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PREFACE

In order to prevent the reader from wasting his time in useless
attempts to solve supposed riddles, I warn him that the persons
of the dialogue are not caricatures of living or deceased persons,
much less their doubles. They are pegs to hang ideas on, and
nothing else. ‘To a certain extent this is even true for Int, who
represents the position of intuitionism. For the sake of clearness
I made him speak sometimes in a somewhat more absolute way
than I should have done if I had freely expressed my own opinions.
The discussion is strictly limited to intuitionism; other con-
ceptions of mathematics are touched on only in so far as they
lead to objections against intuitionism. I reject any reproach for
incomplete exposition of other points of view.

It was necessary to give proofs in great detail, even where they
differ only by small additions from the well-known classical ones.
There was no other way to indicate in which places these additions
had to be made. In the course of the book, as the reader is
supposed to develop a feeling for the specifically intuitionistic
difficulties, I have gradually adopted a more condensed style.

I thank all those have contributed to improve the book. among
them Dr. Paul Gilmore, Prof. Leon Henkin and Mr. William
Tait, who read parts of the manuscript and suggested many
linguistic improvements, Mr. J. J. de Iongh and Mr. F. van dc
Oudeweetering, who accurately revised the manuseript. Mr. de
Tongh indicated many corrections and clarifications in the text.

In many places of the book the reader will find old-fashioned
reasonings which lack generality and which are more clumsy than
the modern methods, This has different reasons. In the first place,
the powerful methods often make an excessive use of indirect
proof, so that it is almost impossible to introduce them in intui-
tionistic mathematics. In the second place, the very gcneral
modern theories proceed by the axiomatic method. Now this
method can only work well, if some concrete theories exist, from
which the axiomatic theory can be constructed by generalization.
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For instance, general topology could only be developed after the
topology of euclidean spaces was known in some detail. As a
matter of fact, almost no part of intuitionistic mathematics has
been investigated deeply enough to admit the construction of a
general axiomatic theory. Thus in this book I had to confine
myself to the most elementary case of integration; when this will
be better known than it is at present, it will become possible to
construct an axiomatic theory on the subject. Even in the case
of algebra, where axiomatization is possible at this moment, it
seemed better to treat the concrete example of the real number
field, in view of the fact that the book is meant as an introduction.

Probably in some cases I used antiquated methods because I
did not know the modern ones. One of the aims of the book is, to
enable working mathematicians to decide, which of their results
can be proved intuitionistically. Intuitionism can only flourish,
if mathematicians, working in different fields, become actively
interested in it and make contributions to it. In order to build
up a definite branch of intuitionistic mathematics, it is necessary
in the first place to have a thorough knowledge of the corresponding
branch of classical mathematics, and in the second place to know
by experience where the intuitionistic pitfalls lie. I try in this
book to teach the latier; I hope that some of my readers will give
a more satisfactory treatment ot details than I could, or that they
will treat other theories intuitionistically. The ‘reading sugges-
tions’ are intended to help them; they indicate the most important
intuitionistic work on some special subjects.

References have been made in the following way.
“Th. 2 refers to theorem 2 of the same section.
“Def. 2" refers to definition 2 of the same section.
“6.2.1, Th. 2 refers to theorem 2 of section 6.2.1.

A. HevTiNG
Amsterdam, August 1955,



PREFACE TO THE SECOND EDITION

In this reprint I have made only minor changes and additions.
Only section 6.5 has been partly rewritten. It would have been
tempting to add chapters on the relations of intuitionism to the
theory of recursive functions and to the recent Russian investiga-
tions on constructive analysis: however. it seemed better to confine
the content to one subject.

Amsterdam, March 1965, A. HevTING






Persons of the dialogue: Class, Form, Int, Letter, Prag, Sign.

DISPUTATION

Crass. How do you do, Mr. Int? Did you not flee the town on
this fine summer day?
Int. I had some ideas and worked them out at the library.
Crass. Industrious bee! How are you getting along?
InT. Quite well. Shall we have a drink?
Crass. Thank you. I bet you worked on that hobby of yours,
rejection of the excluded middle, and the rest. I never understood
why logic should be reliable everywhere else, but not in mathe-
matics.
InT. We have spoken about that subject before. The idea that
for the description of some kinds of objects another logic may be
more adequate than the customary one has sometimes been
discussed. But it was Brouwer who first discovered an object which
actually requires a different form of logic, namely the mental
mathematical construction [L. E. J. Brouwer 1908]. The reaso. is
that in mathematics from the very beginning we deal with the
infinite, whereas ordinary logic is made for reasoning about finite
collections.
CLass. I know, but in my eyes logic is universal and applies to
the infinite as well as to the finite.
INT. You ought to consider what Brouwer’s program was
[L. E. J. Brouwer 1907]. It consisted in the investigation of mental
mathematical construction as such, without reference to questions
regarding the nature of the constructed objects, such as whether
these objects exist independently of our knowledge of them. That
this point of view leads immediately to the rejection of the principle
of excluded middle, I can best demonstrate by an example.
Let us compare two definitions of natural numbers, say & and L.



2 DISPUTATION

I. kis the greatest prime such that £—1 is also a prime, or k=1
if such a number does not exist.

II. !is the greatest prime such that [—2 is also a prime, or I=1
if such a number does not exist.

Classical mathematics neglects altogether the obvious difference
in character between these definitions. k can actually be cal-
culated (k=3), whereas we possess no method for calculating [,
as it is not known whether the sequence of pairs of twin primes p,
p+ 2 is finite or not. Therefore intuitionists reject II as a definition
of an integer; they consider an integer to be well defined only
if a method for calculating it is given. Now this line of thought
leads to the rejection of the principle of excluded middle, for
if the sequence of twin primes were either finite or not finite,
II would define an integer.

Crass. One may object that the extent of our knowledge about
the existence or non-existence of a last pair of twin primes is
purely contingent and entirely irrelevant in questions of mathe-
matical truth. Either an infinity of such pairs exist, in which case
l=1; or their number is finite, in which case I equals the greatest
prime such that ! —2 is also a prime. In every conceivable case I is
defined; what does it matter whether or not we can actually
calculate the number?

InT. Your argument is metaphysical in nature. If “to exist”
does not mean ‘“‘to be constructed’, it must have some meta-
pbysical meaning. It cannot be the task of mathematics to in-
vestigate this meaning or to decide whether it is tenable or not.
We have no objection against a mathematician privately admitting
any metaphysical theory he likes, but Brouwer’s program entails
that we study mathematics as something simpler, more immediate
than metaphysics. In the study of mental mathematical con-
structions “to exist” must be synonymous with ‘“to be con-
structed”.

Crass. That is to say, as long as we do not know if there exists a
last pair of twin primes, II is not a definition of an integer, but as
soon as this problem is solved, it suddenly becomes such a defi-
nition. Suppose on January 1, 1970 it is proved that an infinity

of twin primes exists; from that moment I=1. Was [=1 before
that date or not? [Menger 1930].
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INT. A mathematical assertion affirms the fact that a certain
mathematical construction has been effected. It is clear that
before the construction was made, it had not been made. Applying
this remark to your example, we see that before Jan. 1, 1970 it
had not been proved that [=1. But this is not what you mean.
It seems to me that in order to clarify the sense of your question
you must again refer to metaphysical concepts: to some world of
mathematical things existing independently of our knowledge,
where “I=1" is true in some absolute sense. But I repeat that
mathematics ought not to depend upon such notions as these. In
fact all mathematicians and even intuitionists are convinced that
in some sense mathematics bear upon eternal truths, but when
trying to define precisely this sense, one gets entangled in a maze
of metaphysical difficulties. The only way to avoid them is to
banish them from mathematics. This is what I meant by saying
that we study mathematical constructions as such and that for
this study classical logic is inadequate.

Crass. Here come our friends Form and Letter. Boys, we are
having a most interesting discussion on intuitionism.

LeTTER. Could you speak about anything else with good old Int?
He is completely submerged in it.

INT. Once you have been struck with the beauty of a subject,
devote your life to it!

ForM. Quite so! Only I wonder how there can be beauty in so
indefinite a thing as intuitionism. None of your terms are well-
defined, nor do you give exact rules of derivation. Thus one for
ever remains in doubt as to which reasonings are correct and which
are not [R. Carnap 1934, p. 41; 1937, p. 46] [W. Dubislav 1932, p. 57,
75]. In daily speech no word has a perfectly fixed meaning; there is
always some amount of free play, the greater, the more abstract
the notion is. This makes people miss each other’s point, also in
non-formalized mathematical reasonings. The only way to achieve
absolute rigour is to abstract all meaning from the mathematical
statements and to consider them for their own sake, as sequences
of signs, neglecting the sense they may convey. Then it is possible
to formulate definite rules for deducing new statements from those
already known and to avoid the uncertainty resulting from the
ambiguity of language.
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InT. I see the difference between formalists and intuitionists
mainly as one of taste. You also use meaningful reasoning in what
Hilbert called metamathematics, but your purpose is to separate
these reasonings from purely formal mathematics and to confine
yourself to the most simple reasonings possible. We, on the con-
trary, are interested not in the formal side of mathematics, but
exactly in that type of reasoning which appears in metamathe-
matics; we try to develop it to its farthest consequences. This
preference arises from the conviction that we find herc one of the
most fundamental faculties of the human mind.

Form. If you will not quarrel with formalism, neither will I
with intuitionism. Formalists are among the most pacific of man-
kind. Any theory may be formalized and then becomes subject
to our methods. Also intuitionistic mathematics may and will be
thus treated [R. Carnap 1934, p. 44; 1937, p. 51].

Crass. That is to say, intuitionistic mathematics ought to be
studied as a part of mathematics. In mathematics we investigate
the consequences of given assumptions; the intuitionistic assump-
tions may be interesting, but they have no right to a monopoly.
INT. Nor do we claim that; we are content if you admit the good
right of our conception. But I must protest against the assertion
that intuitionism starts from definite, more or less arbitrary
assumptions. Its subject, constructive mathematical thought,
determines uniquely its premises and places it beside, not interior
to classical mathematics, which studies another subject, whatever
subject that may be. For this reason an agreement between
formalism and intuitionism by means of the formalization of
intuitionistic mathematics is also impossible. It is true that even
in intuitionistic mathematics the finished part of a theory may be
formalized. It will be useful to reflect for a moment upon the
meaning of such a formalization. We may consider the formal
system as the linguistic expression, in a particularly suitable
language, of mathematical thought.

If we adopt this point of view, we clash against the obstacle of the
fundamental ambiguousness of language. As the meaning of a word
can never be fixed precisely enough to exclude every possibility of
misunderstanding, we can never be mathematically sure that the
formal system expresses correctly our mathematical thoughts.
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However, let us take another point of view. We may consider
the formal system itself as an extremely simple mathematical
structure; its entities (the signs of the system) are associated with
other, often very complicated, mathematical structures. In this
way formalizations may be carried out inside mathematics, and
it becomes a powerful mathematical tool. Of course, one is never
sure that the formal system represents fully any domain of mathe-
matical thought; at any moment the discovering of new methods
of reasoning may force us to extend the formal system.

ForMm. For several years we have been familiar with this situation.
Gddel’s incompleteness theorem showed us that any consistent
formal system of number-theory may be extended consistently in
different ways.

Ixt. The difference is that intuitionism proceeds independently
of the formalization, which can but follow after the mathematical
construction.

Crass. What puzzles me most is that you both seem to start from
nothing at all. You seem to be building castles in the air. How
can you know if your reasoning is sound if you do not have at
your disposal the infallible criterion given by logic? Yesterday I
talked with Sign, who is still more of a relativist than either of
you. He is so slippery that no argument gets hold of him, and he
never comes to any somewhat solid conclusion. I fear this fate for
anybody who discards the support of logic, that is, of common
sense.

SieN.  Speak of the devil and his imp appears. Were you speaking
ill of me?

Crass. T alluded to yesterday’s discussion. To-day I am attacking
these other two damned relativists.

SigN. I should like to join you in that job, but first let us hear
the reply of your opponents. Please meet my friend Prag; he will
be interested in the discussion.

Form. How do you do? Are you also a philosopher of science?
Prac. T hate metaphysics.

INT. Welcome, brother!

ForM. Why, I would rather not defend my own position at the
moment, as our discussion has dealt mainly with intuitionism and
we might easily confuse it. But I fear that you are wrong as to
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intuitionistic logic. It has indeed been formalized and valuable
work in this field has been done by a score of authors. This seems
to prove that intuitionists esteem logic more highly than you
think, though it is another logic than you are accustomed to.
Int. I regret to disappoint you. Logic is not the ground upon
which I stand. How could it be? It would in turn need a founda-
tion, which would involve principles much more intricate and less
direct than those of mathematics itself. A mathematical con-
struction ought to be so immediate to the mind and its result so
clear that it needs no foundation whatsoever. One may very well
know whether a reasoning is sound without using any logic; a
clear scientific conscience suffices. Yet it is true that intuitionistic
logic has been developed. To indicate what its significance is, let
me give you an illustration. Let A designate the property of an
integer of being divisible by 8, B the same by 4, C the same by 2.
For 8a we may write 4 X 2a; by this mathematical construction P
we see that the property A entails B (4 — B). A similar con-
struction @ shows B — C. By effecting first P, then @ (juxta-
position of P and @) we obtain 8z = 2 X (2 X 2a) showing 4 —C.
This process remains valid if for 4, B, C we substitute arbitrary pro-
perties: If the construction P shows that A — B and @ shows that
B — C, then the juxtaposition of P and @ shows that 4 — C.
We have obtained a logical theorem. The process by which it is
deduced shows us that it does not differ essentially from mathe-
matical theorems; it is only more general, e.g. in the same sense
that “addition of integers is commutative’’ is a more general
statement than “2+ 3=3+2". This is the case for every logical
theorem: it is but a mathematical theorem of extreme generality;
that is to say, logic is a part of mathematics, and can by no means
serve as a foundation for it. At least, this is the conception of logic
to which I am naturally led; it may be possible and desirable to
develop other forms of logic for other purposes.

It is the mathematical logic which I just described that has been
formalized. The resulting formal system proves to have peculiar
properties, very interesting when compared to those of other
8ystems of formal logic. This fact has led to the investigations to
which Mr. Form alluded, but, however interesting, they are tied
but very loosely to intuitionistic mathematics.
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LerTter. In my opinion all these difficulties are imaginary or
artificial. Mathematics is quite a simple thing. I define some signs
and I give some rules for combining them; that is all.

Form. You want some modes of reasoning to prove the consistency
of your formal system.

LerTer. Why should I want to prove it? You must not forget
that our formal systems are constructed with the aim towards
applications and that in general they prove useful; this fact would
be difficult to explain if every formula were deducible in them.
Thereby we get a practical conviction of consistency which suffices
for our work. What I contest in intuitionism is the opinion that
mathematics has anything to do with the infinite. I can write down
a sign, say «, and call it the cardinal number of the integers. After
that I can fix rules for its manipulation in agreement with those
which Mr. Class uses for this notion; but in doing this I operate
entirely in the finite. As soon as the notion of infinity plays a part,
obscurity and confusion penetrate into the reasoning. Thus all the
intuitionistic assertions about the infinite seem to me highly
ambiguous, and it is even questionable whether such a sign as
1019 has any other meaning than as a figure on paper with which
we operate according to certain rules [J. Dieudonné 1949].

InT. Of course your extreme finitism grants the maximum of
security against misunderstanding, but in our eyes it implies a
denial of understanding which it is difficult to accept. Children in
the elementary school understand what the natural numbers are

and they accept the fact that the sequence of natural numbers
can be indefinitely continued.

LerrER. It is suggested to them that they understand.

InT. That is no objection, for every communication by means of
language may be interpreted as suggestion. Also Euclid in the
20th proposition of Book IX, where he proved that the set of
prime numbers is infinite, knew what he spoke about. This
elementary notion of natural numbers, familiar to every thinking
creature, is fundamental in intuitionistic mathematics. We do not
claim for it any form of certainty or definiteness in an absolute
sense, which would be unrealizable, but we contend that it is
sufficiently clear to build mathematics upon.

LeTTER. My objection is that you do not suppose too little, as
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Mr. Class thinks, but far too much. You start from certain principles
which you take as intuitively clear without any explanation and
you reject other modes of reasoning without giving any grounds
for that discrimination. For instance, to most people the principle
of the excluded middle seems at least as evident as that of complete
induction. Why do you reject the former and accept the latter?
Such an unmotivated choice of first principles gives to your system
a strongly dogmatic character.

INT. Indeed intuitionistic assertions must seem dogmatic to
those who read them as assertions about facts, but they are not
meant in this sense. Intuitionistic mathematics consists, as I have
explained already to Mr. Class, in mental constructions; a mathe-
matical theorem expresses a purely empirical fact, namely the
success of a certain construction. “2+2=3+1" must be read as
an abbreviation for the statement: “I have effected the mental
constructions indicated by ‘“2+2” and by “3--1” and I have
found that they lead to the same result.” Now tell me where the
dogmatic element can come in; not in the mental construction itself,
as is clear by its very nature as an activity, but no more in the
statements made about the constructions, for they express purely
empirical results.

LerTeRr. Yet you contend that these mental constructions lead
to some sort of truth; they are not a game of solitaire, but in some
sense must be of value for mankind, or you would be wrong in
annoying others with them. It is in this pretence that I see the
dogmatic element. The mathematical intuition inspires you with
objective and eternal truths; in this sense your point of view is not
only dogmatic, but even theological [H. B. Curry 1951, p. 6].
INnT. In the first instance, my mathematical thoughts belong to
my individual intellectual life and are confined to my personal
mind, as is the case for other thoughts as well. We are generally
convinced that other people have thoughts analogous to our own
and that they can understand us when we express our thoughts in
words, but we also know that we are never quite sure of being
faultlessly understood. In this respect, mathematics does not
essentially differ from other subjects; if for this reason you consider
mathematics to be dogmatic, you ought to call any human
reasoning dogmatic. The characteristic of mathematical thought
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is, that it does not convey truth about the external world, but is
only concerned with mental constructions. Now we must distinguish
between the simple practice of mathematics and its valuation. In
order to construct mathematical theories no philosophical pre-
liminaries are needed, but the value we attribute to this activity
will depend upon our philosophical ideas.

SieN. In the way you treat language you put the clock back.
Primitive language has this floating, unsteady character you
describe, and the language of daily life is still in the main of the
same sort, but as soon as scientific thought begins, the formalization
of language sets in. In the last decades significists have studied this
process. It has not yet come to an end, for more strictly formalized
languages are still being formed.

InT. Ifreally the formalization of language is the trend of science,
then intuitionistic mathematics does not belong to science in this
sense of the word. It is rather a phenomenon of life, a natural
activity of man, which itself is open to study by scientific methods;
it has actually been studied by such methods, namely that of
formalizing intuitionistic reasoning and the signific method, but
it is obvious that this study does not belong to intuitionistic mathe-
matics, nor do its results. That such a scientific examination of
intuitionistic mathematics will never produce a complete and
definite description of it, no more than a complete theory of other
phenomena is attainable, is clearly to be seen. Helpful and in-
teresting as these meta-intuitionistic considerations may be, they
cannot be incorporated into intuitionistic mathematics itself. Of
course, these remarks do not apply to formalization inside mathe-
matics, as I described it a few moments ago.

Prag. Allow me to underline what Mr. Sign said just now. Science
proceeds by formalization of language; it uses this method because
it is efficient. In particular the modern completely formalized
languages have appeared to be most useful. The ideal of the modern
scientist is to prepare an arsenal of formal systems ready for use
from which he can choose, for any theory, that system which
correctly represents the experimental results. Formal systems ought
to be judged by this criterion of usefulness and not by a vague and
arbitrary interpretation, which is preferred for dogmatic or meta-
Physical reasons.
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Int. It seems quite reasonable to judge a mathematical system
by its usefulness. I admit that from this point of view intuitionism
has as yet little chance of being accepted, for it would be premature
to stress the few weak indications that it might be of some use in
physics [J. L. Destouches 1951]; in my eyes its chances of being
useful for philosophy, history and the social sciences are better.
In fact, mathematics, from the intuitionistic point of view, is a
study of certain functions of the human mind, and as such it is
akin to these sciences. But is usefulness really the only measure of
value? It is easy to mention a score of valuable activities which
in no way support science, such as the arts, sports, and light
entertainment. We claim for intuitionism a value of this sort,
which it is difficult to define beforehand, but which is clearly felt
in dealing with the matter. You know how philosophers struggle
with the problem of defining the concept of value in art; yet every
educated person feels this value. The case is analogous for the
value of intuitionistic mathematics.

Form. For most mathematicians this value is affected fatally
by the fact that you destroy the most precious mathematical
results; a valuable method for the foundation of mathematics
ought to save as much as possible of its results [D. Hilbert 1922].
This might even succeed by constructive methods; for definitions
of constructiveness other than that advocated by the intuitionists
are conceivable. For that matter, even the small number of actual
intuitionists do not completely agree about the delimination of the
constructive. The most striking example is the rejection by Griss
of the notion of negation, which other intuitionists accept as
perfectly clear [H. Freudenthal 1936 A] [G. F. C. Griss 1946, p. 24 ;
1946A]. It seems probable, on the other hand, that a somewhat
more liberal conception of the constructive might lead to the
saving of the vital parts of classical mathematics.

INT. As intuitionists speak a non-formalized language, slight
divergences of opinion between them can be expected. Though
they have arisen sooner and in more acute forms than we could
foresee, they are in no way alarming, for they all concern minor
points and do not affect the fundamental ideas, about which there
is complete agreement. Thus it is most unlikely that a wider
conception of constructiveness could obtain the support of in-
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tuitionists. As to the mutilation of mathematics of which you
accuse me, it must be taken as an inevitable consequence of our
standpoint. It can also be seen as the excision of noxious ornaments,
beautiful in form, but hollow in substance, and it is at least partly
compensated for by the charm of subtle distinctions and witty
methods by which intuitionists have enriched mathematical
thought.

Form. Our discussion has assumed the form of a discussion of
values. I gather from your words that you are ready to acknow-
ledge the value of other conceptions of mathematics, but that
you claim for your conception a value of its own. Is that right?
Int. Indeed, the only positive contention in the foundation of
mathematics which I oppose is that classical mathematics has a
clear sense; I must confess that I do not understand that. But
even those who maintain that they do understand it might still be
able to grasp our point of view and to value our work.
LerreEr. It is shown by the paradoxes that classical mathematics
is not perfectly clear.

ForMm. Yes, but intuitionistic criticism goes much farther than
is necessary to avoid the paradoxes; Mr. Int has not even mentioned
them as an argument for his conception, and no doubt in his eyes
consistency is but a welcome by-product of intuitionism.

SiaN. You describe your activity as mental construction, Mr.
Int, but mental processes are only observable through the acts to
which they lead, in your case through the words you speak and
the formulas you write. Does not this mean that the only way to
study intuitionism is to study the formal system which it con-
structs?

INT. When looking at the tree over there, I am convinced I see
a tree, and it costs considerable training to replace this conviction
by the knowledge that in reality lightwaves reach my eyes, leading
me to the construction of an image of the tree. In the same way,
in speaking to you I am convinced that I press my opinions upon
you, but you instruct me that in reality I produce vibrations in the
air, which cause you to perform some action, e.g. to produce other
vibrations. In both cases the first view is the natural one, the
second is a theoretical construction. It is too often forgotten that
the truth of such constructions depends upon the present state of
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science and that the words ‘‘in reality’’ ought to be translated into
“according to the contemporary view of scientists’”’. Therefore I
prefer to adhere to the idea that, when describing intuitionistic
mathematics, I convey thoughts to my hearers; these words ought
to be taken not in the sense of some philosophical system, but in
the sense of every-day life.

SieN. Then intuitionism, as a form of interaction between men,
is a social phenomenon and its study belongs to the history of
civilization.

Int. Its study, not its practice. Here I agree with Mr. Prag:
primum vivere, deinde philosophari, and if we like we can leave
the latter to others. Let those who come after me wonder why I
built up these mental constructions and how they can be inter-
preted in some philosophy; I am content to build them in the
conviction that in some way they will contribute to the clarification
of human thought.

Pracg. It is a common fault of philosphers to speak about things
they know but imperfectly and we are near to being caught in that
trap. Is Mr. Int willing to give us some samples of intuitionistic

reasoning, in order that we may better be able to judge the quality

of the stuff?
Int. Certainly, and even 1 am convinced that a few lessons will

give you a better insight into it than lengthy discussions. May
I beg those gentlemen who are interested in my explanations, to

follow me to my classroom?



II
ARITHMETIC

2.1. Natural numbers

INT. We start with the notion of the natural numbers 1, 2, 3, etc.
They are so familiar to us, that it is difficult to reduce this notion
to simpler ones. Yet I shall try to describe their sense in plain
words. In the perception of an object we conceive the notion of
an entity by a process of abstracting from the particular qualities
of the object. \We also recognize the possibility of an indefinite
repetition of the conception of entities. In these notions lies the
source of the concept of natural numbers [L. E. J. Brouwer 1907,
p. 3; 1948, p. 1237].

Crass. Are thesc considerations not metaphysical in nature?
INT. They become so if one tries to build up a theory about
them, e.g., to answer the question whether we form the notion
of an entity by abstraction from actual perceptions of objects, or
if, on the contrary, the notion of an entity must be present in our
mind in order to enable us to perceive an object apart from the
rest of the world. But such questions have nothing to do with
mathematics. We simply state the fact that the concepts of an
abstract entity and of a sequence of such entities arc clear to every
normal human being, even to young children.

