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Preface 

Symmetry is a term that is used extensively in both technical and common 
language. It is used across many disciplines ranging from science to the 
ans. The idea of symmetry is central to science, particularly modern 
physics. In art, symmetry was a necessary aesthetic principle in 
architecture and sculpture of all ancienc civilisations. Given the breadth 
of this notion, ir is understandable that there is no single concept which 
can encapsulate its scope. Considering the importance of the idea of 
symmetry and its occurrence over a whole range of human activity, it is 
important to explicitly clarify its philosophical foundations. This is the 
task of this book. 

Parr One begins with a general overview of the various manifestations 
of symmetry in nature, science and arr. Symmetry is manifested in a 
wide range of objects, from molecules to galaxies. In science, symmetry 
plays many roles: for example, to classify crystals, illuminate the nature 
of spacetime, describe quantum objects and e:,plain the fundamental 
laws of conservation in science. 

Parr Two of this book uses metaphysical categories to explicate the 
nature of symmetry in science. This allows us to consider the meaning 
of symmetry in objects, relation between -:hange, invariance and 
symmetry, relation between symmetry and form, metaphysical structure 
of groups, the special nature of conserved properties and the link between 
symmetry, conservation laws and causality. Through this analysis, we 
find char symmetry should be considered as a first-order property of 
objects and systems. 

There is also another dimension to symmetry, its phenomenological 
one. There seems co be something unique in the phenomenology of 
symmetrical objects. Balance is a term chat sometimes captures chis 
uniqueness. Our experiences with symmetrical objects give us a 
phenomenological idea of balance, whether in balancing a stick at one 
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point or building a pap~r plane by folding along the axes of symmetry. 
The experience of balance is not only tactile; it is also visual and auditory. 
Tasty food, for example, generally manifests a balance of different tastes. 
There are also other terms which in our common usage captures the , 
idea of symmetry. These are simplicity, harmony, elegance, unity and so 
on. Symmetry, from ancient times, has also been intimately associated 
with the notions of beauty and truth. All these terms suggest that we can 
attempt to understand the idea of symmetry in art by drawing upon 
theories of aesthetics. Part Three offers a discussion on the 
phenomenological and aesthetic aspects of symmetry leading to the 
conclusion that symmetry in arr should be understood :1s :111 aesthetic 

property. 
This work is a product of a Fellowship offered by the Indian Institute 

of Advanced Study, Shimla, from 1999 - 200 l, and would not have 
been possible without the excellent academic and administrative support 
of the Institute staff. My sincere thanks to Profs M. Miri, S.C. 
Bhattacharya and V.C. Srivastava, the three directors who enthusiastic:11ly 
supported this academic pursuit in the two years I spent there. The 
friendship and warmth of the administrative staff at Shimla were 

enriching. In particular, I thank Mr A. K. Sharma for all the support in , 
getting chis manuscript published. I am indebted to the intellectual and 
personal friendship offered so generously by some of my colleagues at 
Shimla. I am also grateful to Prof R. Narasimha, the director of my 
parent institute, NIAS, for granting leave for two years. 

Balan Nambiar has been gracious enough to allow me to use the 
photo of his remarkable sculpture made in steel, a piece titled Valampiri 
Shankha, for the cover of this book. I am extremely thankful to him. 
This sculpture reflects essential principles of symmetry drawing upon 
both scientific and aesthetic aspects. In this respect, it is quite similar to 
what I have tried to do in this book and is therefore an ideal representation 
of the material in this book. The photograph is by Namas Bhojani and 
this piece was commissioned by Texas Instruments, India. I thank them 
for permission to use this photo on the cover. 

Finally, this work would not have been possible without the emotional 
and intellectual support of Dhanu. 



PART ONE 

Universality of Symmetry 

Symmetry is manifested in diverse ways in the natural and social world. 
figures and objects chat occur in the natural world exhibit complex 
symmetries. Symmetry has been an important principle in arts and 
architecture. Arguably, it is the central principle in modern physics and 
is closely linked with some fundamental laws of nature. 

Although symmetry is so universally manifested, its fundamental 
philosophical foundations are unclear. What ideas and concepts underlie 
the notion of symmetry? What is common in the ideas of symmetry in 
natural objects, arcs and music, and its use in the fundamental 
formulations of the physical and life sciences? Is symmetry a primary 
term or is it derivative of ocher properties and concepts? 

These and similar questions will be addressed by formulating a 
'philosophy of symmetry'. This formulation will be in two parts: 
metaphysical and phenomenological. Howc-•;c:r, before we begin co 
understand symmetry, it will be useful to see che wide-ranging 
manifestation of symmetry across many domains. 

I. SYMMETRY IN NATURE 

Symmetry is everywhere around us. Broadly, we can discern rwo kinds 
of approaches co symmetry: one is the phenomenological, which 
understands symmetry in terms of the 'experience' of symmetry through 
a symmetrical object, and the ocher is in terms of specific actions that 
leave invariant some aspect associated with the object. For example, if 
we rotate a perfectly round pebble we notice chat nothing seems to change 
under chis transformation. This is one way of looking at symmeuy, one 

that is privileged in science. However, even if we do not rotate or otherwise 

transform an object, we seem to grasp some characteristic of che 

symmetrical object, perhaps articulated in terms of the balance and 
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harmony of irs shape or parcern. A trivial symmetry possessed by all 
objects lies in rhe acrion of moving an object from one place co another. 
Under chis change, rhe object is unchanged. Bur chis is only a simplistic 
idea of symmetry and irs essential nature will remain unclear until we 
clarify what changes, what remains rhe same and their relations to rhe 
idea of symmetry. 

The natural world consists of objects that manifest various kinds of 
symmetries. Many objects of everyday experience, like trees, planes and 
leaves reflect symmetries. Many flowers have a shape char is, most often, 
perfectly symmetrical. Mainzer ( I 996, 52 I) gives rhe example of 
inflorescences, which exhibit a high degree of rotation and reflection 
symmetries, as well as rhe giant sunflower (Helirznthus maximus) where 
'the small blossoms are arranged in logarithmic spirals, whereby two sets 
of spirals occur with opposite directions of rotation' thereby exhibiting 
spiral symmetry. The blossom of the Gladiolus debilis exhibits bilateral 
symmetry in rhe distribution of its colour (Hahn I 998, 48). Given the 
predominance of symmetric forms in the plant world, ir is reasonable to 
believe that symmetry plays a central role in the evolution of these objects. 

The animal kingdom too extensively exemplifies the property of 
symmetry. The bilateral symmetry of rhe human form is found in more 
rhan 95% of all types of animals. While it is true that higher organisms 
do not exhibit symmetry in the distribution of the inner organs, 
nevertheless the form of most of these creatures is bilaterally symmetric. 
The starfish and sand stars are examples of creatures which are clearly 
symmetrical. The common starfish is pentagonal symmetric although 
ocher forms are also present. 1 Snails embody spiral symmetry in their 
shells, manifesting either left-handedness or right-handedness. Creatures 
such as sponges, rotifers, pterobranchia, echinoderms and jellyfish reflect 
rotational symmetry. The honeycomb is a classic example of a structure 
that is highly symmetric. Sometimes even the colours and patterns on 
insects, birds and animals show complex symmetries, suggesting that 
symmetry is manifested not only in the form of the creature but also in 
the distributions of patrerns and colours. 

Viruses have complex symmetric structures; for example, the adeno­
virus exhibits the symmetry of icosahedrons (Mainzer 1996, 517). In 
rhe case of dynamic change like cell division and reproduction, the plane 
of splitting is normally the symmetry plane of the cells (Hahn 1998, 
37). Even in multi-cellular organisms, cell division generally follows 
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mirror symmetry. Fundamental biological entities manifest complex 
symmerries. The DNA with its helical structure illustrates this clearly. Ir 
must be noted here char this wide manifestation of various symmetries 
suggests that these are not accidental forms; rather, they are a consequence 
·or namral laws of evolution and formarion. 1 

Naturally occurring (as also synthesised) chemical molecules exhibit 
a wide range of symmetries. Benzene, which is a common example, has 
hexagonal symmetry. Most naturally occurring carbon compounds have 
a high degree of symmetry. Polymers reflect 'frieze' symmetries. Naturally 
occurring proteins are symmetric, although they occur as left and righr­
hanJed forms. Haemoglobin has a 'two-fold axis of rotation of its 
molecular chains' (Mainzer 1996, 507). Even the orbital scruccures of 
molecules, such as sigma and pi orbitals of benzene, are symmetric. The 
ubiquitous water molecule is classified by the symmetry group C

2 
... .1 

Ir must be mentioned that many of the important, naturally occurring 
molecules like fructose, dextrose, tartaric acid, proteins, nucleic acids 

etc., exhibit asymmetry of che left and right forms in their natural 
occurrences. This asymmetry is extremely important in various bio­
chemical processes. For example, right-handed glucose castes sweet while 
its left-handed form does nor. The differences between the left and right­
handed forms are not always chis benign: consumption of left-handed 
phenyanaline leads co insanity while the right-handed form does noc.4 

All these examples suggest that somehow symmetry is a fundamental 
property of nature and has causal powers associated with it. 

Crystals are a paradigm example of symmetry in naturally occurring 
solids. The study of crystalline structures has significantly contributed 
to the classification of symmetries. Naturally occurring inanimate 
formations also show striking symmetries. Symmetry plays an explanatory 
role in understanding why these forms have turned out to the way they 
have. The presence of symmetry ranges from che microscopic domain co 
the cosmic scale. The beautiful forms of galaxies showing spiral and 
spherical symmetries, for example, once again reinforce the pervasive 
and fundamental nature of symmetry. Thus, nacure in its biological, 
chemical and physical domains exhibi,s various kinds of symmetries. 
The purpose of this book is to understand what these symmetries mean, 

and how and why they seem to be so central to so many entities of our 
world. 
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2. SYMMETRY OF FIGURES 

Symmetry is most clearly perceived in idealised geometrical figures. 
Consider a circle. The circle has many symmetries. If we rotate the circle 
around its centre we will find chat the form of the circle is unchanged. 
This suggests chat the circle is rotationally symmetric for rotation through 
all angles. If we place a mirror along any of its diameter we find that the 
form of the circle is unchanged and hence it is also mirror symmetric. It 
is not true that every change in a circle will be associated with a symmetry. 
As an example of a non-symmetric change, consider making a dimple 
on the circle. Now the circle no longer looks like one and thus we would 
say that the circle is not 'dimple-symmetric'. 

Different figures have different symmetries. For example, consider 
an equilateral triangle. If we rotate chis triangle about its centre point, 
we note chat it is only rocatio1,s of 120 degrees (and integral multiples of 
it) chat gives us back the 'original' triangle. The hexagon is similarly 
symmetric under rotation of sixty degrees. In general, a regular polygon 
of n sides will be symmetric under rotation about its centre through an 
angle of 360/n degrees. A point to be noted about symmetry of 
geometrical figures is that the idea of symmetry is dependent on points 
or axes around which the symmetry is manifested. 

The symmetry of natural forms like the snowflake mentioned earlier 
are symmetric not only with respect to their form but also with respect 
to some point or axis of symmetry. 

The symmetries possessed by these planar figures can be used to classify 
different figures. Elements that have the same symmetries can be said to 
belong to the same family or class. Groups are mathematical structures 
which characterise these symmetries. (Groups will be discussed in more 
derail in rhe section on mathematics and symmetry.) For example, the 
symmetries of the regular polygons are described by cyclic groups. Along 
with rotational symmetry, figures could also have reflection symmetry. 
Dihedral groups exhibit both rotational and reflection symmetries. The 
classification of central symmetries of planar figures (in the Euclidean 
(flat) space) can \:,,; entirely given by these cyclic and dihedral groups. 
More complex figures, especially those that form lattices, possess 
translation symmetries in addition to the rotational and reflection 

symmetries. 
Like planar figures, regular three-dimensional figures are also classified 

by symmetries. The cube is a simple example. Crystals are rhree-
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dimensional ordered figures. These figures also exhibit rotation, reflection 
and cranslacion symmetries. Just as in the case of planar figures, groups 
corresponding to these symmetries classify the different three-dimensional 
figures. The idea of symmetry has played a central role in understanding 
crystal structures. Ir also helps in classifying the properties of these solids 
based on the kinds of symmetry they possess. Although these perfect 
symmetries are most clearly exemplified in ideal figures we have to 
remember char when we ralk of symmetries of natural objects, like rhe 
snowflake or cryscals, we arc most often talking about rhe symmetry 
properties of the shape or form of these objects. 

3. SYMMETRY AND SCIENCE 

A fundamental reason for a philosophical analysis of symmetry is the 
central role accorded to symmetry by science. The use of symmetry to 
classif), two and three-dimensional regular figures was briefly described 
above. The discipline of crystallography is indebted to the notion of 
symmetry. This discipline nor only allowed a description of cryscals bur 
was also instrumental in the development of spectroscopy, wave 
mechanics and many ocher branches of science. The analysis of molecular 
structures, Pasteur's experiment on tartaric acid that showed the left and 
right handed nature of certain molecules, analysis of protein structures 
ere., are some of the important developments related to crystallography. 
Symmetry considerations offered a cogent theoretical framework ro 
describe and explain these experimental observations. 

Even though symmetries were essential to classify crystals, it is only 
in particle physics char the idea of symmetry comes to occupy a seminal 
position. The development of gauge theories and particle physics placed 
symmetry as a foundational principle of nature. The relation of 
conservation laws to symmetry emphasises this foundational nature of 
symmetry. It can also be argued that the impetus to relativity theory was 
based on symmetry considerations. Quantum mechanics (and further 
on, quanmm field theory) engages with the idea of symmetry in an 
essential manner. Even classical Newtonian physics illustrates 
fundamental symmetry principles. 

Considering rhe importance of symmetry in all these disciplines of 
science, it might seem to imply that there is a common understanding 
of symmetry in all of them. Although the use of groups is common in all 
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these disciplines where the idea of symmetry is prevalent, there is really 
no common conceptual grounding in all of them. Also, there seems to 
be some important philosophical ideas that are manifested in the diverse l' 

expressions of symmetry in these disciplines. The task of this book is to 
explore these philosophical foundations. Before I do char, it will be useful 
to summarize the various symmetry considerations that appear in physics. 
I restrict myself to physics not because I believe that chemistry and biology 
can be completely reduced to physics but because symmetry 
considerations in chemistry and biology are very similar to that of physics. 
In particular, group theory, which describlS symmetries, is the common 
mathematical cool used in these different disciplines. 

In the earlier examples, symmetries were associated with a figure or 
the form of objects. While this is useful in the study of crystals, the idea 
of symmetry in classical and modem physics is not restricted to the form 
of objects alone. A simple example is the time-reversal symmetry exhibited 
by Newton's law, which states that force is equal to mass times acceleration 
where acceleration is the second derivative of position with respect to 

time. Changing t (standing for time) to -t keeps the equation invariant 

if the force is time independent. We can thus say that time reversal (change 
oft to -t) is a symmetry of Newton's equation under certain conditions. -~ · 
But note chat the ideas of change and invariance in this case are not with 
respect to a geometrical figure or the form of an object. We can only say 
chat the form of the equation remains the same under the transformation 
t ➔ -t. But then we will have to distinguish the idea of the form of an 
equation and of an object or figure. Most of the important symmetries 
in physics deal with expanded notions of form, change and invariance. 

Time reversal symmetry of Newton's law has observable consequences. 
For a system that strictly obeys this law, rime reversal symmetry would 
imply reversibility of processes that occur over a time period. There is 
also a larger set of transformations that keeps Newton's law invariant. 
Newton's force law incorporates acceleration, which is related to position. 
Position itself is defined with respect to some frame of reference. Suppose 
there is another frame of reference that is moving with uniform velociry 
along the common x-axis of both the frames. Then it can easily be seen 
rhat Newton's law is invariant under the change of coordinates from one 
frame to another. This larger set of transformation is referred to as the 

Galilean transformation (Rosen 1995, 77). 
This theme of invariance under various sorts of space and time 
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transformations is central co symmetry considerations in science. These 
are dynamic transformations in the sense that changes take place in the 
position and time coordinates. Under such transformations, cerrain 
features are left invariant, such as the equation of motion. There will 
also be observable consequences corresponding co this like the statement 
that Newton's law will be the same in every frame moving with constant 
velocity. Conservation of certain observables, like momentum and energy, 
is also a consequence of symmetry. Thus, alt4ough the idea of symmetry 
in modern physics seems to be indebted to mathematical forms, its 
significance is captured in the corresponding physical observations. 

Relativity is based'on symmetry considerations. In fact, va~ Fraassen 
(1989) goes to the extent of saying relativity is symmetry. The claim that 
'physics' must be invariant in different frames of reference implies that 
more complex transformations of space and time must keep invarianr 
(covariant) the laws as well as the observational consequences of dynamic 
equations. Lorentz transformation is a specific form of transformation 
of the space and time coordinates such that the equations of special 
relativity remain covariant. In a particular classical limit (when the velocity 
is much smaller than the velocity of light), the Lorentz transformation 
reduces to the Galilean transformation. Special relativity is invariant with 
respect co 'global' Lorentz transformations, thereby meaning chat the 
'laws of nature are invariant with respect to them only if the same 
t-ransformation is· applied co all four points of 4-dimensional space' 
(Mainzer 1996, 351). Global here refers to the constancy of velocities of 
the different frames of reference. 

In relativity, the connection between symmetry and nature arises in 
the following way. Euclidean space is 'flat' space. Minkowski space is a 
four dimensional space, also flat, which considers space and time 
coordinates. as belonging to the same 'kind' bur with the crucial difference 
that the time coordinates carry a negative sign while the space coordinates 
carry a positive sign (or vice versa, according to convention). Minkowski 
space.rime is invarianr under global Lorentz transformations. Thus, if we 
believe that space and time form a continuum and char they are 
Minkowskian in character, then the global Lorentz transformation 
actually reflect rhe symmetries of this spacetime. In other words, just as 
objects exhibit symmetries as discussed earlier, the spacetime 'object' too 
has its symmetries. 

The general theory of relativity goes one step further. While global 
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Lorentz transformation was restricted to constant velocity with the 
implication that all of Minkowski spacetime changes in the same way, 
local Lorentz transformations allow for non-uniform change of spacetime. 
Physically, this is the case of comparing physics in accelerated frames of 
reference. Generally, the physics will not be the same in accelerated frames 
of reference. But if we make a modification to the field equations to 
account for this, we get Einstein's general theory of relativity. 

The symmetry corresponding to transformations of space and time 
coordinates is exhibited in quantum mechanics also. For example, the 
wave function of a particle under Galilean transformation transforms 
into another function which differs from the original one only. by a 
complex phase factor (Landau & Lifshitz 1977, 52). Since observables 
in quantum mechanics are bilinear forms, that is, involving products of 
the wave function and its conjugate, the Galilean transformation leaves 
them invariant. 

External symmetries are important in studying composite systems 
like atoms and molecules. The movement of the electron around the 
nucleus of an atom will possess rotational symmetry. This has important 
consequences in spectroscopy and in understanding molecular bonding. 
In this context, a well-known result is that of Wigner who described the 
essential connection between symmetries and the quantum numbers of 
the spectra (Mainzer 1996, 388). 

Quantum systems exhibit many interesting symmetries. Three very 
important ones are those of charge conjugation, parity and time reversal. 
These are discrete symmetries in contrast to continuous symmetries 
discussed above, that is, transformations do not range over all possible 
values. Typically, a discrete symmetry is defined as a symmetry operation 
which 'if applied twice to any physical system, will leave that system 
unchanged' (Emmerson 1972, 33). Parity (P) is a simple operation which 
replaces space coordinates by their negative value, i.e., x by -x, y by -y 
and z by -z. In general, parity is a symmetry of nature. But like all 
symmetries we will consider, there are certain systems that do not exhibit 

. this symmetry. It is well known that electromagnetic and strong 
interactions conserve parity but weak interactions do not (ibid., 46 -
47). 

For every particle with charge q, we can conceive of a particle with 
charge -q with all other properties like mass and spin remaining the 
same. Such a particle is called the anti-particle of the original particle. 
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This operation of replacing a charge by its opposite value is called charge 
conjugation (C). If charge conjugation is an exact symmetry of the world, 
then it is reasonable to expect a world of antiparticles similar to our 
world made of particles. Bue che universe shows a distinct asymmetry 
between particles and antiparticles: the amount of antiparticles occurring 
naturally is much less than the particles. For example, there are 
innumerably more electrons than positrons (anti-electrons) in our 
universe. This suggests chat the symmetry between particles and 
antiparticles is nor manifested in our universe. It must be mentioned 
chat for strong interactions this remains an exact symmetry but is violated 
in weak interactions. 

Like parity, time reversal (T) involves changing t to -t. Again, ic is 
nor clear if chis is an exact symmetry of che world although it might be 
so for strong interactions (ibid., 55). Nore that for discrete symmetries, 
there are no corresponding conservation laws as for continuous 
symmetries (Iczykson & Zuber 1980, 21). 

These three discrete symmetries, P, C and T, are important for one 
reason: the combined operation of PCT is always an exact symmetry. 
That is, every.process of nature, whether they belong to strong or weak 
interactions, always obeys PCT symmetry taken together (Emmerson 
1972, 56). 

These examples, except for charge conjugation, have to do with 
changes in space and time coordinates. These are usually referred co as 

· external sy~metries. But one of che most important cases of symmetry 
· is chat of internal symmetry where the transformations _are not changes 

in spacecime coordinates but of some 'internal' parameters. These internal 
symmetries have come to occupy a ~entral role in modern science. 

A simple buc important example of internal symmetry arises in 
quantum mechanics. Isopsin symmetry is an important symmetry chac 
has had great influence in theories that followed. The proton and neutron 
are 'similar' to each other, except chat the proton has a unit positive 
charge and che neutron has no charge. Heisenberg suggested chat one 
could consider che proton and neutron as belonging to one 'family' (the 
doublet) and che difference in mass can then be derived/explained through 
che breakdown of the symmetry'. The symmetry of this 'doublet' is referred 
co as SV(2) symmetry. This idea of family resemblance is used to construct 
more fundamental symmetries in particle physics, as in the grand unified 
theories. 
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An extension of chis is the SU(3) model, which was used to predict 
quarks. For example, the triplet of pions forms a family. In the case of 
quark model, the up, down and strange quarks belong to a triplet family. 
These kinds of symrnetri~ are idealised symmetries because nature only 
manifests them 'approximately'. (This is similar to exact symmetries of 
geometric figures as against symmetries of objects in nature, which only 
have these shapes wirh small deviations.) The notion of 'internal' in the 
SU(2) and SU(3) cases refers to the symmetry under rotation in the two 
and three dimensional internal space of these doublets and_ triplets 
respectively. (Ir may be noted chat the 'spin' of elementary particles is 
also an internal characteristic of the particles.) 

Similar co global and local transformations of spacetime coordinates, 
rhese internal symmetries can also have global and local transformations 
in the internal space. If the SU(2) group is dependant on spacetime 
coordinates, then the corresponding symmetry is a local, internai 
symmetry. In general we may note four kinds of symmetries: external, 
global; external, local; internal, global and internal, local (Kosso 2000, 
83). These symmetries.are symmetries of nature - of objects, spacetime 
and events in both the macro and the microscopic world. Science believes 
that there are observable consequences of these symmetries, as well as ._,. 
causal roles chat can be ascribed to them. 

There are two other internal symmetries chat need to be mentioned: 
permutation symmetry and supersymmetry. Particles in the quantum 
world are either fermions (those with half integer spins) or bosons (those 
with integer spins). They have a fundamentally different property under 
permutation. The famous Pauli principle says that no two fermions can 
occupy the same state whereas any number of bosons can do so. The 
final project of unification of the forces and particles in nature must also 
attempt to unify fermions and bosons. Like the case of the proton-neutron 
doubler, we can consider a doublet of a fermion and a boson. 
Supersymmetry corresponds to the transformation that changes a fermion 
to boson and vice versa. As a consequence, it is postulated that for every 
fermion there is a corresponding bosonic partner. For example, an electron 
has a corresponding boson 'selectron'. We can note the similarity of this 
to rhe particle-antiparticle pairs: for every particle there is an antiparticle 
derived through charge conjugation. 

As in the earlier cases, there can be both global and local 
supersymmerry. What is most interesting is char local supersymmetry 



UNIVERSALllY OF SYMMETRY • 11 

necessarily involves introduction of gravitational fields naturally into 
rhe model. (This is similar to the local symmetries of general relativity.) 
Thus chis allows the possibility of unification of rhe four fundamental 
forces of nature into 'one' model. This local supersymmetry theory is 
also called supergravity. Of course, physics has not stopped with chis 
construction but has gone on to develop string and sup·erstring theories. 
Even in these models, the idea of symmetry as described here holds. 
Thus it is clear chat symmetry is central to the formulation of science 
and we can agree with Mainzer's ( 1996, 477) statement that 'current 
high energy physics and the physical cosmology derived from it are closer 
co the Platonic ideal of exact symmetry in nature than any previous 
developmental epoch in the natural sciences.' 

3.1. Broken symmetry and asymmetry 

In general, the symmetries described above are exact mathematical 
symmetries. When we say the Lagrangian (or equivalently, the equation 
of motion) is invariant (or covariant) under some transformation, it is 
usually the mathematical symmetry and this is an exact symmetry. But 
the natural world does not usually manifest this complete symmetry. 
This is similar to the difference between a real circular object and the 
idealised geometrical circle. In fact, the real world predominantly 
manifests inexact or approximate symmetry. I believe chat these 
approximate symmetries should be understood as deviations from 
symmetry rather than independent of symmetry considerations. 

We have already noted the diverse expressions of symmetry in physics 
-from symmetries of objects like crystals, symmetries of spacetime, 
discrete symmetries like P, C and T, and internal symmetries. In many 
physical examples, these symmetries will not hold 'completely' and there 
are consequences chat arise from the deviation from symmetry. These 
are most powerfully exemplified in gauge theories. 

We must distinguish between symmetry violation and broken 
symmetry. For example, when we say chat parity is violated in a process, 
it means that the expected symmetry of parity is not to be found in chat 
particular process. This is not broken symmetry, unless we know chat 
the system had parity symmetry but lost this symmetry due to some 
reason. 

Consider a round dr~p of water, say formed at the mouth of a tap. As 
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it forms, the gravitational pull tends to elongate the surface downwards. 
The exact symmetry of the drop is broken by gravity. In the case of 
animals, gravity too acts to break the full symmecry.5 These examples 
suggest that it is easier and correct to understand many such phenomena 
as broken symmetry rather than asymmetry. 

In che case of internal symmetries, we considered the example of 
proton and neutron as belonging to a single family. Proton and neutron 
differ not only in their charges but also in their masses. But physicists 
think it more fruitful and elegant to consider them as belonging to the 
same family, described as a doublet. The mass difference is then explained 
through electromagnetic interaction, seen as a consequence of this perfect 
symmetry being broken. All grand unified theories work on this logic. It 
is first presumed that nature has a particular 'larger' symmetry which 
allows different particles to be grouped together into one family. Grouping 
them in this way is to gloss over their differences. Then the differences 
are explained by saying chat chis exact symmetry is broken. This view 
rests on the belief that nature is fundamentally symmetric and essentially 

I· ordered. The highest state of symmetry is postulated to be at the moment 
of Big Bang and over time vario.us symmetries get broken. 

It is to be remembered chat the idea of broken symmetry is based on 
the idea of loose identity. There is also an important consequence of 
broken symmetry which I will discuss in the following section. 

3.2. Functiom of symmetry in science 

According co science, symmetry is a fundamental 'property' of nature, 
manifested in natural objects and in natural processes. As Weinberg notes, 
symmetry 'is the thing that actually drives the dynamics' (Crease & Mann 
1986, 187). The idea that nature is inherently simple is a powerful 
motivating force for theorists. Symmetry, as a central principle, allows 
this formulation of simplicity. Weinberg considers Lorent-z. invariance as 
the most important symmetry of all because it 'is not only a symm_erry 
which governs the form of the equations, it tells us what the equations 
are about.' He goes on to say that 'the identity of the particle is fixed_ by 
its symmetry properties. The particle is nothing else but a representation 
of its symmetry group' (ibid., 187). 

First of all, it is important to note that symmetry is not an 'accidental' 
property of nature. Even in the case of natural objects which show various 
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symmetries, it can be argued that the particular forms and shapes that 
they have are due to a prior symmetry principle. In the case of biological 
organisms, Hahn argues that symmetry is an important evolutionary 
factor. This means that symmetry olays a causal role that explains why 
these organism manifest the symmetry they do. Thus symmetry plays a 
functional role in these organisms. 

In the case of inanimate objects that show a wide range of symmetries, 
like crystals and molecules, symmetry is an organising principle that 
explains not only why the fl.tapes of these entities are the way they are 

but also how symmetry influences the dynamics associated with them. 
For example, chemical bonding used to describe chemical reactions can 
be deduced from symmetry considerations. Nature seems to subscribe 
to a lease action principle. Simply put, this means chat natural processes 
tend co rake a path of least (actually extremal, which could be either 
minimum or maximum, bur in most cases it is always the minimum) 
energy. If we analyse why natural objects have che shapes they do, we 
can find chis lease action principle ar work. This principle is closely aligned 
with the idea of symmetry. The spherical case is a good example, for not 
only small objects bur also huge planets, scars and galaxies possess 

(approximate) spherical shape. The sphere has a high degree of symmetry. 
When nature tends toward natural formations that show a high degree 
of symmetry, the influence of various factors such as gravity modify the 
shape associated with these highly symmetrical shapes. 

In terms of theoretical analysis, the principle of least action is of 
fundamental importance. It is this principle that helps us derive the 
equations of motion, both in classical and quantum physics. These 
equations of motion are derived from the Lagrangian (or equivalently, 
the Hamiltonian). The Lagrangian in the classical formulation is given 
by the difference of the kinetic and potential energy terms. This 
Lagrangian will have some symmetries like invariance under Lorentz 
transformation. These symmetries will also be the symmetries of the 
equations of morion. 

Moving from objects to processes, we note that symmetry 
considerations have various phenomenological and observational 
consequences. The most important of which is che relation between 

symmetry and conservation laws. In modern physics, this is seen as a 

consequence of Noether's theorem. Noether's theorem states 'that to any 

continuous one-parameter set of invariances of the Lagrangian is 
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associated a local conserved current' (Irzykson & Zuber 1980, 23). From 
this current, we can find a conserved 'charge' by appropriate integration. 
This theorem holds both for external and internal symmetries. 

Loosely put, what this theorem states is that when there is a 
(continuous) symmetry in the system, something is conserved in its 
processes. Conservation of momentum is a common example. We know 
that when two objects collide and there is a change in velocities or mass, 
then the total momentum before collision is the same as after collision. 
This sameness of an initial quantity an9d the final one is called as 
conservation of that quantity. In the case of collision, conservation of 
momentum occurs if there are no forces like friction. Conservation of 
momentum is a consequence of invariance under translations. Similarly, 
if the system is invariant under rotation, the quantity called angular 
momentum is conserved. Also, if the system does not depend explicitly 
on the time parameter then we can immediately say that the processes of 
the system will conserve the total energy.6 

While these examples of conservation of linear and angular 
momentum are consequences of external symmetries, conservation is 
uue of internal symmetries also. For example, the conservation of charge 
is an extremely important principle that is part of the m~st basic natural 
processes. As before, we can understand this by saying that the total 
charge before a process is the same as after the process. For example, in 
neutron decay the neutron disintegrates into a proton, an electron and a 
neutrino. The initial electric charge of the neutron will be the same as 
the sum of the electric charges of the proton, electron and neutrino. In 
general, knowing the electric charge of the initial configuration, we can 
make a reasonable guess as to what the charges ofthe final constituents 
should be since they are constrained by the equality of the initial and 
final total charge. The principle of conservation of charge can also be 
understood as a consequence of some symmetry. For example, 
conservation of electric charge is a consequence of the global phase 
invariance of electrodynamics. 

Charge in modern physics is not restricted to electric charge. From 
Noether's theorem, we know that for every continuous symmetry there 
is a corresponding charge which is conserved. The word 'charge' is used 
in a variety of ways and exhibits similarity with electric charge in that it 
is conserved. For example, baryons (heavy fermions like protons) are 
given a baryon charge and leptons (light fermions like electrons) are 
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given a lepton charge. Ir is believed that in many processes involving 
changes of baryons and leptons, their respective charges will be conserved. 

These conservation laws are a consequence of the symmetries of nature. 
They are manifested over a wide range of processes: from collision of 
billiard balls to elementary particle decays. They also cell us which 
processes are possible and which are not, as illustrated in selection and 
superselecrion rules. The idea of symmetry plays a descriptive, 
explanatory, causal and predictive role. Ir is thus righrly a first principle, 
a primary property of nature - ac least, according to science. 

Even in the case when symmetry is broken, there is a very interesting 
consequence. In gauge theories (like the unified theory mentioned earlier), 
ic is recognised chat perfect symmetry is not manifested. So this symmetry 
needs to be broken in order to explain the observations regarding the 
elementary particles. The symmetry is explicirly broken in the model by 
introducing new terms in the Lagrangian. Gauge particles are those which 
carry the force of interaction of the four fundamental forces. These 
pai-cicles get masses· in the theory through the breakdown of symmetry.· 
This theoretical mechanism is needed because perfect symmetry implies 
massless gauge particles. This seems to suggest an essential role to 

symmetry not just as a principle but also as a dynamical mechanism 
which is so1:1ehow involved in the creation of particles and ultimately 

matter! 

4. SYMMETRY AND GROUPS 

It is difficult to talk about symmetry in science without invoking the 
appropriate mathematical terminology. The discussion in the previous 
section was to exhibit the different ways in which symmetry is understood 
in science. The emphasis there was to list the various symmetries of nature 
in order to support the claim that symmetry is indeed an essential 
component of natural objects and processes. There was also reference to 

various groups chat classify these sym_mecries. In chis section, I will give 
a brief introduction to groups. In Part Two, I will describe the distinction 
between sets and groups in the context of metaphysics and in Part Three, 
I will exhibit some common structural similarities between groups and 

the Gestalt principles. 
Sets are common· ma,thematical entities. Sets are a collection of 

members which have some criteria for membership in a particular sec. 
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For example, a set of mammals will have as members creatures that we 
recognise as mammals. Groups are also sets bur with some difference. 
First, groups are sets with an operation defined on them. This means 
that not only groups have members but they also have, necessarily, an 
operation defined over that collection of members. For example, the set 
of all positive and negative integers (including zero) is a group under the 
operation of addition. The group members also have to obey certain 

other conditions. 

1. The closure property: if a, b are two members of the group, then 
a • b should also be a ~ember of the group. The group operation 
is denoted by•. For example, for the set of all integers mentioned 
above, we can take any two elements, say, 5 and 7. Since this is a 
group under the operation of addition, then 5+7 (= 12) should 
also be a member of the group, as it is. 

2. There is an identity element, which is unique, in the group. That 
is, there is a member of the group, e, such that a • e = a = e • a for 
all members of this group. In the case of the above group, this 

identity element is 0, since a + 0 = a for all a. 
3. Every member a of the group has an inverse, denoted by a·1 such_ .. 

that a • a·1 = e = a·1 • a. In the above example, - a will be the inverse · 
for every a, since a - a = 0, and 0 is the identity element. 

4. The elements of the group obey associativity law. That is, a • 
(b • c) = (a • b) • c. 

There are various kinds of groups. In the example of the equilateral 
triangle discussed in the last section, it was mentioned that the triangle 
is invariant under rotation of 120 degrees. As we can easily see, the triangle 
is also invariant under rotations of 240 and 360 degrees (and integral 
multiples of 120 degrees which are essentially the 'same' as these three 
angles under rotation). The set of these three angles forms the C

3 
point 

group. (Point because in these rotations the central point does not change.) 
All planar and higher dimensional symmetric figures can be classified by 
groups. For example, the dihedral groups describe rotation and reflection 
symmetry. These are discrete groups because not all rotations are possible. 
In the case of the equilateral triangle, the only rotations that leave the 

triangle invariant are the three angles mentioned above. 
The circle has many symmetries, actually infinite. If we rotate'a circle 

around its centre by any amount, however small or big, the circle remains 
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invariant. The symmetry of the circle is an example of a continuous 
symmetry. This rotational symmetry of the circle is described by the 
group U (1) whose members are all of the form ei• . We can easily check 
that for any two members, eir and eiz , err • eiz = ei(yul = eiw. Also the 
\denticy is 1 and inverse is e·". 

Continuous groups are very important in modern physics. These are 
called as Lie groups. For example, the group SO(3) is the sec of all rotations 
in three dimensional Euclidean space. Although these are abstract 
definitions of groups, we can find representations for them. These 
representations obey the group equations. For example, the elements of 
SO(3) can be represented in terms of 3x3 matrices. 

It may be mentioned here that there is an interesting connection 
between groups and shapes. The U(l) group has a manifold structure, 
chat is, the group is 'like' a manifold, meaning that its elements are like 
che points of a manifold. In this case, the manifold is the circle. The 
SO(3) group has the manifold of a sphere in our usual three dimensional 
space. The important complex group SU(2) has the manifold structure 
of a four-dimensional sphere.7 

5. GENERAL SYMMETRY PRINCIPLES 

So far, I have given examples of various kinds of symmetries chat occur 
in nature. There are also a few general princi!)!es that cry to explain che 
nature of symmetry. These principles are generalisations of some of the 
common aspects of symmetry. 

Rosen (1995, 104) formulates the symmetry principle as follows: 'The 
symmetry group of the cause is a subgroup of the symmetry group of 
the effect ... Or less precisely, the effe,! is at least as symmetric as the 
cause.' Note chat this means chat the symmetry of the effect can in 
principle be larger than the symmetry of the cause. As a modification, of 
particular relevance when symmetry is broken, Rosen, quoting Birkhoff, 
adds, 'nearly symmetric causes need not produce nearly symmetric effects' 
(ibid., 130). That is, 'approximate symmetry of a cause might appear in 
the effect as exact symmetry, as approximate symmetry, or as badly broken 
symmetry' (ibid., 133). 

In the case of processes and natural laws, Rosen offers a more general 
principle of symmetry chat captures the evolution of the processes: 'For 
a quasi-isolated physical system the degree of symmetry cannot decrease 
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as the system evolves, but either remains constant or increases' (ibid., 

145). 
And a modified 'special symmetry evolution principle' stating: 'The 

degree of symmetry of the state of a quasi-isolated system cannot decrease 
during evolution, but either remains constant or increases' (ibid., 146). 

The Curie symmetry principle is similar to Rosen's formulation but 
does not recognise symmetry of causes as a subgroup of effects. This 
principle, while stating that symmetry elements of causes 'must also occur 
in the effects,' also states chat the 'effects cannot contain more elements 
of symmetry than the causes' (Mainzer 1996, 511). There is another 
statement chat if effects 'possess a certain dissymmetry,' then the cause 
will also manifest it. 

Similar arguments are offered by van Fraassen. He points out that 
there are two forms of arguments when we consider symmetry principles. 
The first one he calls the 'symmetry requirement: problems which are 
essentially the same must receive essentially the same solution,' and the 
second being that 'an asymmetry muse always come from an asymmetry' 
(van Fraassen 1989, 236 and 239). The similarity of these two 
formulations with the ones described above can be noted. 

6. SYMMETRY IN ART 

It seems clear chat symmetry is of fundamental importance to the scientific 
description of nature. In the case of arts, the situation is not so clear. 
Ancient and medieval cultures have exhibited a high degree of engagement 
with the idea of symmetry in the fields of arts, architecture and even 
music. But the fundamental problem in enquiring about the nature of 
symmetry in these fields, unlike in science, rests on an ambiguity 
concerning the meaning of symmetry. In the case of scientific discourse, 
symmetry is understood in terms of invariant transformations. The 
description of symmetry by groups further gives a semblance of 
uniformity to the notion of symmetry in all its manifestations in nature. 
Whether we are talking of symmetry of crystals, or of patterns on an 
insect, or of processes we are working within the same formulation of 
invariance using mathematical groups. However, this does not mean 
that there are no philosophical issues in this approach. All that it shows 
is chat chere is some conceptual and methodological homogeneity in che 

study of symmetry in science. 
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In arr, rhe situation 1s somewhat different. Some common 
manifestations of symmetry occur across many domains: patterns used 
in ornamental arr; rhe use of certain proportions (such as golden secrion) 
in architecture; ideas of balance and harmony in painting; repetition of 
certain harmonies at specific intervals in music and so on. In none of 
these cases we can understand symmetry in terms of invariant 
transformations. In these fields we do not even begin to believe chat we 
could describe objects of interest through frames of reference with respect 
ro which transformations can be performed on these objects. Thus we 
rend ro come across terms like balance, harmony, simplicity, unity and 
elegance chat somehow seem to keep referring ro the idea of symmetry. 
Also, since we do not understand objects of art through a mathematical 
description, the description of symmetry through groups is also nor 
possible - thereby negating the simulation of a belief chat symmetry is 
one clear idea manifested in different ways in nature. 

