permutations and
C, P and T are examples of discrete transformations (more on this in
Part One). These transformations are not continuous changes. In
permutation, we interchange one object at a particular location with
another at a different location. For indistinguishable particles, the system
does not seemingly undergo any change (but not in all quantum systems).
Two identical parts are interchanged while keeping the same structure.
Although the individual parts have changed in their location this change
is a relational change. Charge conjugation replaces a positive charge by
its equivalent negative charge. There is no continuous process by which
a charge q (say positive) gradually loses its value, becomes zero and then
becomes -q. What is envisaged is an ideal ‘intervention’ that changes q
to -q.

So transformations, i.e., occurrences of change, belong to a wide
spectrum in the many cases of symmetries. In particular what is important
for symmetry considerations is invariance under change. What exactly is
this invariance?

3.4. Invariance

Woodward (2000, 205) distinguishes two types of changes: one, of the
background conditions and two, of changes that occur ‘in those variables
that figure explicitly in the generalization itself.’ These are similar to
external and intrinsic changes. External is with respect to the form under
question. Thus for Newton’s law of gravitation, a change in the colour
of an object is a background change whereas a change in relative distance
is intrinsic to the form of the law. Given such a generalization, invariance
is that which continues to hold even when other conditions are changed.
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The idea of symmetry (in science) is essen tially related to
transformation and invariance. Transformation is change, a property lost
and another gained. Invariance is not non-change but regaining that
property which was lost. This is a very specific idea not of change per se
but of a sequence of changes. An object loses property Patt,, has property
Q at t,and regains property P at t,. Of course, it is not clear thart there
are only two changes or events that are needed because P may change to
Q which may change to R and so on before we regain P> But what is clear
is that at least two events need to occur to get back the lost property. In
the example of the equilateral triangle, changes were related to change
in the specification of the ‘oriented form’. And for a particular rotational
value, say 120 degrees, we regain the same triplet thar specified the original
oriented form. We can look at it in two ways. Rotation proceeds through
changes in angles till we reach 120 degrees. Or, we could conceivably
say, that one rotation of 120 degrees gives us the same original propery.
The latter view seems to be privileged in most discussions of symmetry
— that is we consider one particular change that keeps some property
invariant. But this view cannot strictly be right because invariance has to
be related to that change which changes a property which is then regained.
The need to specify it thus is also equivalent to making a distinction -
between external and intrinsic changes. So for Newton’s law change in
colour is not an invariant because it does nor cause any change which is

not invariant.
There is confusion about what undergoes change and what is invariant,

Assume thar we rotate the equilateral triangle by 120 degrees. We cannor
really call this invariance unless we have noticed that there were changes
of some property in this rotation of 120 degrees. So if we say thar the
triangle is invariant under 120 degrees rotation we are not making explicit
the point that we know lesser values of rotation has created some change,
which, as we saw earlier, is a change in the determinate values of the
oriented form. So in all cases of symmetry, whether of objects, systems,
or processes, we can identify change which is non-relational. In the Case
of spacetime symmetries this becomes a more problematical claim. But
if one subscribes to a realist view of space then changes associated with
spacetime transformations can be described in a similar manner,

Let us assume that we now have reasonable belief that in the case of
objects and figures, invariance is always associated with change of a
property and then regaining that property. One other problem arises at
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this point. When we say we have regained a property, what do we mean?
What is the identity condition that is presupposed here? That is, how do
we know that the property P that was lost is the same one that has been
regained? The ‘same’ here needs to be clarified. It seems obvious that a
lost property is not strictly regained. Rather another property has been
gained that has the same identity as the first, lost property. Say a green
leaf turns brown. After some more time, it turns back to green. Can we
say that it has regained the lost property of green? Consider the example
of a round rubber ball. It has the property of having a spherical shape.
Now make a dent on the ball by pressing with the thumb. The ball no
longer has the property of being spherical. Remove the thumb and the
ball regains its original spherical shape. Is this regained shape the same
as the one before making the dent?

This question of the identity of properties which underlies the notion
of invariance is crucial. All examples of symmetry have to manifest some
criteria for the identity of properties before and after some change has
occurred. Also, a loose sense of these criteria allows for the very important
ideas of approximate and broken symmertry.

What could these criteria of identity for properties be? Given the
range of entities that exhibit symmetry, we can guess that there will be
different criteria for different ‘kinds’ of symmetry. Let me first start with
objects which lose a property and then regain it. Obviously the object
cannot lose a property and then regain it without a chain of other
properties (or at least one other property) occurring in the process. It
seems reasonable to claim that it is never the same property that is regained
but the regained property shares some identity with the original, lost
property. Of course, if we accept that temporal slices of objects exist,
then the identity of properties is nothing but the instantiation of the
same property in two different temporal parts. It might also seem that
the ‘real’ criterion of identity in the case of symmetry is the identity of
the object that undergoes change. When we talk of a symmetry of an
object we are essentially claiming thar after change has occurred it still
remains the same object when the lost property is regained. This may
seem to imply that the talk of symmetry subscribes to a substratum
approach. In this view the identity condition can be based on the identity
condition of objects. But then for the substratum approach, how can we
distinguish berween absolute non-change and losing and gaining the
same property? Strictly speaking, one should, for no-change can be the
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‘same’ as a sequence of changes. This is indeed a source of confusion for
if we observe an object any time after it has regained a property, then we
will not be able to say whether it had undergone any change at all. (of
course, there is a similar problem with change in general if one does not
know what the initial property was.)

What the special case of losing and regaining the same property
suggests is that symmetry is a modal term — that invariance should always
be checked in the realm of possibility. Indeed symmetry arguments are a
classic example of the kind of question Lewis asks in arguing for possible
worlds: “What if...” While we can ask a similar question for possible
change, we do not ask it affer we notice a change. But in the case of
symmetry, every invariant change is actually a possible change. L fact,
this modal character is manifested in all theoretical formulations of
symmetry.

Let us look at other types of invariance associated with symmertry.
Systems have invariance of some properties and this invariance is reflected
in the symmetries of the system. Consider total momentum invariance,
what is usually referred to as conservation of momentum. Say we have
two particles with momentum P, and P, (remembering that these are
vectors). The momentum of a system of these two particles is P, + P, .
Now assume they collide. Momentum of each of the objects change, say
to P, and P, respectively. Total momentum invariance is the statement
that P, + P, = P, + P,. So if we were measuring the property of the total
momentum of this two-particle system, then before and after collision,
there is absolutely no change — although the individual momenta have
changed. If we consider the full system, no change has taken place. This
is similar to changes in the parts of a structure such that the whole
structure remains the same.

Momentum invariance is a tricky example. If we ask, following our
views on invariance, what property was lost and regained, we run into
problems. For, at any time before the collision the total momentum was
P, + P,. For all times after the collision, the momentum was P, + P,.
And since P, + P, = P, + P, there is really no time at which there was a
change in the property of the total momentum — strictly not even at the
moment of collision! Thus the mark of symmetry cannot rest within the
property of total momentum because this property is not lost and
regained. Let us look at it in terms of individual objects. Collision changes
the momentum of each of the two particles. So a change has occurred.
What is invariant is not the regaining of the same property (that is having

.
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the same initial momentum) but the invariance is with respect to the
sum of the two momenta.

We can rephrase this in a better manner by using the language of
events. There is an event of collision. There is a property held by the
particles before collision. After the collision there is another property of
the two particles. The conservation of momentum says the total
momentum remains invariant. Similar problems arise for all events which
leave some quantity invariant, like charge conservation. In such cases, it
does indeed seem that the inability to point to a property which changes
and is then regained suggests a problem for the general definition of
invariance described above. But this is not true.

The invariance and symmetry illustrated in conservation of
momentum is not the invariance of the individual momentum of the
objects which collide. Rather, the symmetry involved in this case is that
of space. It is the symmetry of space that leads to the invariance of total
momentum. So what is the transformarion and invariance here?
Interestingly, the transformation is that of individual momentum — that
is, the properties which we recognise as being changed are the momentum
of the individual particles. Invariance is not of these individual
momentum but of the total momentum, that is, not of the properties
that really undergo change! And finally the symmetry associated with
this process is not that of the particles or the system but of the background
space having a particular property. Such a zux is characteristic of
symmetries and invariance of processes such as those that obey some
conservation principle.

In the case of collision we can note these points. Transformation and
invariance are not with respect to the individual particles because after
collision the momentum of each is changed. First of all, what we are
looking at it is the system, the system of two particles about to collide.
The act of collision is the transformation. After this transformation,
individual momentum change but the momentum of the system remains
the same. Two important points should be noted here: one is the
association of invariance with system rather than parts of a system and
the other is the possibility that there is indeed a change occurring in the
total momentum. The first point actually reinforces the possibility of
looking at mathematics in terms of structure and suggests that symmetries
in science actually reflect some important structural elements of
mathematics.” The equilateral triangle also manifests this connection
with system. Consider the three vertices as three particles. Under rotation
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of 120 degrees, each one of these vertices has indeed changed position.
What remains invariant is not the location of these vertices but the
structure of the system as represented by the oriented form.

The second point is also tenable. Consider a collision where one object
hits another, comes to a complete stop and transmits all its momentum
to the second object. In this process, we can argue that there is a moment
at collision where both the particles are at rest or at the least
undeterminable. If this is so, then we can look at the total momentum
as the property which is lost and then regained.

Therefore, the best way to understand symmetries is to look at how
these symmetries and invariances are discovered or explained, particularly
in terms of their mathematical formulation. In fact, symmetries in
modern physics are often found by searching for invariance of
mathematical forms. It is not an accident that symmetry of forms and
shapes is very similar to ‘symmetry’ of mathematical forms. A brief
example gives an indication of how this process works.

Consider Newton's force law: F = m d%x/dt2. The ‘form’ of this equation
remains invariant under change of x to —x; as also for a Galilean
transformation of x to x + vt. Both these invariances are a consequence
of the form of d’x/dt%. Under the above transformation of x, the force
law remains invariant. So to derive symmetries all that we need to look
at are the mathematical equations and invariance of the form of these
equarions!

In general we introduce.the notion of covariance instead of invariance.
Covariance captures the invariance of the form but is not invariant because
the values may change but form remains the same. Similarity of form is
called covariance whereas identical sameness is called invariance.'® Under
changes in spacetime values, we expect the physics to be the same, that
is, we expect the laws and equations of motion to be invariant or covariant
under these transformations. Without making a jump into symmetry,
we can at this point understand the notion of change and invariance of
these mathematical expressions as invariance of ‘written form'.""

4. PROPERTY

Here are some definitions of symmetry:

1] . . .
1. ‘A symmetry is where some alteration makes no difference’ (Lucas

1984, 116). An example that follows is the radial symmetry of a
starfish.

Lol
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2. Van Fraassen (1989, 243) notes that ‘symmetries are transformations
... that leave all relevant structure intact — the result is always like the
original, in all relevant respects.’ But soon after he talks of symmetries
of space, symmetries of figures, ‘relativity as symmetry’ and so on.

. ‘Symmerry is immunity to a possible change’ (Rosen 1995, 2).

. In the context of quantum mechanics, here is one description: ‘A
symmetry principle assigns to every physical state a corresponding
state such that the physics of the system remains unaltered’ (Emmerson

1972, 27).

W

Generally all atctempts to define symmetry emphasise invariance from
change. They also seem to imply that objects ‘have’ symmetry just as
some of them may ‘have’ colour. There is also the implication that
symmetries are transformations, meaning nothing more than change, at
the most perhaps a special kind of change. But in the same breath we are
pointed towards symmetries of space, that is space having or possessing
something called symmetries. In the case of systems, classical or quantum,
symmetries seem to have something to do with the invariance of their
structures. Is there a common conceptual thread in all these ways of
articulating symmetry?

Kosso (2000, 83) writes: ‘A symmetry of an object or a law of nature
is a transformation that leaves some specified feature of the object or law
unchanged. Symmetry is invariance under <ransformation.’

So symmetry is something ‘of” an object as also ‘of” a law of nature.
But it is also a transformation, i.e., change. But how can change be ofan
object? What other terms stand for ofan object? We usually talk of colour
of an object, mass of an object, charge of an object and so on. Kosso’s
definition suggests that we can talk of change gfan object or for example
rotation of an object. While mass, colour and charge are properties of an
object, rotation is not a property of an object per se. Thus a particular
change is not of an object but only of the appropriately ‘changing object’.
And it is also not any change, but only that change which ‘leaves some
specified feature of the object unchanged’. We have already seen earlier
that this is not exactly correct. Strictly speaking, it is change by which a
feature is lost and then regained.

So on the one hand the expression ‘symmetry of an object’ suggests,
correctly, I think, that it is a property of an object but on the other hand
claiming that symmetry is a special kind of transformation or change
suggests that it is not a property of the object. The second sentence of
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Kosso's definition makes it more confusing. Symmetry is invariance under
cransformation. This means that symmetry is synonymous with
invariance. But then why call something symmetry if it is nothing but
invariance? Is symmetry referring to some specified feature thart is
invariant, or to the object in which one particular feature is invariant or
to nothing but the process of invariance?

If it is about the process of invariance, then this process must be

independent of the features of the object or system. Clearly symmetry
cannot be another name for invariance in this independent sense. Can
changes be ‘independent’ of the object? A change is a change in a property
or properties of an object. This means that change is always with respect
to some properties which the object has. This idea of change only refers
to the change-in-object, not change in itself. Since properties are
instantiated in a particular change of properties is change in particulars,
But also, change of a property is not a property of an object - properties
of an object need not change. What we need to do is to clearly distinguish
between change, object and invariance. So it seems to be the case thag
while change in general is ‘external’ to the object, certain kinds of‘changes
bring out some invariant feature of the object.

So we have this double-sided nature of symmetry: the invariant fearure
of an object is something that belongs to the object, indeed is a property
of the object. This invariant feature may, in many cases, not be apparent.
But this invariant feature is exhibited by making appropriate
transformations. But then we should not.-equate the invariant featyres
with the transformations that make these features apparent.

For example, I apply pressure on a rubber ball. Let us cq]] this
transformation as deformation. Once I remove my finger I find tha, the
rubber ball, which had lost the property of being spherical, regains this
property. Thus the rubber ball is invariant under deformation (if we
assume that there is no continuous pressure being applied). So what js
the symmetry in this case? We can say that symmetry is just the statement
of invariance under deformation. But not all balls made of different
substances bounce back to the original shape after deformation. §, this
invariance has something to do with the nature of the rubber by]| _ the
property of elasticity. It is this property of the ball that makes invariance
possible. So we can say that ‘the invariance of the shape of the rubber
ball under deformation’ is what we call symmetry. But ‘invariance of the
shape of the rubber ball under deformation’ is nothing but a description
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of a property of the rubber ball, in this case a property called elasticity.
Therefore, symmetry is not a transformation, not an invariant
transformation but a property of the object or system. The
transformations are only agencies that throw light on this property. We
can understand this agency in two ways. One is by looking at it as some
physical action of change. Other is to view it in terms of an explanatory
role that explains how it is that an object has something called symmetry.

Consider a simple example. Let us say we have a red ball. The colour
red is a property of this ball. In a dark room we do not see the colour,
perhaps not even the ball. Switching on the light — creating a
transformation — allows us to see the colour. The transformation makes
apparent a property of the object, its colour. But the colour should not
be confused with the transformation. Similarly for other properties like
charge.

The simple conclusion is this: we should not mistake a transformation
with its effects. Throughout the discussion, it may be noticed that we
were always flirting with some notion of causation. Soon we can bring
this into the open. Symmetry is intrinsically related to causation and
laws, thus supplying the notion of necessity to it. For all these reasons
we can claim that symmetry is a property of objects and systems. I will

now discuss what kind of a property it could be before moving on t
causality.

4.1. Nature of properties

We have reached the position where we can say symmetry is a properry.
What kind of a property is it? Can it really be a property of the object or
is it a property of some other property of the object? Similar queries
have to be dealt with when we talk of symmetry of a system or a process.

To begin with, let me follow Armstrong’s formulation of properties.
When we talk about an object, we normally talk about the properties
which the object has — like its mass, shape and colour. In our common
usage we do make an ontological commitment to these properties. But
it is not clear what kind of entities they are. What is the relationship
berween an object and its properties? How would we know what kind of
properties there are?

We can note the following features about properties. One property
can be present in, had by, many objects. One object can have more than
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one property and usually has many pro.pcrties. A.prope'rty, like mass, is
common to many entities. We have different objects like red I:?all, red
shirt, red building etc., which all have the same property of being red.
\We write this by saying that a property Fis instantiated in a particular a.
This is equivalent to saying that a particular 4 has the property F-ness.
Moreover, 2 particular 2 can instantiate many properties E G... Further,
if we introduce state of affairs into our ontology then we say that 4’
being F is a state of affairs.

To understand properties is then to explain how one property can be
instantiated in many particulars and also how one particular instantiates
many properties. There are various explanations available. One may be
a nominalist and reject the existence of properties. One can be a
universalist and claim that properties are universals — a universal being
that which is instantiated in particulars and particular being that which
is not instantiated in any other particular. One can be a trope theorist
and claim that properties are abstract particulars, that is, they are abstract
but each property is unique in its instantiations. In this view, there is no
common redness that is present in different red objects, rather what
there is a collection of red ball, red shirt and so on. Universals are abstract
entities. There are two possible types of universals, platonic and
aristotelian. Platonic universals do not exist in space and time while the
latter exist in the spatiotemporal particulars in which they are found.
Armstrong offers the idea of properties as universals because it explains
best the problem of One over Many: the problem of how many different
objects seem to have the same property.

Let me note some typical problems that arise in the theories of
properties. Firstly, there seems to be no way to know what the properties
of an object could be. While mass, colour and shape, for example, seem
to be properties that seem unproblematical, one can, in principle, have
an infinite number of properties associated with a particular. One can
try and get around this problem by distinguishing between genuine
properties (or sparse or natural properties) and relational properties, We
can also form hierarchy of properties, such as properties of objects,
properties of properties and so on. What is important to note here is
that even when philosophers disagree on how to understand properries,
some of them look to science, particularly physics, to tell us what genuine
properties an object could have. Thus, Armstrong accepts properties that
are scientifically @ posteriori, defined by what physics calls as properties,
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like spin and charge. Another important problem that arises in this
context is to understand the meaning of instantiation.

Suppose properties are universals. First of all, there are no disjunctive
or negative universals. That is, if F and G are distinct universals, then
there are no universals of not-F, not-G and F or G. Armstrong qualifies
this by saying, in the spirit of @ posteriori realism, that if physics necessitates
these universals, then they can be allowed as such. Conjunctions of
universals are more acceptable for him. So if F and G are (distinct)
universals, ‘then F & G can be a universal, provided always that a
particular exists at some time which is both F and G’ (Armstrong 1997,
31). Conjunctive universals (and corresponding properties) is one
example of complex universals. We can also have structural properties
and structural universals which involve a combination of properties and
relations. Also, for Armstrong, not all properties are universals. It is only
what he calls as first class properties that are universals. Second and third
class properties are not universals. Colour properties and generally
perceptual properties, he considers as ‘second class’. He draws upon the
possible validity of ‘micro-reductive’ physics and suggests that the true
property-universals are only those that are instantiated in.the fundamental
particles. All other properties will supervene on these.

We can formulate the nature of properties using the idea of
determinables and determinates. Determinables specify the kind of
properties such as the general kind of shape, mass and colour. Objects
do not possess properties in this general form. A given particular has a
particular shape, mass or colour. The ‘absolutely specific’ lengths, masses

etc., are the determinates. We can list the following relations berween
determinables and determinates (ibid., 48 — 49):

. If a particular has a determinable property then it has some
determinate property corresponding to the determinable.

2. Having a determinate property ‘entails having the corresponding
determinable.’

3. A given particular can have only one determinate belonging to the
same determinable. So a particular cannot have two different lengths
or masses at a given time. (Armstrong notes that tastes do not obey
this condition.) '

4. The relationship between determinables and determinates is not that
of a genus/species relation.
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. ered
5. Determinates of a given determinable resemble and can be ord )

whereas determinables cannot.

Given this formulation, properties that are lc?wcs‘t determinates are
the right candidates for universals, examples bcmg exact sameness of
length, exact sameness of mass™ (ibid., 49). The strict identity c.ntcrlclm
present in these examples allows them t0 have th':: status of universals,
although not all determinates should be seen as universals N second-class
properties being an example. 1f we then say that dctermmatcs_ form a
class for a determinable, then we need to answet ho?;v different
determinates belong to that class. If colour. is the determinable, th?n
specific colours like red, orange and green will belong to the class of its

. . - ol iterion for me i
determinates. Belonging to the class implies a crit jorm mbership
e natural criterion. But in whar sense do

2 Armstrong takes the view that
where the greater the

and resemblance seems to be th
the determinates resemble each othe ! .
this resemblance ‘is constituted by partia% 1dcr?t1t’)',- :
resemblance the greater is the degree of identity (ibid., 51).