Crass. Let us admit that you have at your disposal the natural
numbers. Now you must have some startingpoint for your deduc-
tions. Do you accept Peano’s axioms?

IntT. While you think in terms of axioms and deductions, we
think in terms of evidence; that makes all the difference. I do not
accept any axioms which I might reject if I chose to do so. The
notion of natural numbers does not come to us as a bare notion,
but from the beginning it is clothed in properties which I can
detect by =imple examination. Those properties which you describe
by Peano’s axioms are among them, as I shall show you. Let “N’
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be an abbreviation for ‘‘natural number”. The first two properties
(1 is an & and if =z is an N, then the successor of z is an ) can
immediately be seen to be true by carrying out the generating
construction. The same applies to the third and fourth axiom (If
z and y are N and the successors of z and y are equal, then z=y;
the successor of an N is not equal to 1). As to the so-called axiom
of complete induction, it must be seen as a general theorem on
natural numbers. Some remarks will be useful in. preparation for
its proof.

Clearly the construction of a natural number 7 consists in
building up successively certain natural numbers, called the
numbers from 1 to =, in signs: 1 — n. At any step in the con-
struction we can pause to investigate whether the number reached
at that step possesses a certain property or not. For instance, we
can ascertain whether a given number m, different from n, occurs
in 1 — n or not. In the first case we say that m <=, in the second
case that m>n. Now it is a theorem that m#n and m>n implies
n<m. For if m does not occur in 1 — n, this fact proves that at
the step at which we reach n, the construction of m is not termi-
nated; thus »n occurs in 1 — m.

The theorem of complete induction admits a proof of the same
kind. Suppose E(z) is a predicate of natural numbers such that
E(1) is true and that, for every natural number n, £(n) implies
E(n'), where n’ is the successor of n. Let p be any natural number.
Running over 1 — p we know that the property E, which is true
for 1, will be preserved at every step in the construction of p;
therefore E(p) holds.

Analogous remarks apply to the usual recursive definitions of
sum and product in the domain of natural numbers. By running
over 1 — p we see that indeed a+p and p.a are defined for
arbitrary natural numbers ¢ and p. Once we possess the fundamental
methods of induction and recursion, the arithmetic of natural
numbers meets with no serious difficulties, nor does that of integers
or even of rationals. Difficulties arise only where the totality of
integers is involved in some way, as in our attempt II to define
an integer in our discussion. But such problems do not belong to
elementary arithmetic.

ForM. You spoke repeatedly of equal natural numbers. What
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does that mean? Is not & definition of equality, based for instance
on a one-to-one relation, necessary?

INT. Indeed this point needs some -clarification; it forces me
even to revise somewhat our notion of a natural number. If a
natural number were nothing but the result of a mental con-
struction, it would not subsist after the act of its construction and
it would be impossible to compare it with another natural number,
constructed at another time and place. It is clear that we cannot
solve this problem if we cling to the idea that mathematics is
purely mental. In reality we fix a natural number, z say, by means
of a material representation; to every entity in the construction
of x we associate, e.g., a dot on paper. This enables us to compare
by simple inspection natural numbers which were constructed at
different times.

ForMm. That amounts to the application of one-to-one relations.
InT. We may express it in that way, provided we are well aware
that the process of comparison is staged at the pre-mathematical
level. Mathematics begins after the concepts of natural numbers
and of equality between natural numbers have been formed. Of
course the dichotomy between mathematics and pre-mathematics
is artificial, just as is every splitting up of human thought, but this
dichotomy corresponds to an important difference in methods.
LeTTER. One would expect that the basic notions of mathematics
were simple and clear, but your notion of a natural number turns
out to be pretty complicated.

INnT. As far as I know, psychology has not discovered mental
atoms. Every notion may be analysed, none is comprehensible by
itself; any notion depends for its explanation upon its relations to
other notions. The notion of a natural number is no exception to
this rule. Yet it is suitable to serve as one of the main basic concepts
of mathematics, mainly for the following three reasons:

1. It is easily understood by any person who has a minimum of
education,

2. It is universally applicable in the process of counting,
3. It underlies the construction of analysis.

CLass. Apart from these philosophical questions, your inter-
pretation of the arithmetic of rationals is identical with ours.
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2.2 Real number-generators

2.2.1. Definition; relation of coincidence

InT. Yes, but at the next station, that of real numbers, we enter
a totally different landscape. As in the classical mathematics, so
in intuitionism different equivalent theories of real numbers are
possible [L. E. J. Brouwer 1919A, p. 3; A. Heyting 1935]. I shall
briefly expound Cantor’s theory. which has some advantages for
our purpose.

Let us suppose that the theory of rationals, including their order
relations, has been developed. A sequence {a,} of rational numbers
is called a Cauchy sequence, if for every natural number & we can
find a natural number n=n(k), such that |a,, , —a,| <1/k for every
natural number p. This must be so understood, that, given k, we
are able to determine effectively n(k).

Example. The sequence a = {2-7} is a Cauchy sequence. Let
the sequence b = {b,} be defined as follows: If the nth digit after
the decimal point in the decimal expansion of 7 is the 9 of the first
sequence 0123456789 in this expansion, b,=1, in every other case
, =2-7. b differs from a in at most one term, so b is classically a
Cauchy sequence, but as long as we do not know whether a sequence
0123456789 occurs in 7z, we are not able to find n such that
|bysp,— b, <1/2 for every p; we have no right to assert that b is a
Cauchy sequence in our sense.

Definition 1. A Cauchy sequence of rational numbers is a
real number-generator. Where no confusion is possible, we shall
speak briefly of a number-generator.

Two number-generators a == {a,} and b = {b,} are identical, if
a,=b, for every n. We express this relation by a = b. The following
notion of coincidence is more important.

Definition 2. The number-generators a = {a,} and b = {b,} co-
incide, if for every k we can find n = n(k) such that |a,,,—b,, | < 1/k
for every p. This relation is denoted by a=b.

Theorem. The relation of coincidence between number-gener-
ators is reflexive, symmetrical and transitive. The easy proof is
well-known.

Remark. Given any number-generator a = {a,}, a number-
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generator b = {b,} can be found such that a=b4 and that the
sequence {b,} converges as rapidly as we wish. For instance, in
order that |b,,,—b,| <1/n for every n and p, it suffices to take
b.=a,;, for every k.

If, in the following, a number-generator is denoted by one letter,
v say, it will be silently understood that it can also be denoted by
{v,}, so that v, is the nth component of the sequence .

As the notion of a real number presupposes the fundamental
notions of set theory, I postpone the definition of a real number
(as a set of coincident number-generators) till chapter III.

2.2.2. Inequality relation between number-generators

If a=b is contradictory (that means: if the supposition that
a=>0 lecads to a contradiction), we write a # b.

Theorem 1. If a#b is contradictory, then «=6 [L. E. J.
Brouwer 1925, p. 254].

Proof. Determine n so that |a,,,—a,| <1/4k and |b,,,,—b,| <1/4k
for every p. Suppose |a,—b,|=1/k; then we would have

|ty ,—b,4p| > 1/2k for every p, which entails @+ b. Thus |a, —b,| <1/k
and |a,,,—b,,,| < 2/k for every p, and as for every k£ we can find
n so that this inequality is valid for cvery p, we have a=b.

Crass. We must get used to the fact that such a theorem needs
a proof.

InT. A proof of the impossibility of the impossibility of a property
isnot in cvery case a proof of the property itself. It will be instructive
to illustrate this by an example [L. E. J. Brouwer 1925, p. 252].
I write the decimal expansion of z and under it the decimal fraction
0=0.333..., which I break off as soon as a sequence of digits

0123456789 has appeared in z. If the 9 of the first sequence
. . 10k —1
0123456789 in zis the kth digit after the decimal point, ¢ =—Z=5¢.

Now suppose that p could not be rational;

k— . .
1:;) I Okl would be impossible and no sequence could appear

in 7; but then ¢=1/3, which is also impossible. The assumption
that p cannot be rational has lead to a contradiction; yct we have
no right to assert that g is rational, for this would mean that we

then o=
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could calculate integers p and ¢ so that g=p/g; this evidently
requires that we can either indicate a sequence 0123456789 in 7 or
demonstrate that no such sequence can appear.

Crass. And you reject my argument that p is equal to one of
the rational numbers 1/3, 0.3, 0.33, etc., though we do not know
to which of them.

Int. Exactly, and I think that the real state of affairs is better
expressed by saying that ¢ cannot be different from each of these
numbers.

Crass. It seems to me that the difficulty is caused by your iuter-
pretation of negation, which diverges from the usual one. To you
“p is not rational” means the same as “the supposition that ¢ is
rational, leads to a contradiction”. Thus you only speak of falsity
“de jure’, whereas usually negation refers to falsity ‘“de facto”.
This may account for the peculiar behaviour of your negation.
Int. I can adhere to this view, if we agree that in intuitionistic
mathematics only falsity ‘“de jure” can play a part; the intro-
duction of mere “de facto” falsity would conflict with the principle

of constructivity.
Strictly speaking, we must well distinguish the use of “not” in

mathematics from that in explanations which are not mathematical,
but are expressed in ordinary language. In mathematical assertions
no ambiguity can arise: “not” has always the strict meaning. “The
proposition p is not true”’, or ‘‘the proposition p is false’”” means
“If we suppose the truth of p, we are led to a contradiction”. But
if we say that the number-generator ¢ which I defined a few moments
ago is not rational, this is not meant as a mathematical assertion,
but as a statement about a matter of facts; I mean by it that as
yet no proof for the rationality of ¢ has been given. As it is not
always easy to see whether a sentence is meant as a mathematical
assertion or as a statement about the present state of our know-
ledge, it is necessary to be careful about the formulation of such
sentences. Where there is some danger of ambiguity, we express
the mathematical negation by such expressions as ‘it is impossible
that”, “it is false that”, “it cannot be”, etc., while the factual
negation is expressed by “we have no right to assert that”, “nobody
knows that’’, ete.

There is a criterion by which we are able to recognize mathe-
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matical assertions as such. Every mathematical assertion can be
expressed in the form: “I have effected the construction 4 in my
mind”. The mathematical negation of this assertion can be
expressed as ‘I have effected in my mind a construction B, which
deduces a contradiction from the supposition that the construction
A were brought to an end”, which is again of the same form. On
the contrary, the factual negation of the first assertion is: “I have
not effected the construction 4 in my mind”’; this statement has
not the form of a mathematical assertion.

Praec. You seem to be very much interested in such examples as
that of the number p. I find them in almost every one of your
papers. To an outsider the construction of such far-fetched patho-
logical cases seems a somewhat futile occupation.

InT. We are forced to construct such examples in order to convince
others of the necessity of a proof for certain propositions. But it
would be wrong to consider them as an essential part of intuitionistic
mathematics, just as it would be wrong to contend that the
continuous non-differentiable function of Weierstrass is an essential
part of the classical differential calculus.

2.2.3. Apartness-relation between number-generators

But we have already insisted too much on the negative notion
of inequality; negative concepts are for us even less important
than in classical mathematics; whenever possible we replace them
by positive concepts. In the case of inequality between real number-
generators we do this by the

Definition 1: For real number-generators a and b, a lies apart
from b, a # b, means that = and % can be found such that
|@nsp—bpip| >1/k for every p [L. E. J. Brouwer 1919A, p. 3].

a # b entails a#b, but the converse assertion is not correct.
This can be shown by an example which is still more sophisticated
than the previous one. As it raises some rather delicate questions,
I shall postpone it till a later lecture (8.1.1). I hope that for the
moment it is sufficiently clear that a # b is a stronger condition
than a+b, because the former demands the actual indication of
the numbers » and k, whereas the latter contents itself with a mere
proof of impossibility.
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I shall now deduce the main properties of the # relation.
Theorem 1. If a # b, then & # a.
Theorem 2. If a # b and a=a’, then a’ # b,
Proof. We can find n and % so that

| @pip — Bpip| > 1/k for every p.

Now we determine m so that
| @iy — Cmyy| <1/2k for every p.

Then, if % is the largest of m, n:
| @hsp — bpyy | >1/2k for every p.

Theorem 3. If a # b is impossible, a=b [L. E. J. Brouwer

1925, p. 254].
The proof of 2.2.2. Th. 1 has been so arranged as to establish

this stronger theorem.

Theorem 4. If a 7# b, then for any real number-generator ¢
either @ =% ¢ or b # ¢ holds.

Proof. Similarly as in the proof of Th. 2 we find  and /4 so that

(i) | @4y, — busp| > 1/k for every p;
(ii) | @ns1 — @yip| <1/8k for every p;
(1ii) | b1y — By | < 1/8k for every p;
(iv) | €h1 — Cnip| < 1/8k for every p.

Then by (i) with p=1, either |a,,; —cyy| > 1/2k or b, , ~Cha| > 1/2k.
In the first case we derive from (ii) and (iv) that

| @)ip — Chyp|>1/4k for every p,
hence a # c; in the second case
| hep — Chip| > 1/4k for every p,
ie. b #c.
2.24. Fundamental operations with number-generators

Definition 1. If @ and b are real number-generators defined
by the sequences of rational numbers {a,} and {5,} respectively, then
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i.  a--b is the sequence {a, :-b,};
ii. ab is the sequence {a,b,}:

iii. —a is the sequence {—«,};
iv. Ifa # 0, then a1 is the sequence {c,}, where ¢c,=a; ' if @, = 0

and ¢,=0 if a,=0.

Theorem 1. « b, ab, —a and a~! are again real number-
generators.

Proof. It is casily proved by known methods that the defining
sequences are Cauchy sequences.

Remarks. (1). Note that ¢! can only be defined if a # 0; this
condition is necessary and sufficient to show that the defining
sequence of a~! is bounded.

(2). The rational number » may be identified with the sequence
every member of which is . In this way the system of real number-
generators appears as an extension of that of rationals. This remark
has been applied in def. 1. iv.

(3). For rational numbers no difference need be made between
# and #, for if a%b, then « —b is a rational number which is
not 0, a—b=plqg>1/2q.

Theorem 2. If a=a’, b=0', then ¢+b=0a"+b" and ab=a'd’.
If a=a’, then —a= —a'.
If a # 0, and a=a’, then a 1= (')

Proof. It will suffice to prove the last assertion. As a # 0, we
can find n and j so that |a,,,| > 1/j for every p; similarly we find »’
and j' so that |a,,, |>1/j', for every p.

Given any natural number k, we can determine ! so that

7 B l
|y, — a““"(ka for every p.

Set a~1=¢, (a’)~'=c’, then, if m is the greatest of =, n', [,

la”'L?’"’“”I(, 1/k for every p.

| a‘m+pa'm+p

I Cmyp— C,',.-H;l =

Hence c=c¢'.
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2.2.5. Fundamental identities

For a concise formulation of the fundamental identities I
introduce the notion of a rational function.

Definition 1. A rational function f(a,b,c, ...) is defined by
a finite number of applications of the four fundamental operations.
It is defined for such real number-generators a,d,¢, ..., that,
whenever in the calculation of f the inverse of a number-generator
must be taken, this number-generator is # 0. Eg.

fla, b)=a"1 (a+&-1)-1

is defined for such real number-generators a,b, that a, b and
a+b-1 are all # 0.

Lemma. If f(a,b,c,...) is any rational function, a,b,c are
given real number-generators for which f is defined and

fa,b,c, ...) ==z,

then we can find a natural number » so that

xn-pp=f(a'n+-p’ bﬂ+1J’ Cnipr » - )

for every p.

Proof. Let ¢a, b,¢, ...), gaa, b,c,...), ... be the functions
for which successively the inverse must be taken in the calculation
of f. Then ¢y(a, b, ¢, ...) #.0 and we can find an index £, so that
@@y, by, €, .- -) # 0 for n>ky; thereupon.we find k,>k, so that
®la,, b, ¢, . -.) # 0 for n> k,, etc. If k, is the last index found
in this way, it follows from 2.2.4. def. 1, that z, = f(a,, bp €y - - 2)
for n>k,.

Theorem 1. Every rational identity that is valid for rational
numbers holds also in the following sense for real number-gen-
erators:

Let f(p,q,7, .., &Y% ) and g(p.g,r, .. 242 ..) be
rational functions such that f=g if for p,q,r, ... are substituted
given rational numbers Py, 9o Tor - - - and for z, y, z, ... arbitrary
rational numbers, for which f and g are defined. Then

[P Gor 7o + - -1 @ Ds €4 -+ )=9(P0r Q0s Tor + .., 2, B, ¢, ...)

for any real number-generators a, b, ¢, ..., for which f and g
are defined.
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Proof. Set

@0 90s 790 -- -5 @ by, .. )=
and

9(Po> 9o» Tg» - - -+ @ bye,...)=w.

As shown in the lemma, we can find an index % so that

(Do G0 Tor - - +» g byy €qy - - ) =7
and

I (Dos Qo Tos -+ +» Ay by €y -+ ) =10,

for n>k. By supposition v,=w,; hence v=w.

This proves at one blow all the fundamental identities of
arithmetic. We complete them by the following laws, which are
of particular importance in analysis.

Theorem 2. a 7# b implies a+c # b+c.
Proof. If |a,,,—b,,,|>1/k for every p, then

H@n 15+ Cnsp) = (bnip +Casp)| > 1/k for every p.
Theorem 3. a # 0 and b # 0 imply ab # 0.
Proof. If |a,,|>1/k and |b,,,|>1/k for every p, then

| @100 45| > 1/ for every p.

Theorem 4. ab # 0 implies a # 0 and b # 0.
Proof. We can find ¥ and = so that

|y pbnsp| > 1k, |y —aa| <1, |0y —b,) <1
for every p; then

1
and |b, | >

1
| @) STRESY 2 +1)

for every p.
Theorem 5. a+40) # 0 implies that either a # 0 or b # 0.

Proof. Let a+b # 0. By Th. 2, —a+a+b # —a, b # —a.
By 2.2.3, Th. 4, either b # 0 or —a # 0. In the latter case, add a
to both members and apply Th. 2.

Crass. Classically, we read these theorems as negative properties
and we give indirect proofs for them. For instance: If a+c=>5b+c,
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then a=>5; hence, if a b, then a+c>b+c. But I see that you need
direct proofs because you consider the positive relation # instead
of the negative relation #.
IxT. The theorems about  as well as their proofs are simpler
than those involving = and =; the latter must be handled
with great caution, as I will illustrate by the following example.
I define two real number-generators « and b by the following
laws: If in the first # decimals of 7z no sequence 0123456789 occurs,
a,=b,=2""; if a sequence does occur in the first 2 decimals, let
the 9 in the first sequence be the kth digit; now if L is odd, «,, = 27%,
b,=2"" but if k is even, a,=2"", b, =2-% Neither for « nor for b
are we able to decide whether it is 0 or not. But ab=0! In the first
case a,b,=27%", in the second a,b,=27%""; in either |a,b,| <1/m
for n>m. Consequently the proposition “If ab=0, either «=0 or
b=0" cannot be proved as long as there exist unsolved mathe-
matical problems of the sort we used in the example.
CLass. Yet, if ab=0, it must be impossible that neither « nor b
is 0.
InT. That is right, for a0 and b7 0 implies ab + 0, as a negative
counterpart of Th. 3. I prove this in different steps.

(i) If ab=0 and « # 0, then =0, for b # 0 would give ad # 0
(Th. 3) and if b # 0 is impossible, then b=0 (2.2.3, Th. 3).

(i) Ifab=0and b#0, then ¢ =0, for by (i) « # 0 would give b=0.

(ili) Ifa=0and b0, then ab+0, for by (ii) b =0 in combination
with b0 would give «=0.

Form. Could we not say, that if ¢b=0, either «=0 or 0=0, but
we need not know which of the two relations is true?

Int. It would be dangerous to adopt such a slipshod way of
expression for such a subtle question. We only assert a proposition
if we can prove it; so we only assert that either «=0 or 4=0 if
we can prove one of these propositions. By asserting that it is
impossible that ¢ 0 and b0 we indicate exactly what we have
rroved, and this expression is scarcely more complicated than
that which you propose. If we used the latter, we ought always
to remember that it has another meaning than that which the
words suggest.
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2.2.6. Order relations between number-generators
I shall be brief about order relations.

Definition 1. a<b. if n and % can be found, so that
b,.p—a,.,>1/k for every p. a>b means the same as b<a.

n-+p n+p

Theorem 1. If a # b. either a<b or b<a.
Proof. Find n and k so that |a,.,—0,,,|>1/k for every p. Now

determine m:>n so that |a,—a,,|--1/4k and |b,—0b,, | <1/4k
for every p. Either a,—b,, > 1/k or b, —a,>1/k; in the first case
Ay — 00> 1/2k for every p, so b-\a in the second case we

obtain a<b.

Theorem 2. If a<b, then a # b.
This follows immediately from the definitions.
Theorems 1 and 2 show, that a # b is equivalent to (¢ <b or a> D).

Theorem 3. Ifa<baswell asb<a are contradictory, then a=>5.

Proof. We derive a contradiction from the supposition a # b
by Th. 1; then 2.2.3. Th. 3 gives a=5.

Theorem 4. If a<b, then for every real number ¢ holds either
a<c or c<b.
Proof similar to that of 2.2.3, Th. 4
Theorem 5. If a<b, b=e¢, then a<c.
Proof as for 2.2.3, Th. 2.
Theorem 6. If a<bd and b<c¢c, then a<c.
Proof easy from the definition.
Theorem 7. a<b implies a+c<b+ec.
Proof as for 2.2.5, Th. 2.
Theorem 8. If a>0 and b>0, then ab>0.
Proof as for 2.2.5, Th.
Definition 2. We write @ 3 b if a>b is impossible, and a 4 b
if a-<b is impossible.
Note that a 3 b is not the same as (a <b or a=>). For instance,
in the example of 2.2.2, o+ 1/3, but we do not know whether
@<1/3 or p=1/3.
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Theorem 9. If a << b and b>¢, then a>c.
Proof. From b>c it follows that >a or a >c¢. As the former is

impossible, we have a>c.

Theorem 10. If a>b and b 4 ¢, then a>c.
Proof analogous.

Theorem 11. If a >} b and b % ¢, then a 3 ¢.
Proof. Suppose a>c, then a>b or b>c¢ by Th. 4.

2.2.7. Mazximum and minimum of two number-generators
Definition 1. If a={a,}, b={b,}, then max (a,b) ={max (a,, b,)}
and min (a, b) = {min (a,, b,)}.

Theorem 1. If a and b are real number-generators, then
c=max (a, b) and d=min (a, b) are real number-generators.
Proof. Find »n such that for every p we have

Ian+ﬂ_a‘n| < l/k’ lbn-i-p—bn| < l/k
Suppose a,=b,, so that c¢,=a,.
Then ¢,,,=a,,,>a,—1/k=c,~1/k,
and a,,,<a,+1/k, by, <b,+1/k=a,+1/k, so c,,  <c, + 1/k.
It follows that the sequence {c,} is a Cauchy sequence.
Theorem 2. max(a,b)<a. max(a,b)<<b. max(a,b)=max(b,a).
min (a,b) has analogous properties. max(a,b) <« min (a,b).
Theorem 3. If x>max (a,b), then z>a and z>5.
Conversely, if z>a and z>b, then z>max (a, b).
Proof. The first part of the theorem follows immediately from
max (a, b) < a and 2.2.6, Th. 10. To prove the second part it

suffices to remark that from z,,,—a,, >1/k and Ty —bpip> 11K
there follows

Tnp —MAax (an+p’ bn-Pp) > l/k
Theorem 4. max (ab, 0)=max (a, 0) max (b, 0) +
+ min (@, 0) min (b, 0).

Proof. This equation is easily verified for rational numbers a, b
by examining the different cases as to the signs of @ and b. It
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follows for real number-generators by the definitions of ab and
of max (a, b), min (a, b).

Theorem 5. max (a, b)+min (a, b)=a+b.

2.2.8. Absolute value of a number-generator

Definition. If a is a real number-generator, then its absolute
value |a|=max (a, —a), or what comes to the same thing, if
a={a,}, then |a|={|a,|}.

Remark. The graph of the function y=|z| is not the union
of two half lines; it must be complemented by points for which
it is unknown whether they correspond to a value of & which is
>0, <0 or =0. This is done by the definition above, which
defines |z| for every real number-generator x. In general, if we
wish to consider a polygonal line as a continuous curve, we must
complement it at every corner in an analogous way.

Theorem 1. If a and b are real number-generators, then
la|+ 6] &« |a+0b|.
Proof. Suppose |a|+]|b| <|a+b|; then we could find » and k&
so that

|@ip + Bnspl — (|nsp| +[0aip]) > 1/k for every p;

but this can be true for no value of p.
Theorem 2. |a||b|=|ab|.
Theorem 3. |—a|=|a|. If a # 0, |a~|=]a|™.

2.3. Respectable real numbers
Fornm. Permit me to return to your example of two numbers
whose product was zero without one of them being zero. In this
and similar examples you use real numbers for which the order
relations with respect to the rationals are not completely known.
Could we not evade such complications by restricting arithmetic
to such real numbers which I venture to call respectable, I mean
those that are completely located with respect to the rationals?
Ixt., That seems a wise proposal, as most of the real numbers
that occur in analysis are respectable in your sense. Yet I do not
think that the difficulties to which you allude can really be solved
in this way, but I shall not go into that question, because there
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are even more serious objections. Before I discuss these, I think
it is worth while to prove that some of the most important real
numbers are respectable.

The proof for e is quite simple.

(=]
e= kl' (the partial sums of the series form a number-generator).
0

Suppose e=m/n.