But this does nor mean that symmetry was never an important concern 
in arts. It is well known that the earliest cultures across the world, whether 
they were ancient Indian, Chinese, Greek or the Navajo cultures, created 
arr forms that exhibited a strong sense of symmetry. In Indian art and 
architecture, symmetry principles played an important role. Ir is well 
known that rhe fire altars used in Vedic rituals were built based on 
considerations of symmetries. Vatsyayan (1983, 27) notes that the 
differen c designs of the alcars were 'conceived in the likeness of the human 
body.' Both man and bird images were used to delineate the final forrp. 
of these altars. These shapes embody geometrical forms and che 
importance of these geometrical motifs is captured in the comment char 
these motifs guided che 'destinies oflndian arc for centuries' (ibid., 33). 
The form of the square and the circle (and combinations of these) figure 
prominently in the Na,tyafiistra. These two figures symbolise the 'coming 
rogerher of two opposites' (ibid., 42). The square is the 'perfect form 
suggesting order' whereas the circle 'is the continuum of time' (ibid., 
42). The example of Sricakra, with its complex conjunction of 
symmetrical figures is another example of che importance of symmetry 
in ancient Indian thought. 

In the Nii,tyafiistra, the representation of the body and the many 
postures described in it also exhibit preference for symmetry. The navel 
of the body is the 'centre of the wheel (cakra) of the Vedic and Upanisadic 
image' (ibid., 52). (Note the similarity with Leonardo da Vinci's famous 
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drawing of the human figure inscribed in a circle.) The various postures 
of the body, described in the·Na,tyaiii.stra, used in sculpture and theatre 
(including dance) can also be i~scribed in the form of symmetrical and 
proportional relations within a circle. One of the central positions so 
descr.ibed exhibits a highly ordered symmetry of the various 'pans' that 
define the postures (ibid., 54). 

·The geometrical figures are also used as symbolic representations. 
For example, the equilateral triangle (the 'most' symmetric form of the 
triangle) in Vedic thought represents PurU[a, agni as also Viniu. The 
various Indian dance forms illustrate this engagement with manifestations 
of symmetrical figures. As Yatsyayan notes (ibid., 57): 

Bharataniityam is a series of triangles in space, Kathakali.a square, Manipuri 
a spiral or :m intertwined serpent and Kathak an axis. Orissi evolves its 
distinctive basic motif of the tri-bhanga which is also a symmetrical 
geometrical figure from the vaifiikha sthiina. · 

The human body was also used as a measure in Indian architecture. 
In the case of temples, 'the analogy of the human body is consistently 
followed in the structural pla!l of the temple' (ibid., 74). In Indian 
architecture and sculpture, the principles of composition were determined 
by the square and the circle . 

. Both in the Indian and Western traditions, the idea of symmetry is 
essentially related to proportion and measure. The word 'Symmetry' is 
derived from the Greek roots sym meaning 'with' and metros meaning 
'measure' (Hahn 1998, 9). Both Indians and Greeks placed an inordinate 
emphasis on proportions in art, architecture and music. The Golden 
Section, which is nothing but a particular value of a proportion, was 
long considared the 'aesthetic standard' (Mainzer 1996, 41). Even in 
ethics, Aristotle lays emphasis on the proportional as being what is just 
(ibid., 48). The ideas of proportion, harmony, balance, simplicity and 
unity are generally found wherever symmetries are. In both Indian and 
Greek traditions, symmetry (and che above terms that stood for it) has 
been associated with beauty and truth. These issues continue to find 
expressions in art from ancient co modern rimes and will be the subject 
of more detailed discussion in Part Three. 
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7. SO WHAT IS SYMMETRY? 

In this brief overview of symmetry, there are various insights into its 
complexiry. In its many manifestations, symmetry seems co p·lay multiple 
roles and in so doing gets associated wich many important sciencific and 
philosophical concepts. The remaining pare of the book will explore 
some of these issues in more detail thereby clarifying the relation of 
symmetry co many of these concepts. Some of the key terms chat are 
associated with symmetry and an oucline of their relation can be listed 
as follows. 

1. Property: Is symmetry a property of natural objects, boch 
microscopic and macroscopic? What kind of a properry could ic 
be? Is it a property of che first-order property of shape or form? 
Colour symmetry immediately suggests chat che idea of symmetry 
is more than a property of shape. Various ocher conceptual ideas 
associated with symmetry preclude che restriction of symmetry to 
shape. Bue even if we don't use these arguments and stick co shape 
alone, we will see char symmetry is not a property which is derivative 
of shape and in general is nor a second-order property. 

2. Conserved propenies: Is symmetry a property of certain events 
and processes? Conservation of charge or energy, for example, 
occurs in a process in which che initial and final energy or charge 
is the same. These events are characterised by the property of 
possessing appropriate symmetries although it is more often phrased 
the ocher way: when symmetry, then conservation. All conserved 
events seem co exemplify symmetry as a property. 

3. Causal role: Symmetry seems co behave as a causal agent. le has a 
causal role char can be used co explain the formation of shapes, 
evolucion of organisms and also che dynamics of processes. The 
creation of masses through sym~ecry breaking, conservation laws 
ere., exhibit a causal logic of symmetry. · 

4. Transformations: In many examples of symmetry (especially in 
science), symmetry is related co transformations. What exaccly is 
che character of chis relationship? Symmetries by themselves are 
nor cransfor~acions. We call transformations associated with 
symmetry as symmetrical transformations. For example, rotation 
is an action, a tr;nsformation. ansformation, we may 
recognize/infer/obser ~t~metry. Samii symmetry is 
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confused and equated with transformations. But when we say that 
a circle has rotational symmetry, the idea of symmetry seems to 

'belong' to the circle rather than to rotations. Also transformations 
by themselves do not say anything about symmetry. The condition 
of symmetry arises as a consequence of transformation and 
invariance. 

5. Invariance: Symmetry has been understood in terms of invariant 
transformations. Particular symmetries specify invariance of 
particular transformations. But invariance is a loaded concept. 
Invariance of what? In the examples discussed above, invariance 
can be with respect to the form of an entity (snowflake); with the 
structure of a pattern (ornamental groups); or even the form of 
equations (as in most of modern physics - invariance (covarianct) 
in the 'written form' of the Lagrangian, Hamiltonian and the 
equations of ~orion). The problem of invariance is the problem 
of understanding similarity and recognizing criteria for comparing 
initial and final states in order to claim that there is invariance. 
Thus, this issue is related to the metaphysical problems of identity. 
As noted earlier, broken symmetries, symmetry breakdown and 
approximate symmetries are dependent on some idea of partial 

identity. 
6. Law: As we have seen earlier, conservation laws are a consequence 

of symmetry. But what is this nomic role of symmetry? What is 
the relationship between the form .of a law and symmetry? 

7. Symmetry principles: We have seen some examples of symmetry 
principles. These principles, including general statements on beauty, 
truth and simplicity, occur extensively in any discussion on 
symmetry. Nature illustrates a high degree of simplicity and also 
exhibits a wide range of symmetries; so perhaps symmetry is related 
to some idea of simplicity. Theories that build on symmetrical 
principles have an economy of expression and are seemingly elegant. 
The least action principle that explains fundamental natural 
processes also exhibits this simplicity and elegance. But how do 
we analr.tically understand simplicity with reference to nature? If 
qi.arhematical symmetries are simple and elegant, should nature 
also be so? What is the correspondence between the simplicity of 
theoretical models and the simplicity of nature? Also, the relation 
between symmetries in cause and effect is intriguing. 
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8. Mereology: One of the immediate consequences of symmetry is 
the natural relation of symmetrical objects with the issue of parts 
and wholes. Given a slice of a symmetric object, che whole is easily 
imaginable. This is easy co see in ornamental and mosaic 
symmetries. Knowing char something is symmetric, we need only 
be given a pare and we can confidently construct the whole. 
Symmetry has the ability co fill in the blanks and co give us a sense 
of the whole from its pares. This also has phenomenological 
consequences. 

9. Criterion for kind (as ordering): When we form a sec, we use some 
criteria for membership. Symmetry offers a criterion for rhe 
construction of families. The classification of planar and 3-
dimensional objects is an example. Classification of manifolds (and 
shapes) through symmetry is very important in mathematics. The 
classification of elementary particles into families that obey some 
symmetry considerations is also central to modern physics. 

10. Proportion: This, as we saw earlier, is one of the dominant senses 
of the idea of symmetry in the realms of arc and philosophy. 
Although this term is phenomenologically loaded with associated 
ideas of beauty, harmony etc., the link between symmetry and 
proportion needs co be further examined. 

11. Harmony and balance: This is related to the point about simplicity. 
As already mentioned, symmetry is very closely aligned with the 
notions of harmony and balance. Balance is a fertile image for 
symmetry. Symmetrical objects and events are usually considered 
to be 'balanced' and 'in harmony'. Balance of tastes is a simple 
phenomenological example of symmetric.al distribution of tastes. 
But all these terms have to be sharpened to be of further use. 

12. Perception: Do we perceive symmetry? Like we perceive colours? 
There seems to be an observational content co symmetry. Some of 
the rerms in chis list like balance, harmony, simplicity, and rhe 
relation of pares and wholes are also chose char can be 
phenomenologically accessible. To understand symmetry we have 
co further look cowards phenomenology of perception. The 
interesting relation between perceptions of form and Gestalt 'laws' 
of perception also suggests a reason as to why symmetries are 
described by groups. 

13. Epistemology: In the use of symmetry as models for theories, its 
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presence in natural laws, in making possible predictive results and 
in its explanatory capacity, it seems clear that symmetry has an 
epistemological role. 

14. Aesthetics: Related to points 7, 10, 11 above. There is an aesthetic 
component to symmetry - both in the case of natural and art 
forms as well as in the construction of theories and experiments, 
suggesting its essential role as an aesthetic property. 

So what is symmetry? This list conveys the complexity of the idea of 
symmetry in its most general sense thus suggesting the possibility of a 
fertile philosophical analysis. The philosophical discussion of symmetry 
offered here is i_n two parts: metaphysical and phenomenological. The 
discussion of symmetry as an aesthetic property is found in the latter. 

NOTES 

1. For some wonderful pictures relating to the symmetry of these and other 
similar creatures, see Field & Golubicsky (1992). See also, Hahn (1998, 168). 

2. For a comprehensive study of patterns in nature, see Ball (2001). 
3. For more on symmetry in chemistry, see Hargiccai & Hargiccai (1986) and 

Hoffmann (1990). 
4 .. Mainzer (1996, 510). See also Close (2000). 
5. For a more detailed discussion, see Hahn (1998). 
6. Mainzer (1996, 297). See also Rosen (1995, 151 - 152). 
7. See Schutz (1980). 



PART TWO 

Metaphysics of Symmetry 

Mecaphysics offers an analysis of various cacegories char are useful in 
undemanding symmetry. As che liscing ac che end of Pare One indicaced, 
chere are indeed enough reasons co believe char che idea of symmetry is 
quire complex and a mecaphysical analysis could elucidace ics nacure. I 
will discuss che relevanc mecaphysical cacegories here and analyse che 
idea of symmetry in the context of these categories. The me~aphysical 
categories that are relevant to our study are: object, event, properties, 
change, form, identity, quantity, kinds, causes and laws. 

I. OBJECTS 

Symmetry is manifesced in diverse ways across a range of objects. In a 
sense, co be clarified further, it indeed seems to be the case that symmetries 
are properties of these objeccs. Thus, to begin this metaphysical analysis 
of symmecry it would be useful to clarify the notion of an objecc. 

1.1. What is an object? 

In general, we can distinguish between two types of objeccs, concrete 
and ~bstrac_t. Concrete 6bjeccs are typically those that are spatiotemporal, 
existing in space and time, examples being ordinary material things. 
There are different formulations of what it means to be abstract and che 
common one is that abstract objects are non spatiotemporal. There are 
philosophical problems in chis distincti_on between che concrete and the 
abstract, and thus a more concise explication of concrete and abstract 
needs to be given. Symmetry is manifested in both concrete and abstract 
objects. · 

Lowe (1998, 34) distinguishes two approaches to the question 'What 
is an object?' and calls these the Semantic and Metaphysical approaches. 1 
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In the metaphysical view 'rhe term 'object' properly applies co any item 
which enjoys determinate identity-condirions and hence co any item 
falling under some sortal concept supplying a criterion of identity for its 
instances' (ibid., 34). He considers a particular book and a particular 
boy as examples of objects in chis sense. 

Even the simple example of a particular book as an object suggests 
char the recognition of an object as a book involves certain criteria of 
identity char will enable us· co sort books as one kind and chis depends 
on some criteria of identity for objects. When we consider the semantic 
view, there is inflation in the kinds of entities char can be called objects. 
A common example is that of a grin: The grin on John's face is broad. 
This statement seems co imply char there is 'something' which is 'the 
grin on John's face'. One can then consider this sentence as implying 
'John is wearing a broad grin' but this quantifies over grins. Paraphrasing 
is an attempt to remove the reference to grins. For example, we may 
paraphrase the above sentence to 'John is grinning broadly' but 
paraphrasing is symmetrical and does not cell us which of these two 
formulations should be taken as correct. Lowe also notes the important 
point char such paraphrasing is also possible for objects like books. One 
of the ways to deal with chis problem is co claim that only chose singular 
terms char have a criterion of identity can refer co objects, thus 
immediately ruling out grins as objects. Two responses against chis are 
relevant to our discussion. First, formulating criteria of identity means 
moving into the metaphysical domain and away from limitations of 
meaning. Second, criteria of identity cannot be provided for all kinds of 
objects. The identity of such objects, as the example of persons given by 
Lowe, does nor consist in giving criteria 'outside' them. 

The metaphysical answer is that 'co be an object is co be an entity 
possessing determinate identity conditions' (ibid., 37). Nore that this is 
a statement about objecrhood and nor about rhe existence of entities 
that may nor have such determinate identity conditions. This view will 
imply, for example, that subatomic particles, which manifest wave-particle 
duality, cannot be seen as 'objects'. This is not a statement about existence 
but about what is it to be an object. Thus, there can exist entities like 
grins and waves but these are not to be seen as objects. 

Lowe extends chis metaphysical analysis of objects further by adding 
the condition of (1) determinate countability and (2) determinate iq.enrity 
conditions. This generates four types of entities. Those that have both 
determinate countability and identity conditions he calls 'individual 
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~bjects', such as a book. Entities that have (1) but not (2), like quantum 
particles, are quasi-objects. Quasi-individuals are those that have (2) but 
not (1 ), that is determinate identity conditions make identification 
possible bur they are not countable, like mass and energy. We are then 
left with entities which have neither (1) nor (2), which he calls as non­
objects, an example being 'the particular sphericities of individual 
spherical objects' (ibid., 58). 

It may seem that the identity conditions for objects are actually those 
of its proper.ties. There are two ways of dealing with this problem. We 
can subscribe to an ontology that differentiates objects from the 'sum' of 
all its properties. This is equivalent to taking the position that properties 
are themselves not objects. Lowe argues that a particular red apple that 
belongs to the kind apple exemplifies proper~ies such as redness or 
sphericity only 'in virtue of possessing particular instances of those 
properties' (ibid., 157). That is, properties are adjectival rather than 
'objectual'. Such a position invariably needs an ontology of substance to 

uphold it. Substance is that which does not 'depend for its existence 
upon anything other than itself,' in terms of identity dependence. Such 
a substance is a (concrete) particular and excludes universals, clearly 
suggesting that universals in this view are Aristotelian rather than Platonic. 

Lowe's position then is that particulars and universals can be objects 
provided they possess determinate identity-conditions. And also both 
can be concrete or abstract. The identity conditions of concrete objects, 
since they exist in space and/or time, are 'necessarily temporal in character' 
while abstract objects will have 'timeless identity conditions' (ibid., 158). 

1.2. Form and objects 

We have noted that substances are concrete particulars. These substances 
may be composed of other concrete parts as components. Such substances 
which are not mereological sum of these component parts are called as 
composite substances. This brings us to the important notions of form 
and matter that commonly occur in understanding objects. There is an 
intrinsic relation between form and identity. 

What a composite substance is composed of ... may be called its matter, 
and how it is so composed may be called its form ... It is the form of a 
substance, rather than its marrer, that must be preserved through qualitative 
and relational changes in that substance - such changes being events in 
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which that substance participates and through which it persists identically. 
Thus sameness of form (or sameness of 'structure' or organization') is the 
equivalence relation on a substance's compo~ents which grounds its 
diachronic identity: and precisely what this equivalence relation is will 
depend on what kind of substance the substance in question is. To state 
what this equivalence relation is for composite substances of a given kind 
is precisely to provide a criterion of identity for such substances (ibid., 
168). 

A composite substance is made of parts but its composition is not the 
mereological sum. Thus these substances instantiate a hierarchy of kinds. 
The important point to note here is that 'the kind which determines a 
substance's 'form' for the purposes of providing its criterion of identity 
(that is, the form whose sameness must be preserved throughout the 
persistence in time of that particular substance) is the highest kind in the 
hierarchy of kinds instantiated by that substance' (ibid., 168). 

We can immediately note the relevance of the above formulation to 
the idea of symmetry in objects. The symmetries of some natural objects 
are typically those that keep the form invariant. The bilateral symmetry 
of animals is a symmetry of the form of the animal although its internal 
parts are not arranged symmetrically. When we say that a snowflake has 
60 degrees symmetry under appropriate rotation, we are essentially talking 
about the sameness of form. Form does indeed provide the criterion of 
identity over change (transformation) and the symmetry of the object is 
a statement about the persistence of the object over time. If chis is the 
'highest kind' instantiated by chat substance, then symmetry - which 
provides a stricter criterion of identity - is fundamental to the object. 
Symmetry is also used, as we saw in Part One, to classify objects into 
certain kinds. The idea of symmetry in natural objects indeed manifests 
chis priority of che exactness of form. 

Bue Lowe has an expanded definition of form, namely sameness of 
form is also equated with sameness of structure. In the case of composite 
substances, as in his examples of clock and horse, the diachronic identity 
of these objects is based on the sameness of the structural components of 
a clock or a horse. When we talk of the symmetry of natural objects and 
for che most part they are composite substances, we seem to be restricted 
ro the form, that is, the shape of the object. Symmetry transformations 
of chese natural objects do not change the internal structure but this is 
incidental to the definition of symmetry. Symmetrical transformations 
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by necessity, in the examples discussed, are structure preserving. When a 
snowflake is rotated through 60 degrees, its form is invariant (the exact 
nature of chis invariance will be clarified lacer) although che position of 
ics constituent parts, say particula- water molecules, will have moved in 
spacecime. In any case, the invariance of che form does nor change che 
structural relation. Thar is, symmetry of the form chat is privileged in 
the symmetries of nature already supplies a stronger criterion of diachronic 
identity having as a consequence structural sameness. This is made clearer 
in those objects/figures chat are ideal geometric forms like a circle or an 
equilateral triangle. 

The symmetries relevant ro the above discussion are chose which are 
associated with concrete objects. We have seen earlier char they are 
manifested even in events. And in particle physics the idea of symmetry 
is essentially inspired by and implicated within the domain of 
mathematical forms. To understand these formulations, I will consider 
symmetry in the context of abstract objects. 

1.3. Abstract objects 

The metaphysical formulation of objects allows both concrete and 
abstract objects. Since objects are defined through determinate identity 

· conditions, ic implies that abstract entities which possess these identity 
conditions should also be objects. There are many abstract entities -
mathematical entities like secs, properties and even propositions. Some 
of them lack determinate identity conditions, like the property of colour 
or even that of a grin. As noted earlier, this does not imply chat these 
entities do not exist but only that they should not be given the status of 
objects. 

There are different ideas of abstractness. One is that abstract entities 
are not spatiotemporal, in contrast to concrete entities, which if not 
existing in both time and space, exist at least in time. Lowe calls these as 
abstract

1 
entities, examples being numbers and universals. Abstract

2 
enciries are those chat cannot exist independently of some other enciries, 
for example, colour. Abstract3 entities are derived from abstractions from 
concepts such as Fregean extensions. 

Ir is important to note that the lack of spatiotemporal existence (~ 
for abscract

1 
entities) in itself cannot preclude objecthood. As Lowe 

correctly notes, to exist spatiotemporally is 'just to have certain sorts of 
properties and relations - spatiotemporal ones' (ibid., 212). This implies 
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char absrracr
1 

enriries can be objects and Lowe, like others who prefer an 
oncology of abstract objects, rakes recourse co causal powers char such 
objects can have. These causal powers are seen as playing an explanatory 
role and in chis case certain universals can be considered as abstract objects 
- for example, kind universals like horse possess the required determinate 
identity conditions. They also play an essential part in 'natural laws 
governing the behaviour and composition of ·all particulars which 
instantiate those universals' (ibid., 219). Nore char absrract2 entities do 
not have to exhibit the lack of spatiotemporaliry. They are only those 
that cannot exist independently from other entity or entities. Events are 
absrract2 objects according to Lowe. 

Consider the case of symmetry. Sets are abstract objects. Groups are 
sets along wirh an operation and the elements of this group obey some 
conditions as described in Part One. Symmetries are described by groups. 
Transformations are related to events, abstract2 objects. Symmetries play 
a causal explanatory role - an important role, which can allow us to see 
abstract entities as abstract objects. So what is the exact relation between 
symmetry and abstract objects? Is it similar to the relation between 
symmetry and concrete natural objects discussed above? 

What kind of abstract entities occur in our understanding of 
symmetry? Groups are one such class of entities. But there are ochers 
too. Geometrical figures char are symmetric are also abstract entities. 

Consider a circle, which has infinite rotational symmetry as also 
reflection symmetry. A circle ·is a geometric object and is nor located 
spatiotemporally. We may have a pictorial representation of the circle 
b~r that ~oes not make the circle a spacioremporal object. The analogy 
with secs is useful here. Sers are abstract objects though we write sets in 

. l a 
pamcu ar way: ~a, b, c ... J, for example. The abstract circle need nor only 
be represented m the usual pictorial form on the page. Ir can also be 
defined by the equation x2 + y2 = r2. This equation itself embodies rhe 
symmetries of _the_ c!rcle. For example, we can easily see char changing x 
to - x, Y t~ -y, 1~div1~ually or both together, leaves the equation invariant. 
The rotational mvanance is also easy to see if written in a matrix form 
The set 0 ! these matrices will form one representation of ch~ 
correspon~mg group. (Nore char the equation in itself is a relation and 

nor an obJecc ~uc the circle defined by char equation is an object. We 
may look on t~Js as the equation 'referring' to the object called the circle.) 

Now what JS common to the machemacical circle and an object which 
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may have circular symmetry? In the case of natural objects, the circle 
seems co be instantiated concretely in some sense, unlike che mathematical 
circle. Bue what both these entities have in common is the property of 
circularity. This property may be instantiated in particular circular objects 
which are spaciocemporal. So both the mathematical circle and a circular 
object have a common property and this allows us to view circles as 
being present in the natural as well as in the abstract world. Symmetry 
of the circle is a property of all particular circles, both in mathematical 
and natural objects. 

Do shapes of natural objects, usually seen as a first order property, 
always have a correspondence with an 'equivalent' mathematical shape? 
This question is important because I believe shapes have been invested 
with an undue priority in considering them as primary properties. Since 
all natural objects have shapes, this priority reflects the belief that shapes 
are somehow a part of the object. There are reasons to be suspicious of 
this position. Shapes of objects (form, contour, boundary are the other 
terms we may use) are abstractions from the object. The form or the 
boundary delineates the extensionality of the object. This abstraction of 
the shape, therefore, must really be seen on the order of abstract entities. 
While all shapes are abstracted from the object, certain shapes can have 
some equivalent mathematical formulation. For example, the circle is 
also defined by the equation given above. An irregular shape may have 
no such mathematical form that may refer ~.., it buc can always be so 
defined through some patching of more regular shapes. 

Thus, mathematical abstraction as against perceptual abstraction is 
more exact and describes or maps every part of the form. Our abstraction 
of shape when we see an object is more general and only recognises an 
'overall' picture, as well illustrated when we look at a tree. Perceptual 
abstraction in general has the characteristic that the form is seen as part 
of the object whereas mathematical abstraction makes form the ultimate 
end. 

When we usually talk of the symmetry of an object, we are talking 
about che symmetry of its form. This form is actually an abstraction and 
shares something essential with a corresponding mathematical form. 
Symmetric objects have forms that are symmetric. But it is only in the 

case of physical objects that we separate form from matter. The 
mathematical circle has only its form, which is also defined through 
other mathematical ways. Consider a simple example of a physical object 
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chat has the shape of an equilateral triangle. We can claim chat the shape 
of this object is actually a mathematical equilateral triangle, provided 
chis can be defined marhemacically. Bue how can we define chis equilateral 
triangle purely mathematically, like the circle for instance? And how can 
we extend chis co more complex forms? 

Symmetry is an answer to these problems. We can define a 
mathematical form by defining its symmetries. That is, once we list the 
mathematical symmetries of an equilateral triangle, any mathematical 
form chat has all these symmetries will be 'equivalent' co chis form. 
Symmetries can mathematically classify all equivalent mathematical 
forms. In face, che classification of manifolds is possible through the 
classification of the symmetries of the manifold. In ocher words, given 
the symmetries, we can know what the form is. So now since the 
equilateral triangle can be classified by its symmetries, we can believe 
chat the form of a physical object which has equilateral form is nothing 
but the mathematical form. 

As a consequence, shapes are not the primary property of objects. 
The form of these objects is an ideal form, which is defined through its 
symmetries. Therefore symmetries are the 'entities' chat are primary for 
particular descriptions of objects. 

To rephrase it in another way: Lowe argues chat identity with respect 
to form supplies the determinate identity conditions for composite 
substances. But chis form, as a mathematical form, derives its identity 
not because it continues to 'look like' the old form but because of the 
symmetries of that form. Thus, symmetry supplies the identity conditions 
for most mathematical forms and so is prior to what we call as form. 

What about irregular forms that cannot be mathematically defined 
in an exact manner (like the equation of a circle) or that do not possess 
any exact symmetries? Obviously the shape of these irregular objects is 
still an abstract shape, if not a mathematical one. (The real distinction is 
between the abstract and the mathematical. While mathematical entities 
are all abstract, not all abstract entities are mathematical. Then the 
question is whether all shapes are abstract or are they, more precisely, 
mathematical? The reason for the reduction from che larger space of the 
abstract to that of the mathematical is that it allows us a 'metaphysical 
ordering'.) 

In the case of irregular forms, I would suggest that they can always be 
decomposed as a 'sum' of regular forms, or they can be patched together 
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with regular forms like what is done in triangulation of spaces. These 
regular forms are those that can be defined by their symmetries and this 
patching also allows us to see irregular forms as 'composition' of 
mathematical ones. 

In metaphysical analysis, the primacy given co shape does not seem 
to be sensitive to the mathematical formulations of it. And in what sense 
is a mathematical description of use in metaphysics? We need look no 
further than sets and the important role it plays in metaphysics. My use 
of mathematical description of shapes is similar to the use of sets in 
metaphysics. 

1.4. Shape or symmetry? 

Consider the example of the triangle. Armstrong (1997) asks, 'What is 
it to be a triangle?' And his answer is: 'It is to be a thing anchored by 
boundaries having just three parts, each of which is a straight line' (ibid., 
56). His query is placed in the context of determinables and determinates 
and the whether determinate shapes can be seen as universals like the 
example of length. Length is a determinable and a particular length, say 
one meter, is a determinate. There is a problem in extending this analysis 
to shapes. 2 As Armstrong notes, 'the unity of the class of shapes is a 

· much messier ,ffair than the lengths, durations and masses .. .' (ibid., 
55). 

In the case of triangles, the straight lir,es are three 'non overlapping 
particulars' and since the id~a of. length is inherent in the lines, we are 
able to use length as determinable. These three lines of the triangle are 
'related to each other in that they intersect and form angles. So, for 
Armstrong, the triangle can be describf't:! 'in terms of properties of the 
three boundaries and relations of the three boundaries to each other' 
(ibid., 56). And a similar analysis follows for shapes with more boundaries 
thus allowing Armstrong to exhibit a more complex relationship between 
determinables and determinates in the case of shapes. 

But mathematics offers a way of classifying shapes and thus suggests 
how 'unity of the class of shapes' is possible. This is through the use of 
symmetry which gives a criterion to put a class of shapes into one family. 
Consider the equilateral triangle. The symmetries of the triangle capture 
the property of 'criangularity'. We should remember that our picture of 
a triangle with lines and angles is just one representation of the triangle. 
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Imagining triangles outside this pictu_re is indee~ di~ficult c_onsidering 
the fact that we are so immersed in this way of picturing a m_angle. But 
the mathematical descriptions (through symmetries or equations where 

possible) are not limited by th~s graphic vision. . 
The case of a circle is simpler to understand. We do not need a p1ct_urc 

of a circle to understand everything about a circle. It is a graphical 
representation of the equation of a circle. The symm_euies ~f t~e circle 
are already given in its equation. So when we talk of c1rculamy, It wou~d 

not be completely dependent on the way we draw it. This is true m. 
general for continuous manifolds like a sphere. It is also true for higher 

dimensional figures like a 3-dimensional cube or even a 4-dimensional 
one. In fact just as there are five platonic solids in three dimensions, we 
can construct analogues of these platonic solids in four and higher 
dimensions (Mainzer 1996, 162). 

The key point here is the difference between an abstract shape and 
realisations of that shape. The relevant question then is how much 

metaphysical investment can one put on one particular realisation, namely 
the visual boundaries? Or following the dictates of a posteriori (scientific) 
realism, which philosophers like Armstrong hold, shouldn't th_e 

metaphysical property of shapes go beyond the particular visual realisation ' 
of shapes? 

Let me illustrate it further by considering the theory of manifolds. 
We can begin with this definition of a manifold M: 'A set (of 'points') M 
is defined to be a manifold if each point of Mhas an open neighbourhood 
which has a continuous 1-1 map onto an open set of R" for some n' 

~Schutz 1980, 23). Consider the example of a sphere. (In metaphysics it 
1s common to talk of sphericity as the property of the sphere.) First of all 

the sphere is a manifold - here we are referring to only the surface of the 
sphere. The equation for a sphere (similar to that of a circle) is x2 + y2 + 

z
2 

= r
2

• This has only two degrees of freedom because the third can be 
found once we know any two values of x, y or z. This sphere is denoted 
as S

2
• There_ is more than one mapping from 52 to R2 (plane). One is the 

stereographic map of the sphere to the plane. The nature of the mapping 
i~mediate~y suggests that the sphere has a different global topology from 
R - that 1s, we cannot find a single m h · d c h ti' re ap t at 1s goo ror t e en 
surface of the sphere (ibid 26 - 28) Th h" c \ · 1· . . ·• • e power oft 1s rormu anon 1es 
m capturing the essence of the global t 1 ( h · h II as 
h h . . f h opo ogy w at we m1g t ca 

t e sp encity O t e sphere). As Schutz notes, these remarks also apply 
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ro che surface of a bowl or a wine glass, which are deformacions of S2• As 

we can see, shape is noc a cerm chac has any significance in chis descripcion. 
The global propercies are capcured by maps called diffeomorphisms. 
This gives us a class of manifolds chat share a common global topology. 
Examples of diffeomorphisms are the mappings from a smooth crayon 
to the sphere; surface of a teacup and a torus (the exemplar of a torus is 
a doughnuc) (ibid., 29 - 30). Thus we have an illustracion of how co 
form classes of shapes that are defined through diffeomorphic equivalence. 
The metaphysical priority ro shapes inflaces the ontology of shapes 
whereas mapping of manifolds generate 'kinds' of shapes. But also noce 
chac shape as ic occurs in metaphysics rarely occurs in chis mathematical 
analysis. . 

Although shape is not significant, symmetry considerations are. Noc 
only do certain manifolds have symmetries, the groups that describe 
symmetries are themselves manifolds. Here are some examples of 
manifolds chat are related co transformations and groups: The set of all 
rotations of a rigid object in three dimensions (subset of which are chose 
rotations that leave such objects 'invariant'); the set of all pure boost 
Lorentz transformations (that occurs in the·syrnmerries of relativity 
theory); and imporcant for our purposes, Lie groups, which are also 
manifolds (ibid., 28 - 29). Lie groups" are groups of continuous trans­
formations. Every continuous symmetry is described by a Lie group. 
Since Lie groups have a manifold structure, it is entirely reasonable to 

believe that the shape of this manifold is nothing but the symmetry of 
the group. 

I hope chat by now we can believe that at least for symmetric figures, 
shape is an ill-defined term and symmetry should take its place. In the 
case of figures like triangle or for surfaces that are not exaccly symmetric 
a similar conclusion holds but is expressed somewhat differencly. For an 
irregularly shaped manifold, we can cover the manifold with a symmetric 
figure and chus give an effective description of this manifold. 

One may, as a final recourse to sav~ shapes claim chat shapes can be 
accessed phenomenologically. Bue there are two problems. First, the 
recourse co phenomenology at chis late stage is unwelcome and arbitrary. 
Secondly, ic is not clear that we 'perceive' shape instead of something 
like balance, symmetry etc. It is not even clear that shape is not something 
chat is essentially abstracted mentally as mentioned earlier. · 

The upshot of this discussion is the following: 
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I. Shapes of concrete objects are abstract entities. (Here is a sour~~ of 
confusion - shapes as universals are necessarily abstract encmes. 
Bue here che notion of abstractness is chat even particular shapes 
are not concrete and are 'abstracted' entities. That is chey do not 
'belong' co the object like mass and charge do. ) 

2. Abstract objects have the 'same' shapes as their natural counterparts. 
As a contrast, consider the example of mass or colour. There are 
presumably no red sets or green numbers. Bue abstract shapes have 
che same shape as their counterpart concrete objects. A particular 
mathematical circle has the 'same' circularity as a concrete object 
char is circular and which presumably has the 'property' of a circle.· 
This means that a particular shape and general shapes are properties 
chat are common to both concrete and abstract particulars. What 
other kind of properties is common in chis manner? 

3. Shapes can be classified in terms of topology for most of the 
examples considered earlier. Symmetrical shapes can be classified 
with respect co symmetrical groups. We have already seen that Lie 
groups, for example, are themselves manifolds. 

These are some of the consequences of a metaphysical reflection on -,· 
objects and their relation co symmetry. There is yet another mathematical ' 
object that has to be analysed in furcher derail - groups. Bue before I do 
chat, more comments on point 2. 

I .5. Tropes and sy111:metry 

Campbell ( 1997, 125) in a critique of universals suggests a trope structure 
for_properries. Drawi~g upon D.C. William's theory of tropes, Campbell 
claims chat propemes are not universals bur particulars. Abstract 
particulars are called tropes. His definition of abstract is with · · . . , . opposmon 
co concrete - s1m1lar to Lowes abstract entities Recollecc 1· 

• 1 · • our ear 1er 
po1~t that shapes. are a~stracti~ns _from_ concrete objects. Campbell's 
notion of abstract 1s equivalent· an Item 1s abstract if it 1's b c h . . · got e10re t e 
mind by an ace of absrracnon, chat is, by concentrating attention on 
some,_ but n~t all, of what is presented' (ibid., 126). The shift to tropes 
as against universals understands properties as always bei'n · · · d . . . . g instan t1ate 
m a pamcular entity. Since these properties whether as · I . • un1versa s or 
tropes, are abstract, the particularity of instantiation of th · ese propemes 
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leads us to consider them as abstract particulars, which are called tropes. 
Tropes are fundamental and Williams calls them 'the very alphabet of 
being' (ibid., 127.). 

Tropes appear as 'terms of the causal relations involved' and also 'as 
the immediate objects of perception' (ibid:, 130). Campbell points out 
chat we never see an entire cat - perception of the cat does not involve 
seeing its back or ics interiors. Trope theory claims that what is perceived 
is not the object buc the tropes of the object. This does not mean that all 
tropes can be perceived. A concrete particular is the 'maximal sum of 
compresenc tropes' where by compresence we mean tropes 'present at 
the same place' (ibid., 132). Trope theory suggests that a property should 
be seen as a set of resembling tropes. This set has as its members all the 
instances of che property. The tropes that are members of a particular set 
resemble each ocher. This (seemingly) dilutes the difficulty of comparing 
resemblances between concrete particulars by considering the 
resemblances of tropes. In particular, Campbell notes that the problems 
of co-extensive properties and of 'imperfect community' (finding 
common characteristics of resemblances in a family, for example) are 
avoided by the trope approach. 

The problem of shape is not easily disposed of even by subscribing to 
trope theory. As Campbell notes, 'form and volume are not tropes like 
any ocher' (ibid., 136). This is because other tropes like colours need 
form and volume over which they are spread. Bue since crapes are 
particulars, this means that whether other tropes are present or not, shape 
and size are inevitably present and conversely, they are found only in the 
company of other tropes. Campbell concludes that 'geometric features' 
like shape and size are 'essential to ordinary tropes' but cannot in 
themselves be counted as 'proper beings'. Thus he does not consider 
form and volume as 'tropes in their own right' (ibid., 137). In other 
words, red tropes; for example, are not classified inqependencly of the 
shape and size of the particulars in which they occur. 

In chis context, we need to clarify what Campbell means by 'geometric. 
features' chat are in general not seen as real tropes: Campbell seems to 

imply chat all geometric features are like this. Does this mean that lines, 
angles and manifolds are not real tropes? While he considers· tropes as 
abstract particulars, mathematical entities are abstract, both as particulars 
and universals. We noted earlier ~hat shape is the same for concrete objects 
as well as their equivalent idealL ed and/or mathematical objects. These 
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shapes are abstract but ch~y are not located in any spaciocemporal region 
because chey are propemes of abstract forms. In che case of abstract 
objects then, it seems chat their properties caf noc be cro~es. 'Geon:iecri~al 
features' is only one example of machemat1cal propemes. Secs give nse 
ro ocher ,machemacical features. 

In che context of symmetry, the trope approach seems co be more 
immediately sensitive co symmetry than che approach of universals. If 
we consider symmetry only as a property of che shape (and chis is a 
limited view of ic) then since shapes themselves are not real crapes, and 
moreover since crapes themselves do not have ·a particularised propercy,3 
symmetry cannot be a trope. Bue there are compelling reasons co beli~ve 
chat symmetry is a good candidate for being a trope. Symmetry seen as 
a property of objects (this has to be argued and will be done in a later 
section) can be a trope in itself. Since tropes are what are perceived, a 
phenomenological response to symmetry in· terms of harmony, 
proportion or balance, for example, can be explained by che tropic nature 
of symmetry. Moreover, since the problem of co-extensive properties is 
manifested in che case of symmetry and crapes avoid chis problem, ic is 
possible chat symmetry itself should be seen as a trope. 

1.6: Quantum objects 

The relation between symmetry and objects is not complete without a 
brief mention of quantum objects and the role of symmetry in classifying 
such objects. Within chis approach is che genesis of the idea. char 
symmetries are more fundamental than objects. French (2001) discusses 
the historical developments in the growth of the idea of quantum objects, 
in particular with relevance to structure, objectivity and groups . 
.Individuality of qt.tan cum objects has long been considered a tricky issue. 
Cassirer argues that electrons are not individual objects and believes chat 
quantum physics supports the 'shift away from particles as substantival 
'things" (ibid., 5). The debate on individuality of quancu·m particles is 
roo long and complex for me co deal with here; I will therefore restrict 
myself co a few comments on the group-theoretic formulation of objects. 
The beginnings of this view can be traced to the classic paper by Wigner 

in 1939 on the irreducible representations of Lorentz group, which had. 

a correspondence with the equations of quantum mechanics. This 
approach was finally inscrumencal in classifyi~g quantum particles. 
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The association of these representations with objects imply chat what 
we gee are 'kinds' of objects and not individual, distinct objects. Thus, 
we will have che class of electrons through chis classification and not 
individual electrons which are marked out in some way through chis 
group representation. Castellani notes chat the group-theoretical 
considerations are necessary but nor sufficient for unique determination 
of quantum particles (ibid., 16).4 The basic point here is that if intrinsic 
properties are derived through symmetry considerations then chis is 
equivalent to 'constituting' the object as a sec of invariants (Castellani 
1998, l O). The implications and limitations of chis approac;h are still 
quire open; nevertheless, it suggests the importance of symmetry as a 
fundamental principle in ontology. 

2. SETS, GROUPS AND CLASSES 

The consideration of secs is central co metaphysics. The most basic 
formulations of kinds and classes seem co be naturally associated with 
the idea of secs. One of the views of property is that a particular property 
is nothing but the set of all its instances. There are also fundamental 
problems in· che metaphysical analysis of secs. One, well known, is that 
one can construct any sec one likes. Given some criteria of membership, 
we can construct a set corresponding co it. This becomes a problem 
when we consider the ontological status of secs. 

A sec is an abstract object and satisfies determinate identity conditions. 
The equality of two sets is given by the axiom of extensionality. This is a 
one-level criterion of identity that states 'if x and y are sets then x is 
identical with y if and only if x and y have the same members' (Lowe 
1998, 41 - 42).5 Symmetries are described by groups and groups are 
first of all secs in the sense that they collect elements together. But there 
are also some important differences between groups and sets. 