4.2. Role of properties

One particularly useful way of talking about properties, especially if we
are to believe in property as an entiry, is t© ask what role do they pla.y?
One answer to this is that properties play an explana:tory -ro.]e in
ontological classification. This would be, for example, ‘explaining a
purported fact or solving a problem’ (Oliver 1996, 11). (The problem
here refers to problems in ontology.) Then we can ask whether a]|
properties play a similar role. Oliver argues that a reason to believe in
properties is because we ‘associate some role with the category of
properties and argue that it must be played’ (ibid., 12). Further, he notes,
that if ‘there is a property role worth playing then there are entities which
qualify as properties’ (ibid., 14). The first point that follows is the
distinction berween a particular and property discussed earlier — a
property is had (or instantiated) by particulars. Consider some of the
roles a property could play. One such is Armstrong’s view of properties
as universals that is addressed to the problem of One over Many. The
relation between property and predicates has been a source of much
philosophical discussion. While there are many views on this, we can say
here that properties stand for meanings of expressions. Thus, ‘the most
that can be said is that properties are the meanings, in some sense or
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other, of predicates and/or abstract singular terms’ (ibid., 16). A third
role that Oliver notes is the relation between properties and causaliry,
manifested in a statement such as, ‘a cause has its effects in virtue of its
properties’ (ibid., 17). We have already seen how the category of
properties is a way to understand similarity and identity between objects.
Lewis argues for a restricted set of properties — natural properties — which
allows for ‘similarity in intrinsic respects’.

Oliver identifies three types of candidates that can play the role of
property. [ will discuss them briefly. We have already seen the basic outline
of Armstrong’s theory of properties as universals and universals as
aristotelian rather than platonic. Since aristotelian universals are located
in particulars, this implies that a universal, say a particular red colour, is
‘wholly’ present in all the particulars that instantiate that particular red
colour. That is, all those things which have the same red colour have the
universal of that redness completely ‘present’ in all of them. Also, since a
particular can have more than one property it implies that two aristotelian
universals can at the same time occupy the same place. The basic problem
that arises in this conception is that it violates the notion of ‘thinghood’
— that is, two different particulars which have the same properties cannot
be distinguished. The other important consequence of the aristotelian
position is that there can be no uninstantiated universals. As for the
roles played by the universals, there are two such: ‘grounding objective
resemblances and grounding causal powers’ (ibid., 30).

Another type of candidate for properties is sets. In this view, a property
is nothing but a set of all the particulars which instantiate that properry.
Instantiation is the relation of set membership. Thus we will say that the
property of the colour red is the set of all those particulars which has this
redness, for example, a set consisting of the red ball, the red house, etc.
As Oliver notes, if the particulars over which a property ranges are the
only actual particulars then properties will have wrong identity
conditions. Lewis modifies this to say that ‘a property is the set of its
actual and possible instances’ (ibid., 22). But this view necessitates the
shifc into the formulation of possible worlds. Also, set theoretic
constructions come with a baggage of problems. One is that there is
really no unique identification of which set we should take to stand for
a property.

The third candidate for understanding properties is tropes. The
significant difference between trope theory and that of universals is that
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tropes are different for each particular. Thus a trope of redness will be
h red particular but these tropes are all distinct from

instantiated in eac
bstract particulars in this view. Although tropes

each other. Properties area
of redness are not the same trope, nevertheless they are exactly similar to

each other. A particular is seen as a bundle of compresent tropes, that is
a bundle of tropes corresponding to various properties. Viewing
particulars as mereological sums of tropes does not lead us to the problem
of identifying distinct particulars (as in the case of universals) because
tropes are distinguished by the particular they belong to. This implies
thart an aristotelian trope, like the aristotelian universal, can occupy the
same place with other tropes at the same time but unlike,the universal-it
‘cannot be wholly present in more than one place at the same time’
(ibid., 36)-

\While these are different ways of understanding what a property is
we still have the worry that there are altogether too many propertics fol’-
our liking. If properties are sets of actual and possible particulars, then
we have an inflation of properties. If we ground properties in terms of
similarities and causal powers, the number of properties can be reduced
The latter positi?n gives usa theory that has ‘sparse’ properties while thé
former creates ‘abundant’ properties. Lewis offers a similar view of
‘natural’ properties. The charge and mass of subatomic particles are
perfectly natural properties while colours are less so and a particular
colour less natural than the colours. Natural properties are objective and
most importantly, they allow us to understand objective similarity.

_ 4.3. Symmetry as property

With this brief summary of properties as understood in metaphysics, le
me address the question of symmetry. Earlier, I suggested that we Sho’ulc;
look upon symmetry as a property. Now this suggestion can be dealt
with in detail. First of all, in physics, symmetry is best understood as
property of objects, systems and processes. Since a dominant vicv; i:
metaphysics, including those of Armstrong and Lewis, privileges scientific
realism as the arbitrator of what properties there are, we must, therefore
accept symmetry as a candidate for property. But we can come to thi;
position even if we do not subscribe to this form of realism. Symmetry is
also closely associated with causality; it plays an explanatory l;)c:le:
describing why some objects and systems are the way they are.

At this point, it is useful to remember that there is a phenomenological
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experience of symmetry. There are various synonymous terms that capture
the phenomcnology of symmetry — balance, harmony, order, stability
and so on. Symmetries such as bilateral, circular, those of regular polygons
etc., are phenomenologically accessible in the sense that we are able to
recognise something about these objects, something intrinsic and special
to them. We can perhaps even argue that we do not have to make
transformations and see if some of them are invariant or indeed even
what feature is invariant, We may not be able to specify or quantify
what exactly these transformation features are but this is irrelevant to
saying we are seeing or experiencing something called symmetry. The
analogy with colour is helpful: we may not be able to name the colour
we see nor even know about wavelengths but we do have a
phenomenological experience of colour. The recognition of symmetry
in patterns, with no idea of translational or other invariance, is another
important reason for accepting a phenomenological experience of
symmetry. More on this issue in Part Three.

Symmetry is a property. Let us see if symmetry first of all satisfies the
criteria for calling something a property.

1. Is symmerry instantiated in more than one particular? Yes. All
particulars that have a form such as square, rectangle or circular have
some symmetry associated with each one of them. We can give a
name to each of these specific symmetries like we give names to specific
colours. Group theory has already given us a classification that we
can use. The crucial point is that each of these particulars have a
specific symmetry. :

- Is symmetry a property over and beyond other properties like shape,
mass or colour? We need more discussion on what kind of a property
symmetry is before we can answer this question with some confidence.
I will be arguing in the affirmative to this question.

3. What about the identity conditions in the case of symmetry? In
particular, the problem of coextensive properties seems to occur in
this case. One particular instantiates both the property of shape and
the property of symmetry in the case of many symmetries. In the
symmetries of patterns and colour symmetry, it is more complex
coextensive properties that seem to be involved. Of course we might
say that there is no coextensiveness if we claim symmetry is really a
property of shape. But once again this issue cannot be resolved until
I show that symmetry is a property of the object.
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4.4. Shape or symmetry? A lesson from physics

As mentioned earlier, metaphysicians who accept property place the
burden of finding properties on physics. In physics, especially modern
physics, it is well known that symmetry plays a central role. In particular,
physics believes that objects and systems have unique symmertries
associated with them and in fact, many interesting results are obtained
as a consequence of an object or system ‘having’ symmetry. In the way
physics views symmetry, we can and must say that symmetry is a
fundamental property of objects, systems and processes. In particular
the symmetries of spacetime is an important category for physics. And
for those subscribing to naturalism, spacetime is all that there is. Physics
studies the symmetries of spacetime and gives us a classification of these
symmetries. These symmetries are a property of spacetime.

Given the importance accorded to physics by some philosophers in
cataloguing properties, it is relevant to ask how physics understands
properries. The common examples of properties used by philosophers
are mass, shape, colour and charge. Does physics consider these as
properties and if so, in what sense? Obviously we must accept that the
way in which physicists understand properties will be different from
philosophers because their concerns are quite different. But even if this
is 50, since we look to physics to give us properties, we have to have some
idea of how to see some terms as properties. Consider this simple example:
given an object its mass seems to be necessary to describe and explain
certain physical processes. The language of physics makes commitment
to properties in statements of the form ‘a particle has mass m', ‘a particle
of mass m’ etc. Mass also comes to be the defining property in dynamics.
Motion of particles is sensitive to the amount of mass an object has, as
clearly illustrated in Newton's law. Although the role and meaning of
mass gets murkier as we go to relativity, field theories and quantum

theories, it is clear that mass plays a property-role in physics as defined
by physics itself.

Similarly for charge. In physics, we say that an electron has a unit
negative charge. All electrons have this same charge. An electron also has
other properties like mass and spin. Other particles like proton have a
different charge. In these cases, physics not only uses the language of
properties for charge but also makes an ontological commitment to it.
Making an ontological commitment, for physics, is to ask properties to
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play a specific role, namely observability. It does not have to be ‘direct’
observability but in general a correlation with other observations. In
physics we speak of observability of particulars, properties, relations,
processes and so on. The distinction between observability of particulars
and properties (and relations) is generally quite clear, ar least in
macrophysics.

Shape is a more difficult case because, in general, shape plays an
insignificant role in physics. This statement has to be qualified. The
representation of objects as points replaces extended objects, with some
mass m, with a point-object of the same mass. Shape is really removed
out of the consideration of dynamics of individual objects. This reduction
to point is made possible because of the notion of centre of mass, which
acts as the point at which the whole object seems to be concentrated.
Shape of objects seems to play no significant role in much of physics.
While shape is seemingly unimportant for physics, symmetry is not!
That is, under reduction of extended objects to points, we notice that
certain properties are carried over. Mass and charge, for example, are
properties of the point representation as well as the object with a shape.
The same values of mass and charge are supposed to be present in the
point-object. What is lost in the reduction is shape. But symmetry of
the extended object is also carried over to the point-objects. So at least as
far as physics is concerned, symmetry is a property that is on par with
fundamental properties like mass and charge. So symmetry is prioritised
over shape.

Even in the quantum domain, we do not talk of the shape of particles.
Even when systems of particles interact, shapes are usually ignored except
where they play an essential part in the interaction. This leads to a
conundrum: shape seems to be a genuine property of objects but for
physics shape seems to be irrelevant. In most cases, especially in
fundamental theories, shape seems to have no explanatory or causal role
in the physics of individual objects. Does this mean that philosophers,
following physicists, jettison shape as a primary property? We must
remember here that shape is also a problem for philosophers to handle,
as discussed in an earlier section. If we subscribe to the strong view that
only those entities which are properties for physics are properties for
metaphysics, then we have to reject shape as a primary property.

Although shape is seemingly ignored by physics, there is yet another
property which plays an explanatory and causal role even in the case of
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individual objects — the property of symmetry. This is the case in quantum
physics as well. For even if we do not speak of the shape of the electron,
we can speak of its symmetry as manifested, for example, in its spin.
Along with the reduction of objects to points, yet another reason for the
unimportance of shapes lies in the observation that mass and charge
possessed by a given object are values whereas shapes are not. In fact, in
the project of mathematising the world, of which point reduction is one
part, shapes properly belong to classes and not as individuated values.
Even in classical physics, shapes are replaced by the property of symmetry.
For physics, a spherical object’s property that is of any value is not that
of having sphericity but of having spherical symmetry whose
consequences can be observed. This spherical symmetry is taken over
even when the object is represented by a point, that is, after its shape has
been erased. This priority given to symmetry in physics might suggest
that we accept symmetry as the genuine property of objects. But since
symmetry is so closely linked with shape, we have to pause before we
take symmetry as a primary property.

There is a deeper problem. All objects are not symmetrical, only some
of them are. But all objects whether symmetrical or not have shape. So
it does seem that shapes come first and symmetry later. But the arguments
above still holds good. As long as reduction of extended objects to points
is the first step in physics, shape is not a member of its set of properties
except in special circumstances. Also the fact that all objects are not
symmetric should not bother us. For not all objects have charge but for
those which do, charge is a genuine property. Also, all objects which
have charge also have mass but this does not make charge secondary to
mass. We can make a similar claim for symmetry.

We have already seen the problematical nature of shapes. Shapes are
essentially abstractions. And physics' removal of shapes in many important
cases suggests that it does not see shape as an essential property. But
perhaps all abstractions are like this? Consider abstracting away mass. If
we ‘remove’ the mass of an object, we are left with a shape thart has no
mass. The shape remains the same but the object has lost the mass it
had. In such a scenario, the physics would be drastically modified
and thus is significantly different when compared to abstraction of
shape. While the abstracted shape and the ‘real shape of the object
are the same, if we abstract mass and charge away the object loses an
essential property. That is, the abstracted entity is not the ‘same’ as
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the quality possessed by the concrete object, in stark contrast to shapes.

There is yet another pointer from physics. When describing quantum
particles, physics carries over some important concepts from classical
physics. In particular, properties such as mass and charge are seen to be
properties of quantum particles but shape is completely ignored. The
question of the shape of these particles does not even arise in describing
these particles. Along with mass and charge what is retained is the
symmetries. As the brief discussion earlier indicated (see 1.6), symmetries
are in fact what quantum objects are all about!

It is also not an accident that among all fundamental physical laws,
shape does not occur in any of them. For physics, shape of an object
does not have any explanatory or causal role to play, roles which are
played by symmetry. Of course, in many of these laws, the elimination
of shape occurs through reduction to pointhood particles — as in Newton’s
gravitation law and in Coulomb’s law. But the reduction itself is possible
because shape is not a genuine, intrinsic property necessary for physics.
Note that shape of individual objects is what is thus eliminated. One
can argue that in chemical reactions, for example, shape is very important.
But in these cases, it is the structure that is central and not the individual
shapes per se. '

But we may respond by saying that when we carry over symmetry to
the point-object what we are doing is merely carrying over shape or at
worst, some property of shape. But this cannot be right for the point-
object carries no property of shape if the shape has no symmetry! So
physics does grant symmetry a more basic position than shape.

In che earlier section on objects, we have considered the way in which
mathematics deals with shapes, which in some respects runs counter to
the philosophers’ view. Shapes in mathematics, in general, belong to
classes, to equivalence classes. For example, topological classification of
spaces would consider a circle equivalent to any shape which is a
deformation of the circle, say an ellipse. These equivalence classes capture
the essence of shape not through independence of individual shapes but
through some other characteristic. This characreristic ‘essence’ which
captures the essence of shape, in topological classification for example,
is through a group structure! For example, the circle and all its equivalent
deformities (such that the ‘hole’ character is maintained) are classified
by the same homotopy groups. This implies that in many important
cases wha really lies behind shapes is the property of groups and as we
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know, groups are intrinsically tied to symmetries. Here is another instance
that suggests we should accord priority to symmetry over shape.

Groups and shapes often occur together. Diffeomorphisms, discussed
earlier, are one example. Homotopy groups give a topological
classification. Homology and cohomology groups are used to distinguish
boundaries and solid objects. We know that what distinguishes a
boundary from a filled space is that the boundary by itself does not have
a boundary. Some shapes are such that they are only boundaries, like a
circle or a hollow sphere. This argument is used to classify spaces and
this classification once again has a group structure as described by
homology and cohomology groups.

The upshot of this is that shapes are ‘reducible’ to some other essential
terms. These essential terms, which characterise the nature of a shape,
are given in terms of ropological invariants, index etc. These terms are
generally invariants, specific to each shape and are the same for shapes
belonging to the same equivalence class. The invariance here is of course

linked to invariance that is characteristic of symmetries and arises from
the group structure.

But mathematical categories are not metaphysical ones. The problem
of shape is exaggerated only when we look to physics to supply us the list
of properties — the implication being that we should not accept those
properties which physics does not consider as properties. Suppose we do
not look to physics to supply us the list of properties and accept that
shape is a first-order property of objects. Then what is the connection
between shape and symmetry? In particular, is symmetry a property of
shape rather than the object? One way of answering this is to look at
phenomenological experience of symmetry. More on this in Part Three.

Why would physics (and in general science) privilege symmetry over
shape? Science would claim that it privileges symmetry over shape because
that is the way the world is. But I think we can peel away this claim and
see the meraphysical inclination of science underneath., Namely, the
privilege given to ‘order’. Shapes, as individuals, are random in the ‘visual’
sense. They are also not amenable to quantification like various other
properties are. Symmetry functions as a quantitative measure of some
property of the object or system.

Related to this is the importance given to ex

. . planation in science
Science would like to believe that ‘order’ in objects,

Systems or process
must be caused by something, This is dependent P -

on the principle that
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systems left to themselves become more disordered. In thermodynamics,
this principle is the law of entropy — under no ordering intervention,
disorder only increases, i.e., entropy continues to increase. This is the
way nature is! So anything which exhibits some kind of ordering has to
have a reason (generally a causal relation). This implies that ordered
objects and systems have within them the reason for the order. Arbitrary
shapes are disordered. But symmetric shapes are not. Symmetry is actually
the measure of the ‘order’ of these figures. Thus symmetry is what is
retained in point-objects. So even though shape can be discarded,
symmetry has to be retained because the symmetry may actually indicate
some other prior causes.

But even this is not the end of the story. It seems that symmertry is
privileged over shape for a more important reason — the formation of
shapes can be explained through the idea of symmetry. If we look at the
natural world, we see myriad objects with many different shapes. We
can perhaps believe that all these different shapes are accidental properties
of the objects similar to what we may believe about the mass of an object.
(This is with reference to natural objects and not artefacts.) Since it
seems that any arbitrary shape is possible, it is reasonable to posit shape
as a primary property of an object. But is this really so? Can we not
equally say that considering the number of natural objects, it is extremely
remarkable that so many of them have symmetrical or approximately
symmetrical shapes? Why, if shape is indecendent of some ordering
mechanism, are so many exact and approximate symmetrical shapes found
in nature?

The answer is simple. Shapes do in fact reflect the effect of some
order — for example, through the forces acting on an object. Hahn calls
symmetry a principle of evolution because symmetry principles decide
on the design of the objects (and the universe itself)). In the context of
shapes, as long as shapes are explained by use of some laws then shapes
are not the primary properties of objects. A common example is a pebble
rounded in a manner that is explained by the nature of water flow around
it. The shape of the pebble reflects ‘something’ of that which caused the
shape — the water flow. The symmetry of the pebble reflects the
symmetries of the water flow in the river. Thus if shape can be explained
with the use of some prior properties, then it is shape that is hierarchically

‘lower’ than these properties. Symmetry is one such prior property.
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4.5. Symmetry as first-order pr&per{y; An analogy from motion

Bigelow and Pargetter (1989) offer an interesting analysis of vectors.
Earlier, I briefly discussed the problem of change associated with motion.
It is clear that motion involves change of place but it is not so clear as to
what the changing properties are because locations may not be intrinsic
properties of an object. The authors discuss two contrasting doctrines of
motion, what they call the Ockhamist doctrine and the flux doctrine.
The Ockhamists looked at motion as nothing more than the ‘occupation
of successive places at successive times’. The doctrine of flux held that
motion involved more than just a change of locations but also possesses
an intrinsic velocity, thereby giving a vector quality to a moving object.
This velocity vector is an intrinsic property according to the flux doctrine.

The basic difference berween these two views lies in ascribing a new
property to motion, namely velocity, over and beyond the property of
changing locations. Both these doctrines accept that motion implies
changing locations with time. The flux doctrine says that the moving
object has a (first-order) property of instantaneous velocity over and
beyond the change of locations in contrast to the Ockhamist view.
However, the Ockhamist view does not imply that there is nothing called
velocity and would argue that the sequence of positions characterising
motion is enough to characterise velocity. In other words, the first-order
property in motion is the ‘having of a position’ and velocity is a second-
order property of positions. Thus, in this view, the role of velocity is not
to explain why there is a change in positions because all chat is primary
is the sequence of positions.

The doctrine of flux, on the other hand, by introducing instantaneous
velocity as a first-order property of the moving object, answers why there
is a change in positions. The direction and magnitude of the velocity
explain the change in positions. Thus, the important consequence of
this position is that ‘first-order properties of position are cxplaincd by
another first-order property of instantaneous velocity’ (ibid., 292).
Velocity is not to be thought of as second-order property of positiqns
but is independently a first-order property. But itis also true that velocity
is indeed related to change in positions. To claim a first-order title to
velocity, the independence of velocity from sequences of positions should
be established. Bigelow and Pargetter accomplish this by some ¢
they demonstrate that it is possible to have instantan

lever
eous

arguments. First,
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velocity without an Ockhamist sequence of positions. Using the example
of the motion of an image, they also argue that Ockhamist sequence of
positions is possible without instantaneous velocity. Thus they exhibic
the independence of first-order and second-order (derived from sequence
of positions) velocity. Finally, what is needed is a link between these

velocities.
The authors argue that laws of nature provide the required link

between the velocities in the Ockahmist and flux doctrines. Vectors such
as velocity, momentum and force feature in laws of nature and play an
indispensable explanatory role. Also, the Ockhamist would potentially
face a problem in distinguishing a homogenous disc when it is static and
when it is spinning. What differs in both these cases is their causal powers.
This causal power of the spinning disc is the presence of instantaneous
velocity in each part of the disc.