1 < 1
Set Sp = Ak T"="§1k—i'

oM:

1 L (n+1)! 1 o 1
Tn= (n+1)! ; (n+k)!<(n+1)! ; (n42)k—1 =

__ L »42 1 a4l 1
(rn+)'2+l ~m4+D)! n  aln’
-7;—:=Sn+7'n- mn—D!=nls,+nlr,.

This is impossible, for n!7,<1/n is not an integer.

Crass. This is a well-known proof for the irrationality of e, but
does it settle the order relation between e and m/fn?

To do that, we must convert the last part into a positive

IxT.

reasoning. We note that
_—-——l J —_—
(n+1)! ST S o

1 1
— le—s,) < =.
n+l<n ( n) n

As n!(%l—sﬂ) is an integer, In!(e—?)';»/%,
This gives le —:’T"I>(7—_:_—m; consequently, by calculating e with a
sufficient degree of accuracy, we can decide of its order relation
with respect to m/n.

As you see, in order to prove that a real number « is respectable,
it suffices to give a proof for the irrationality of a, that establishes

at the samc time a measure for the degree of irrationality of «,

that is, an arithmetical function @(n) such that 'a_l’f‘ >_(1_) for
n|~ pn

all values of m and n.
In order to find a measure of irrationality for the algebraic



RESPECTABLE REAL NUMBERS 29

numbers [L. E. J. Brouwer 1920, p. 960]. we consider two algebraic
numbers a and b; by a caleculation involving only operations on
rational numbers we find an algebraic equation

fx) = e ... 4-¢,=0 (cp>0)
with integer coefticients. that has @ and b among its roots and
whose discriminant d = 0 (d is an integer). Now

d=c3" T e, — 10y

i<k
where w,=a, 1, ~b. wy ... 0w, are the roots of f(r) =0. Determine
the integer 4 so that
|y =] <o (L k=1, ... a);
then |« —b|2 > ,—l-#—
0"— Il" n

If for b we take a rational number. we find a measure of irrationality
for a.

All this is rather satisfactory, but on the other hand we do not
know if Euler's constant (7 is rational. so at the present state of
our knowledge it does not satisly vour condition. Even more grave
is the fact that the sum of two respectable numbers need not be
respectable. To give an example. I define a real number-generator ¢
by writing the decimal expansion of =, stopping after the first
sequence 0123456789 or 9876543210, but if the latter occurs first,
I change the 0 at the end into 1. 7 as well as ¢ are respectable
numbers. In the ease of 7 this was shown by Brouwer {L. E. J.
Brouwer 1920, p. 961]: his proof shows that for anyv rational
number » we can find a natural number # so that [z—r|>10""
By calculating 7 to 2 digits after the decimal point we find the
order relation between ¢ and #. But ¢—:x is not respectable (at
least we do not know if it is). for at this moment nobody is able
to decide whether ¢—a is cqual to, greater than or less than 0.

For these reasons it seems unpractical to restrict arithmetic to
respectable numbers. Therefore I drop this notion and stick to
the definition 2.2.1, Def. 1.
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2.4. Limits of sequences of real number-generators

For the sake of completeness I formulate the definition of
positive convergence:
Definition 1. The sequence {a,} of real number-generators is
(positively) convergent to the limit a, if, given any natural number
k, a natural number » can be found such that for every natural
number p,

(1) la—a,,,| <27k

Crass. In such definitions as this, it is not the words that are
important, but the way in which they must be understood. You
emphasize this by using the words ‘“‘can be found”, which express
that the number 7 must not only exist, but that it must be effectively
known. I have still a question to ask. Why do you use the expression
“positively convergent”? Is there also a notion of negative con-
vergence ?

InT. In fact, as is the case for many other concepts, besides the
positive notion of convergence, which results in a natural way if
we take the usual definition in a constructive sense, there can be
defined a weaker negative notion which is classically equivalent
to the positive one. However, as the use of these negative notions
involves logical difficulties connected with the properties of the
intuitionistic negation, I think it better to treat them in a chapter
on logic (7.3.2).

Cauchy’s general principle of convergence is valid. I leave it to
you to give the positive formulation of the principle and to prove
that it gives a necessary and sufficient condition for convergence.
Also the theorems about the convergence of a sub-sequence, those
about the limit of the sum-sequence and the product-sequence of
two sequences, and similar theorems subsist intuitionistically.
However, many other classical theorems are no longer valid.
I state as an example that a bounded monotone sequence need
not be convergent. A simple counterexample is the sequence {a,.}
which is defined as follows: a,=1—2"" if among the first n digits
in the decimal expansion of = no sequence 0123456789 occurs;
a,=2—2"" if among these n digits such a sequence does occur.
Nobody knows if the limit of this sequence, if it exists, will be 1
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or 2; so we are not allowed to say that this limit exists as a well
defined real number-generator.

I shall not stop to give definitions of such notions as the upper
limit of a sequence, or the least upper bound of a sequence. They
result from the usual definitions by wording them positively and
by taking every existential assertion positively.

Note that a = {a,}, where the a, are rational, implies lim e, =a.



IIT
SPREADS AND SPECIES

3.1. Spreads

3.1.1. Infinitely proceeding scquences

Until now we have supposed that a real number-generator is
determined by a law which, if # is any natural number, gives full
prescriptions for the calculation of the n-th number of the sequence.
This point of view suffices as long as we consider only isolated real
number-generators, but it becomes unsatisfactory in the theory
of the continuum, considered as the set of all real number-gener-
ators. The notion of an arbitrary law is unnatural and unmanage-
able; it may be useful on thc basis of some formal system, but
then it does not lead to a theory which corresponds sufficiently tc
our intuitive idea of the continuum. Brouwer was the first to show
how a satisfactory theory of the continuum on an intuitive basis
can be obtained without using the notion of an arbitrary law.

A real number-generator is never ready at hand; we never
possess more than a finite part of its defining sequence. This leads
us to think of a real number-generator as in a constant state of
growth. The notion of a law of progression is essential herc only
in so far as it warrants the possibility of unlimited continuation
of the sequence, hence we may eliminate it by postulating direcily
this possibility [L. E. J. Brouwer 19194, p. 3; 1920, p. 956; 1924
p. 245]. Thus by an infinitely proceeding sequence (abbreviated:
ips) we mean exactly what the words express, i.e. a sequence that
can be continued ad infinitum. The question how the components
of the sequence are successively determined, whether by a law,
by free choices, by throwing a die, or by some other means, is
entirely irrelevant. Of course two questions arise herc: Is the
introduction of the concept of an ips legitimate and is it expedient ?
The former question can be answered in the afliemative if the
concept is sufficiently clear to be acceptable as a fundamental
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notion in mathematics. Now I presume that you have serious
doubts about its clearness.

Forym. Indeed I have. By admitting this concept you introduce
into mathematics the notion of time and a subjective element
that do not belong there. An infinitely proceeding sequence proceeds
in time and the way in which it proceeds may depend upon choices,
that is upon voluntary acts of the choosing subject.

Int. I agree to that; yet if we examine the proofs of the theorems
on real number arithmetics in sections 2.2.4 and 2.2.5, we see that
they only depend upon the possibility of indefinitely continuing
the sequences; we never used the fact that their continuation was
governed by a law; hence it must be possible to consider the
continuation without demanding that a law governs it. For
instance, in the definition of the sum of two real number-generators
(2.2.4), the n-th approximation of a+b is known as soon as the
n-th approximations of @ and b are given. Hence, if @ and b are
infinitely proceeding sequences, a+b is an infinitely proceeding
sequence. To arrive at the notion of an ips, we need not introduce
new ideas, in particular not the notion of choice; the word ‘“‘choice’
is used here as a short expression for the generation of a component
of the sequence. The idea of a law governing the production of the
sequence is not necessary here and can be removed by a process
of abstraction. On these grounds I beg you to admit that the
notion of an ips is sufficiently clear.

With regard to the dependence of an ips upon the concept of
time and its subjectivity a lengthier discussion is necessary. Let
us, extending 2.2.1, Def. 1, define a real number-generator as an
ips which is a Cauchy sequence of rational numbers. Here the
condition of being a Cauchy sequence deserves special attention.
If the numbers of the sequence are freely chosen, how can we
know beforehand that the sequence will be a Cauchy sequence?
Evidently the only way is to restrict the freedom of choice by
rules that warrant the Cauchy property before the choices are made,
e.g., by the condition that |a,—a,,,|<1/n for every n and p.
An ips subjected only to this condition is certainly a Cauchy
sequence.

In the same way the whole theory of real number-generators as
explained in sections 2.2 and 2.4 can be extended to real number-
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generators in the wider sense as defined here: accordingly, from
this moment on we shall adopt the latter definition.

Generally speaking, we eliminate the subjective and temporal
aspects in the notion of an ips by admitting only such reasonings
as apply to a sequence independently of the choices that must
still be made.

The choices by which an ips is generated need not be entirely
free; their freedom can be restricted in various ways, provided at
every stage we are able to decide which components may be taken
for the next choice and which may not. E.g., the condition that
|a, — @y, <1/n for every n and every p meets this requirement,
for after the choices of a,, . .., a, we know which rational numbers
can be chosen as a,,; and which may not. Brouwer allows that,
after a certain number of choices, new restrictions for the further
choices are added by a free decision [L. E. J. Brouwer 1924,

p. 245].

3.1.2. Definition of a Spread

The main interest of the notion of an ips lies in the mode of
generality it conveys. A free Cauchy sequence of rational numbers
represents the continuum of real number-generators much better
than a sequence determined by an unspecified law; it corresponds
to the intuitive concept of the continuum as a possibility of a
gradual determination of points. Generalization of this idea leads
to Brouwer’s definition of a spread [L. E. J. Brouwer 1918, p. 3;
1924, p. 244; 1954, p. 8].

A spread M is defined by two laws; the first, which I shall call
the spread-law A, regulates the choices of natural numbers, while
the effect of the second or complementary law I'y is to assign a
sequence of mathematical entities to any ips of natural numbers
which is generated according to the first law.

It is convenient to introduce the following expressions con-

cerning finite sequences. ¢,, ..., @, is an immediate descendant
of a, ...,a, Conversely, a,, ..., a, is the immediate ascendant of
Uy oo o Uy, a’ﬂ+1'

Definition 1. A spread-law is a rule A which divides the
finite sequences of natural numbers into admissible and inadmissible
sequences, according to the following prescriptions:
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(1) It can be decided by .1 for every natural number & whether it
is a one-member admissible sequence or not;

(2) Every admissible sequence ay, a,, . .., ¢, a,,, is an immediate
descendant of an admissible sequence a;, a,, ..., a,;
(3) If an admissible sequence a, ..., ¢, is given, A allows us to
decide for every natural number k& whether a,, ..., q,, k is an
admissible sequence or not.
(4) To any admissible sequence a,....,a, at least one natural
number %k can be found such that g, ...,a,, ¥ is an admissible
sequence.

Fig. 1

Thus the admissible sequences can be represented as spreading
out fanwise as in Fig. 1; it must be remembered that an infinite
number of branches can start from any vertex of the diagram.

Definition 2. The complementary law I'y, of a spread M
assigns a definite mathematical entity to any finite sequence
which is admissible according to the spread-law of M.

Tory.  What sort of entities does I'y assign to the admissible
scquences ?

Int. In the theory of real number-generators these are rational
numbers; in general they can be any previously introduced mathe-
matical entities.

Definition 3. An ips {«,}, subjected to the condition that, for
every m, ay, ....d, must be an admissible sequence according to
the spread-law .1, is called an admisstble ips. Then the ips of the
entities which the complementary law assigns to the sequences
Ay; @), dy; ...5¢, ...,a,; ... is an element of the spread M.

Thus an clement b of a spread is an ips {b,}; we refer to b, as
the nth component of b.
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Definition 4. Two elements of spreads are equal if their nth
components are equal for every n.
Definition 5. Two spreads are equal if to every element of
either of them an equal element of the other can be found.

It is easily seen that the relations of equality between clements
of spreads and between spreads satisfy the usual conditions of
reflexivity, symmetry and transitivity.

3.1.3. Examples of spreads

(i) Letr, rp, ... designate an enumeration of the rational numbers.
Ay: Every natural number forms an admissible one-member
sequence; if a,, ..., a, is an admissible sequence, then a,,.. ., a,,
@,4, is an admissible sequence if and only if |r, —7, [<27"
I'y: To the sequence ay, ...,a, (if admissible) is assigned the
rational number 7, .

The elements of M are real number-generators r,, r,.... To
any real number-generator ¢ a member m of M can be found so
that ¢ =m  in this sense M represents the continuum of real number-

generators.

(ii) In example i, add to A, the condition that 0<r, <1 for
every n. Now M represents the real number-generators x such
that 0 3 2 > 1.

(iii) In example ii, add to A, the condition that
[1/2—7,| <|1/2-7,]| for every n>1.
Now M represents the real number-generators y such that 0 < y<l.

(iv) A, Any sequence consisting only of 0 and 1, and no other,
is admissible.
I'y: To the sequence a,, ..., a, i3 assigned the rational number

n

> a 27k

k=1
M represents the dually developable real number-generators z
with 0 3 z 3 1, where x is called dually developable if for any
number of the form a/2"=b, either x 3 b or x 4 b can be proved.

(v) To A, in example iv add the restriction that a,=0 if n is odd.
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M is a spread of real number-generators which is similar to Cantor’s
discontinuum.

It is clear that by varying the restrictions contained in /1, we
can define various spreads of real number-generators.

Note on the terminology. In his earlier publications, Brouwer
used ‘‘Menge’’ for what is here called a spread. Later on he avoided
terms like Menge, set, class, ensemble, which suggest the con-
ception, not uncommon in the classical theory, of a set as the
totality of its elements, and introduced the word “‘spread’ (Dutch:
“gpreiding’’, French: ‘‘déploiement’’). Another notion, also analo-
gous to the classical notion of set, is introduced in the next section
under the name of “species”’. I follow Brouwer’s terminology,
using the word ‘‘set” in an informal way, in explanatory paragraphs,
where I compare the intuitionistic with the classical theory.

3.2. Species
3.2.1. Definition of a species

Intuitionistically, there are two ways of defining a set: (i) by
a common mode of generation for its elements; this case is realized
in the spreads; (ii) by a characteristic property of its elements;
sets of this sort are called species.

Definition 1. A species is a property which mathematical
entities can be supposed to possess [L. E. J. Brouwer 1918, p. 4;
1924, p. 245; 1952, p. 142].

Definition 2. After a species S has been defined, any mathe-
matical entity which has been or might have been defined before S
and which satisfies the condition S, is a member of the species S.

3.2.2. FEzamples of species

(1) The real number-generators which coincide with a given real
number-generator form a species (more exactly: the property of
coinciding with a given number-generator is a species; every
definition of a species, given in the first form, ought to be so
transposed); this species is called a real number. If x is a real number
and if the number-generator £ is one of its members, then we say
that & represents x and also that & coincides with =x.
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(ii) The ipss which are equal to the elements of a spread M form
a species, the corresponding spread-species S,,.

(iii) All real numbers form a species, which is not defined as a
spread-species. This species is the (onc-dimensional) continuum (of
real numbers).

(iv) The components of an ips £ of natural numbers form a
species, which, for brevity, we identify with £

3.2.3. Type of a species

Crass. In order to avoid circular definitions, is it not neccessary
to introduce a hierarchy of types of species, analogous to that in
Principia Mathematica®

InT. Circular definitions are excluded by the condition that the
members of a species S must be definable independently of the
definition of S; this condition is obvious from the constructive
point of view. It suggests indeed an ordination of species which
resembles the hierarchy of types. Infinitely proceeding sequences
and spread-species are also called species of zero type. A species
that has as its members species of type zero is of type one.

Definition 1. A species is of type n if all its members have
type less than n and at least one of its members has type n— 1,
Examples i and ii and iv are of type 0; iii is of type 1.

3.2.4. Subspecies

The notion of a subspecies of a given species gives no difficulty.
I use the signs €, U, N with the usual meanings. § C 7T means
that every member of § is also a member of 7'; S =7 (§ is equal to T)
if SCT and TCS. a ¢S means that it is impossible that a is a
member of S. If T is a subspecies of S, then §—7 is the species of
those elements of S which cannot belong to 7.

If TCS, then =T U (8§~T) is not always identical with S,
for 8’ contains only those elements of S for which it can be decided
whether they belong to 7' or not. For instance. if § is the species
of real numbers and T that of rational numbers, then § — 7 is the
species of negatively irrational numbers. A real number such as
Euler’s constant C, for which it is unknown whether it is rational
or not, cannot be said to belong to T'U (S —T).
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Definition 1. If the species S and 7' have the property that S
can contain no element which does not belong to 7', and that T
can contain no element which does not belong to S, then § and T
are congruent species [L. E. J. Brouwer 1924, p. 246].

Theorem. If T is a subspecies of S, then 8'=7 U (S—-T) is
congruent with S.

Proof. AsS’CS, we need only prove that S contains no element
which does not belong to S’. Suppose that @ €8, but a ¢ §’; then
a¢T, so aeS—-T, so a €8’, which contradicts the hypothesis
a ¢S’. Hence a ¢ S’ is impossible for every element of S.
Definition 2. If T7CS and T U (S—T) is equal to S, then T
is a detachable subspecies of S, and S is split wp into T and S—-T
[L. E. J. Brouwer 1924, p. 247].

Crass. So this amounts to saying that we can decide for every
element of 8§ whether it belongs to 7' or not. Clearly, if T is a
detachable subspecies of 8. S—T is also a detachable subspecies
of S.

INnT. Let me give some examples.

The species of positive even numbers is a detachable subspecies
of the species N of natural numbers.

The species of exponents n for which the equation z"+y"=:z"
has non-trivial integral solutions, is not known to be a detachable
subspecies of N.

We shall see later on (3.4.3, Th. 2) that the continuum has no
other detachable subspecies than itself and the null species.

3.2.5. The relation of equivalence between species

As usual, two species, between which a one-to-one correspondence
has been established, are called equivalent species. As we remarked
in 2.1, the construction of a natural number » consists in building
up successively the numbers from 1 to n; these numbers form the
species 1 — n. A finite species is a species that is equivalent to
1 - n for some natural number n.

Definition 1. A species that is equivalent to the species N
of all natural numbers, is denumerably infinite.

Definition 2. A species that contains a denumerably infinite
subspecies is called infinite.
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Thus a species that cannot be finite, is not necessarily infinite.

Definition 3. A species that is equivalent to a detachable sub-
species of N is called numerable [L. E. J. Brouwer 1918, p. 7;
1924, p. 248], [A. Heyting 1929, p. 51].

Example. The species of twin primes (p, p+2) is numerable,
though nobody knows whether it is finite or infinite.

I shall not go into the theory of cardinal numbers, which differs

much from the classical theory [L. E. J. Brouwer 1924], in this
among other respects, that two species need not at all be comparable
as to their cardinal numbers. It is easy to give an example of a
species for which it is unknown whether it is the null species, a
finite species or an infinite species.
Crass. The species of numbers » such that the nth to (n+ 9)th
digits in = form a sequence 0123456789, provides such an example.
InT. That the continuum is not denumerably infinite, is an
immediate consequence of 3.4.3, Th. 2.

3.3. Arithmetic of real numbers
3.3.1. Relations and operations for real numbers

In 2.2 we treated the arithmetic of number-generators. You
will readily supply the definitions of equality and inequality between
real numbers, and the proofs of the main properties of these
relations. Also, after the definitions of the arithmetical operations
have been given in an obvious way, the theorems in the arithmetic
of real numbers are immediate consequences of those about real
number-generators. I leave it to you to work this out.

3.3.2. Intervals

Definition 1. If ¢ and b are real numbers, the closed interval
[a, b] is the species of real numbers x such that it is impossible that
z>a and z>b, and also impossible that z<a and z<b.

Note. The definition must be given in this complicated form
becavse it may happen that we do not know which of a, b is the
greater.

Theorem 1. If max (a,d)=c, min (a, b)=d, then [a, bl=[d, c].
Proof. We saw in 2.2.7, Th. 3 that (x>a and x> b) is equivalent
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to x>c, and this is equivalent to (x>c¢ and z>d); thus the im-
possibility of (x>a and x>b) is equivalent to the impossibility
of (x>c¢ and xz>d). By an analogous argument with d in place
of ¢, we see that x € [a, b] is equivalent to z € [d, c].

Theorem 2. If a3} b, then [a,d] is the species of the real
numbers x which satisfy (x << @ and x 3 b).

Proof. Though this proof is very simple, it may seem difficult
to those who are not accustomed to intuitionistic reasoning; for
this reason I shall give it in some detail. First suppose r < a and
z 3 b. From 2 4 a it follows that a fortiori (x<a and z<b) is
impossible; similarly. from x 3 b it follows that (r>a and z>b)
is impossible. Thus « € [a, b].

Now suppose z € [a, b], and let us admit for a moment that
z<a; then, since a 3} b, we have z<b, so that (z<a and z<b),
which is impossible by hypothesis. We have now proved that
x 4 a, and we can prove analogously that = 3 b.

Corollary. If max (@, b)=c, min (a, b)=d, then [a, b] is the
species of the real numbers x which satisfy z 3 ¢ and z 4 d.

3.3.3. Canonical number-generators

It is often convenient to represent a real number by a number-
generator of a simple form. Let the real number z be given by the
number-generator {r,}. We can find % so that |z—r,|< 2773, and
after that we can determine an integer x, so that |, —2,27"| <271,
so that
(1) | — 27| < g 27,

If we do this for every n, we obtain a number-generator {z,2-"}
which coincides with 2 and which has the property that

(2,277 — 2,277 <P 27+ 3y 27N =183 277
this implies that
(2) |, 27" =, 2771 < 27

Definition. A number-generator of the form {z,2-"}, where
every z, is an integer, and which satisfies (2), will be called a
canonical number-generator.

We have proved:
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Theorem 1. Every real number z coincides with a canonical
number-generator {z,2-"} which satisfies (1).

It is clear from the proof, that in (1) the factor 5/8 can be replaced
by 1/2+¢,, where ¢,>0.

3.4. Finitary spreads (Fans)

3.4.1. Definition

A spread M is finitary (is a fan) if the spreadlaw A,, is such that
only a finite number of one-member sequences arc admissible and

that for every admissible sequence a,, . ... a, there is only a finite
number of values of % such that a,, ....«, & is an admissible
sequence.

Lerter. I wonder whether “finitary” is a new word in English.
InT. The word has been used by Kleene for a similar notion.
As to “fan”, I think it wise to introduce sparingly such new words
in mathematics, but the notion of a finitary spread will prove so
important that it is convenient to have a short word for it.

Theorem 1. Every closed interval of the continuum coincides with
a finitary spread [L. E. J. Brouwer 1919A, p. 14; 1924B, p. 192].

Proof. Let two real numbers a, b be given and set max (a, b)=c,
min (@, b)=d; then [a,b]=[d,c]. As In 3.3.3 we construct the
canonical number-generators {d,27"}, {¢,27"}, which coincide with
d and c respectively. We may suppose that d,<c,, for if d,>c_ we
easily see that also |d—c,27"| <58/g 27™

Consider the spread S of the canonical ipss {:c,,2‘"} where x,
satisfies
(1) d, = 7, Sc¢p

After x, has been clhosen, at least one and at most three values
are admissible for z,,,, so S is finitary. I shall show that S coincides
with [a, b]. (1) shows that every element of S coincides with an
element of [d, ¢]. Conversely, let x be any element of [d, ¢], and
let {2,2-"} be a canonical ips coinciding with . As before, we may

suppose that d, <z, <c,, so that z coincides with an element of .

3.4.2. The fan theorem

Theorem. If an integer-valued function ¢(d) is defined for
every element ¢ of a finitary spread S, then a natural number can
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be computed from the definition of ¢, such that ¢(é) is determined
by the first N components of §; that is, if 6, and J, are such elements
of S that the first N components of §; are equal to the first N
components of é,, then ¢(d,) =¢(d,) (L. E. J. Brouwer 1923, p. 4;
1924B,p.192;1924D, p.646: 1926A. p. 66; 1952, p. 143; 1954. p. 15].

Proof. Let .! be the spread-law of § and F the species of
admissible finite sequences by .1. to which the null-sequence is
added. Let K be the finitary spread of admissible ipss by 1.
It is convenient to introduce the following expressions (see also
3.1.2).
Ay oo, Qyy Uyiqe oo, Qg (K2 1) is a descendant of a,. ....a
latter sequence is an ascendant of the former.
The ips o=a,. ..., qa,. ... is a continuation of the finite sequence
a, ..., a, and this sequence is a segment of ¢. If ¢ is an element
of K, it is a K-continuation of a,. ..., a,. A sequence in F is also
called an F-sequence.
If d is the element of K to which 4 is connected by I, we set
@(0)=f(d). f is defined for every element of K. As f(d) must be
calculable, its value must be determined by a finite number of the
components of d; that is to say, by a sequence a(d) in F. Let C be
the species of the a(d) which correspond in this way to the elements
of K; then every element of K has a segment a(d) in C. Also, if b is
a sequence in F, every K-continuation of b has a segment in C;
we shall express this property by saying that b is K-barred by C.

Obviously it is only by means of a proof %R, based on the data
of the theorem, that we can become aware of the fact that every
F-sequence is K-barred by C.

Now these data are of two sorts, to wit:

the

n

(i) the species C,

(ii)) thc relations between a sequence in # and its immediate
descendants in F.