2.1. Sets and grottps: some differences 

Can we supply identity criteria for groups? For example, we can extend 
the axiom of excensionality co groups and thus supplY. an identity criterion 
for groups. But there is an added rule here that is needed to not only 
equate the members of the groups but also the operation that is defined 
on the groups. And this leads to another problem -what does it mean to 
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give an identity condition for operations? An operation is typically a 
rwo-place relation (and in the context of groups, chey need not be 
symmetric - that is, for two elements a and b "fa group, a • b need not 
be equal to b • a). So if we consider a group as consisting of elements 
and an operation, then any identity condition must supply 'identity' for 
chis operation. Note char we can also have relations in sets, chat is, a 
relation between cwo elements of a set. For example, we could have a 
relation of ordering in a set of elements char is defined by a > b > c > d 
for che set {a, b, c, d}. But the role of the operation in groups is not of 
chis 'kind'. It is a relation that is actually defined by the conscirucive 
rules of che group, the rules which make the group a group. As we have 
seen earlier, these are the rules of closure, identity, inverse and associativity. 

We can construct boch sets and groups. To construct a set, we choose 
a criterion (or some criteria) and collect all members which satisfy chis 
criterion. In constructing groups we may begin with say two elements 
following some criterion and then impose che rules associated with the 

operation. The closure property, for example, will necessitate chat a third 
member of chis group could be the result of a • b, if chis result is not 
equal to either a or b. The identity element is specific co the nature of 
che operation. For addition it is O and for mulciplicacion it is 1. (Note --. 
char O and 1 are not necessarily numbers. They can be representations of · 
O and 1, as in the form of matrices of appropriate dimensions.) Thus the 
membership of che group is constrained by the operation and certain 
rules wich respect to chis operation. 

In an important sense, the rules of a group can be seen as rules chat 
restrict che members of a sec. Here, we can use the ideas of internal and 
external relations. The elements of a set will have internal relations, chose 
chat conscirute che criteria of membership to the set. For example, we 

may construct a sec based on resemblances and resemblance is itself a 
two-place symmetric relation. This is an internal relation in che sense 
chat ic is also the criteria to collect the elements together in the first 
place. The group operation may be thought of as external relation but ic 
is not clear chat chis is necessarily so. For, membership co the group 
depends essentially on chis operation. As an example, consider che 
equilateral triangle "(hose invariant transformations form a group. The 

set of elements of chis group are angles whose values (in degrees) are 
(120, 240, 360). The group operation is addition of these angles which 
corresponds co rotation of the triangle. It is the case that (120, 240, 360) 
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is a set - but of what? We may say that it is a set of three angles which are 
the first three multiples of a given angle, namely 120 degrees. Instances 
of these sets could just be a collection of angles that have these three 
values. As a set this has nothing to do with the equilateral triangle per se. 
The many instances of this set could be instantiated by angles made by 
cwo lines of various lengths. This collection is indeed infinite and random 
since any combination of the distribution of these angles are instances of 
this set. 

The role of the group operation is very important. First of all, the 
group operation restricts the range of the elc::ments of the group. In fact, 
it gives a criterion for aggregation chat explains why the three elements 
together constitute a single set. Note that in the case of 'pure' angles, even. 
the meaning of addition is unclear. What does it mean to add two 
different values of cwo different angular forms? Whereas when we consider 
the same set as a group, the group nature gives us a criterion for them 
not to be seen as a set but as an aggregate that belongs to each other in 
some sense. 

In order to understand the difference between sets and groups we 
will have to consider the many properties of groups. What follows will 
be a brief description of some of the important characteristics of a group 
which will illustrate the difference between sets and groups. 

The rules of membership to the group (always in the context of a 
particular group operation) not only restrict the membership to a group 
but also the kind of groups we can form. While it is the case that the 
examples of groups we have considered earlier correspond to certain 
properties, it should be remembered that we can, in general, define a 
group abstractly. Particular forms of these groups are particular realisations 
of the abstract groups. Given a group there can be many realisations of 
it. NI these realisations will exemplify the structure of the group which 
they realise. 

The distinction between sets and groups, in the context of 
membership, can be phrased along the difference becween internal and 
external relations. The criteria for membership to a set can be 'external' 
and 'accidental' whereas for a group, the membership should obey certain 
internal and essential relations defined with regard to that group. For 

example,· it is well known that certain properties of an object are not its 

'essential' properties and are called as 'mere Cambridge properties'. 

Xantippe's becoming a widow just because Socrates died or somebody 
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becoming an uncle merely because his sister gave birth ro a child are 
mere Cambridge properties. Sers (as against groups) may be seen as mere 
Cambridge collection because we collect elements together rhar may 
not have an essential relation between the members. Note char chis does 
nor mean char the elements may not share some property, say being a 
planet in che solar system. We should also note another common problem 
that arises in the case of secs, namely, whether we should make an 
ontological commitment to the existence of a set over and beyond its 
elements. If we do not want to make such a commitment then we can 
say that a sec is supervenient on its members and since, at least according 
to Armstrong, supervenience is an 'ontological free lunch', we make no 
extra commitment to a sec beyond the collection of its members. 

Is it different in che case of groups? A group is a collection of its 
elements. But it is also more than this collection. There is an explanation 
for why certain collections can be called groups. This explanation is 
necessary, internal and essential to the elements of the group. That is, 
the group structure is something more than the collection of its elements. 
Consider the part-whole relationship in a set. Given a set, we can choose 
any sub collection of its members and this will be a subset of the original 
set. So we can form different subsets of the original set. For example, if 
{a, b, c, di is a set, then its subsets can be {a, bl, {b, c}, {c, di and various 
other combinations of singlets, doublets and triplets. The first point to 
note here is that the subsets belong to the same kind sets as the original 
set. That is, each one of these subsets is a set in itself. This may also be 
viewed as the partitioning of a set into a collection of subsets. Later, I 
will discuss the partition in the case of groups and also whether we can 
make an ontological commitment to chem. 

2.2. Classes 

Let us consider sets and classes first. A set is a collection of elements. 
The collection of all elements into 'one' sec gives rise to the plural-singular 
transformation, leading co the question whether this set exists over and 
beyond its members. The way we talk of a collection and of a group of 
things in singular manifests chis common tendency co singular 
quantification. Lewis (1991, 65) notes char plurals 'are the means whereby 
ordinary language talks about classes.' In che case of sets or classes, Russell's 
paradox is well known. Even though we may talk of non-self-membered 
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classes in the singular, we know that it is false. But this example does not 
repudiate the common shift to singular quantification whenever we talk 
of a collection. When we form a collection, we are indeed bringing 
together, in a sense to be clarified further, the many different elements. 

Mereology is the standard name for this bringing-together. The word 
composition or fusion is also commonly used. This language is indebted 
to the notions of part and whole. Given a collection of things we say 
that the elements of that collection are a part of it. Then loosely we can 
say that the whole (collection) is a sum of its pans. The fusion of the 
pans into a whole is called mereology. While mereology has ics detractors, 
philosophers like Lewis and Armstrong take it to be unproblematic. Lewis_ 
writes chat mereology, for him, is 'perfectly understood, unproblematic, 
and certain' (ibid.,- 75). 

To understand mereology, we have to have some definition of a part. 
Let me use Lewis' definition here (ibid., 74). 

'xis a part of y iff everything chat overlaps x also overlaps y, or iff everything 
distinct from y is also distinct from x; or iffy is a fusion of x and some­
ch ing z.' 

From this, Lewis goes on to state three 'basic axioms' of mereology: 

'Transitivity: If xis part of some part of y, then xis part of y. 
Unrestricted Composition: Whenever there are some things, then there 

exists a fusion of chose things. 
Uniqueness of Composition: le never happens that the same things have 

cwo different forms.' 

Note that these are entirely metaphysical definitions and the 
mathematics of set theory is avoided in these definitions. Also note that 
fusion and class are to be distinguished here. Armstrong (1997, 185) 
calls fusion as aggregate and like Lewis, he claims 'that to every class 
there corresponds its aggregate.' The aggregate is just the total collection 
of its elements but the class depends on how we divide this collection 
into specific parts. For Armstrong, this division is predicated on some 
principles and is eventually related to states of affairs. Armstrong 
subscribes to the unrestricted composition principle but calls it 
'unrestricted mereological composition'. Since this· composition only 
supervenes on its parts, there is no extra ontological commitment entailed 
by the aggregate or fusion. Lewis (1991, 81) phrases it thus: 'mereology 
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is ontologically innocent.' Or .equivalencly, 'if you are already committed 
co some things, you incur no further commitment when you affirm the 
existence of their fusion' (ibid., 81 - 82). 

Unrestricted composition allows us co construct a fusion whenever 
chere are some things and ic 'doesn't matter how many or disparate or 
scattered or unrelated they are' (ibid., 79). Because both p~ural 
quantification and mereology are 'innocent', we have no further 
ontological commitments. But the case of secs, in contrast to classes, is 
different. Given a collection of elements, we have a sec, a singleton by 
itself. Then we can construct sec of singletons and secs of chis sec and so 
on. 

le is important co distinguish between pares and members. This is 
also related co the distinction between classes and fusions. A class has 
members. For example, che class of all cats will only have cats as members. 
Bue a cat may have many ocher pares, such as whiskers. These are parts 
of a member cat but are not members of the class of cats. Membership is 
not the relation of pare co whole because a 'member of a member of 
something is not, in general, a member of it; whereas a pare of something 
is always a pare of it' (ibid., 43). 

Lewis suggests chat classes also have their subclasses as their pares. 
That is, subclasses are not its members. As examples: 'class of women is 
pare of the class of human beings, the class of even numbers is part of the 
class of natural numbers' (ibid., 4 - 5). We can distinguish between 
members and pares by noting chat a whole can be divided into pares in 
many ways just like a class into its subclasses but 'a class divides 
exhaustively into members in only one way' (ibid., 5). Also, mixed classes 
and individuals and classes, although allowed by unrestricted 
composition, are largely ruled out. Individuals by themselves are never 
pare of classes. There are one-membered classes called unit classes or 
singletons. Singletons have no subclasses, no proper parts and thus are 
mereological atoms. Every member of a class has a corresponding 
singleton, as does every singleton and every set. Proper classes which are 
'classes char are not members of anything' do not have singletons. 
Singletons are also unique co a member. Thus a class has as many 
singletons as its members, in a one-one correspondence. Singletons are 
pares of classes because they are subclasses. Bue there may be ocher 
subclasses ocher than the singleton. This structure allows us to view a 
class as the fusion of all its singletons. 
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Nor all classes are sets; a class is a set if and only if it is a member of 
something. And since there is a one-one correspondence between member 
and singleton, this implies that 'something is a set iff either it is a class 
that has a singleton, or else it is the null set' (ibid., 18). Since a proper 
class is one that has no singleton, this allows him to sidestep Russell's 
paradox because non-self-member class is a proper class that has no 
singleton and so cannot be a member. 

The crucial thing to note here is chat a class is not just a fusion of its 
members but a fusion of the singletons corresponding to these members. 
Since classes are 'mereological sums of the singletons (unit classes) of 
their members,' a class {a, b, c, dl is identical with {al+{bl+{cl+{dl, where 
the + stands for mereological addition. This also gives us a distinction 
between fusion and class since a fusion has no 'unique decomposition 
into pares' whereas a class has in terms of singletons. 

The relevance of the above discussion to the analysis of groups is 
immediate. Lewis' formulation of class as nor being the fusion of its 
members is based on the recognition chat class and members belong co 
different 'kinds', and a part should belong to the 'same' kind as the whole. 

, Since singletons are also sub-classes, they can be parts of a class whereas 
members cannot. In the case of groups, we can, in the same spirit, demand 
that the parts of a group belong ~o the same 'kind' as groups, chat is, 
they should be subgroups. Unlike sets, where a singleton of every member 
is a legitimate subset, a singleton of a member of a group is not a subgroup. 

Lewis also identifies some fundamental problems in understanding 
the nature of singletons. We do not exactly know what these singletons 
are nor how they are related to their elements. We do not know where 
classes are located - outside space and time or where the members are? Is 
there some characteristic that distinguishes one singleton from another? 
And so on. I will not discuss the problem of singletons further but now 
turn my attention to groups. 

2.3. Groups and classes 

First of all, note chat a group has elements just like a set. Ir is a set with 
an operation defined on its members. There is nothing very mysterious 
about the presence of operation within sets. The notions of field and 
ring in algebra are precisely those that define operations on a set of 
elements. What does it mean to have an operation defined over the 
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members of a set? Here is one definition that uses the idea of mapping: 
'In general an n-ary operation in a set Sis a function f = f (a 1, ••• , a) of 
n arguments (a

1
, ... ,.a) which are elements of Sand whose valuef(a1, ... 

, a) = bis a unique element of S when /is defined for these arguments. 
If, for every choice of a

1
, ... , a" in S,f(a

1
, ••• , a) is defined, we say that 

the operation /is well defined or that the set is closed with respect to the 
operation f (Hall 1959, 2). Another operation is a mapping of a set in.to 
another which 'assigns to each x of the set S a unique y of the set T 
(ibid., 2). In particular, one can map a set into itself. (This can be a one­

ro-one or many-one mapping.) 
There is an important consequence of the mapping of a set into itself. 

If there are two maps of a set into itself, then we can construct a third 
map which is· the composition of these two maps. It is well known that 
one-to-one (also written as 1-1) mappings of a set into itself in general 
form a (noncommutative) group. 1-1 · mapping is a permutation of the 
elements of the group. Permutation rearranges the members of the set. 
Given two permutations of the members, we can easily find their 
composition which is also yet another permutation. Although not 
generally commutative, this composition is associative. The identity , 
permutation is the case of no permutation where the members map-, ' 
only to themselves. Inverse is also easily defined. So the set of all 
permutations of the members of the set forms a group called the 
symmetric group. 

An interesting consequence follows from Cayley's theorem which can 
be stated as: 'Every group G is isomorphic to a permutation group of its 
own elements' (ibid., 9). Thus 'every group_ of finite order n is isomorphic 

with a subgroup of 5/ where Sn is the symmetric group of.degree n 
(Rosen 1995, 64). 

So, given a set, a collection of members, the idea of groups is not far 
behind and is canonically associated with it. The permutation group 
and.Cayley's theor_em immediately reflect this claim. Before we consider 
other groups, we can reflect more on this connection between sets and 
groups. Consider Lewis' formulation. A class is nothing but a fusion of ' 
its singletons. That is, the class {a, b, c, d .... } is _identical to {a}.+ {b} + {c} 
+ {d} + •·· where the + is mereological fusion. Given a class, the 
permutation of its members is allowed naturally. This is equivalent to 
saying that {a, b, c, d ... } is identical to {b, d, a, c ... } or any permutation 
thereof as long as no member is lost or added. This can be adduced. 
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from rhe face char mereological addition of singletons is independent of 
th

e order in which the singletons are 'added'. Note rhar merely given a 
class and not using pair ordering (which is sec theoretical), we cannot 
necessarily assume rhe possibility of permutation. But the singleton 
decomposition of a class allows for permutation. This permutation is 
nor a transformation of a singleton to another, that is, it is not {a} being 
transformed into {b} because this, given the individual membership or 
e~sence in Bigelow's term, is not possible. Thus, given a class, we are 
~iven '.rs permutations and all possible permutations give an associated 
group of char class. 

Bur this obviously does not mean sets are the same as groups! Ir merely 
~eans that there is a canonical relation between sets and groups. And so 
It allows us to understand groups using the language of metaphysics of 
secs. At lease up to a point. Given that groups are entities that ar_e central 
to modern physics, it becomes more important to understand the nature 

· of groups. 

Among the many differences between groups and sets is the issue ·of 
pans. Firstly, note chat subclasses are part of classes. Not only that, the 
pans of a class are all and only its subclasses' (Lewis 1991, 7). Moreover, 
~ewis adds two further thesis: 'Reality divides exhaustively into 
individuals and classes' and 'no class is part of any individuals' (ibid., 7). 
This does nor mean that there are no mixed mereological fusions of 
!ndividuals and classes but only that they can bi:: divided exclusively into 
individuals (that which has no members out is itself a member) and 
classes. The basic lesson in chis division is that individuals and classes 
divide reality exclusively and that parts of classes can only be subclasses, 
and, in particular, individuals are not parts of classes. (This excludes 

null set as being a part of classes.) 
The thesis chat only subclasses are parts of classes suggests that a part 

~fa class can only be that which is of rhe same 'kind' of class as rhe class 
Itself. We may justifiably ask whether groups can be seen as class~ on~e 
we are given the group elements. Say {a, b, c, d} is a group. Then is rh1s 
also a class? My point is chat once it is known chat the elements a, b, c, d 
Obey the group rules then this collection is equivalent to a s~t or cla_s~ of 
these members. Since in general group elements are mathemancal enrmes, 
can we say then that groups cannot be classes? There are two responses 
to h· ' h · I' as so well t is. One is that groups more than sets are P ysica 
exemplified in physics. Second, Lewis in an example of a class talks of 
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'che class of even numbers' as 'pare of che class of natural numbers' (ibid., 
4 - 5). What exaccly conscicuces a class vis a vis mathematical entities is 
not clear. Gideon Rosen (1995, 6 I 9) in his analysis of singletons says 
chat classes 'are identified with objects we are supposed to have 
independent reason co believe in - items with a place in an ontological 
view developed independencly of the demands of mathematics.' Jubien 
(1989, 96) argues chat there is no intrinsic difference between a sec and 
class (as an extension) and suggests, for example, chat sec of dogs and 
class of dogs are the same thing. 

Lewis distinguishes between class and set by saying chat a set has a 
singleton, whereas a proper class is one chat has no singleton. Similar 
arguments can be offered for groups. Lee us assume chat groups have 
singletons of chem. We should remember here char an important reason 
for wanting proper class not to have a corresponding singleton is co 
avoid Russell's paradox. As Lewis (1991, 18) notes, 'the class of all secs 
chat are non-self-members' cannot be a set but is a proper class. Now it 
is che case chat for groups there is no equivalent formulation of 'group of 
all groups chat do not belong to themselves'. First of all, unlike sets, 
there is no way co form 'group of groups' like 'set of sets'. Nore chat if we 
are given a group, we can find its subgroups. This is not the same as 
group of groups. While secs always allow for a sec formation whose 
elements are ocher secs, in general it is not clear how it would be possible 
to have a group of groups all of whose elements obey the group rules. 
That is, if we are given two groups G and H, it does not follow chat {G, 
H} is itself a group. The minimum condition for even bringing them 
together would be to check if the group operations of G and H are the 
same. Lee us assume that it is so. Then we have the possibility chat we 

can construct a set whose elements are those of G and H with the common 
operation. For chis sec co be a group then we have to check whether rhe 
group rules hold. Typically we can envisage an immediate problem. While 
G and H are closed within themselves, the element g • h, g E G and 
h E H, need nor belong to chis sec {G, H} in which case {G, H} is not a 
group. Thus, although we can form a 'set' of groups, it is not in general 
possible co form a group of groups. Also, there is nothing called a null 
group - this is excluded immediately by the definition of groups. That 

is, ifthere are no members, there is no identity, no group compositions 

chat can be used to check for group membership. Thus the category of 
groups avoids the two basic problems that beset sets - null sets and 
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Russell's paradox. This implies that the problem of accepting singletons 
for classes is not really a problem for groups seen as classes. 

All classes are not sets. Proper classes differ from sets. Proper classes 
are needed to avoid Russell's paradox. This paradox cannot occur for 
groups. So there is really no need to distinguish between classes and 
groups. This does not mean that all classes are groups but only that all 
groups are classes. 

2.4. Membership 

A perennial problem in accepting classes or sets is to explain how and 
why we allow members, however disparate and scattered, to form into 
one class or set. If we accept unrestricted composition, that is, 'whenever 
there are some things, no matter how many or how unrelated or how 
disparate in character they may be, they have a mereological fusion' (ibid., 
7), then there is really no strong condition that will limit membership to 
sets or classes. Gideon Rosen (1995, 622) notes that it 'is central to the 
applications of set theory that there be classes whose members are wildly 
scattered and heterogeneous.'6 Lewis believes that mutilating mereology 
is unduly drastic and instead suggests that we can restrict the 'making 
of' singletons. Rather than discuss the merits of either approach, I want 
to argue that such a problem does not arise in the case of groups. 

Given the operation or the identity element or one member along 
with an operation, we cannot have unrestriC':c:d membership to a group. 
Set membership, subscribing to unrestricted composition, comes at no 
cost. For Lewis and Armstrong, at no ontological cost. But group 
membership is really a membership and the rules of inclusion are as 
much rules of exclusion. We may naively believe that restricted 
membership does indeed come with a cost. Perhaps an ontological one? 
If there is such an ontological cost, and I tend to believe that there is 
one, then it is manifested in the properties related to groups. In physics, 
groups correspond to certain symmetries and I will argue later that 
symmetry is a genuine property of objects and systems. But for now, let 
me discuss the notion of restricted membership. 

We have seen two important consequences of this restriction - there 
is nothing called a null group or non-self-member group. We have also 
seen that in general it is not possible to construct a group of groups 
without many special conditions imposed on this 'fusion'. It is clear that 
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. he case of groups, unrestricted composition does not work. Is this 
in It athemacical? To answer this we will have to consider what it means on ym . . 

!·cc fusion. Note here that unresmcted mereology does not imp!}' co resrr 
all classes have to be 'large'. Classes are always restricted in some sense. 
When we consider the class of all cats, the membership is restricted co 

ts and not dogs. But there is something else that restricts membership :to groups - something which is 'internal' rather than 'external'. 
Class membership is external. When we form a class of cats, for 

example, we conceivably select all chose members which are cars. Consider 
a class of all cats. Supposing a new cat is born after we have collected (at 
least in chought!) all the cats. Then chis new cat, which has 'just' been 
born, muse be allowed membership into the class of cats. The relationship 
is external in the sense chat the membership of this new car does not in 
any way depend on th~ other memb~rs of the class. In other words, the 
other cats have no say m whether this new cat should be admitted into 
the class or not. Ic is che membership relation, external in chis sense, 
which grants membership to the just-born cat. In general, sec composition 
is dependent on such 'external' relations. 

There is a potential for confusion here. A collection, a class, a 
mereology, will 'have' more than one relation. For example, Lewis chinks -
chere are 'intrinsic' characters of classes. He is concerned not with the 
relation of membership to the class - chis relation cannot be an important 
concern for anybody who subscribes to unrestricted composition - but 
with che character of the relation between che member and its singleton. 
When Armstrong (1997, 176) in the context of numbers talks of relation, 
he is also essentially talking about che relation, an internal one, that 
holds between a property and the aggregate. The criterion of external 
relation described above is a relarfonship chat distinguishes membership 
based on whether the relation is sensitive to the members of che class or 
not. Even Bigelow's argument char coextensive properties are che source 
of sets does not sufficiently capture the incernaliry of the relation. The 
incernal relation can thus be described as follows: If membership to a 
class depends on the prior members of the class who decide on the new 

members, then there is an internal relation among the members of the 

class. Let me start with this 'weak' formulation for it seems to allow 

resemblance as an internal relation also. 

To strengthen the above points, let me use the idea of generation, an 

idea that is central to groups also. Lewis, following Goldman, briefly 
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discusses relations thac generate. Suppose we start with an 'ancestor' that 
generates the rclacions of 'ancestral of membership'. Lewis (1991, 39) 
notes thar Goodman 'stipulates that rhe ancestral of membership is a 
generating relation in a sysrem founded on set theory.' Lewis argues that 
classes generated 'via rhe ancestral of membership is not ... a legitim.ate 
sort of unmereological composition' (ibid., 40). His argument is based 
on the fact thar a member of a class is first a member of its singleton and 
chis is not composition but the class as fusion of singletons is mereological. 
If I understand him right, just having an ancestral member does not 
explain composition. I chink the basic point for Lewis is that we do not 
have sufficient reasons to postulate compositions that are not 

mereological. 
Now consider groups. Given one element of the group, in principle 

all or some of rhe elements can be generated from it. Consider a group 
{a, b, c, d}. One of these muse be the identity which is usually written as 
e, so let us write this group as G = {a, b, c, e}. Given a, for example, then 
we ask what is the composition of a with itself - written as a2

• Closure 
rule of groups implies chat a2 muse be a member of the group, i.e., it 
should be one of a, b, c or e. Suppose it is b. Then we compose a and b, 
i.e., ab. What is this equal co? And so on. It may so happen that just one 
element is sufficient co gmerate all the elements of the group. Such a 
group where a single member, called the generating element, generates 
all the other members is called a cyclic group. For example, if \a, b, c, e} 
is a cyclic group and a is che generating element, then this group is 
nothing but {a, a2, a3, a·1 = e}. This is one possibility. Note that the presence 
of che identity element will reduce all ocher combinations of a into one 
of the group elements. That is, a5 = a, a6 = a2 

and so on. In general, there 
will be more than one element that can generate all the other elements 
and one can have a minimal set of generators such that all the members 
of the group can be got from just this minimal set. Even in the case of 
'infinite groups' or continuous groups, we can find generating elements. 
Examples are Lie groups: U(l) has one generator, SU(2) has three and so 

on. 
Thus, the idea of generating elements is central to groups. The group 

rules restrict membership to the set. All members of the group are 
generated from one or a minimal sec of elements of that set. So now how 
do we understand fusion of these elements and these elements alone 
which gives us a new 'kind' of sets called groups? 
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2.5. Singletons and partition of groups 

Lee me approach che question of fusion through pares. Given a group 
whose membership is given, we can ask what are che parts of the group? 
This is a legitimate question because a group is first and foremost a class. 
Given a group, note that no new elements can be added - because all 
possible compositions of its members must already belong to chat group. 
(If a cat is just born then coo bad, it missed the group~bus!) It is in this 
sense chat internal relations define group membership.-

We can say that groups are a special kind of class chat have an internal 
or generating relation among its members. Actually we have to note a 
clarification here. A group can be abstract. There can be many different 
realisations of this abstract group. This is similar co the traditional 
conception of class as extension of a term. These realizations and groups 
as seen in physics, are closely related co physical structures. While I talk 
of the group in abstract here, this point about its realisations must be 
kept in mind. 

So if we consider a group as a special kind of class, then what about 
its parts? The thesis of Lewis scares that classes can have only ~ubclasses 
as its parts. Classes and subclasses belong co the same 'kind' as the whole. 
In the case of groups, it is reasonable to expect its pares also to belong to 

che same kind- that is, be subgroups of groups. So we can import Lewis' 
formulation of parts of classes for groups. 

What about singletons? Here is where the major problem arises. Is a 
group a fusion of its singletons? Lee me look at the notion of fusion 
from the opposing direction, namely partition. The equivalence of a 
class as a mereological sum of its singletons is equivalent to the partition 
of a class into its singletons. In the appendix of his book, Lewis (1991, 

123) calks about partition in this manner: 'Suppose that x
1 

and x
2 

are a 
partition of x: chat is, they are distinct, and their fusion is x.' This sense 
of partition is not any different from the partition of a class into its 
singletons. In che case of sets and classes, this partition into singletons 
seems 'natural' - mainly because of the independence of the members 
from each ocher in contrast to the internal, generative sense described 
earlier. But given a class, like a group, with necessary relations between its 
members, is it obvious chat such a partition is possible? One way of 
answering this is co look at how groups are partitioned. 

Partitioning of groups is an essential pare of group theory. We have 
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che idea of a subgroup, namely a subcollection of elements of a group 
which is a group in icself. All groups have two trivial subgroups - the 
group chac consists only of che identity element and che whole group 

~ itself. Any ocher subgroup is' called a proper subgroup. Contrast now 
wich secs. If we ask that the proper partitioning of a group must be a 
partition only into subgroups, that its parts should be of the same kind 
as the whole, then the group structure itself gives us the criterion for 
division. Not every subset of a group is a subgroup. Thus if {a, b, c, dl is 
a group it may not be the case that {a, bl is a subgroup in itself, whereas 
if this is a set then {a, bl is always a subset. The group structure imposes 
constraints on how we can form the possible subgroups. For example, 
there is a result which states that for a finite order group (say of order 11, 

where order is the number of elements in this case), if its proper subgroup 
is of order m, then m is a divisor of 11, i.e. 11 = 1m for some integer s 
(Rosen I 995, 34). Thus, for example, we can immediately say that a 
group of order four cannot have a subgroup of order three. · 

Therefore the ideas of part, whole and mereology have to be further 
clarified in the case of groups. It is unclear as to what it means to consider 
a group as a 'sum' of singletons. Given a group, the only singleton that is 
itself a group, a subgroup of order 1, is that of the identity element. 
Consider a group {e, a, b, cl where e is the identity element. Then the 
or.ly singleton subgroup is {el. (If {al is also a subgroup, then a should 
be the identity.) Now if we look at {e, a, b, c} as a class, neglecting its 
group character, then we can identify it with {e} + {a} + {bl + {c}. In the 
case of sets, each of these singletons is a set and thus we can conceivably 
claim that this is a whole-part relation. But in the case of a group, there 
are no singleton subgroups other than {e}. And we cannot ignore the 
group character and decompose the group as a sum of singletons because 
the parts no longer belong to the same 'kind' as the whole~ 

As a consequence, we can reject the equivalence of a class with the 
sum of its singletons in the case of groups. In general this may also 
suggest that groups are more th'an the sum of its parts if its proper parts 
are to be seen as subgroups. Can we make this claim? To understand this 
issue further, let me describe some more characteristics of subgroups 
and their relation to the group of which they are subgroups. 

Given a proper subgroup H of a group G, we can form the set aH, 
where a belongs to G but not to H. That is, remove those elements of G 
which are in H and then choose any a that is in the remainder and_ allow 
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ic co ace on all che elements of H. Since groups in general are not 
commutative, the order of the group action is important. The sec aH is 
called a left cosec of H. (Ha is called the right coset.) It is easily seen chat 
aH is by itself not a subgroup of G, since aH does not contain the identity 
element. Moreover, Hand aH have no common element. Given G, we 
can take the union of H and aH. If there are more elements of G which 
do not belong to chis union, we can construct another coset bH, where 
b does not belong co H or aH. In this way we can continue to construct 
cosets until we get back the full G (of some finite order). Thus we can 
write (Rosen 1995, 44) 

G = H U aH U bH U .... U kH 

This decomposition is unique and has some resemblance co the 
decomposition of secs. But here coo the problem of whether only the 
subgroups are the proper parts of a group persists. As noted earlier, aH, 
bH etc. are not subgroups of G. Also, for the same group G and subgroup 
H, we can decompose it in terms of right cosets. The left and right 
cosecs in general, will be different partitions ·of G. But for an invariant 
subgroup, these are the same. The invariant subgroup is defined as follows: 
'If H is a subgroup of G and g·1 Hg = H for all g in G ... then H is called 
an invariant subgroup (also normal subgroup)' (ibid., 40). It may be noted 
chat for an abelian group (group all whose elements commute with each 
other) all subgroups are invariant subgroups. Also, for an abelian group, 
the left and right cosec partitions are the same. 

If H is an invariant subgroup of G, we note that the collection of H, 
aH, bH etc. form a group structure among themselves. That is, the rules 
of a group are satisfied for this collection under the operation of coset 
composition. (Nore that the group operation defined on G is used for 
creating :iH and so on). This collection of H, aH, bH and so on is called 
a faccor or quotient group and is written as G/H. Thus G/H = {H, aH, 
bH, ... }. This group has sets as its elements. The union of these sets is a 
unique partition of G, Obviously this partition depends on che subgroup 
H. For different subgroups of G, the way G is broken up is different. 
Thus there are as many ways of dividing G as the number of subgroups 
it has. Bur in all these different ways of dividing the group, the aggregate 
remains the same. 

Here is then a fundamental difference between partition of classes 
and sets, and char of groups. For Armstrong, a class is the aggregate 'plus 
a strict way of dividing' this aggregate into pares. Division through 
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singletons is one way. What the coset decomposition does is to give us a 
strict way of dividing a group into its parts. What the coset decomposition 
and the structure of factor group show ir that the criterion for dividing a 
group G is based on its subgroup (H) and is more a relation of 'division' 
or more appropriately 'proportion', as well exemplified in the symbol 
G/H. This also suggests that just as a class can be decomposed into a 
mereological sum of its singletons, the sets that are formed from the 
coset decomposition play the role of singletons in the division of groups. 

That is, the group cannot be broken into its smallest constituents - the 

singletons comprising of one member alone - but in terms of larger 

fundamental units that are generated from the coset decomposition. For 
example, if we consider the order 4 group C4 whose elements are e, a, b, 
c then its only proper subgroup is H = {e, b}. The unique decomposition 
of C4 with respect to H is (ibid., 44), 

G = {e, b} U {a, c} 

The primary 'singletons' in this case are {e, b} and {a, c} rather than 

\el, \a}, {b} and {c}. 
It is also pertinent to note the use of 'class' in group theory. But first, 

the following definitions (Hall 1959, 1 O): 

An arbitrary set of clements in a group is called a complex. If A and Bare 
two complexes in a group G, we write AB for the complex. consisting of all 
elements ab, a E A, b E B, and call AB the product uf A and B. If Kis any 
complex in a group G, we designate by {K} the subgroup consisting of all 
finite products x

1 
••• x , where each x. is an clement of Kor the inverse of an 

clement of K We sa;chat {Kl is gen
1

erated by K It is easy to see char {Kl is 
contained in any subgroup of G which contains K 

The complex gives us a way to understand the correspondence between 
an element and subgroup. This should immediately remind us of a 
member-singleton relation. Given a group G, take as the complexes sets 
which have only one element. For each of this complex I<;, we can find 
{K} and from the above construction we note that this subgroup is always 
{e}

1

, where e is the identity element. This is the only singleton possible. 

Thus, {e} is generated by all the elements/members _of the group. While 

this perhaps does not shed any light on the mystery of the member­

singleton relation, at least we see that groups have an internal structure 

that allows us to generate a single~on from its members. This means that 
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no ocher singletons are possible as subgroups. This we knew even before 
introducing complexes. Bue what we didn't know was char nor only are 
members of a group generated from each ocher bur char che identity 
singleton is also a generative relation. 

Consider a particular way of partitioning a group. Take a ser of 
elements Sin a group G. Form the set ![ 1xg, x E S for a particular g. If 
there is another elementy E G, such that ![ 1xg = y, then x and y are said 
co be conjugate co each other. Conjugacy is an equivalence relation and 
the conjugacy class of the group is 'a subset of elements of a group that 
consists of a complete set of mutually conjugate elements' (ibid., 39). In 
particular, the identity is always a class. Now, if we take S to have only 
one element, that is take the collection of individual members then for 
each member we can form a conjugacy class. For example, if G = {a, b, c, 
e} then there are four elements a, b, c and e and the conjugacy class of a, 
for example, will be given by the sec consisting of elements a· 1aa, b· 1ab 
and so on. Then the partition of the group is given by G = C, + C

6 
+ C, 

+ C
0 

where the C/s are conjugacy classes. In general, we partition G (for 
S having one element) as 

G = c 1 + c2 + .... c, 
The C/s are disjoint classes and every element of G belongs exactly to 

one class. It would seem that here we have a natural partition of G as a 
partition over 'classes' or in Lewis' terms, a fusion uf subclasses C's. Each 
of the C/s actually corresponds to the minimal class which parri~ion the 
group. Does this imply that the conjugacy classes play the singleton 
role? 

Lee us look at it in another way. Unrestricted composition implies an 
independence thesis. Since any mereological fusion is allowed, the 
members of a class are, in general, independent of each ocher - in the 
internal sense chat the members by themselves are not used to restrict 
membership. In the case of groups, there is also a fusion of members but 
there is a restriction that is internal. The independence thesis allows the 
class to be seen as a fusion of singletons. Restricted composicion does , _ 
nor. 

We can also adduce another argument. Given a class, we see chat the 
class is not a fusion of its members but of che singleton of these members. 
The fusion of members is just an aggregate whereas the fusion of singletons 
is a class. Even if it is not explicit, it is clear that singletons belong co the 
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same kind as the class and hence the part-whole relation in this is also 
the same-kinds relation. If we accept this, then we can also expect that 
in special classes, namely groups, their proper parts muse also be of che 
same kind. But in general ic is not possible to partition a group"only in 
terms of subgroups, bur in terms of equivalence classes. (If it so happens 
that every element of the group is conjugate only with itself then we 
have a partition into singleton classes. Bue this is in general not the case. 
Because once a group G has a subgroup H, then we can form g·1Hg for 
g E G and the result is that g·1Hg is also a subgroup of G for any g E G.) 

' In the context of Lewis' formulation, singletons form the equivalence 
classes. In general for sets, if there is a relation xRy for x, J' belonging to 

the set, then a set can be partitioned by the equivalence classes. Now 
consider the relations of equality. In his book, Halmos (1960, 28) notes 
chat if R is che equality relation in a set then the equivalence classes are 
nothing but the singletons. This implies that the p:i.rtition of a class into 
singletons is based on the relation of identity holding in the cla9S. 
Resemblance, in a loose sense, is identity. Thus the view of class as a 
fusion of singletons seems to be based on the relation of equality 
presumably holding in all classes. It is only in this case that a class can be 
partitioned into singletons. This means chat for classes like groups the 
correct formulation of fusion is through partition that is sensitive to the 
internal relation holding in that class. Here it may be argued that the 
idea of relation is borrowed from set theory while Lewis is attempting co 
avoid set theoretical principles in his formulation. I think the idea of 
relation in terms of ancestral and his own formulation of mapping and 
partition suggest that this is not a basic problem. We can therefore 
conclude that, in general, a group is not a fusion of singletons (bur abelian 
groups, for example, are an exception) - implying that not all classes have 
to be fusions of singletons. 

The above analysis suggests that singletons are not necessarily the atomic 
parts of all classes. What it basically implies is that the subclasses (in the 
case of groups) for a given partition are not the fusion of their singletons 
but are themselves to be seen as basic units, and the larger class is a 
fusion of these complex units. What are the implications for the property 
of unithood that Armstrong uses to explain the relation between members 
and their singletons? Unithood, in such cases, is more complex, something 
on the lines of molecular units and not atomic units. 
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2.6. Ontological commitment to groups 

Finally, should we make an ontological commitment to groups? Let me 
answer it this way. The problem with sets is that they allow disparate 
and unconnected members into the set. This more than anything else 
makes one hesitant co accept their existence. In other words, if 
membership is open to all and sundry, then the club that is formed is 
really not a club. By restricting membership, there seems to be a genuine 
'object' - the club - the exclusive club if you like. Once rules of 
membership are given, is there more to the club chan ics members? There 
is no clear answer at this point. But when we consider the property of 
symmetry and the property of groups chat represents symmetry, then we 
may have a better reason to consider che possibility of making an 
ontological commitment to groups. 

John Bigelow (1993, 73) considers sets as 'higher-order properties of 
their members.' Following his claims that 'mathematics deals with 
universals, with physical properties and relations' (as in the examples of 
ratios and proportion), he situates secs also as universals. And parcly 
because they 'play a significant role in physical theory', he considers sets 
as physical. We have already discussed che notion of singletons and the 
problem of finding the relation that relates a member co its singleton. 
This relation for Lewis was mysterious; for Armstrong it is nothing but 
the reflection of a state of affairs. Bigelow offers a different response. 
Individuals are characterised by their essence. The essence of an individual 
gives the uniqueness of that individual. An individual's essence is 
something which it should have and is not shared with other individuals. 
But this does not mean that the individual cannot have more than one 
property thac would uniquely mark the status of the individual as such. 
As is usually che case, we have to avoid external and accidental properties 
and relations that an individual could have. Thus the individual essence 
muse include properties chat the individual could not lack. Bue, in general, 
conjunctive properties, even if they are internal and 'essential', cannot 
be an individual essence since for these shareable properties, 'the 
conjunction will in principle be shareable coo' (ibid., 85). And an 
individual essence cannot be shareable. So Bigelow suggests that there is 
a property which cannot be shared buc must also be a primitive and not 
analysed as conjunction of other properties. This property is che 'chisness' 
of che ching or what is also known as haecceity. If haecceity is allowed 
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then it will be an individual essence of the individual and Bigelow suggests 
that it is this individual essence that is 'identical to the unit set of chat 
individual' (ibid., 86). 

Also for Bigelow, like for Quine, sets are universals. Since universals 
are always instantiated in particulars, if we look upon set membership as 
a relation of instantiation, then sets could be seen as universals. So when 
we say an element belongs to a set, we are perhaps really saying that the 
member instantiates the set. When we consider a set that consists of 
some elements, then we tend to believe that something is 'common' to 
the members that allow them to be collected into one set. Just as a 
singleton is 'an individual essence of its only member' this collection of 
members suggests that sets are 'plural essences'. 

Bigelow also makes the important point that the discovery of 
coextensive properties is an important project of mathematics. He uses 
this insight to note that when there are coextensive properties then there 
must be something they share in common. And what 'they share is their 
extension, which is a sec' (ibid., 92). Thus, he argues that historically the 
search for coextensive properties in mathematics naturally leads to the 
formation of set theory- so coextensiveness 'is the source of sets'. But to 
get a set from coextensiveness needs a further analysis of properties. 

There is a significant difference in Bigelow's privileging essence and 
haecceiry, and Armstrong's notion of a set. We saw earlier that the relation 
of a member to its singleton, for Armstrong, is that it manifests the unit­
making properry called unichood. He rejects the existence of haecceities 
because he does not believe 'chat there is something about each different 
particular that makes them internally and secretly different' ( 1993, 99). 
He also does not view sets as universals. The notion of similarity 
underlying universals is based on 'genuine identity' whereas in the case 
of sets this need not be the case. 