This analysis of velocity in the context of motion is an apt formulation
to understand the claim that symmetry is a first-order property and not
a property of the first-order property of shape. Call O-doctrine the view
that says shapes are first-order properties and symmetry is a property of
these shapes. This is similar to the Ockhamist doctrine of motion. Call
F-doctrine the view that along with shapes as first-order properties there
are also other first-order properties, namely, symmetries. The O-view
would not accept symmetry as a first-orzer property and instead would
look at symmetry in terms of sequence of changes in shapes (or more
strictly, changes in oriented form) and more generally, as changes in
some property that is eventually invariant. The F-view would dispute
this and claim that along with these sequences that characterise change
there is also another first-order property that explains these sequences.

The first point to clarify is what is symmetry a property of? Just as
instantaneous velocity was a first-order property of moving objects so also
we should look for a category that accommodates symmatry as a property.
This category is invariance and symmetry would be a first-order property
of invariant objects (and systems which are invariant in some respects)
just as velocity would be a first-order property of moving objects. The
O-view of invariance would claim that the transformation connected to
invariance is nothing but a sequence of positions or some other change
of a first-order property. The F-view would say that along with such a
sequence there is also another first-order property called symmetry. This
property of symmetry in fact explains this invariance that otcurs in the
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O-view. Also, it is related to laws of nature and has causal power. Thus,
following the arguments of Bigelow and Pargetter we can claim a first-

order property status for symmetry.
Itis indeed true that symmetry (that has to do with forms) is exhibited

through a sequence of change in form. Thus, just as in the case of motion,
we have to show the independence of change of shapes and symmetry.
We could, for instance, consider this example. If we keep a mirror about
a symmetry axis then there is no moment at which there is sequence of
change in shape yer there is a recognition of symmetry. But most of all,
we would, in a manner similar to the example of motion, look to the
possession of causal power, explanatory power and association with law
of nature to argue that symmetry is indeed a firsc-order property like
instantaneous velocity. As argued in sufficient detail earlier, symmetry is
the property that is associated with laws and explains, among other things,
the shapes of various objects. Point-reduction carries the symmetry of the
f)bject but not the shape and this is a good reason to believe that symmetry
is independent of shape, at least in science. The above arguments can be
extended to symmetries associated with systems and processes, and also
for symmetries thar are not associated with shape.

5. CONSERVATION LAWS AND CONSERVED PROPERTIES

Thc'rc is a set of properties, closely associated with symmetry, which
exhibit a unique nature: they are conserved. How do we understand
conserved properties in metaphysics? What is conservation? Consider a
PTOC.C§S or event. For simplicity let us say that only two objects are
participating in that event and let the event be that of collision of these
tWo particles. Before collision, let us say the two particles are moving (or
at least one of them is). Each of these two parriculars has the properties
f)f mass and omentum. After the event of collision takes place, there
15, In general, 3 change in the values of the momentum. The conservation
of momentum says that the total initial momentum has the same value
as tf}e total f.Inal momentum. Similarly, consider an event in which two
particles having charges q, and q, interact and end with two new values,
q, ;nd.q,‘. Then conservation of charges implies q, + q, = q; + q,- Energy
and spin are entities which are also conserved, These conservation laws
::bnoc:;,- :;11); er;npirically sF)und but are also fundam.enta! laws w.hich are
any chemical and fundamental particle interactions.
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In all these examples, the conserved quantity has to do with properties.
Charge, momentum, energy, mass and spin are properties. Conservation
of these properties is not limited to properties of subatomic parricles.
Energy, momentum and charge conservation are manifested in processes
involving macroscopic objects.

Conservation is generally not in relation to a single object, except in
special cases, like conservation of angular momentum of a single object.
The example of an ice skater who changes the speed of revolution by
extending and dropping her hands is well known. The conserved property
here is angular momentum. As the skater brings her hands closer to the
body, she spins faster. This process of her spinning faster is explained by
the fact that the total angular momentum has to be the same. In order
for it to remain the same, the angular velocity increases when moment
of inertia decreases. Therefore, the skater spins faster. The invariance of
angular momentum explains this phenomenon of the skater and
symmetry (rotational symmetry of the system) explains why angular
momentum is conserved. Spontaneous decomposition is another example
where a single object generates two or more objects. Here, energy,
momentum, charge and spin (if applicable) are all conserved.

In the process of conservation the following holds: (a) There is no net
change in some property or properties; (b) Equivalently, in the case of
two objects, what is lost by one is gained by the other. This is true not
only for scalar values like charge but also of vector quantities like
momentum and spin. (c) In the case of more than two objects, what is
lost by one is distributively gained by the other objects.

Could this special nature be a property of these properties? That is, is
there a property, say ‘conservation’, that is a property of mass, charge
etc.? In what sense can ‘conservarion’ be a property of charge? Given an
object with some charge, what is the meaning of saying that ‘conservation’
is also a property of charge? It seems that this property of conservation is
hidden and is manifested only when the object undergoes a change in its
charge. Like symmetry, this seems to be a property that is made ‘visible’
only under certain conditions of change. Like symmetry, conservation is
also related to invariance. But what exactly is the relation berween a
property and the conservation of that property?

It is clear that conservation is not a property of a property such as
charge, energy and so on. We can rule out conservation as a property of
mass-energy, for example, primarily because an object of some mass does
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not necessarily have to undergo collision or dccomposition, the processes
in which the conservation of mass-energy is manifested. Similarly for
charge: given two objects, each with some charge, there is no necessary
condition that they undergo change in the values of the charges so that
the total charge is a constant. That is, it is not a property of charge that

makes charge conservation happen.
Since conservation is seen in events, pcrhaps conservation has

something to do with events rather than properties themselves. We may
perhaps claim this: a property of events is that certain properties are
conserved. But why only certain properties? What is it in the events which
decides which property must be conserved?

Physics understands conservation as follows. Every event in which
some property is conserved necessarily has to have a symmetry. That is,
it is the particular symmetry or symmetries of an event that ‘causes’
conservation of a property associated with that symmetry. Conservation
of momentum is a necessary consequence of the translational symmetry
possessed by the colliding system. Energy conservation is a consequence
of temporal symmetry. Chargc conservation is a consequence of an
internal (gauge) symmetry of the system and so on, and these are all
necessary consequences.

Therefore, we may say that some events have the property of being

symmetric with respect to something such as space or time. Any such
symmetry in the system explains conservation of some property. These
conservation laws are the foundational laws of physics. What is important
to note here is that only certain properties are conserved. Mass, charge,
spin are common examples. It is also these properties that some
phlloso;')hers call sparse properties. Note that there is no shape conservation.
D?c-s this go to suggest, once more, that shape should not be accorded a
privilege over symmetry? Does this imply that the real natural properties
or essential properties that we must accept are only those which are
conserved under some appropriate conditions? That is, can only conserved
propc.rties be natural properties? I think the answer is yes to all these
questons.
‘ In analysing thF nature of causality, Dowe (1999, 270) suggests the
conservcd-quan.txty' (C-Q) theory of causality. Two definitions of
;oll;sewed quantities and their explicit relation to causality is given as
ollows:
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1. A causal interaction is an intersection of world lines which involves exchange
of a conserved quantity.

2. A causal process is a world line of an object which manifests a conserved
quantity. )

A conserved quantity is one, like the examples of charge and
momentum described earlier, which is conserved in a process. Dowe

notes that conservation processes are symmetric but neglects to link the
notion of an underlying symmetry which is the cause of such conservation
laws. We are interested in asking what it means for an underlying
symmetry to cause conservation of certain properties of particulars that
participate in a process. Even Woodward’s analysis of invariance

understands it as a property of laws but does not consider how we should
understand laws that are a consequence of some invariance.

It may be useful to first understand the nature of laws before we seek
to clarify the link between symmetry and conservation laws. It can be
argued that properties are necessary to explain laws. It is reasonable to
say a certain property can cause a particular effect. Armstrong (1997)
formulates the notion of law as follows. Let a particular @ have a property
F and a relation R to another particular & which has a property G.
. Consider the case when this state of affairs is immediately succeeded by

b’s becoming H. He explains this sequence in terms of 2 having F and R
to b, thereby causing b 1o have H. Thus he sees a law as a ‘causal connection
berween state-of-affairs types’ (ibid., 226). And for laws of this form,
there is nothing more to them other than to be ‘instantiated in such
sequences’. That is, the law is exemplified only in the manifestation of
the particular sequences. It is also to be noted that Armstrong believes
that all cases of singular causation are instantiations of some law. Further,
non-causal scientific laws supervene on causal laws. And finally, laws, in
this view, play a very important explanatory role in that they explain the
regularities in phenomena and processes.

Burt these are only certain types of laws. Armstrong uses the example
of a guillotine which causes decapitation to illustrate the above structure
of a law. Burt such a structure of law is not the one that is generally
considered as a fundamental law in science. These are laws which are
related to generalisations. The laws of importance in science, what
Armstrong calls functional laws, are those which manifest the
determinate-determinable relation through some mathematical relation.
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He isolates two characteristics of such laws (ibid., 242):

1. They are determinable laws, and under each such law falls a large, perhaps

infinite, class of determinate laws.
2. A great many of the determinates are likely to be uninstanciated.

An example is Newton's law of gravitation. For different sets of masses
and relative distance, a value of the gravitational force between them
can be found. Armstrong argues that each such calculation can itself be
seen as a law but it is extravagant to believe so when we can unify all
these individual determinate laws under one determinable (functional)
law. Such a relation not only supplies unification but also explanation.
Without entering into a discussion on the metaphysical nature of such
laws, let me consider the nature of conservation laws.

As is to be expected, conservation laws seem to be funcrional laws.
Conservation of linear momentum is a determinable and specific cases
of such conservation is a determinate. There are a plethora of conservation
laws for each value of the total momentum. Bur while this seems to be
the case in general, there is also a crucial difference between conservation
laws %nd Newrton’s law of gravitation, for example. Newton's law is not
Cxplaln.cd by any prior principle that necessitates the form of this
determinable expression. Conservation laws, on the other hand, are a
consequence of a prior symmetry. Thus it seems that conservation laws
are functional laws: but they also need a specific causal structure as in the
CX?mple- of the gUIUOti_ne. Also, note that a functional law is more than
a functional expression. For cxamplc, we can write the angular
o o o g oy @ e o o

. onal equation is not a law like Newton’s law
essentially because there is no cause-eff lation involved in the terms
that occur in this equation. In N et r,c ation Involved in the © |
acceleration caused by a fOrce. n‘ ewton’s law there is a p:?;ucuh:fr
causal relation. In the case of Sering ona body. ’.ﬂ?c law- spect ;:s o
that there is no causal inform C.Onﬂ;:rvauon lav‘vs, 1 is ryplcallyl the Cz;]sc
case of conservation of ap ulanon in the law itself. For examp & lm e
[, = I,0,. This law only tgellar momentum, we may write the law as
is the same after some chyn Shus that the ongma'I angular momentum
skater discussed earljer, The:-g o waken p l.acc’ as in the example of che
chis law is like 2 fUnctionaje] s no causal link berween Ioro. Anc% yet,
values are unified under 4 g aw in that a whole range of determinate

eterminable,
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Those who believe in the reality of laws predominantly hold the N-
relation view of laws as necessary nomic relations among properties. If F
and G are first-order properties, a law is a necessary nomic relation between
them and is written as N(F, G). Newton’s law of motion has mass and
force as the two first-order properties and acceleration as a ratio of force
to mass as the nomic relation.

It has been noted chat not all scientific laws can be put in this form.
Conservation laws and symmetry principles have been given as example
of such laws which are not N-relation laws.'? But it is not clear whether
this is really so. If we accept symmetry as a first-order property then we
can rewrite conservation laws as N(F, G). Consider the example of
conservation of total linear momentum. Let F be the first-order property
of the system that is its tortal linear momentum (just like the total mass
of a system). Let G be the other first-order property that is the symmerry
possessed by that system. Then N(F, G), the necessary nomic relation, is
the identity relation on F at various points of time. That is, the relation
between F and G in this case is such that G causes F to take the same
values ar all times.

The status of conservation laws might be better understood if we
consider symmetry as the property that causes conservation of certain
quantities. Symmetry is not explicitly present in the conservation law
but it is that which makes possible these laws. The symmertry could be
that of spacetime and/or of the configuration of the system. Whatever
be the case, what is clear is that symmetry should be seen as a primary
property of the system and causes conservation of certain other properties.
Shoemaker (1997) argues that properties should play a causal role for
them to be accepted as genuine properties. Moreover, he notes that
properties ‘reveal their presence in actualisations of their causal
potentialities’ (ibid., 242), a point that helps us to further emphasise the
conclusion that symmetry should be seen as a fundamental, intrinsic,
first-order property.

NOTES

See also Quine (1961).

See also Fales (1990).

For example, see Daly (1997, 140).

See also Castellani (1998).

For a two level criterion for set identity, see Lowe (1998, 42).

Rl S
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For those who are troubled by such profligacy, we can attempt to restrict
composition. In this context, see van Inwagen (1990).
7. For example, see Johansson (1989, 93).
8. This centre of mass does not always have to be ‘insidc’ the object.
See Resnick (1997) for more on mathematics as structure.
10. See also Lucas (1984).
11. See Sarukkai (2002) for more on this aspect.
12. See Swoyer (2000).



PART THREE

Phenomenology and Aesthetics of Symmetry

A philosophy of symmetry cannot be restricted to only metaphysical
analysis. Phenomenology is the other tradition that is needed to
understand the nature of symmetry. A phenomenology of symmetry
would have to begin from a reflection on the phenomenological
dimension of symmetry. The arguments adduced earlier have hopefully
shown that symmetry is indeed a ‘primary’ property, rather than
something derivative as it sometimes appears to be. It is also the case
that the manifestations of symmetry are also inherently phenomenological
in nature.

Natural objects show a wide range of symmetries. The symmetries of
nature are usually associated with the shapes or forms of natural objects;
in the distribution of colours as seen in a wide variety of insects and
animals; in complex patterns which are discovered in various
manifestations of the animate and inanimate world. Metaphysics gave
us an analysis of the many categories that are involved in understanding
these symmetries. But there is a content to symmetry that needs a different
‘kind’ of philosophy, namely, phenomenology.

We experience symmetry in various ways. We usually talk of it in
terms of proportion, harmony, balance, beauty, simplicity and so on.
The phenomenological experience of symmetries influences the way we
respond and react to them. In the case of symmetries of shape, colour or
patterns, 1t is the phenomenology of visual perception that is most
important. Perception is itself complex. It can be described with the
help of science as well as through phenomenological experience and
philosophical categories. One of the important examples in
phenomenology has been the discussion on perspective involved in
perception. Rarely do we see a ‘full’ object and in most cases there is
nothing we can do about it. But in symmetrical objects we are able to
have a sense of the whole even if we see only a part. This filling up the
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blanks in perception (and indeed knowledge) is one way of understanding
symmetry in its phenomenological guise.

It is well known that the idea of vision has been central to philosophy
in both Eastern and Western traditions. Some writers refer to the
‘hegemony of vision' as something that has shaped the growth of
philosophy.' Even science is deeply indebred to vision in various ways,
suggesting, that the hegemony of vision has also been important in the
formation of scientific discourse.” Modern physics, which uses symmetry
as a fundamental principle, is also indebted to metaphors and images

"drawn from our idéas on vision. Thus, symmetry itself is placed within
the larger discourse on vision that is present in both macro and
microphysics. Phenomenology gives us new insights into symmetry and
its relation with vision. In particular, as I will argue later on, even the
structure of groups seems to be ‘correlated’ to certain principles of vision
as described by Gestalt psychology.

Although vision is dominant, ideas of symmetry are present in the
experience of other senses also. For example, we generally consider a
dish to be tasty if its various tastes are balanced. The balance of tastes
and of smells is related to the judgement we make about the quality of
‘the food we eat or the smell we experience. Our experience of tastes and
amells are phenomenological. Harmony, proportion and balance are ideas
that are integral to what we judge as ‘good’ taste and smell. These examples
illustrate that ideas associated with symmetry are intrinsic to aesthertic
judgements, as in the case of visual experience. When we talk of such
experiences we do not have mathematical descriptions, like group theory,
but nevertheless symmetry is basic to the aesthetics of sight, smell and
taste. *

Tactile sense is also involved in the phenomenology of symmetry. A
simple example is the common experience of balancing objects like a
stick or a disc. We can balance a stick at a particular poinc on the stick;
we can balance a homogenous disc at its centre. These phenomenological
experiences illustrate a tactile sense of symmetry. There is, of course, no
need to consider these senses as independent of each other. If we follow
Merleau-Ponty, for example, we can hold the view that the senses of our
body are not independent of each other but are how somehow
‘intertwined’. Such a non-reductive view of the senses allows us to
understand symmetry in a broader sense.

In the ways in which we deal with objects in our daily life, we are
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always engaged in some phenomenological expression related to
symmetry. Consider the simple example of making paper planes. Even a
child who learns to do it understands intuitively that there is some notion
of balance involved. In the making of a paper plane, given a sheet of
paper, we fold it along a line of symmetry. Further folds follow some
axis of symmetry. A child has a phenomenological understanding of
balance and symmetry without knowing what symmetry is — especially
in the restricted view of understanding it entirely in terms of
transformation and invariance.

Simplicity and beauty are terms that occur in any description of
symmetry. Even in the case of mathematical or physical theories, these
two notions have been privileged in various ways. Both these notions
need to be given a phenomenological reading.

1. PHENOMENOLOGY OF PERCEPTION

What does it mean to say that we see a thing? I see now a book in front
of me. I see the black colour of the cover of the book, the shape and size
of the book from my perspective. I also see it as one object among other
objects on the table. I am writing as I am seeing the book. I read the title
of the book and the names of the authors. I look out of the window and
see mountains and trees but at the same time am also hearing the steady
sound of crickets. In general, perception involves recognition not just of
one thing but of many ‘things’ in the field of vision, which is not restricted
to sight alone. It also involves, when I focus on the object, the distinction
between the background against which the object is placed and the
foreground of the object.

Seeing is obviously related to the body and, in particular, the eye. It is
also an intentional act which lets me focus on a particular book and not
anything else. Let us say that I am now focussed on the book. My
recognition of the object that I see as a book also involves prior
understanding of what a book is. Although there are many books of
different shapes and colours, I see them all as books. Similarly for the
different kinds of trees. One may invoke consciousness to describe all
these characreristics of seeing. But if we are already in a conscious state
of seeing, then what is the ‘experience’ of seeing?

Let me initiate this discussion by asking what is it to perceive a shape
of an object. What are the assumptions in making the statement that an
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object has a particular shape? I begin with shape for obvious reasons
since symmetries seem to be intimarely related to shape or form. In the
last Part, I argued that symmetry has a claim to priority over shape.
Does phenomenology also tell us something similar about symmetry?

When we say an object has a particular shape, we have 1o note that in
general this is a problem as far as perception is concerned. It is clear that
shapes and sizes are not absolute but are dependent on perspectives. As
Merleau-Ponty (1981, 299) notes, usually we talk of the size and shape
‘when it is in a plane parallel to the frontal elevation.’ For him, the frame
of reference is first and foremost the body. The empiricist arguments for
a definite size and shape of an object does not answer the primary question
of how such a perception is possible. The intellectualist answer tends to
make perceptions judgement of our faculties or reason. Merleau-Ponty
answers the problem of perception of size and shape in terms of lived
experience — knowledge of the size and shape of a thing ‘is grounded in
the activity of the body’ (Hammond et al 1991, 187). He uses the fact
that there is an ‘optimum distance for perceiving things’ (ibid., 188). I
is interesting to note that this optimum distance is understood in terms
of balance. Moreover, perception of a thing involves an already
sedimented knowledge that allows us to recognise the object as such.
Thus, rather than the object’s properties causing the appropriate
perception, the habits involved in perception also contribute to the
experience of the perception. Further, his view that perception is no¢
restricted to one sense alone bur involves the other senses also, implies
that perception and experience of shapes is much more complex thap,
when understood in terms of vision alone. The clarity of an object
increases with the synthesis of all the senses — ‘unity and the reality of
the thing perceived are only fully appreciated when the senses are ac
in unison’ (ibid., 195).