Thus R, if expounded without abbreviations, consists of a finite
number of inferences, each of which is either a -inference or a
F-inference, where the latter are defined as follows:

F-inference: for a certain F-sequence a, every immediate descendant
of a in F is K-barred by C, so a is K-barred by C.
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¢-inference: for a certain F-sequence @, the immediate ascendant
of a is K-barred by C, so a is K-barred by C.

The last inference of R, affirming that the null-sequence is
K-barred by C, must be a F-inference, so the barred condition
(that is, the property of being K-barred by C) of every 1-sequence
must be proved before that of the null-sequence. Thus, if the barred
condition of a l-sequence is proved by a (-inference, it has been
proved previously in Ri; for the first time it has been proved by a
F-inference. It follows that every (-inference which proves the
barred condition of a l-sequence is superfluous. Moreover, the
proof of the barred condition of a 1-sequence must be preceded by
the proof of the barred conditions of its immediate descendants.
Repeating the same argument for 2-sequences, and so on, we prove
by induction that all {-inferences can be eliminated from $®; by
doing this we obtain a proof R’

Furthermore from R’ we may omit every f-inference, which

proves the barred condition of a sequence that belongs to C, or
has an ascendant in C, or that has been proved previously in R’
to be barred by C. After all these simplifications we obtain a
proof R.
Let Cy be the subspecies of C, whose elements occur in inferences
in &. The first inference of N must have the form: “Every immediate
F-descendant of the F-sequence a belongs to C, so « is K-barred
by C.” Obviously in this case every immediate F-descendant of a
belongs to Co, so a is K-barred by Co. Any other inference in R
is of the form: ‘‘Every immediate F-descendant of the F-sequence
a belongs to C or has previously been proved to be K-barred by ¢/,
80 a is K-barred by (. From this it is easily seen by induction,
that if it is proved in the course of 3 that a sequence « is K -barred
by C, then a is also K-barred by Co. In particular the null-sequence
is K-barred by C,.

The number of steps in R is finite; every step is a f-inference
which uses but a finite number of previous F-inferences. It follows
that the total number of F-inferences in R is finite. The number of
elements of Co which occur in any inference of R is finite; it follows
that (g is finite. Thus there is a finite maximum N for the length
of a sequence in Cy. This proves the theorem.

Crass. This is a remarkably simple proof for a theorem with
such far-reaching consequences.
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Int. It is Brouwer’s original proof [L. E. J. Brouwer 1926A];
only Brouwer deduces the fan theorem as a special case of a general
theorem on spreads. The above proof is obtained by selecting from
his argument what is necessary for the proof of the fan theorem.
Fory. What strikes me most in this proof is the sentence:
“Evidently we must be aware of the fact that every F-sequence
is K-barred by C, by means of a proof i, based on the data of
the theorem’. 1t seems here that a mathematical result is deduced
by methods which, in the terminology of formalism, would be
called metamathematical. Now the use of metamathematics for
the deduction of mathematical results is not new; the simplest
example is the principle of duality in projective geometry, and
important applications of this method to algebra have recently
been made by A. Tarski, Abraham Robinson and Leon Henkin
(see e.g. [A. Tarski 1950]. [L. Henkin 1953], [A. Robinson 1951]).
But it is noteworthy that similar methods are used by the
intuitionists, who are opposed to strict formalization and therefore
cannot construect metamathematics in the proper sense.

INnT. This is an important question which concerns the nature of
intuitionistic proofs in general. You are right that the distinction
between mathematics and metamathematics cannot be maintained
if no strict formalization of mathematics is performed. In order
to clarify in which respect the proof of the fan theorem differs from
other proofs, the following remark may be useful. In every mathe-
matical theorem there occurs a reference to previous constructions.
To take an example at random, consider 2.2.5, Th. 2: For real
numbers a, b and ¢, a # b implies a+c # b+c. Here the hypo-
thesis a 7 b does not refer to a supposed fact, but to a supposed
construction of natural numbers n and k, satisfying 2.2.3, Def. 1,
and the theorem affirms that this construction can be so completed
as to produce natural numbers satisfying 2.2.3, Def. 1 with a+c¢
and b +¢ instead of @ and b. But in almost every case it is not the
supposed construction itself that plays a part in the proof, but
only its result. The new feature in the proof of the fan theorem is,
that the possible form of the supposed construction is explicitly
involved in it. If we are well aware that the hypothesis of a theorem
consists always in the assumption of a previous execution of some
construction, we can offer no objection against the use of con-
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siderations about the way in which such a construction can be
performed as a means of proof.

Kreisel [1958 A], Spector [1962] and Kleene [1965] have under-
taken a formalization of intuitionistic analysis including the theory
of ipss, with special attention to the methods which Brouwer
applied in his proof of the fan theorem.

Applications of the fan theorem
3.4.3. Continuity of functions
The most conspicuous application of the fan theorem is

Theorem 1. A real-valued function f(z) which is defined every-
where on a closed interval of the continuum is uniformly continuous
on that interval [L. E. J. Brouwer 1923, p. 5; 1924B, D; 1926A,
p. 67; 1954, p. 17].

Proof. By 3.4.1, Th. 1, the interval [a, b] coincides with a fan S.
To every element & of S there is associated a real number y = f(£);
y coincides with a canonical number-generator n={n,2-"}. For a
fixed value of » we associate %, to &; in this way we obtain an
integer-valued function on §; thus, by the fan-theorem, a number
N(n) can be found so that, for every £ in S, 7, is determined by
the first N components of &.

Now let z, and x, be real numbers in [a, b] such that [z, —z,| < 2-N-2
then z, and z, coincide with canonical number-gencrators &, and &,
in which the first N components are the same. It follows that 7, i8
the same for &, and £,, consequently

| F(£1) — F(Ea) | <55 27™

We have now proved: If |z, —z,| <27, then |f(z,) - f(z,)| <8/,2".
That is to say, that f(x) is uniformly continuous in [a, b).

Theorem 2. A pointspecies which is a detachable subspecies
of a closed interval is either the null species or the whole interval
(L. E. J. Brouwer 1926A, p. 66].

Proof. Let the pointspecies @ be a detachable subspecies of the
interval K. The function f(z), which is 1 if « belongs to @ and 0
if x belongs to £ — @, is defined in every point of £ and thus must
be continuous on E; this means that f(z) is constant.
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Theorem 3. A function that is defined everywhere on a closed

interval %, has on E a least upper bound and a greatest lower
bound.

Proof. From the proof of theorem 1 it follows that there is
only a hmte number of values for #,; let {, be the smallest of them.
Set :,2-"=z,. It is easy to see that |~n—2,.+1|§2_"_1» so lim z,
exists and is the g.l.b. of f(z). N

Theorem 4. If a function is defined and positive everywhere
on a closed interval E, its gl.b. is positive.

Proof. As in the proof of Th. 1, to every element & of S there is
associated a canonical number-generator 7 =7,2""; >0, so for
some value n, of n, , > 0. %, is a function of £; by the fan theorem,
a number M can be found so that n, is determined by the first M
components of £, so there is only a finite number of values for n,;
let 7, be the maximum of these values. Then z, =2-". Moreover,
for every z, f(z)>z, ,—°/g 27 ™, so the g.lb. of /(a:) is positive.

Remark. We may not assert that f(z) attains its g.l.b. for a
definite value of z. This is illustrated by the following example.
f(x) = — 3z% 4+ 4cxd + 622 — 12cx,

where ¢ is a real number for which it is unknown whether ¢> 0,
¢=0 or ¢<0.

f(x)= —12(z+1) (x—1) (x—¢).

f(—1)=3+ 8¢, f(1)=3—8c, f(c)=c*—6c.

The least upper bound of f(z) is 3+ 8 |¢|, but it is unknown whether
f(z) takes this value for x = —1 or for z=1.

3.4.4. The Bolzano—Weierstrass theorem

Brouwer investigated this theorem (L. E. J. Brouwer 1952B].

We consider the following special case
(A) To every bounded infinite species of real numbers a point
of accumulation can be found.

This is classically equivalent to:
(B) Every bounded species of real numbers without a point of
accumulation is finite.

Let the sequence {a,} be defined as follows. If among the first »
digits in the decimal expansion of n no sequence 0123456789
occurs, then a,=2-"; if such a sequence does occur in the first »
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digits of &z, then «,=1—27" The species of the real numbers a, is
infinite, but nobody knows whether a point of accumulation, if it
exists, would be 0 or 1. So at present we are not able to prove (A)
intuitionistically.

As to (B), Brouwer showed that there is no hope of proving
even the weaker proposition (C), given below. I shall repeat his
argument in 8.1.3.

Definition. A species S is bounded tn number if a natural number
n is known such that S can contain no subspecies of 7 elements.
Remark. Every finite species is bounded in number but the
converse need not be true.

(C) Every bounded species of real numbers without a point of
accumulation is bounded in number.

However, somewhat weakened versions of (A) and of (C) are true.

Theorem 1. Let @ be a bounded infinite species of real numbers
and let m, » be natural numbers. Then there exists an interval of
length 2-* which contains at least m elements of Q.
Proof. Let %,k be integers such that @ is contained in the
interval (&, k). Set r=(k—h+1)2"*!, Let E be a subspecies of @
with 7m elements. For every element 2 of R we determine an
integer z,,, so that (z,,,—1)27""'<x<(z,,;+1)27""1 Since the
number of these intervals which overlap (%, k) is », at least one
of them contains m or more elements of R.

Theorem 2. If @ is a bounded species of real] numbers with
the property that for every real number z a natural number r(z)
can be found such that the interval (x—2-", 24 2-7) cannot contain
two different members of @, then ¢ is bounded in number.

Proof. Let @ be contained in the interval (R, k). The interval
(x—2-7,z+27"), where z €[h, k], contains an interval i(a, r)=
=(a-2"7"1, (a+2)2"""!), where a is an integer, and where i(a, 1)
contains z.

Let J be the canonical point fan which eoincides with (A, k].
Since to every element £ of J there are associated integers r(£) and
a(é), the fan theorem allows us to find m so that r(&) and a(§)
depend only upon the first m choices of ¢, Consequently, there is
only a finite number, say s, of different intervals i(a, r), which
together cover [%, k]. Since no i(a, r) contains two different elements
of @, a subspecies of @ with s+1 elements cannot exist.
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ALGEBRA

4.1. Algebraic fields

I shall not give here a connected treatment of intuitionistic
algebra [A. Heyting 1941]; the following fragments are mainly
intended as applications of the theory of real numbers, but it is
easy to formulate them for the case of an abstract algebraic field.

4.1.1. Apartness relations

In a field, division must be defined, and, as we have seen, for
real numbers division is only possible if the divisor lies apart

from 0; it follows that an apartness relation will be essential in the
definition of a field.

Definition. A symmetric relation # between the elements of a
species S will be called an apartness relation if it has the following
properties (i)-(iii) (Compare 2.2.3). a, b, ... are elements of §

(1) If @ #0b, a=b is impossible.
(ii) If a # b is impossible, a=5.
(iii) If @ # b, then for any element ¢ of S, either a # ¢ or b # c.

4.1.2. Definition of a field

A mathematical species F is a field if it has the following pro-
perties R, Al, A2, M1, M2, M3.
R. In F an apartness relation # is defined.

Al. In F a commutative and associative addition is defined; F
contains a zero element and the negative of any of its elements.

A2. If a # b, then for any element ¢ of FF, a+c¢ # b--c.

M1. In F a commutative and associative multiplication is defined,
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which is distributive with respect to addition; F contains a unit
element 1 and 1 # 0.
M2. If « # 0, the reciprocal a—! exists and a=! 7# 0.

M3. If ¢« #b and ¢ # 0, then ac # bc.

4.1.3. Properties of the apartness relation in a field
Theorem 1. ab # 0 entails a # 0 and b # 0.

Proof. If ab # 0, either a # 0 or ab # a. In case a # 0, also
a-! # 0 and (ab)a—! # 0, that is b # 0. Now suppose ab # a, that
is a(b—1) # 0. Now 1 # 0 gives that either b 7 0 or b—1 7 0.
If b # 0, also ! # 0 and (ab)b~! # 0, a # 0. In the same way
we treat the case b—1 # 0.

Theorem 2. a+b # 0 implies that either a # 0 or b # 0.

=~

Proof. As for 2.2.5, Th. 5.
Theorem 3. If ab # cd, then either a # ¢ or b # d.

Proof. ab—cd # 0; a(b—d)+d(a—c) # 0; by Th. 2 and Th. 1
either b—d # 0 or a—c # 0.
Theorem 4. If f(z,, ..., z,) is a polynomium with coefficients

in the field F, and if py, ..., Py 44, - - -, g, are elements of F such
that f(py, ..., 2) # g1, - -, 4,), then for at least one value of

the subscript z, p; # ¢;.

Proof. By repeated application of Th. 2 we find a term
cxd ...oxloin f(xy, ..., T,) such that cpf ... pi» # cq% ... qen.
Then we establish the theorem by repeated application of Th. 3.
ForMm. This theory of algebraic fields is essentially an axiomatic
theory.

Int. It illustrates how the axiomatic method may be applied in
intuitionistic mathematics. But we must keep in mind that it
plays no part in the foundations of mathematics; it is but a
convenient way of presenting a theory in which many theorems
have the same complicated system of suppositions.

4.2. Linear equations

The theory of linear equations illustrates clearly in what way
classical theories may be made more precise.
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4.2.1. Cramer’'s rule

Let d be the determinant of the coefficients in the left members

of the equations
n

(1) AE e =b (=1 ...,n)
c=1
If d # 0, (1) can be solved by Cramer’s rule:
n=%  (k=1,...n).

This solution is unique in the following sharp sense:

Theorem 1. If p,. ..., p, are numbers such that for some
value of r, p, # d,/d, then a subscript ¢ can be found such that

2 ay P # b; -
k=1

Proof. Let m; denote the minor of a,; in d. We have

z my, kzl QP = dpr .

i=1

m;, b;=d, .

M= IMe

n n
My z Py 7 Z m,b; .
k=1 i=1

i=1
Then by 4.1.3, Th. 2, for at least one value of z,
mi, aypy. # myb; ,
1

ke

which proves the theorem.

4.2.2. m Eguations in n variables, with known rank

Let us now consider a system of m equations in n variables:
n
5] - .
(2) L ihzl @y = b; E=1,...,m).

In order to solve these equations by one of the usual methods, it
is necessary to know the rank r of the matrix 4 = (a;); moreover,
division must be possible by some r-rowed minor. Therefore we
define the notion of rank more precisely:

Definition 1. The matrix A4 is of rank r, if at least one r-rowed
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minor in A4 is apart from 0, while all »+- 1-rowed minors are 0.
If d is an r-rowed minor and d # 0. d is called a principal minor
of 4.
Definition 2. A characteristic determinant ¢, of (2) is obtained
from a principal minor d of 4 by adding a row containing coefficients
of the sth equation (2) and the column of the right members of (2).
A necessary and sufficient condition that (2) has a solution is
that every characteristic determinant is 0. The necessity of this
condition can be stated in a more precise form:

Theorem 1. If some characteristic determinant ¢, # 0, then
for arbitrary values z,=p, (k=1, ..., n). there is a value of ¢ such

that L(p,, ..., Pa) # b;

Proof. Suppose the principal minor is

Ay -y : by
. . .
d= | " |and ¢,= d Lo[#0.
. . |
L S A | 1o,
aal asr bs

Take arbitrary values z,=py, ..., Z,=p,.
Substituting z,,;="0,41 - --» Tn="P, In the first » equations and
solving for z;, ..., %, we obtain z,=g¢,, ..., x,=gq,.

Ly(qy, - > @ Pravs - > Pa)—b, = —c,jd # 0.

Thus, either
La(pl’ coos Poy Prers - oy P,.) # b,,

or, by 4.1.3, Th. 4, for at least one value of k (1 <k<r), P # g
In the latter case, by Th. 1, for at least one value of 3 (1=1=7),
Li(py -+ -2 P Proas -+, D) # b,

Ifc,=0 (s=r+1, ..., m), the system (2) has a solution of the form

(3) 2= [ @1y -1 T) (k=1, e, 1)

This solution is complete in the precise sense; that is, if (P1r -+ +» Dn)
is a vector such that for every vector (g, .. ., ¢,) contained in (3),
P # g, for at least one value of k, then Li(p,, .. p,) # b, for at
least one value of ¢. The proof of this theorem ig analogous to that
of 4.2.1., Th. 1.



LINEAR EQUATIONS 53

4.2.3. Rank unknown

If the equations (2) are homogeneous and of rank r. it follows
that they have a (n—r)-parameter solution which is complete in
the precise sense. However, if the rank is not known, it may occur
that we can find no solution apart from the null-solution. even
if all n-rowed minors are 0. Take, for instance, the equation

azx+ by =0,

where «, b are real numbers such that neither a=0 nor a 7 0 nor
b=0 nor b # 0 is known. while the proportion of a and b is also
unknown. (Example: a= {a,}, where ¢, =2"" if in the first n digits
of & no sequence 0123456789 occurs, «,=2"* if such a sequence
occurs and its 9 is the kth digit in =x; b is defined analogously with e
instead of #). If a # O or b # 0, (x=0b, y = —a) is a solution apart
from (0, 0); if a=b=0, arbitrary numbers 7% 0 can be chosen for z
and y. But the first solution does not apply in the second case,
nor does the second solution in the first case, and as long as we
do not know which case is realized, we are unable to give a solution.

4.2.4. Homogeneous linear equations

As a special case of 4.2.1, Th. 1 we have for the equations

n
(4) > aux,=0 (t=1,...,m),
k=1

Theorem 1. If the rank of the matrix 4 =(a;) is », then for
any values u,, ..., u, such that «, # 0 for at least one value of k,
there is at least one value of ¢ such that

n
z aik'uk # O .
Kel

Also the converse is true:

Theorem 2. If for any values u,, . ... u, such that w«, # 0 for
at least one value of k, at least one of the left members in (4)
is # 0, then the rank of the matrix 4 is n.

Proof by induction with respect to n. For one variable the result
is trivial. Let it be proved for equations in n—1 variables. Putting
z,=0 in (4) we obtain equations in =z, ..., a,_; satisfying the
condition of the theorem; thus by hypothesis the matrix of the
first n —1 columns in 4 has rank n— 1. Suppose the determinant
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formed by its first n — 1 rows is & # 0. Solve the first n — 1 equations
taking z,=1 and substitute the result in the other equations (4).
The left member of at least one, say the (th equation will be % 0.
The left member is equal to an n-rowed determinant of 4, divided

by d.

4.3. Linear dependence

4.3.1.  Definitions

As usual, the n-dimensional vector space F* over F' is the specics
of sequences (a,. .- ., a,) of elements of F. We denote elements of
F* by bold type: a=(ay, ..., @,). Addition of vectors and multi-
plication of a vector by an element of I are defined i the usua]
way. As to the notion of linear dependence, it can be defined ip
two ways; in
(1) Aa,+ ...+ 4a,=0
we can require the coefficients 1 to be # 0 or to be = 0; this gives
respectively the notions of strong and of weak dependence. As
the former is by far the most important, dependence without
adjective will mean strong dependence. A system of vectors that
cannot be dependent will be called independent. Just as in many
other cases, besides this negative notion we can define a positive
one, classically equivalent to it. I think you can now give this

definition yourselves.
ForMm. If at least one A; is # 0, then

Aay+ ...+ Aa, #0.
InT. In this case we say that the vectors are (mutually) free.
Theorem 1. A necessary and sufficient condition that the

vectors
ai=(a11,...,(lin) (i:l:...,p)

are free, is that their matrix has rank p. This is an immediate
consequence of 4.2.4, Th. 1 and 2.

4.3.2. A theorem and a counter-example

The following theorem requires for its validity an extra condition,

Theorem 1. If the vectors a,, ..., a_ are free and the vectors
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b, ..., b, are free, then at least one vector b, is free from
a;, ..., a, (that is, a,, ..., a, b; are free).

Proof. The matrix of the a; has rank r; we may suppose that
the determinant d formed out of its first  columns is # 0. Determine
numbers 1, by the equations

bi= 2 An (i=1,...,7;
k=1 s=l,..-,7‘+1);
and put

T
C,= z A‘kak (S=1,...,T+l)
k=1

As the b; are free, there is a determinant, formed out of their
components with subscripts j;, ..., j;4;, Which is # 0. The cor-
responding determinant formed out of the c;, is 0, so we find at
least one pair of subscripts ¢, u with b, # c,. Now form a r+1-
rowed determinant by extending d with the column a,,, ..., a_., c,,
and the row Cits -+ -5 Cgpy €y This determinant is 0, so, as d # 0,
the corresponding determinant with & instead of ¢ is # 0. This
proves the theorem.

Crass. Classically, the condition that a,, ..., a, must be free,
i8 superfluous.

INT. That is why I drew your attention to this theorem; I shall
show by a counter-example that for arbitrary vectors a,, ..., a,
we have no hope of proving it. Take for F the field of reals,
n=3, r=2, a,=(0,0,1), a,=(a,b, 1), where ¢ and b are real
numbers such that neither for @ nor for b it is known whether it
is 0, and let nothing be known about the value of a/b (see 4.2.3).
Then for none of the vectors (1, 0, 0), (0,1, 0), (0,0,1) can we
assert that it is free from a,, a,.

4.3.3. Systems of unknown rank

If the rank of a system of equations is unknown, in general no
solution can be found. Yet in some cases we can derive a negative
result. As an example we prove the

Theorem 1. If every n-rowed determinant from the matrix 4
of the equations

n
Y ayx,=0 (i=1,...,m)
k=1

is 0, then it is impossible that the equations have no solution 7 0.
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Proof. Suppose that there could be no solution # 0; we have
to deduce a contradiction from this supposition.

The rank of 4 is not n. If it were n — 1, there would be a solution
# 0; it follows that no (n— 1)-rowed determinant in 4 can be # 0,
thus they are all 0. If the rank were n—2, we could deduce a
contradiction in the same way, and so on. After n steps we find
that all the coefficients are 0, but then there certainly is a solution
# 0. This is the desired contradiction.
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PLANE POINTSPECIES

5.1. General notions

We shall develop the theory of plane point-species [L. E. J.
Brouwer 1919A]. An analogous theory can be developed for any
number 7 of dimensions. For n=1 it is identical with the theory
of species of real numbers. Though it may seem somewhat tedious
to give the definitions of all the fundamental concepts, including
those which are identical with the usual definitions, it is never-
theless necessary to do so, because for almost every notion several
definitions occur in the literature, which are equivalent classically,
but not intuitionistically.

5.1.1. Point-generators and points

Definition 1. A point-generator & of the plane (abbreviated:
p—g) is an ordered pair (&, &) of real number-generators.

Definition 2. A point z of the plane is an ordered pair (z,, z,)
of real numbers.

T leave it to the reader to supply the definitions of coincidence
between two point-generators between two points and between
a point-generator and a point.

Theorem 1. Every point-generator determines one and only
one point with which it coincides.
Definition 3. A canonical point-generator is an ordered pair

of canonical number-generators.
By the proof of 3.3.3, Th. 1 every point coincides with a canonical

P-8.
5.1.2. Species and spreads

Definition 1. A p-g-species (pointspecies) is a species each
of whose members is a p-g (point).
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Definition 2. A p-g-spread is a spread each of whose elements
is a p—g. A p-g-spread is canonical if every one of its elements is
a canonical p-g.

Definition 3. Two p-g-species coincide if every member of
either of them coincides with some member of the other.

Analogous definitions for the relation of coincidence between
A and B, where each of 4 and B is a p-g-species, or a point-
species or a p-g-spread, are easily given.

Theorem 1. Every p-g-species or p-g-spread determines one
and only one pointspecies with which it coincides.

Definition 4. Two p-g-species are geomelrically congruent if
neither of them can contain a member that cannot coincide with a,
member of the other.

Here also analogous definitions must be given, as in the case of
def. 3.

5.1.3. Distance and topology
Definition 1. The distance |x—y| of two points z=(z, %) and
Y= ¥2) is max (|2, -, [Z2—¥sl)-

Remark. The theory could be developed as well with

V{{@,—2)*+ (1 — ?/2)2}
as the distance of z and 3. The above definition is chosen for the
sake of simplicity of formulas.
The notions of an e-neighbourhood and of a neighbourhood of
a point p can be introduced in the usual way by means of this
notion of distance.
Definition 2. The points = and y are apart from each other
(abbreviation z # y) if either z; # y, or z, # ¥,.
Theorem 1. (i) If p # ¢, then ¢ # p.
(i) If p # g is impossible, then p coincides with q.
(iii) If p coincides with ¢, then p # ¢ is impossible.
(iv) If p # q and g coincides with » then p # r,
(v) If p # q, then for every point r either p # »
or q #r.
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The proofs are easy, using the properties of the relation % between
real numbers (2.2.3).

Analogous definitions for the relation of apartness between two
p—gs and that between a point and a p-g are easily formulated.

Definition 3. The point p is a closurepoint of the pointspecies
@ if for every n there can be found a point ¢, of @ such that
[P—ga| <27

Definition 4. The point p is a limit-point of the pointspecies
@ if for every n we can find two points ¢, and r, of @ such that
Gy # Toy |P—qa| <27 and |p—r,| <277

Crass. Is it true, that a closurepoint of @ is either a point of @
or a limit-point of Q?

IntT. The following example shows that this disjunction need
not be valid. Let the sequence {«,} be defined as follows. If among
the first » digits in = no sequence 0123456789 occurs, a,=2""; if
among these n digits a sequence does occur, then a,=0. Let S be the
species of the components of the sequence {a,}. 0 is a closure-point
of 8, but it is unknown whether 0 is a point of § or a limitpoint of S.