We can further understand the relation between sets and groups by 
considering the nature of the closure property. Armstrong says chat the 
arithmetic + is same as the mcreological +, and we can use state of affairs 
to connect 7 + 5 and 12. But what we want in the case of groups is 
something else. Given a, b E G, then under group composition, we can 
form aRb. The closure rule is not about aRb but is rather a check to see 
if aRb also belongs to G along with a and b. So once we are given a 
group under some composition principle of its members, then for 
understanding the metaphysical nature of a group the particular form of 
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composition is unimportant. This is similar to che analysis of classes. 
Once we have the class of cats then che analysis is not about the 
resemblance that affords membership to particular cats in the class of 
cats. So to analyse group structure along the notions of set and classes, 
fusion and parts, it is enough to know that the members of a group are 
'generated' from some two other members. (Remember that it can also 
be generated from one member as in the case of cyclic groups.) 

Bigelow's formulation of sets affords another way to view this more 
complex system of membership. Although he thinks that coextensiveness 
is che 'source of sets', he argues that we need to find a link between 
coexcensiveness and sets. This link is furnished by the 'connection between 
properties of things and properties of their properties' (Bigelow 1993, 
93). The argument goes as follows. Members of a sec have properties 
chat are similar and which they share, and also properties whi'ch they 
don't, thereby suggesting the difference between them. Sharing of some 
properties allows them to be taken into one collection but having different 
properties allows them to be distinct members. His example of points 
on conic section illustrates this - the points on the ellipse have (properties) 
chat they share with points on the hyperbola - that is being points on a 
conic section. Bue being points on ellipse also involves having other 
properties that have to do with being an ellipse and these properties are 
not shared with the points of a hyperbola. 

Further, Bigelow distinguishes between second-order property _ a 
proper')' of an object and not of another property - and second-degree 
property which is a property of a property. And what distinguishes second­

~rder property fro~ ~t~e~, fo~ exampl_e, first-order properties of an object 
1s that they stand 111 d1st111cuve enca1lment relations to properties of its 
properties' (ibid., ~4). Thus, he concludes, secs 'emerge' from 
coextensivene~s by this e~tailme~t between second-degree and second­
ord~r propemes. Propemes _havmg something in common imply that 
the mstances of these properties have something else in common_ name! 
I b h' . h ' B' I y mem ers tp 111 t e same set• 1ge ow also points out that random sets 
do not fit inro ~h'.s. view. In the context of groups we need only note that 
there 1s no poss1b1licy of random groups due to the restricted membership 
rules. 

Bigelow's view of sets seems more amenable co groups Th b 
. . · e mem ers 

of a group have some propemes 111 common and are related b h I 
. . all ' Y t e ru es 

described earlier. That 1s, members obey the group laws and thus can 
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be given membership to rhc set. There are also properties which they do 
nor share - the property of having unique inverses (i.e. the inverse of 
two members is noc che same; note chat chis does noc imply chat a member 
cannot be ics own inverse). An '!Xample may make chis clearer. Consider 
che invariant rotations of an equilateral triangle which form a group 
consisting of angles (in degrees) {O, 120,240}. The members of che group 
share the common property chat they are the angles of rotation chat 
maintain the invariance. They also have a common property char the 
composition of any two members (in this case addition) will yield another 
member of chis collection. This is nor a property per se of the members 

themselves - ic is a property of being members of chis group. The 
coexcensiveness lies in rhe property char these angles maintain invariance. 

Consider rotations of an equilateral triangle. Let us say that we rotate 
only in units of 10 degrees. So all these angles - 0 degrees, 10 degrees, 
20 degrees share a common property that in this instance they are all 
rotations of an equilateral triangle. Among these there are three angles 
0, 120 and 240 degrees which have a further property (a second-degree 
property of rotational angles) chat these three rotations maintain che 
invariance of che triangle. The second-order property is a property of 
che object and in this case it is what we may call the oriented form of the 
triangle. Then the special subset, the group, emerges from the entailment 
between these second-order and second-degree properties. 

Approaching groups via properties sidesteps the trickier problem of 
composition, group rules and membership. As in the above example, if 
we construct che set of all transformations (or compositions in general) 
chat retain invariance of a second-order property then we know chat this 
set will be a group! That is, we do not have to check for closure rule or 
ocher rules of a group. So i.1 properties co do with invariance of an 
object, the entailed set has tu be a group. 

Armstrong has two problems for Bigelow's view of sets as universals. 
He thinks char there is a distinct difference between secs and universals 
because in rhe case of universals (at lease for a sparse theory) it is 'quite a 
feat for two things to instantiate che very same universal' whereas 'nothing 
is easier chan for cwo things co be members of the same sec' (Armstrong 
1993, 99). Universals are related to 'genuine identity' while for sets there 
need be no identity. Secondly, random sets have, generally, no universals 
(in Armstrong's sense). 

Note chat both these objections fail to hold for groups. It is indeed 
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quite a feat to get group membership and no two things can arbitrarily 
be made members of a group once we are given some members of a 
group along with its operation. In chis sense, we can say chat there cannot 
be a random group. So, conceivably groups could be universal in the -
way Armstrong understands it. 

3. CHANGE 

The first section of chis Part was concerned with the •nature of objects 
and identity. Since groups are the mathematical 'o~ts' corresponding 
to symmetry, a detailed discussion on the nature of sets and groups was 
given. In chis section, we will discuss the metaphysics of change. Any 
discussion of symmetry muse consider the notion of change in all its 
complexity. We have co remember that the general formulation of 
symmetry in science was equated with invariance under change. I will 
begin chis discussion with some preliminary remarks on change. 

When we normally say something is changed, we usually mean chat 
some property has changed. For example, when a green leaf turns brown 
we say char its colour has changed. People change - both in their attitudes 
and in their ageing process. More drastic changes are also common: paper .,. 
when burnt rums into ash; a caterpillar changes into a butterfly and so 
on. How can we understand all these different types of changes? What is 
ic chat changes and equally important, what is ic chat remains unchanged 
and which allows changes co be made visible? 

To begin with, consider this definition of change, what Lombard 
(1986, 80 & 81) calls the Ancient criterion of change (ACC): 

An object x changes if and only if 

(i) there is a property, P, 
(ii) there is an object, x, 
(iii) there are distinct times, t and t', and 
(iv) x has P at c and fails co have P at c' (or vice versa). 

There are various consequences of ACC. The object must exist at 
least at t and t' and 'must survive the loss of the property it changes with 
respect to' (ibid., 82). In the case of symmetry, we are interested in changes 
that_ are invariant. To phrase it another way: an object has a property at 
t, fads to have it at t', and regains it at t". Thus the idea of change is more 
restricted in chis case. 
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ACC is too broad a definition of change. It is well known that there 
can be changes of a particular property of an object that are 'external' in 
nature. A simple example is chat of becoming an uncle. One may say 
that I have changed, that is, have a new property associated to me, just 
because a baby is born to my brother. As is well known, we have to 
sharpen che distinction between chis kind of change and a change that 
happens co me 'internally', like my hair turning grey. Changes such as 
becoming an uncle are called as 'mere Cambridge changes'. These types 
of change are rg-e;red to as relational as against non-relational changes. 
Lombard disting"lffshes between these two not necessarily in the language 
of change but as alteration. Thus, objects which change non-relationally 
seem to be 'altered' in some way, which is not exhibited by becoming an 
uncle. 

Lombard argues that when an object undergoes relational change, it 
must necessarily imply that another object has undergone non-relational 
change. For example, he notes chat Xancippe's becoming a widow because 
Socrates died is a relational change for Xanrippe but this change occurs 
only because Socrates died - a non-relational change of Socrates. Even if 
the immediate correlate is a relational change, it is the case that down 
the line something has changed non-relationally. He also notes that all 
changes in abstract entities will be relational since by definition their 
non-relational properties are essential to them and any change in these 
would change the abstract object itself. 

What kinds of changes are possible? Usually when we talk of a change, 
we are referring to changes that are somehow like each other, i.e., belong 
to same 'kinds'. For example, the green leaf turning brown is a change 
from one colour to another. We do not ~pect a colour to change into a 
new shape. Lombard notes that change 'must involve the having of a 
property and the subsequent acquiring of another, contrary property' 
(ibid., 112). To formalise this, he considers a quality space as a set 
consisting of simple, static, properties and if an object undergoes a change 
by losing one of the properties of the set, then it must gain another 
property which should be of the same kind. Belonging to same kind 
only means that they are contraries. So, we can say that an object changes 
'if and only if it first has one and then another property, where those 
properties belong to the same quality space (and where the successive 
havings of them is not what that object's persisting for some period of 
time consists in)' (ibid., 113 - 114). The definition of events follow 
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form chis: 'events are non-relational changes in objects; when an object 
changes non-relationally in a certain respect, there is an evel'lc that is 
chat object's changing in chat respect' (ibid., 114). If we look ac ic 
graphically, an object moving in chis quality space is an evenc. Lombard 
also notes chat che classification of properties into specific quality spaces 
is one char is a posteriori and suggests chat scientific theories will arbitrate 
this issue. 

What about changes of parts of objects? If a part undergoes some 
change, can we say chat the object itself undergoes some change in a 
non-relational way? Lombard subscribes to a strong· version of a thesis 
chat answers the above question in che affirmative - 'any event which is 
a change in an object (is identical with) a change in any other object of 
which the first is a part' (ibid., 121). Also note char since an event is the 
change of an object, one can locate the event in the object. Bue do we 
really have to insist char a change in a proper part of an object should be 
identical with a change in che object? He dilutes this condition and 
suggests chat the 'subject of an event' is only the 'minimally involved 
object' that undergoes change. Thus the location of an event is the location 
of the proper part which undergoes change. Note that chis does not 
refute the above thesis but only specifies the location of an event. 

The questions - what is an event, what is the identity criterion for 
events, where is an evenc located, can multiple events be located at the 
same place etc., are similar co the metaphysical questions about object, 
properties, identity and so on. Since I wane co restrict myself to a brief 
discussion of change and events, especially in the context of symmetry, I 
will very briefly describe some of the answers developed for the above 
questions. 

Events could be universals. As universals, they will be instantiated in 
particular events. Why should we chink that events exist? Lowe, for 
~~ample, claims chat events exist because they are indispensable in 
singular causal explanations'. For Lowe, events are not abstract entities. 
The~ are concrete objects because they have temporal properties and 
relations. In contrast, Chisholm considers events to be abstract universals. 
They are instantiated in their repeated occurrences. Lombard (1998, 
282) notes that if events are seen as abstract universals then it is 
incompatible with the view that events are changes. 

Against the view of events as abstract universals, Quine suggests that 
they are concrete particulars. As Quine (1960, 170) says, 'physical objects 
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... are not to be distinguished from events.' Like objects, events in this 
view are not repeatable. But this leads to the problem of 'distinct' multiple 
events, like change of colour and shape, to be che same event. Lombard 
believes char che inability of an object to 'change in two different ways at 
the same time' is reason enough to argue against the view of events as 
concrete particulars. The third view of event is in between the two 
described above, namely, events as abstract particulars. 

3.1. Change and symmetry 

Consider the idea of change in the context of symmetry. Let me consider 
the example of the equilateral triangle. We say that this triangle is invariant 
under some particular rotations and reflections. 

When we rotate a triangle, something changes. To understand this 
further, let us see how Lombard ( 1986) considers motion as change. He 
believes that when an object moves, it changes non-relationally. If this is 
so, we will have to show that in moving the object lost some property 
and regained another property. But the typical problem in considering 
motion is that it is always a change with respect co background space. 
We could understand chis change by saying that the object occupied one 
place at one time, lost chat property of location in moving and gained 
another property of being located in another place after some time. Bue 
this is not enough if places are only relative co r,'cner places. In chis case, 
change incurred during motion is relative change. Usually we talk of a 
position of an object as being defined with respect to a frame of reference. 
But theory of relativity suggests chat motion is relative since a moving 
object in one frame of reference can be at rest in another frame of 
reference. The case of 'pure' rotation c~:i1plicates this further. 

A change is always over an interval of time and 'maintenance of a 
state' is usually described as non-change.7 Non-change is also over an 
interval of time. Newton's law in fact suggests that the motion of an 
object with constant velocity is actually non-change, thus it is a state. 
Corresponding to change of properties, we might say that properties 
change only when there is a cause. Something makes change possible. 
Otherwise it will be spontaneous. 

Lee us first consider symmetries of figures. As before, consider the 
simple example of an equilateral triangle. We say chat this object is 
invariant under certain transformations, say rotation. Rotation is a 
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rransformacion and ic involves change. What is che distinction between 
transformation and change? Conceivably when one transforms 
something, a change has taken place. When we talk of rransformacions 
of an object in che context of symmetry, ic usually means chat che objecc 
is not transformed into another object bur its scares and properties are 
transformed. So transformation in chis context is merely an agent rhac 
causes some change. 

Woodward uses che term 'interventions' as synonymous wich 
transformations. Intervention, for him, is co be specifically tied in wich 
a causal process and he defines ic chus: 'an intervention on some variable 
Xwich respect co some second variable Yis a causal process char changes 
X in an appropriately exogenous way, so chat if a change in Y occurs, it 
occurs only in virtue of che change in X and not as a result of some other 
set of causal factors' (Woodward 2000, 199 - 200). In principle, the 
intervention can be in rhoughr; as Woodward says 'an idealization of an 
experimental manipulation.' The relation between interference (I) and 
properties is as follows: the intervention is a manipulation of a property 
X. Thus che effect of I on X is to possibly change che property. Since 
Woodward is emphasising che causal connection, he is really not 
considering che change in X due to I but rather what changes occur in Y 
due co changes in X. A feature of chis is dependent on che face chat che 
intervention changes che 'value' of X and chis change is entirely due to 
the intervention. For chis to be so, it muse be possible to have a well­
defined notion of change for X. Note the similarity co che static space 
defined by Lombard. 

Although Woodward uses the terms 'intervention', it is clear that this 
is equivalent to the idea of transformations without any necessary link 
to a further causal connection (although there may be such causal links). 
Transformation is a change of some sort and intervention is a change of 
some X. To be consistent with terms used in symmetry, I will use the 
term transformation. 

Transformation in general can be related to change and non-change. 
Non-change under transformation can be called as identity 
transformation - such as transformations which retain che scare as it is. 
But since states and changes are not temporally pointlike but involve 
intervals of time, co say transformation keeps invariant the state or 
property does not necessarily imply that there has been no change at all 
points in the interval. In fact it is this possibility of change that occurs 
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in a rime interval and the non-change as noticed after this interval that 
gives us an idea of invariance and symmetries. 

Ar this point, I would like to distinguish between 'idealised' 
~ transformation (in mind, in principle etc.) from 'real' transformation. I 

will discuss the former separately when I consider changes of 
mathematical terms. Real transformations are changes char occur in an 
object - here ic is unimportant as co what causes these changes. Real 
transformation, for example, is the rotation of the equilateral triangle. 
Now we can ask what property changes under rotation and what property 
is gained. It is after analysing this that we can look at the notion of 
mvanance. 

First of all, for all rotations we need to specify some point or axis or 
axes about which rotations take place. It is possible that under rotations 
the spacial location of che object (like a sphere) does not change bur 
chose of its pares do. In general, if the rotation does not involve 
deformation, then the pare-whole structure is retained. Suppose we rotate 
an object. It seems at the outset that no property is lost - the object is 
still the same, mass and colour, for example, are unchanged and in general 
the form or shape is also the same. Bur the moment we have a frame of 
reference, then we can notice one particular change, namely the way in 
which the form is oriented with respect co that frame of reference. Say we 
have a frame of reference outside the triangle and we rotate the triangle 
with respect co that axis. Then we see that the form is indeed oriented 
differently and thus we may claim that a particular orientation of the 
form has been lost and another one gained after rotation. So rotation 
does indeed cause a change to occur. 

Is this change relational or non-relational? If rhe change is noticed 
only with respect to some frame of reference, is it not relational? We 
don't need co invoke abstract frames of reference in this analysis. I have 
a book in front of me on rhe table. I rotate it in some suitable manner. I 
can notice that the orientation of the different parts of che book wich 
respect ro me has changed. The side closest co me has gone elsewhere. So 
I can say chat a change has occurred in the distance and in general, the 
orientation of the different parts of the book. But still the question is 
whether chis change is entirely relational with respect to me or whether 
it has any intrinsic character. 

Transformation of something means that something is changing (I 
include identity transformations as being a subset of transformations). 
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Whether this change is 'real', has a causal role to play or not, whether 
there is no effect ere., can only be answered after further analysis. It may 
seem chat transformations are defined within a context. Take Salmon's 
well-known example of males taking birth control pills (Woodward 2000, 
207). Taking the pills may nor have any causal effects in the context of 
birthing by males bur raking the pills does definitely involve changes in 
the male who is taking ir - for example, changes in the chemicals present 
in his stomach or blood stream after taking the pill. 

3.2. Centre of mass and oriented form 

We would like to have a way of describing the exact changes involved in 
rotation. There is a canonical way of doing chis. The problem with using 
frames of reference is rhe apparent implication that change occurring in 
rotation is relational. But there is a natural frame of reference. Once we 
are given an object, we know that there is a 'point' defined by the object 
which can function as the origin of any frame. From physics we know 
char for every object with some mass and shape, there is a point called 
the centre of mass. Every object, extended and massive, has a centre of 
mass.8 This can be extended to systems of objects also. Every figure has ' 
a central point. This centre of mass is a unique point once we know the 
mass distribution in the object. In principle we can calculate it for any 
object. Ir also has phenomenological implications. In general the point 
of srability of an object is its centre of mass. If we take a uniform stick we 
can balance it at its centre. We can balance a homogenous disk on our 
finger only at one point which is its centre, the centre of mass. If one 

part of the stick is heavier than the other, then if I wane to balance it I 
tend to move away from its centre and towards the heavier side, that is, 
towards its centre of mass. In physics the centre of mass is what allows 
the possibility of point representations. Much of physics is very dependent 
on the idea char the effect of a force acting on an extended body is 
entirely equivalent to the same force acting at its centre of mass. 

Centre of mass (henceforth CM) seems to be an essential property of 
any object. It may seem that chis is a second-degree property of rwo 
other properties namely mass distribution (not total mass) and the shape 
of the object. (We can distinguish mass and density as follows: 'mass is 

an inclusive property and density is an exclusive property' Qohansson 
1989, 45)). But this conclusion would be hasty because it is only the 
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location of the centre of mass (i.e. its determinate value) that depends 
on the mass distribution and shape. We have to answer whether CM is a 
genuine property of the object and not one dependent on mass and 
shape. We may argue thus: Given an object, mass and shape are accepted 
as first-order properties. Particular masses and shapes are determinates 
of the corresponding determinables. In the same way, given an object 
there is a centre of mass. Is che face char ic has a centre of mass a property 
of other properties or is it a genuine first-order property of objects? Or is 
it a property of a relation between mass and shape? An intriguing point 
to note here is chat an object which has no mass but only shape also has 
a centre. Without further discussion on whether CM is a first-order or 
higher order property, let me only note that it is a property of every 
object. 

The basic point then is that the CM is a canonical point of origin 
chat can be used to fix a frame of reference. So if we consider an equilateral 
triangle with equal distribution of mass on the three lengths, then the 
centre of mass gives us the axis about which we can rotate the triangle. 
In fact, in many cases where symmetry is seen to be manifested, the 
transformation will be with respect to some appropriate centre. Once 
we fix the centre thus, without taking recourse to arbitrary frames of 
,eference, then we can understand change in the context of rotation. 

When we rotate the triangle around its centre, we note that the position 
of the parts change - each point moves to another location with respect 
to chis centre. To specify chis change more rigorously, let me introduce 
the notion of oriented form. . 

The equilateral triangle has a specific form. Any general rotation, 
even around an arbitrary axis, will keep the form the same. Now consider 
the form of the triangle around its central point. The form defined with 
respect to this point can be called the oriented form. When a rotation, 
of say, 10 degrees, is performed about this point, we notice chat all the 
points shift from their original position. In particular, the three vertices. 
shift from their original positions. The relation between the central point 
and the regions or parts of the triangle can be defined as the oriented 
form. This relation may be specified, for example, by the angle made by 
the line connecting the origin and the vertices with respect to the axes. 
Under rotation the vertices change location. Changing location is general 
and is true for any frame of reference. But specific to the canonical frame, 
we can say that the relation between the vertex and the origin given in 
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terms of an angle changes value. This relation is an internal relation - it 
is a necessary consequence of the structure of the object. Rotation changes 
the relational property corresponding to the relation between the origin 
and the vertex. Or equivalendy, rotation involves change in the oriented 
form. The oriented form is itself specified by the triplet of values of the 
relation between the centre and th~ three vertices that define the triangle. 

For example, consider an equilateral triangle in the 'standard' 
configuration of one vertex A along the y-axis and two base vertices B 

and C. We can specify each of these vertices in terms of the angle made 
by the line joining the vertex and the origin with either the vertical or 
horizontal axis. If we consider the angle made with respect to the 
horizontal axis, then the vertex A in this configuration is specified by an 
angle of 90 degrees. Similarly, the vertices B and C correspond to angles 
of 210 and 330 degrees. We can also equivalently consider the angles 
made with respect to the vertical axis in which case the angles specifying 
A, Band Care 0, 120 and 240 degrees respectively. Let me use the latter 
specification although it does not matter which ones we use. 

Now we can define the oriented form as the form that is specified by 
these three angles. The three vertices specify the triangle and these angles 
specify the oriented form of the triangle. The oriented form is a particular 
'collection' of these three angles. In the language of sets, we can say that 
the oriented form is defined by the triplet corresponding to {0, 120, 
240}, with respect to anticlockwise measure along the vertical axis. This 
particular triplet is one configuration that describes the oriented form 
of the triangle with respect to the centre. Now rotate the triangle by 1 O 
degrees in the anticlockwise direction. Then the triplet is given by {10, 
130, 250}. This triplet defines the shifted form, i.e., a new 'value' for the 

oriented form. This formulation actually tells us how to describe change 
in the rotation of the triangle about its centre. That is, the oriented form 
in general for the triangle is given by {a, b, c}. After some rotation, it 
goes to say {d, e, f}. This change in oriented form actually reflects the 
change in the triangle caused by rotation. 

As is easy to see, under a rotation of 120 degrees, the oriented form is 
specified by the triplet {120, 240, 360} and since rotation through 360 
degrees is the same as through 0 degrees, we can write this as { 120, 240, 

0}. Now we see why the oriented form needs a triplet structure. If it is a 
triplet, then we know that {0, 120, 240} is the same as {120, 240, 0}. 

Thus we can confidently claim that under rotation of 120 degrees, the 
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oriented form gets back the 'same' value. So when we say that this triangle 
is invariant under a rotation of 120 degrees, actually what is invariant is 
not the triangle per se, bur its oriented form. And what also changes 
value under rotation is not the triangle or its form bur only its oriented 
form. 

For rotation of240 degrees, the oriented form changes value co {240, 
360,480} which is the same as {240, 0, 120) and thus che oriented form 
is invariant under 240 degree rotation as well. Similar triplets can be 
easily written for angles calculated along the horizontal axis. 

This approach holds good for any planar polygons and also for solids. 
In general, once we fix the central point, then we give the relation between 
the point and the vertices of the two or three-dimensional solids in terms 
of a set of angles. The number of elements of the set will be the number 
of vertices. This general n-pler corresponds to a particular determinate 
value of the property of oriented form. Under rotation there is a change 
in the values of the angles belonging to rhe n-plet. If after a certain 
amount of rotation the values reach the initial configuration, then there 
is an invariance of the oriented form and this invariance is usually called 
the invariance of the form. 

Invariance is of secondary concern in this formulation. Any form 
which is nor symmetrical can also be described as above. Take an arbitrary 
triangle and choose its centre. Specify the angle between rhe vertex and 
the centre with respect to any axis through the centre. There will be a 
triplet formed, say {a, b, c}. This triplet is a particular value of the 
determinable property - 'oriented form'. Now rotate the triangle about 
its canonical centre. Then we get a new set {d, e, f}. Thus, in rotation, a 
specific value of the oriented form is lost and another gained. It is only 
when {a, b, c} is equal to {d, e, f,} that we say there is invariance because 
a lost property is regained. 

Why invoke the central point in this analysis? We could have done 
che same with any chosen axis. Or we could have used something ocher 
chan angle co specify the relation. I chink the face rhar there is a natural 
centre given to us, once we are given the figure or object, is sufficient 
reason ro privilege that centre. Also the symmetries, in general, for these 
figures are with respect to these central points or axes. For a general axis 
'outside' rhe figure, there need be no invariance under rotation. But this 
does not mean oriented form as specified by the values of the triplet (for 
a triangle) cannot be constructed. Also, angles are the correct relation to 
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'fy h d · Di'stance between origin and vertex is spec1 c ange un er rotanon. . 

h I 
c. 1 · d · lengths remam the same for any angle nor e pru since un er roranon, 

of rotation. . 
This kind of spd:ificarion is useful co describe symmetries other than 

h · 1 1 Cons·ider the example of a square. For a standard t e roranona ones a so. 
configuration, we can specify the oriented form as the sec {135, 225, 
315, 45}. We can note that rotations of 90, 180 _and 2~0 degrees only 
permute rhe elements of chis 4-plet. Thus we can 1mi:ned1ately nore_ that 
rotations of 90, 180 and 270 degrees are symmetric transformations, 
whereby some change has occurred after which the initial state is regained. 
We can also consider other transformations like reflection along the same 
line. A reflection about the centre takes {135,225,315, 45} to {315, 45, 
135, 225} which is once again a permutation of the same elements -
rhus, chis is a symmetry transformation. So also for reflection about the 
x andy axes. 

To summarise: objects and figures have a canonical centre and with 
respect to chis centre one can give a description of oriented form, a 
relational property that holds between the central point and the form or 
shape of rhe object/figure. This is an internal relation specified by a set 
structure. Rotation is a change in chis set and thus gives us a measure of 
recognising change in property and gaining another property. For 
arbitrary and continuous shapes, we can either use discrete points or 
topological considerations to define the oriented form. 

However, in the context of symmetry, these kinds of transformations 
are only of one kind, alrhough a dominant kind. This analysis will explain 
one way to understand the notion of change in symmetry transformations. 
Translation symmetries that occur in patterns can also be understood 

along this line. 
There are other kinds of transformations related to symmetry. We 

will have co consider these types of transformations in order to understand 
rhe meaning of change in these transformations. Symmetries are also 
related co transformations char occur in a system as a whole. A system in 
this case can be seen as a structure with various parts. Transformations of 
parts by themselves are possible. For example, one leg of a table may 
rotate while the other parts may not undergo any change. Symmetries 

are also related to changes that occur in an event. For example, two 

objects collide and scatter, There is a change in the momentum properties 

of the two objects before and after collision. Examples of some of the 
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other kinds of transformations are spacetime transformations, 
transformations corresponding to symmetries in particle physics and so 
on. In these cases we can perceive a priority given to some notion of 
form. These are generally represented by mathematical structures. 
Transformations correspond to 'changes' in this structure. To motivate 
an analysis of this, let me consider what we could mean by mathematical 
change. 

3.3. Mathematical change 

Consider an expression of the form y = x2
• We can see from the 'form' of 

this mathematical expression that it is invariant when x is changed to 
_ x. The idea of change in this case is clear: values of x change to - x. 
Invariance is only a possible consequence of this change and does not 
depend on the change per se. For example we could change x in any 
way we like, say x to sin x. Since the analysis of symmetry in science is so 
dependent on invariance of mathematical expressions, it is useful to 
understand what it means to talk of change in mathematical entities. 

We know there are certain mathem.atical entities which cannot 
undergo change. Let us try and hold onto the idea of change as being 
within the same 'kind' or the same quality space. If so, then a number 
cannot change. 1 cannot become 2 or 1.1 or any ocher number. But 
numbers can be operated upon, like 2 can be multiplied by 5. Bur we 
know that the operation here is a two-place relation, and is not a 
transformation of any property of two. Change is a change of a property 
of an object and no property of 2 is changed by multiplying it with 5. 
This doesn't seem to be the case for a variable. But then, what is the 
property of a variable other than 'being a variable'? Transforming x to -
x does not also seem to change its intrinsic property of 'being a variable' 
because - x is also a variable. We can then consider a 'larger' entity like a 
set. A set has more than one property, its cardinality, for example. We 
can ask if it is possible to understand a change in the entity called set. Of 
course, there is a basic problem in trying to look for such analogy because 
change, as we understood it, was explicitly temporal. Change takes place 
over an interval of time. If mathematical entities are abstract and do not 
exist in space and time, what could we mean by change? And why stretch 
this connection anyway? The latter question is easier to answer because 
we do have a notion of change and invariance in mathematical structures. 



7 4 • PHILOSOPHY OF SYMMETRY 

They also have deep physical consequences, best exemplified in the 
symmetries corresponding to some changes. 

The first question is answerable. If we consider the members of a sec 
as physical objects and if these objects undergo change, what could the 
corresponding change in chat set be? If mathematical entities and structure 
map physical reality in some sense, then changes in physical reality coul~ 
help us get an idea of corresponding change in the mathematical entities 
and structures. In chis discussion, let me stick primarily to chis motivation. 
For example, if we have a finite set of all green cats and one green cat for 
some reason turns blue then it loses its membership in the sec and the set 
now has one member less, implying chat a property of the set has indeed 
changed. This is an example of change in the structure. I believe chat 
changes in the mathematical terms can usefully be defined for such 
structural expressions. 

This is of course well known. In all considerations of symmetry, it is 
the transformations of certain mathematical expressions that are generally 
considered. And not too surprisingly, these expressions are usually 
analogous to forms and indeed the phrase 'formal similarity' is commonly 
used. · 

• Consider spacetime transformations. Galilean transformations are one 
class of these where a transformation along the x-axis consists of changing 
x to x + vt, where v is the velocity. In relativity, we consider the more 
complex Lorentz transformations. What is the meaning of spacetime 
transformation? Obviously the spacetime coordinates are changed. But 
these are a change of what? Lee us say we have an object specified by 
some location with respect to some frame of reference. Then a change in 
space coordinate, for example, is the change of its frame of reference. 
That is, instead of 'looking' at an object say from a distance of one 
meter, we are looking at it from another distance. So if we call a particular 
frame of reference as an 'object' then a space-time transformation is 
nothing but a change of the property of location of this 'object'. 

The case of 'internal' transformations can also be understood in a 
similar manner. We can consider an electromagnetic field and change its 
value at every point. Here we are changing not the spacetime values but 
the value of the field itself. In the case of quantum theory, we have seen 
the example of neutron-proton doublet. These two particles are put into 
one set. Then we allow transformation on this set - multiplication by 
matrices is one realisation of the rotation of this doubler. The effect of a 
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particular rotation is to create another doublet, a set that consists of 
mixed states of those two particles. In the quantum case, the linear 
superposition of states that form the wave function allows us to 'mix' 
objects in this form. The grand unified theories follow the same logic. 
Internal (also called gauge) transformations are changes in the value of 
the appropriate function, or doublers, triplets etc. In each of these cases, 
what changes is che state of a system. Following ACC, we can say that a 
system has a property of being in a state S1 at time t

1
, and after an 

. interval of time loses this property and gains the property of being in 

state s2 at time tr 
Discrete transformations are significantly different. Permutations and 

C, P and T are examples of discrete transformations (more on this in 
Parr One). These transformations are not continuous changes. In 
permutation, we interchange one object at a particular location with 
another at a different location. For indistinguishable particles, the system 
does not seemingly undergo any change (but not in all quantum systems). 
Two identical pares are interchanged while keeping the same structure. 
Although the individual parts have changed in their location chis change 
is a relational change. Charge conjugation replaces a positive charge by 
its equivalent negative charge. There is no continuous process by which 
a charge q (say positive) gradually loses its value, becomes zero and then 
becomes -q. What is envisaged is an ideal 'intervention' that changes q 
to -q. 

So transformations, i.e., occurrences of change, belong co a wide 
spectrum in the many cases of symmetries. In particular what is important 
for symmetry considerations is invariance under change. What exactly is 
chis invariance? 

3.4. Invariance 

Woodward (2000, 205) distinguishes two types of changes: one, of the 
background conditions and two, of changes that occur 'in chose variables 
char figure explicicly in the generalization itself.' These are similar to 

external and intrinsic changes. External is with respect co the form under 
question. Thus for Newton's law of gravitation, a change in the colour 
of an object is a background change whereas a change in relative distance 
is intrinsic to the form of the law. Given such a generalization, invariance 
is char which continues co hold even when other conditions are changed. 
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The idea of symmetry (in science) is essen cially rel aced to 
transformation and invariance. Transformation is change, a property lose 
and another gained. Invariance is not non-change but regaining chat 
property which was lose. This is a very specific idea not of change per se 
bur of a sequence of changes. An object loses property Pat c1, has property 
Q ac c

2 
and regains property P ac c3' Of course, ic is nor clear char there 

are only cwo changes or events char are needed because P may change co 
Q which may change co Rand so on before we regain P. Bue what is clear 
is char at lease two events need to occur to gee back the lost property. In 
the example of che equilateral triangle, changes were related to change 
in che specification of che 'oriented form'. And for a particular rotational 
value, say 120 degrees, we regain the same triplet that specified che original 
oriented form. We can look at it in two ways. Rotation proceeds through 
changes in angles rill we reach 120 degrees. Or, we could conceivably 
say, char on~ rotation of 120 degrees gives us the same original property. 
The latter view seems co be privileged in most discussions of symmetry 
- that is we consider one particular change that keeps some property 
invariant. But chis view cannot strictly be right because invariance has co 
be related co chat change which changes a property which is then regained. 
The need co specify it thus is also equivalent to making a distinction -, 
between external and intrinsic changes. So for Newton's law change in 
colour is nor an invariant because it does nor cause any change which is 
not invariant. 

There is confusion about what undergoes change and what is invariant. 
Assume char we rotate the equilateral triangle by 120 degrees. We cannoc 
really call chis invariance unless we have noticed chat there were changes 
of some property in this rotation of I 20 degrees. So if we say char rhe 
triangle is invariant under 120 degrees rotation we are not making explicit 
the point char we know lesser values of rotation has created some change, 
which, as we saw earlier, is a change in che determinate values of the 
oriented form. So in all cases of symmetry, whether of objects, systems, 
or processes, we can identify change which is non-relational. In the case 
of spacecime symmetries chis becoJnes a more problematical claim. Bue 
if one subscribes to a realise view of space then changes associated wich ' 
spacecime transformations can be described in a similar manner. 

Let us assume chat we now have reasonable belief chat in the case of 
objects and figures, invariance is always associated with change of a 

property and then regaining char property. One other problem arises at 
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this point. When we say we have regained a properry, what do we mean? 
What is the identiry condition char is presupposed here? That is, how do 
we know that che properry P that was lost is che same one that has been 
regained? The 'same' here needs to be clarified. It seems obvious that a 
lose properry is not strictly regained. Rather another property has been 
gained that has the same identity as the first, lost property. Say a green 
leaf turns brown. After some more time, it turns back to green. Can we 
say that it has regained the lost property of green? Consider the example 
of a round rubber ball. It has the property of having a spherical shape. 
Now make a dent on the ball by pressing with the thumb. The ball no 
longer has the property of being spherical. Remove the thumb and the 
ball regains its original spherical shape. ls this regained shape the same 
as the one before making the dent? 

This question of the identity of properties which underlies the notion 
of invariance is crucial. All examples of symmetry have to manifest some 
criteria for the identity of propenies before and after some change has 
occurred. Also, a loose sense of these criteria allows for the very important 
ideas of approximate and broken symmetry. 

What could these criteria of identity for properties be? Given the 
range of entities that exhibit symmetry, we can guess that there will be 
different criteria for different 'kinds' of symmetry. Let me first start with 
objects which lose a property and then regain it. Obviously the object 
cannot lose a property and then regain it without a chain of other 
properties (or at least one other property) occurring in the process. le 
seems reasonable to claim that it is never the same property that is regained 
but the regained property shares some identity with the original, lose 
property. Of course, if we accept that temporal slices of objects exist, 
then the identity of properties is nothing but the instantiation of the 
same property in two different temporal parts. It might also seem that 
the 'real' criterion of identity in the case of symmetry is the identity of 
the object that undergoes change. When we talk of a symmetry of an 
object we are essentially claiming that after change ha:s occurred it still 
remains the same object when the lost property is regained. This may 
seem to imply that the talk of symmetry subscribes to a substratum 
approach. In this view the identity condition can.be based on the identity 
condition of objects. But then for the substratum approach, how can we 
distinguish between absolute non-change and losing and gaining che 
same property? Strictly speaking, one should, for no-change can be the 
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'same' as a sequence of changes. This is indeed a source of confusion for 
if we.observe an object any time after it has regained a property, then we 
will not be able to say whether it had undergone any change at all. (Of 
course, there is a similar problem with change in general if one does not 
know what the initial property was.) 

What the special case of losing and regaining the same property 
suggests is that symmetry is a modal term - that invariance should always 
be checked in the realm of possibility. Indeed symmetry arguments are a 
classic example of the kind of question Lewis asks in arguing for possible 
worlds: 'What if...' While we can ask a similar question for possible 
change, we do not ask it after we notice a change. But in the case of 
symmetry, every invariant change is actually a possible change. I,, fact, 
this modal character is manifested in all theoretical formulations of 

symmetry. 
Let us look at other types of invariance associated with symmetry. 

Systems have invariance of some properties and this invariance is reflected 
in the symmetries of the system. Consider total momentum invariance, 
what is usually referred to as conservation of momentum. Say we have 
two particles with momentum P

I 
and P 

2 
(remembering that these are 

vectors). The momentum of a system of these two particles is P
1 
+ P

2
• T: 

Now assume they collide. Momentum of each of the objects change, say 
to P 

3 
and P 

4 
respectively. Total momentum invariance is the statement 

that P 
1 

+ P 
2 

= P 
3 

+ P 
4

• So if we were measuring the property of the total 
momentum of this two-particle system, then before and after collision, 
there is absolurely no change - although the individual momenta have 
changed. If we consider the full system, no change has taken place. This 
is similar to changes in the parts of a structure such that the whole 
structure remains the same. 

Momentum invariance is a tricky ex.ample. If we ask, following our 
views on invariance, what property was lost and regained, we run into 
problems. For, at any time before the collision the total momentum was 
P 1 + P 2" For all times after the collision, the momentum was P 3 + P 4• 

And since P 1 + P 2 = P 3 + P 4, there is really no time at which there was a 
change in the property of the total momentum - strictly not even at the 
moment of collision! Thus the mark of symmetry cannot rest within the 
property of total momentum because this property is not lost and 
regained. Let us look at it in terms of individual objects. Collision changes 
the momentum of each of the two particles. So a change has occurred. 
What is invariant is not the regaining of the same property (that is having 
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the same initial momentum) but the invariance is with respect to the 
sum of the two momenta. 

We can rephrase chis in a better manner by using the language of 
events. There is an event of collision. There is a property held by the 
particles before collision. After the collision there is another property of 
the two particles. The conservation of momentum says the total 
momentum remains invariant. Similar problems arise for all events which 
leave some quantity invariant, like charge conservation. In such cases, it 
does indeed seem chat the inability to point to a property which changes 
and is then regained suggests a problem for the general definition of 
invariance described above. But this is not true. 

The invariance and symmetry illustrated in conservation of 
momentum is not the invariance of the individual momentum of the 
objects which collide. Rather, the symmetry involved in chis case is chat 
of space. It is the symmetry of space chat leads co the invariance of total 
momentum. So what is the transformation and invariance here? 
Interestingly, the transformation is that of individual momentum - that 
is, the properties which we recognise as being changed are the momentum 
of the individual particles. Invariance is not of these individual 
momentum but of the total momentum, that is, not of the properties 
that really undergo change! And finally the symmetry associated with 
chis process is not that of the particles or the system but of the background 
space having a particular property. Such a ;,ux is characteristic of 
symmetries and invariance of procc-sses such as chose chat obey some 
conservation princi?le. 

In the case of collision we can note these points. Transformation and 
invariance are not with respect to the individ11al particles because after 
collision the momentum of each is chauged. First of all, what we are 
looking at it is the system, the system of two particles about to collide. 
The act of collision is the transformation. After this transformation, 
individual momentum change but the momentum of the system remains 
che same. Two important points should be noted here: one is the 
association of invariance with system rather than parts of a system and 
che other is the possibility that there is indeed a change occurring in the 
total momentum. The first point actually reinforces rhe possibility of 
looking at mathematics in terms of structure and suggests that symmetries 
in science actually reflect some important structural elements of 
mathematics. 9 The equilateral triangle also manifests chis connection 
with system. Consider the three vertices as three particles. Under rotation 
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of 120 degrees, each one of these vertices has indeed changed position. 
What remains invariant is not che location of these vertices buc the 
structure of the system as represented by che oriented form. 