Such an analysis is useful when we discuss the property of symmetry
and the ways irr which we experience it. First of all, in the usual way we
talk about symmetry, it is clear that sedimented knowledge is importan.
A scientist’s view of a symmetric object is quite different from a layperson’s
one. The question of what shape and size an object has, given thejr
difference in various perspectives, does not relativise these notions
completely. For Merleau-Ponty, we can still hold onto an empiricist view
abour a particular shape and size of an object except that it is now viewed
through the body’s orientation towards the object. But what can this say

ting
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about symmetry? What happens to the symmetry of an object under
different perspectives? And how does the body even perceive and recognise
symmetry?

Before we try and answer these questions, let me discuss the notion
of shapes and forms in further detail. When we perceive form, we are in
essence perceiving a boundary of the object. Plato distinguishes form
from nature and identifying nature with matter ‘makes matter prior to
form, its temporary accidental arrangement’ (Lang 1998, 50). For Plato,
form is imposed on matter. For Aristotle, in contrast, matter cannort be
essentially identified with nature. Indeed, for Aristotle, nature is ‘the
shape, namely the form, not separable except in definition, of things
having in themselves a principle of motion’ (ibid., 50 — 51). Thus nature
is form and not matter. Lang notes two reasons for Aristotle’s position:
one, the primacy of the actual over the potential, the actual being specified
by form, and two, his belief that ‘form is that toward which a thing
tends or grows’ (ibid., 51). We should also note the constant interplay
berween narure and art that informs these views — natural things occur
with a form while artefacts have their ‘form imposed from withour'. To
make a further distinction, Aristotle considers ‘nature’ as identified with
form but ‘by nature’ as combination of form and matter. Thus, form is
-that which is actual and is ‘the primary constitutive principle’ whereas
matter is substance as potential.

As we can see, the idea of symmetry in its relation to form and in ics
essential embodiment in narure is close to Aristotle’s position. Especially
so in the light of modern physics where symmetry plays a central role
notonly in explaining the forms of natural objects but also as a principle
of evolution of forms. Aristotle’s priority of form over matter also takes
into account the evolution of forms as being central to the identity
condition of an object — ‘any natural thing grows toward its form and
toward nature in the sense of form’ (ibid., 53). Matter, in the case of
nature, ‘tuns after form' and desires for form. Further, form itself is the
cause of motion for motion always is a movement towards form, towards
actuality from potentiality. This relation berween form and marter gives
us a distinction berween nature and art. In art, it is the artist who imposes
form on marter. Aristotle also distinguishes between form and place;
both are limits bur are distinct from each other. Form is the ‘limit of the
thing contained’ and place ‘is the limit of the container’ while matter is
the ‘body of the contained’.
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One of the fundamental problems for Aristotle was the relationship
berween form and matter. Aristotle treats matter and form together; this
is usually referred to as hylomorphism. To motivate the discussion, ler
me consider Lowe’s (1999) analysis of a bronze statue. In what sense is
a bronze statue a combination of matter and form? The statue is not
form in addition to bronze. If so, Lowe argues, the bronze would have to
be seen as a part of the statue, which it is not. Similarly, the form is also
not a part that belongs to the statue. Lowe suggests that t_he way out is to
consider the form of the statue ‘as something belonging exclusively to
the statue rather than to the bronze,’ that is, ‘identify that form with a
particular property which the statue has but the bronze does not’ (ibid.,
8). This allows him to distinguish between shape and form because he
places the shape along with the concomitant presence of the statue. Due
to which, the identity of the statue over time is not the identity of shape
of the statue but only the identity of the statue of that shape. The primacy
accorded to form then offers an explanation for the identity of the statye.
As a consequence, Lowe takes the position that form and matter ‘are
relatively independent.” This implies that it is conceivable to think of
form without matter. In fact, Lowe considers the description of particles
in modern physics as exemplifying this possibility. Neither does matter
help in the individuation of things by giving a principle of identity for
them. Even in the case of individuation, Lowe believes that form is what
allows such individuation.

In contrast, Kant suggests that forms ‘do not pre-exist in things’ but
are ‘generated by the a priori forms of intuition’ (Mainzer 1996, 562).
Incuition therefore ‘works spontaneously in order to determine the “unity
of the manifold™ (ibid., 562). Mach, whose philosophical writings were
influential among scientists including Einstein, considered form s
independent of other phenomenal qualities’ (ibid., 562) . Mach was
influenced by Gestalr psychology, which considered form not as addition
of constitutive elements but in terms of a whole, a gestalt.

The American philosopher, George Santayana (1955), discusses the
idea of form and the relationship of it with beauty. He views form as an
aggregate that has elements, and the manner in which the elemens are
combined constitutes the character of the form. For him it is important
to be able to distinguish the relation of parts in a perception for it to be
considered as a perception of form. But he notes that unity is a virtue of
forms although unity by itself cannot be a form. Santayana relates forms



PHENOMENOLOGY AND AESTHETICS OF SYMMETRY * 111

to symmetry through the categories of unity, individuality, mulriplicity
and so on. I shall, later in this Part, discuss this relation among various
terms related to symmetry.

2. FORM AND VISION

Without further discussion on the nature of form, let me focus on the
relation between form and vision. As the above formulations of form
show, the idea of form is intrinsically related to vision. In the case of
form related to other senses, similar notions can be developed, but the
privilege given to visual form continues to influence them. For example,
the perception of forms, according to Gestalt psychology, is based on
certain organisational principles that I discuss below. One can extend
these principles to the cases of other senses but extending these principles
thus only reinforces the dominance of the metaphors of vision.

The consequence of sight being the dominant sense is that the
paradigm of vision, referred to as ‘ocularcentric’, becomes central to the
preoccupation of philosophy and science. Hannah Arendt notes that
‘from the very outset, in formal philosophy, thinking has been thought
of in terms of seeing...” (Levin 1993, 2). This ‘hegemony’ of vision can
be traced back to Plato and to the ideas of Platonism in general, a point
insistently stressed by Heidegger and Derrida. Plato’s metaphors of light,
darkness and cave, are well known. The philosopher, according to Plato,
should be able to ‘see what needs to be seen <ven in the darkness,” and
one who should not be ‘dazzled by excess of light’; rather, the philosopher
should be guided, not merely by the physical sensation of light, but by
the ‘light of reason’ (Levin 1997, 12). Plato’s language draws upon the
imageries of light and vision, including his comment thar the ‘soul is /ike
the eye’ (ibid., 13). If Platonism shapes a predominant culture of vision
then it can be argued that Platonism in mathematics implies that
mathematical entities are themselves implicated in a larger idiom of vision
_ I will argue for this possibility in the example of groups.

The metaphors of vision have entered the vocabulary of common
language. For example, the relationship berween ‘truth’ and ‘en-
lightenment’ as also that between ‘ignorance’ and ‘darkness’ has sl‘laped
the language of science, epistemology and philosophy. The conur.med
use of these images also serves as ‘ideal models with a distincrively
normative rhetorical function’ (ibid., 8). Thus the rhetoric of truth, and,
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in general, knowledge, has privileged phil.osophy's preoccupation w'1t|1
sight. Levin notes that philosophers like Heidegger, Foucaultand Dcrn.dn
have a common complaint that ‘the thought and culture of modernicy
have not only continued the historical privileging of sight bur allowed
its worst tendencies to dominate’ (Levin 1993, 5). .

It can also be argued that in the case of Descartes that although his
engagement with metaphors of vision shaped h.is discou‘rsc. tl?cr‘c werc
also significant differences in his account of vision. While it is indeed
the case that Descartes found darkness to be a ‘nightmare’, he also
developed the science of optics that developed the possibilify ofdisplacjng
the ‘priority of the eye and centrality of vision’ (Judovitz 1993, 69).
Also, his belief that touch is more reliable than vision because ‘touch
allows us to conceive ideas ... vision blinds us to the object’ opens up a
movement beyond the visual sense. This insight into the limitations of
vision even as it seems to be the dominant sense has also been echoed by
other philosophers. Although this does not repudiate their immersion
in the hegemony of vision in their writings, it points to the constant
tension in using these metaphorical images and in doing so, attempting
to get away from their suggestive orbits. Hegel, for example, responded
to this issue by conceiving of the ‘generosity of vision'.> For Hegel, visual
sensation was ‘less’ than the sensation of touch because vision by itself
does nort allow us to experience depth and space like touch can. Similarly
Merleau-Ponty. While his philosophy liberally drew upon metaphors of
vision, at the same time he insisted on the oneness of the senses and in
his later work argued for granting invisibility the same ontological statys
as visibilicy.*

McCumber (1993, 236) notes that l)hilusul)hy has used ‘vision as a
model for knowledge’ and this tendency has itself given meaning to what
we call vision. Derrida argues that what is presented in the thing is its
form — ‘form is presence itself’ (ibid., 236). If a thing ‘can be known
only insofar as it is form,” the consequence is that matter is suppressed ar
the expense of form and this Derrida refers to as the ‘founding opposition
of metaphysics’. That is, ‘the subjection of vision to form is thus only the
first step toward a deeper subjection of vision to speech’ (ibid., 237),

It should not be surprising that science has also actively participated
in the discourse of vision. Science, seen as an activity that attempts to
make visible the invisible, draws upon ideas of vision in its articulations

but at the same time also tries to find a suitable language of the invisible.
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It would not be an exaggeration to claim that science, more than any
other discipline, has privileged the visual, even as it has enriched its
engagement with the other senses. The development of microscopes and
telescopes brought micro and macro objects within the visual field.
Photographs, X-ray, MRI, PET scans ctc. are attempts to capture a sense
of the invisible through visual means. The visualisation of the writing of
science is of fundamental importance to its discoursc. As Thde notes, the
textlike phenomena permeates science in the use of ‘charts, graphs,
models, and the whole range of “readable” inscriptions which remain
visual’ (Ihde 1998, 167).

Why is this privilege extended to the visual in science, both in practice
and discourse? A traditional answer, according to Ihde, is that vision is
seen as the ‘clearest’ of the senses. But he rejects this view because he
believes it is nothing but ‘cultural prejudice’ to believe that vision is the
‘best’ sense. In contrast, iie suggests that what is special to visualisation
in science ‘are its repeatable Gestalt features’ occurring in the visible
forms in technological imaging in general (ibid., 161). This association
of vision with the Gestalt will be reinforced by my observations about
the role of Gestalt in the ideas of symmetry — once more suggesting that
vision plays a dominant role even in the languages of the invisible.

It is only the prior sedimentation of metaphors of vision in philosophy
which can explain why science too develops its ideas of form within an
ocularcentric discourse. This suggests that science understands the domain
of the visible through craating a form of the inviable that s steongly
dependent on the idea of visual form. This is manifesicd most powerfully
in the case of symmetries in science and the use of groups to describe
them. Thus the making visible of the invisible in the scientific discourse lies
in making visible the form of the invistble based on the logic of visual forms.
The fertile engagement of science with strategies of writing, strategies
that are beholden to the idea of form, reiterates the importance of form
in science, especially in its discourse.’

3. SYMMETRY, FORM AND THE GESTALT

Symmetry, form and the Gestalt are intimately related concepts. 1 will
discuss this relation in two parts. First, a brief summary of the Gestalt

‘laws’ of perception will illustrate the principles that describe how we
perceive forms. Second, I will extend this to the case of groups, where 1
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will argue that the group structure is similar to these Gestalr principles,
thereby emphasising the point that symmetry, even when described by
abstract mathemarical structure, seems to be closely related to the

principles of visual perception.

3.1. Gestalt laws of perception

How do we perceive forms? What are the principles of vision that make
perception of forms possible? As is well known, Gestalt principles have
played an important role in the psychology of perception.® Gestalt means
‘whole’ and the fundamental basis of Gestalt is the interplay between
the ground and figure in perceptual process. I will discuss in brief some
of the organisational principles of vision based on experimenta]
observations by the Gestalt psychologists. Our perception of form jg
fundamentally based on certain principles that help to organise the fie]d
of vision, the first of which is the figure-ground perception. The famouys
examples of the many ‘ambiguous’ images where the images shift from
one to another are an illustration of the need to factor both figure and
background in any perception.

Another organisational principle is that of good continuation. T}yjs
principle suggests that we tend to see continuous forms thar are smoothly
continuous in contrast to discontinuous forms. A third principle i that
of proximity, which essentially states that units of a figure that are closer
to each other will tend to be perceived as part of a single entity. A good
example of this is an array of dots that will be seen as columns if the dots
are closer to each other along the vertical line. If the dots are closer alop
the horizontal line then the array will be seen in terms of rows, Thusg
this is a principle of organisation that explains why we see figures 'lnci
forms the way we do. ‘

A fourth principle is chat of similarity: when we see a form we tend t
pick out patterns that share similar elements, like coloyr patches io
berween. Finally, there is another important principle that guides oun-
p.crccption, namely, closure. This principle points out that our perceptio l
picks out all elements that will form a closed figure or whole. Thit o
our perceptual process tends to see closed figures as belonging to Ols,
entity. A simple example is that of a circle made of dots; even ifgo dne
is missing the figure is still perceived as a full circle. e et

It must be mentioned here that when these principles act in co-
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operation the grouping is very stable but when there is conflict berween
these different organisational principles then the image tends to be
unstable and ambiguous. It must also be noted that symmetry is a factor
in both the organisational principle of form as also in the recognition of
figure-background perception. One of the Gestalt principles is that of
symmetry, what was also called as ‘good figures’, characterised so ‘because
they could not be reduced perceptually to any simpler components’
(Wade & Swanston 1991, 35).

Although these central (and other minor) principles of Gestalt have
to do with planar configurations, they point to certain necessary relations
that inhere in the ways in which we perceive form. Rather than use these
principles as the benchmark of perception of form, I want to restrict my
analysis to exhibit the close similarity between these principles and the
structures of groups thar describe symmetry in science.

3.2. Groups and the Gestalt

Groups describe symmetries in science, including the symmetries of
geometric forms, objects, events and laws. They describe symmetries of
the visible and the ‘invisible’ world. What is special to groups that they
are seen as natural mathematical structures to describe symmetry? 1
suggest that the structure of groups is strongly correlated to the Gestalt
principles of (visual) perception. We can claim that it is possible that
groups are mathematical structures that describe the (non-mathemarical)
Gestalr principles. In which case, groups would be the structure needed
to describe the mathematics of perception of forms. But symmetry in
science does not acknowledge that it is a perception of form in general.
Since the structure of groups is similar to the structure of the Gestalt
principles we can argue that groups actually are modelled after the
principles of organisation that describe how we perceive forms. This
would then imply that symmetries in science, described by groups, are
actually based on a prior idea of (visual) forms and their (visual)
perception.

Why are groups correlated to the Gestalt principles? Groups are sets
that have an operation defined on them, and whose elements obey certain
simple properties — that of closure, existence of identity, inverse and
associativity. Sets are a collection of points, things, elements that are
brought together into one set through some criteria of membership. As
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a collection of these elements, they are first of all similar to the grouping
principles of the Gestalt. Note that the bringing together of a set of
points as belonging to one ‘set’ is itself a Gestalt principle. We may ask
why groups should be the mathematical structures that describe v,
symmetry? There are two ‘parts’ to a group. One is its set nature, a
collection of elements. The other is the operation defined on these
elements. Given the operation and the elements, the group rules give us
the relation between the elements of a group — we may look upon this as
the rules of membership to a group. But then why is the idea of symmetry
— in many cases to do with shape or form — related to a structure of set?
Symmetry, as we saw earlier, has to do with invariance of some form
under some change but why should this have anything to do with sets?
The explanation for this, in the context of Gestal, is that a form can be
understood as a ‘collection’ of points. Let me give an example. When we
talk of the symmetry of an equilateral triangle, we describe it by a group
that has as elements three angles, the identity 0 (or 360 degrees), 120
and 240 degrees. This idea of a group is itself based on the view of a
triangle as being defined entirely by its three vertices. Like the Gestalt,
the triangle is specified once three dots corresponding to the vertices are
given. It is the Gestalt organising principles that offer us a reasonable ,
belief that we are indeed secing a triangle although we are ‘only’ seeing
three dots. When the triangle is rotated about its centre, we keep track
of these dots. The rotation of the dots is assumed to imply the rotation
of the shape of the triangle also. Specification of these three dots is enough
to specify the form of the triangle. The changes in the form of the triangle
under some transformation, like rotation, are also specified by changes
in these three dots. This principle of filling out a form from its constituent

dots is central to Gestalt principles of grouping,. So, we may understand

th.e set nature of groups corresponding to symmetry as reflecting a Gestalt
principle of grouping,
We can also understand the Gestalt

roupi incipl lated to
s, Olbeiousty grouping principles as rela

. ' the bringing together of points to suggest certain forms
is n?thlng but a collection of one set of points which function in a
particular way. However, groups corresponding to a symmetry should *
not be equated with the collection of these points that suggest a form-
For example, the Symmetry group under rotation of an equilateral triangle
has three elements but these three elements cannot be identified with

the three dots that suggest an equilateral triangle burt are represent
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through certain angles corresponding to invariant rotation of these dots
around the centre of the triangle. We may say that symmetry groups are
nothing but a Gestalt principle of organisation of elements in the
transformation space and Gestalt principles of organisation are first and
foremost a collection of elements — that is, a set.

But groups are also more than sets. The elements of a group have
certain relationship among each other. The closure property is a common
‘name’ in both groups and Gestalt. The closure property in Gestalt
principles claims that perception fills in the gaps in a form and projects
a filled form, even if the form has certain elements missing in it. Given
a set of points in the shape of a circle, even if some points are removed
we continue to see it as a circle. Closure property of groups stares that
the result of the group operation of two elements of the group should
yield an element that also belongs to the group. That is, group operations
cannot take an element out of the set of elements in the group. We can
also understand this in the following manner: given two elements of a
group, we know what another element is. This is definitely on the order
of an organisartional principle of the mathematical groups.

The important criterion that a group should possess an identity
element is ‘equivalent’ to the Gestalt principle that emphasises the role
of unity of perception of form. Identity element stands for the identity
transformation, or equivalently, the case in which no transformation is
made. This is nothing but the ‘first’ perception of the form. The inverse
elements are those that give back the identity after some transformation.
This is phenomenologically equivalent to the temporal identity of the
‘first’ perception. It reinforces the point that perception from different
perspectives does not transform the given object into something else. In
fact, this can be seen as the grounding of perspectivism itself and the fact
that perception does not change the identity condition of the object but
only the set of meanings that one ascribes to it. The idea of passive
transformation, in which the observer moves rather than the object, is
what generates what we call different perspectives as against active
transformations which are the transformations of the object. Thus, a
particular symmetry is nothing but the recognition that some perspectives
offer the ‘same’ vision. The identity and inverse rules of groups are
‘correlated’ ro the Gestalt principles of recognition of the full form even
as we recognise them as being made up of individual elements.

What is the consequence of this similarity between groups and the
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Gestal®? First of all, in the case of simple ﬁgurcs‘ hk.c malnglcs, the S}m'la“f)’
Gestalt organisational structure is clearly
of the group structure and the fioures, The consequency
linked to the perception of visual form of.d:lCSC lgures. q
e ision i is the vision of the Gestalt — ac least as
of this is that vision in symmetry is _ erned. Secondly, and
far as the scientific description of symmetry i1s conc - Y
- . : try of not only visual forms
more striking, since groups describe symmetry  tea of forin i« l
butalso of systems, quantum particles (where thei ea‘j ; e.xtrcme' Y
ambiguous) and so on, it seems that even the lar‘gcrhl Cladobsymmefr‘y in
these cases is similar to Gestalt principles. This should be surprising:
why should the general notion of symmetry continue o }.lave Gestalt
structure? Why do we model even non-visual s.ymmctne§ in the same
way as we do the visual ones, especially since the visual form is constructed
via the Gestale? L

One response could be to say that something similar to the Gestalt
principles for forms also holds good for the other cases such as colour
and music where the symmetry has nothing to do with th? form per se.
Therefore, when we describe symmetries of quantum particles by using
groups, we are in essence still within the Gestalt as far as the organisati.onal
principles go, although we are not restricted to the Gestalt of visua]
forms.

The consequence of making this connection bctwee..n the structure of
groups and Gestalt principles of perception of form is the recognition
that symmetry in science is deeply immersed in the ideas of form and
vision. This is indeed surprising, for the importance of symmetry in
science is not in the recognition of symmetry of geometric forms but in
the formulation of symmetry principles related to the microscopic world
as well as in conservation laws. In the case of conservation laws, what
can it mean to say that they are also in some sense indebted to jdeas of
form and vision? In the case of symmetry as an imporcant principle in
quantum theories, such as che unified theories, the conclusion is
somewhat more startling. The use of groups in these instances suggests
that the form of the invisible microscopic domain is first grasped and
understood through the models of the form of the visible world. It can
be argued that in the more abstract mathematical formulations of
symmetry, what is privileged is the form of the mathematical equations.
This form is nothing but the form of the orthographic Inscriptions of
mathematical symbols and equations. This is clearly manifested in the
repeated reference to formal equivalence when talking about symmetries
in physics.”
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To conclude, we can see that even in the invisible world, the
articulation of properties of objects of that world are strongly indebted
to organisation principles similar to the Gestalt. Thus, even in domains
of the unseen, there is an attempt to illuminate the world and make it a
world of vision because the language of description of this world is
primarily the language of vision.