Definition 5. The closure Q of a pointspecies @ is the species
of the closurepoints of @.

Definition 6. The derived species of a pointspecies @ is the
species of the limit-points of Q.

Definition 7. A pointspecies is closed if it coincides with its
closure.

Theorem 2. The closure and the derived species of a point-
species are closed.
The proofs are simple.

Theorem 3. Every limit-point of the closure of @ belongs to
the derived species of Q.

Proof. Let p be a limit-point of @, then for every n we can find
points g, and r, in Q such that ¢, #, |p—q,|<2"""! and
|p—r,] <27~ Further we can find m so that |g,—7,|>2"™, m>n,
and points q,, 7, in @ such that |g, —g,| <2 ™% and |r,—7,| <2 ™72,
Then |g,—r,|>2"""1, so g, #r, |p—q]<2™ and |p—r|<2~".
This proves that p is a limit-point of @Q.
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5.1.4. Open species, regions and regioncomplements

An open pointspecies can be defined as a pointspecies with only
interior points. Then the complement of an open pointspecies is a
closed pointspecies, but the complement of a closed pointspecies
is not necessarily open; in one dimension take for the closed point-
species the point 0, then the complement is the species of points p
such that p+0, but the points for which p # 0 form an open
species. However, this notion of an open species includes patho-
logical cases such as the following. If Euler’s constant is rational,
S denotes the square |p—=z|<1; if not, .S denotes the square
|¢—x| < 1/2, where p and g are different points. In order to avoid
such cases, we replace the notion of an open species by the more
constructive notion of a region [L. E. J. Brouwer 1918, p. 8;
1919A, p. 20]. This notion is quite simple, but the precise formu-
lation of its definition is most conveniently obtained after some
preparations.

In the following, “E” denotes either the whole plane or a
rectangle with rational vertices and with sides parallel to the
axes of coordinates. If E is a rectangle, only points of E, where E
is considered as a closed pointspecies, are considered, even if this
restriction is not mentioned. It is supposed that % has been chosen
once and for all and remains fixed throughout the chapter.

Definition 1. An elementary set of rectangles is a finite set of
rectangles with rational vertices and with sides parallel to the
axes of coordinates. No rectangles which degenerate into a line
segment are admitted. The letters V, W, X, ¥, Z will always
denote such sets.

Definition 2. The rational elementary domain R(V) is the
species of the rational points which are interior to or lie on the
frontier of at least one of the rectangles of V. The exterior rational
elementary domain R*(V) is the species of the rational points
which are not interior to R(V) (“interior” heing taken relatively
to the species of the rational points).

It is clear what it means to say that V is interior to W; as only
rational points occur, no intuitionistic difficulties appear.

Definition 3. The elementary domain «V is the same as R(V);
the exterior elementary domain o*(V) is the same as R*(V).
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Theorem 1. o*V=E—«V.
Proof. (i) If p e x*V, then p is the limitpoint of a sequence of
rational points in E—aV, so pe E—«V.
(i) If pe E—aV, then we can find for every n a point p, in
E — &V such that |p—p,| <277, and furthermore a rational point
g, such that |p,—q,|<27""% p, is contained in the square
|g,— x| <27*-2; let ¢ be this square. If 0 were contained in V, there
would follow p, € « ¥, which is false, so that a part of ¢ lies outside
V (observe in this part of the proof that only rational points
occur!). Let r, be a rational point in ¢ outside V, then r, € R*(V)
and |p,—»,| <2771, so |p—r, <2~ The sequence {r,} shows that
peEarV.
Remark. If E is a rectangle, x*V=aW, where V and W fill
up E without having interior points in common. We say that
V and W simply cover E. Where no ambiguity need be feared, we
often omit the « and denote by ¥ the elementary domain «V.
Yet some caution is necessary here, as the following example
shows. Let V consist of the square with opposite vertices (0,0)—(1,1)
and W of thec square (0, 1)—(1, 2), and let X be the set of these
two squares; then «X is not the same as a1 U «W¥; for, a point
(p1, po) with 0<p, <1, but for which neither p; 3 1 nor p; € 1 is
known, belongs to o X, but cannot be said to belong to xV U aW.
This example shows at the same time that the formula
QU R=Q U R does not hold. QU RCQ U R is always true.

Definition 4. A region is the union of a sequence {V,} of
elementary domains such that ¥, lies inside V., for every =.
(If £ is a rectangle and if a part 2 of the frontier of ¥, falls in the
frontier of E, then it is allowed that 1 belongs to the frontier of
Vo)

Lvery region is an open species; the complement of every region
is a closed species. For many purposes the notion of a region-
complement can replace that of a closed species.

Remark on notation. We use the letters A4, B. C, with or without
subscripts, for regions; V, W. and sometimes X, Y,Z for ele-
mentary sets of rectangles or for elementary domains; 3, N for
region-complements; @, R for unspecified pointspecies. Thus if the
letter A is used, the reader is supposed to know that it designates
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a region. A={V,} means that the sequence {V,} satisfies the
condition of def. 4 and that 4= %JV,,.

Theorem 2. If A={V,}, then
E-4= N (E-V)= A E=TVy)= A 'V,
m=1

m=1 m=1

Proof. (i). If pe E—4, then p¢ V, for every m, so
pE A (E—-Vn),s0ope A (BE—V,).

m=1 m=1

(ii). Now suppose p € r:loc"' V. For a fixed value n of m, p € «* Vs

Let d be the minimum distance between the frontiers of V, and
V,..1 (apart from parts of the frontier of ). We can find a rational
point ¢ outside V,,; such that |p—g|<!/,d; then we have for
every rational point r in V,, |p—7|>1/d, so that p¢ V,. As n is
arbitrary, p belongs to no V,, so pe £~ 4.

This theorem shows that the notion of a region-complement,
though its definition was negative, can be considered as con-
structive.

Theorem 3. Ifitis impossible that p does not belong to £ — 4,
then p belongs to E—A4.

Proof. This follows immediately from the fact that E—4 ig
defined by a negation.

LerTter. What strange logic are you applying here?

Int. In fact I do not apply logic; I could not, for I have not yet
developed it. But my argument may indeed be called logical, as it
refers to the structure of the proposition. I shall expose it more
elaborately.

Let “o” be an abbreviation for “pe A”; then the negation
“m” is “pe(B—~A4)”". The above theorem says that 71— p
implies = o. This is obvious; for, if 7 —=1 g is given, the suppo-
sition that g is true leads to —1— g, which contradicts =1 —1— .
(Compare 7.1.2, (5).)

5.1.5. Union and intersection

Theorem 1. The union of a finite or infinite sequence of regions
is a region [L. E. J. Brouwer 1919A, p. 22].
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Proof. Let {4,} be a sequence of regions; 4,={V,.}.
Set W, = U Vars then the region B, defined by {W,}, is O A,.
mel m=1

Theorem 2. The intersection of two regions A={V,} and
B={W,(}is a region, provided for some value of », V,, and W, have
a rectangle in common.

Proof. Let X be the rectangle that is contained in V, as well as
in W,. Set V,,, " W,,,=Y, for every p; then the sequence {¥,}
defines a region C that coincides with 4 N B.

Theorem 3. The intersection of a finite or infinite sequence
of region-complements is a region-complement; explicitly:
NE-A)=E—-UAd,.
n n

Proof. “zen (E-A4,)” means: “for any n, z cannot belong
to 4,”. "
“ze(E— U d,)” means: ‘“for no n, z belongs to A4,”. The

two meanings are the same.

The union of the two complements of two regions is not always
a region-complement; it need not even be closed, as is illustrated
by the example following 5.1.4, Th. 1. The elementary domains
V and W, defined there, are region-complements; the point p,
which I considered there, is a closurepoint of VU W.

In the same way that the elementary domain X was formed
from ¥V and W in the example cited just now, we can associate a
region-complement to any pair (or finite set) of region-complements.
The definition is the following.

Definition. If M= Nna*V, and N = N «*W,, then
MUN=A*(V,NnW,)
MONisa region-complement, provided for some value of =,
V, N W, contains a square.

Theorem. If 4 and B are regions such that 4 N B is a region
(Th. 2), then (E—A) " (E—B)=E—(A N B).

Proof. Clear from the definitions.
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5.2. Located pointspecies

5.2.1. Located pointspecies and pointfans

Definition 1. The distance of the point p to the pointspecies @,
written o(p, @), is the greatest lower bound of the distances of p
to the points of @. Thus o(p, @) satisfies the conditions:

(i) for every point ¢ in @, |p—q| < o.

(ii) for every natural number n a point ¢, in @ can be found
such that |p—g,| <e+27"

Definition 2. A pointspecies @ is located [L. E. J. Brouwer
1919A, p. 13], if o(p, @) can be calculated for every point p.

Remark. It is clear that go(p, @) is a continuous function of p;
thus, if the distance of every rational point to @ can be calculated,
Q is located.

Example. Let E be the square with vertices (4 1, + 1), and
let 4 be the region which is defined by the sequence {¥,} which is
obtained as follows:

If in the first n digits of = no sequence 0123456789 occurs, V, is a
set of three rectangles, with the opposite vertices
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(=142-7, —1+2-" and (1—2-", —2-7),
(—142-7, —2-m) and (—2-7, 4+2-7),
(—142-" +2-7) and (1—2-7 1—2-7)

respectively; if in the first » digits of = a sequence 0123456789 does
occur, V, is the square with vertices + (1—2-7).

Now let p be any rational point. Either p € E, so that o(p, 4)=0,
or p lies outside E; then o(p, 4)=0(p, E).

Thus 4 is located. However, M = I/ — 4 is not located ; for, O being
the point (0, 0), o(0, M) =0 if no sequence 0123456789 occurs in =,
but (0, M)=1 if such a sequence does occur.

Theorem 1. Every bounded closed located pointspecies coin-
cides with a canonical finitary p-g-spread (with a p-g-fan)
(L. E. J. Brouwer 19194, p. 14].

Proof. Let Q@ be a bounded closed located pointspecies. For
convenience, let us call a point (a-2-", 6-2-"), a and b integers, an
nth lattice-point. We divide the nth lattice-points, for n=1,2, ...
successively, into admissible and inadmissible points, in such a
way that for every admissible nth lattice-point p we have
o(p, @) <5/g-27* and for every inadmissible nth lattice-point ¢ we
have g(g, @)>27"-1; this can be done in view of 2.2.3, Th. 4. If p
is an admissible nth lattice-point, a point ¢ in @ can be found so
that |p—gq|<%/4-2-", and after that an (n4-1)th lattice-point r
so that |g—r|<5/g-2771 o(r, @) <53/g-27""1, 50 r can be taken as
admissible, and |p—7| <2-". Consider the spread of all canonical
point-generators {p,}, where p, is an admissible nth lattice-point.
After p, has been chosen, at least one and at most nine choices for
Pn+1 are admissible, so § is a p-g-fan. I wish to prove that S
coincides with Q.

(i) If pe@, then a canonical p-g of p belongs to S.

(ii) Let s be a point which coincides with a p—g s, in 8. s,={p,},
where p, is an admissible nth lattice-point; |s,—p,| 3 27" and
we can find a point ¢, in @ so that |p,—g¢,| <2"; consequently
|so—g,] <2-"*1. As every ¢, is in @, s, is a closurepoint of @, and
as @ is closed, s, € Q.

Corollary. Let ¢ and r be points of the closed located point-
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species @, such that |g—7|<27"~3% and let s be the middle of g¢r.
We can find an nth lattice-point p, such that |s—p,| <9-27"4; then
|qg— pn| <B/g-27"and |r— p,| <®/g-27". It follows that p, is admissible.
We have proved the lemma:

If ¢ and » are points of a closed located pointspecies @, such
that |¢g—7|<27""%, then the p-g-fan S that coincides with @
contains two elements which coincide with ¢ and r respectively
and in which the first = components p,, ..., p, are the same.

Theorem 2. The closure of every canonical pointfan § coincides
with a located region-complement.

Proof. Let H be the set of the n-th components in the elements
of S; H is a finite set of »n-th lattice-points. With every point of H
as centre, describe the square with sidelength 3.2-7; let V, be the

o0
set of these squares. Set M = N V,, then M is a region-complement.

n=1

It is clear that S is geometrically contained in M ; as M is closed,
also S is geometrically contained in M. I shall prove that conversely
M is geometrically contained in S.

Let ¢ be a point of M, then ¢ € V,, so we can find a point p, of H
so that |g—p,| <2~"*1. p, is a component of at least one p-g of S,
say of s,; |$,— 2, > 27" In this way we find for every n, a p-g s,
in 8 such that |g—s,|<27"t%; thus ¢ is a closure point of S.

It must still be proved that M is located. Let p be any point of
the plane and set o(p, V,)=0,. It is clear from the construction of
V, and V,,, that g, > 0,11 > 0,+°4-2"". Thus lim g, =g, exists
and go—g, 3 %/p-27"

I wish to prove that o(p, M)=g, that is to say that
(i) if ge M, then |[p—gq| < 0p;

(ii) for every m a point g, in M can be found so that

|p— .| <@ +27"

Proof of (i). g€V, so|g—p] « 0, « gg+5/,-2- for every =,
that is |¢—p| < o
Proof of (ii). We can find successively a square a of V, so that
o(p, a)<g,+ 27", and a point 7 in a so that |p—r| <g, - 2.2-"; then
|p—r|<go+2%/p-27"

Corollary 1. It follows from the two preceding theorems that
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every bounded closed located pointspecies coincides with a region-
complement.

Theorem 3. A real-valued function which is defined every-
where on a bounded closed located pointspecies is uniformly
continuous on that species.

Theorem 4. A real-valued function which is defined every-
where on a bounded closed located pointspecies has a g.l.b. and
a lLu.b. on that species.

Theorem 5. If a real-valued function is defined and every-
where positive on a2 bounded closed located pointspecies, its g.l.b.
is positive.

The proofs of these thcorems are exactly analogous to those
in 3.4.3.

5.2.2. The intuitionistic form of the Heine—Borel theorem

Theorem. Let @ be a bounded closed located pointspecies.
If to every point p of @ there is associated a neighbourhood U(p)
in E, then we can find a finite set U(g,), ..., Ulg,,) of these neigh-

bourhoods so that @ is contained in O Ulq,)-
k=1

Proof. By definition a neighbourhood U(p) contains a square
|p—2| <27% where & is a natural number, associated to p. Let §
be a canonical pointfan that coincides with @; if the point p of @
coincides with the p-g p'={p,} of S, then % is associated to p'.
By the fan-theorem we can find a maximal value A, for 4, so that,
for every p, U(p) contains the square |[p—a|<2~*%. The (%,-+ 1)th
lattice-points which occur as components of elements of S can be
arranged in a finite =equence p; .,;(i=1, ..., m). For each of
these values of 7 we determine a fixed element of S, say ¢;, in
which py ., ; occurs. Let ¢; be the point of @ that coincides with ¢;;
|9 — Dryaril - 3fg- 2770

An arbitrary point r of @ coincides with an element »={r,} of S;
Thet1 = Phetr,i Or sOmMe 7, 50 |r—py 4y <g- 277 1. It follows that
|g: — 7] <%/g- 27", that is r € U(g,). This means that U(g;,)V. ..0U(g, )
contains Q.

Remark. L. E.J. Brouwer [1926C, p. 867] proved this theorem
in a more general form (for what he calls located-compact species).
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MEASURE AND INTEGRATION
In this chapter E is the unit-square |x—0] % Y,

6.1. Measurable regions and region-complements
6.1.1. Measurable regions

Definition. The measure, to be denoted by mV, of an elementary

domain V is its area in the ordinary sense. If a region 4 ig defined

by the sequence {V,} of elementary domains, and if lim mV

exists, then A is measurable and its measure is n—»00 "
mA= lim mV, [L. E. J. Brouwer 1919A, p. 26].

Class. By this definition, not even every bounded region is
measurable.

Int. That is an immediate consequence of the fact that a bounded
monotone sequence of real numbers need not be convergent.
The proof of the following theorem is less simple than might be
expected.

Theorem 1. If A and B are measurable regions, and if 4 D B,
then mA < mB. =

The proof rests on the following Lemma:

Lemma 1. If the elementary domain W is contained in the

region A={V,}, then a number m can be found so that W is
covered by V.

Proof. To every point p of W there is associated a natural
number k(p) so that p belongs to V,,,. As W is bounded, closed
and located, it follows from 5.2.1, Th. 1 and the fan-theorem that
there is a maximum m for A(p); every point of W belongs to V,,.

Proof of theorem 1. Let 4={V,}, B={W,}. Given k, we
first determine n so that mB—mW,<2~*%, and then (by the lemma)



MEASURABLE REGIONS 69

n ou Llnu.‘.. Vm couvers “}" ,Uiipn m ,‘i i 21 l/m.;))i ”["{» i }m’ - Q:l; An
this s truec for every k, mA -+ mB.

Theorem 2. If the region A coincides with the region B, and
if A is measurable, then B is measurable and m4d =mB.

Proof. A={V,}, B={W,}. By lemma 1, for every n, mW,<mA.
On the other hand, as A is measurable, given k, we can find ¢
so that mV,>mdA4 — 2% and then % so that W, covers ¥, (using

the lemma), so that mW, > mA4 —2-* Hence lim mW,=mA.
n—-00

Theorem 3. If 4 and B are measurable regions, the region
C=A4 v B is measurable and mC 3 mA +mB.
The proof follows easily from the definition.

Theorem 4. Let {4,} be a sequence of measurable regions such

r [e o]
thatlim m U 4, = u exists; then A = U A,is a measurable region

r»00 n=1 n=1

and mAd=u.

min.r. s

Proof. Put U dn= B, U V= Wys, Wes = Us; then
n=1 n=1

Br= {Wrs}, .A = {Ug}.
mU3=mW33<mB3 } /.l,.
Determine 7; such that u—mBg, <27%-1 and ng>n; such that
MBry —mWayn, <2-%-1, Then p—mUp, <pp—mWapyn, < 2%,
It follows that lim mU,; = u, thus md4 = p.

6.1.2. Measurable region-complements

Definition 1. If the region-complement M is the complement
of the measurable region A4, then M is measurable and its measure
mM is 1—-mAd.

Theorem 1. If M, and M, are measurable region-complements,
mM,=m,, mM,=m,, m(M, N My)=m, then my+my > 1+m.
Proof. M,=E—-A4,, My=E— A4, M, M,=E— (4, 4,).
In view of 6.1.1, Th. 3 we have
m(4, U A,) > mA,+md,
l-m > 1—m;+1—m,
m;+my 3> 14m.
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Theorem 2. [L.E.J. Brouwer 19194, p. 26]. Every measurable
region-complement of positive measure contains a located measur-
able region-complement L such that mL>mM —2-?, where p is
an arbitrary natural number.

Proof. There is a sequence {V,} of elementary domains such
that M= N V,. From this sequence we select a subsequence

{W,} such "thlat mW,—mM <247 for every n. Now L is obtained
by the following construction. Divide E into subsquares of side-
length 2-7; these squares are called x,-squares. From every W, we
remove its intersection with those »;-squares which have with W,
an intersection <2-?73; the rest is W,. From every W, we remove
the intersection with those #,-squares with which W, has an inter-
section <2-?-7, and so on. In general, W¥+V (n>k) is obtained
from W® by removing the intersections with those ., ,-squares
which have with Wi 6 an intersection <2-?-#-3,
L= W
n=1

In view of 5.1.5, Th. 3, L is a region-complement.

By hypothesis, mW,—mW,, ;<27 "7 A fortiori.

mWm—mWh, <2747,

In passing from W, to W&AD, the removed area is at most
2242 9-p-dn-3 _ o-v-2-1 go mW™ — mIWPHY < 2740 27—
< 2-9-2n

It follows that lim mW exists.

One is not allowed to infer at once that lim mW™ = mL, because
WrHD need not be strictly interior to Wi". However, by a slight
extension of every W™ we easily construct a sequence {U,} of
elementary domains such that U,,, is always strictly interior to
U, L=nU, and lim mU,=lm mW.

Thus L is measurable and mL=lim mIV{.

From the construction of W™ we see that

n-1
r 7 (n) D2k +2 D—p—dk—3 _ 2] -
mW, —mWm < 3 2 .2 < 2,27,
k=0
By a passage to the limit we have

mM —mL<2"r,
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It remains to be shown that L is located. Let »’ be one of
the x,-squares which have a positive intersection with W™, then,
by the above construction, this intersection is =2-?-4n+1  Ag
mW® —mWpL, <2774 m(Wn, N x')>2-p-dntl_3-p-in 2-p-dn,
Passing from W, to Wi, we remove from ' at most an area
4.2-7=4n=3 5o V¥ D has a part in common with x'; hence W{hY
has a part in common with at least one of the #,,,-squares which
are parts of x’. Continuing this process, we find a sequence {g,}
in which every ¢, is a x,,,-square, so that for every 2, Wo}P has
a part in common with g,. Let 2 be a point in W&} N g,; the
sequence {r} converges to a point z,. As z € Wtk for j=h,
xy € WinhP: ag this is true for every 4, z, € L. Thus every x,-square
which has a positive intersection with W, has at least one point
in common with L.

Now let H be the set of »,-squares which have a positive inter-
section with W™, L is contained in H, while every square of H has
at least one point in common with L. Therefore for any rational
point p, o(p, H) * o(p, L) * o(p, H)+27"

This proves that L is located.

Corollary. It follows from the proof just given that every
bounded region-complement of positive measure contains at least
one point.

Theorem 3. If the measurable region-complement M is con-
tained in the elementary domain V, then mM $ mV.

Proof. M= N W,. Suppose that mM >mV. We can find g so
that mM >mV 4 2-9; then for every n, mW,>mV +2-9 Let U, be
the part of W, outside V. mU,>2-% By cutting from every U, a
small strip along the boundary of V, we obtain 7',. We can do
this in such a manner that 7,,, is interior to 7', and that mT,>2-¢
for every n. Set N T,=N. N is a measurable region-complement
and mN & 2-¢9 -Hence, in view of the last corollary, N contains
at least one point p. It is clear that p cannot belong to ¥, so
mM >mV has led to a contradiction.

6.1.3. Negligeable and almost full pointspecies

Definition 1. A pointspecies which can be enclosed in a
measurable region of arbitrarily small measure is called negligeable.
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Definition 2. A pointspecies which contains for every n a
region-complement of measure greater than 1 —2-7,is called almost
full. A property which is true on an almost full species will be said
to be true almost everywhere.

The complement of a negligeable pointspecies @ is almost full,
for @ C A implies E— A C E— Q. The converse is not always true,
for from E— A C R it follows that E—RC E—(E— A), but this
last species does not necessarily coincide with 4, and we are not
sure that it is a region.

Theorem 1. The meet of two almost full species is an almost
full species.

Proof. Let @ and R be almost full species, and M, N region
complements of measure >1—2-", contained in @ and R respec-
tively. Then M N N C Q@ N R; set m(M N N)=m. By 6.1.2, Th. 1,
1-2-741—-2"7<1+4+m; m>1—2""F1

Remarks. If V is an elementary domain, V is a region-comyle-
ment and the interior of V is a region of the same measure. The
boundary of V is a region-complement of measure 0. It can be
enclosed in a measurable region A of measure <2-* which can
be so chosen that, for some number s, every point at a distance less
than 2-¢ from the boundary belongs to 4.

Let W be the elementary set of rectangles which together with
V simply covers E. For an arbitrary point p in £— A4 we can
decide, by approximating it to less than 2-¢, whether it belongs
to V or to W.

THE BROUWER INTEGRAL

I shall develop the theory of integration for the case of functions,
defined on a subspecies @ of the unit-square E. Various extensions
are possible, but their place is not in this introduction.

6.2. Bounded measurable functions
6.2.1. Definition of the integral

Definition 1. A bounded function f(z), defined on a subspecies
Q of E, is measurable [L. E. J. Brouwer 1923, p. 6], if for every
natural number n the following conditions are fulfilled.

(i) a measurable plane region A, with mAd,<2-" is given;
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(i) £ is simply covered by elementary domains
Vanth=—1,, ..., —=1,0,1, ..., k),
(i) If M,=F— A4, then
(a) for zeV, N M, h+0, we have
(h—=1)27""1 $ f(z) $ (h+1)2-"-1
(b) for ze@Q N V,,N M, we have
—27""1 3 flx) 2777

The set of threedimensional intervals

ze Vg, (R=1)2"7"1 % 2z} (h+1)2-7-1

th=—-1,...,0, ..., k)
will be called the n-th approximating strip of f(x).f(z) is said to be
measurable by {V,} and {4,}.
Definition 2. The ¢ntegral of the measurable function f(z) is

defined by
(1) jf(x)d:c— hm 2-n-1 z hmV,y, .

he= —ln
Remarks. 1. Iti 1mposes no restnctlon to suppose 4, ., C 4, for

every n, for if we set u AL—B and W, ;,=V, o then f(z) is

also measurable by {B, } and {W.}, and the sequence {W,.} gives
the same integral. Similarly we may suppose that the boundaries
of all the ¥, are contained in 4, ; for if mA4,<2-"—-2-" we may
enclose these boundaries in a measurable region C, with measure
less than 2-* and then substitute 4, U C, for A,. This has the
advantage that for every point of £ — (4, U C,) we know to which
of the V,, it belongs.

2. It is often convenient to modify clause (ii) of def. 1 as follows:
(ii bis). F is simply covered by elementary domains V@®'; every
V@ is contained in one V¢ ; ;, and to read in clause (iii) U (ven M,)
in place of V,, N M,.