The second point is also tenable. Consider a collision where one object 
hies another, comes co a complete stop and transmits all its momentum 
co che second object. In chis process, we can argue chat there is a moment 
at collision where both the particles are at rest or at the lease 
undecerminable. ·If chis is so, then we can look at the total momentum 
as the property which is lost and then regained. 

Therefore, the best way to understand symmetries is to look at how 
these symmetries and invariances are discovered or explained, particularly 
in terms of their mathematical formulation. In face, symmetries in 
modern physics are often found by searching for invariance of 
mathematical forms. It is not an accident that symmetry of forms and 
shapes is very similar co 'symmetry' of mathematical forms. A brief 
example gives an indication of how chis process works. 

Consider Newton's force law: F = m d2x/dc2• The 'form' of chis equation 
remains invariant under change of x to -x; as also for a Galilean 
transformation of x co x + vt. Both these invariances are a consequence 
of the form of d2x/dt2

• Under the above transformation of x, the force ' 
law remains invariant. So to derive symmetries all that we need to look 
at are the machemacical equations and invariance of the form of these 
equations! 

In general we incroduc:e.che notion of covariance instead of invariance. 
Covariance captures the invariance of the form but is not invariant because 
the values may change but form remains the same. Similarity of form is 
called covariance whereas identical sameness is called invariance. 10 Under 
changes in spacecime values, we expect the physics to be the same, chat 
is, we expect che laws and equations of motion to be invariant or covariant 
under these transformations. Without making a jump into symmetry, 
we can at chis point understand the notion of change and invariance of 
these mathematical expressions as invariance of 'written form' .11 

4. PROPERTY 

Here are some definitions of symmetry: 

1. 'A symmetry is where some alteration makes no difference' (Lucas 
1984, 116). An example that follows is the radial symmetry of a 
starfish. 
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2. Van Fraassen (1989, 243) notes chat 'symmetries are transformations 
... chat leave all relevant structure intact - che result is always like the 
original, in all relevant respects.' Bue soon after he talks of symmetries 
of space, symmetries of figures, 'relativity as symmetry' and so on. 

3. 'Symmetry is immunity co a possible change' (Rosen 1995, 2). 
4. In the context of quantum mechanics, here is one description: 'A 

symmetry principle assigns co every physical scare a corresponding 
state such char the physics of the system remains unaltered' (Emmerson 
1972, 27). 

Generally all accempcs co define symmetry emphasise invariance from 
change. They also seem co imply char objects 'have' symmetry just as 
some of chem may 'have' colour. There is also the implication char 
symmetries are transformations, meaning nothing more than change, at 
the most perhaps a special kind of change. But in the same breach we are 
pointed cowards symmetries of space, that is space having or possessing 
something called symmetries. In the case of systems, classical or quan cum, 
symmetries seem co have something co do with che invariance of their 
structures. Is there a common conceptual thread in all these ways of 
articulating symmetry? 

Kosso (2000, 83) writes: 'A symmetry of an object or a law of nature 
is a transformation that leaves some specified feature of che object or law 
unchanged. Symmetry is invariance under ~ransformation.' 

So symmetry is something 'of' an object as also 'of' a law of nature. 
Bue ic is also a transformation, i.e., change. Bue how can change be of an 
object? What ocher terms stand for of an object? We usually talk of colour 
of an object, mass of an object, charge of :in object and so on. Kosso's 
definition suggests char we can talk of change of an object or for example 
rotation of an object. While mass, colour and charge are properties of an 
object, rotation is not a property of an object per se. Thus a particular 
change is nor of an object bur only of the appropriately 'changing object'. 
And it is also not any change, bur only chat change which 'leaves some 
specified feature of the object unchanged'. We have already seen earlier 
chat chis is nor exactly correct. Strictly speaking, it is change by which a 
feature is lost and then regained. 

So on che one hand the expression 'symmetry of an object' suggests, 
correccly, I chink, char ic is a property of an object bur on the other hand 
claiming chat symmetry is a special kind of transformation or change 
suggests char it is not a property of the object. The second sentence of 
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Kosso's definition makes it more confusing. Symmetry is invariance under 
transformation. This means that symmetry is synonymous with 
invariance. But then why call something symmetry if it is nothing but 
invariance? Is symmetry referring to some specified feature that is 
invarianc, or to the object in which one particular feature is invariant or 
to nothing but the process of invariance? 

If it is about the process of invariance, then this process must be 
independent of the features of the object or system. Clearly symmetry 
cannot be another name for invariance in this independent sense. Can 
changes be 'independent' of the object? A change is a change in a property 
or properties of an object. This means chat change is always with respect 
to some properties which the object has. This idea of change only refers 
to the change-in-object, not change in itself. Since properties are 
instantiated in a particular change of properties is change in particulars. 
But also, change of a property is not a property of an object - properties 
of an object need not change. What we need to do is to clearly distinguish 
between change, object and invariance. So it seems to be the case that 
while change in general is 'external' to the object, certain kinds of changes 
bring out some invariant feature of the object. 

So we have this double-sided nature of symmetry: the invariant feature 
of an object is something that belongs to the object, indeed is a property 
of the object. This invariant feature may, in many cases, not be apparent. 
But this invariant feature is exhibited by making appropriate 
transformations. But then we should not equate the invariant features 
with the transformations that make these features apparenr. 

For example, I apply pressure on a rubber ball. Let us call this 
transformation as deformation. Once I remove my finger I find that the 
rubber ball, which had lost the property of being spherical, regains th. 
property. Thus the rubber ball is invarianr under deformation (if~; 
assume that there is no continuous pressure being applied). So what is 
the symmetry in this case? We can say that symmetry is just the statement 
of invariance under deformation. But not all balls made of different 
substances bounce back to the original shape after deformation. So th" 
invariance has something to do with the nature of the rubber ball _ t~s 
property of elasticity. It is this property of the ball that makes inv · e . anance 
possible. So we can say that 'the invariance of the shape of the rubber 
ball under deformation' is what we call symmetry. But 'invariance of the 
shape of the rubber ball under deformation' is nothing but a description 
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of a property of the rubber ball, in this case a property called elasticity. 
Therefore, symmetry is not a transformation, not an invariant 
transformation but a property of the object or system. The 
transformations are only agencies that throw light on this property. We 
can understand this agency in two ways. One is by looking at it as some 
physical action of change. Other is to view it in terms of an explanatory 
role chat explains how it is chat an object has something called symmetry. 

Consider a simple example. Lee us say we have a red ball. The colour 
red is a property of this ball. In a dark room we do not see the colour, 
perhaps not even the ball. Switching on the light - creating a 
transformation - allows us to see the colour. The transformation makes 
apparent a property of the object, its colour. But the colour should not 
be confused with the transformation. Similarly for ocher properties like 
charge. 

The simple conclusion is this: we should not mistake a transformation 
with its effects. Throughout the discussion, it may be noticed chat we 
were always flirting with some notion of causation. Soon we can bring 
this into the open. Symmetry is intrinsically related to causation and 
laws, thus supplying the notion of necessity to it. For all these reasons 
we can claim that symmetry is a property of objects and systems. I will 
now discuss what kind of a property it could be before moving on co 
causality. 

4.1. Nature of properties 

We have reached the position where we can say symmetry is a property. 
What kind of a property is it? Can it really be a property of the object or 
is ic a property of some other property of the object? Similar queries 
have to be dealt with when we talk of symmetry of a system or a process. 

To begin with, let me follow Armstrong's formulation of properties. 
When we talk about an object, we normally talk about the properties 
which che object has - like its mass, shape and colour. In our common 
usage we do make an ontological commitment to these properties. But 
it is not clear what kind of entities they are. What is the relationship 
between an object and its properties? How would we know what kind of 

properties there are? 
We can note the following features about properties. One property 

can be present in, had by, many objects. One object can have more than 
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one roperty and usually has many properties. A property, like mass, is 
com~on co many entities. We have different objects like red ball, red 
shirt, red building etc., which all have the same property of being red. 
We write chis by saying chat a property Fis instantiated in a particular a. 
This is equivalent co saying chat a particular a has the property F-ness. 
Moreover, a particular a can instantiate many properties F, G ... Further, 
if we introduce state of affairs into our oncology then we say chat a's 

being Fis a scare of affairs. 
To understand properties is then to explain how one property can be 

instantiated in many particulars and also how one particular instantiates 
many properties. There are various explanations available. One may be 
a nominalisc and reject the existence of properties. One can be a 
universalise and claim that properties are universals - a universal being 
char which is instantiated in particulars and particular being that which 
is not instantiated in any other particular. One can be a trope theorise 
and claim chat properties are abstract particulars, that is, they are abstract 
but each property is unique in its instantiations. In chis view, there is no 
common redness that is present in different red objects, rather what 
chere is a collection of red ball, red shirt and so on. Universals are abstract 
entities. There are two possible types of universals, platonic and 
aristotelian. Platonic universals do not exist in space and time while the 
latter exist in the spatiocemporal particulars in which they are found. 
Armstrong offers the idea of properties as universals because it explains 
best che problem of One over Many: the problem of how many different 
objects seem to have the same property. 

Let me note some typical problems that arise in the theories of 
properties. Firstly, there seems to be no way to know what the properties 
of an object could be. While mass, colour and shape, for example, seem 
to be properties that seem unproblematical, one can, in principle, have 
an infinite number of properties associated with a particular. One can 
rry and get around chis problem by distinguishing between genuine 
properties (or sparse or natural properties) and relational properties. We 
can also form hierarchy of properties, such a:S properties of objects, 
properties of properties and so on. What is important to note here is 
chat even when philosophers disagree on how to understand properties, 
some of them look to science, particularly physics, to rel! us what genuine 
properties an object could have. Thus, Armstrong accepts properties that 
are scientifically a posteriori, defined by what physics calls as properties, 
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like spin and charge. Another important problem chat arises m chis 
context is ro understand the meaning of instantiation. 

Suppose properties are universals. First of all, there are no disjunctive 
..., or negative universals. That is, if F and G are distinct universals, then 

there are no universals of nor-F, noc-G and F or G. Armstrong qualifies 
this by saying, in the spirit of a posteriori realism, char if physics necessitates 
these universals, then they can be allowed as such. Conjunctions of 
universals are more acceptable for him. So if F and G are (distinct) 
universals, 'then F & G can be a universal, provided always char a 
particular exists at some time which is both F and G' (Armstrong 1997, 
31). Conj unccive universals (and corresponding properties) is one 
example of complex universals. We can also have structural properties 
and structural universals which involve a combination of properties and 
relations. Also, for Armstrong, not all properties are universals. le is only 
what he calls as first class properties chat are universals. Second and third 
class properties are not universals. Colour properties and generally 
perceptual properties, he considers as 'second class'. He draws upon the 
possible validity of 'micro-reductive' physics and suggests char the true 
property-universals are only chose char are instantiated in.the fundamental 
particles. All other properties will supervene on these. 

We can formulate the nature of properties using the idea of 
determinables and determinates. Determinables specify the kind of 
properties such as rhe general kind of shape, mass and colour. Objects 
do not possess properties in chis general form. A given particular has a 
particular shape, mass or colour. The 'absolutely specific' lengths, masses 
etc., are the determinates. We can list the following relations between 
determinables and determinates (ibid., 48 - 49): 

l. If a particular has a determinable property then it has some 
determinate property corresponding to the determinable. 

2. Having a determinate property 'entails having the corresponding 
determinable.' 

3. A given particular can have only one determinate belonging ro the 
same determinable. So a particular cannot have two different lengths 
or masses at a given time. (Armstrong notes that tastes do not obey 
this condition.) · 

4. The relationship between determinables and determinates is not that 

of a genus/species relation. 
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5. Determinates of a given determinable resemble and can be ordered, 

whereas determinables cannot. 

Given this formulation, properties that are l~wes~ determinates are 
the right candidates for universals, examples bemg exact sameness of 
length, exact sameness of mass' (ibid., 49). The strict identity criterion 
present in these examples allows them to have th~ status of universals, 
although not all determinates should be seen as umversals - second-class 
properties being an example. •If we then say that determinates form a 
class for a determinable, then we need to answer how different 
determinates belong to that class. If colour is the determinable, then 
specific colours like red, orange and green will b_elo~g to the class of its 
determinates. Belonging to che class implies a cmenon for membership 
and resemblance seems to be che natural criterion. Bue in what sense do 
che determinates resemble each other? Armstrong takes the view chat 
chis resemblance 'is constituted by partial identity, where the greater the 
resemblance the greater is the degree of identity' (ibid., 51). 

4.2. Role of properties 

One particularly useful way of talking about properties, especially if we .1 

are to believe in property as an entity, is to ask what role do they play? 
One answer to this is that properties play an explanatory role in 
ontological classification. This would be, for example, 'explaining a 
purported face or solving a problem' (Oliver 1996, 11). (The problem 
here refers to problems in ontology.) Then we can ask whether all 
properties play a similar role. Oliver argues chat a reason to believe in 
properties is because we 'associate some role wi~h the category of 
properties and argue that it must be played' (ibid., 12). Further, he notes 
that if 'there is a property role worth playing then there are entities which 
qualify as properties' (ibid., 14). The first point that follows is the 
distinction between a particular and property discussed earlier _ a 
property is had (or instantiated) by particulars. Consider some of the 
roles ~ property could play. One such is Armstrong's view of properties 
as u~1versals that is addressed to the problem of One over Many. The 
relatton between property and predicates has been a source of much 
philosophical dis~ussion. While there are many views on this, we can say 
here that propemes stand for meanings of expressions. Thus, 'the most 
that can be said is that properties are the meanings, in some sense or 
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other, of predicates and/or abstract singular terms' (ibid., 16). A third 
role that Oliver notes is the relation between properties and causality, 
manifested in a statement such as, 'a cause has its effects in virtue of its 
properties' (ibid., 17). We have already seen how the category of 
properties is a way to understand similarity and identity between objects. 
Lewis argues for a restricted set of properties - natural properties - which 
allows for 'similarity in intrinsic respects'. 

Oliver identifies three types of candidates that can play the role of 
property. I will discuss them briefly. We have already seen the basic outline 
of Armstrong's theory of properties as universals and universals as 
aristotelian rather than platonic. Since aristotelian universals are located 
in particulars, this implies that a universal, say a particular red colour, is 
'wholly' present in all the particulars that instantiate that particular red 
colour. That is, all those things which have the same red colour have the 
universal of that redness completely 'present' in all of them. Also, since a 
particular can have more than one property it implies that two arisrotelian 
universals can at the same time occupy the same place. The basic problem 
that arises in this conception is that it violates the notion of 'thinghood' 
- that is, two different particulars which have the same properties cannot 
be distinguished. The other important consequence of the aristotelian 
position is that there can be no uninstantiated universals. As for the 
roles played by the universals, there are two such: 'grounding objective 
resemblances and grounding causal powers' (ibid., 30). 

Another type of candidate for properties is sets. In this view, a property 
is nothing but a set of all the particulars which instantiate that property. 
Instantiation is the relation of set membership. Thus we will say that the 
property of the colour red is the set of all those particulars which has this 
redness, for example, a set consisting of the red ball, the red house, etc. 
As Oliver notes, if the particulars over which a property ranges are the 
only actual particulars then properties will have wrong identity 
conditions. Lewis modifies this to say that 'a property is the set of its 
actual and possible instances' (ibid., 22). But this view necessitates the 
shift into the formulation of possible worlds. Also, set theoretic 
constructions come with a baggage of problems. One is that there is 
really no unique identification of which set we should take to stand for 

a property. 
The third candidate for understanding properties· is tropes. The 

significant difference between trope theory and that of universals is that 
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d
·rr for each particular. Thus a trope of redness will be 

tropes are merenc d" . f 
. · d · h red particular but chese tropes are all 1st1ncc rom 
mscanuace in eac 

h ch P rc·1es are abstract particulars in this view. Although tropes 
eac o er. rope 
of redness are not che same trope, nevertheless they are exactly similar t~ 

h h A Particular is seen as a bundle of compresent tropes, chat 1s 
eac oc er. 
a bundle of cropes corresponding co various properties. Viewing 

arciculars as mereological sums of tropes does not lead us co the problem 
~f identifying dis·cincc particulars (as in the case of universals) because 
tropes are distinguished by the particular they belong to. This implies 
chat an ariscocelian trope, like the ariscocelian universal, can occupy che 
same place with ocher tropes at the same time but unlike.the universal-it 
'cannot be wholly present in more than one place at the same time' 

(ibid., 36). 
While chese are different ways of understanding what a property is, 

we still have che worry chat there are alcogecher too many properties for 
our liking. If properties are secs of actual and possible particulars, then 
we have an inflation of properties. If we ground properties in terms of 
similarities and causal powers, the number of properties can be reduced. 
The latter position gives us a theory that has 'sparse' properties while the 
former creates 'abundant' properties. Lewis offers a similar view of 
'natural' properties. The charge and mass of subatomic particles· are 
perfectly natural properties while colours are less so and a particular 
colour less natural than the colours. Natural properties are objective and 
most importantly, chey allow us to understand objective similarity. 

4.3. Symmetry as property 

With chis brief summary of properties as understood in metaphysics, let 
me address che question of symmetry. Earlier, I suggested that we should 
look upon symmetry as a property. Now chis suggestion can be dealt 
with in detail. First of all, in physics, symmetry is best understood as a 
property of objects, systems and processes. Since a dominant view in 
metaphysics, including chose of Armstrong and Lewis, privileges scientific 
realism as the arbitrator of what properties there are, we muse, therefore, 
accept symmetry as a candidate for property. Bur we can come to this 

position even if we do not subscribe to this form of realism. Symmetry is 

also closely associated with causality; it plays an explanatory role 

describing why some objects and systems are the way they are. 
At chis point, it is useful to remember that there is a phenomenological 
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experience of symmetry. There are various synonymous terms that capture 
the phenomenology of symmetry - balance, harmony, order, stability 
and so on. Symmetries such as bilateral, circular, those of regular polygons 
etc., are phenomenologically accessible in the sense that we are able to 
recognise something about these objects, something intrinsic and special 
co them. We can perhaps even argue chat we do not have to make 
transformations and see if some of them are invariant or indeed even 
what feature is invariant. We may not be able to specify or quantify 
what exactly these transformation features are but chis is irrelevant to 

saying we are seeing or experiencing something called symmetry. The 
analogy with colour is helpful: we may not be able co name the colour 
we see nor even know about wavelengths but we do have a 
phenomenological experience of colour. The recognition of symmetry 
in patterns, with no idea of rranslarional or ocher invariance, is another 
important reason for accepting a phenomenological experience of 
symmetry. More on this issue in Part Three. 

Symmetry is a property. Let us see if symmetry first of all satisfies the 
criteria for calling something a property. 

1. Is symmetry instantiated in more than one particular? Yes. All 
particulars that have a form such as square, rectangle or circular have 
some symmetry associated with each one of them. We can give a 
name to each of these specific symmetries like we give names to specific 
colours. Group theory has already given us a classification that we 
can use. The crucial point is that each of these particulars have a 
specific symmetry. 

2. Is symmetry a property over and beyond other properties like shape, 
mass or colour? We need more discussion on what kind of a property 
symmetry is before we can answer this question with some confidence. 
I will be arguing in the affirmative to this question. 

3. What about the identity conditions in the case of symmetry? In 
particular, the problem of coextensive properties seems co occur in 
this case. One particular instantiates both the property of shape and 
the property of symmetry in the case of many symmetries. In the 
symmetries of patterns and colour symmetry, it is more complex 
coextensive properties that seem to be involved. Of course we might 
say that there is no coextensiveness if we claim symmetry is really a 
property of shape. But once again this issue cannot be resolved until 
I show that symmetry is a property of the object. 
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4.4. Shape or symmetry? A lesson from physics 

As mentioned earlier, metaphysicians who accept property place the 
burden of finding properties on physics. In physics, especially modern 
physics, it is well known that symmetry plays a central role. In particular, 
physics believes that objects and systems have unique symmetries 
associated with them and in fact, many interesting results are obtained 
as a consequence of an object or system 'having' symmetry. In the way 
physics views symmetry, we can and must say that symmetry is a 
fundamental property of objects, systems and processes. In particular 
the symmetries of spacetime is an important category for physics. And 
for those subscribing to naturalism, spacetime is all that there is. Physics 
studies the symmetries of spacetime and gives us a classification of these 
symmetries. These symmetries are a property of spacetime. 

Given the importance accorded to physics by somt:: philosophers in 
cataloguing properties, it is relevant to ask how physics understands 
proper~ies. The common examples of properties used by philosophers 
are mass, shape, colour and charge. Does physics consider these as 
properties and if so, in what sense? Obviously we must accept that the 
way in which physicists understand properties will be different from 
philosophers because their concerns are quite different. But even if this 
is so, since we look to physics to give us properties, we have co have some 
idea of how to see some terms as properties. Consider chis simple example: 
given an object its mass seems to be necessary to describe and explain 
certain physical processes. The language of physics makes commitment 
to properties in statements of the form 'a particle has mass m', 'a particle 

of mass m' etc. Mass also comes to be the defining property in dynamics. 
Motion of particles is sensitive to the amount of mass an object has, as 
clearly illustrated in Newton's law. Although the role and meaning of 
mass gets murkier as we go to relativity, field theories and quantum 
theories, it is clear chat mass plays a property-role in physics as defined 
by physics itself. 

Similarly for charge. In physics, we say that an electron has a unit 
negative charge. All electrons have this same charge. An electron also has 
other properties like mass and spin. Other particles like proton have a 
different charge. In these cases, physics not only uses the language of 
properties for charge but also makes an ontological commitment to it. 
Making an ontological commitment, for physics, is to ask properties to 
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play a specific role, namely observability. Ir does nor have ro be 'direct' 
observability bur in general a correlation with other observations. In 
physics we speak of observability of particulars, properties, relations, 
processes and so on. The distinction between observability of particulars 
and properties (and relations) is generally quite clear, at least in 
macro physics. 

Shape is a more difficult case because, in general, shape plays an 
insignificant role in physics. This statement has to be qualified. The 
representation of objects as points replaces extended objects, with some 
mass m, with a point-object of the same mass. Shape is really removed 
out of the consideration of dynamics of individual objects. This reduction 
to point is made possible because of the notion of centre of mass, which 
acts as the point at which rhe whole object seems to be concentrated. 
Shape of objects seems to play no significant role in much of physics. 
While shape is seemingly unimportant for physics, symmetry is not! 
That is, under reduction of extended objects to points, we notice that 
certain properties are carried over. Mass and charge, for example, are 
properties of the point representation as well as the object with a shape. 
The same values of mass and charge are supposed to be present in the 
point-object. What is lost in the reduction is shape. But symmetry of 
the extended object is also carried over to the point-objects. So at least as 
far as physics is concerned, symmetry is a property that is on par with 
fundamental properties like mass and charge. So symmetry is prioritised 
over shape. 

Even in the quantum domain, we do not talk of the shape of particles. 
Even when systems of particles interact, shapes are usually ignored except 
where they play an essential part in the interaction. This leads to a 
conundrum: shape seems to be a genuine property of objects but for 
physics shape seems to be irrelevant. In most cases, especially in 
fundamental theories, shape seems to have no explanatory or causal role 
in the physics of individual objects. Does this mean that philosophers, 
following physicists, jettison shape as a primary property? We must 
remember here chat shape is also a problem for philosophers to handle, 
as discussed in an earlier section. If we subscribe to the strong view that 
only those entities which are properties for physics are properties for 
metaphysics, then we have to reject shape as a primary property. 

Although shape is seemingly ignored by physics, there is yet another 
property which plays an explanatory and causal role even in the case of 
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individual objects - the property of symmetry. This is the case in quantum 
physics as well. For even if we do not speak of the shape of the electron, 
we can speak of its symmetry as manifested, for example, in its spin. 
Along with the reduction of objects to points, yet another reason for the 
unimportance of shapes lies in the observation that mass and charge 
possessed by a given object are values whereas shapes are not. In fact, in 
the project of mathematjsing the world, of which point reduction is one 
part, shapes properly belong to classes and not as individuated values. 
Even in classical physics, shapes are replaced by the property of symmetry. 
For physics, a spherical object's property that is of any value is not that 
of having sphericity but of having spherical symmetry whose 
consequences can be observed. This spherical symmetry is taken over 
even when the object is represented by a point, that is, after its shape has 
been erased. This priority given to symmetry in physics might suggest 
that we accept symmetry as the genuine property of objects. But since 
symmetry is so closely linked with shape, we have to pause before we 
take symmetry as a primary property. 

There is a deeper problem. All objects are not symmetrical, only some 
of them are. But all objects whether symmetrical or not have shape. So 
it does seem that shapes come first and symmetry later. But the arguments ' 
above still holds good. As long as reduction of extended objects to points 
is the first step in physics, shape is not a member of its set of properties 
except in special circumstances. Also the fact that all objects are not 
symmetric should not bother us. For not all objects have charge but for 
those which do, charge is a genuine property. Also, all objects which 
have charge also have mass but this does not make charge secondary to 

mass. We can make a similar claim for symmetry. 
We have already seen the problematical nature of shapes. Shapes are 

essentially abstractions. And physics' removal of shapes in many important 
cases suggests chat it does not see shape as an essential property. But 
perhaps all abstractions are like this? Consider abstracting away mass. If 
we 'remove' the mass of an object, we are left with a shape that has no 
mass. The shape remains the same but the object has lost the mass it 
had. In such a scenario, the physics would be drastically modified 
and thus is significantly different when compared to abstraction of 

shape. While the abstracted shape and the 'real' shape of the object 

are the same, if we abstract mass and charge away the object loses an 
essential property. That is, the abstracted entity is not the 'same' as 
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rhe quality possessed by the concrete object, in stark contrast to shapes. 
There is yet another pointer from physics. When describing quantum 

particles, physics carries over some important concepts from classical 
physics. In particular, properties such as mass and charge are seen to be 
properties of quantum particles bur shape is completely ignored. The 
question of che shape of these particles q.oes not even arise in describing 
chese particles. Along with mass and charge what is retained is the 
symmetries. As rhe brief discussion earlier indicated (see 1.6), symmetries 
are in fact what quantum objects are all about! 

le is also nor an accident chat among all fundamental physical laws, 

shape does not occur in any of chem. For physics, shape of an object 
does not have any explanatory or causal role to play, roles which are 
played by symmetry. Of course, in many of these laws, the elimination 
of shape occurs ch rough reduction to pointhood particles - as in Newton's 
gravicacion law and in Coulomb's law. Bue che reduction itself is possible 
because shape is not a genuine, intrinsic property necessary for physics. 
Note chat shape of individual objects is what is thus eliminated. One 
can argue chat in chemical reactions, for example, shape is very important. 
But in these cases, it is the structure chat is central and not the individual 

shapes per se. . 
But we may respond by saying chat when we carry over symmetry to 

the point-object what we are doing is merely carrying over shape or at 
worst, some property of shape. Bue chis cannot be right for the point­
object carries no property of shape if the shape has no symmetry! So 
physics does grant symmetry a more basic position than shape. 

In the earlier section on objects, we have considered the way in which 
mathematics deals with shapes, which in some respects runs counter to 
the philosophers' view. Shapes in mathematics, in general, belong to 
classes, to equivalence classes. For example, topological classification of 
spaces would consider a circle equivalent to any shape which is a 
deformation of the circle, say an ellipse. These equivalence classes capture 
the essence of shape not through independence of individual shapes bur 
through some other characteristic. This characteristic 'essence' which 
captures the essence of shape, in topological classification for example, 
is through a group structure! For example, the circle and all its equivalent 
deformities (such chat the 'hole' character is maintained) are classified 

by the same homotopy groups. This implies that in many important 
cases what really lies behind shapes is the property of groups and as we 
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know, groups are intrinsically tied to symmetries. Here is another instance 
that suggests we should accord priority to symmetry over shape. 

Groups and shapes often occur together. Diffeomorphisms, discussed 
earlier, are one example. Homotopy groups give a topological 
classification. Homology and cohomology groups are used to distinguish 
boundaries and solid objects. We know that what distinguishes a 
boundary from a filled space is that the boundary by itself does not have 
a boundary. Some shapes are such that they are only boundaries, like a 
circle or a hollow sphere. This argument is used to classify spaces and 
chis classification once again has a group structure as described by 
homology and cohomology groups. 

The upshot of this is that shapes are 'reducible' to some other essential 
terms. These essential terms, which characterise the nature of a shape, 
are given in terms of topological invariants, index etc. These terms are 
generally invariants, specific to each shape and are the same for shapes 
belonging to the same equivalence class. The invariance here is of course 

linked to invariance that is characteristic of symmetries and arises from 
the group structure. 

But mathematical categories are not metaphysical ones. The problem 
of shape is exaggerated only when we look to physics to supply us the list ' 
of properties - the implication being that we should not accept chose 
properties which physics does not consider as properties. Suppose we do 
not look to physics to supply us the list of properties and accept that 
shape is a first-order property of objects. Then what is the connection 
between shape and symmetry? In particular, is symmetry a property of 
shape rather than the object? One way of answering this is to look at 

phenomenological experience of symmetry. More on this in Part Three. 

Why would physics (and in general science) privilege symmetry over 
shape? Science would claim that it privileges symmetry over shape because 
that is the way the world is. But I think we can peel away this claim and 
see the metaphysical inclination of science underneath. Namely, the 
privilege given to 'order'. Shapes, as individuals, are random in the 'visual' 
sense. They are also not amenable to quantification like various othe . r 
propemes are. Symmetry functions as a quantitative measure of som 
property of the object or system. e 

Related to this is the importance given to explanatio · · 
S · Id "k • , , . n in science. 

c1ence wou 11 e to believe that order m obj' ects syste 
b b ' ms or processes 

must e caused y something. This is dependent on th . . I 
e pnnc1p e that 
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systems left to themselves become more disordered. In thermodynamics, 
this principle is the law of entropy - under no ordering intervention, 
disorder only increases, i.e., entropy continues to increase. This is the 
way nature is! So anything which exhibits some kind of ordering has to 
have a reason (generally a causal relation). This implies that ordered 
objects and systems have within chem the reason for che order. Arbitrary 
shapes are disordered. But symmetric shapes are not. Symmetry is actually 
the measure of the 'order' of these figures. Thus symmetry is what is 
retained in point-objects. So even though shape can be discarded, 
symmetry has to be retained because the symmetry may actually indicate 
some other prior causes. 

But even chis is not the end of the story. Ir seems that symmetry is 
privileged over shape for a more important reason - the formation of 
shapes can be explained through the idea of symmetry. If we look at the 
natural world, we see myriad objects with many different shapes. We 
can perhaps believe that all these different shapes are accidental properties 
of the objects similar to what we may believe about the mass of an object. 
(This is with reference co natural objects and not artefacts.) Since it 
seems that any arbitrary shape is possible, it is reasonable to posit shape 
as a primary property of a'n object. But is this really so? Can we not 
equally say that considering the number of natural objects, it is extremely 
remarkable chat so many of chem have symmetrical or approximately 
symmetrical shapes? Why, if shape is indei_:;.<:ndent of some ordering 
mechanism, are so many exact and approximate symmetrical shapes found 
in nature? 

The answer is simple. Shapes do in fact reflect the effect of some 
order - for example, through che forces actir.g on an object. Hahn calls 
symmetry a principle of evolution because symmetry principles decide 
on the design of the objects (and che universe itselfl). In the context of 
shapes, as long as shapes are explained by use of some laws then shapes 
are not the primary properties of objects. A common example is a pebble 
rounded in a manner that is explained by the nature of water flow around 
it. The shape of the pebble reflects 'something' of chat which caused che 
shape - the water flow. The symmetry of the pebble reflects the 
symmetries of the water flow in the river. Thus if shape can be explained 
with the use of some prior properties, then it is shape that is hierarchically 
'lower' than these properties. Symmetry is one such prior property. 
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4.5. Symmetry as first-order property: An analogy .from motion 

Bigelow and Pargecrer (l 989) offer an interesting analysis of vectors. 
Earlier, I briefly discussed the problem of change associated with morion. 
Ir is cl_ear char motion involves change of place bur it is not so clear as to 
what the changing properties are because locations may nor be intrinsic 
properties of an object. The authors discuss two contrasting doctrines of 
motion, what they call the Ockhamist doctrine and the flux doctrine. 
The Ockhamists looked at motion as nothing more than the 'occupation 
of successive places at successive times'. The doctrine of flux held that 
motion involved more than just a change of locations but also possesses 
an intrinsic velocity, thereby giving a vector quality to a moving object. 
This velocity vector is an intrinsic property according to the flux doctrine. 

The basic difference between these two views lies in ascribing a new 
property to motion, namely velocity, over and beyond the property of 
changing locations. Both these doctrines accept that motion implies 
changing locations with time. The flux doctrine says that rhe moving 
object has a (first-order) property of instantaneous velocity over and 
beyond the change of locations in contrast to the Ockhamist view. 
However, the Ockhamist view does not imply chat there is nothing called 
velocity and would argue char the sequence of positions characterising 
motion is enough to characterise velocity. In other words, the first-order 
property in motion is the 'having of a position' and velocity is a second­
order property of positions. Thus, in this view, the role of velocity is not 
to expl2in why there is a change in positions because all that is primary 

is the sequence of positions. 
The doctrine of flux, on rhe other hand, by introducing instantaneous 

velocity as a first-order property of the moving object, answers why there 
is a change in positions. The direction and magnitude of the velocity 
explain the change in positions. Thus, the important consequence of 
chis position is char 'first-order properties of position are explained by 
another first-order property of instantaneous velocity' (ibid., 292). 
Velocity is not to be thought of as second-order property of positio_ns 
bur is independenrly a first-order property. But it is also true that velocity 
is indeed related to change in positions. To claim a first-order ride to 
velocity, rhe independence of velocity from sequences of positions should 
be established. Bigelow and Pargetrer accomplish this by some clever 
arguments. First, they demonstrate that it is possible to have instantaneous 
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velocity without an Ockhamisc sequence of positions. Using che example 
of the motion of an image, they also argue that Ockhamist sequence of 
positions is possible without instantaneous velocity. Thus chey exhibit 
the independence of first-order and second-order (derived from sequence 
of positions) velocity. Finally, what is needed is a link between these 
velocities. 

The authors argue char laws of nature provide the required link 
between che velocities in the Ockahmist and flux doctrines. Vectors such 
as velocity, momentum and force feature in laws of nature and play an 
indispensable explanatory role. Also, the Ockhamisc would potentially 
face a problem in distinguishing a homogenous disc when it is static and 
when it is spinning. What differs in both these cases is their causal powers. 
This causal power of the spinning disc is the presence of instantaneous 
velocity in each part of che disc. 

This analysis of velocity in the context of morion is an apt formulation 
co understand the claim chat symmetry is a first-order property and not 
a property of the first-order property of shape. Call 0-doctrine the view 
chat says shapes are first-order properties and symmetry is a property of 
these shapes. This is similar co the Ockhamist doctrine of motion. Call 
F-doccrine the view chat along with shapes as first-order properties there 
are also ocher first-order properties, namely, symmetries. The 0-view 
would not accept symmetry as a first-or-:!~r property and instead would 
look at symmetry in terms of sequence of changes in shapes (or more 
striccly, changes in oriented form) and more generally, as changes in 
some property chat is eventually invariant. The F-view would dispute 
chis and claim chat along with these sequences chat characterise change 
there is also another first-order prvperty char explains these sequences. 

The first point to clarify is what is symmetry a property of? Just as 
instantaneous velocity was a first-order property of moving objects so also 
we should look for a category that accommodates symme11:ry as a property. 
This category is invariance and symmetry would be a first-order property 
of invariant objects (and systems which are invariant in some respects) 
just as velocity would be a first-order property of moving objects. The 
0-view of invariance would claim chat the transformation connected to 
invariance is nothing but a sequence of positions or some other change 
of a first-order property. The F-view would say chat along with such a 
sequence there is also another first-order property called symmetry. This 
property of symmetry in fact explains chis invariance chat occurs in the 
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O-view. Also, ir is related to laws of nature and has causal power. Thus, 
following rhe arguments of Bigelow and Pargerrer we can claim a firsr­
order property status for symmetry. 

Ir is indeed true char symmetry (char has to do with forms) is exhibited 
through a sequence of change in form. Thus, just as in the case of morion, 
we have to show the independence of change of shapes and symmetry. 
We could, for instance, consider chis example. If we keep a mirror about 
a symmetry axis then there is no moment at which there is sequence of 
change in shape yer there is a recognition of symmetry. But most of all, 
we would, in a manner similar to rhe example of morion, look ro rhe 
possession of causal power, explanatory power and association with law 
of nature to argue that symmetry is indeed a first-order property like 
instantaneous velocity. As argued in sufficient detail earlier, symmetry is 
the property that is associated with laws and explains, among ocher things, 
the shapes of various objects. Point-reduction carries the symmetry of rhe 
object bur not the shape and chis is a good reason co believe chat symmetry 
is independent of shape, at lease in science. The above arguments can be 
extended to symmetries associated with systems and processes, and also 
for symmetries char are not associated with shape. 

5. CONSERVATION LAWS AND CONSERVED PROPERTIES 

Th~r~ is a sec of properties, closely associated with symmetry, which 
exhibn a unique nature: they are conserved. How do we understand 
conserved properties in metaphysics? What is conservation? Consider a 
pro~e~s or event. For simplicity lee us say chat only rwo objecrs are 
participating in that event and let rhe event be rhar of collision of these 
two particles. Before collision, let us say rhe two particles are moving (or 
at least one of them is). Each of rhese rwo particulars has rhe properties 
~f _mass and lliOmentum. After the event of collision rakes place, there 
is, 10 general, a change in rhe values of the momentum. The conservation 
of momentum says that the total initial momentum has the same value 
as t~e total final momentum. Similarly, consider an event in which two 
part1cles having charges q

1 
and q

2 
interact and end with rwo new values, 

93 and _'Lt· Then conservation of charges implies q + q = q + q . Energy 
and sp1 . . h' • 2 3 4 

n are entmes w 1ch are also conserved. These conservation laws 
are nor o l · · ll n Y empmca y sound but are also fundamental laws which are 
embodied in many chemical and fundamental particle interactions. 
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In all these examples, the conserved quantity has to do with properties. 
Charge, momentum, energy, mass and spin are properties. Conservation 
of these properties is not limited to properties of subatomic particles. 

v Energy, momentum and charge conservation are manifested in processes 
involving macroscopic objects. 

Conservation is generally not in relation to a single object, except in 
special cases, like conservation of angular momentum of a single object. 
The example of an ice skater who changes the speed of revolution by 
extending and dropping her hands is well known. The conserved property 
here is angular momentum. As the skater brings her hands closer to the 
body, she spins faster. This process of her spinning faster is explained by 
rhe fact char the total angular momentum has to be the same. In order 
for it to remain the same, the angular velocity increases when moment 
of inertia decreases. Therefore, the skater spins faster. The invariance of 
angular momentum explains this phenomenon of the skater and 
symmetry (rotational symmetry of the system) explains why angular 
momentum is conserved. Spontaneous decomposition is another example 
where a single object generates two or more objects. Here, energy, 
momentum, charge and spin (if applicable) are all conserved. 

In the process of conservation the following holds: (a) There is no net 
change in some property or properties; (b) Equivalently, in the case of 
two objects, what is lost by one is gained by the other. This is true nor 
only for scalar values like charge but also of vector quantities like 
momentum and spin. (c) In the case of more than two objects, what is 
lost by one is distributively gained by the other objects. 

Could this special nature be a property of these properties? That is, is 
there a property, say 'conservation', that is a property of mass, charge 
etc.? In what sense can 'conservation' be a property of charge? Given an 
object with some charge, what is the meaning of saying that 'conservation' 
is also a property of charge? It seems that this property of conservation is 
hidden and is manifested only when the object undergoes a change in its 
charge. Like symmetry, this seems to be a property that is made 'visible' 
only under certain conditions of change. Like symmetry, conservation is 
also related to invariance. But what exactly is the relation between a 
property and the conservation of that property? 

It is clear that conservation is not a property of a property such as 
charge, energy and so on. We can rule out conservation as a property of 
mass-energy, for example, primarily because an object of some mass does 
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not necessarily have to undergo collision or decomposition, the processes 
in which the conservation of mass-energy is manifested. Similarly for 
charge: given two objects, each with some charge, there is no necessary 
condition char they undergo change in the values of rhe charges so char 
che total charge is a constant. That is, it is not a property of charge that 
makes charge conservation happen. 

Since conservation is seen in events, perhaps conservation has 
something to do with events rather than properties themselves. We may 
perhaps claim this: a property of events is char certain properties are 
conserved. Bur why only certain properties? What is it in the events which 
decides which property must be conserved? 

Physics understands conservation as follows. Every event in which 
some property is conserved necessarily has to have a symmetry. Thar is, 
it is the particular symmetry or symmetries of an event that 'causes' 
conservation of a property associated with chat symmetry. Conservation 
of momentum is a necessary consequence of rhe translational symmetry 
possessed by the colliding system. Energy conservation is a consequence 
of temporal symmetry. Charge conservation is a consequence of an 
internal (gauge) symmetry of the system and so on, and these are all 
necessary consequences. 