4. OBSERVING SYMMETRY

I have talked of symmetry as a primary property of the object. I have
also claimed that there are phenomenological experiences of symmetry.
When we usually talk of properties, we tend to believe that they are in
some sense observable. We do see the colour of an object. We believe we
see the shape. We do not see the mass, which is considered as a primary
property of objects. But obviously seeing is not the only sense used in
the detection of properties. In the case of objects with charge, which is
also a primary property, we do not see the charge. We smell a rose and
that smell is indeed a property of the rose. We have seen that in the case
of symmetry, there are experiences of symmetry in the senses of sight,
touch, smell and taste. But in the case of sight, it may not be obvious
that symmetry is a primary property that we see; rather, it may be
construed as a property of the form. In the previous Part, I argued that
this cannot be so. Phenomenologically, the experience of categories like
balance, harmony and simplicity, for instance, all point to an experience
of symmetry. In other words, symmetry is observable and experienced
in-itself.

Since symmetry, especially in the scientific formulations of ir, is
intrinsically related to the notions of transformation and invariance, the
observation of symmetry has been thought to be the observation of
transformation and invariance. Kosso (2000), for example, holds this
position in saying that observation of transformation and recognition of
invariance is equivalent to an observation of symmetry. This implies
that we do not observe symmetry as such but only as the ‘sum’ of two
other observations. Although this is the definition of symmetry in general,
he also notes that when we ‘see’ a snowflake we already ‘see’ its symmetry.

Let me first begin with the possibility of observing symmetry in objects.
Kosso suggests that observation of symmetry in objects can occur in two
ways: one is through ‘seeing’ and ‘recognising’, and the other is to observe
transformation and invariance (hereafter T&I), and thereby conclude
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o observing symmetry. Both these modes of observation are

that W€ a . h .
‘ Jamentally different. In the case of observing symmertry directly, as
1 the exa e of snowflake, it can be argued that we are only obscrv'ing

Rather than enter into a critique of this naive phenomenological
. of symmetrys I will restrict myself to pointing out :lhoa? E:/e
in these €ase® observation of symmetry is more than a recognition ;F
che form of the snowﬂake-,A person ?Mth no idea of symmetry whatsoever
(in terms of unde.rstandmg it as invariant transformarions) can still
expcriencc something about ‘h‘? f“OWﬂ_akC that caprures the property of
symmetry- One way of cmpha.smng this point is to consider how visual
forms are chemselves expcnenccd. For example, Arnheiin (1951;)
mentions that visual patterns havea notion of ‘visual balance’ red
with thems ‘[E]xacdy likea ph)’Sical body, every finite visu lc 21SSOCm;c
2 fulcrum of center of gravity. When we see a Snowa iﬂttern has
responding © the visual “forces’ in the figure leading to an ; e, we arc
the balance of the figure. Furthen, Arnheim notes that i Pe‘;)lelncc of
composition all such factors as shape, direction and lOCatio: a ‘balanced
determined by each other in such a way that no change s are mut\%ally
and the whole assumes the character of “necessity” in Ell i;e - p?s.sg.)lc’
12). This notion of balance is not merely a cOnquuenccs P;lrts (.1 id.,
symmetric figures. It is a characteristic of perception itselcf)' 1};;‘Tllcul;,u-
‘the function of balance can be shown only by pointing out h OrcoYer,
it helps to make visible' (ibid., 27). It is not an aCCidgent t}: e meaning
visual balance are most often the point abour whi ha[ points of
cransformations are defined. ich symmetry
What about the observation of symmetry as the combined ob .
of T & I2 This process is obviously temporal in naturene d° servation
involves principles of comparison, as Kosso has rightl stan ZCCcssanl.y
also an explicit agency involved in these actions of ty r;ssc . There is
comparison for invariance. ransformation and
In the case of observing symmetry as the concomitant ob .
Fransformation and invariance, it is not immediately clea Oh servation of
is a pr?pcrty of the object and not a property of the” 'Ixt s)’f;\mc[ry
formation. That is, the consequence of definine che :‘ es ob't-rans_
symmetry through the categories of transformatiogn and()inicr‘fa ility of
not necessarily imply that symmetry is a property inherin 'arlince c.iocs
or even a second order property of the object. But the gbln o Obl?cf,
' problem in this is

that this impli i i
his implies symmetry 1s not directly observed but observed only as
a consequence of a transformation of the object ’
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What other properties of objects are manifested only through
transformation? The object in its entirety, that is, the complete form of
the object in 3-dimensions, is possible only through transformation. As
is well known, when we look at an object we do not see it in its fullness
— for example, we do not see the ‘back’ of the object. It is only by
transforming it, by creating different perspectives of it, that we can get
an idea of the complete form.

This also suggests that transformation is not essentially connected
with symmetry but has a prior engagement with the recognition of the
form of the object, a recognition that is possible only through
transformations. That is, transformations create a complete mapping of
the form and once the form is grasped, symmetry is seen as a property of
the form that is related to invariance. It is in this sense that one can say

symmetry is present in nacure. .
The above discussion points to the importance of the metaphors of

vision in the articulation of symmetry, including in modern physics and
in the use of group theory. In the case of symmetry in science, this is
only part of the picture. The case of symmetry associated with laws and
equations, and the idea of internal symmetry expands the domain of

Symmetry.

4.1. Explanation and observation

Kosso (2000) classifies symmetry into four types: external, global;
external, local; internal, global and internal, local. He argues that external,
global symmetry is observable as is internal, global. Both these symmetries
are ‘directly’ observable, whereas external, local and internal, local are
‘indirectly’ observable. This leads him to the conclusion thart the
‘observation distinction matches the divide between global and local
symmetry’ and not that of the external, internal divide. Local symmetries
have a different empirical status in comparison to global symmetries
because of the introduction of ‘dynamical’ symmetries in order to exhibit
the invariance.

The ideas of observation in the case of global and local symmetries
are significantly different. Direct observation, as discussed above, implies
the observation of transformation and invariance. Kosso suggests the
examples of Lorentz transformation for an external, global symmetry
and the global symmetry of electric potential for internal, global
symmetry. Observation in these cases corresponds to invariance of certain
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experimental observations. Bur these examples of experimental
observation, such as observation of experimental results in transformed
systems and the example of the pigeon sitting safely on a high-voltage
wire, are primarily not observation of symmetry; rather, they are
explanations of these results through invoking the idea of symmetry.
Explanation through the idea of symmetry is not the same as direccly
observing symmetry. For example, before the symmetry principles were
understood to be central to physics, there were conceivably other
explanations in the case of the pigeon sitting on the electric wire. The
explanation of this phenomenon, namely, the pigeon not getting
electrocuted, draws upon many diverse ideas of electrostatics. The
explanation due to symmetry is one link in the larger explanation. It is
not clear then how an explanation (dependent on a particular theoretical
formulation) can be transformed to the status of an observation or an
observable entity. That is, just because symmetry explains why the pigeon
is not electrocuted it cannot become an observable quantity in itself.
Unlike the case of observation of transformation and invariance, which
was initially defined as the observation of symmetry, observing the pigeon
on the electric wire is not equivalent to observing the global symmetry
of the electric potential.

This is a problem of conflating observation with explanation. That
which explains is itself not observed, as is generally the case. One may
then look towards causal explanations in order to situate symmetry on a
more firm footing. But it is not clear that symmetry plays a causal role in
the example of the pigeon.

Kosso's example of the observation of the global phase transformation
again indicates a similar problem. This observation is the observation of
invariance involving a double-slit interference experiment. He notes that
one can change the absolute phase of the incoming electron in different
ways. But ‘none of the global transformations changes the outcome of
the experiment; that is, none of them changes the interference pattern
on the screen.’ Thus the ‘invariance is easily observed and the experiment
as a whole amounts to an observation of the internal, global symmetry
in nature’ (ibid., 93). There are two problems with this conclusion. One
is the problem of conflating explanation and observation mentioned
earlier. The other arises when we ask transformation and invariance of
what.
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4.2. Invariance vs. independence

Observation of transformation and invaiiance not only suggest the
possible presence of symmetry but also the independence of the
parameters of transformation in the observation of invariance. For
example, in the double slit experiment, if one introduces a filter that
does not modify the electron beam or change a parameter which will
not modify the pattern then also the interference pattern will remain
invariant. Thus, transformation parameters that are not involved in the
theoretical explanation of the phenomena will also exhibit invariance.
But this is why Kosso says that the transformation must be observed.
But transformation of what? Isn't changing filters that change phase seen
as a transformation? If so, then changing filters that do not change phase
is also a transformation and the same invariance is also seen. So we cannot
conclude from this that the phenomenon has the symmetry under
transformation of the independent parameters. This strongly suggests
that, at least in the examples provided by Kosso, the presence of symmetry
is an inference and not an observation, per se. As inference, it is
theoretically loaded.

There are two other points that must be noted. It cannot be the case
that mere recognition of transformation and invariance suggests the
inherence of symmetry. There has to be something more: a breakdown
of invariance is needed to postulate the invariance associated with a
particular symmetry. Consider two examples. First, the case of the pigeon.
Now suppose that the pigeon has flown from the ground and sits on the
* branch of a tree. There is a transformation and also invariance, exactly
on par with the case of the pigeon sitting on an electric wire. What does
this observation of transformation and invariance tell us about the
observation of ‘symmetry’? Symmetry of what? Thankfully, such .a
problem does not arise in the case of the electric wire only because there
is another possibility thar allows us to infer the symmetry of the electric
potential, namely, the phenomenon that the pigeon can ger electrocuted
when it is simultaneously in touch with the wire and a grounded source.
It is the possibility of non-invariance that in turn is associated with a
symmetry. In the double-slit experiment, changing the phase of one beam
without changing the other changes the interference pattern. It is this
possibility that then suggests that the invariance of the interference pattern
when both beams undergo same phase change implies a symmertry of
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the system. These call into question whether symmetry is empirically
observable in the manner described by Kosso.

Symmetry always needs a breakdown of invariance in order for it to
be recognised as such. In other words, we cannot simply place the
observational status of symmetry on two other observational categories
of transformation and invariance. Both of these are not by themselves
independently observable and indeed, the observation of invariance is
predicated on recognition of the observation of the breakdown of
invariance. In the case of local symmetries, the breakdown of invariance
is immediately manifested. In the case of global symmetries, invariance
is predicated on a breakdown of invariance as discussed here. This suggests
that as far as the empirical, observational status of symmetries is
concerned, the divide is not between the global and local, as Kosso has
it.

The second point refers to the idea of form and its relationship o
symmetry, even in the above discussed examples. In the double sljt
experiment, the change of global phase keeps the pattern invariant buc
this needs to be qualified. A phase shift of 180 degrees, for example,
interchanges the maxima and minima (the dark and white regions). Thus,
what is actually invariant is not the exact position of maxima and minima
but only the ‘form’ of the interference pattern. This engagement with
form in the context of symmetry thus goes beyond form of objects and
leads to the consideration of the ‘form’ of phenomena themselves. More
importantly, the idea of form is of central importance even in the
theoretical formulations, most notably in the inscriptive strategies of
theories.

Transformations are distinct from operations in that they leave the
form as is. For example, in tensor analysis, differentiation of a scalar
leads to a vector and differentiation of this vector to a second order
tensor. These operarions change the ‘kind’" of objects they operate on
but transformations of a vector leave the form of the vector the same
and transformations on some tensor leaves its ‘order’ the same. (Of course,
the primary operations of addition and multiplication leave the form
invariant and should thus be seen as ‘transformations’ in this context.)
Group theoretical transformations cannot change the form. In the case
of global symmetries, like phase change (U(1) transformations) or even
SU(2) transformations which leaves the form of the doublet structure
invariant, even the introduction of operators leave the form invariant.
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This is entirely due to the property of the exponential function, a simple
example being the shift operator, which operating on a  function f(x)
only transforms it into another function f(x+1) rather than to a vector
form. This property of the exponential function (or operator) allows
group theoretical operations to remain art the level of transformation —
only because it leaves the forms invariant.

In quantum field theories the idea of symmetry explicitly plays a
causal role. The causal role of symmetry in these cases arises as a
consequence of privileging the formal similarities of equations. In unified
theories the generation of the gauge field masses (masses of bosons) arises
from symmetry considerations. When we construct a theory (like the
electroweak theory) explicitly on grounds of symmetry, which then creates
the possibility of empirical observations like the masses of bosons, we
can claim an explicit causal function to symmetry and thus postulate
symmetry as an inherent property of the system. But we should remember
that even in these cases the notions of form and similarity is fundamentally

privileged.

5. SYMMETRY AND AESTHETICS

Very often, we are struck by the beauty of objects — whether natural or
works of art. We look at an object and respond to it in some way. There
are some experiences of the senses that create pleasure in us. We may call
this subjective, individual experience as the experience of the beauty of
that object. As is usually the case, when we look at objects with some
symmetry, we are captivated by ‘something’ in that perception. Maybe
we are responding to some sense of balance or proportion in the
presentation of that object (naturdl objects or even paintings, for example).
Perhaps it is to the sense of harmony between different elements in a
given perception. Or maybe we are struck by the complex meanings
suggested by simplicity in that object. Or, as is many times the case, we
only respond intuitively to the beauty of an object of nature or art but
do not know why we do so.

We may note that the ideas of balance, harmony, simplicity etc. are
closely related with symmetry, suggesting therefore that symmetrical
objects are intrinsically related to the idea of beauty. Symmetrical objects
generate feelings in us that somehow respond to the nature of symmeury
possessed by that object. It has also become commonplace to talk about
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symmetry as not being aesthetically pleasing but, on the contrary, quite
boring and monotonous. To understand all these i.?sues in detail, we
may look to aesthetics to offer us an adequate formulation. In this section,
I will discuss the relation between symmetry and beauty. How do we
understand symmetry in the context of aesthetics? Are symmetrical objects
necessarily beautiful? Can symmetry be an aesthetic property? Or is it a
concept that is the basis for some other aesthetic properry? Why is it
thought that broken symmetry and asymmetry contribute to the notion
of beauty, sometimes in a manner more significant than perfect symmetry
itself?

Aesthetics is derived from the Greek word aesthesis meaning ‘sense
perception’ or ‘sensory cognition,’ and is ‘the domain of a certain form
of receptive experience, or perception, or of response-dependent
properties which are not necessarily unique to artworks’ (Carroll 1999,
158). This perception is not a reasoned one, rather it involves the notion
of ‘apprehending through immediate sentiment’ (Ferry 1993, 14). The
discipline of aesthetics is essentially involved with the notions of sensory
experience, the possibility of taste, the role of judgement of taste, the
question of whether there are aesthetic properties present in an object
that we have an aesthetic response to, whether there are principles of
taste or only judgements of it, and, among other things, whether we
need to invoke a term such as beauty. The question of beauty has been
central to many theories of aesthetics, in particular, its relation to morality,
its ability to evoke pleasure in the subject. Perhaps the central problem
in any discussion of aesthetics revolves around a well-known problem:
beauty, or in general, aesthetic experience, is entirely subjective, an
experience of a particular individual, but when we talk of beauty or taste
we seem to believe that they are objectively accessible, if not to all of s,
at least to a significant majority of subjects. How is it possible to reconcile
this ‘objectivity’ of an entirely ‘subjective’ experience? Related to this is
the question of whether a term like beauty is actually a ‘property’ of an
object or merely an idealist impression formed in our minds.

The problem of the objective and subjective in the context of beauty
has been a central preoccupation for aesthetics. Plato, for example,
considered beauty as something beyond its inherence in the subject. As
Ferry notes, for Plato, the ‘idea of the Beautiful is generally associated
with the bringing into reality of an order where “measure” and
“proportion” should rule’ (ibid., 8 — 9). Socrates, in a similar vein, talks
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about the presence of harmony in objects that arise in the creation of
parts in the formation of the whole. While this seems to place the property
of harmony within the objects, the shift in modern aesthetics, as Ferry
points out, is that the ‘harmony is no longer thought of, and this is the
real break with antiquity, as the reflection of an order external to man: it
is no longer because the object is intrinsically beautiful that it pleases
but, rather, we can go so far as to say that it is because it provides a
certain type of pleasure that we call it beautiful’ (ibid., 9). But even
modern aesthertics, while placing the idea of beauty in the subjective
domain, also considers the work of art as ‘inseparable from a certain
form of objectivity’ (ibid., 10).

This interrelation between the subjective and objective is not unique
to beauty or, more generally, aesthetic experience. The history of
philosophy illustrates a continued engagement with this topic. Even
perception is involved in the interplay of the objective and subjective.
One way we can delincate the aesthetic from sensory perception could
be to distinguish ‘forms’ of subjectivity. There are two streams that are
commonly known in the historical discussion on beauty: those that
privilege the sensible (Pascalian) and those the inrelligible (Cartesian).
The Cartesian approach ‘locates the essence of the cogito in reason’ while
the Pascalian locates the essential ‘in the heart or the feelings’ (ibid., 26).
This illustrates the struggle for the site of subjectivity as one between
establishing the autonomy of the sensible or the intelligible. Platonism,
for example, privileges the intelligible over tlie sensible. We can note a
similar tension that pervades our understanding of science. The objectivity
of science — although the activity is essentially a human one and therefore
located in the subject — can be emphasised only by denying the Pascalian
view of subjectivity. If the subjective expression is located in ‘reason’
then the possibility of objective access to subjective experiences is defined
through the working of ‘reason’. In the case of subjective experience of
feeling, we also seem to make a judgement of that experience.

It is interesting to note that the metaphor of taste, which has come to
be central in aesthetics, itself points to the objectification of subjective
experience. There is something objective about taste — as biological taste
— and the use of this term suggests that even in matters of aesthetic taste
there is something objective — at least as objective as the sense of taste in
the body. If judgement of taste is to be based on reason, then objectivity
of beauty, as in science, will be reduced ‘to a mere sense representation
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of truth’ (ibid., 33). The connection between aesthetics and science can
also be noted in a historical sense. The shift to observation over deduction
in the eighteenth century gives the priority back to the object. Nort
surprisingly, this was an inspiration to understand aesthetics along the
lines of physics. Thus, it was believed that we could expect to find
principles or laws of judgement that bring together many observations
in aestherics, just as in physics. The consequence of this shift is, of course,
to privilege the notion of discovery over invention in art works. According
to Ferry, it is in Kant's Critique of Judgement that an attempt at a synthesis
of the Cartesian and the Pascalian is first found.

In the consideration of beauty, we may proceed along two paths.
One is to claim that there are (objective) principles of taste and the
other is to claim that there are no such principles or laws but only
judgements of taste. Mothersill calls the view that there are 7o principles
(and laws) of taste as the ‘First Thesis’. Kant holds this view as do many
others. But what is a principle of taste? Such a principle ‘would provide
deductive support for a verdict, that is, for the judgement of taste under
its normartive aspect’ (Mothersill 1984, 87). If ‘principle’ is too strong,
then one could use the notion of ‘criteria’ of tastes. But principle, laws
and criteria are mutually implicated in each other. The basic point is
that principles of taste have to be normative in characrer. If there are
such principles or laws of taste present, then we can reasonably explain
why there is some objective experience of something like beauty. For
example, we may say that laws of taste ‘specify conditions for pleasyre’
(ibid., 97). Beardsley finds laws of taste in certain ‘desirable fearyres'
present in a work of art. Three such features are those of ‘unity’, ‘intensiry’
and ‘complexity’ (ibid., 98).

In contrast, Mothersill like Kant, believes that there can be no
principles or laws of taste but there are judgements of raste. These
judgements, at least what Mothersill calls ‘genuine’ judgements, make
aesthetical experience, like beauty, somewhat objective. As is well known
Kant's ‘antinomy of taste’ was a demonstration of the thesis tha,
judgement of taste cannot be objective because it is not based on concepts;
the antithesis allows for the universality of such judgements.? Ag Ferry
(1993, 85 — 86) points out, the issue that is brought to the fore by the
antinomy is ‘how to think aesthetic intersubjectivity without grounding
it either on a dogmatic reason or on a psycho-physiological empirical

structure?’ Kant moves towards a solution to the antinomy by considering
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what differentiates the judgements of taste in contrast to other kinds of
judgement. Thus he distinguishes between ‘determinant’ and ‘reflective’

judgements as follows (quoted in ibid., 86):

Judgement in general is the faculty of thinking the particular as contained
under the universal. If the universal (the rule, principle or law) is given,
then the judgement which subsumes the particular under it is determinant.
... If, however, only the particular is given and the universal has to be
found for it, then the judgement is simply reflective.