Crass. That is a well-known definition of a Lebesgue integral.
INT. Yes, but it was necessary to select a constructive definition
from among those which are classically possible. For instance, if
H(x) is defined in F and has the constant value a, where a is a real
number for which neither a<?/, nor a=1/, nor ¢>1/, is known,
then the species of points for which f(x) <1/, is not measurable;
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I can say that now, though I have not yet given a general definition
of measurable pointspecies. Of course the same remark applies to
fz)=1/, and to f(z)> s

An important difference is that a classical mathematician can
always suppose his functions to be defined over all of E, by
assigning to them the value 0 at every point where they were
undefined. This does not work intuitionistically, since for some
points it will be unknown whether the function is defined or not.
Brouwer’s definition of a measurable function is so formulated,
that for such a function we know almost everywhere either that
it is defined or that, if it is defined, it is smaller than 2-%, where n
can be chosen arbitrarily.

The pointspecies on which f(x) is defined, will be called the

domain of f(z).

Theorem 1. The limit (1) exists for every measurable function.

Proof. Let f(z) be measurable by {V,} and {4,}. We suppose

that the A4, fulfill the conditions of remark 1.
Let p be any number greater than n, and let V,, N V= W,,.

Each W,, is either an X, or a Y,,, as follows:
W= X if [R27"" 1 — k2771 <2,
Wie=Y,, if [A277"1—f2-7-1 2z 2-n,
It is clear that
(2) 2-»-1 g kmV,—2"1 hz hmV = hzk (k2-2-1_p2-n-LymW,,.

From the definitions we have for z e V,, " M, (h#0),

(3) (A—127""1 % f(z) F (h+1)27"71,

and for zeV, N M, (k+#0),

(4) (k—1)277"1 % f(z) 3 (k+1)2777L

Consequently for z e W N M, N M,

(5) |h2-n1—k2-77)| 3 27nmlL2-pml o pen,

This is also true for k=0, £#0 or A0, k=0, for, in the first case,
Ve " M, CQ, so Wo, "M, Nn M, CQ, and (3) is valid on
WM, M, For h=k=0, (5) is trivial.

Every point of M, N M, belongs to some W,,; in view of (5) this

can be no ¥,,, so M, " M, C U X,,.
Now, by 6.1.2, Th. 1, m (M, " M) < 1 —-2-2_2-p5 ] _2-n+1
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«~1

Ot

So muU X >1-2-m1 and muU Y, <2-+1,
Thus if |f(z)| <M,

(6) zI/GZ‘I’—I_hz—n—l'thk<(2‘lu+2)2_“_['
hk

() S |e2Pt—R2 Y mX, <27 m U X, P 27"
hk
By (2),
(8) |27 XkmV  —27""t ShmV,,| <(43 +5)2-".
Applying Cauchy’s principle (2.4) we see that the limit in (1) exists.

Theorem 2. If the bounded function f(z) is measurable by
{Van} and {4,} and also by {W,} and {B,}, then

(9) lim 2-*-1 YAmV,, =lm 2-""1 YkmW,.

n—00 N->00
Let A, U B,=C,, E—C,=M,. We may suppose that C, contains
the boundaries of V,, and W,,.
Set VN Wo=Xy if |h—k|=1.
Var N Woy=Y,, if |h—k|>1.
A point of ¥,, cannot belong to M, ; so 3, C U X,,. Hence (6.1.2,
Th. 3) mM, > mu X, mU X, =21-2""1nuUl, <2t

|2_"_1 Zh /m’Vnh_z_"_l zk m’V'nkl =
= 27" Y (h=k)ymXy -+ D(h—kymY | =

=211 Y mXpp+ (2M +277) Y mYppe S 27071 20 2-n41
+2-22+1 < (8 - 2)2-n-1, This proves (9).

6.2.2. Conditions of measurability

Theorem 1. A bounded function which is defined almost every-
where is measurable [B. van Rootselaar 1954. p. 7].

Proof. By hypothesis f(z) is defined on the species @, and @
contains for every » a measurable region-complement 3}, such
that mM,>1—2-""3

By 6.1.2, Th. 2. ], contains a measurable located region-comple-
ment L, such that mL,>1-2"""% L =E—A; Applying 5.2.1,
Th. 3, we see that f(z) is uniformly continuous on L,, so that for
every point x of I, theve is given a neighbourhood U, (z) such that
|f(x)— f(x')] <2--2, if =’ lies in U,(x) N L,. U,(x) contains an
elementary domain V,(x} which contains x in its interior. The
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Heine-Borel-theorem (5.2.2) can be applied to L,. so there is a
finite number of domains V,; (i=1, ..., m) which cover L,.
We define disjoint elementary domains W,; by

i-1
I/Vul = an > Wni = Vm'— Y (Vni, N Wnk) .
k=1

The total area covered by the W . is at least 1 —27"~2; the rest of
can be enclosed in a measurable region 4, of measure <2-"-1,
Let us enclose the boundaries of the W,; in a measurable region
B, with mB,<2-"-2, and set C, =4, U B, U 4, so that mC, <2,
Then f(x) is measurable by {W .} and {C,}.

Conversely we shall show that every measurable function can
be completed to an almost everywhere defined measurable function

with the same integral.

Definition 1. g(x) is a completion of f(x) if it satisfies the
following conditions:

(i) g(x) is defined almost everywhere,

(ii) g(x)=f(x) in every point where f(z) and g(z) are defined,
(iii) f(x) is defined in every point where g(x) # O.

Theorem 2. If f(z) is measurable by {V,} and {4,}, then the
function g(z) defined below is a completion of f(z).
gu(x)=h2"""1in V, N (E-A4,); g(r)=lim g,(z).
Theorem 3. If g(x) is a completion of the bounded measurable
function f(z), then g(z) is measurable and

[ gla)dz = f(z)dz.
Theorem 4. If a completion of f(x) exists, then f(z) is measur-

able.
The proofs of these theorems are immediate from the definitions.

In the proof of Th. 4 we use Th. 1 to prove that the completion of
f(z) is measurable.

Theorem 5. If f(x) is measurable, f(x) and g(x) are bounded
and f(x)=g(x) almost everywhere, then g(x) is measurable and
[ He)dz = g(z)dz.

Proof. Let f(z) be measurable by {V,,} and {4,}, and let B, be
a region with measure less than 2-" such that f(z)=g¢(z) on E — B,.
Then f(z) is also measurable by {V,_;,} and {4, U B,}, and from
the definition the statement in the theorem is clear.
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6.2.3. Sums and products of measurable functions

Theorem 1. If the bounded measurable functions f(z) and
g(x) have the same domain @, or if f(2) and g(z) are defined a.e., then
f(x)+¢g(z) is measurable and [ f(z)dz+ [ g(z)dz={[ (f(z)+ g(z))d=.

Proof. Let fy(z) and g,(x) be completions of f(z), g(z), respectively.
Then fy(x)+gy(z) is a completion of f(x)+g(x). The equality of the
integrals is easily inferred from the definition (6.2.1, Def. 1).

Theorem 2. If f(z) and g(z) are bounded measurable functions,
then f(z) g(z) is measurable.

Proof. Here also, if f,(x) and gy(x) are completions of f(z), g(z),
respectively, then fo(z) go(x) is a completion of f(x) g(x).

Remark. Note that in Th. 2 it is not necessary to suppose, as in
theorem 1, that f(z) and g(z) have the same domain. The reason is,
that fy(x) go(x) # 0 implies fyo(x) # 0 and go(x) # 0, while fy(z)+
+go(2) # 0 implies only that fy(z) 5 0 or go(z) # 0. The domain
of f(z) g(x) is, of course, the intersection of the domains of f(z)
and of g(z).

Definition 1. The non-negative part f+(x) and the non-positive
part f-(x) of f(x) are defined as follows:

fH(x) =max (f(z), 0); f~(x)=min (f(x), 0).
Obviously, f*(x) and f-(x) have the same domain as f(z), and
Hz) = f+(z) + f~(=).
Theorem 3. If f(z) is bounded and measurable, then f*(x) and
f~(x) are measurable, and

[ Fr@)da+ f~@)de=] [(x)dz.

Proof. If f(x) is a completion of f(z), then max (fo(x), 0) is a
completion of f+(z); the analogous result holds for f=(x). f+(x) and
f~(z) have the samc domain as f(x), so we may complete the proof
by applying Th. 1.
Theorem 4. If f(x) is bounded and measurable, then |f(z)| is
measurable.

Proof. |f(z)|=f*(x)—f().
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6.2.4. A limit theorem

Definition 1. The sequence of functions {f.(z)} is convergent
at the point x,, if a number N is known so that f,(z,) is defined for
n> N and if the sequence fy,.(%,) converges in the ordinary sense.

Theorem 1. If the functions of the sequence {f (z)} are measur-
able and uniformly bounded, and if the sequence converges a.e.
to f(z), then f(z) is measurable and

lim [ f,(@)dz=] f(@)da.

n—0co
Proof. For every m we can find a region-complement, M, such
that mM,>1—2-m-! and that lim f,(z) exists at every point of

n—00
M,. M, contains a located region-complement L, of measure
>1—2-m For every point z of L, we can find a number N(z),
such that f,(z) is defined for n> N(z) and that |f(z) —fulz)] <2-m for
n> N(z). In view of 5.2.1, Th. 1 and the fan-theorem we can find
a maximum value of N(x), say N,. Hence if n> N,, then f,(z) is

defined and | f(x) —fa(x) | <2-m for every z in L,,. In the following
I suppose that n>N,.

L, is the complement of a region B, . Let f,(x) he measurable by
{Vnph} and {Aﬂv}' Set Cﬂ’":Aﬂm v Bm’ ]{nm=E’— C,,m. We have
mC"m< 2—m+l'

For z e V,, N K,, we have I/(-"«')—/,.(l‘)|<2"" and further

(1) (h—1)2=m1—2-m % f(z) % (h+1)2-m-1 1 9-m

Then we can find a number % such that

(2) (k—1)277+2 % f(z) 3 (k+1)2-m+2; here

(3) |k2-m+2_h2-m-1| g 2omi,

This proves that f(x) is measurable by {V

is a function of m.
From inequality (8) in the proof of 6.2.1, Th. 1 we infer that

(4) |[f(x)dxz—2"m2 3k mV ol <(4M - 5)2-m+3,
(5) U /,,(x)d:z:—2""-1 Z h mV"mhl <(4M + 5)2-m,

From (3) we deduce

1
wmny @nd {C, 1 where n
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(6) [27mt2 S EkmV, =213 hmV 5 3
S |27 m k= 2= RV gy b 27 S MV 27

By (4). (5) and (6) we see that
(7) IS f@)dz— f(2)dz] < (361 +47)2°.
Since this is true for every n>N(m), we have proved the theorem.

6.3. Measurable pointspecies
6.3.1. Fundamental notions

Definition 1. The characteristic function fo(x) of a point-
species @ is defined as follows:

folz)=1if €@ fox)=0if z ¢ Q.

Definition 2. @ is measurable if fy(z) is measurable and the
measure of Q is mQ= [ fo(x)dz.

Theorem 1. Definition 2 is equivalent with the following one:
@ is measurable if, for every n, an elementary domain ¥V, and
a measurable region 4, can be found such that mA4,<2-7 and

QN (E—-A,)=V,N(E-A,). Then m@Q= lim mV,_, [L. E. J.

n—0o

Brouwer 19194, p. 29]. We say in this case that @ is measurable
by {V,} and {4,).

Proof. (i) If fy(x) is measurable by {W,} and {4,}, then @ is
measurable by {W, ...} and {4,}.

(i) If @ is measurable by {V,} and {4,}, then f,(x) is measurable
by {W,,} and {4,}, where W, yuu=V,, W, =E—V,_ and the other
W., are empty.

Theorem 2. If Q is measurable, then Q U (E — @) is an almost
full species.

Proof. Let fi(x) be measurable by {W,} and {4,}. For abbrevi-
ation, set X, =W, ... We suppose that 4, contains the frontier
of X, and of W, so that every point of £ — A belongs either to
X,orto Wy E—A,=M, QNnM, =X, NnM,.

If zeW,on M, fox)#]l, so 2¢Q, zeE~Q; consequently
WonM,=(E-Q)NnM,.

QUE-QNM, =X, VW) NM, =M, QU(E-Q DM,
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6.3.2. Conditions of measurability

Theorem 1. If Q is measurable, then E — @ is measurable and
m(E—Q)=1-m@Q [L. E. J. Brouwer 1919A, p. 30].

Propf. As in the preceding proof, we find M, =o that

QU (E—-Q)2 M, and mM,>1—2"" Then for every =,
fo(®)+fp_olx)=1 on M,. Hence fo(x) + fe_o(x) =1 almost every-
where. Consequently

[ fol@)dz+ [ fr_olx)dz=fdr=1.

Corollary. If Q is measurable, then £ —(F —@) is measurable
and has the same measure. This is very convenient, as it often
permits us in the theory of measure to neglect double negations.

Theorem 2. Every measurable species @ contains for every n

a located measurable region-complement L, of measure greater
than m@Q —2-»,

Proof. Let Q@ be measurable by {V,} and {4,}, E—A4,=M,.
We can find k=k(n)>n+1 so that |mV,—m@|<2--2 Also
mM, < 1-2-"-2. By 6.1.2, Th. 1,
mVy+mM, > 1+m(M, N V,);
MM, OV) < mV +mM,—1>mQ—2-""241_2-2-2_]=
=m@—2-""1,

The region-complement M, N V, contains a located region-
complement L, such that mL,>m(M, N V,)—2--1_ Thus
mL,>m@Q—2-n
As M, N\ V,=Q N V, CQ, the theorem is proved.

Theorem 3. A necessary and sufficient condition that the
point-species @ is almost full, is that @ is measurable and mQ=1.

Proof. (i) The condition is necessary, for if Q is almost full,
then fo(z) is defined a.e., so by 6.2.2, Th. 1, f,(z) is measurable,
and fo(x)=1 a.e. 50 mQ=1.

(i) The condition is sufficient by the preceding theorem.

Theorem 4. A necessary and sufficient condition that the

pointspecies @ is measurable, is that Q U (£ — @) is an almost full
pointspecies.
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Proof. (i) The condition is necessary by 6.3.1, Th. 2.
(i) The condition is sufficient: as (i) in the preceding proof.

Theorem 5. Every detachable subspecies B of a measurable
species @ is measurable [B. van Rootselaar 1954, p. 3].

Proof. QU(E—-Q)CRU(E—R), for every element of Q belongs
either to R or to E—R, and E—QCE —R. Thus, as QU (E —Q)
is almost full, R v (F—R) is almost full, and R is measurable.

Corollary. If Q U (¥ —@Q) is measurable, then @ is measurable.
Theorem 6. If Q@ and R are measurable and R C @, then
m@Q =mR+m(@— R).
Proof. The characteristic functions fy(z), fg(2) and f,_g(z) are
all defined on the almost full species

QU (E-Q)N (RU(E-R)),
and on this species fo(x)=/fx()+ fo_r(®)-
This proves the theorem.

~

Theorem 7. IfQ and R are geometrically congruent measurable
pointspecies, then m@=mR.

Proof. E—~Q=E—R, so 1-m@=1-mR.

6.3.3. Union and intersection of measurable pointspecies

Theorem 1. If @ and R are measurable pointspecies, then
@ N R and Q U R are also measurable. m(Q U R) > m@Q+mR; if
@ and R are disjoint, then m(Q U R)=m@+mR [L. E. J. Brouwer
19194, p. 32).

Proof. f,,x(x) and f,, z(z) are defined on the almost full species
(QUE-Q)N(RU(E—-R)), and on this species we have
fana(®)=fo(®) fa(@) and foun(@) ¥ fol@)+fa(z); if Q and R are
disjoint, then fg, () =fo(@)+ fr(2).

Theorem 2. If {Q,} is a sequence of measurable pointspecies,

n
S,= U @, m,=mS,, and if lim m,=m exists, then the species

h=1 n—»co

[= o]
S,= U @, is measurable and mS, =m.
A=l

[L. E. J. Brouwer 1919 A, p. 33].
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Proof. By 6.3.1, Th. 2, we can find for every ¢, a measurable
region B, such that mB,<2-*~" and that @, U (E—Q,)2E~ B,.

Set B= U B,, then mB< 27"

n=1

Next we determine the numbers n,, n,, . .. 80 that m—m, < 2-h-2
m—m, <273, etc. After that we find the measurable regions
C,,C,, ... such that mC;<2°*% and E—-C,CE— (S,,M—S,,i).

Set C= U C,, so that mC'<2-", and D= B UG, so that mD <27*+1.

Let « b:3 ;ny point of E—D. z € E— B, for every n, so z €@, or
z e BE—Q,; consequently, = eS,,l or x € E—S,,‘. If =z € Sﬂl, then
z €S,

Let us now suppose that = € E—8,, . Asz € E—C}, z does not belong
to 8, —8,, so zeE-8,.

Similarly, because z € E—C,, we have x € E—S,, and so on. It
follows that z € E—8,. We have proved that any point of E—D
belongs either to S, or to E—8,; thus f;, is defined on E—D.
Moreover, we have on E — D, lm f; =fs,. Now the theorem
follows by 6.2.4. noee

Theorem 3. If {Q,} is a sequence of measurable pointspecies,

n 3
R,= n @,, mR,=m,, and if lim m_ =m exists, then the species

h=1 n-»00
® .
R,= N @, is measurable and mR, =m.
h=1

[L. E. J. Brouwer 1919A, p. 33].
The proof is almost word for word the same as that for the pre-
ceding theorem.

Theorem 4. Every measurable region or region-complement
(6.1.1 or 6.1.2) is also a measurable point species (as defined in 6.3.1)
and the two measures are equal [L. E. J. Brouwer 1919A, p. 30].

Proof. For a region this is an immediate consequence of theorem
2; for a region-complement it follows by 6.3.2, Th. 1.

Theorem 5. If f(z) is a bounded measurable function, defined
on the pointspecies ¢, and if p is any natural number, then we
can find disjoint measurable species @, (k= —1, ..., 0, ..., k),
such that Y m@,,=1 and

h
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(h—=1)2"7"1< f(x) <(h+1)277"! on @, (h+#0),
— 2=l f(z)< 271 on @, N Q.

Proof. Let f(x) be measurable by {V,,} and {4,}.Set M, =E— A4,
and N,,=M,N V,. Order the N, (n = p) by the following rule:
N, precedes N, if either n<m or n=m, h<i. Let R,, be the
species of the points of N, which belong to none of the region-
complements that precede N, in this sequence. Now divide the
sequence of the R,, into partial sequences, beginning with
N, _y, ..., Ny, respectively, as follows. R, belongs to the partial
sequence beginning with N_,, if 2 is the smallest number such that

(h—1)2-7-1< (1 —1)2-7"1< (i 4+ 1)2-7-1 < (b4 1)2-71,

Let @,, be the union of the species in the sequence beginning with
N,; the @, _,, ..., @,;, have the desired properties.

Remark. Brouwer [L. E. J. Brouwer 1923, p. 9] proves that
the @, can be taken as outer limiting species. I do not introduce
this notion.

6.4. The integral as the measure of a pointspecies

In the following three-dimensional as well as plane pointspecies
occur. In order to prevent confusion, three-dimensional species
will be denoted by german capitals.

Theorem 1. Let f(z) be a bounded function, defined on a
subspecies S of E. Let ¥, and ¥, be the species of the points in
space with coordinates (p, p,, ps), such that (py, p,, 0) €S and

0> p; > f(py, P,), respectively O 4 py < f(py, p,); then

(a) f(z) is measurable if and only if ¥, and T, are measurable
three-dimensional pointspecies;

(b) if f(z) is measurable, then [ f(z)dx=mIT,—mI,.

Proof of (a), if. Let |f(z)] < M and let € be the elementary
domain in space defined by (p1, p2,0) € E, |ps| <M. Let ¥, be
measurable by {8,,} and {%,,}. Suppose the notation is so chosen
that mA;, < 272, 9, is defined by a sequence of elementary

domains {U,, ,}; let ¢, be chosen such that MUy, > (1 —272~5)m9[
Then, if
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%ln,q= ulﬂ.\'q;] — uln,(', 1n%1n’a < 2_2q_5m9111| < 2—2"-20—5.

The parallel to the axis of p3 drawn through a point z= (p,, p,, 0),
intersects W,,, in a segment or segments of total length I(z);
let X,, , be the species of the points 2 such that l(z)=2"""?"2
mXipq in a region C,, , with
measure <2-""9"2 Set B, = U Cl,, o then mB, <2 "' and if
xeE—- B,

intersects U,, in a species D such that mD < z 2-r-a-3=2-n-3,
Set ¥— B,,=M,,. a1

Now we divide E into a finite set of elementary domains Y,
such that if z € Y5, the parallel of the axis of p3 drawn through x
intersects B, in a segment (0,s) which satisfies the condition

in.q

—n—q¢-2
<27779"2 and we may enclose Xina

then the parallel to the axis of Z drawn through z

(2h—1)2-"-2 % s 3 (2h+1)2-"-2,

Combining this inequality with the earlier result: if z € M,,, then
the parallel to the axis of psdrawn through z intersects %, in a
species of measure <2-"~3, and with the fact that B,, N (E—Uy,) =
=3I, N (E-Y,,), we see that for zx €Y, N M,,,

(h—1)27""1 % f(z) % (h+1)2-"1;

for h=0 this inequality is valid at all those points where f(z) is
defined and f(z) 4 0.

We have now proved that f+(z) is measurable by {Y,.} and
{Bi.}; in the same way, by starting with ,, we can prove that
f(z) is measurable.

Then f(z) is measurable by 6.2.3, Th. 1.

Proof of (a), only if. Without loss of generality we may assume
that f(z) is bounded by 1. Let f(x) be measurable by {V,,} and
{4,}, and let W, be the n-th approximation-strip, B, the three-
dimensional region of points (p,, p,, p;) such that (py, Pa 0) € 4,,
and €, the species of points in space such that —2-"<p,<2~"%
then D,=W,U B, U, is measurable and mD, <2-**+2; D, can
easily be enclosed in a region {, such that mi}n< 2-n+3, CODSldeI‘
the finite set of rectangular blocks 1, consisting of the points
(P1) Py P3) such that for some k, (p,, P, 0) €V, (R>0) and
0 py 3 A2 "1, and the set 1,,, which contains the points such
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that, for some &, we have (p,, p,,0) €V, (A <0)and 0 < p, 4 A2 "1,
¥, is measurable by {iI,,} and {%,}; ¥, is measurable by {l,,}

and {,}.

Proof of (b). This follows at once from
mly, —mUy,=2"""13 hmV,,

by passing to the limit. *

As an application we prove
Theorem 2. If f(x) and g(z) are bounded measurable functions,
then max (f(z), g(z)) and min (f(z), g(z)) are measurable functions.

Proof. Set max (f(z), g(z))=h(z), min (f(z), g(z))=Fk(z). Let
TAF) (1=1,2; F=f,g,h k) be defined in the same way as I,
and ¥, in Th. 1.

TR =T(H Vv Tlg).  LR)=T,(f) N Tylg)-

L) =N N Tylg).  Tu(k)=T() L Tu(9)-
T,(f) and T,(g) are measurable; by 6.3.3, Th. 1, so are T,(h) and
Z(k). It follows that A(z) and k(x) are measurable.

Remark. This theorem can also be proved by the completion
method (see 6.2.2).

6.5. Unbounded functions
6.56.1. Unbounded measurable functions
The definition and many properties of bounded measurable
functions can be immediately extended to unbounded functions.
I repeat them for the convenience of the reader.
Definition 1. A function f, defined on a subspecies @ of E,
is measurable, if for every natural number = the following conditions
are fulfilled:
(1) a measurable plane region 4, with mA,<2-" is given;
(i) E is simply covered by elementary domains
Van (h=—=1a,...,—1,0, 1,..., kn);
(i) if Mp=E—A,, then
(8) for € Vap N M,, B # 0, we have
(k= 1)2771 % f(2) 3 (h+1)2-771,
(b) for z€e @ N Va0 N M, we have
—9-n-1 } I‘(:L) } 2-n-1,
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Theorem 1. A function which is defined almost everywhere is
measurable [B. van Rootselaar 1954, p. 7].

Proof. See 6.2.2, Th. 1.

Theorem 2. The function f is measurable if and only if a
completion of f exists.

Proof. See 6.2.2, Ths. 2 and 4.

Theorem 3. If the measurable functions f and g have the same
domain, or if both are defined a.e., then f+g is measurable.
Proof. See 6.2.3, Th. 1.

Theorem 4. If f and ¢ are measurable functions, then their
product is a measurable function.

Proof. See 6.2.3, Th. 2.

Another proof of Th. 3 and Th. 4 was given by van Rootselaar [1956].
Theorem 5. If f and g are measurable functions, defined on
the same domain, then max (f,¢) and min (f, g) are measurable
functions.

Proof. If fo and go are completions of f and g respectively, then
max (fo, go) is a completion of max (f, g) and min (fo, go) is & comple-
tion of min (f, g).

Corollary. If f is a measurable function, then f+ and f~ are
measurable functions, and |f| is a measurable function.
Theorem 6. If the functions of the sequence {f,} are measurable,
and if the sequence {fs(x)} convergesa.e.to f(z), then f is a measur-
able function.

Proof. See the first part of the proof of 6.2.4, Th. 1.
Definition 2. For any function f we denote min (f(z), 2¥) by
xf(z).

Theorem 7. A non-negative function f is measurable if and
only if if is measurable for every natural number #%.