Therefore, we may say that some events have che property of being 
symmetric with respect to something such as space or time. Any such 
symmetry in the system explains conservation of some property. These 
conservation laws are the foundational laws of physics. What is important 
to note here is that only certain properties are conserved. Mass, charge, 
spin are common examples. le is also these properties char some 
philosophers call sparse properties. Note that there is no shape conservation. 

D?e_s chis go to suggest, once more, char shape should not be accorded a 
pnvilege over symmetry? Does chis imply chat the real natural properties 
or essential properties that we muse accept are only chose which are 
conserved under some appropriate conditions? That is, can only conserved 
prop~rties be natural properties? I chink the answer is. yes to all these 
questions. 

In analysing rhe nature of causality, Dowe (1999, 270) suggests the 
'conserved-quantity' (C-Q) theory of causality. Two definitions of 
conserved quantities and their explicit relation to causality is given as 
follows: 
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1. A causal interaction is an intersection of world lines which involves exchange 
of a conserved quantity. 

2. A causal process is a world line of an object which manifests a conserved 
quantity. 

A conserved quantity is one, like the examples of charge and 
momencum described earlier, which is conserved in a process. Dowe 
notes chat conservation processes are symmetric but neglects to link the 
notion of an underlying symmetry which is the cause of such conservation 
laws. We are interested in asking what it means for an underlying 
symmetry to cause conservation of certain properties of particulars chat 
participate in a process. Even Woodward's analysis of invariance 
understands it as a property of laws but does not consider how we should 
understand laws that are a consequence of some invariance. 

It may be useful to first understand the nature of laws before we seek 
co clarify the link between symmetry and conservation laws. It can be 
argued chat properties are necessary rn explain laws. le is reasonable co 
say a certain property can cause a particular effect. Armstrong (1997) 
formulates the notion of law as follows. Let a particular a have a property 
F and a relation R to another particular b which has a property G. 
Consider the case when this state of affairs is immediately succeeded by 
b's becoming H. He explains chis sequence in terms of a having F and R 
to b, thereby cawing b to have H. Thus he sees a law as a 'causal connection 
between state-of-affairs types' (ibid., 226). And for laws of this form, 
there is nothing more to chem other than to be 'instantiated in such 
sequences'. That is, the law is exemplified only in the manifestation of 
the particular sequences. It is also to be noted that Armstrong believes 
chat all cases of singular causation are instantiations of some law. Further, 
non-causal scientific laws supervene on causal laws. And finally, laws, in 
chis view, play a very important explanatory role in chat they explain the 
regularities in phenomena and processes. 

Bue chese are only certain types of laws. Armstrong uses the example 
of a guillotine which causes decapitation co illustrate the above structure 
of a law. But such a structure of law is not the one that is generally 
considered as a fundamental law in science. These are laws which are 
related to generalisations. The laws of importance in science, what 
Armstrong calls functional laws, are those which manifest the 
determinate-determinable relation through some mathematical relation. 
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He isolates cwo characteristics of such laws (ibid., 242): 

1. They are determinable laws, and under each such law faJls a large, perhaps 
infinite, class of determinate laws. 

2. A great many of the determinates are likely co be uninstantiated. 

An example is Newton's law of gravitation. For different secs of masses 
and relative distance, a value of che gravitational force between chem 
can be found. Armstrong argues chat each such calculacion can itself be 
seen as a law bur ic is extravagant co believe so when we can unify all 
these individual determinate laws under one determinable (functional) 
law. Such a relation not only supplies unification but also explanation. 
Wichouc entering inco a discussion on the metaphysical nature of such 
laws, lee me consider che nature of conservation laws. 

As is co be expected, conservation laws seem co be functional laws. 
Conservation of linear momentum is a determinable and specific cases 
of such conservation is a determinate. There are a plethora of conservation 
laws for each value of the total momentum. But while this seems to be 
che case in general, there is also a crucial difference between conservation 
laws and Newton's law of gravitation, for example. Newton's law is nor _ sr 
explained by any prior principle chat necessitates the form of this 
determinable expression. Conservation Jaws, on che ocher hand, are a 
consequence of a prior symmetry. Thus ic seems char conservation laws 
are functional laws bur chey also need a specific causal scruccure as in the 
example of the guillotine. Also, note char a functional law is more than 
a functional expression. For example, we can write the angular 

'.11on:encum as a ~roducc of angular velocity (ro) and che moment of 
mema (I). But chis functional equation is nor a law like Newton's law 
essentially because the · a: · · d · h re is no cause-euect relat10n mvolve m c e terms 
char occur in chis eq · I , • · I . uacion. n Newtons law chere 1s a parc1cu ar 
accelerauon caused by f. • •fi h · . a orce accmg on a body. The law spect ies c is 
causal relauon. In ch f • JI h 
h 

. e case o conservation laws, ic is cyp1ca Y c e case 
c at there 1s no causal · c . I · h . mrormanon in the law itself. For examp e, m c e 
case of conservanon of I · h J 
I I 

. angu ar momentum, we may wnce c e aw as 
1ro1 = lo · This law only JI h · h 2 fi te s us t at rhe original angular momentum 

1s c e same a ter some ch h f h 
sk t d" d ange as taken place, as in che example o c e 

a er 1scusse earlier Th . 
chis I . 

1
.k fi ·. ere is no causal link between I or ro. And yet, 

aw is I e a uncnonal I . h f d 
value .fi d aw m t at a whole range o eterminare 

s are um te under a determinable. 
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Those who believe in the reality of laws predominantly hold the N­
relation view of laws as necessary nomic relations among properties. If F 
and G are first-order properties, a law is a necessary nomic relation between 
them and is written as N(F, G). Newton's law of morion has mass and 
force as the two first-order properties and acceleration as a ratio of force 
co mass as the nomic relation. 

It has been noted that not all scientific laws can be put in this form. 
Conservation laws and symmetry principles have been given as example 
of such laws which are not N-relation laws. 12 Bur it is not clear whether 
this is really so. If we accept symmetry as a first-order property chen we 
can rewrite conservation laws as N(F, G). Consider the example of 
conservation of coral linear momentum. Let F be the first-order property 
of the system chat is its coral linear momentum {just like the coral mass 
of a system). Lee G be che ocher first-order property chat is the symmetry 
possessed by that system. Then N(F, G), the necessary nomic relation, is 
the identity relation on F at various points of time. That is, the relation 
between F and G in this case is such that G causes F to take the same 
values at all times. 

The status of conservation laws might be better understood if we 
consider symmetry as the property that causes conservation of certain 
quantities. Symmetry is not explicitly present in the conservation law 
but it is that which makes possible these laws. The symmetry could be 
that of spacetime and/or of the configuration of the system. Whatever 
be the case, what is clear is that symmetry should be seen as a primary 
property of the system and causes conservation of certain other properties. 
Shoemaker ( 1997) argues that properties should play a causal role for 
them to be accepted as genuine properties. Moreover, he notes that 
properties 'reveal their presence in actualisations of their causal 
potentialities' (ibid., 242), a point that helps us co further emphasise che 
conclusion chat symmetry should be seen as a fundamental, intrinsic, 
first-order property. 

NOTES 

1. See also Quine (1961). 
2. See also Fales (1990). 
3. For example, see Daly (1997, 140). 
4. See also Castellani (1998). 
5. For a two level criterion for sec identity, see Lowe (1998, 42). 
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6. For chose who are troubled by such profligacy, we can actcm!Jt ro rcscricc 
composition. In chis context, sec van lnwagen (1990). 

7. For example, see Johansson (1989, 93). 
8. This centre of mass does not always have to be 'inside' che object. 
9. See Resnick (1997) for more on mathematics as structure. 

10. See also Lucas (1984). 
11. See Sarukkai (2002) for more on this aspect. 
12. See Swoyer (2000). 



PART THREE 

Phenomenology and Aesthetics of Symmetry 

A philosophy of symmetry cannot be restricted to only metaphysical 
analysis. Phenomenology is the ocher tradition chat is needed to 
understand the nature of symmetry. A phenomenology of symmetry 
would have co begin from a reflection on rhe phenomenological 
dimension of symmetry. The arguments adduced earlier have hopefully 
shown rhar symmetry is indeed a 'primary' property, rather rhan 
something derivative as it sometimes appears to be. It is also the case 
chat the manifestations of symmetry are also inherencly phenomenological 
in nature. 

Natural objects show a wide range of symmetries. The symmetries of 
nature are usually associated with the shapes or forms of natural objects; 
in the distribution of colours as seen in a wide variety of insects and 
animals; in complex patterns which are discovered in various 
manifestations of the animate and inanimate world. Metaphysics gave 
us an analysis of the many categories chat are involved in understanding 
these symmetries. But there is a content to symmetry chat needs a different 
'kind' of philosophy, namely, phenomenology. 

We experience symmetry in various ways. We usually talk of it in 
terms of proportion, harmony, balance, beauty, simplicity and so on. 
The phenomenological experience of symmetries influences the way we 
respond and react to them. In the case of symmetries of shape, colour or 
patterns, it is the phenomenology of visual perception that is most 
important. Perception is itself complex. It can be described with the 
help of science as well as through phenomenological experience and 
philosophical categories. One of the important examples in 
phenomenology has been the discussion on perspective involved in 
perception. Rarely do we see a 'full' object and in most cases there is 
nothing we can do about it. But in symmetrical objects we are able to 
have a sense of the whole even if we see only a part. This filling up the 
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blanks in perception (and indeed knowledge) is one way of understanding 

symmetry in its phenomenological guise. 
It is well known that the idea of vision has been central to philosophy 

in both Eastern and Western traditions. Some writers refer to the 
'hegemony of vision' as something chat has shaped the growth of 
philosophy. 1 Even science is deeply indebted to vision in various ways, 
suggesting chat che hegemony of vision has also been important in che 
formation of scientific discourse. 2 Modern physics, which uses symmetry 
as a fundamental principle, is also indebted to metaphors and images 

· drawn from our ideas on vision. Thus, symmetry itself is placed within 
the larger discourse on vision that is present in both macro and 
microphysics. Phenomenology gives us new insights into symmetry and 
its relation with vision. In particular, as I will argue lacer on, even the 
structure of groups seems to be 'correlated' to certain principles of vision 
as described by Gestalt psychology. 

Although ','.ision is dominant, ideas of symmetry are present in the 
experience of other senses also. For example, we generally consider a 
dish to be tasty if its various tastes are balanced. The balance of tastes 
an~ of smells is related to the judgement we make about the quality of 
· t~~ food we eat or the smell we experience. Our experience of tastes and 
.\rnells are phenomenological. Harmony, proportion and balance are ideas 
chat are integral to what we judge as 'good' taste and smell. These examples 
illustrate that ideas associated with symmetry are intrinsic to aesthetic 
judgements, as in the case of visual experience. When we talk of such 
experiences we do not have mathematical descriptions, like group theory, 
but nevertheless symmetry is basic to the aesthetics of sight, smell and 

• taste. 
Tactile sense is also involved in the phenomenology of symmetry. A 

simple example is the common experience of balancing objects like a 
stick or a disc. We can balance a stick at a particular point on the stick; 
we can balance a homogenous disc at its centre. These phenomenological 
experiences illustrate a tactile sense of symmetry. There is, of course, no 
need co consider these senses as independent of each ocher. If we follow 
Merleau-Poncy, for example, we can hold the view that the senses of our 
body are not independent of each other but are how somehow 
'intertwined'. Such a non-reductive view of the senses allows us to 
understand symmetry in a broader sense. 

In the ways in which we deal with objects in our daily life, we are 
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always engaged in some phenomenological expression related to 
symmetry. Consider the simple example of making paper planes. Even a 
child who learns co do it understands intuitively that there is some notion 
of balance involved. In the making of a paper plane, given a sheet of 
paper, we fold it along a line of symmetry. Further folds follow some 
axis of symmetry. A child has a phenomenological understanding of 
balance and symmetry without knowing what symmetry is - especially 
in che restricted view of understanding it entirely in terms of 
transformation and invariance. 

Simplicity and beauty are terms that occur in any description of 
symmetry. Even in the case of mathematical or physical theories, these 
two notions have been privileged in various ways. Both these notions 
need co be given a phenomenological reading. 

I. PHENOMENOLOGY OF PERCEPTION 

What does it mean to say that we see a thing? I see now a book in front 
of me. I see the black colour of the cover of the book, the shape and size 
of che book from my perspective. I also see it as one object among other 
objects on the table. I am writing as I am seeing the book. I read the title 
of che book and the names of the authors. I look out of the window and 
see mountains and trees but at the same time am al90 hearing the steady 
sound of crickets. In general, perception involves recognition not just of 
one thing bur of many 'things' in the field of vision, which is not restricted 
to sight alone. It also involves, when I focus on the object, the distinction 
between the background against which the object is placed and the 
foreground of the object. 

Seeing is obviously related to the body and, in particular, che eye. Ir is 
also an intentional ace which lets me focus on a particular book and not 
anything else. Let us say that I am now focussed on the book. My 
recognition of the object that I see as a book also involves prior 
understanding of what a book is. Although there are many books of 
different shapes and colours, I see chem all as books. Similarly for the 
different kinds of trees. One may invoke consciousness to describe all 
these characteristics of seeing. Bue if we are already in a conscious state 
of seeing, then what is the 'experience' of seeing? 

Let me initiate this discussion by asking what is it to perceive a shape 
of an object. What are the assumptions in making the statement that an 
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object has a particular shape? I begin with shape for obvious reasons 
since symmetries seem to be intimately related to shape or form. In the 
last Parr, I argued that symmetry has a claim to priority over shape. 
Does phenomenology also tell us something similar about symmetry? 

When we say an object has a particular shape, we have to note that in 
general this is a problem as far as perception is concerned. It is clear that 
shapes and sizes are not absolute bur are dependent on perspectives. As 
Merleau-Ponty (1981, 299) notes, usually we talk of the size and shape 
'when it is in a plane parallel to the frontal elevation.' For him, the frame 
of reference is first and foremost the body. The empiricist arguments for 
a definite size and shape of an object does not answer the primary question 
of how such a perception is possible. The inrellecrualisr answer tends ro 
make perceptions judgement of our faculties or reason. Merleau-Ponty 
answers the problem of perception of size and shape in terms of lived 
experience - knowledge of the size and shape of a thing 'is grounded in 
the activity of the body' (Hammond et al 1991, 187). He uses the face 
chat there is an 'optimum distance for perceiving things' (ibid., 188). Ir 
is interesting to note that this optimum distance is understood in terms 
of balance. Moreover, perception of a thing involves an already 
sedimented knowledge that allows us to recognise the object as such. 
Thus, rather than the object's properties causing the appropriate 
perception, the habits involved in perception also contribute ro the 
experience of the perception. Further, his view that perception is nor 
restricted ro one sense alone bur involves the other senses also, implies 
char perception and experience of shapes is much more complex than 
when understood in terms of vision alone. The clarity of an object 
increas~s with the synthesis of all the senses - 'uniry and the reality of 
the thing perceived are only fully appreciated when the senses are actin 
in unison' (ibid., 195). g 

Such an analysis is useful when we discuss the property of symmeri 
and the ways irr which we experience it. First of all, in the usual way w: 
talk about symmetry, it is clear that sedimented knowledge is import 

f 
anr. 

A scientist's view o a symmetric object is quite different from a layperson's 
one. The question of what shape and size an object has, given their 
difference in various perspectives, does not relativise these notions 

completely. For Merleau-Ponty, we can still hold onto an empiricist view 
about a particular shape and size of an object except that it is now viewed 

through the bo4y's orientation toward~ the object. But what can this say 
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about symmetry? What happens co che symmetry of an object under 
different perspectives? And how does che body even perceive and recognise 
symmetry? 

Before we cry and answer these questions, lee me discuss che notion 
of shapes and forms in further detail. When we perceive form, we are in 
essence perceiving a boundary of the object. Plato distinguishes form 
from nature and identifying nature with matter 'makes matter prior to 
form, its temporary accidental arrangement' (Lang 1998, 50). For Plato, 
form is imposed on matter. For Aristotle, in contrast, matter cannot be 
essentially identified wich nature. Indeed, for Aristotle, nature is 'the 
shape, namely the form, not separable except in definition, of things 
having in themselves a principle of motion' (ibid., 50 - 51). Thus nature 
is form and not matter. Lang notes two reasons for Aristotle's position: 
one, the primacy of the actual over the potential, the actual being specified 
by form, and two, his belief chat 'form is that coward which a thing 
tends or grows' (ibid., 51 ). We should also note the constant interplay 
between nature and art chat informs these views - natural things occur 
with a form while artefacts have their 'form imposed from without'. To 
make a further distinction, Aristotle considers 'nature' as identified wich 
form buc 'by nature' as combination of form and matter. Thus, form is 

·chat which is actual and is 'the primary constitutive principle' whereas 
matter is substance as potential. 

As we can see, the idea of symmetry in its relation co form and in its 
essential embodiment in nature is close to Aristotle's position. Especially 
so in che light of modern physics where symmetry plays a central role 
nor only in explaining the forms of natural objects but also as a principle 
of evolution of forms. Aristotle's priority of form over matter also takes 
into account the evolution of forms as being central co che identity 
condition of an object - 'any natural thing grows coward its form and 
toward nature in the sense of form' (ibid., 53). Matter, in the case of 
nature, 'runs after form' and desires for form. Further, form itself is the 
cause of motion for morion always is a movement towards form, towards 
actuality from potentiality. This relation between form and matter gives 
us a discinccion between nature and art. In art, it is the artist who imposes 
form on matter. Aristotle also distinguishes between form and place; 
both are limits bur are distinct from each other. Form is the 'limit of the 
thing contained' and place 'is the limit of the container' while matter is 
the 'body of the contained'. 
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One of the fundamental problems for Aristotle was the relationship 
between form and matter. Aristotle treats matter and form together; this 
is usually referred to as hylomorphism. To motivate the discussion, let 
me consider Lowe's (1999) analysis of a bronze statue. In what sense is 
a bronze sracue a combination of matter and form? The statue is not 
form in addition to bronze. If so, Lowe argues, the bronze would have to 
be seen as a part of the statue, which it is not. Similarly, the form is also 
not a part that belongs to the statue. Lowe suggests that the way our is to 
consider the form of the statue 'as something belonging exclusively to 
rhe statue rather than to the bronze,' that is, 'identify that form with a 
particular property which the statue has but the bronze does not' (ibid., 
8). This allows him to distinguish between shape and form because he 
places the shape along with the concomitant presence of the statue. Due 
ro which, the identity of the statue over time is not the identity of shape 
of the statue but only the identity of the statue of that shape. The primacy 
accorded to form then offers an explanation for the identity of the statue. 
As a consequence, Lowe takes the position that form and matter 'are 
relatively independent.' This implies that it is conceivable to think of 
form without matter. In fact, Lowe considers the description of particles 
in modern physics as exemplifying this possibility. Neither does matter 
help in the individuation of things by giving a principle of identity for 
chem. Even in the case of individuation, Lowe believes that form is what 
allows such individuation. 

In contrast, Kant suggests that forms 'do not pre-exist in things' bur 
are 'generated by the a priori forms of intuition' (Mainzer I 996, 562). 
Intuition therefore 'works spontaneously in order to determine rhe "unity 
of rhe manifold'" (ibid., 562). Mach, whose philosophical writings were 

influential among scientists including Einstein, considered form 'as 

independent of other phenomenal qualities' (ibid., 562) . Mach was 
influenced by Gestalt psychology, which considered form nor as addition 
of constitutive elements but in terms of a whole, a gestalt. 

The American philosopher, George Santayana (1955), discusses the 
idea of form and the relationship of it with beauty. He views form as an 
aggregate that has elements, and the manner in which the elements are 
combined constitutes the character of the form. For him it is important 

to be able to distinguish the relation of parts in a perception for it to be 
considered as a perception of form. But he notes that unity is a virtue of 
forms although unity by itself cannot be a form. Santayana relates forms 
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ro symmetry through the categories of unity, individuality, multiplicity 
and so on. I shall, later in this Part, discuss chis relation among various 
terms related to symmetry. 

2. FORM AND VISION 

Without further discussion on the nature of form, let me focus on the 
relation between form and vision. As the above formulations of form 
show, the idea of form is intrinsically related to vision. In the case of 
form related to other senses, similar notions can be developed, bur the 
privilege given to visual form continues to influence them. For example, 
the perception of forms, according to Gestalt psychology, is based on 
certain organisational principles that I discuss below. One can extend 
these principles to the cases of other senses bur extending these principles 
thus only reinforces the dominance of the metaphors of vision. 

The consequence of sight being the dominant sense is that the 
paradigm of vision, referred to as 'ocularcentric', becomes central to the 
preoccupation of philosophy and science. Hannah Arendt notes that 
'from the Tery outset, in formal philosophy, thinking has been thought 
of in terms of seeing ... ' (Levin 1993, 2). This 'hegemony' of vision can 
be traced back to Plato and to the ideas of Platonism in general, a point 
insistently stressed by Heidegger and Derrida. Plato's metaphors oflight, 
darkness and cave, are well known. The philosopher, according to Plato, 
should be able to 'see what needs to be seen -:ven in the darkness,' and 
one who should not be 'dazzled by excess oflight'; rather, the philosopher 
should be guided, not merely by the physical sensation of light, but by 
the 'light of reason' (Levin 1997, 12). Plato's language draws upon the 
imageries oflight and vision, including his comment that the 'soul is like 
the eye' (ibid., 13). If Platonism shapes a predominant culture of vision 
then it can be argued that Platonism in mathematics implies that 
mathematical entities are themselves implicated in a larger idiom of vision 
_ I will argue for this possibility in the example of groups. 

The metaphors of vision have entered the vocabulary of common 
language. For example, the relationship between 'truth' and 'en­
lightenment' as also that between 'ignorance' and 'darkness' has s~aped 

the language of science, epistemology and philosophy. The continued 
use of these images also serves as 'ideal models with a distinctively 
normative rhetorical function' (ibid., 8). Thus the rhetoric of truth, and, 
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in general, knowledge, has privileged philosophy's preoccupation with 
sight. Levin notes that philosophers like Heidegger, Foucault and Derrida 
have a common complaint chat 'the thought and culture of modernity 
have not only conrinued the historical privileging of sight bur allowed 
its worst tendencies co dominate' (Levin 1993, 5). 

le can also be argued chat in the case of Descartes that although his 
engagement with metaphors of vision shaped his discourse there were 
also significant differences in his account of vision. While it is indeed 

the case char Descartes found darkness to be a 'nightmare', he also 
developed the science of optics chat developed the possibility of displacing 
the 'priority of the eye and cenrraliry of vision' Uudovitz 1993, 69). 
Also, his belief that touch is more reliable than vision because 'touch 
allows us to conceive ideas ... vision blinds us to the object' opens up a 
movement beyond the visual sense. This insight into the limitations of 
vision even as it seems to be the dominant sense has also been echoed by 
other philosophers. Although chis does not repudiate their immersion 

in che hegemony of vision in their writings, it points to the constant 
tension in using these metaphorical images and in doing so, attempting 

to get away from their suggestive orbits. Hegel, for example, ~sponded 
to this issue by conceiving of the 'generosity of vision' .3 For Hegel, visual 
sensation was 'less' than the sensation of touch because vision by itself 

does not allow us to experience depth and space like touch can. Similarly 
Merleau-Ponry. While his philosophy liberally drew upon metaphors of 
v1s1on, at the same t\me he rns\sted on the oneness of the s~nsc:s .md in 
his larer work argued for granting invisibility the same ontological status 
as visibiliry.1 

McC11111ber ( l 9'JJ, 2J6) 11n1c.s 1ha1 philosophy h,1.s 11.scd 'vision ,l.s a 

model for knowledge' and this tendency has itself given meaning to what 
we call vision. Derrida argues chat what is presented in the thing is ·t 

I S 

form - 'form is presence itself' (ibid., 236). If a thing 'can be known 

only insofar as it is form,' the consequence is rhar matter is suppressed ar 
the expense of form and this Derrida refers to as the 'founding opposition 
of metaphysics'. That is, 'the subjection of vision to form is thus only the 
first step toward a deeper subjection of vision to speech' (ibid., 237). 

. Ir sh~uld not be s~'.prisin~ that science has also actively participated 

rn the ~1~course ?f ~1~10n. Science, seen as an activity chat attempts to 
make v1S1ble the mv1s1ble, draws upon ideas of vision in its articulations 

bur at the same rime also tries to find a suitable language of the invisible. 
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It would not be an exaggeration co claim char science, more than any 
ocher discipline, has privileged the visual, even as it has enriched its 
engagement with the other senses. The development of microscopes and 

i, telescopes brought micro and macro objects within the visual field. 
Photographs, X-ray, MRI, PET scans etc. are attempts to capture a sense 
of the: invisible through visual means. The visualisation of the writing of 
science is or fondamental importance to its discourse. As Ihde notes, chc 

tcxclike phenomena permeates science in the use of 'charts, graphs, 

models, and the whole range of "readable" inscriptions which remain 
visual' (Ihde 1998, 167). 

Why is chis privilege extended to the visual in science, both in practice 
and discourse? A traditional answer, according to Ihde, is that vision is 
seen as the 'clearest' of the senses. Bur he rejects chis view because he 
believes it is nothing bur 'cultural prejudice' to believe that vision is the 
'best' sense. In contrast, :1e suggests that what is special to visualisation 
in science 'are its repeatable Gestalt features' occurring in the visible 

forms in technological imaging in general (ibid., 16 I). This association 
of vision with the Gestalt will be reinforced by my observations about 
the role of Gestalt in the ideas of symmetry- once more suggesting char 
vision plays a dominant role even in the languages of the invisible. 

le is only the prior sedimentation of metaphors of vision in philosophy 
which can explain why science too develops its ideas of form within an 
ocularcentric discourse. This suggests that science understands the domain 
or dw 1,•i~i!Jk tl11\,}Ugh .'..'l'l'.i!.!ing l furm .,f tlit iiiv,._~l,le elicit ~ st,u,(il'h­

Jcpe11Jent on the idea of visual form. This is manifc:;te<l most powerfully 

in the case of symmetries in science and the use of groups to describe 
them. Thus the making 11isib/e of the in11isible in the scimtipc discourse lies 

in making visible the form of the invisible based on the logic of viswzl Jimns. 
The fertile engagement of science with strategies of writing, strategies 
that are beholden to the idea of form, reiterates the importance of form 
in science, especially in its discourse. 5 

' 3. SYMMETRY, FORM AND THE GESTALT 

Symmetry, form and the Gestalt are intimately related concepts. I will 

discuss this relation in two parts. First, a brief summary of the Gestalt 

'laws' of perception will illustrate the principles char describe how we 
perceive forms. Second, l will extend this to the case of groups, where I 
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will argue char rhe group structure is similar ro rhese Gesralr principles, 
thereby emphasising rhe point char symmetry, even when described by 
abstract marhemarical structure, seems co be closely refaced to rhe 
principles of visual perception. 

3.1. Gestalt laws of perception 

How do we perceive forms? What are the principles of vision char make 
perception of forms possible? As is well known, Gesralr principles have 
played an important role in rhe psychology of perceprion.6 Gestalt means 
'whole' and rhe fundamental basis of Gestalt is rhe interplay between 
rhe ground and figure in perceptual process. I will discuss in brief some 
of rhe organisational principles of vision based on experimental 
observations by rhe Gesralr psychologists. Our perception of form is 
fundamentally based on certain principles char help to organise rhe field 
of vision, rhe first of which is the figure-ground perception. The famous 
examples of rhe many 'ambiguous' images where rhe images shift from 

one ro another are an illuscrarion of rhe need ro factor both figure and 
background in any perception. 

Another organisational principle is char of good continuation. This 
principle suggests char we rend to see continuous forms char are smooch! 
continuous in contrast ro discontinuous forms. A third principle is rha~ 
of proximity, which essentially scares char uni rs of a figure char are closer 
ro each other will rend ro be perceived as part of a single entity. A good 
example of chis is an array of docs chat will be seen as columns if the dots 
are closer ro each other along rhe vertical line. If rhe docs are closer alon 
rhe horizontal line then the array will be seen in terms of rows. Thusg 

chis is a principle of organisation that explains why we see figures and 
forms rhe way we do . 

. A fourth principle is chat of similarity: when we see a form we tend to 
pick our parrerns char share similar elements, like colour par h • 

, c es 1n 
berwee~. Finally, rhere is another important principle char guides our 
percept10n, namely, closure. This principle points our chat our per · . cepuon 
picks our all elements char will form a closed figure or whole Th · 

• ar 1s, 
our perceptual process tends ro see closed figures as belongin 

· · I g to one 
enmy. A s1mp e example is that of a circle made of docs· even ·f d . . . • 1 one or 
IS missing the figure is still perceived as a full circle. 

Ir must be mentioned here that when these principles ace in co-
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operation the grouping is very stable but when there is conflict between 
these different organisational principles then the image rends co be 
unstable and ambiguous. It muse also be noted char symmetry is a factor 
in both the organisational principle of form as also in che recognition of 
figure-background perception. One of the Gescalc principles is char of 
symmetry, what was also called as 'good figures', characterised so 'because 
chey could nor be reduced perceptually to any simpler components' 
(Wade & Swanston 1991, 35). 

Although these central (and ocher minor) principles of Gestalt have 
to do with planar configurations, they point co certain necessary relations 
that inhere in the ways in which we perceive form. Rather than use these 
principles as the benchmark of perception of form, I wane to restrict my 
analysis to exhibit che close similariry between these principles and the 
structures of groups chat describe symmetry in science. 

3.2. Groups and the Gestalt 

Groups describe symmetries in science, including the symmetries of 
geometric forms, objects, events and laws. They describe symmetries of 
the visible and the 'invisible' world. What is special co groups chat they 
are seen as natural mathematical structures to describe symmetry? I 
suggest chat the structure of groups is strongly correlated to the Gestalt 
principles of (visual) perception. We can claim char it is possible char 
groups are mathematical scruccures char describe che (non-mathematical) 
Gestalt principles. In which case, groups would be the structure needed 
to describe che mathematics of perception of forms. But symmetry in 
science does nor acknowledge that it is a perception of form in general. 
Since the structure of groups is similar to the structure of the Gestalc 
principles we can argue that groups actually are modelled after the 
principles of organisation that describe how we perceive forms. This 
would then imply chat symmetries in science, described by groups, are 
actually based on a prior idea of (visual) forms and their (visual) 

perception. 
Why are groups correlated co the Gestalt principles? Groups are secs 

char have an operation defined on chem, and whose elements obey certain 
simple properties - that of closure, existence of identity, inverse and 
associativity. Sets are a collection of points, things, elements chat are 

brought together into one set through some criteria of membership. As 



116 • PHILOSOPHY OF SYMMETRY 

a collection of these elements, they are first of all similar to the grouping 
principles of the Gestalt. Note that the bringing together of a set of 
points as belonging to one 'set' is itself a Gestalt principle. We may ask 
why groups should be the mathematical structures that describe \\ 
symmetry? There are two 'parts' to a group. One is its set nature, a 
collection of elements. The other is the operation defined on these 
elements. Given the operation and the elements, the group rules give us 
the relation between the elements of a group - we may look upon this as 
the rules of membership to a group. But then why is the idea of symmetry 
- in many cases to do with shape or form - related to a structure of set? 

Symmetry, as we saw earlier, has to do with invariance of some form 
under some change but why should this have anything to do with sets? 
The explanation for this, in the context of Gestalt, is that a form can be 
understood as a 'collection' of points. Let me give an example. When we 
talk of the symmetry of an equilateral triangle, we describe it by a group 
that has as elements three angles, the identity 0 (or 360 degrees), 120 
and 240 degrees. This idea of a group is itself based on the view of a 

triangle as being defined entirely by its three vertices. Like the Gestalt, 
the triangle is specified once three dots corresponding to the vertices are 

given. It is the Gestalt organising principles that offer us a reasonable 1 
belief chat we are indeed seeing a triangle although we are 'only' seeing 

three dots. When the triangle is rotated about its centre, we keep track 
of these dots. The rotation of the dots is assumed to imply the rotation 
of the shape of the triangle also. Specification of these three dots is enough 

to specify the form of the triangle. The changes in the form of the triangle 

under some transformation, like rotation, are also specified by changes 

in these three dots. This principle offilling out a form from its constituent 

dots is central to Gestalt principles of grouping. So, we may understand 

th~ se_t nature of groups corresponding to symmetry as reflecting a Gestalt 
pnnc1ple of grouping. 

We ca~ also understand the Gestalt grouping principles as related to 

~ecs. O~viously, the bringing together of points to suggest certain forms 
is n~chmg but a collection of one sec of points which function in a . 
pamcular way. H?wever, groups corresponding to a symmetry should " 

not be equated with the co_llection of these points that suggest a form­

For example, the symmetry group under rotation of an equilateral triangle 

has th ree elements but these three elements cannot be identified with 
the th ree dots that suggest an equilateral triangle but are represented 



PHENOMENOLOGY AND AESTHETICS OF SYMMETRY • 117 

rhrough certain angles corresponding to invariant rotation of these docs 
around the centre of the triangle. We may say that symmetry groups are 
norhing bur a Gestalt principle of organisation of elements in the 
transformation space and Gestalt principles of organisation are first and 
foremost a collection of elements - that is, a set. 

Bur groups are also more than sets. The elements of a group have 
certain relationship among each other. The closure property is a common 
'name' in both groups and Gestalt. The closure property in Gestalt 
principles claims char perception fills in the gaps in a form and projects 

a filled form, even if the form has certain elements missing in it. Given 
a sec of points in the shape of a circle, even if some points are removed 
we continue ro see it as a circle. Closure property of groups stares that 
the result of rhe group operation of rwo elements of the group should 
yield an element that also belongs to the group. Thar is, group operations 
can nor rake an element out of the set of elements in rhe group. We can 
also understand chis in the following manner: given two elements of a 
group, we know what another element is. This is definitely on the order 
of an organisational principle of the mathematical groups. 

The important criterion chat a group should possess an identity 
element is 'equivalent' ro the Gestalt principle that emphasises the role 
of unity of perception of form. Identity element stands for the identity 
transformation, or equivalently, the case in which no transformation is 
made. This is nothing but the 'first' perception of the form. The inverse 
elements are those rhac give back the identity after some transformation. 
This is phenomenologically equivalent ro rhe temporal identity of the 
'first' perception. le reinforces the point char perception from different 
perspectives does not transform the given object into something else. In 
fact, chis can be seen a; the grounding of perspectivism itself and the face 
chat perception does not change the identity condition of the object bur 
only the sec of meanings chat one ascribes co ir. The idea of passive 
transformation, in which the observer moves rather than the object, is 
what generates what we call different perspectives as against active 
transformations which are the transformations of the object. Thus, a 
particular symmetry is nothing but the recognition char some perspectives 
offer rhe 'same' vision. The identity and inverse rules of groups are 
'correlated' ro the Gestalt principles of recognition of the full form even 
as we recognise chem as being made up of individual elements. 

What is the consequence of this similarity between groups and the 
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Gestalt? First of all, in che case of simple figures like triangles, the similarity 
of che group structure and the Gescalc organisational structure is clearly 
linked co che perception of visual form of these figures. The consequence 
of chis is chat vision in symmetry is the vision of the Gescalc - ac lease as 
far as che scientific description of symmetry is concerned. Se~ondly, and 
more striking, since groups describe symmetry ~f not only ~1sual forms 
but also of systems, quantum particles (where che 1dea_ofform 1s extremely 
ambiguous) and so on, it seems chat even che larger idea of symmetry in 
these cases is similar co Gescalc principles. This should be surprising: 
why should che general notion of symmetry continue to have Gestalt 
structure? Why do we model even non-visual symmetries in the same 
way as we do che visual ones, especially since the visual form is conscrucced 
via the Gestalt? 

One response could be co say chat something similar to the Gestalt 
principles for forms also holds good for che ocher cases such as colour 
and music where the symmetry has nothing co do with the form per se. 
Therefore, when we describe symmetries of quantum particles by using 
groups, we are in essence still within che Gestalt as far as the organisational 
principles go, although we are not restricted to the Gestalt of visual 
forms. 

The consequence of making chis connection between the structure of 
groups and Gestalt principles of perception of form is the recognition 
chat symmetry in science is deeply immersed in the ideas of form and 
vision. This is indeed surprising, for the importance of symmetry in 
science is not in the recognition of symmetry of geometric forms bur in 
the formulation of symmet'ry principles related to the microscopic world 
as well as in conservation laws. In the case of conservation laws, what 
can ic mean co say that they are also in some sense indebted co ideas of 
form and vision? In the case of symmetry as an important principle in 
quancum theories, such as che unified theories, the conclusion is 
somewhat more scarcling. The use of groups in these instances suggests 
chat the form of the invisible microscopic domain is first grasped and 
understood through che models of che form of the visible world. le can 
be argued chat in the more abstract mathematical formulations ~f 
symmetry, what is privileged is the form of the mathematical equations. 

This form is nothing bur the form of the orthographic inscriptions of 
mathematical symbols and equations. This is clearly manifested in the 
repeated reference to formal equivalence when talking about symmetries 
in physics.7 
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To conclude, we can see that even in the invisible world, the 
articulation of properties of objects of that world are strongly indebted 
to organisation principles similar to the Gestalt. Thus, even in domains 
of the unseen, there is an attempt to illuminate che world and make ir a 
world of vision because che language of description of chis world 1s 
primarily the language of vision. 

4. OBSERVING SYMMETRY 

I have talked of symmetry as a primary property of the object. I have 
also claimed that there are phenomenological experiences of .symmetry. 
When we usually talk of properties, we tend to believe chat chey are in 
some sense observable. We do see the colour of an object. We believe we 
see the shape. We do not see the mass, which is considered as a primary 
property of objects. But obviously seeing is not the only sense used in 
the detection of properties. In the case of objects with charge, which is 
also a primary property, we do not see the charge. We smell a rose and 
that smell is indeed a property of the rose. We have seen that in the case 
of symmetry, there are experiences of symmetry in the senses of sight, 
touch, smell and taste. But in the case of sight, it may not be obvious 
chat symmetry is a primary property that we see; rather, it may be 
construed as a property of the form. In the previous Pare, I argued that 
this cannot be so. Phenomenologically, the experience of categories like 
balance, harmony and simplicity, for instance, all point to an experience 
of symmetry. In other words, symmetry is observable and experienced 
in-itself. 

Since symmetry, especially in the scientific formulations of ic, is 
intrinsically related to the notions of transformation and invariance, the 
observation of symmetry has been thought to be the observation of 
transformation and invariance. Kosso (2000), for example, holds this 
position in saying char observation of transformation and recognition of 
invariance is equivalent to an observation of symmetry. This implies 
that we do not observe symmetry as such but only as the 'sum' of two 
ocher observations. Although this is the definition of symmetry in general, 
he also notes that when we 'see' a snowflake we already 'see' its symmetry. 

Let me first begin with the possibility of observing symmetry in objects. 
Kassa suggests that observation of symmetry in objects can occur in two 
ways: one is through 'seeing' and 'recognising', and the other is to observe 
transformation and invariance (hereafter T&I), and thereby conclude 
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b rving symmetry. Boch these modes of observation arc 
e are o se f b . 

chat W II different. In rhe case o o serving symmetry directly, as 
fundamenra r of snowflake, ir <..an be argued char we are only observing 
· I e e,camp e · · f h" 1n r 1 rher rhan enter into a crmque o r 1s na"ive phenomenological 
a parrern_- Ra f symmetry, I will restrict myself to pointing out chat even 

b rvanon o . 
o se observation of symmetry 1s more than a recognition of 
· hese cases, · h "d f 
in r f he snowflake. A person wit no I ea o symmetry whatsoever 
h form O r • · · c r e f nderstanding 1t as invariant rransrormations) can still 

(. rerms o u wflak 
in . something about the sno e that captures the pro perry of 

experience h . . h" . . 
0 e way of emp as1smg t is point 1s to consider how visual 

symmetry. n · d F I 
hemselves experience . or examp e, Arnheim (1954) 

forms are r h . f' . 
. h t visual patterns ave a nouon o visual balance' associated 

mennons r a . al b d fi . 
. h h . '(E]xacrly like a physic O Y, every mite visual pattern has 

w1r r em, · ' Wh 
f I 

or center of gravity. en we see a snowflake, we are 
a u crum •c ' . h c: 1 d" 

d . to rhe visual 1orces 111 r e ngure ea mg to an experience of 
respon mg h Ar h . 

bal ce of the figure. Fun er, n eim notes that in a 'balanced 
the an d" . 

·c·ion all such factors as shape, irecuon and location are mutually compos1 . 

d 
·ned by each other in such a way that no change seems possible eterm1 .. ' 

and the whole assumes the ch_aracter of necessity" in all its parts' (ibid., 

12). This notion of balance is not _m~rely a consequence of particular 
symmetric figures. It is a charactenmc of perce?ti~n itself. Moreover, 
'rhe function of balance can be shown °_nly by pomtmg om the meaning 
• helps to make visible' (ibid., 27). It IS not an accident that points of 
~isual balance are most often the point about which symmetry 

rransformations are defined. 
What about the observation of symmetry as the combined observation 

of T & I? This process is obviously temporal in nature and necessarily 

involves principles of comparison, as Kosso has rightly stressed. There is 
also an explicit agency involved in these actions of transformation and 

comparison for invariance. 
In the case of observing symmetry as the concomitant observation of 

uansformarion and invariance, it is not immediately clear char symmetry 
is a property of rhe object and not a property of the rules of trans­
formation. That is, the consequence of defining the observability of 

symmetry through the categories of transformation and invariance does 

not necessarily imply that symmetry is a property inhering in the object, 

or even a second order property of the object. But the problem in this is 

char chis implies symmetry is not directly observed but observed only as 
a consequence of a transformation of the object. 
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What ocher properties of objects are manifested only through 
cransformacion? The object in its entirety, chat is, the complete form of 
che object in 3-dimensions, is possible only through transformation. As 
is well known, when we look at an object we do not see it in its fullness 
_ for example, we do not see the 'back' of the object. It is only by 
transforming it, by creating different perspectives of it, that we can get 
an idea of che complete form. 