Thus, a judgement that has to do with knowledge, cognition and
reason is a determinant judgement whereas the judgement of taste is a
reflective judgement. Kant’s original contribution in this matter is his
shift to the notion of ‘reflection’. Ferry isolates five moments of reflection.
Reflection considers a particular in terms of a universal to which it possibly
belongs. This placement of the particular in an appropriate universal
suggests that the universal is itself given through and after reflection.
The search for the universal (or concept) in reflective judgement is open-
ended, thus providing a principle for reflective judgement, namely, the
principle of purposiveness (that nature forms a system).” Finally, it is
reflection that is ‘at the origin of a satisfaction Kant calls aesthetic’ (ibid.,
87).

It is clear that in the above formulation there is a centrality accorded
to the notion of system, which is the belief behind the principle of
purposiveness. The idea of the beauriful, as a consequence, arises in ‘the
reconciliation of sensibility and intelligence’ (ibid., 88). The idea of nature
as system as being central ro reflective judgement can be used to articulare
an aesthetics of symmetry, because symmetry is fundamentally related
to the idea of a system — whether in the relation of part to whole, as
phenomenological experiences, as related to invariant transformations
and so on. It is also not an accident that this formulation of taste leads
Kant to privilege natural beauty, a position that is in constant tension
with the very idea of artistic beaury.

6. BEAUTY

With this very brief introduction to judgement of taste, let me consider
the experience of beauty. We often talk of beauty as something we
experience and as something that is characteristic of that which is seen as
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being beauriful. The ‘objects’ that embody beauty are manifold: ranging
from insects to mountains, persons, novels, poems, music, dance,
painting, buildings and so on. Beauty allows gradations — we often say
something is more beautiful than something else. If beauty is entirely a
subjective feeling, then there is a genuine problem whether a piece of
music experienced as beautiful is specific only to the experiencing subject.
But in making a judgement that something is beautiful, we do expect
others (at least some others) to acquiesce. Kant took this position to the
extreme when he claimed that when we feel something is beautiful we
demand this judgement from others, that is, if it pleases me it ‘ought to
please everyone’ (Morthersill 1984, 213). This demand is similar to the
demands of truth and takes beauty into the folds of truth and, therefore,
‘final’ objectivity. This is similar to certain tradirional views on beaury
which related it to morality and goodness. For example, Plato held the
view that beaury is ‘(i) a kind of good (ii) which can be possessed by
items of any kind and (iii) which is linked with pleasure and inspires
love’ (ibid., 262).

Obviously, such stringent requirements of beauty, as also in Kant’s
demand, are problematical. This is especially so when we ascribe beauty
to certain artworks. It can be reasonably argued that our judgements on
the aesthetic content of an object is dependant on various socio-cultural
factors. What work of art is judged to be beautiful (by some community,
if not universally) seems to depend on prior experience, recognition and
knowledge about the appropriate domain of art. Santayana’s position
that judgements of beauty are judgements of individuals at a particular
time incorporates this larger complex of factors in our judgement of
beauty. There is a similarity between Santayana’s and Hegel’s view on
beauty in this context: neither believes in principles or laws of taste.

Given the larger set of problems of beauty in works of art, are we
justified in believing that there is ‘something’ called beaury? Morhersill
argues that beauty is a ‘standing concept’ and is also ‘indispensable’.
Beauty ‘picks out the concept of genuine judgements of the goodness of
aesthetic objects’ (ibid., 249). What does it mean to call beauty a concept?
She answers it by noting that ‘if j is a concept, then (1) there will be a
general agreement with respect to what it is to be j and (2) j is
indispensable, in the sense that it is not clear how one would follow the
order, ‘Get along without j” (ibid., 259). Moreover, individual works of
art or nature, cannot be the paradigm cases for establishing a criteria of
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beauty. This reverses the priority of objects over subjects in beauty.
Contrary to Hume's position that there are certain objects that a ‘qualified
observer’ will find beautiful, Mothersill argues rather that ‘every qualified
observer ... finds something-or-other beautiful’ (ibid., 261). This question
of what makes something-or-other beautiful leads her to consider Plato’s
views on beauty described earlier. In particular, beauty’s link with pleasure
is important. Mothersill considers this link as a causal one. Thus, ‘if an
item is beautiful, it is the cause (or a potential cause) of pleasure’ (ibid.,
279). But the reverse is not true: items may please us, like the winning
result of a team, but it is not seen as beautiful.

This observation points to a potential problem. If two objects cause
pleasure but only one of them is beautiful, how do we so distinguish
them? If the distinction is possible because of some properties in the
subject, then it seems to be accepting the position that there are principles
of taste. Neither does it help to place the distinction in the subject,
because, as Mothersill notes, it runs into ‘circular’ and ‘metaphorical’
problems. For instance, we can attempt to distinguish between objects
of pleasure and causes of pleasure. While this is a problem particularly
for the aesthetic experience of music (for example, what is the object of
pleasure in music — the instruments that make the music, the music
itself, part of the music, the musicians...?), in the case of objects like an
insect or a painting, there is at least no real ambiguity about the objects
of pleasure although we may not be sure what it is i# the object that is
the visual cause of pleasure. In the case of music, the object of pleasure
gets enmeshed with various meanings of music, particular genre of music,
listener’s prior knowledge and experience of listening to such music,
listener’s sensibilities and so on. But in the case of a concrete object or a
painting their identity can be understood in terms of their properties. It
may seem that aesthetic pleasure arising from perception of these objects
arises after recognition of the object per se. But this view is also
contentious. When I say I see a beautiful object, I am not first cognising
an object and then recognize that it is beautiful. Many times, the beauriful
object in its presentation is instantaneously beauriful as much as it is
instantaneously an object.

Even assuming that the object of pleasure is a concrete object whose
identity conditions are not in doubt, we still have to ask what is it in the
object thar causes pleasure, if there is something in it that does so. Asking
such a question implies that we already believe that there is something
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in the object that ‘causes’ pleasure in the subject. To understand the
stakes in this question, we need to critically consider the causal relation
between the object and the experience of pleasure. Mothersill argues
that to say ‘the object of pleasure is not the cause of pleasure’ is misleading.
Thar is, there cannot be an object and something else that somehow
cause pleasure vis @ vis the object. Neither is the object of pleasure an
intentional object.

If some object pleases me, it is quite conceivable that I have an idea of
what pleases me. Mothersill argues that the person who is experiencing
pleasure usually has an idea of what causes her pleasure. Thus, it may be
enough to say that the ‘object of pleasure for x at ¢’ is nothing but ‘what
x takes to be the cause of his pleasure at t’ (ibid., 300). As is quite possible,
I may be mistaken to what ‘actually’ causes my pleasure but in the case
of singular cause, Mothersill notes, we can say with some confidence
that we do know the cause of the pleasure we experience. Certainty is
not necessary to say that we know the cause of our pleasure; one just
needs ‘ordinary justified true belief’. There is yet another reason why we
can believe in the above formulation. Many times, we go back to
experiencing that object which once gave us pleasure. Most times when
I listen to a particular piece of music, I derive pleasure. And, when I
want pleasure, | know what kind of experiences, what kind of objects, I
need to go to. This process of intervening (as against just ‘representing’)
to create pleasure for myself gives a measure of certitude to the above
ideas.'®

So, for Mothersill, the object of pleasure is not reduced to intentional
object in each of the subjects. While a book may be experienced differently
by its many readers, it is not the case that there are as many objects of
pleasure corresponding to each of the reader’s particular projection of
the book. Since the book was the cause of pleasure to all of them (why
and how may differ) the book is the object of pleasure.

There is the related pdint mentioned earlier: two objects may please
me but I only find one of them to be beautiful. How do we explain this?
As Mothersill correctly notes, this is not done by ascribing a particular
property which the beautiful object has and the other doesn’. This will
only imply that it is that particular property which is carrying the property
of beauty but other objects with this property may turn out not to be
beautiful. Mothersill draws upon Isenberg to answer the above question.
Isenberg refers to the role of a critic who articulates her reasons for finding
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an object aesthetically pleasing. Thus the critic distils certain ‘qualities’
which in her view describes and explains the aestheric nature of the object.
Firstly, these properties can only be discovered through acquaintance.
Th‘esc qualities are called ‘aesthetic properties’. Mothersill offers three
definitions relating beauty and these properties. The first one is as follows

(ibid., 342):

Somcone takes an individual to be beautiful if and only if the individual
pleases him and he believes thac it pleases him in virtue of its aesthetic

properties.

Drawing upon Sue Larson, she defines aesthetic property as ‘a property
common and peculiar to individuals that are indistinguishable from one
another’ (ibid., 344). Thus the real test lies in the ability to distinguish
two objects if we claim that they have different aesthetic properties. If
they are indistinguishable then they have the same aesthetic property.
What is important here is the claim that the same aesthetic properties
cannot be had by two distinguishable items. Further, she contends that
even if two objects share all properties like shape, colour etc. but have
some distinguishable items, however ‘small’ it may be, like a scratch,
. .then they cannot share the same aesthetic properties. Then, by virtue of
the above definition, aesthetic properties in the object are the causes of
pleasure. And because of this, in general, an object which pleases me (in
virtue of its aesthetic properties) will continue to please me. The explicit
causal link is captured in her third definition (ibid., 347):

Any individual is beautiful if and only if it is such as to be a cause of
pleasure in virtue of its aesthetic propertics.

The important consequence of her view is that ‘whatever is found
beautiful /s beautiful’ (ibid., 349). Mothersill believes that the above
definition offers a solution to Kant’s antinomy of taste. She notes that to
say ‘O is beautiful’ is only to claim a ‘specific causal power’ for O, that
is, the ability to please ‘in virtue of O’ aesthetic properties’ (ibid., 37'1).
The judgement of taste is not instantaneous; rather, it needs crin.cal
teflection upon the object. This judgement is also contingent to 50 being
confirmed. Thus, through this reflective critical study of an aesthetic
object, it seems possible to have ‘genuine’ judgements of taste that can

e held by a community without having to invoke principles of taste —

the H
solution to the antinomy.
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Let me summarize Mothersill’s ‘positive’ account of beauty. (1) Beauty
is causally linked with pleasure. Beauty is a ‘kind of good' and other
‘kinds’ of goodness are different from beauty because of the necessary
link between beauty and pleasure. (2) We also feel a sense of pleasure
from ‘objects’ that are not beautiful — like hearing some good news. So a
formulation is needed that is sensitive to this difference. (3) Kant
distinguishes between the ‘merely agreeable’ from the beautiful. For him,
the agreeable is pleasure taken in ‘sensation’, is pleasure that is ‘interested’
—~ for example, the pleasure arsing due to grarification of some desire.
Mothersill does not subscribe to this for it seems to be an arbitrary
distinction to distinguish (and then privilege) the pleasure arising from
enjoying food and enjoying music.

7. NATURE AND ART

Nature affords us the first experience of beauty. The many symmetries
described earlier are properties of natural objects. These objects do cause
pleasure in us when we view them. A discussion of beauty will perforce
have to consider the beauty of natural objects as well as arcworks. In
aesthetics, there is a prevalent tendency to compare and contrast natural
and artistic beauty. The question of artistic beaury, as dealt in the many
theories of art, is problematised by many human factors. It is, after all,
an artist who creates a work of art. In producing the artistic product, the
intention of the artist, the tradition from which the artist works from,
the dominance of creative imagination etc., all add up to the complexity
of ‘understanding’ a piece of art. But in the theory of beauty we have so
far considered, all these human ‘interventions’ in the creation of an object
of art are secondary. If we say that beauty of a work of art is to be
understood in terms of its capacity to cause pleasure in a subject, then
the ‘meaning’ becomes secondary. One may justifiably question the claim
that some objects of art do indeed cause pleasure purely in virtue of the
piece of art. As we saw in the development of Mothersill’s thesis, the
capacity to experience pleasure is itself dependant on a critical reflection
that involves the role of a critic in an essential way. The critic is assumed
to be able to, on critical reflection through apprehension, through
bracketing all other ‘interested’ sources of pleasure, suggest certain
aesthetic properties that will help a subject understand the zesthetic
quality of a piece of art.
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It might be thought that such a critical reflection is really not necessary
for natural objects that we (or some of us, at least) call beautiful. The
serious problems which arise in the case of art do not seem to occur in
our appreciation of nature. It may also seem that natural objects do not
exhibit the problem of historicity or immersion in specific traditions
that create the muldiplicity of artistic expressions. If we keep aside the
issue of a divine creator of these beautiful objects, we tend to view narural
forms and beauty in terms of certain principles or laws of formation.
Bur if we also accept the argument that there are no principles or laws of
taste, then the question of beauty in natural objects is similar to that of
artistic ones. In particular, the role of the critic, in this critical reflection
on natural objects, is played not only by art critics but also by scientists
— a point to be discussed in more detail soon.

Kant privileges natural beauty over artistic beauty. Ferry argues that
this view of Kant should not be dismissed lightly on the grounds that
many of us believe in the ‘superiority’ of art over nature. For Kant, ‘nature
was beautiful when it simultaneously looked like art; and art can only be
called beautiful when we are conscious it is art, yet it nevertheless looks
like nature to us’ (Ferry 1993, 126). Further, the role of genius, for

- Kan, is to ‘recognize the work of nature' in a product of art. The artist as

' yenius must be unconscious of the rules that created her work of art.
Appreciation of such a piece of art, one that is ‘disinterested’ and therefore
natural, places the aesthetic response to this artwork as similar to the
response to natural beauty. Thus, Ferry concludes, ‘artistic Beautiful thus
turns out to be, in man, the exact analogue of the natural Beautiful
(ibid., 127). This does not mean that there is no distinction berween
fine art and nature, a distinction also granted by Kant. It is only that art
must have a naturalness — understood as not being contrived. This is
best captured by this claim of Kant: ‘A beauty of nature is a beantiful
thing, beauty of art is a beautiful representation of a thing’ (Crowther
1993, 65).

Hegel's opposite position in relation to Kant is well known. Hegel
holds that ‘artistic beauty stands Aigher than narure’ (Mothersill 1984,
384). The privilege in Hegel’s view is clearly that of the mind which
creates art. Beaurty as such firstly ‘belongs’ to the mind. He goes to the
extreme and says that ‘even a silly fancy’ in our minds is ‘higher’ than
anything of nature. But, as Mothersill notes, Hegel's characterisation of
beauty is also one that natural objects satisfy. Based on her formulation
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of beauty as dependent on the recognition of indistinguislmbiliry,'th.C
question of whether one can distinguish bcn.veen natu‘ral .and arl’lS?lC
objects then offers a reasonable argument against Hegel's view. (.At the
other extreme is Kant who claimed that the beauty of a n'lgh.tmgales
song is lost if we come to know that it is a human who is imitating that
song!) o '

As I remarked earlier, one of the role of scientists is to function as a
‘critic’ of natural objects in that they point out certain features of'natuml
objects which are then used to articulatc' the notion of beauty in SLfch
objects. Symmetry is one such term that is commonly used b?' scientists
to describe the beauty of cerfain objects. But it is not immediately clear
as to whether the notion of beauty in art is the same as that referrc.d to
by the scientists. It is also the case that beauty in science i.s not l‘CS.[rlCFCd
to certain expressions of it in reference to nfxtural objects; SCICDFIS[S
routinely talk of the beauty of theories, experiments al.1d so on. Sl'nCc
symmetry is central to the idea of beauty in science, I will now consider
the various notions of beauty that is possible in science, both as discourse
and praxis.

8. BEAUTY IN SCIENCE

The possibility of shared, objective traits of subjective experiences, as
manifested in the case of beauty in art, is also illustrated in the articularion
of beauty in science. First of all, note that science is a2 human activity
and as such is essentially a subjective one. Scientists are the ones who do
experiments, write theories, interpret these, and discover the principles
and laws of nature. But these subjective activities are somehow taken
into the objective plane. The crucial difference between science and arr,
in this context, is that scientific articulations are not feelings of individuals,
Scientific expressions, when believed by a subjecr to be correct, that s,
in conformity with the established traditions of science, do demand ap
acquiescence of others, similar to Kant’s view thar one’s awareness of
beauty necessitates a demand on others to recognise the same. The crycig|
difference between the experience of a feeling like beauty and an
experience of scientific insight lies in the way we understand these
judgements. We noted earlier Ferry's point about two kinds of s
— Cartesianism, which places the subjective in the realm of
Pascalian, which places it in the realm of sensibilicies,

ubjectivity
reason and
Scientific
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subjectiv - is taken into the orbit of objectivity through this placement
in human reason. Here, it is pertinent to remember Kant’s distincrion
between determinate and reflective judgement that offers a distinction
berween judgement of science and judgement of tastes.

While these distinctions help to explain the difference berween the
subjecrive activities of science and art, it would be wrong to claim that
scientific activity does not manifest subjective experiences of feelings. It
would also be too drastic to jettison the ways by which we understand
beauty in order to claim that every scientific experience is potentially
objectifiable. Beauty, in science as in art, is a cause for a feeling of pleasure.
In fact, science manifests a continued engagement with beauty on similar
terms. Also, the observation that beauty has not become an integral part
of scientific methodology suggests that beauty in science continues to
reflect the problems afflicting the thematisation of beauty in aesthetics.
Thus, we may confidently claim that beauty is indeed accepted as a
scientific experience (and sometimes even as an ideal) but since it remains
on the level of feeling, the difficulty of objectifying it in a manner suitable
to scientists has led to a refusal to acknowledge aesthetic considerations
as an element of scientific methodology.

In spite of this refusal, the idea of beauty plays an important role in
science and occurs in the context of experiments, theories and discourse
in all its many disciplines. But what can it mean to somehow talk of
beaury in science, as if it is something special and distinct from arts? Let
us starc with natural objects. The beauty of some of these objects is a
source of beauty for scientists and artists. The scientist may describe
natural objects differently from artists but at the level of experiencing a
sense of pleasure there can be no fruitful distinction. In the case of works
of science, like works of art, appreciation and a feeling of pleasure ‘caused’
by some works may be specific to scientists just as some works of art are
better appreciated by artists. For example, if a theory is seen as beautiful
by some scientists, we cannot expect an artist or layperson who has no
idea of how to ‘read’ the theory to experience the pleasure which it may
inspire in a scientist. The flip side of this is not that clear, since when we
talk of the experience of a painting or music, we do not expect that only
the community of painters and musicians will experience their beauty.
But before we accept that this is the case, we need to consider the role of
a critic, as discussed earlier. As was noted there, appreciation of an art
work is enhanced by a critic’s ability to articulate, say, some aesthctic
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properties present in it, arising th.rough critical‘ reﬂection: "I'!ms, wlnlu: :1’
scientist may have no idea of cubism and art .]'llSEOI')f, a critic’s \York m.lzi
help her to understand and/or expcric'ncc Pl'CaSS.O in 2 more informe
manner. I think one can take inaccessible scientific theories (say tll(?se
which are mathematical) and open it for appreci:.lt.ion and reflective
experience by non-scientists through the rol.e of a critic. It wguld not be
unimaginable to consider that a layperson will hfwc,: an acstl.wnc response
to Einstein’s theory once its ‘aesthetic properties’ are artlculaFed. The
growing popularity of popular literature in science lll‘u.stratcs this amply.
But there is a further role that scientists play — as critics themsclves..As
critics of the art works of nature. Scientific activity is a critical rcﬂcctfon
on the represent...1on of natural objects and processes. This observation
brings scientific theorising and theories of art closer to each. other. ‘

Just as much as an art critic helps in delineating the aesthetic properties
of a work of art, the scientist, whose function is essentially similar to an
art critic, delineates the properties of natural objects and phenomena.
The scientist may not call the properties that she isolates in her role as a
critic as being ‘aestheric’. But this view by the scientists, when held, is
not really important if the function of the critic is to allow other subjects
a way to experience an object, natural or artistic, in an aesthetic manner.

While these arguments bring the consideration of natural objects close
to that of works of art, it is also the case that scientists do routinely talk
of some works of science as being beautiful. Many times aesthetic
considerations play a significant role in the acceprance of certain theories.
Scientists also place a premium on a view that is quite popular among
them, namely, the relation between beauty and truth. I will discuss these
and related issues in more detail soon but first some examples of what
scientists consider as being beautiful.