Proof. The only-if-part is an immediate consequence of Th. 5.
To prove the if-part, suppose that xf is measurable by {Vinn} and
{Akn} and that each Ax, contains the boundaries of the correspond-
ing Vinn. E— Agn=DMyn. Then Win= U (Vinp N Mis) is a region-

complement. From here on, k is a ﬁm;'d> ona.tura,l number. By 6.2.1,
Th. 2, Wia contains a located region-complement L, such that
MmLn>mWyn—2-m if and also f is defined everywhere on Lg;
by 5.2.1, Th. 4, f is bounded on Ly, say f(x) < 2! on L,. If we denote
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Lp U (Vino N min) by K,. then K, is a region-complement with
the properties
(1) mK,>1—2-n+1,
(il) 2 e K, — f(x)< 2.
By hypothesis ,f is measurable by {V a1} and {45} ; this means that
2eEVimm N My &h> 0 —> (A-1)2"7 % f(x) 3 (h+1)2-7,
€ Vg My N Q — 0 > if(z) P 2-n.
@ is the domain of f.
These inequalities remain valid if #,, is replaced by M, N K, =
=Hy. mHy, >1—2-7+2, On Hy,, f(z)=if(x), so
TE€Vian N Hip &h>0— (h~1)27" 3 f(z) 3 (h+1)2-
zeVimoNHinNQ e 03 f(z) > 2-m,
Thus, considering ! as a function of n, we see that f is measurable
by {Vinn} and {Din}, where Hyy=E — Diyn.

6.5.2. Summable functions
Definition. A measurable function f(x) is summable if
lim [ f+(x)dz+ hm Jf (=

koo
exists; this limit is [ f(z)d.
Theorem 1. Iffand g have the same domain, f(z) is summable
and g(z) is measurable, and if 0 > g(x) 3 f(), then g(x) is summable.

Proof. Let g(x) 3 f(x) be true on the almost full pointspecies Q.
The inequality
(1) min (g(z), 2¢+™) — min (g(z), 2¥) 3 min (f(z), 2*+™) —min (f(z), 2%)
is obvious for such points z in @ where
(2) either g(x) « 2%, or g(x)< 2~
Thus, if for some z in @ (1) were false, 2 could not satisfy condition
(2); but this is a contradiction.
Finally, if (1) cannot be false, then (1) is true.

From (1) we infer that

J‘k+mg('l’)dt .[qu ﬂ,)dl * Iklm/(r d'l'—J‘kf (IT
It follows that lim [,g(z)dw exists.

k—co

Theorem 2. If f(x) and g(x) are summable functions with the
same domain, then f(z) I-¢(2) is summable and



88 MEASURE AND INTEGRATION

J () +9g(@))dz = f(x)dz + [ g(2)dz.
The proof will be given by means of three lemmas.

Lemma 1. Th. 2is true for non-negative functions f(x) and g(x).
Proof. Set f(x)+ g(z)=~h(z), then h(z) is measurable by 6.5.1, Th. 3
v-1f(@) +r9(x) 3 h(Z) 3 f(Z) +19(2).

Passing to the limit, we see that [ h(z)dx exists and is equal to

J f(x)dz+ [ g(z)dz.
Lemma 2. If f(z) and (g)x are summable functions, defined

on the same domain, and such that 0 % g(z) 3 f(x), then f(z) — g(x)
is summable,

Proof. By 6.5.1, Th. 3, f—g is measurable. Further 0 3} f(z)—g(x)
% f(z), so f—g is summable by Th. 1.

Lemma 3. Iff(z)and g(x) are non-negative summable functions
with the same domain, then f(x)—g¢g(z) is summable,.

Proof. If f(x)—g(z)=~h(x), then
k*(x) = max (f(z), 9(x)) —g(=),
—h~(x) = g(z) —min (f(z), 9(-’6))-
As 0 3 g(x) 3 max (f(z), g(z)) F f(z) ) and
0 3 min (f(z), 9(2)) > g( z), we see by 6 5.1, Th. 5, 6.5.2, Th. 1
and lemma 2, that h(z) is summable.
Proof of theorem 2.
f(@) + g(x) = (¥ (@) + 9+ (@) — (= [(z) —g~(x))
is summable by lemmas 1 and 3.

Theorem 3. Iffandg have the same domain, f(x) is measurable
and g¢(x) is summable, and if |f(z)| <g(x), then f(z) is summable.

Proof. 03 f+(z) 3 |f(z)] and 0 3 —f~(x) > |f(z)].
It follows that
0 % fH(z)<g(z) and 0 3 —f(z)<g(z).

In view of Th. 1, f*(z) and —f~(x) are summable.
As f(x)=f*(x)—(—f"(z)), lemma 3 gives the desired result.

Theorem 4. Iff (z)issummable for every » and lim f,(x)=f(z)

n—>00
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uniformly, then f(z) is summable and lim [ {,(z)dz=/ f(z)dz.

n—-00

Proof. For sufficiently large values of =,

[f(z) — fu(@)]| <&, so by Th. 3, f(z)—f.(z)
is summable. By Th. 2, also f(z) is summable.
The second part of the theorem is easily proved.

Theorem 5. If f(z) is summable and ¢(z) is bounded and
measurable, then k(z)=f(z)g(z) is summable.

Proof. Suppose |g(z)|<s. f(z)g(x) is measurable for every k,
80 Ak(x) is measurable.

First let f(z) 4« 0 and g(z) <« 0. If f(x) is summable, then sf(z)
is summable, so we need only consider the case that g(z)<1. Then
it is easily seen that, for >k,

min (fg’ 21)_mm (fgr 2k) > min (f) 2l)~mm (f: 2k)'
Jh(@)dz —[ Az 3 [f(@)de — [ f(@)de.
This proves that k(z) is summable.
In the general case we have
b+ (z) = fH(z)gH(x) + [~(x)g~(2);
h=(x) = f(zx)g~(z) + [ (2)g*(z);

so h+(z) and 2—(x) are summable.

6.5.3. Functions, swmmable on a porntspecies

Definition 1. The function f(z) is measurable on the species @,
if f(x)f;(x) is measurable.
The function f(z) is summable on G, if f(x)fs(x) is summable; in
this case

Jef@)de=[g [(@)fg(x)dz.
Theorem 1. A measurable function is measurable on every
measurable species G. A summable function is summable on every
measurable species G.

Proof. (i) If f(x) is bounded, f(x)fe(x) is measurable by 6.2.3,
Th. 2.

(i) If f(z) is not bounded, ,/(x)fs(x) is measurable for every k, by (i).
(iii) By the preceding theorem, f(x)fs(x) is summable.
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Definition 2. [bf(z)dz=[s f(z)dz where G is the interval (a, b).
Theorem 2. If f(z) is summable, then

lim [fq f(z)dz| =0 uniformly.

mG—0

Proof. (i) If f(z) is bounded, |fsf(x)dz| > (max |f(x)|)mG.
(ii) In the general case we determine k so that

Je(fH(x) = f(x))dz< 2-*"% and
{etf~(x) = f~(2))dz <2772

For mG <2-7-%-2 we have

|fof(2)dz| o of*(@)dz + [g of ~(@)dz +
+ folft(@) — o (@))dz + [o(f~(2) — 3f ~(2))dz
P 2*m@ + PmG+ 27724 272 < 27,

Remark. Van Rootselaar [B. van Rootselaar 1954, p. 16] has
given another definition of [;f(z)dz, which is perhaps more general
than the definition given here.

6.5.4. Limit theorems

Theorem 1. If the sequence of non-negative functions {f.(x)}
satisfies the conditions

(i) every f, is summable,

(11) fn+1(x) { f‘n(z):

(ili) the limit lim f, (x)=f(x), exists almost everywhere,

n—+ao

(iv) lLm [gf.(x)dz exists;

n—00

then f(z) is summable and

Jefx)dz= lim [gf,(x)dzx.

n—00

Proof. lim [f,(zr)dz= lim lim [ .f,(z)dz.
n—»00 n—>00 koo

As [ 4f,(z)dz is non-decreasing for increasing » and k, we may invert
the order of the limits, obtaining

lim lim [ .f,(z)dx.

k—o00 n—co

The sequence {,f,(x)} satisfies the conditions of 6.2.4, Th. 1, so
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lim .r kfn(x)dx =.[ kf(z)dz'

n—00

This proves the theorem.

Crass. Is that theorem about inverting the order of the limits
in a double series intuitionistically valid?
InT. Yes, and I propose its proof as an exercise.

Theorem 2. (Egorof’stheorem [B. van Rootselaar 1954, p. 10].)
If the functions of the sequence {f,} are all defined on the measur-
able species @, and if lim [, (x)=/(z) exists a.e. on @, then, for

every m, a measurable subspecies @,, of @ can be found such that
m@Q —m@,, <2, and that lim f (z)=f(x) uniformly on @Q,.

n—+00
Proof. Let @, be the species of measure m@Qy=m@, on which
lim f,(x)=f(z). For @, we choose a measurable located region-

n—o
complement of measure greater than m@—2-™, contained in @
(6.3.2, Th. 2, 6.1.2, Th. 2). @,, coincides with a point-fan S (5.2.1,
Th. 1); to every element = of S there is associated a natural number
N(x) such that

|fa(@) = f(x)] <277 for n> N(z).

The fan-theorem assures us that a natural number B can be found
such that N(z) depends only upon the first B components of the
ips z; it follows that a maximum value N, of N(z) can be calculated.
Then
|fa(x) - f(x)] <277, for every n> N,
and every z in Q.

6.6. Hilbert space

I shall prove that the functions f(2) which are defined a.e. and
such that f%(x) is summable, form a Hilbert space B2

Real Hilbert space can be defined in different ways, of which
the following two are relevant here:
(i) the constructive definition as the species of (positively)
convergent sequences of real numbers, in which the inner product
is defined as usual.

(i) the axiomatic definition by von Neumann’s axioms [J. von
Neumann 1929, p. 64—66], [M. H. Stone 1932, p. 3].
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It can be proved that the two definitions are intuitionistically
equivalent if the axioms are slightly modified in the following
manner.

For the sake of briefness the elements of Hilbert space H will be
called wvectors.
Axioms for Hilbert space.

Axioms I. The usual axioms for a real linear space.
Axioms II. The usual axioms for the inner product, including
Ila, (z,z) 4 0;
ITb, If (x, )=0, then x=0.
(The null-element of H is simply denoted by 0).
An apartness relation is introduced by

Definition 1. z lies apart from 0 (z # 0) if (z,z) # 0.

x lies apart from y (z # y) if x—y # 0.

Definition 2. The vectors 2!, ..., 2* are mulually free, if for
every set of k& real numbers a,, ..., a, such that a; # 0 for at
least one value of 7, we have

axt+ ... Laxt #£0

Axiom III. For every k we can find k mutually free vectors.

Axiom IV. (Axiom of separability in the strong form.)

There exists a sequence S={¢"} of vectors such that every finite
subsequence of § is free and that the species of finite linear
com.binations of vectors in S is dense in H.

Axiom V, the axiom of completeness in its usual form.

Remark. Axiom III is a consequence of axiom IV.
In order to formulate the announced theorem, I need the
following definitions.

Definition 3. f(z) ~ 0 means that f(z)=0 a.e. f(x) is equivalent
to g(x), f(z) ~ g(a), if f(x)—g(z) ~ 0.

The species of the functions whlch are equivalent to a given function
will be called a metafunction.

In this section f(x) means sometimes a function, sometimes the
metafunction of which the function f(x) is a member.

Theorem 1. The species B2 of metafunctions f(z) such that the
function f(r) is defined a.e. and that f?(x) is summable, becomes a
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Hilbert space if (f(z), g(x)) is defined as denoting [ f(z) g(x)dz.

Proof. Of axioms I, II, only IIb needs a proof.

We must prove that (f./)=0 implies f ~

Set, h(x)=f3(x), then ,h(x) is measurable and [ h(z)dz=0.

Let ]L(I) be measurable by {V,} and {4,}.

Suppose m( U V,;)>2"" Set M, = v V ,—A4,, then mi;M, >0.

h>1 h>1
Define g(z)=,A(z) on M, and g(z)=0 on E— 3,
fg(z)dz $ [ fA(x)dz=0 and
fg@ydz > 2-""1mM,k > 0.
The supposition m( U V ,)>2"" has led to a contradiction, so
h>1

m(U V) > 2"

h>1

Enclose U V,, in a region B, of measure <2-"+1;
h>1

set C, =4, U B, mC, <27"*2 On E —-C, we have f(z) < 2-n.
Set D, = U C,. mD,< 273 Let N =E—-D, On N, we have

Hz)<2-n-» for every p, so f(z)=0. O N, is a species of measure
1 on which f(z)= ko

Axioms III and IV are satisfied. The proof of this fact is identical
with the classical proof.

Proof of axiom V (the Riesz-Fischer theorem).

I formulate this as

Theorem 2. Let {f,} be a sequence of functions in B? such
that [ (f, —f.)2dx tends to 0, if m and n tend to infinity; then there
exists a function f in B2 such that lim [(f—f,)2da=0 [A. Heyting
1951]. e

The proof follows closely von Neumann’s proof.

First, we determine the integers N, so that

.r/m / Zdl/‘) % for m,nsz.

For the purpose of abbreviation set g, =|fy,,,~fx,| and & (z)=
=min (g,(z), 1). By the method of 6.3.3, Th. 5, we determine the
disjoint measurable species Q,, (¢ =0, ..., s) such that > m@, ,=1
and h

(h—1)277 1 <h(x) <(h+1)272"1 on @, (h+#0),
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—2-7- 1< h (x)<27?7! on @, N Q.
Define @, U @,,=R,, U @,,=S,. Then
h>1

273> [ hdax= [, hidz+ [, hidz 4 272272 mS,,.

mS, < 2°?*2 mR, >1—2-7+2 Set N R,=T,, then mT,>1—-277+3.
P31

If, finally, U T, =T,, then mTy=1.
q

The sequence {f } converges on T, to a function f, the con-
vergence being uniform on any 7,

JUn—1x,)dz 3 [ (fn—1y,)dx<e for m, N,> N(e).
Ta E

(A) [(fa—f2dz > & for m>N(e).
Tq

The desired result is obtained by passing to the limit, g —- co.
Classically, this can be done by the simple remark that the left
members of (A) for g=1, 2, ... form a bounded monotone sequence.

Intuitionistically, the existence of the limit must be proved by
direct calculation. To do this we first prove a lemma.

Lemma. If

1. every function of the sequence {f,(z)} is measurable,

o

| fi(x)dz exists for every n,

3. [f.(x) converges uniformly to f(z) when n — oo;
then f%*(z) is summable and lim [ f3(z)dz= [ f3(z)dz.

Proof. By 6.5.2, Th. 4, f(z) and also [f(z)| is summable. Let ¢
be an arbitrary small positive number and #=
A number N can be found so that

€
6 ([/(z)|+1)d=’

|f(x)—f.(x)| <y for n>N.
Then
fa(2) = fa(@)| < 21 fule) +[al2)| <
<4n(|f(x)] +n) for m, n>N.
|J (f2@) — fa(2))dz| < 49 [(|f(2)| + 1)z <e.
It follows that lim [ f2(z)dx=S exists.

N—»00

We choose a fixed value of n>N so that



HILBERT SPACE 96
(1) |f fa(x)dz—S| <e/3.
In the same way as above we find

|f3(=) — fa(@)| < 27 (|f(z)] +7).
A fortiori:

|of*(@) = f2(@)| < 29 (|f(2)] + 7).

(2) |f of*(@)dz— [ ifal@)dz| < 29 [(If(@)] + 1)dz=e/3.
By definition 6.5.2, we can determine K so that
(3) |f fiz)dz — [ f2(x)dz| <¢/3 for k> K.
From (1), (2) and (3), we see that

| f /Y 2)dx—8|<e for k> K.
Thus [ f3(z)dx=S.

I now continue the proof of Th. 2.
For abbreviation, set fy (z)= F,(x).
From Schwarz’s inequality there follows (¢> p):
Vi Fi(x)dz 3 V] Fiz)dz+ {[ (Fo(x)— F(z))%dz.

(1) | VI Fi(z)dx— Vf Fi(x)dz| 3 V[ (F(x)— F,(r))*dzr<2-7.
Thus, lim V§ F(x)dz exists and as a consequence also

hm j'Fz(x)dx exists; hm | Fi(z)dx=S.

The inequality (1) remams true when the integrals are taken over
an arbitrary 7,. Now for r>r,,

IF" (x)dz<S+1; Vsz(:c < Y(S+1)=4
|J'Ff, j'F’(:v dx|<°A2 » for ¢>p>r7,
Tk

As F (x) converges uniformly to f(z) in T, for ¢ - oo, we may
pass to the limit (6.5.2, Th. 4):

(2) | § Fiz)dx— [ fA(z)dz| < A2-?*! for p>r,.
Ty Tk
On the other hand, as mTy=1 and lim [ F2(z)dz=
p—>00
(3) UFZ Jdz—8|<2-"-2 for p>r(n).

By 6.5.3, Th. 2 we have
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(4) | Fi(x)dz<2""2 for k>ryn, p).

n being given, I choose p so that p>r, p>r(n) and 42771 <
< 2-7"2; then by (2), (3) and (4),

If fA(z)dx—8| <2~ for k>ry(n).
T

lim [f¥z)dz=S, or, more explicitly,
k—00 Tk

(5) lim lim [ ,f%(z)dz=S

k-0 h—oo Ty

As [ ,f%(z)dz is monotone non-diminishing with respect to k as
Tk

well as to h, we may, using the property which was mentioned
already in the proof of 6.5.4, Th. 1, invert the order of the limits.

S= lim lim [,z)dz= lim [,(z)dz= I/Z(x)dz

h—c0 k—oo Tk h—oo T,

The existence of the last integral having been proved,
I{(f(z)—fn(x))%x
also exists and by 6.5.3, Th. 2, this integral is equal to
lim [(f(z)—f,(x))dz.

k00 Ty

Thus, according to formula (A),
[ (f(z)—f.(x))2dx > ¢ for m> N(e).
T

As mTy,=1, the theorem is proved.

6.7. Derivation

I shall not treat the theory of derivation here. The proofs of the
main theorems have been adapted to intuitionistic requirements
by van Rootselaar [B. van Rootselaar 1954, p. 33].



VII
LOGIC

7.1. The propositional calculus

The word “logic” has many different meanings. I shall not try
to give a definition of intuitionistic logic, any more than I have
begun this course by a definition of mathematics. Yet a preliminary
remark will be useful. OQur logic has only to do with mathematical
propositions; the question whether it admits any applications
outside mathematics does not concern us here. The letters p, q, r
occur in this chapter as variables for mathematical propositions;
German letters p, g, t will be used as abbreviations for mathematical
propositions. It is not my purpose to give a complete formal
treatment of intuitionistic logic; a formal system which codifies all
the logical inferences of intuitionistic mathematics known at
present, is easily accessible in Kleene's book [S. C. Kleene 1952],
where the reader will also find an account of the metamathematical
investigations of this system. Among later investigations I mention
papers by E. W. Beth [1956, 1959], R. Harrop [1956. 1960],
K. Schréter [1956, 1957]. G. Kreisel and H. Putnam (19571,
J. Porte [1958], H. Rasiowa and R. Sikorski [1959], R. Sikorski
[1959], Th. Skolem [1958], S. C. Kleene {1962] and N. N. Vorob’ev
[1958]. Kreisel [1958, 1962 A] formulated the completeness problem
for intuitionistic logic and obtained important results on this subject.
He also proposed a formal theory of constructions [1962] which is
intended to serve as a basis for intuitionistic mathematics. Here I
shall only call your attention to some formulas which express
interesting methods of reasoning and show why these methods are
intuitively clear within the realm of intuitionistic mathematics.

It will be necessary to fix, as firmly as possible, the meaning of

the logical connectives; I do this by giving necessary and sufficient
conditions under which a complex expression can be asserted.
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7.1.1. Interpretation of the signs

The conjunction A gives no difficulty. p A q can be asserted if
and only if both p and g can be asserted.

I have already spoken of the disjunction v (2.2.5, at the end).
p v q can be asserted if and only if at least one of the propositions
p and q can be asserted.

The negation — is the strong mathematical negation which we
have already discussed (2.2.2). In order to give a more explicit
clarification, we remember that a mathematical proposition p
always demands & mathematical construction with certain given
properties; it can be asserted as soon as such a construction has
been carried out. We say in this case that the construction proves
the proposition p and call it a proof of p. We also, for the sake of
brevity, denote by p any construction which is intended by the
proposition p. Then = p can be asserted if and only if we possess a
construction which from the supposition that a construction p

were carried out, leads to a contradiction.
SigN. Is it not necessary to clarify the notion of a contradiction?

InT. I think that contradiction must be taken as a primitive
notion. It seems very difficult to reduce it to simpler notions, and
it is always easy to recognize a contradiction as such. In practically
all cases it can be brought into the form 1=2. As a simple example,
let us consider the proposition p = (/2 is rational). It demands
the construction of integers a, b, such that a®?=2b2. By a well-
known argument we may suppose that a and b are relatively
prime. On the other hand, a is even, so 4 divides a2, hence 4 divides
2p2, and b is even; thus a and b have the common divisor 2. This
contradicts the fact that @ and b are relatively prime. The contra-
diction can be given the form: The GCD of a and b is at the same
time 1 and 2.

Some mathematicians, and notably Griss, have raised objections
against the use of contradiction in mathematical reasoning. I shall
treat these objections in the next chapter; here I take the point
of view that the notion of a contradiction is sufficiently clear and
that the negation which is based on it can be used in mathematics.

The implication p — q can be asserted, if and only if we possess
a construction r, which, joined to any construction proving p
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(supposing that the latter be effected), would automatically effect
a construction proving q. In other words, a proof of p, together
with 1, would form a proof of q.

Almost every proof in this book consists of such a construction
as t above. One of the first instances, and a very clear one, is the
proof of 2.2.3, Th. 2.

A logical formula with proposition variables, say A(p,q, ...),
can be asserted, if and only if 2(p,q, ...) can be asserted for
arbitrary propositions p, q, . ..; that is, if we possess a method of
construction which by specialization yields the construction
demanded by A(p, q, ...). For example consider

Up,q)=(pr-p—>q- —q).

A(p, q) demands a construction E, which from a proof C of p and
a proof D of p — q yields a proof of q. By the definition of impli-
cation, E consists simply in the juxtaposition of C and D. Thus
A(p, q¢) can be asserted.

In 2.2.2 I gave a criterion for mathematical propositions, namely
that every mathematical proposition has the form “I have effected
a construction with the following properties: .....”". This form is
preserved by the four logical connectives. It is necessary to
understand the word ‘‘construction’ in the wider sense, so that
it can also denote a general method of construction, as was meant
in the last paragraph but one. If I do this—and I shall do it—,
every logical formula expresses a mathematical proposition.

7.1.2.  Theorems of the propositional calculus

In the formulas I use points and brackets in the usual way,
assuming the convention that — binds less strongly that o and v.
Asserted formulas are marked with |.

Though the main differences between classical and intuitionistic
logic are in the properties of the negation, they do not coincide
completely in their negationless formulas. p—>gq-v.q—p is
a valid formula in classical logic, but it cannot be asserted in
intuitionistic logic, as is clear from the definitions.

In the theory of negation the principle of the excluded middle
fails. p v p demands a general method to solve every problem,
or more explicitly, a general method which for any proposition p
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yields by specialization either a proof of p or a proof of —p. As
we do not possess such a method of construction, we have no right

to assert the principle.
Another form of the principle is = — p — p. We have met many
examples of propositions for which this fails: the first was “p is

rational” in 2.2.2. However,

(1) Fp—>—-mp.
It is clear that from p it follows that it is impossible that p is

impossible. I leave it to you to describe completely the method of
construction which is demanded by (1), according to the definitions

of — and .
Another important formula is

(2) Fp—>gqg-—>-T1g>7p

Of course, the inverse formula, " ¢g—>—1p:-—> - -p—gq, is
not assertable. (Take q=a # b, Y =a = b, where a and b are

real numbers.)
Applying (2) twice, we find

(3) Fp—>q-— - -TMp—>"T1Tg.

By substitution in (1) we find
4 Fop->—mop

If we substitute —— p for ¢ in (2), we find, using (1),
(65)  Fommpoop

(4) and (5) show that we need never consider more than two

consecutive negations.
From | p — pvgq follows, by (2), - (pvgq) — — p; in the
same way we have - (pvg) > g¢, so

(6) Fovg—>"1pamg.
The inverse formula is easily seen to be also true:
(7) Fopag=>"(pve):

(6) and (7) form one of de Morgan’s equivalences. The other
one is only half true:

(8) Fopvag—>(pag).
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1 (pAag) =" pv— g cannot be asserted. as the following
example shows. Let p be a0 and q be b0, where @ and b are
real numbers; then — p is =0 and — q is =0. I proved in
2.2.5 that ab+0 is equivalent to p A g, so ab=0 is equivalent to
= (P A q): but just before the cited place in 2.2.5 I gave an example
of real numbers a and b for which ab=0, but neither a=0 nor
b=0 is known.

(9) F=a-v—op).

For — (p v— p) would imply, by (6), = pa 11— p, which is a

contradiction. (8) gives by means of (2) and (6)
FOapag)>— (i pvoig)—"1pa—img.

(10) Fa—(pag)>pang.

The inverse formula is also true:

(11) FOmpamig—>(pag).

For it is clear from the above interpretation of the logical connectives

that - 1 (pAg@)Ap——g; thenalso |- (pAg@) A1 g — —p.