This also suggests chat transformation is not essentially connected 
with symmetry but has a prior engagement with the recognition of the 
form of the object, a recognition that is possible only through 
transformations. That is, transformations create a complete mapping of 
the form and once the form is grasped, symmetry is seen as a property of 
the form chat is related to invariance. It is in this sense that one can say 
symmetry is present in nature. 

The above discussion points to the importance of the metaphors of 
vision in the articulation of symmetry, including in modern physics and 
in the use of group theory. In the case of symmetry in science, this is 
only part of the picture. The case of symmetry associated with laws and 
equations, and the idea of internal symmetry expands the domain of 

symmetry. 

4.1. Explanation and observation 

Kosso (2000) classifies symmetry into four types: external, global; 
external, local; internal, global and internal, local. He argues that external, 
global symmetry is observable as is internal, global. Both these symmetries 
are 'direcrly' observable, whereas external, local and internal, local are 
'indireccly' observable. This leads him to the conclusion chat the 
'observation distinction matches the divide between global and local 
symmetry' and not chat of the external, internal divide. Local symmetries 
have a different empirical status in comparison to global symmetries 
because of che introduction of 'dynamical' symmetries in order co exhibit 

the invariance. 
The ideas of observation in the case of global and local symmetries 

are significanrly different. Direct observation, as discussed above, implies 
the observation of transformation and invariance. Kassa suggests the 
examples of Lorentz transformation for an external, global symmetry 
and che global symmetry of electric potential for internal, global 
symmetry. Observation in these cases corresponds to invariance of certain 
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experimental observations. But these examples of experimental 
observation, such as observation of experimental results in transformed 
systems and the example of the pigeon sitting safely on a high-voltage 
wire, are primarily not observation of symmetry; rather, they are 
explanations of these results through invoking the idea of symmetry. 
Explanation through the idea of symmetry is not the same as directly 
observing symmetry. For example, before the symmetry principles were 
understood to be central to physics, there were conceivably other 
explanations in the case of the pigeon sitting on the electric wire. The 
explanation of chis phenomenon, namely, the pigeon not getting 
electrocuted, draws upon many diverse ideas of electrostatics. The 
explanation due to symmetry is one link in the larger explanation. Ir is 
not clear then how an explanation (dependent on a particular theoretical 
formulation) can be transformed to the status of an observation or an 
observable entity. That is, just because symmetry explains why the pigeon 
is not electrocuted it cannot become an observable quantity in itself. 
Unlike the case of observation of transformation and invariance, which 
was initially defined as the observation of symmetry, observing the pigeon 
on the electric wire is not equivalent to observing the global symmetry 
of the electric potential. 

This is a problem of conflating observation with explanation. That 
which explains is itself not observed, as is generally the case. One may 
then look towards causal explanations in order to situate symmetry on a 
more firm footing. But it is nor clear that symmetry plays a causal role in 
the example of the pigeon. 

Kosso's example of the observation of the global phase transformation 
again indicates a similar problem. This observation is rhe observation of 
invariance involving a double-slit interference experiment. He notes that 
one can change the absolute phase of the incoming electron in different 
ways. But 'none of the global rransformations changes the outcome of 
the experiment; that is, none of chem changes the interference pattern 
on the screen.' Thus the 'invariance is easily observed and the experiment 
as a whole amounts to an observation of the internal, global symmetry 
in nature' (ibid., 93). There are two problems with this conclusion. One 
is the problem of conflating explanation and observation mentioned 
earlier. The other arises when we ask transformation and invariance of 
what. 
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4.2. /11111Zri1Znce 11s. independence 

Observation of transformation and invaliance not only suggest the 
possible presence of symmetry but also the independence of the 
parameters of transformation in the observation of invariance. For 
example, in the double slit experiment, if one introduces a filter chat 
does nor modify the electron beam or change a parameter which will 
nor modify the pattern then also the interference pattern will remain 
invariant. Thus, transformation parameters that are not involved in the 
theoretical explanation of the phenomena will also exhibit invariance. 
But this is why Kosso says that the transformation must be observed. 
But transformation of what? Isn't changing filters chat change phase seen 
as a transformation? If so, then changing filters that do not change phase 
is also a transformation and the same invariance is also seen. So we cannot 
conclude from chis chat the phenomenon has the symmetry under 
transformation of che independent parameters. This strongly suggests 
that, at least in the examples provided by Kosso, the presence of symmetry 
is an inference and not an observation, per se. As inference, it is 
theoretically loaded. 

There are cwo other points chat must be noted. It cannot be the case 
chat mere recognition of transformation and invariance suggests the 
inherence of symmetry. There has to be something more: a breakdown 
of invariance is needed to postulate the invariance associated with a 
particular symmetry. Consider two examples. First, the case of the pigeon. 
Now suppose chat the pigeon has flown from the ground and sits on the 
branch of a tree. There is a transformation and also invariance, exactly 
on par with the case of the pigeon sitting on an electric wire. What does 
chis observation of transformation and invariance cell us about the 
observation of 'symmetry'? Symmetry of what? Thankfully, such .a 
problem does not arise in the case of the electric wire only because there 
is another possibility chat allows us to infer the symmetry of the electric 
potential, namely, the phenomenon that the pigeon can get electrocuted 
when it is simultaneously in touch with the wire and a grounded source. 
It is the possibility of non-invariance chat in cum is associated with a 
symmetry. In the double-slit experiment, changing the phase of one beam 
without changing the other changes the interference pattern. It is this 
possibility chat then suggests chat the invariance of the interference pattern 
when both beams undergo same phase change implies a symmetry of 



124 • PHILOSOPHY OF SYMMETRY 

the system. These call into question whether symmetry is empirically 
observable in the manner described by Kosso. 

Symmetry always needs a breakdown of invariance in order for it to 

be recognised as such. In other words, we cannot simply place the 
observational status of symmetry on two other observational categories 
of transformation and invariance. Boch of chese are not by themselves 
independently observable and indeed, the observation of invariance is 
predicated on recognition of the observation of the breakdown of 
invariance. In the case of local symmetries, the breakdown of invariance 
is immediately manifested. In the case of global symmetries, invariance 
is predicated on a breakdown of invariance as discussed here. This suggests 
chat as far as the empirical, observational status of symmetries is 
concerned, the divide is not between the global and local, as Kosso ha!: 
it. 

The second point refers to the idea of form and its relationship to 
symmetry, even in the above discussed examples. In the double slit 
experiment, the change of global phase keeps the pattern invariant bur 
chis needs to be qualified. A phase shift of 180 degrees, for example, 
interchanges the maxima and minima (the dark and white regions). Thus, 
what is actually invariant is not the exact position of maxima and minima 
but only the 'form' of the interference pattern. This engagement with 
form in the context of symmetry thus goes beyond form of objects and 
leads to the consideration of the 'form' of phenomena themselves. More 
importantly, the idea of form is of central importance even in the 
theoretical formulations, most notably in the inscriptive strategies of 
theories. 

Transformations are distinct from operations in that they leave the 
form as is. For example, in censor analysis, differentiation of a scalar 
leads to a vector and differentiation of chis vector to a second order 
tensor. These operations change the 'kind' of objects they operate on 
but transformations of a vector leave the form of the vector the same 
and transformations on some tensor leaves its 'order' the same. (Of course, 
the primary operations of addition and multiplication leave the form 
invariant and should thus be seen as 'transformations' in this context.) 
Group theoretical transformations cannot change the form. In the case 
of global symmetries, like phase change (U(l) transformations) or even 
SU(2) transformations which leaves the form of the doublet structure 
invariant, even the introduction of operators leave the form invariant. 
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fhis is entirely due to the property of the exponential function, a simple 
example being the shift operator, which operating on a function f(x) 
only transforms it into another function f(x+ l) rather than to a vector 
form. This property of the exponential function (or operator) allows 
group theoretical operations to remain at the level of transformation -
only because it leaves the forms invariant. 

In quantum field theories the idea of symmetry explicitly plays a 
causal role. The causal role of symmetry in these cases arises as a 
consequence of privileging the formal similarities of equations. In unified 
theories rhe generation of the gauge field masses (masses of bosons) arises 
from symmetry considerations. When we construct a theory (like rhe 
electroweak theory) explicitly on grounds of symmetry, which then creates 
the possibility of empirical observations like the masses of bosons, we 
can claim an explicit causal function to symmetry and thus postulate 
symmetry as an inherent property of the system. But we should remember 
that even in these cases the notions of form and similarity is fundamentally 

privileged. 

5. SYMMETRY AND AESTHETICS 

Very often, we are struck by the beauty of objects - whether natural or 
works of art. We look at an object and respond to it in some way. There 
are some experiences of the senses that create pleasure in us. We may call 
this subjective, individual experience as the experience of the beauty of 
that object. As is usually the case, when we look at objects with some 
symmetry, we are captivated by 'something' in that perception. Maybe 
we are responding to some sense of balance or proportion in the 
presentation of that object (narur.1.1 objects or even paintings, for example). 
Perhaps it is to the sense of harmony between different el~ments in a 
given perception. Or maybe we are struck by the complex meanings 
suggested by simplicity in that object. Or, as is many times the case, we 
only respond intuitively to the beauty of an object of nature or art but 
do not know why we do so. 

We may note that the ideas of balance, harmony, simplicity etc. are 
closely related with symmetry, suggesting therefore that symmetrical 
objects are intrinsically related to the idea of beauty. Symmetrical objects 
generate feelings in us that somehow respond to the nature of symmetry 

possessed by that object. It has also become commonplace to talk about 
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symmetry as nor being aesthetically pleasing bur, on the contrary, quire 
boring and monotonous. To understand all these issues i•n derail, we 
may look to aesthetics to offer us an adequate formulation. In this section, 
I will discuss the relation between symmetry and beauty. How do we 
understand symmetry in the context of aesthetics? Are symmetrical objects 
necessarily beautiful? Can symmetry be an aesthetic property? Or is it a 
concept that is the basis for some other aesthetic property? Why is it 
thought that broken symmetry and asymmetry contribute to the notion 
of beauty, sometimes in a manner more significant than perfect symmetry 

itself? 
Aesthetics is derived from the Greek word aesthesis meaning 'sense 

perception' or 'sensory cognition,' and is 'the domain of a certain form 
of receptive experience, or perception, or of response-dependent 
properties which are not necessarily unique to artworks' (Carroll 1999, 
158). This perception is not a reasoned one, rather it involves the notion 
of 'apprehending through immediate sentiment' (Ferry 1993, 14). The 
discipline of aesthetics is essentially involved with the notions of sensory 
experience, rhe possibility of taste, the role of judgement of taste, rhe 
question of whether rhere are aesthetic properties present in an object 
char we have an aesthetic response to, whether there are principles of 
caste or only judgements of it, and, among other things, whether we 
need co invoke a term such as beauty. The question of beauty has been 
central to many theories of aesthetics, in particular, its relation to morality, 
its ability to evoke pleasure in the subject. Perhaps the central problem 
in any discussion of aesthetics revolves around a well-known problem: 

beauty, or in general, aesthetic experience, is entirely subjective, an 

experience of a particular individual, but when we talk of beauty or caste 

we seem to believe char they are objectively accessible, if not to all of us, 
at lease to a significant majority of subjects. How is it possible to reconcile 
chis 'objectivity' of an entirely 'subjective' experience? Related to chis is 
the question of whether a term like beauty is actually a 'property' of an 
object or merely an idealist impression formed in our minds. 

The problem of the objective and subjective in the context of beauty 
has been a central preoccupation for aesthetics. Plato, for example, 
considered beauty as something beyond its inherence in the subject. As 
Ferry notes, for Plato, the 'idea of the Beautiful is generally associated 
with the bringing into reality of an order where "measure" and 
"proportion" should rule' (ibid., 8 - 9). Socrates, in a similar vein, talks 
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about che presence of harmony in objects chat arise in che creation of 
pares in che formation of che whole. While chis seems co place the property 
of harmony within che objects, che shift in modem aesthetics, as Ferry 
points our, is chat che 'harmony is no longer thought of, and chis is the 
real break with antiquity, as the reflection of an order external co man: ic 
is no longer because the object is intrinsically beautiful chat it pleases 
but, rather, we can go so far as to say chat it is because it provides a 
certain type of pleasure chat we call it beautiful' (ibid., 9). Bue even 
modem aesthetics, while placing the idea of beauty in the subjective 
domain, also considers the work of arc as 'inseparable from a certain 
form of objectivity' (ibid., 10). 

This interrelation between the subjective and objective is not unique 
to beauty or, more generally, aesthetic experience. The history of 
philosophy illustrates a continued engagement with chis topic. Even 
perception is involved in che interplay of che objective and subjective. 
One way we can delineate che aesthetic from sensory perception could 
be co distinguish 'forms' of subjectivity. There are two streams chat are 
commonly known in che historical discussion on beauty: chose chat 
privilege the sensible (Pascalian) and those the intelligible (Cartesian). 
The Cartesian approach 'locates the essence of the cogito in reason' while 
che Pascalian locates the essential 'in the heart or the feelings' (ibid., 26). 
This illustrates the struggle for the site of subjectivity as one between 
establishing the autonomy of che sensible or the i.ntelligible. Platonism, 
for example, privileges the intelligible over r~,e sensible. We can note a 
similar tension chat pervades our understanding of science. The objectivity 
of science - although the activity is essentially a human one and therefore 
located in the subject - can be emphasised only by denying the Pascalian 
view of subjectivity. If the subjective expr~sion is located in 'reason' 
then the possibility of objective access to subjective experiences is defined 
through the working of 'reason'. In the case of subjective experience of 
feeling, we also seem co make a judgement of that experience. 

It is interesting to note that the metaphor of taste, which has come to 
be central in aesthetics, itself points to the objectification of subjective 
experience. There is something objective about taste - as biological caste 
- and the use of chis term suggests chat even in matters of aesthetic taste 
there is something objective - at least as objective as the sense of taste in 
che body. If judgement of taste is to be based on reason, then objectivity 
of beauty, as in science, will be reduced 'to a mere sense representation 
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of truth' (ibid., 33). The connection between aesthetics and science can 
also be noted in a historical sense. The shift to observation over deduction 
in the eighteenth century gives the prioriry back to the objecc. Nor 
surprisingly, this was an inspiration to understand aesthetics along the -, 
lines of physics. Thus, it was believed that we could expect to find 
principles or laws of judgement that bring together many observations 
in aesthetics, just as in physics. The consequence of this shift is, of course, 
to privilege rhe notion of discovery over invention in art works. According 
to Ferry, it is in Kant's Critique ofjudgementthat an attempt at a synthesis 
of the Cartesian and the Pascalian is first found. 

In the consideration of beaury, we may proceed along two paths. 
One is to claim chat there are (objective) principles of taste and the 
other is to claim chat there are no such principles or laws bur only 
judgements of taste. Mothersill calls the view that there are no principles 
(and laws) of taste as the 'First Thesis'. Kant holds this view as do many 
others. Bur what is a principle of taste? Such a principle 'would provide 
deductive support for a verdict, that is, for the judgement of taste under 
its normative aspect' (Mothersill 1984, 87). If 'principle' is too strong, 
then one could use the notion of 'criteria' of tastes. But principle, laws 
and criteria are mutually implicated in each other. The basic point is 1 

that principles of taste have to be normative in character. If there are 
such principles or laws of taste present, then we can reasonably explain 
why therP. is some objective experience of something like beauty. For 
example, we may say that laws of taste 'specify conditions for pleasure' 
(ibid., 97). Beardsley finds laws of taste in certain 'desirable features' 
present in a work of art. Three such features are those of 'uniry', 'intensiry' 

and 'complexity' (ibid., 98). 
In contrast, Mothersill like Kant, believes that there can be no 

principles or laws of taste but there are judgements of taste. These 
judgements, at least what Morhersill calls 'genuine' judgements, make 
aesthetical experience, like beauty, somewhat objective. As is well known 
Kant's 'antinomy of taste' was a demonstration of the thesis cha; 
judgement of taste cannot be objective because it is not based on concepts; 
the antithesis allows for the universality of such judgements.8 As Ferr 
(l 993, 85 - 86) points out, the issue that is brought to the fore by th~ 

~nt~nomy is 'how to t~ink aesthetic intersubjectivity ':ithout grounding 
It e1ther on a dogmanc reason or on a psycho-phys1ological empirical 

structure?' Kant moves towards a solution to the antinomy by considering 
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what differentiates the judgements of taste in contrast to other kinds of 
judgement. Thus he distinguishes between 'determinant' and 'reflective' 
judgements as follows (quoted in ibid., 86): 

Judgement in general is the faculty of chinking the particular as contained 
under rhe universal. If rhe universal (rhe rule, principle or law) is given, 
then rhe judgement which subsumes the particular under it is detennina11t . 

. . . If, however, only the particular is given and the universal has co be 
found for it, then the judgement is simply reflective. 

Thus, a judgement that has to do with knowledge, cognition and 

reason is a determinant judgement whereas the judgement of taste is a 
reflective judgement. Kant's original contribution in this matter is his 
shift to the notion of'reflection'. Ferry isolates five moments of reflection. 
Reflection considers a particular in terms of a universal to which it possibly 
belongs. This placement of the particular in an appropriate universal 
suggests that the universal is itself given through and after reflection. 
The search for the universal (or concept) in reflective judgement is open­
ended, thus providing a principle for reflective judgement, namely, the 
principle of purposiveness (that nature forms a system).9 Finally, it is 
reflection that is 'at the origin of a satisfaction Kant calls aesthetic' (ibid., 
87). 

It is clear that in the above formulation there is a centra1iry accorded 
to the notion of system, which is the 1--elief behind the principle of 
purposiveness. The idea of the beaur:ful, as a consequence, arises in 'the 
reconciliation of sensibility and intelligence' (ibid., 88). The idea of nature 
as system as being central r.o reflective judgement can be used to articulate 
an aesthetics of symmetry, because symmetry is fundamentally related 
to the idea of a system - whether ;n the relation of part to whole, as 
phenomenological experiences, as related to invariant transformations 
and so on. It is also not an accident chat this formulation of taste leads 
Kant to privilege natural beauty, a position chat is in constant tension 
with the very idea of artistic beauty. 

6. BEAUTY 

With this very brief introduction to judgement of taste, let me consider 
the experience of beauty. We often talk of beauty as something we 

experience and as something that is characteristic of that which is seen as 
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being beautiful. The 'objects' that embody beauty are manifold: ranging 
from insects to mountains, persons, novels, poems, music, dance, 
painting, buildings and so on. Beauty allows gradations - we often say 
something is more beautiful than something else. If beauty is entirely a 
subjective feeling, then there is a genuine problem whether a piece of 
music experienced as beautiful is specific only to the experiencing subject. 
But in making a judgement that something is beautiful, we do expect 
others (at least some others) to acquiesce. Kant took this position to the 

extreme when he claimed chat when we feel something is beautiful we 
demand this judgement from others, that is, if it pleases me it 'ought to 

please everyone' (Mothersill 1984, 213). This demand is similar to the 
demands of truth and takes beauty into the folds of truth and, therefore, 
'final' objectivity. This is similar to certain traditional views on beauty 
which related it to morality and goodness. For example, Plato held the 
view that beauty is '(i) a kind of good (ii) which can be possessed by 
items of any kind and (iii) which is linked with pleasure and inspires 

love' (ibid., 262). 
Obviously, such stringent requirements of beauty, as also in Kant's 

demand, are problematical. This is especially so when we ascribe beauty 
to certain artworks. It can be reasonably argued that our judgements on 
the aesthetic content of an object is dependant on various socio-cultural 
factors. What work of art is judged to be beautiful (by some community, 
if not universally) seems to depend on prior experience, recognition and 
knowledge about the appropriate domain of art. Santayana's position 
that judgements of beauty are judgements of individuals at a particular 
time incorporates chis larger complex of factors in our judgement of 
beauty. There is a similarity between Santayana's and Hegel's view on 
beauty in this context: neither believes in principles or laws of taste. 

Given the larger set of problems of beauty in works of art, are we 
justified in believing that there is 'something' called beauty? Mothersill 
argues that beauty is a 'standing concept' and is also 'indispensable'. 
Beauty 'picks out the concept of genuine judgements of the goodness of 
aesthetic objects' (ibid., 249). What does it mean to call beauty a concept? 
She answers it by noting that 'if j is a concept, then (1) there will be a 
general agreement with respect co what it is co be j and (2) j is 
indispensable, in the sense that it is not clear how one would follow the 

order, 'Get along without j" (ibid., 259). Moreover, individual works of 
art or nature, cannot be the paradigm cases for establishing a criteria of 
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beauty. This reverses the priority of objects over subjects in beauty. 
Con teary to Hume's position that there are certain objects that a 'qualified 
observer' will find beautiful, Mothersill argues rather chat 'every qualified 

.,, observer ... finds something-or-other beautiful' (ibid., 261). This question 
of what makes something-or-ocher beautiful leads her to consider Plato's 
views on beauty described earlier. In particular, beauty's link with pleasure 
is important. Mothersill considers rhis link as a causal one. Thus, 'if an 
item is beautiful, ir is the cause (or a potential cause) of pleasure' (ibid., 
279). But the reverse is not true: items may please us, like rhe winning 
result of a team, bur it is nor seen as beautiful. 

This observation points to a potential problem. If two objects cause 
pleasure but only one of them is beautiful, how do we so distinguish 
chem? If the distinction is possible because of some properties in che 
subject, then ir seems to be accepting the position that there are principles 
of taste. Neither does ic help to place the distinction in the subject, 
because, as Mothersill notes, it runs into 'circular' and 'metaphorical' 
problems. For instance, we can attempt ro distinguish between objects 
of pleasure and causes of pleasure. While chis is a problem particularly 
for rhe aesthetic experience of music (for example, what is rhe object of 
pleasure in music - rhe instruments chat make the music, the music 
itself, part of the music, the musicians ... ?), in the case of objects like an 
insect or a painting, rhere is at lease no real ambiguity about the objects 
of pleasure although we may not be sure what it is in che object chat is 
rhe visual cause of pleasure. In the case of music, the object of pleasure 
gees enmeshed with various meanings of music, particular genre of music, 
listener's prior knowledge and experience of listening co such music, 
listener's sensibilities and so on. Bue in the case of a concrete object or a 
painting rheir identity can be understood in terms of their properties. Ir 
may seem chat aesthetic pleasure arising from perception of these objects 
arises after recognition of rhe object per se. Bue chis view is also 
contentious. When I say I see a beautiful object, I am not first cognising 
an object and rhen recognize rhar iris beautiful. Many times, the beautiful 
object in irs presentation is instantaneously beautiful as much as ic is 
instantaneously an object. 

Even assuming chat the object of pleasure is a concrete object whose 
identity conditions are not in doubt, we still have ro ask what is ir in the 

object that causes pleasure, if there is something in ir that does so. Asking 
such a question implies rhar we already believe char there is something 
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in che object chat 'causes' pleasure in che subject. To understand che 
stakes in chis question, we need co critically consider che causal relation 
between the object and the experience of pleasure. Mochersill argues 
chat to say 'the object of pleasure is not the cause of pleasure' is misleading. 
That is, there cannot be an object and something else that somehow 
cause pleasure vis a vis the object. Neither is the object of pleasure an 
intentional object. 

If some object pleases me, it is quite conceivable that I have an idea of 
what pleases me. Mothersill argues that the person who is experiencing 
pleasure usually has an idea of what causes her pleasure. Thus, it may be 
enough co say that the 'object of pleasure for x at t' is nothing but 'what 
x cakes to be the cause of his pleasure at t' (ibid., 300). As is quite possible, 
I may be mistaken co what 'actually' causes my pleasure but in the case 
of singular cause, Mochersill notes, we can say with some confidence 
chat we do know the cause of the pleasure we experience. Certainty is 
not necessary co say chat we know the cause of our pleasure; one just 

needs 'ordinary justified true belief'. There is yet another reason why we 
can believe in che above formulation. Many times, we go back co 
experiencing chat object which once gave us pleasure. Mose times when 
I listen co a particular piece of music, I derive pleasure. And, when I 
want pleasure, I know what kind of experiences, what kind of objects, I 
need co go co. This process of intervening (as against just 'representing') 
co create pleasure for myself gives a measure of certitude to the above 
ideas. 10 

So, for Mochersill, the object of pleasure is not reduced to intentional 
object in each of the subjects. While a book may be experienced differencly 

by its many readers, it is not the case that there are as many objects of 

pleasure corresponding co each of the reader's particular projection of 
the book. Since the book was the cause of pleasure co all of them (why 
and how may differ) che book is the object of pleasure. 

There is the related point mentioned earlier: two objects may please 
me but I only find one of them to be beautiful. How do we explain chis? 
As Mothersill correccly notes, this is not done by ascribing a particular 
property which the beautiful object has and the ocher doesn't. This will 

only imply that it is that particular property which is carrying the property 

of beauty but other objects with this property may cum our not co be 

beautiful. Mothersill draws upon Isenberg to answer the above question. 

Isenberg refers co the role of a critic who articulates her reasons for finding 
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an _obj~cr aesr~1erically pleasing. Thus rhe critic distils certain 'qualities' 
,~hich 111 her view describes and explains the aesthetic nature of the object. 
Firsrly, these properties can only be discovered through acquaintance. 

v These qualities are called 'aesthetic properties'. Mochersill offers three 
definitions relating beauty and these properties. The first one is as follows 
(ibid., 342): 

Someone cakes an individual to be beautiful if and only if the individual 
pleases him and he believes that it pleases him in virtue of its aesthetic 
properries. 

Drawing upon Sue Larson, she defines aesthetic property as 'a property 

common and peculiar to individuals char are indistinguishable from one 
another' (ibid., 344). Thus the real test lies in the ability to distinguish 
two objects if we claim chat they have different aesthetic properties. If 
they are indistinguishable then they have che same aesthetic property. 
What is important here is the claim char the same aesthetic properties 

cannot be had by two distinguishable items. Further, she contends chat 

even if two objects share all properties like shape, colour ere. but have 

some distinguishable items, however 'small' it may be, like a scratch, 

. , then they cannot share the same aesthetic properties. Then, by virtue of 
the above definition, aesthetic properties in the object are the causes of 
pleasure. And because of this, in general, an object which pleases me (in 
virtue of its aesthetic properties) will continue to please me. The explicit 

causal link is captured in her chird definition (ibid., 347): 

Any individual is beautiful if and only if it is such as co be a cause of 
pleasure in virtue of its aesthetic properties. 

The important consequence of her view is chat 'whatever is found 
beautiful is beautiful' (ibid., 349). Mochersill believes chat the above 

definition offers a solution co Kane's antinomy of caste. She notes that to 

say 'O is beautiful' is only co claim a 'specific causal power' for 0, char 
is, the ability to please 'in virtue of O's aesthetic properties' (ibid., 371). 
The judgement of caste is not instantaneous; rather, ic needs cric~cal 

reflection upon the object. This judgement is also contingent to so bei~g 

confirmed. Thus, through chis reflective critical scudy of an aeSCheCic 

object, it seems possible to have 'genuine' judgements of caste chat can 
be held b . . . · k inciples of caste -Y a commurnty w1chouc havmg to mvo e pr 
the sol . 

Ution to the antinomy. 
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Let me summarize Mothersill's 'positive' account of beauty. (1) Beauty 
is causally linked with pleasure. Beauty is a 'kind of good' and ocher 
'kinds' of goodness are different from beauty because of the necessary 
link between beauty and pleasure. (2) We also feel a sense of pleasure 
from 'objects' char are not beautiful - like hearing some good news. So a 
formulation is needed char is sensitive to this difference. (3) Kane 
distinguishes between che 'merely agreeable' from the beautiful. For him, 
the agreeable is pleasure taken in 'sensation', is pleasure chat is 'interested' 
- for example, che pleasure arsing due to gratification of some desire. 
Mochersill does not subscribe to chis for it seems to be an arbitrary 
distinction to distinguish (and then privilege) the pleasure arising from 
enjoying food and enjoying music. 

7. NATURE AND ART 

Nature affords us the first experience of beauty. The many symmetries 
described earlier are properties of natural objects. These objects do cause 

pleasure in us when we view them. A discussion of beauty will perforce 

have to consider the beauty of natural objects as well as artworks. In 

aesthetics, there is a prevalent tendency to compare and contrast natural 
and artistic beauty. The question of artistic beauty, as dealt in the many 

1 

theories of arc, is problematised by many human factors. It is, after all, 
an artist who creates a work of arc. In producing the artistic produce, che 
intention of the artist, the tradition from which the arcisc works from, 
che dominance of creative imagination etc., all add up co the complexity 
of 'understanding' a piece of art. Bue in the theory of beauty we have so 
far considered, all these human 'interventions' in the creation of an object 
of arc are secondary. If we say that beauty of a work of arc is co be 
understood in terms of its capacity to cause pleasure in a subject, then 
the 'meaning' becomes secondary. One may justifiably question the claim 
that some objects of arc do indeed cause pleasure purely in virtue of che 
piece of arc. As we saw in the development of Mothersill's thesis, the 
capaciry co experience pleasure is itself dependant on a critical reflection 
chat involves che role of a critic in an essential way. The critic is assumed 
to be able to, on critical reflection through apprehension, throu h 

bracke~ing all ot_her 'inter~sted' sources of pleasure, suggest cerca~n 

aesthenc properties that will help a subject understand the aesthetic 
quality of a piece of arr. 
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le mighc be chought chat such a critical reflection is really not necessary 
for nacural objects chat we (or some of us, at least) call beautiful. The 
serious problems which arise in the case of arc do noc seem to occur in 
our appreciation of nature. le may also seem chat natural objects do not 
exhibit the problem of hiscoricity or immersion in specific traditions 
that create the multiplicity of artistic expressions. If we keep aside the 
issue of a divine creacor of these beautiful objects, we rend co view natural 
forms and beauty in terms of certain principles or laws of formation. 
But if we also accept the argument chat there are no principles or laws of 
taste, then the question of beauty in natural objects is similar to that of 
artistic ones. In particular, the role of the critic, in chis critical reflection 
on natural objects, is played not only by art critics but also by scientists 
- a point to be discussed in more detail soon. 

Kane privileges natural beauty over artistic beauty. Ferry argues char 
chis view of Kane should nor be dismissed lightly on the grounds char 
many of us believe in rhe 'superiority' of arc over nature. For Kant, 'nature 
was beautiful when it simultaneously looked like arc; and art can only be 
called beautiful when we are conscious it is art, yet it nevertheless looks 
like nature to us' (Ferry 1993, 126). Further, the role of genius, for 

· 1<.ant, is co 'recognize the work of nature' in a product of art. The artist as 
' b.=nius must be unconscious of the rules that created her work of arc. 

Appreciation of such a piece of arc, one that is 'disinterested' and therefore 
natural, places the aesthetic response to this artwork as similar to che 
response to natural beauty. Thus, Ferry concludes, 'artistic Beautiful thus 
rums out to be, in man, the exact analogue of the nacural Beautiful' 
(ibid., 127). This does not mean that there is no distinction between 
fine arc and nature, a distinction also granted by Kant. It is only chat arc 
must have a naturalness - understood as not being contrived. This is 
best captured by this claim of Kant: 'A beauty of nature is a beautifi1l 
thing; beauty of arc is a beautiful representation of a thing' (Crowther 

1993, 65). 
Hegel's opposite position in relation to Kant is well known. Hegel 

holds char 'artistic beauty stands higher than nature' (Morhersill 1984, 
384). The privilege in Hegel's view is clearly chat of rhe mind which 
creates arc. Beauty as such firstly 'belongs' to the mind. He goes to the 
extreme and says chat 'even a silly fancy' in our minds is 'higher' than 
anything of nature. Bue, as Mochersill notes, Hegel's characterisation of 
beauty is also one chat nacural objects satisfy. Based on her formulation 
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of beauty as dependent on the recognition of indistinguishability, the 
question of whether one can distinguish between narural and artistic 
objects then offers a reasonable argument against Hegel's view. (Ar the 
other extreme is Kant who claimed that the beauty of a nightingale's 
song is losr if we come co know rhar it is a human who is imitating rhar 

song!) 
As I remarked earlier, one of the role of scientists is to function as a 

'critic' of natural objects in chat they point our certain features of natural 
objects which are then used to articulate the notion of beauty in such 
objects. Symmetry is one such term that is commonly used by scientists 
to describe the beauty of certain objects. But ic is nor immediately clear 
as ro whether the notion of beauty in art is the same as that referred to 
by che scientists. le is also the case chat beauty in science is not restricted 
to certain expressions of it in reference to natural objects; scientists 
routinely talk of the beauty of theories, experiments and so on. Since 
symmetry is central to the idea of beauty in science, I will now consider 
the various notions of beauty chat is possible in science, both as discourse 

and praxis. 

8. BEAUTY IN SCIENCE 

The possibility of shared, objective traits of subjective experiences, as 
manifested in che case of beauty in arc, is also illustrated in che articulation 
of beauty in science. First of all, note chat science is a human activity 
and as such is essentially a subjective one. Scientists are the ones who do 
experiments, write theories, interpret these, and discover the princi les 
and laws of nature. But these subjective accivicies are somehow caEe 
into the objective plane. The crucial difference between science and ar~ 
in chis context, is that scientific articulations are nor feelings of individ I ' 
S . ·r. · h b 1· d b ua s. c1enn 1c expressions, w en e 1eve y a subject co be correct th · 
in conformity with the established traditions of science, do de~an~ IS, 

· f h · ·1 Ka ' an acquiescence _o or ers, s1m1 ar to ncs view char one's awareness of 
beauty necessitates a demand on ochers co recognise the same Th • I . . · e cruc1a 
difference between the expenence of a feeling like beauty and 

~xperience of scientific insight lies in che way we understand che:: 
Judgements. We noted earlier Ferry's poinc about two kinds of sub· · · 

. . . . . . JeCCIVIty 
- Carces1amsm, which places che subJecnve m che realm of d . reason an 
Pascal1an, which places ic in che realm of sensibilities. Scientific 
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subjecri\ . is taken into the orbit of objectivity through chis placement 
in human reason. Here, it is pertinent to remember Kant's distinction 
between determinate and reflective judgement that offers a distinction 
between judgement of science and judgement of tastes. 

While these distinctions help to explain the difference between the 
subjecrive activities of science and arc,. ir would be wrong to claim rhat 
scienrific activity does not manifest subjective experiences of feelings. Ir 
would also be roo drastic ro jettison the ways by which we understand 
bcaury in order co claim chat every scientific experience is porentially 
objecrifiable. Beauty, in science as in art, is a cause for a feeling of pleasure. 
In fact, science manifests a continued engagement with beauty on similar 
rerms. Also, the observation that beauty has nor become an integral pare 
of scienrific methodology suggests that beauty in science continues to 

reflect rhe problems afflicting the themarisarion of beauty in aesthetics. 
Thus, we may confidently claim chat beauty is indeed accepted as a 
scientific experience (and sometimes even as an ideal) but since it remains 
on the level of feeling, the difficulty of objectifying it in a manner suitable 
to scientists has led to a refusal to acknowledge aesthetic considerations 
as an element of scientific methodology. 

In spite of chis refusal, the idea of beauty plays an important role in 
science and occurs in the context of experiments, theories and discourse 
in all its many disciplines. But what can it mean to somehow talk of 
beauty in science, as if it is something special and distinct from ans? Lee 
us scare with natural objects. The beauty of some of these objects is a 
source of beauty for scientists and artists. The scientist may describe 
natural objects differently from artists but at the level of experiencing a 
sense of pleasure there can be no fruitful distinction. In the case of works 
of science, like works of arc, appreciation and a feeling of pleasure 'caused' 
by some works may be specific to scientists just as some works of art are 
better appreciated by artists. For example, if a theory is seen as beautiful 
by some scientists, we cannot expect an artist or layperson who has no 
idea of how co 'read' the theory co experience the pleasure which it may 
inspire in a scientist. The flip side of chis is not chat clear, since when we 
talk of the experience of a painting or music, we do not expect that only 
the community of painters and musicians will experience their beauty. 
But before we accept chat chis is the case, we need to consider the role of 
a critic, as discussed earlier. As was noted there, appreciation of an art 
work is enhanced by a critic's ability to articulate, say, some aesthetic 
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properties present in it, arising through critical reflection. Thus, while a 
scientist may have no idea of cubism and arc history, a critic's work may 
help her co understand and/or experience Picasso in a more informed 
manner. I chink one can cake inaccessible scientific theories (say chose 
which are mathematical) and open it for appreciation and reflective 
experience by non-scientists through the role of a critic. le would nor be 
unimaginable co consider char a layperson will have an aesthetic response 
co Einstein's theory once its 'aesthetic properties' are arciculaced. The 
growing popularity of popular liceracure in science illustrates chis amply. 
Bue there is a further role chat scientists play - as critics themselves. As 
critics of che art works of nature. Scientific activity is a critical reflection 
on che represent .. , 10n of natural objects and processes. This observation 
brings scientific theorising and theories of arc closer co each ocher. 

Just as much as an arc critic helps in deli nearing the aesthetic properties 
of a work of arc, rhe scientist, whose function is essentially similar co an 
arc critic, delineates the properties of natural objects and phenomena. 

The scientist may not call the properties char she isolates in her role as a 
critic as being 'aesthetic'. Bue chis view by the scientists, when held, is 

not really important if the function of the critic is to allow other subjects 

a way to experience an object, natural or artistic, in an aesthetic manner. 
While these arguments bring che consideration of natural objects close 

co char of works of arc, it is also the case chat scientists do routinely talk 
of some works of science as being beautiful. Many times aesthetic 
considerations play a significant role in the acceptance of certain theories. 
Scientists also place a premium on a view char is quire popular among 

chem, namely, the relation between beauty and truth. I will discuss these 
and related issues in more derail soon bur first some examples of what 
scientists consider as being beautiful. 

. collection of essays on the aesthetic aspects of science in various 
disciplines illustrates the inherence of the idea of beauty in sciencific 
activity (Tauber 1996). I will nor discuss the conrenr of che book in 
derail ~uc _merely use it to point our char rhe notion of beauty and 
aesrheucs 1s present in many important theories. Kohn argues that 
Darwin's theory of evolution had profound aesthetic influences. Darwin's 

'aesr?eric-emorional ambition', which was awakened on his Beagle voyage, 

was lacer transformed into high scientific theory' (ibid., 13). Darwin's 

rwo influential metaphors of 'wedging' and 'entangled bank' were central 

to his Origin of Species. Kohn argues chat the 'tension between the sublime 
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and the bc1111tifid which 'later became the critical Darwinian theme' was 
reconciled in his two metaphors. In biology, the discipline of embryology 
illustrates a continuing aesthetic in its discourse. Gilbert and Faber (ibid., 
129) point out that the 'visual aesthetic of embryology puts a premium 
on emergent form and finds expression in its focus on symmetry, order, 
pattern repetition, and elegance (visual simplicity).' Two other examples 
from the life sciences are given in this book. One is the 'aesthetic' analysis 
of an experiment on the replication of DNA by Meselson-Stahl which 

has been considered as one of the most 'beautiful' experiments in biology 

(ibid., 83). The other is the role of aesthetics of form in molecular biology. 

In this essay, Sarkar (ibid., 153) argues that aesthetic principles related 
to formalism played an important role in physics and in biology, in 
particular, in the coding of genes. 

In the case of physics, Chevalley (ibid., 242) points out char Heisenberg 
believed that 'physics is like art.' Heisenberg's argued char different 
conceptual systems in physics, namely, Newtonian, thermodynamics, 
relativity and quantum theory, are actually like different 'styles' of arr. 
There is also a suggestion that the overthrow of Ptolemy's theory by the 
Copernican one was influenced by aesthetic factors (ibid., 169). Yet 
another example from physics in this book is the use of aesthetic factors 
in the visualisation of digital image processing in astronomy (ibid., l 03). 
1 n the case of theoretical physics, the importance given to aesthetics in 
theories by people like Wey!, Dirac and Chandrasekhar are well known. 
In the context of symmetry, Weyl and Wigner, for example, placed a 
premium on its related aesthetic factors. As Root-Bernstein (ibid., 6 I) 
notes, 'scientific aesthetic must be the same as artistic aesthetic.' He gives 
the example of Wey! who chose beauty as the primary criterion for a 
theory even 'when the facts refused to cooperate' (ibid., 62). Dirac's 
quote is also often mentioned in this context: 'Ir is more important to 
have beauty in one's equations that to have them fit experiments' (ibid., 
62). The physicist Weisskopf says, 'what is beautiful in science is the 
same thing that's beautiful in Beethoven' {ibid., 62). In the case of 
chemistry, Root-Bernstein (ibid., 58) quotes the chemist Woodward: 
'Much as I think about chemistry, it would not exist for me without 
these physical, visual, tangible, sensuous things.' (The things referred to 
here are crystals, odours, colours and so on.) 