. collection of essays on the aesthetic aspects of science i various
disciplines illustrates the inherence of the idea of beauty in scientific
activity (Tauber 1996). I will not discuss the content of the book in
detail but merely use it to point out that the notion of beauty and
acsthetics is present in many important theories. Kohn argues that
Darwin’s theory of evolution had profound aesthetic influences. Darwin’s
aesthetic-emotional ambition’, which was awakened on his Beagle voyage,
was ‘later transformed into high scientific theory’ (ibid., 13). Darwin’s
two influential metaphors of ‘wedging’ and ‘entangled bank’ were central
to his Origin of Species. Kohn argues that the ‘tension between the sublime
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and the beauriful which ‘later became the critical Darwinian theme was
reconciled in his two metaphors. In biology, the discipline of enibryology
illustrates a continuing aesthetic in its discourse. Gilbert and Faber (ibid.,
129) point out that the ‘visual aesthetic of embryology puts a premium
on emergent form and finds expression in its focus on symmetry, order,
pattern repetition, and elegance (visual simplicity).” Two other examples
from the life sciences are given in this book. One is the ‘aesthetic’ analysis
of an experiment on the replication of DNA by Meselson-Stahl which
has been considered as one of the most ‘beautiful’ experiments in biology
(ibid., 83). The other is the role of aesthetics of form in molecular biology.
In this essay, Sarkar (ibid., 153) argues that aestheric principles related
to formalism played an important role in physics and in biology, in
particular, in the coding of genes.

In the case of physics, Chevalley (ibid., 242) points out that Heisenberg
believed that ‘physics is like art.” Heisenberg’s argued that different
conceptual systems in physics, namely, Newtonian, thermodynamics,
relativity and quantum theory, are actually like different ‘styles’ of art.
There is also a suggestion that the overthrow of Ptolemy’s theory by the
Copernican one was influenced by aesthetic factors (ibid., 169). Yer
another example from physics in this book is the use of aesthetic factors
in the visualisation of digital image processing in astronomy (ibid., 103).
In the case of theoretical physics, the importance given to aesthetics in
theories by people like Weyl, Dirac and Chandrasekhar are well known.
In the context of symmetry, Weyl and Wigner, for example, placed a
premium on its related aesthetic factors. As Root-Bernstein (ibid., 61)
notes, ‘scientific aesthetic must be the same as artistic aesthetic.” He gives
the example of Weyl who chose beauty as the primary criterion for a
theory even ‘when the facts refused to cooperate’ (ibid., 62). Dirac’s
quote is also often mentioned in this context: ‘It is more important to
have beauty in one’s equations that to have them fit experiments’ (ibid.,
62). The physicist Weisskopf says, ‘what is beautiful in science is the
same thing that’s beautiful in Beethoven’ (ibid., 62). In the case of
chemistry, Root-Bernstein (ibid., 58) quotes the chemist Woodward:
‘Much as I think about chemistry, it would nort exist for me without
these physical, visual, tangible, sensuous things.’ (The things referred to
here are crystals, odours, colours and so on.)

Mathematicians have consistently preferred (though not always
articulated) aesthetic components in their formulations. G.H. Hardy is
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a paradigm example of one who privileges beauty: ‘Beauty is the ﬁ'l'SE
test: there is not a permanent place in the world for ugly mathemauics
(ibid., 62). Seymour Papert believes that the emphasis on thc. logul:nl
part of mathematics as against its aestlletif: value leads to a F:ulurc. )
recognise the resonances berween mathematics and the total hum:.m being
which are responsible for mathematical pleasure and beauty’ (ibid., 64).
Looking at aesthetics in science from a Kantian perspective, Chernyak
and Kazhdan claim that ‘mathematics is aesthetic by its very nature ...
marbematics is poetry’ (ibid., 221 — 222).

There is one point to be noted here. The nature of what is aesthetical
and beautiful, on the level of subjective feeling, is similar in science and
arts. But the role of aesthetics in science is somewhat limited compared
to arts. For example, Root-Bernstein (ibid., 62) says that ‘aesthetics in
sciences, as in the arts, are based upon concepts of beauty, harmony and
pattern. When simpliciry, coherence and understanding replace confusion
then beauty and truth emerge hand in hand.” Obviously, there is an
undue weightage given, in this view, to structure, harmony, simplicity,
balance and so on. It is not an accident that these are also the elements
which are most often seen in conjunction with symmetry.

While contemporary theories of art may scoff ar this excessive
preoccupation with symmetry and related terms, the aesthetic in science
will continue to privilege them. It may be thought that complexity and
fractal theories, for example, may go beyond the aesthetics of symmetry
but it is not really so.' Science does not a develop a theory of acsthetics
but only works with what it thinks are its aesthetical fearures. The
suggested equivalence between truth and beauty, so ingrained in science,
will necessarily make beauty an objective idea. Also, the concept of beauty
in mathematics is deeply implicated in ‘formalism’. It is indeed the case
that formalism in arts is reflected in the aesthetic understanding of science.

The many views of fam(?us scientists and mathematicians given above
should be seen, once again, as atcempts by critics to articulate aesthetic
properties in virtue of which pleasure is experienced.

9. BEAUTY AS VALUE

Ialluded earlier to Plato’s view on beauty asa kind of good. The American
philosopher, Santayana (1955, 31) talks abour beauty as a value, ‘that is,

it is not a perception of a matter of act or of a relation: it is an emotion,
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an affection of our volitional and appreciative nature.” Beauty is a positive
value, that is, ‘the sense of the presence of something good’ (ibid., 31). It
is an intrinsic value of pleasure which is not ‘in the consequence of the
utility of the object or event, burt in its immediate perception’ (ibid.,
32). For Santayana, ‘all values must be ultimately intrinsic ... even the
knowledge of truth ... is an aesthetic delight; for when the truth has no
further practical utility, it becomes a landscape’ (ibid., 19 — 20).

The relation berween beauty and truth, so magnified in the articulation
of some scientists and which, in general, can be taken as a general belief
of the scientific community, invests beauty with a ‘scientific’ value. But
what is the ‘nature’ of this value? It is clear that beauty is not an accessible
term to be incorporated into experiments or theories like adding a
chemical or performing a particular mathematical operation. It is not a
value in the sense that it is not a given term that can be used in scientific
methodology. Beauty arises and is recognised after the creation, after the
process has been done. This is, of course, similar to the crearion of a
painting which, after it has been painted, we call beautiful. The artist
has no particular recipe that will manifest beauty. So when we talk of the
scientists’ rapturous remarks on the significance of beauty, we do realise
that it is a judgement of an experiment, theory, equation or whatever.
When we call a painting beautiful, it is because we experience pleasure
at seeing this beautiful object. And that is the end of our experience. We
do not ask if the beautiful painting is true. We may say that this painting
captures an insight or truth about something, but that is incidental to its
invoking pleasure in us. And if we look at a painting to get an insight,
then the pleasure we get from the painting is no longer ‘disinterested’
and hence this pleasure is disqualified from being pleasure caused by
beauty. Thus, if we accept the larger wisdom (from Kant to Santayana to
Mothersill) that beauty should be a pleasure thar arises from disinterest,
then the connection to truth and beauty can only be incidental and
secondary.

The case of beauty in science seems to be caught in an activity that is
purposive, oriented towards something else. To understand this, first
consider what is conceivably an object of beauty for science. Consider
natural objects. Say we have in front of us a beautiful insect with many
colours and complex patterns. Let us say some scientists and some non-
scientists consider this insect as being beautiful. When scientists talk of
beauty 7 science, they are not talking about the beauty of this insect as
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we see it. Let us say 2 biologist devclopf a theor)f about the colour and

hape of;l pattern on the insect. Now this theory is a candidare for being
shap ful — at least, beautiful for those who can understand that theory.
beautl. ! 'ance borrows the notion of beautiful, as holding for natural
’(1;:2[ ;;iztilz) objects, into the consid'cr.ation. ofscicntiﬁc'ob.jects. This is
similar to what the artists d'o. The artistic objec, say a painting, l‘)ccomcs
an object about which a )udgcmc.nt can l?e x'nad,e. But thcr? is also a
crucial difference. Since every sc.lcnuﬁc object’, say experiments or
theories under aesthetic consideration, has perforce to relate o the world
and conceivably capture some trut.h about the world, they are ar}swerablc
to something more than aesthetics — Weyl's strong b'ellcf aside. This
relationship turns Hegel on his head. Remember Hegcls comment that
‘even a silly fancy’ of our mind is ‘higher’ than anytbmg in nature. But
for science, even for the most aesthetic of its theories, a product of a
creative mind, which is definitely much more than a passing fancy, may
come to nothing in the face of the judgement of nature on its truth
value.

This is all the more obvious when we consider what science does with
its most beautiful ‘objects’, say Einstein’s equation of general relativiry.!?
A beautiful theory is then taken up for the creation of more theories and
experiments, some of which may also be seen as beautiful (but rarely is
this the case). This approach is dramatically opposite the arts where one
does not take a beautiful painting and because it is beautiful add other
modifications to it. This seems to suggest that for arts beauty is the end
whereas for science beauty is the beginning,

But there is much in common to the aesthetic of art and science. In
both, there are objects that are experienced as beautiful. The objects of
beauty in both these theories cause pleasure. We need a critical reflection
on these objects to have an apprehension without motivared desires for
pleasure. In the final analysis, aesthetic value in science can never
completely reject its relation to the natural world. But keeping this point
aside, we can still ask what aesthetic factors are generally involved when
we talk of the aesthetic value of scientific objects. In answering this we
will find that the aesthetic properties of scientific objects are very similar
to those of natural objects, at least those which we believe contribues to
the notion of beauty in natural objects. Symmetry is the best example of
such a common property.
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10. SYMMETRY AND BEAUTY

Symmetry has often been related to beauty, as much as it has also been
seen as a source of monotony. As [ have noted at various points earlier,
symmetry is usually linked with a host of terms like balance, simpliciry,
harmony, beauty and so on. Natural objects, which are often seen as
beautiful, invariably possess various types of symmetries. In the previous
section, 1 concluded by pointing out that aesthetic factors which
apparently play a role in recognition of natural objects as beautiful are
also those that are used in the context of beauty in science. Harmony,
pattern, balance, coherence, simplicity are all concepts that are implicated
in the term ‘symmetry’. Hardy says this of mathematical beauty: ‘ideas
like che colours or words must fit together in a harmonious way’ (Tauber
1996, 62). Davis and Hersch in their influential book The Mathematical
Experience suggest that the beautiful in mathematics exhibit ‘harmony,
balance, contrast etc’ (ibid., 64). In general, given the primal scientific
tendency to gather objects and events into general principles and laws is
itself 2 move that emphasises the importance of balance and harmony.
As | had argued in the beginning of this chapter, these concepts are
deeply implicated in the phenomenological experience of symmerry.
Artists are ambivalent about symmetry. While Arnheim points to the
importance of the notion of visual balance and harmony in works of art,
postmodern art, in particular, has conscirusly tried to create works that
break symmetry and are asymmetrical or created in forms where
symmetry or asymmetry has no relevance. In the conclusion of this
section, 1 will argue that broken symmetries, asymmetries, ‘non-
symmetries’, in the case of art and in general phenomenological
experiences, are terms that can have meaning only in terms of symmetry.
Even in the case of natural symmetries, the notion of beauty as related to
them is quite ambiguous. Kant notes that geometrically regular figures
cannot be seen as aesthetically beautiful because they are based on
concepts. He grants that we are pleased by such figures but such a pleasure
is not disinterested but suggests uses. He also claims that ‘stiff regularity
(such as borders on mathematical regularity) is inherently repugnant to
tastes, in that contemplation of it affords us no lasting entertainment’
(Mothersill 1984, 128). The point abour ‘no lasting enterrainment’ is
similar to the one about monotony, as in symmetric objects and figures
being monotonous. In contrast, Plato considered ‘simple shapes and
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figures to be exemplars of beauty. Kant, while l.1c conc.lcmns symmctf)"
as boring, places great emphasis on beauty aSS(?Clated with forms. In any
discussion of symmetry, as we have seen earlier, we are never far away
from the pulls of form and formalism. Mothersill acknowledsets that the
‘manifestation of explicit symmetry is aesthetically pleasing’ (lb{d., 127).
And the symmetries present in the sunflower and the seashell ‘.mpr.esses
with that ‘purposiveness without purpose’ which Kant finds essential to
all natural beauty’ (ibid., 127).

In Part Two, I discussed in detail the relation of symmetry to form
and argued that symmetry cannot be seen as secondary to form. When
we consider the aesthetics of symmetry, we are continuously brought to
consider the relation of symmetry with form. Pure aesthetic judgements,
for Kant, arise from the relation of ‘parts and whole in phcnomcn-‘ll
configurations’ (Crowther 1993, 59). Kant considers flowers, birds ctc.
as objects that are ‘free beauties’ — they please not for any reason ther
than their presentation. He also considers designs as free beauties since
they ‘have no intrinsic meaning’ (Mothersill 1984, 224). Furthermore,
he says, ‘in the estimate of a free beauty (according to mere form) we
have the pure judgement of taste’ (ibid., 225). His emphasis on design
includes fine arts and he claims that the basic prerequisite for taste is
‘what pleases by its form.” (However, Crowther (1993, 71) notes that
Kant goes beyond formalism in saying that an artwork is always in relation
to rules and standards of other works.)

Once form is privileged in this manner, it is hard to imagine why
symmetry, at least ‘perfect’ symmetry, is banished to the other extreme.
Symmetries are complex. They are more than that associated with circles
and triangles. Just because one is ‘bored’ with circles does nor mean
symmetry is boring. Nor is it clear just what it is with a circle thar causes
an experience of boredom in us. Even in art, formalism has been
influential. Cezanne, for example, reduced objects to their geometrical
forms in his paintings. The formalists believe thar art is essentially
‘concerned with displaying form’ (Carroll 1999, 113). An artwork is
then understood as some specific relation between its part and the whole.
Clive Bell’s influential work emphasised the centrality of ‘significant form’

as that which has the ‘capacity to arouse aesthetic emortion’ (Crowther
1993, 57).

Santayana (1955) considers in some detail the relation of form, beauty
and symmetry. Form is ‘a synthesis of the seen’ and ‘is almost a synonym
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of beaury’ (ibid., 47). He dedicates a section in his book to form,
symmetry and their relation to beauty. He begins by saying thar ‘the
most rtemarkable and characteristic problem of aesthetics is that of beauty
of form’ (ibid., 53). Here too the beauty of form is nort reducible to the
collection of its parts or elements. It is only a particular configuration of
these parts that are seen to be beautiful. He then tries to argue that the
balance of forms that cause beauty is related to the physiology of seeing,
in terms of the ‘muscular balance’ of the eye. But, like Kant, he views
totally symmertrical figures as boring. For example, he notes that the
circle may exemplify simplicity and ‘purity’ but it ‘lacks any stimulating
quality’ whereas an ellipse has a ‘less dull and stupefying effect’ (ibid.,
57). Then when he talks of symmetry and its ‘charms’, he begins by
suggesting that ‘the comfort and economy that comes from muscular
balance in the eye, is therefore in some cases the source of the value of
symmetry,” especially in the recognition of bilateral symmetry. And
continues, ‘(Ijn other cases symmetry appeals to us through the charm
of recognition and rhythm’ (ibid., 59). While a totally symmetrical object
may actually be displeasing, he finds that nevertheless this is ‘often the
condition of the greatest of all merit, — the permanent power to please’
(ibid., 59).

Symmetry offers a ‘principle of individuation’ — allows us to perceive
the ‘unity and simplicity’ of objects. That is, it is symmetry which is the
condition of unity. Symmetry, in helping us 7o individuate objects, helps
us in ‘enjoying’ perception. But symmetry loses its value when objects
are ‘too small or too diffused for composition,” where it cannot gather
the unity in perception. The synthesis which symmetry makes possible
must be ‘instantaneous’. And explicitly, he notes that the beauty of form
is ‘what specifically appeals to an aestlietic nature’ (ibid., 61). But while
he accords such a high status to form and symmetry, he comes back to
note that monotony ‘deadens our pleasure’ in two ways: one, actually
creating a painful sensation when the repetitions are ‘acute’ and the other
making us unconscious of them. In either case, the pleasure of the
monotonous, if there is pleasure, is not the pleasure of the beautiful.

For both Kant and Santayana, there is a constant ambiguity when it
comes to symmetry. The latter has a more engaging view of symmertry. It
is only the ‘torally’ (or perfect) symmetrical objects that are displeasing.
Perfectly symmetrical objects are only those of geometrical figures.
Natural objects do not manifest either this ‘perfect’ figure nor are they
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only the form of these figures. Shape, colour, design, texture and the
background contribute to the perception of these objects. Like beauty,
symmetry too is a Gestalt. And it is conceivable that this Gestalt of
symmerry contributes to the sense of pleasure that is beautiful. Moreover,
Santayana’s views on form and symmetry are close to thar of science as
reflected in his statement that perfect symmetry, although displeasing, is
nevertheless of the ‘greatest merit’. This translates symmetry into a
principle, a value that is essentially scientific in nature. For science, the
symmetries of nature are the most fundamental characreristic of it. Events
of nature, in general, obey important conservation laws, all of which are
seen as a consequence of some symmetries in nature.

However, the phenomenology of symmetry, as in perception, in its
relation to beauty, cannot be the definition of syrnmetry as in science.
Remember that symmetry in science is defined to be invariant
transformations. As I had argued earlier, it is quite misleading to consider
symmetry as some transformation or change. Symmetry is a property of
the object which is made ‘visible' by transformations that are invariant.
Phenomenologically, our response to symmetry — for example, the
‘instantaneous’ perception of unity of an object, the recognition of balance
and harmony among parts of a whole, our experience of pleasure in
perceiving such an object — cannot and does not arise from making
transformation and noting some invariance. When we look at a beautiful
object in nature that is symmetrical, our emotional response to it is not
based on whether this object or its ‘oriented form’ (see Part Two) is
invariant L-mdcr some transformations. Therefore, symmetry as described
in science remains on the order of a scientific description, one which
allows a way of formulating a property of the object. This is very similar
to mathematical definitions of shapes in terms of the language of topology.-
Our experience of shapes is not in these terms. They are, both in the case
of t‘?Pology and group theory, linguistic constructions used to describe
paruc.ular propertie:s, those which are also amenable to phenomenological
experience. My carlier argument that the structure of groups shows strong
51r.mlar1t1es \H{lt!] the Gestalt principles of vision is one translation that
tries to thlbl.t the possible link berween the descriptive and the
phenomenological in the case of symmetry.

We can also understand this distinction in terms of determinate and

reflective judgements. We have to note that symmetry as used in science

s more encompassing, as we can expect from eeneralisarions that
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characterise formation of principles. There are symmetries of events,
symmetries corresponding to particular models, those arising from the
form of the mathematical equations and so on.

Now we can attempr to understand the aesthetics of symmetry. [ will
begin with the ambivalence engendered by perfect symmertrical figures.
These are claimed to be boring, do not cause pleasure in us, and
sometimes, as Santayana says, may even be painful. Whar sense could
we possibly ascribe to the terms ‘perfect’ or ‘total’ in the case of perfectly
symmetrical objects? ‘Perfect’ says something about the symmetry burt
in the case of phenomenological experience of symmetry, what is it that
allows for a gradation? In the case of scientific description, this problem
does not arise because the symmetry of a figure is completely characterised
and imperfect symmetries lack one or the other of the total set of
symmetrical elements. Can we claim that a phenomenological experience
of total symmetry is given by a ‘negative’ experience, such as being bored
or even feeling pain? Can we say that if an object is painful or boring,
then ic is perfectly symmetrical? Obviously not, because many ‘objects’
of experience can be boring and painful but they will have nothing to do
with symmetry at all. So whar allows us to recognise certain feelings of
boredom or pain to be associated with perfect symmetry?

This is indeed baffling. It is like saying a red flower is beautiful but if
it has a particular richness of red, say a ‘perfect’ red, then it b‘ec?ming
boring or painful. This suggests chat the addition of wbatcver. it is that
makes a quality perfect somehow negates the pleasure which .thf: imperfect
was capable of causing. This then should be seen as a classic instance of
an ‘anti-aesthetic’ propercy which when ‘added’ to the aefthetlc object
destroys its aesthetic pleasure. It also suggests that t.his notion of per.fect
is a principle of taste, or ‘non-taste’ if you like. This surel).' goes against
what we understand by beauty. For whatever else beauty is, we may at
least all agree that there is no recipe for it. But then perh;aps there is a
recipe for ugliness? Maybe one can argue that any f:hange, in general, to
a beautiful object will upset its balance and cause it to lose its beauty?'I
think it can and most often is the case. So, we may have a symmetric
object which is seen as being beautiful but once it attains perfect symmetry
(say through some intervention or cvo}utlon) then 1t.becorflcs boring
and ugly. The argument about destroying beauty (quite easily, I must
add) suggests that beauty is essentially unstable and even a small change
can cause it to topple over into the lap of the ugly. Ugly seems to be
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what is stable, for changes, most often, to an ugly object will continuc to
keep it so. That is, although it seems easy to convert beauty to ugly, the
converse is not the case. Beaury is fragile and the ugly s[Ul:d)’- In the case
of symmetry, it is casy to make perfect symmetry out of a given symmetry
and also casy to destroy perfect symmetry. This once MOTC SUBEESLS rlmE
the ascription of monotony to perfect symmetry is not 2 disinterested
rCSPOnSC.