Mathematicians have consistently preferred (though not always 

articulated) aesthetic components in their formulations. G.H. Hardy is 
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di.gm example of one who privileges beauty: 'Beauty is chc first 
a para . , 
rest: chere is nor a permanenc place in che world for ugly mathcmar_ics 
(ibid., 62). Seymour Paperc believes that che emphasis on ch~ log1~al 
pare of mathematics as against its aesthetic value leads to a failure. co 

ise rhe resonances between mathematics and che total human being 
recogn . , . "d 6li) 
which are responsible for mathemac1cal pleasure and beauty (161 ., l • 

Looking at aeschecics in science from a Kantian perspective, Chcrnyak 
and Kazhdan claim chat 'mathematics is aesthetic by its very nature ... 

mathematics is poetry' (ibid., 221 - 222). 
There is one point co be noted here. The nature of what is aesthetical 

and beautiful, on the level of subjective feeling, is similar in science and 
arcs. But the role of aesthetics in science is somewhat limited compared 
co arcs. For example, Root-Bernstein (ibid., 62) says char 'aesthetics in 
sciences, as in rhe arcs, are based upon concepts of beauty, harmony and 
pattern. When simplicity, coherence and understanding replace confusion 
then beauty and truth emerge hand in hand.' Obviously, rhere is an 

undue weighrage given, in this view, co structure, harmony, simplicity, 

balance and so on. It is not an accident char these are also the clements 
which are most often seen in conjunction wirh symmetry. 

While contemporary theories of arr may scoff at chis excessive 
preoccupacion with symmetry and related terms, the aesthetic in science 
will continue to privilege them. It may be thought char complexity and 
fracral rheories, for example, may go beyond the aesthetics of symmetry 
but it is not really so. 11 Science does not a develop a theory of aesthetics 
but only works with what it chinks are its aestherical features. The 

suggested equivalence between truth and beauty, so ingrained in science, 

will necessarily make beauty an objective idea. Also, the concept of beauty 

in mathematics is deeply implicated in 'formalism'. It is indeed the case 
chat formalism in arts is reflected in the aesthetic understanding of science. 
The many views of fam~us scientists and mathematicians given above 
should be seen, once again, as attempts by critics co articulate aesthetic 
properties in virtue of which pleasure is experienced. 

9. BEAUTY AS VALUE 

I alluded earlier to Plato's view on beauty as a kind of good. The American 

philosopher, Santayana (1955, 3 I) talks about beauty as a value, 'char is, 
ir is not a perception of a matter of acr or of a relation: it is an emotion, 
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an affection of our volitional and appreciative nature.' Beauty is a positive 
value, that is, 'the sense of the presence of something good' (ibid., 31). It 
is an intrinsic value of pleasure which is not 'in the consequence of the 
utility of the object or event, but in its immediate perception' (ibid., 
32). For Santayana, 'all values must be ultimately intrinsic ... even the 
knowledge of truth ... is an aesthetic delight; for when the truth has no 
further practical utility, it becomes a landscape' (ibid., 19 - 20). 

The relation between beauty and truth, so magnified in the articulation 
of some scientists and which, in general, can be taken as a general belief 
of the scientific community, invests beauty with a 'scientific' value. But 
what is the 'nature' of this value? It is clear that beauty is not an accessible 
term to be incorporated into experiments or theories like adding a 
chemical or performing a particular mathematical operation. It is not a 
value in the sense that it is not a given term chat can be used in scientific 
methodology. Beauty arises and is recognised after the creation, after the 
process has been done. This is, of course, similar to the creation of a 
painting which, after it has been painted, we call beautiful. The artist 
has no particular recipe that will manifest beauty. So when we talk of the 
scientists' rapturous remarks on the significance of beauty, we do realise 
that it is a judgement of an experiment, theory, equation or whatever. 
When we call a painting beautiful, it is because we experience pleasure 
at seeing this beautiful object. And that is the end of our experience. We 
do not ask if the beautiful painting is true. We may say chat chis painting 
captures an insight or truth about something, but chat is incidental to its 
invoking pleasure in us. And if we look at a painting to get an insight, 
then the pleasure we get from the painting is no longer 'disinterested' 
and hence this pleasure is disqualified from being pleasure caused by 
beauty. Thus, if we accept the larger wisdom (from Kant to Santayana to 
Mothersill) that beauty should be a pleasure that arises from disinterest, 
chen che connection to truth and beauty can only be incidental and 

secondary. 
The case of beauty in science seems to be caught in an activity that is 

purposive, oriented towards something else. To understand chis, first 
consider what is conceivably an object of beauty for science. Consider 
natural objects. Say we have in front of us a beautiful insect with many 
colours and complex patterns. Let us say some scientists and some non­
scientists consider chis insect as being beautiful. When scientists talk of 
beauty in science, they are not talking about the beauty of this insect as 
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. L us say a biologist develops a theory about the colour and 
we see 1t. et . 

h f ccern on che insect. Now this theory is a candidate for being 
s ape o a pa h h 
b 

•c I t least beautiful for t ose w o can understand that cheor)' eauncu - a • . . · 
Th 

. • nee borrows the nonon of beaunful, as holding for natural at 1s, sc1e . . ' 
(and artistic) objects, into the cons1d_er~non_ of scientific objects. This is 
similar to what rhe artists do. The amsnc obiect, say a painting, becomes 
an object about which a judgement can be made. Bur there is also a 
crucial difference. Since every scientific 'object', say experiments or 

theories under aesthetic consideration, has perforce to relate to the world 

and conceivably capture some truth about the world, they are answerable 
to something more rhan aesthetics - Weyl's strong belief aside. This 
relationship turns Hegel on his head. Remember Hegel's comment that 
'even a silly fancy' of our mind is 'higher' than anything in nature. But 
for science, even for the most aesthetic of its theories, a product of a 
creative mind, which is definitely much more than a passing fancy, may 
come co nothing in the face of rhe judgement of nature on its truth 

value. 
This is all the more obvious when we consider what science does with 

its most beautiful 'objects', say Einstein's equation of general relarivity. 1~ 

A beautiful theory is rhen taken up for the creation of more theories and 
experiments, some of which may also be seen as beautiful (but rarely is 

chis rhe case). This approach is dramatically opposite rhe arts where one 
docs not rake a beautiful painting and because it is beautiful add ocher 
modifications to it. This seems to suggest that for arts beauty is the end 
whereas for science beauty is the beginning. 

But there is much in common to the aesthetic of art and science. In 

borh, there are objects char are experienced as beautiful. The objects of 

beauty in both these theories cause pleasure. We need a critical reflection 
on these objects to have an apprehension without motivated desires for 
pleasure. In rhe final analysis, aesthetic value in science can never 
completely reject its relation to the natural world. But keeping this point 
aside, we can still ask what aesthetic factors are generally involved when 
we talk of the aesthetic value of scientific objects. In answering this we 
will find that the aesthetic properties of scientific objects are very similar 
to those of natural objects, at least those which we believe contributes ro 

the notion of beauty in natural objects. Symmetry is rhe best example of 
such a common property. 
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I 0. SYMMETRY AND BEAUTY 

Symmecry has often been related ro beaucy, as much as ir has also been 
seen as a source of monotony. As I have noted ar various points earlier, 
symmetry is usually linked with a host of terms like balance, simplicity, 
harmony, beauty and so on. Natural objects, which are often seen as 
beautiful, inv:iriably possess various types of symmetries. In the previous 
section, I concluded by pointing out that aesthetic factors which 
apparently play a role in ;ecognition of natural objects as beautiful are 
also chose chat are used in the context of beauty in science. Harmony, 
pattern, balance, coherence, simplicity are all concepts chat are implicated 
in the term 'symmetry'. Hardy says this of mathematical beaucy: 'ideas 
like the colours or words must fie together in a harmonious way' (Tauber 
J 996, 62). Davis and Hersch in their influential book The Mathematical 
Experience suggest that the beautiful in mathematics exhibit 'harmony, 
balance, contrast etc' (ibid., 64). In general, given rhe primal scientific 
tendency to gather objects and events into general principles and laws is 
itself a move that emphasises the importance of balance and harmony. 
As I had argued in the beginning of this chapter, these concepts are 
deeply implicated in rhe phenomenological experience of symmetry. 

Artists are ambivalent about symmetry. While Arnheim points to che 
importance of the notion of visual balance and harmony in wo_rks of arr, 
postmodern art, in particular, has consci~iJsly tried co create works char 
break symmetry and are asymmetrical or created in forms where 
symmetry or asymmetry has no relevance. In the conclusion of this 
section, I will argue chat broken symmetries, asymmetries, 'non­
symmetries', in rhe case of art and in general phenomenological 
experiences, are terms that can have meaning only in terms of symmetry. 
Even in the case of natural symmetries, the notion of beaucy as related co 
them is quite ambiguous. Kant notes that geometrically regular figures 
cannot be seen as aesthetically beautiful because they are based on 
concepts. He grants that we are pleased by such figures but such a pleasure 
is nor disinterested bur suggests uses. He also claims chat 'stiff regularity 
(such as borders on mathematical regularicy) is inherently repugnant co 

castes, in that contemplation of it affords us no lasting entertainment' 
(Morhersill 1984, 128). The point about 'no lasting entertainment' is 
similar to the one about monotony, as in symmetric objects and figures 
being monotonous. In contrast, Plato considered 'simple shapes and 
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figures' to be exemplars of be~uty. Kant, while ~e con~cmns symmerr): 
as boring, places great emphasis on beauty associated wnh forms. In an) 
discussion of symmetry, as we have seen earlier, we are never far away 
from chc pulls of form and formalism. Mochersill acknowledges chat the 
'manifestation of explicit symmetry is aesthetica/91 pleasing' (ibid., 127). 
And rhe symmetries present in the sunflower and the seashell 'impresses 
with rhar 'purposiveness without purpose' which Kant finds essential to 

all natural beauty' (ibid., 127). 
In Parr Two, I discussed in detail the relation of symmetry to form 

and argued char symmetry cannot be seen as secondary to form. When 
we consider the aesthetics of symmetry, we are continuously brought to 
consider the relation of symmetry with form. Pure aesthetic judgements, 
for Kant, arise from the relation of 'parts and whole in phenomenal 
configurations' (Crowther 1993, 59). Kant considers flowers, birds ere. 
as objects char arc 'free beauties' - they please not for any reason other 
chan their presentation. He also considers designs as free beauties since 
they 'have no intrinsic meaning' (Mochersill 1984, 224). Furrhermore, 
he says, 'in the estimate of a free beauty (according to mere form) we 
have the pure judgement of taste' (ibid., 225). His emphasis on design 
indudes fine arcs and he claims chat the basic prerequisite for taste is 
'what pleases by its form.' (However, Crowther (1993, 71) notes char 
Kant goes beyond formalism in saying chat an artwork is always in relation 
to rules and standards of other works.) 

Once form is privileged in rhis manner, it is hard to imagine why 
symmetry, at least 'perfect' symmetry, is banished to rhe other extreme. 
Symmetries are complex. They are more than that associated wirh circles 
and triangles. Just because one is 'bored' with circles docs not mean 
symmetry is boring. Nor is ir clear just what it is with a circle rhar causes 
an experience of boredom in us. Even in an, formalism has been 
influential. Cezanne, for example, reduced objects to their geometrical 
forms in his paintings. The formalists believe char arc is essentially 
'concerned with displaying form' (Carroll 1999, 113). An artwork is 
then understood as some specific relation between its pare and che whole. 
Clive Bell's influential work emphasised the centrality of'significant form' 
as rhar which has the 'capacity to arouse aesthetic emotion' (Crowther 
1993, 57). 

Santayana (195 5) ~o~siders in ~ome detail t~e relation of form, beauty 
and symmetry. Form 1s a synthesis of the seen and 'is almost a synonym 
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of beaury' (ibid., 47). He dedicates a section in his book to form, 
symmetry and their relation to beauty. He begins by saying that 'the 
most remarkable and characteristic problem of aesthetics is that of beauty 
of form' (ibid., 53). Here too the beauty of form is not reducible to the 
collection of its parts or elements. It is only a particular configuration of 
these parts chat arc seen to be beautiful. He then cries to argue that che 
balance of forms chat cause beauty is related to the physiology of seeing, 
in terms of the 'muscular balance' of the eye. But, like Kant, he views 
totally symmetrical figures as boring. For example, he notes chat che 
circle may exemplify simplicity and 'purity' but it 'lacks any stimulating 
quality' whereas an ellipse has a 'less dull and stupefying effect' (ibid., 
57). Then when he talks of symmetry and its 'charms', he begins by 
suggesting that 'the comfort and economy that comes from muscular 
balance in the eye, is therefore in some cases the source of the value of 
symmerry,' especially in the recognition of bilateral symmetry. And 
continues, '[l]n ocher cases symmetry appeals to us through che charm 
of recognition and rhythm' (ibid., 59). While a totally symmetrical object 
may actually be displeasing, he finds that nevertheless this is 'often the 
condition of the greatest of all merit, - the permanent power to please' 
(ibid., 59). 

Symmetry offers a 'principle of individuation' - allows us to perceive 
the 'unity and simplicity' of objects. That is, it is symmetry which is the 
condition of unity. Symmetry, in helping us~" individuate objects, helps 
us in 'enjoying' perception. But symmetry loses its value when objects 
are 'coo small or coo diffused for composition,' where it cannot gather 
che unity in perception. The synthesis which symmetry makes possible 
must be 'instantaneous'. And explicitly, he notes that the beauty of form 
is 'what specifically appeals co an aescl1etic nature' (ibid., 61). But while 
he accords such a high status co form and symmetry, he comes back co 
note char monotony 'deadens our pleasure' in two ways: one, actually 
creating a painful sensation when the repetitions are 'acute' and the ocher 
making us unconscious of chem. In either case, the pleasure of the 
monotonous, if there is pleasure, is not the pleasure of the beautiful. 

For both Kane and Santayana, there is a constant ambiguity when it 
comes to symmetry. The latter has a more engaging view of symmetry. Ic 
is only che 'totally' (or perfect) symmetrical objects chat are displeasing. 
Perfectly symmetrical objects are only chose of geometrical figures. 
Natural objects do not manifest either this 'perfect' figure nor are they 
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only the form of these figures. Shape, colour, design, texture and the 
background contribute ro the perception of these objects. Like beaury,_ 
symmetry coo is a Gestalr. And it is conceivabl~ that ~his Gestalt of 
symmetry contributes to the sense of pleasure that 1s beautiful. M?reover, 
Santayana's views on form and symmetry are close ro that ?f sc1e~ce ~s 
reflected in his statement that perfect symmetry, alrhough displeasing, 1s 
nevertheless of the 'greatest merit'. This translates symmetry into a 
principle, a value that is essentially scientific in nature. For science, the 

symmetries of nature are the most fundamental characteristic of it. Events 

of nature, in general, obey important conservation laws, all of which are 

seen as a consequence of some symmetries in nature. 

However, the phenomenology of symmetry, as in perception, in its 
relation ro beaury, cannot be the definition of symmetry as in science. 
Remember that symmetry in science is defined to be invariant 
transformations. As I had argued earlier, it is quite misleading co consider 
symmetry as some transformation or change. Symmetry is a properry of 
the object which is made 'visible' by aansformations that are invariant. 

Phenomenologically, our response to symmetry - for example, the 
'instantaneous' perception of unity of an object, the recognition of balance 

and harmony among parts of a whole, our experience of pleasure in 
perceiving such an object - cannot and does not arise from making 
transformation and noting some invariance. When we look at a beautiful 
object in nature that is symmetrical, our emotional response co it is not 
based on whether this object or its 'oriented form' (see Pare Two) is 
invariant under some transformations. Therefore, symmetry as described 
in science· remains on the order of a scientific description, one which 

allows a way of formulating a property of the object. This is very similar 

to mathematical definitions of shapes in terms of the language of topology. 
Our experience of shapes is not in these terms. They are, both in the case 

of topology and group theory, linguistic constructions used to describe 
particular properties, those which are also amenable to phenomenological 
experience. My earlier argument that the structure of groups shows strong 
similarities with the Gestalt principles of vision is one translation chat 
cries ro exhibit the possible link between the descriptive and the 
phenomenological in the case of symmetry. 

We can also understand chis distinction in terms of determinate and 

~eflective judgement~. We have to note chat symmetry as used in science 
1s more encompassrng, as we can expect from P-ent>r~li~::irions char 
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characterise formation of principles There are symm t · f . · e nes o events 
symmemes corresponding to particular models, those arising from th~ 
form of the mathematical equations and so on. 

Now we can attempt to understand the aesthetics of symmetry. I will 
begin with the ambivalence engendered by perfect symmetrical figures. 
These arc claimed to be boring, do nor cause pleasure in us, and 
sometimes, as Santayana says, may even be painful. What sense could 
we possibly ascribe to the terms 'perfect' or 'total' in the case of perfect! 
symmetrical objects? 'Perfect' says something about the symmetry bu~ 

in the case of phenomenological experience of symmetry, what is it that 
allows for a gradation? In the case of scientific description, this problem 

does not arise because the symmetry of a figure is completely characterised 
and imperfect symmetries lack one or rhe other of the coral sec of 
symmetrical elements. Can we claim that a phenomenological experience 
of total symmetry is given by a 'negative' experience, such as being bored 
or even feeling pain? Can we say that if an object is painful or boring, 
then it is perfectly symmetrical? Obviously not, because many 'objects' 
of experience can be boring and painful but they will have nothing to do 
with symmetry at all. So what allows us to recognise certain feelings of 
boredom or pain to be associated with perfect symmetry? 

This is indeed baffling. It is like saying a red flower is beautiful but if 
it has a particular richness of red, say a 'perfect' red, then it becoming 
boring or painful. This suggests that the addition of whatever it is that 
makes a quality perfect somehow negates the pleasure which the imperfect 
was capable of causing. This then should be seen as a classic instance of 
an 'anti-aesthetic' property which when 'added' to the aesthetic object 
destroys its aesthetic pleasure. It also suggests char chis notion of perfect 
is a principle of taste, or 'non-caste' if you like. This surely goes against 
what we understand by beauty. For whatever else beauty is, we may at 
least all agree char there is no recipe for ic. But then perhaps there is a 
recipe for ugliness? Maybe one can argue chat any change, in general, to 
a beautiful object will upset its balance and cause it to lose its beauty? I 
think it can and most often is che case. So, we may have a symmetric 
object which is seen as being beautiful bur once it attains perfect symmetry 
(say through some intervention or evolution) then it becomes boring 

and ugly. The argument about destroying beauty (quire easily, I must 
add) suggests chat beauty is essentially unstable and even a small change 

can cause it to topple over into the lap of the ugly. Ugly seems to be 



148 PHILOSOPHY OF SYMMETRY 

what is stable, for changes, most often, co an ugly object will continue co 
keep ic so. That is, although ic seems easy co convert beaury co ugly, rhc 
converse is not che case. Beaury is fragile and che ugly scu~dy. In the case 
of symmetry, ic is easy co make perfect symmetry out of a given symmetry 
and also easy co destroy perfect symmetry. This once more suggests that 
the ascription of monotony co perfect symmetry is not a 'disinterested' 

response. 
In the case of symmetry and perfect symmetry, we cannot use rhe 

beaury-ugly divide. A symmetry is always a part of its coral symmetry. 
Bur there is also something intuitive which is captured in the disdain of" 
perfect symmetry. We can understand this by pointing to one function 
of perfect symmetry, which is chat given a pare or a minimal set of pans 
we can envision the whole. Given a small ?.re of a circle, we can conceivably 
imagine what the circle will lo.:-k like or even acrempt co complete the 
circle. Such a process whereby 'more' is generated from minimal inputs 
is perhaps physiologically and cognitively preferred. (Nore Santayana's 
reference co muscular balance and Sober's (1975) work on simplicity.) 
Bur aesthetically such a perfect symmetry is not pleasing. Why? Is ir just 
r~e vaniry of our minds whose imagination is insulted in having been 
given such a trivial task? Is the boredom and pain chat seemingly arises 
from perceiving total symmetry a consequence of the mind being slighted, 
of the subject being irritated chat when the mind is capable of grasping 
complexity why waste its energies on obvious simplicities? But if so, 
~hen the feeling of boredom or pain chat is caused by perfect symmetry 
is not one that is 'disinterested'. If we learn co look again at a perfect 
symmetry, casting aside all our interests, who is co say we won't find 

perfect symmetries 'as' beautiful as non-perfect ones? 
On the ocher hand, we can also explain che negative experience of 

perfect symmetry as follows. Our experiencing perfect symmetry leads 
ro the · · 1 · h h · . I . . recognmon t 1at the form is grasped ennrely t roug minima 
inpu_tlm'.ormation. This recognition and deduction takes us away from 
~o~sidenng the object entirely in terms of a reflective judgement. To put 
it simply, wh~n we see perfect symmetry, we start chinking and reasoning, 
and st0P feelmg. Ir is because of chis that our aesthetic judgement gees 
clouded. Thus, what causes displeasure or boredom is not the perfect 
symmetr~ but our inability, in the face of perfect symmetry, to maintain 
our emotional poise. 

Lo rand ( I 994) argues chat while beauty is privileged in aesthetics 
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rhere are many concepts that are opposite to beauty whose analysis offers 
a better idea of beauty itself. She lists these opposites as 'rhe ugly, che 
meaningless, the kitsch, the boring, the insignificant, and che irrelevant' 
(ibid., 405). She bases her argument that these are the opposites of beauty 
on a view of beauty which is seen as possessing 'a high degree of inner 
order' bur an order which does not imply any principles or laws. Bur 
high 'degree' of order is intrinsically related co symmetry. Her notion of 
order is also confusing. For it seems that the beauty of an object lies in 
its being well organised, whose elements are in their 'right' places and 
ordering in such a manner unifies objects. This she suggests is 'aesthetic 
order' in contrast to 'rational order' which 'allows the observer to complete 
a fragmented piece since the governing laws are available' (ibid., 402). 
She gives che example of arithmetic progression to illustrate rational 
order. Bue is completion always in the presence of given laws? What is 
che law chat suggests chat when we see a pare of a circle we imagine the 
whole? This could be the Gestalt 'laws' of perception but these are not 
'laws' of caste and do not apply to aesthetics. Our point of contention 
arises because Lorand thinks chat 'in the aesthetic domain the possibility 
of deducing missing pares based on known patterns indicates deficiency' 
and what gives aesthetic value is a mix of 'order and novelty'. Perhaps che 
general response to perfect symmetry is based on a vague belief chat it 
have something to do with rational order in some sense. Lorand also 
notes chat che boring is in opposition co beauty, mainly because of 
repetition of patterns and the inability to present us with a new view of 
patterns. So if we accept opposites of beauty as really giving us a degree 
of beauty then even mistaken claims about the ugliness or the boringness 
of perfect symmetry should be seen along such a gradation. 

At chis point, we may pause and ask whether we have any idea of 
what symmetry is, in the way it has been used (however sparingly) in 
aesthetics. Santayana's views, while helpful in a limited way, are 
incomplete. le seems to be clear that, generally speaking, symmetry is a 
property of objects like colour and shape which has some role ro play in 
aesthetic perception. Bue we have to yet establish char ic is or is nor 
something more than shape and colour. In Pare Two, I argued char 
symmetry is not secondary co form. Is it possible to make a similar claim 
on phenomenological grounds? Santayana says that symmetry allows us 
to perceive the unity of an object. But how is it that we perceive unities 
even without symmetry? From the critique of the aesthetic value of perfect 
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symmetry, we can say char perfecr symmetry (and in general, symmetry) 
incires in us rhe rendency co extrapolare, co complere a figure wirhom 
needing rhe full figure for continued interrogation; gives us the ability 
co cake a figure into mind's eye for there is nothing more the figure can 
yield co my gaze. These are a range of phenomenological experiences of 
symmerry. Harmony and balance are also similar experiences related co 
symmetry, as discussed earlier. So we can reasonably say that there are a 
plethora of phenomenological experiences chat have to do with what we 
call as balance, harmony, extrapolation, simplicity and so on, and these 
constitute the experiences of symmetry. If we want to use the notion of 
property, then harmony, balance, simplicity etc. are all properties of 
something characteristic of the object, namely, symmetry. 

Can chis assertion be right? Is there really a property of objects called 
symmetry char can be accessed phenomenologically? If so, is it something 
more than its form, even in the context of phenomenology? We experience 
colour and generally say the colour is a property of the object we see. 
(Ignore here che issue of whether it is a primary or secondary quality.) 
When we see an object we see its form, maybe designs on the surface 
and so on. When we see a circle, we only see a circle. We do not see its 
symmetry. Bue we may have phenomenological experience of balance 
both in sight and in the tactile experience of balancing a circular disc. 
We may perhaps say that symmetry is another name for balance and ir is 
a parricular characteristic of all objects co have or not have or imperfccrly 
have the notion of balance chat can be experienced in some way or the 
other. This attempt of understanding symmetry as a synonym is one 
possible way. We may then claim chat harmony, balance, simplicity etc. 
can all be called symmetry. But this cannot be correct for each of these 
terms has certain unique connotations that are lost in equating each of 
chem with 'symmetry'. Noc all balanced figures or objects need be simple, 
for exa_mple. Perhaps then we can say that symmetry is nothing but the 
collecuon_ of properties such as balance and simplicity bur chis also seems 
coo conmved. What brings all these experiences together into one called 
symmetry? One way of responding would be co say chat all objects which 
are seen co embody virtues such as balance, harmony and simplicity are 
somehow or the ocher symmetric. Bue why should we not stick to just 
these terms and not invoke symmetry ac all? 

One answer, and I believe this is the right way co approach it, is to say 
chat symmetry, as far as phenomenological experiences go, can be 
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dispensed with and replaced by the 'real' experiences of terms like balance 
but as far as the aesthetic properties go, it is the phenomenological ones 
that are replaced with that of symmetry. This means that symmetry is 
primarily a potential candidate for being an aesthetic property. Therefore, 
when we consider beauty, we are first drawn to talk of symmetry. There 
may be problems in this view but before I address chem, let me consider 
another possibility of considering symmetry as a 'content' of the form. 

In the case of science, symmetry can be given an explicit formulation, 
unlike in ordinary perception and art where there seem co be a plethora 
of other terms for it. In the scientific formulation of symmetry, in terms 
of groups, one can understand, if need be, terms like balance and harmony 
as descriptions arising from the prior framework of symmetry. In art 
and perception, it is the exact reverse, where reference co symmetry is 
filled with ambiguity. Symmetry in art has nothing co do with invariant 
transformations. Ir has to do with the way we perceive objects, both 
natural and artistic. Bue what I have argued so far is chat the terms which 
stand for symmetry are actually terms that refer to symmetry, in a 
particular sense. Terms like balance and harmony capture some 
phenomenological experience and there seems to be no direct 
phenomenology of symmetry other than through these synonymous 

terms. Then why talk of symmetry at all? 
To answer chis, we have to understand in what sense these terms refer 

co symmetry, thereby explaining why we continue to use the word 
'symmetry' as if it is something more than the experience of terms like 
balance and harmony. First, let me consider the relation of symmetry to 
form in perception and art. Given a figure, we recognise its form. Let us 
say we have an equilateral triangle. We cannot, in all honesty, speak of 
the symmetry of this object in any certain manner. It seems as if there is 
no artistic or perceptual concept that will allow us to talk of symmetry 
in this case. We can then turn to formalist theories in art. Maybe we can 
ralk in terms of 'significant form' but as has been noted, for example by 
Crowther and Morhersill, chis is really a circular definition. While Bell 
claims 'significant form' captures the aesthetic of art, we are not cold 
what it is and how to find it given a work of art. Neoformalist theories 
that use both form and content may be better candidates to understand 
symmetry. The neoformalists would say that not only is there a form in 
an artwork but also content, and moreover, the form and the content 
'are related to each other in a satisfying appropriate manner' (Carroll 
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1999, 126). One of the ways cf u:-iderstanding content is ro look upon 
it as the meaning of the art\vork and form as 'the mode of presentation 
of rhe meaning' (ibid., 127). If we ask what distinguishes art from 
anything else which have form and content, the neoformalists would say 
char in art, che form and content are related in a 'satisfying appropriate 
manner'. Of course, what is satisfying and appropriate will be a macrcr 
of discussion. 

While the above points seem to be specific to amvorks, they are 

obviously not restricted to them. Any natural object seen and responded 
to on the order of art will also have to incorporate these arguments about 
form and content. le may seem that the idea of form discussed so far is 
restricted to form as in shapes. But, in general, in the consideration of 
what constitutes artistic form for any art\Vork (say a piece of music), one 
can define artistic form as 'all the webs of relations' that can be found 
between all the elements that constitute an art\Vork. Then we can 
conceivably list all such relations, with each relation being an artistic 
form, in order to comprehensively describe ont: artwork. This is called 
the 'descriptive account'. But the descriptive account is not sensitive to 
the explanatory role of artistic form. As Carroll (ibid., 142) notes, 'our 
ordinary concept of artistic form seems to be functional.' Thus, we may 
define the artistic form, in the functional account, as being 'the ensemble 
of choices intended to realize the point or purpose of the artwork' (ibid., 
143). In contrast to the descriptive account, the functional element 
considers only some, not all, elements and relations, which are essential 

co realising the purpose of the artwork. In the functionalist view, form 
serves the function of realising the purpose. 

With these brief comments, let me consider how we can understand 

symmetry in both natural and art works. When we talk of symmetry of 

an amvork, what could we possibly mean? If artistic form is formulated 
in terms of formal relations (whether all or only some of them), then 
symmetry could perhaps be thought of in terms of formal symmetric 
relations. In general, this cannot be the case, for consider t\Vo elements 
A and B and the formal relation, A is to the left of B. This is not a 

symmetric relation and putting B to the left of A may change the form 

altogether. We might perhaps ask whether symmetry has nothing to do 

with form per se but is on the order of meaning, that is, symmetry is the 

'meaning' that certain forms convey. But what is this meaning? In che 

case of art, perhaps we can isolate a theme and call that the meaning of 
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rhe artwork. Again, ir is difficulr ro see what this meaning could be 

~rher_ r_han so~e re~ms referring to the ideas of harmony, balance, 
s1mpl1c1ry ere., in which case, we come back ro our earlier question: why 
re-name these terms as symmetry? We could look ar che functional view 
of arr - rhe form following the intended function of a piece of arr. Here 
ir is clear char if there is a notion of symmetry chat we are searching for 
rhen ir cannot be in the form unless it is somehow already factored into 
the function. However, given chat we do not know clearly what symmetry 

is, we cannot conceivably create an artwork whose function is co 
communicate symmetry. 

Here there is a difference between natural objects and artworks. Ir 

can be argued that natural ob jeers char exhibit symmetry (in che scientific 
sense) come to have tl1t:.Se symmetries due ro natural 'forces' (as described -
in Parr One). In which case, the symmetries of these objects express 
:;:,;med·:i:1g aboi.:r rhc cv0iu;:i0n 0f thaL oLjccr and d-u: pl-iysica: prin.:iples 
of natural forces and their effects. If we see the patterns on a snail shell 

and causally relate it to some evolutionary and natural forces, then the 

symmetry of the shell holds some meaning about certain dynamics of 

nature. Now if I look upon the shell as I would an artwork, then I will 

have to accept char the function of the maker (say, nature) is well captured 
by che form (in chis case, the shape). Bue even in chis case, the perception 

of rhe shell says nothing about an idea of symmetry which is already nor 
present in terms like balance and harmony. 

So, phenomenologically, where is symmetry ro be found? 

The answer is actually quire simple. The idea of symmetry seems to 
be an important element of arr because it is a pare of the aesthetic 
experience. So rhe answer to the above question is simply: In the aesthetic 
experience. 

When we perceive a work of nature or of art and call it symmetric, we 

are making an aesthetic judgement. When we experience pleasure in 
perceiving such an object, we are responding ro symmetry as an aesthetic 
property. This pleasure, in the case of symmetry, is disinterested and 
therefore, is rhe cause of the feeling of beauty that it inspires in us. To 
clarify these points further, lee me briefly describe what we mean by 

aesthetic experience and aesthetic property. 

Our appreciation of natural and artistic objects is an aesthetic 

experience. Carroll notes char there are two important ways of 

understanding this experience, the content-oriented and affect-oriented 
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accounts. On rhe former, 'attending to the unity, diversity and/or intensity 
of a work (or of its parts) amounts to an aesthetic experience of the 
work.' (ibid., 168). If a work has these features, then it can afford aesthetic 
experience. Beardsley who offered these categories of unity, diversity (or 
complexity) and intensity is committed to accepting principles of taste. 
The affect-oriented account says that 'aesthetic properties are what 
aesthetic experiences are experiences of' (ibid., 170). As we have already 
seen in our discussion of beauty, what is important in aesthetic experience 
is disinterested attention. Carroll notes that this account, because it 
explicitly incorporates intentionality of production, discounts natural 
objects as being seen as artworks. Bur then, if natural objects generate 
aesthetic experience through disinterested attention, then chis exclusion 
is artificial. We can well proceed without having to call natural objects 
as artworks. But note char in either approach, the central terms used in 
each of the two formulations are closely linked with symmetry - unity, 
complexity, intensity, gestalt ere. are all elements chat are somehow 
'associated' with symmetry. 

Earlier, I had discussed Mochersill's definition of beauty in terms of 

aesthetic properties. An object is experienced as beautiful in virtue of 

these properties. These are not properties like shape, colour and so on. 
Aesthetic properties are Gestalt properties (Morhersill 1984, 365). These 
properties, for example in music, are 'disclosed in performance' (ibid., 
366). While it is the case char aesthetic experience is subjective, aesthetic 
properties are objective properties. 13 They are co be 'detected' in an 
aesthetic object. 

Symmetry is an aesthetic property. It is nor reducible co balance, 
simplicity and so on. When Kant talks about the utility aspect of perfect 
figures, he cannot be referring to its symmetry. It is balance, for example, 
that is of possible use value. So also for simplicity. And we cannot equate 
symmetry with either of these terms. Symmetry is what is in both; it 
c~ptu~es a phenomenological similarity in all the terms like unity, 
divermy, harmony, balance and intensity. Symmetry is disinterested, in 
the sense that such an attention causes pleasure. We never 'see' the 

symmetry of ~n. object and even in phenomenological experience it is 

~or clear h~w It is accessed. ft arises only in aesthetic experience. Symmetry 
1s Gescal~ JUSt as an aesthetic property should be. When we refer co 

sym~emcal figures we are talking of particular properties such as 
particular form, pattern or colour distribution but these can only be 
considered symmetrical in the scientific view of symmetry. 
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(Even the scientific view of symmetry as invariant transformations 
can be seen as an expression of an 'aesthetic' experience. If aesthetic 

:·· properties, as in music, are disclosed through performance, then we can 
reasonably expect that symmetry as an aesthetic property is disclosed 
through transformations.) 

Aesthetic properties are 'properties of an individual disclosed to us 
only through acq~aintance wi~h that individual' (ibid., 352). Symmetry, 
~een as an a~rhe~ic prop!!r~, ts nor restricted to symmetry of shapes. Ir 
1s a property m vmue of which we have an aesthetic experience; a virtue 
which may cause the experience of beauty. This does not imply chat we 
are talking of specific symmetries. There is nothing like specific 
symmetries for phenomenology. This phrase is a carry over from rhe 
scientific formulation of symmetry. Even our experience with the mirror 
is not an experience of reflection symmetry. Reflection gets the status of 
symmetry only under a specific formulation. Our pleasure that arises in 
perceiving reflection (and not the reflected object) is a pleasure that is 
caused by an aesthetic property which we may call symmetry. 

In raking this position we are not committed to principles of taste. 
We are not claiming that symmetry is always a source of pleasure related 
to beauty. This confusion may arise if we give in to seeing symmetry or 
beauty in terms of shapes. Obviously, a symmetrical figure, beautiful in 
being part of one object, may not be in another object. Symmetry as an 
aesthetic property is chat which explains the common aesthetic element 
in the various 'properties' such as unity, intensity, balance, design and so 
on. So when I say that symmetry is a source of pleasure, I do nor mean 
that this symmetry is that which is necessarily embodied in the geometrical 
figures which may be a part of rhe perceived object. 

We can extend this point and claim that even if a symmetrical 
geometrical figure is an object of pleasure in the aesthetic experience, 
the cause of pleasure is not the symmetry of the object as defined 
scientifically. The perception of chis figure need not involve any idea of 
transformation and invariance. However, beauty is caused by the presence 
of 'symmetry' in the aesthetic sense. If you ask what this symmetry is, 
then I can answer by saying that the very many ideas char are inspired in 
perceiving chat object like unity, harmony etc. are all pointers co this 

aesthetic property of symmetry. 
Symmetry need not be the only aesthetic property in an object that 

pleases. Mothersill (ibid., 354) points out that while aesthetic properties 
are 'context dependant' there can be more than one aesthetic property 
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in each individual. Scientific and mathematical symmetries are the 
residues of aestheri<; symmetry, when pleasure is taken into the domains 

of reason. 
Since symmetry in aesthetics cannot correspond to a determinate 

concept, ir satisfies Kant's criterion for reflective judgement. Si~ce it is 
not utilitarian, its experience is an experience of disaffected acquaintance. 
However, we have to consider the gradation of beauty as in 'degrees of 
beauty' rhar is naturally associated with this view. Ir may seem that the 
view of symmetry as an aesthetic property runs counter co Mothersill's 
formulation which says that if two items are distinguishable, they must 
'necessarily have different aesthetic properties' (ibid., 379). Even if 
symmetry is identified as the cause of aesthetic pleasure in distinguishable 
objects, it does not foliow chat it is the 'same' characterisnc that causes 
pleasure. For example, in one pleasing object, our experience of symmetry 
may be very different from the experience of symmetry in another object. 
We may not be able to specify what 'exactly' we mean by symmetry in 
both these cases, but may still 'feel' that symmetry is the cause of pleasure 
in both these objects. We may even find an expression for this symmetry 
but it will only be one expression, one way of reading the 'formal' relations 
among these terms or as generating a set of meanings. 

Ir is also the case that we can meaningfully talk of degrees of beauty. 
One way of dealing with this, as suggested by Mothersill, is to order 
pleasures 'according to their intensity, duration and 'fecundity" (ibid., 
380). A greater beauty 'affords a pleasure that is more intense than a 
lesser beauty ... overflows its limits and persist ... activate the creative 
imagination' (ibid., 380). 

The confusion about symmetry and its relation co beauty, especial! 

in the case of perfect figures, is a confusion about the order of pleasur: 
caused by symmetry. In the case of perfect symmetry, the most favourable 
conclusion we can draw is that it affords lesser intense pleasure. It ma, 
not inspire the creative imagination. Ir may be dissipated soon after w} 
experience it, leaving no residue of its beauty. None of these are reason: 
to say that perfect symmetry is not a cause of pleasure. On the other 
hand, philosophers and critics join hands co claim that asymmetry and 

broken symmetry are a source of beauty in contrast co symmetry. Bur, it 

mus_t b~ re~embered that the_ideas of asymmetry and broken symmetry 
are mrnns1cally and necessanly tied in with the prior formulation of 
symmetry, both in science and arr. Is it possible co have an experience of 
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,1sy;r.mctry wi,h0t,t h:.vilif; fir~t .t pcio, expel icnce uf ~yn11nctry: 

Asymmetry, for phenomenology, can only arise in the recognition of the 

lack of symmetry and is, for example, an experience of the deviation of 

the form from its nearest symmetrical form. Nevertheless, we need not 

discount asymmetry's claim to 'greater' beauty all the same. We may 

instead say that asymmetry and broken symmetry afford pleasure that is 
more intense, lasting and creative. While this point can continue co be 

debated, one needs ro .first acknowledge symmetry as an aesthetic property. 

NOTES 

I. Sec Levin (I 993) and also Levin (1997). 
2. See Ihde (1998). 
3. For more on this, see Houlgate (1993). 
4. For more on chis, sec Jay (1993). 
5. A more derailed discussion on chis issue is available in Sarukkai (2002). 
6. Sec Rock (1975). 
7. See Steiner (I 998) for a discussion on the anthropocentric concerns chat 

drive mathematical formalism. See also Sarukkai (2002). 

8. See also Matthews (1997, 16). 
9. See also Matthews (I 997, 8). 

IO. The use of intervening and representing should remind us of Hacking's 
(1983) argument on similar grounds for scientific realism. 

11. Sec Field & Golubitsky (1992). 
12. It has been suggested that Eddington's experiment, which is accepted as 

having provided the first proof of General Relativity, did not actually 
demonstrate conclusive proof of the theory. It was Eddington's belief in the 
'beaury' of Einstein's theory with the concomitant belief that a theory with 
such beauty has to be true that led him to proclaim that Einstein's theory 
had been proved by his experiment. See Collins & Pinch (1993) for more 
details of this story. 

13. See also Carroll (I 999, 199). 
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