In the case of symmetry and perfect symmetry,
beauty-ugly divide. A symmetry is always a part of its total s
But there is also something intuitive which is captured in the disdain ol
perfect symmetry. We can understand this by pointing to one function
of perfect symmetry, which is that given a partor a minimal set of parts
we can envision the whole. Given a small arc of a circle, we can conceivably
imagine what the circle will loc!z like or even attempt to complete the
circle. Such a process whereby ‘more’ is gcncratcd from minimal inputs
is perhaps physiologically and cognitively preferred. (Norte Santayana’s
reference to muscular balance and Sober’s (1975) work on simplicity.)
Bur aesthetically such a perfect symmetry is not pleasing. Why? Is it just
the vanity of our minds whose imagination is insulted in having been
given such a trivial task? Is the boredom and pain that seemingly arises
from perceiving rotal symmetry a consequence of the mind being slighted,
of the subject being irritated that when the mind is capable of grasping
complexity why waste its energies on obvious simplicities? But if so,
then the feeling of boredom or pain that is caused by perfect symmetry
is not one that is ‘disinterested’. If we learn to look again at a perfect
symmetry, casting aside all our interests, who is to say we won' find
perfect symmetries ‘as’ beautiful as non-perfect ones?

On the other hand, we can also explain the negative experience of
perfect symmetry as follows. Our experiencing perfect symmetry leads
o the recognition that the form is grasped entirely through minimal
input/information. This recognition and deduction takes us away from
considering the object entirely in terms of a reflective judgement. To put
it simply, when we see perfect symmetry, we start thinking and reasoning,
and stop feeling. It is because of this that our aestheric judgement gets
clouded. Thus, what causes displeasure or boredom is not the perfect
symmetry but our inability, in the face of perfect symmetry, to maintain
our emotional poise.

Lorand (1994) argues that while beauty is privileged in aesthertics

we cannot use the
ymmetry.
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there are many concepts that are opposite to beauty whose analysis offers
a better idea of beauty itself. She lists these opposites as ‘the ugly, the
meaningless, the kitsch, the boring, the insignificant, and the irrelevant’
(ibid., 405). She bases her argument that these are the opposites of beauty
on a view of beauty which is seen as possessing ‘a high degree of inner
order’ but an order which does not imply any principles or laws. But
high ‘degree’ of order is intrinsically related to symmetry. Her notion of
order is also confusing. For it seems that the beauty of an object lies in
its being well organised, whose elements are in their ‘right’ places and
ordering in such a manner unifies objects. This she suggests is ‘aesthetic
order’ in contrast to ‘rational order’ which ‘allows the observer to complete
a fragmented piece since the governing laws are available’ (ibid., 402).
She gives the example of arithmetic progression to illustrate rational
order. But is completion always in the presence of given laws? What is
the law that suggests that when we see a part of a circle we imagine the
whole? This could be the Gestalt ‘laws’ of perception but these are not
‘laws’ of taste and do not apply to aesthetics. Our point of contention
arises because Lorand thinks that ‘in the aesthetic domain the possibility
of deducing missing parts based on known patterns indicates deficiency’
and what gives aesthetic value is a mix of ‘order and novelty’. Perhaps the
general response to perfect symmetry is based on a vague belief that it
have something to do with rational order in some sense. Lorand also
notes that the boring is in opposition to beauty, mainly because of
repetition of patterns and the inability to present us with a new view of
patterns. So if we accept opposites of beauty as really giving us a degree
of beauty then even mistaken claims about the ugliness or the boringness
of perfect symmetry should be seen along such a gradation.

At this point, we may pause and ask whether we have any idea of
what symmetry is, in the way it has been used (however sparingly) in
aesthetics. Santayana’s views, while helpful in a limited way, are
incomplete. It seems to be clear that, generally speaking, symmetry is a
property of objects like colour and shape which has some role to play in
aesthetic perception. But we have to yet establish that it is or is nort
something more than shape and colour. In Part Two, I argued that
symmetry is not secondary to form. Is it possible to make a similar claim
on phenomenological grounds? Santayana says that symmetry allows us
to perceive the unity of an object. But how is it that we perceive unities
even without symmetry? From the critique of the aesthetic value of perfect
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symmetry, we can say that perfect symmetry (and in general, symmetry)
incites in us the tendency to extrapolate, to complete a figure without
needing the full figure for continued interrogation; gives us the ability
to take a figure into mind’s eye for there is nothing more the figure can
yield to my gaze. These are a range of phenomenological experiences of
symmetry. Harmony and balance are also similar experiences related to
symmetry, as discussed earlier. So we can reasonably say that there are a
plethora of phenomenological experiences that have to do with what we
call as balance, harmony, extrapolation, simplicity and so on, and these
constitute the experiences of symmetry. If we want to use the notion of
property, then harmony, balance, simplicity etc. are all properties of
something characteristic of the object, namely, symmetry.

Can this assertion be right? Is there really a property of objects called
symmetry that can be accessed phenomenologically? If so, is it something
more than its form, even in the context of phenomenology? We experience
colour and generally say the colour is a property of the object we see.
(Ignore here the issue of whether it is a primary or secondary quality.)
When we see an object we sce its form, maybe designs on the surface
and so on. When we sce a circle, we only sce a circle. We do not see its
symmetry. But we may have phenomenological experience of balance
both in sight and in the tactile experience of balancing a circular disc.
We may perhaps say that symmetry is another name for balance and it is
a particular characteristic of all objects to have or not have or imperfectly
have the notion of balance thart can be experienced in some way or the
Othe.r. This attempr of understanding symmetry as a synonym is one
possible way. We may then claim that harmony, balance, simplicity etc.
can all be called symmetry. Bur this cannot be correct for each of these
terms hfls (‘:ertain unique connotations that are lost in equating each of
them with ‘symmetry’. Not all balanced figures or objects need be simple,
fOlilexa.mple. Perhaps then we can say that symmetry is nothing but the
tc::o Z‘j:;;:eiipf\c;(llf;ia'such as balance am.i simplicity but.this also seems

. ings all these experiences together into one called
symmetry? One way of responding would be to say that all objects which
are seen to embody virtues such as balance, harmony and simplicity are
somehow or the other symmetric. Byt why should we not stick to just
these terms and not invoke symmetry at all?

One answer, and I believe this is the right way to approach i, is to say
that symmetry, as far as phenomenological experiences go, can be
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dispensed with and replaced by the ‘real” experiences of terms like balance
but as far as the aesthetic properties go, it is the phenomenological ones
that are replaced with that of symmetry. This means that symmetry is
primarily a potential candidate for being an aesthetic property. Therefore,
when we consider beaury, we are first drawn to talk of symmetry. There
may be problems in this view but before I address them, let me consider
another possibility of considering symmetry as a ‘content’ of the form.

In the case of science, symmetry can be given an explicit formulation,
unlike in ordinary perception and art where there seem to be a plethora
of other terms for it. In the scientific formulation of symmetry, in terms
of groups, one can understand, if need be, terms like balance and harmony
as descriptions arising from the prior framework of symmetry. In art
and perception, it is the exact reverse, where reference to symmerry is
filled with ambiguity. Symmetry in art has nothing to do with invariant
transformations. It has to do with the way we perceive objects, both
natural and artistic. But what I have argued so far is that the terms which
stand for symmetry are actually terms that refer to symmerry, in a
particular sense. Terms like balance and harmony capture some
phenomenological experience and there seems to be no direct
phenomenology of symmetry other than through these synonymous
terms. Then why rtalk of symmetry at all?

To answer this, we have to understand in what sense these terms refer
to symmetry, thereby explaining why we continue to use the word
‘symmetry’ as if it is something more than the experience of terms like
balance and harmony. First, let me consider the relation of symmetry to
form in perception and art. Given a figure, we recognise its form. Let us
say we have an equilateral triangle. We cannot, in all honesty, speak of
the symmetry of this object in any certain manner. It seems as if there is
no artistic or perceptual concept that will allow us to talk of symmetry
in this case. We can then turn to formalist theories in art. Maybe we can
ralk in terms of ‘significant form’ but as has been noted, for example by
Crowther and Mothersill, this is really a circular definition. While Bell
claims ‘significant form’ captures the aesthetic of art, we are not told
what it is and how to find it given a work of art. Neoformalist theories
that use both form and content may be better candidates to understand
symmetry. The neoformalists would say that not only is there a form in
an artwork burt also content, and moreover, the form and the content
‘are related to each other in a satisfying appropriate manner’ (Carroll
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1999, 126). One of the ways cf understanding content is to look upon
it as the meaning of the artwork and form as ‘the mode of presentation
of the meaning’ (ibid., 127). If we ask what distinguishes art from
anything else which have form and content, the neoformalists would say
that in art, the form and content are related in a ‘satisfying appropriate
manner . Of course, what is satisfying and appropriate will be a matrer
of discussion.

While the above points seem to be specific to artworks, they are
obviously not restricted to them. Any natural object seen and responded
to on the order of art will also have to incorporate these arguments about
form and content. It may seem that the idea of form discussed so far is
restricted to form as in shapes. But, in general, in the consideration of
what constitutes artistic form for any artwork (say a picce of music), one
can define artistic form as ‘all the webs of relarions’ that can be found
between all the elements that constitute an artwork. Then we can
conceivably list all such relations, with each relation being an artistic
form, in order to comprehensively describe one artwork. This is called
the ‘descriptive account’. But the descriptive account is not sensitive to
the explanatory role of artistic form. As Carroll (ibid., 142) notes, ‘our
ordinary concept of artistic form seems to be functional.” Thus, we may
define the artistic form, in the functional account, as being ‘the ensemble
of choices intended to realize the point or purpose of the artwork’ (ibid.,
143). In contrast to the descriptive account, the funcrional element
considers only some, not all, elements and relations, which are essential
to realising the purpose of the artwork. In the functionalist view, form
serves the function of realising the purpose.

With these brief comments, let me consider how we can understand
symmetry in both natural and art works. When we talk of symmetry of
an artwork, what could we possibly mean? If artistic form is formulated
in terms of formal relations (whether all or only some of them), then
symmetry could perhaps be thought of in terms of formal symmetric
relations. In general, this cannot be the case, for consider two elements
A and B and the formal relation, A is to the left of B. This is not a
symmetric relation and putting B to the left of A may change the form
altogether. We might perhaps ask whether symmetry has nothing to do

with form per se but is on the order of meaning, that is, symmetry is the
‘meaning’ that certain forms convey. But what is this meaning? In the
case of art, perhaps we can isolate a theme and call that the meaning of
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the artwork. Again, it is difficult to see what this meaning could be
other than some terms referring to the ideas of harmony, balance,
simplicity etc., in which case, we come back to our earlier question: why
re-name these terms as symmetry? We could look at the functional view
of art — the form following the intended function of a piece of art. Here
it is clear thar if there is a notion of symmetry that we are searching for
then it cannort be in the form unless it is somehow already factored into
the function. However, given that we do not know clearly what symmetry
is, we cannot conceivably create an artwork whose function js to
communicate symmetry.

Here there is a difference between natural objects and artworks. It
can be argued that natural objects that exhibit symmetry (in the scientific
senise) conne 0 liave these symmetries due to natural ‘forces (as described -
in Part One). In which case, the symmetries of these objects express
seinething abour the evoluion of that object and the pitysicai principles
of natural forces and their effects. If we see the patterns on a snail shell
and causally relate it to some evolutionary and natural forces, then the
symmetry of the shell holds some meaning about certain dynamics of
nature. Now if I look upon the shell as I would an artwork, then I will
have to accept that the function of the maker (say, nature) is well captured
by the form (in this case, the shape). Bur even in this case, the perception
of the shell says nothing about an idea of symmetry which is already not
present in terms like balance and harmony.

So, phenomenologically, where is symmetry to be found?

The answer is actually quite simple. The idea of symmetry seems to
be an important element of art because it is a part of the aesrherl.c
experience. So the answer to the above question is simply: /i the aesthetic
experience. ' .

When we perceive a work of nature or of art and call it symmetric, we
are making an aesthetic judgement. When we experience pleasure in
perceiving such an object, we are responding o symmetry asan aesthetic
property. This pleasure, in the case of symmetry, is j:ilsu.nerc.sted and
therefore, is the cause of the feeling of beauty that it inspires in us. To
clarify these points further, ler me briefly describe what we mean by
aesthetic experience and aesthetic property. . . .

Our appreciation of natural and artistic obe:cts is an aesthetic
experience. Carroll notes that there are two important ways of
understanding this experience, the content-oriented and affect-oriented
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accounts. On the former, ‘attending to the unity, diversity and/or intensity
of a work (or of its parts) amounts to an aesthetic experience of the
work.” (ibid., 168). Ifa work has these features, then it can afford aesthetic
experience. Beardsley who offered these categories of unity, diversity (or
complexity) and intensity is committed to accepting principles of taste.
The affect-oriented account says that ‘aesthetic properties are what
aesthetic experiences are experiences of" (ibid., 170). As we have already
seen in our discussion of beauty, what is important in aesthetic experience
is disinterested attention. Carroll notes that this account, because it
explicitly incorporates intentionality of production, discounts natural
objects as being seen as artworks. Burt then, if natural objects generate
aesthetic experience through disinterested attention, then this exclusion
is artificial. We can well proceed without having to call natural objects
as artworks. But note that in either approach, the central terms used in
each of the two formulations are closely linked with symmetry — unity,
complexity, intensity, gestalt etc. are all elements that are somehow
‘associated’ with symmetry.

Earlier, I had discussed Mothersill’s definition of beauty in terms of
aesthetic properties. An object is experienced as beautiful in virtue of
these properties. These are not properties like shape, colour and so on.
Aesthetic properties are Gestalt properties (Mothersill 1984, 365). These
properties, for example in music, are ‘disclosed in performance’ (ibid.,
366). While it is the case that aesthetic experience is subjective, aesthetic
properties are objective properties.'3 They are 1o be ‘detected’ in an
aesthetic object.

Symmetry is an aesthetic property. It is not reducible to balance,
simplicity and so on. When Kant talks about the utilicy aspect of perfect
figures, he cannot be referring to its symmetry. It is balance, for example,
that is of possible use value. So also for simplicity. And we cannot equate
symmetry with either of these terms. Symmetry is whart /s in both; it
captures a phenomenological similarity in all the terms like unity,
diversity, harmony, balance and intensity. Symmetry is disinterested, in
the sense that such an attention causes pleasure. We never ‘see’ the
symmetry of an object and even in phenomenological experience it is
not clear how it is accessed. I¢ rises only in aesthetic experience. Symmetry
is Gestalt just as an aesthetic property should be. When we refer t©
symmetrical figures we are talking of particular properties such s

particular form, pattern or colour distribution bur these can only b€
considered symmetrical in the scientific view of symmetry.
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(Even the scientific view of symmetry as invariant transformations
can be seen as an expression of an ‘aesthetic’ experience. If aesthetic
properties, as in music, are disclosed through performance, then we can
reasonably expect that symmetry as an aesthetic property is disclosed
through transformations.)

Aesthetic properties are ‘properties of an individual disclosed to us
only through acquaintance with thart individual’ (ibid., 352). Symmetry,
seen as an aesthetic property, is not restricted to symmetry of shapes. It
is a property in virtue of which we have an aesthetic experience; a vircue
which may cause the experience of beauty. This does not imply that we
are talking of specific symmetries. There is nothing like specific
symmetries for phenomenology. This phrase is a carry over from the
scientific formulation of symmetry. Even our experience with the mirror
is not an experience of reflection symmetry. Reflection gets the status of
symmetry only under a specific formulation. Our pleasure that arises in
perceiving reflection (and not the reflected object) is a pleasure thar is
caused by an aesthetic property which we may call symmetry.

In taking this position we are not committed to principles of taste.
We are not claiming that symmetry is always a source of pleasure related
to beauty. This confusion may arise if we give in to seeing symmetry or
beauty in terms of shapes. Obviously, a symmetrical figure, beautiful in
being part of one object, may not be in another object. Symmetry as an
aesthetic property is that which explains the commeon aesthetic element
in the various ‘properties’ such as unity, intensity, balance, design and so
on. So when I say that symmetry is a source of pleasure, I do not mean
that this symmetry is that which is necessarily embodied in the geometrical
figures which may be a part of the perceived object. '

We can extend this point and claim that even if a symmetrical
geometrical figure is an object of pleasure in the aesthetic experience,
the cause of pleasure is not the symmetry of the object as defined
scientifically. The perception of this figure need not involve any idea of
transformation and invariance. However, beauty is caused by the presence
of ‘symmetry’ in the aesthetic sense. If you ask whar this symmetry is,
then I can answer by saying that the very many ideas that are inspired in
perceiving that object like unity, harmony etc. are all pointers to this
aesthetic property of symmetry. . . '

Symmetry need not be the only aesthetic property in an object t}Tat
pleases. Mothersill (ibid., 354) points out that while acsthcnc. properties
are ‘context dependant’ there can be more than one aesthetic property
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in each individual. Scientific and mathematical symmetries are the
residues of aestheric symmetry, when pleasure is taken into the domains
of reason.

Since symmetry in aesthetics cannot correspond to a det?rminate
concept, it satisfies Kant's criterion for reflective judgement. Slf]ce it is
not urilitarian, its experience is an experience of disaffected acquaintance.
However, we have to consider the gradation of beauty as in ‘degrecs of
beauty’ that is naturally associated with this view. It may seem that the
view of symmetry as an aesthetic property runs counter to Mothersill’s
formulation which says that if two items are distinguishable, they must
‘necessarily have different aesthetic properties’ (ibid., 379). Even if
symmetry is identified as the cause of aesthetic pleasure in distinguishable
objects, it does not foliow that it is the ‘same’ characteristic that causes
pleasure. For example, in one pleasing object, our experience of symmetry
may be very different from the experience of symmetry in another object.
We may not be able to specify what ‘exactly’ we mean by symmetry in
both these cases, but may still ‘feel’ that symmetry is the cause of pleasure
in both these objects. We may even find an expression for this symmetry
but it will only be one expression, one way of reading the ‘formal’ relations
among these terms or as generating a set of meanings.

It is also the case that we can meaningfully talk of degrees of beaury,
One way of dealing with this, as suggested by Mothersill, is to order
pleasures ‘according to their intensity, duration and “fecundity” (ibid,,
380). A greater beauty ‘affords a pleasure that is more intense thap 5
lesser beauty ... overflows its limits and persist ... activate the Creative
imagination’ (ibid., 380).

The confusion about symmetry and its relation to bcaury, especially
in the case of perfect figures, is a confusion about the order of pleasure
caused by symmetry. In the case of perfect symmetry, the most favourable
conclusion we can draw is thar it affords lesser intense pleasure. It may
not inspire the creative imagination. It may be dissipated soon after we
experience it, leaving no residue of its beauty. None of these are reasons
to say that perfect symmetry is not a cause of pleasure. On the other
hand, philosophers and critics join hands to claim that asymmetry and
broken symmetry are a source of beauty in contrast to symmetry. Burt, it
must be remembered that the ideas of asymmetry and broken symmetry
are intrinsically and necessarily tied in with the prior formulation of
symmetry, both in science and art. Is it possible to have an experience of
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asymmetry without having first a prior expetience of symunetry?
Asymmetry, for phenomenology, can only arise in the recognition of the
lack of symmetry and is, for example, an experience of the deviarion of
the form from its nearest symmetrical form. Nevertheless, we need not
discount asymmetry’s claim to ‘greater’ beaury all the same. We may
instead say that asymmetry and broken symmetry afford pleasure that is
more intense, lasting and creative. While this point can continue to be
debated, one needs to firsracknowledge symmetry as an aesthetic property.

NOTES
1. See Levin (1993) and also Levin (1997).
2. See Ihde (1998).
3. For more on this, see Houlgate (1993).
4, For more on this, sce Jay (1993).
5. A more derailed discussion on this issuc is available in Sarukkai (2002).
6. Sec Rock (1975).
7. See Steiner (1998) for a discussion on the anthropocentric concerns that
drive mathematical formalism. See also Sarukkai (2002).
8. See also Martthews (1997, 16).
9. See also Marthews (1997, 8).
10. The use of intervening and representing should remind us of Hacking’s
(1983) argument on similar grounds for scientific realism.
11. Sce Ficld & Golubitsky (1992).
12. It has been suggested cthat Eddingtons experiment, which is accepred as

having provided the first proof of General Relativity, did not actually
demonstrate conclusive proof of the theory. It was Eddington’s belief in the
‘beaury’ of Einstein's theory with the concomitant belief that a theory with
such beauty has to be true that led him to proclaim that Einstein’s theory
had been proved by his experiment. See Collins & Pinch (1993) for more
details of this story.

See also Carroll (1999, 199).
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