So, if "1 paAa——q is given, the hypothesis — (pa q) would

lead to — p, which is contradictory with the given —— p.
It is easy to see that

(12) FAampvag—>—(pve),
but the inverse implication does not hold because of the strong
interpretation of v.

7.1.3. A formal system

The intuitionistic propositional caleulus has been developed [A.
Heyting 1930] as a formal system with A, v, —, 1 as undefined
constants, and on the basis of the following axioms

1. -2 — (pap).

II. F(pAq)—(ga D).

IIT. F@—q) —(par)—>(qar).
Iv. Fp—>q)alg—>n)—(p—>r1)
V. Fg—(p—q).

VL @A (p—q)—q.
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VII. Fp—>(pvy).
VIII. —(pvqg)—>(qvp).

I1X. Fp—>7r)al@g—>7)—>(pvyg) —r)
X. Fp—(p—q).
XI. Fp—>alp—>"q)—>"p

The rules of deduction are the usual ones from the classical propo-

sitional calculus.

Axiom X may not seem intuitively clear. As a matter of fact,
it adds to the precision of the definition of implication. You
remember that p — q can be asserted if and only if we possess a
construction which, joined to the construction p, would prove q.
Now suppose that |- — p, that is, we have deduced a contra-
diction from the supposition that p were carried out. Then, in a
sense, this can be considered as a construction, which, joined to a
proof of p (which cannot exist) leads to a proof of q. I shall interpret

the implication in this wider sense.
A system of intuitionistic logic in which — is interpreted in the

narrower sense and in which, accordingly, X is rejected as an
axiom, has been developed by Johansson in his “minimal calculus”
[I. Johansson 1936].

It must be remembered that no formal system can be proved
to represent adequately an intuitionistic theory. There always
remains a residue of ambiguity in the interpretation of the signs,
and it can never be proved with mathematical rigour that the
system of axioms really embraces every valid method of proof.

7.2. The first order predicate calculus

7.2.1. Interpretation of the quantifiers

Let p(z) be a predicate of one variable z, this variable ranging
over a given mathematical species @. Then |- (va)p(r) means
that p(z) is true for every « in @; in other words, we possess a
general method of construction which, if any element a of Q is
chosen, yields by specialization the construction p(a). In the case
that @ is a spread-species, we must be able to effect the construction
p(x) for every ips x in ; in the proof of the fan-theorem we
saw that this is a very strong interpretation of the generalizing
quantifier. The existential quantifier will also be interpreted in a
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strong way. (3z)p(z) will be true if and only if an element @ of
for which p(a) is true has actually been constructed.

The introduction of predicates with more than one argument
presents no difficulty. A formula of the first order predicate calculus,
which contains propositional and predicate variables, can be
asserted if it is true for every substitution of propositions and
predicates for these variables. A simple formalization of the
intuitionistic predicate calculus is obtained by adjoining to the
intuitionistic propositional calculus the symbols, axioms and rules
of the usual predicate calculus as stated by Hilbert and Ackermann
([D. Hilbert und W. Ackermann 1949, p. 59]; see also [A. Heyting
1946]). I shall not develop this formal system, but instead I shall
prove some formulas by intuitive methods.

7.2.2. Theorems of the predicate calculus
The following theorems are clear.
(1) F (V2)p(z) - — (32) 1 p(x)-
(2) F Qz)p() - — (V) 1 pl).
The inverse implications do not hold. Counterexamples:
(i) Let z range over the real numbers and let p(z) be “x is rational
or z is irrational”.
(ii) Let z range over the rational numbers and let p(x) be “z is
equal to the real number p, defined in 2.2.2.”.
(3) F (vz) 1 p(x) = 1 (32)p(2).
(4) = (32)p(z) > (V) 1 p()-
(5) F Qz) = p(z) > — (Vz)p(2).
The inverse implication of (5) does not hold.
Counterexample:
Let z range over the rational numbers and let p(z) be “z is not
equal to the real number g, defined in 2.2.2.".
By substitution in (3) we obtain

(6)  (Vz) 07— p(x) = — (3z) 1 p(x).
Substitution in (4) gives
(7 - (3z) 1 p(x) = (V) 11— p(=).
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Applying the formulas of the propositional calculus 7.1.2. (3) and
(5) to (6) of this section we obtain
(8) = (Vz) 0 plr) — - (3z) 1 pla).
This can be weakened to
9) 1 (Vo)p(z) — 1 (3z) 1 p(2).
(9) and (7) yield the important result
(10) = == (Va)p(z) - (V) 0 p(2).
It is one of the most striking features of intuitionistic logic that
the inverse implication does not hold, especially because the
formula of the propositional calculus which results if we restrict
to a finite set, is true. In fact, if x takes only two values we obtain
7.1.2, (11). Brouwer [L. E. J. Brouwer 1924, p. 256; A. Heyting
1930A, p. 65; S. C. Kleene 1952, p. 491] gave the following counter-
example:

A spread 3 is defined by the spreadlaw A, and the comple-

mentary law I,
A, The first component of an admissible sequence can be 0 or 1.

If a;,...,a, is an admissible sequence and «,=0, then a, 4+ may
be 0 or 1; if a,=1, then a,,;=1.
I'y, assigns a, to the admissible sequence a,, ..., a,.

In plain words, M consists of all ipss in which only 0 and 1 can

be components, while 1 can only be followed by 1.
The following law £ assigns numbers to certain elements of M.

et

Z: The sequence, all of whose components are 0, has number 1.
The sequence, all of whose components are 1, has number 2.
The sequence which consists of n components 0 followed by
components 1 has number =+ 2.

Let x range over the elements of M and let p(z) be “5 assigns
a number to x”’. Then (Vx) — — p(z) is true. I prove the equivalent
proposition, — (3z) — p(z), by deducing a contradiction from the
supposition that = assigns no number to a certain element ¢ of M-
Under this supposition, the first component of @ cannot be 1, for
then Z(a¢) would be 2, so the first component is 0. The second
component cannot be 1, for then Z(a) would be 3, g0 the second
component is 0. Continuing in this way we see that every component
of a is 0; it follows that =(a)=1, a result which contradicts the

supposition.
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Yet, ——1(Vz)p(x) does not hold; we can even prove that
= (Vx)p(x). Supposing that (vz)p(z), the fan-theorem allows us
to infer that =(z) must be known after a finite number ¥ of
components of xz are given, but this clearly contradicts the
definition of E.

Crass. This is the first instance of a classical theorem which is
intuitionistically not only unprovable, but even false.

InT. Of course, this divergence is brought about by the intro-
duction of ipss; especially, the generalizing quantifier has quite a
different meaning if applied to ipss.

It has been conjectured [S. Kuroda 1951, p. 46] that the formula
(Vz) 1 p(x) = 1 (V)p(z) is always true if z ranges over a
denumerable infinite species. In all the counterexamples that
have been given, z ranges over a species that is not denumerably
infinite (this holds for M above, though M is denumerable from
the classical point of view!), but no way of proving the conjecture
presents itself at present.

From (3) and (4) we infer, applying 7.1.2,(2):

(11) F 0 @)p) - (V2) 71 pl).
(12) 0 (Yz) = p(z) - 2 Q@)p(2).
By substitution in (5):

(13) I (3z) = plx) > 1 (V2) 7 pla).
From (13) and (12):

(14) F (3z) 2 plz) > 1 (32)p(2)-

Here also the inverse implication is not valid, but the fact is less
surprising than for (10), because the corresponding formula of the
propositional calculus, which would be 7 (pvg) >——pv —— g,
is also not provable.

7.3. Applications

In some cases a negative theory can be developed parallel to a
positive theory. In the latter every notion is defined by a positive
definition; in the former some notions are introduced by negative
definitions, involving double negations, but in such a way that
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definitions of corresponding notions in the two theories are
classically equivalent.

7.3.1. Order relations in the continuum

Definition 1. If S is a mathematical species and if < is a
predicate, defined on a subspecies of § x §, which satisfies rules
(1)—(4) below, then < is a partial order relation in § and S is
partially ordered by <. (a>b means the same as b<a.)

(1) a<b—— (a>b)a— (a=b).
(2) a=bab<c—>a<c.
3) a<bab=c—a<ec.
(4) a<bab<c—>a<e.

Definition 2. A partial order relation in a species S is an order
relation in S and 8 is ordered by it, if it satisfies rule (5a).
(5a) a=bva<bva>h.

The relation < between natural numbers or rational numbers
is an order relation. The relation < between real numbers, as
defined in 2.2.6. in connection with 3.3, is not an order relation;

this follows immediately from 3.4.3, Th. 2.
Instead of (5a), it satisfies (5b) and (6), which are both consequences

of (1)—(4), (5a).

(5b) - (@a>b)a— (a<b) >a=b (Compare 2.2.6, Th. 3).

(6) a<b— (Vc)(a<cve<bd) (Compare 2.2.6, Th. 4).

Definition 3. A partial order relation in a species S is a pseudo-

order relation and S is pseudo-ordered by it, if it satisfies rules

(5b) and (6). (Note that (2) and (3) follow from (1) and (6).)
In the following < always denotes a pseudo-order relation in a

species S.

Definition 4. a<b means —1 (a>b)A — (a=b).

Theorem 1. — (a<b) is equivalent to — (a<b).

Proof. By (l),a<b—a<b, 0 (axb) - 1 (a<b). (7.1.2, (2)).

To prove the converse, I remark that a<b A — (a<b) means the

same as — (@>b) A — (a<b) A — (a=b), which contradicts (5b).
So a< b A —1(a<b) is impossible; consequently — (2 <b) - — (a<h.

Theorem 2. a<b is equivalent to —— (a<b).
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Proof. By def. 4+ and 7.1.2. (6), (7), a<b is equivalent to
— (a>bva="0), so

" (axd) = a<xb (7.1.2, (5)).

— (a<b) - — (a<b) by Th. 1, so

A (ea<b) > {axbd) (7.1.2, (2)) - a<kb.

— (e<b) > — (a<xb) by Th. 1, so

a<b > (a<bh) (7.1.2, (1), (2)).

Theorem 3. The relation < satisfies (1)-(4), (5b).

Proof. (1) follows from def. 4 and Th. 1.
(2). From (2) for <, by 7.1.2, (3) and Th. 2, as follows:

a=ba—(b<ec) > (a<c) > ae.

(3). Analogously.
(4). From (4) for < by 7.1.2, (11), (3) and Th. 2.
(5b) follows from Th. 1 and (5b) for <.
In the case of the continuum < does not satisfy (6) (see 8.1.1).
Instead, it satisfies (5c):

(5¢) — (akd)A 1 (a=b) > a>D.

Theorem 4. TIf < is a pseudo-order relation in a species S, the
relation < which corresponds to it by def. 4, satisfies (5¢c).

Proof. Immediately from Th. 1 and def. 4.

Definition 5. A partial order relation in a species § which
satisfies (1)-(4), (5b), (5¢), is a wvirtual order relation in S and S is
virtually ordered by it [L. E. J. Brouwer 1925A, p. 453].

Theorems 3 and 4 can now be expressed as follows. If < is a
pseudo-order relation in a species S. then <, as defined by def. 4,
Is a virtual order relation in 8.

Remark on notation. My notation is different from Brouwer’s.
Here follows a small dictionary.
This book: -z e <
Brouwer : <o > <

The reason for changing the notation was, that in analysis the
pseudo-order relation between real numbers is the most important;
therefore, it should be denoted by the simplest sign. Also in
Brouwer’s notation there is danger of confusion between a>b and
(@a>bva=>5). I use a=b in the latter sense.
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According to def. 5, the rules for a virtual order relation are:

(1) a<<b > (a>b)A — (a=b).
(2) a=bab<c—a<ec.
(3) a<bab=c—>a<c.
(4) aZbabZec—>a<e.

(5b) 1 (a<b)a 1 (@a>b) > a=b.

(5¢) - (akb)a 1 (a=b) »>a>b.

Theorem 5. If < is a virtual order relation in a species S, then
1 (a<b) »>a<x<db and 0 (a=b) > a=b.

Proof. By (1)and (5¢), a<bis equivalent to — (a>>b) A — (a=b),
which, by 7.1.2, (6), (7), is equivalent to 11 (a>>b v a=b). Thus, by
7.1.2, (5), 0 (a<kb) > a¥b.

From (1) and 7.1.2, (2), (1) we infer that a=b — — (a<b).
Similarly, a=b — — (a>b). Thus, using (5b) and 7.1.2, (6), (7),
we see that a=0b is equivalent to -1 (a<Cb v a>>b). This proves that
1 (a=d) —>a=>.

Definition 6. Let < be a partial order relation in the species
S, and let 3 be the species of formulas a=b or a<b, which are
valid for elements a, b of S. < is called unextensible if it has the
following properties: Whenever z,y € § and = (z<y) cannot be
deduced from ¥ by applications of (1)-(4), thenz < y € ¥; similarly,
whenever z, y €S and — (z=y) cannot be deduced from 3 by
applications of (1)-(4), then z=y € .

Theorem 6. LEvery virtual order relation is unextensible
[L. E. J. Brouwer 1927].

Proof. If 2>ye ), then 1 (x<y) can be deduced from ¥ by
(1), so if 1 (z<y) cannot be deduced from z by (1)—(4), then
= (z>y € )), and similarly, — (z=y € ).

Thus, by (5¢), z<<y € D.

The proof for = is analogous.

Theorem 7. Every unextensible partial order relation is a

virtual order relation.
Yor the proof, see Brouwer [L. E. J. Brouwer 1927].
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7.3.2. The negalive theory of convergence

2.4, Def. 1 can be formulated as follows:
The sequence {a,} of real numbers is positively convergent to
the limit a if
(1) (VE) @) (VD) (|a— a5 <275).
As the corresponding negative definition I choose:
Definition 1. The sequence {a,} is negatively convergent to the
limit a (-lim a,=a) if
(2) (VE) 0 3@n) (VD) (|la—a, | <27%) [J. G. Dijkman 1952].
Cauchy’s general criterion for convergence is
(3)  (VE) @) (VD) (|@nsp —an] <275).
Definition 2. The sequence {a,} is non-oscillating, if
(4)  (VE) 1 @) (VD) ([2gyp—aa] <279).

It is well-known that if a sequence {a,} satisfies (3), then a real
number a can be found so that (1) is true. The corresponding
relation does not hold between (4) and (2), as example (ii) shows.

Examples. (i) a,=1 if the n-th digit after the decimal point
in the decimal expansion of = is the 9 of the first sequence
0123456789 in this expansion (let us call this value of =, if it exists,
the sequence-number); otherwise a,=0. In order to show that
this sequence satisfies (2) with a=0, I first remark that (2) is
equivalent to

(5) T (3K) (Vo) 1 (V,) (|a—agyp <279).

Suppose we had found I, such that

(o) (VR) (VD) (|anspl <27%).

Suppose further that a sequence occurs in z and that s is the
sequence-number; then

(ﬂ) (Vp) (a"+p=0)’ §0 (VP) (Ia'a+v| <2_k‘)'

So (x) cannot be true. \We have now proved:
If («) is true, then no sequence 0123456789 can occur in z; but
then (vn) (a,==0), and («) is false. Thus, («) has led to a contra-
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diction, and (5) is proved. Yet it is clear that we cannot assert
that the sequence {a,} is positively convergent.

(ii) a,=0 if no sequence 0123456789 occurs in the first » digits
after the decimal point in z; a,=1 if such a sequence does occur
in the first n digits. This sequence {a,} is non-oscillating; the proof
is analogous to the preceding one. Yet we cannot assert that it is
negatively convergent, for it is unknown whether a limit, if it

exists, will be 0 or 1.
Theorem. Every negatively convergent sequence is non-oscil-
lating.
Proof. Let us abbreviate
3n) (Vp) (|a,,,—a,| <27*) by U(k), and
(3An) (VD) (|@pyp—a | <27%) by B(k.a). Then B(k--1, a)— A(k).
1 Bk+1, a) - 1 UK).
(V) 17— Bk, a) — (VE) —— Ak)
(3a) (V&) = — Bk, a) - (Yk) = A(k).
This proves the theorem.
Theorem 2. If -lima,=a and ~lim b, =), then ~lim(a,b,)=
=a-+b.
Proof. Set a,-+b,=c,, ¢+b=c.
Let us abbreviate
3n) (Vp) (|2.., —a| <27%) by U(k),
(3n) (VP) (|basp —b| <27F) by B(k),
(3n) (V) ([cpy, —c| <27%*1) by E(k).
Then A(k) an B(k) — E(k), thus 27— Ak A 71 B(k) = 21 C(k)
(Application of 7.1.2, (11) and (3)).
(VE) 7= A(k) A (VE) 2 Bk) — (V) 01— C(k).
This proves the theorem.

Theorem 3. If -limea,=« and -limao, =b, then a=1».

Proof. From -lim a,=b it follows that -lim —«, = —b. Thus by
Th. 2, “limc¢,=a—b, where every ¢, =0.
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(VE) = (3n) (Vp) (la—b| <27%).
(VE) 1 (ja—b| <27%).
(VE) (la—b] % 27%).
a=>.

The following theorem has no parallel in the positive theory.

Theorem 4. Every bounded monotone sequence of real numbers
is non-oscillating.

For the sequence {a,}, we have by hypothesis,

(1) (vn) (@, < M),

(2) (Vn) (an+1 { a‘n)'

It must be proved that

(X) (Vk) 71 (@) (VD) (04— <275),

which is equivalent to

(Y) @k (Vr) (VD) (@nyp—@n <27F).

Let us suppose that we have found a number k; such that
(5) (YR) (VD) (@nyp—a, <275).

It suffices to deduce a contradiction from (1), (2) and (5). Now from
—(3P) (@pyp—a,>27%71), it follows that (VD) (@n,—a,<27h), s0
from (5) it follows that

(6) (Vn) (3P) (a’n+p_an>2—k‘-1)'

The theorem will be proved if we deduce a contradiction from
(1), (2) and (6).
As a special case of (6) we have

(7) 1 (3p) (@, —a,>2787).

Let us suppose that we have found a number p, such that
a, —a;>27k"1; then, by (6), 7 (3r) (¢, —a, > 2-%-1) and further
- (3r) (@, —ay>2.27k"1),

We have now proved from (1), (2) and (6),

(8) (3p) (a,—a;>27"%"1) > = (A7) (a,—a,>2.27 k1),

Using the propositional calculus (7.2.1, (3), (4), (2)), we infer from
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(7) and (8) that

(9) - @) (a,—a,>2.27R71).

By repeating A—1 times this reasoning, we find
(10) —— (3s) (a,—a,>h.27k"1),

Now take & = [ a2t +1; we find

Now take h = 5=r—1|T1; we fin

(11) = (33) (a,> M).

This contradicts (1).

Remark. It is easily seen that instead of (1), the hypothesis
—— (M) (Vn) (a,< M) is sufficient.

7.83.3. Negative interpretation of classical analysis

It was first proved by Godel [K. Godel 1932] that the classical
propositional calculus and classical arithmetic can be developed as
parts of the corresponding intuitionistic systems. In order to
establish such theorems it is necessary first to formalize the relevant
part of intuitionistic mathematics. The remarks which I made
concerning the intuitionistic calculus of propositions apply to
every formal system which is constructed with the intention of
representing an intuitionistic mathematical theory: it can never
be proved rigorously that such a system is adequate. However,
formal systems have been constructed for the propositional calculus,
predicate calculus and elementary arithmetie, such that every
provable formula of one of these systems, if interpreted in the
right way, expresses a theorem of intuitionistic mathematics.
These systems are described in detail by Kleene in his book [S. C.
Kleene 1952, p. 492]; he gives them in such a way that, by adjoining
to each of them the axiom —— p — p, we obtain the corresponding
clissical systems.

Kleene proves various extensions of Gédel’s theorem, of which
I mention the theorems 1, 2 and 3 below.

Definition 1. p+¢ means —1 (41 pAa—1q).
P q means 4 (pA 1 q).
(Vz)p(xz) means — (V) plx).

By 7.3.1. (3) and (4), the latter is equivalent to —— (3z)p(z).
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Theorem 1. For the propositional calculus with A as con-
junction, + as disjunction, D as implication and — as negation,
every classically provable formula is true intuitionistically.

Theorem 2. For the number-theoretic formal system (elemen-
tary arithmetic) with A as conjunction, + as disjunction, D or —
as implication, — as negation, and (V ) as existential quantifier,
every classically provable formula is true intuitionistically.

Theorem 3. For the predicate calculus, with A as conjunction,
+ as disjunction, D or — as implication, — as negation, and (V )
as existential quantifier, every classically provable formula becomes
true intuitionistically after every prime formula p which occurs
in it, has been replaced by ——p.

Remark. The transformation of p into ——p is unnecessary
in the propositional calculus, because ——pDp, that is
= (4 paAa—p), is true, and in the number-theoretic system,
because the prime formulas have the form a=b or a>b, where
@ and b are natural numbers, so that = —(a=b) > a=b and
-1 {a>b) > a>b are true.

These theorems contain consistency proofs for the classical
systems relatively to the corresponding intuitionistic systems.

I shall now apply these theorems to the arithmetic of real
numbers. A number-generator was defined as a Cauchy sequence
of rational numbers. For the application of Th. 2, in the definition
of a Cauchy sequence, (V) must be substituted for (3z), so that
we obtain the definition of a non-oscillating sequence.

Definition 2. A weak real number-generator is a non-oscillating
sequence of rational numbers.
The definition of coincidence for real number-generators was

as follows: If a,={a,n} and b={b"}, then a=5 means that

(VE) 37) (VD) (Bnsp—buso| <27H).
Definition 3. The weak number-generators a={a,} and b= {b,}
coincide in the weak sense (a=b) if

(VE) (VR) (VD) (|@npp—bnyp| <27%).

Definition 4. A weak real number is the species of the weak
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number-generators which coincide in the weak sense with a given

weak number-generator.
The definition of the order relation between real number-genera-

tors was as follows: a>b6 means that
(3k) (3n) (VD) (@nyp—bnip>275).

Definition 5. For weak number-generators a={a,}and b={b,},
a is weakly greater than b (a>>b) means that

(VE) (V1) (YD) (@i —basp>275).
This is equivalent to the double negation of a>b, for from 7.2.2,
(11) and (12) we infer easily that —— (3z)p(x) is equivalent to
71 (32) T pl=).
As a corollary of Th. 2 we have
Theorem 4. Let S be the system which is obtained from the

number-theoretic formal system by adjoining to it free variables
for real numbers and the relations = and > for real numbers.
Let T be a theorem of classical arithmetic which can be formalized
in 8. Let 7" be the theorem which is obtained from 7' by replacing
v by +, (3z) by (Vz), the variables for real numbers by variables
for weak real numbers, = by = and > by >, then 7" is true
intuitionistically.

In order to extend theorem 4 to analysis, it will be necessary
to extend Th. 2 or Th. 3 to a predicate calculus of higher order or
to some other calculus in which the main part of classical analysis
can be formalized. Probably a consistency proof for analysis
relatively to intuitionistic mathematics can be derived by this
method.



VIII
CONTROVERSIAL SUBJECTS

8.1. Infinitely proceeding sequences, depending upon the solving
of problems

8.1.1. The method

Since 1948 Brouwer has published a number of papers, many of
them in Dutch (L. E. J. Brouwer 1948, p. 1246; 1948A; 19481B;
1949; 1949A; 1950; 1950A; 1951; 1952B; 1954B; 1954C], in
which he gives counterexamples to classical theorems. All these
examples are based on a principle which he indicated in his con-
ference for the 10-th Int. Congress of Philosophy, Amsterdam 1948,
I begin by illustrating it by means of the following definitions.

We shall say that a mathematical proposition p has been tested
if either 1 p or = —p has been proved. Let p be a proposition
which has not been tested (e.g. “‘a sequence 0123456789 occurs in
the decimal expansion of z”’). Now I define a real number-generator
a={a,} by an ips as follows. As long as p has not been tested, 1
choose @,=2"" but if p is tested between the choice of «, and
that of a,,,, then I choose a,,,=2"™ for every g.

Siey.  This does not sound like a mathematical definition. Can
a sequence of rational numbers be considered as mathematically
well-defined if its components depend upon material facts, such
as the existence at a given moment of a proof for a certain pre-
position?

Int. T agree to this objection; and, indeed, I doubt whether it is
advisable to adopt such definitions as mathematical. As I stressed
before, no verbal definition can be perfectly unambiguous; we sece
now that the definition of an ips left us some free play. In such a
case we may decide freely which interpretation we adopt.
Foram. As van Dantzig has rcmarked [D. van Dantzig 1949],
Brouwer’s definition and the reasoning which he based on it can
be fully justified from a formal point of view.
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InT. Van Dantzig’s methods, as he indicates, also throw some
light on the subject as it is seen by the intuitionists. I shall try to
characterize briefly his point of view.

Let w; (#=1, 2, ...) denote for every 7 a finite set of mathematical

deductions. The sequence {w;} will be denoted by 0.

Set o, = O w;. Let p be a mathematical proposition. The real
im]

number-generator a depends upon 2; a(2)={a,(2)}. If ¢, contains
no deduction of either — p or ——p, then a,(Q)=2-". If o,
contains a deduction of = p or of —mW—p, and if m is the
least number such that o, contains a deduction of = p or of 7 p,
then a,(2)=2"™ In this form the definition of & sounds more
mathematical; the question remains whether it is adequate for
Brouwer’s purpose.

Brouwer wished to show that a0 while a # 0 has not been
proved (This is the example which I promised in 2.2.3). For suppose
a=0; then neither =1 p nor ——1 p could ever be proved, so —— p
and m—— p would both be true, a contradictory result. Hence
a+#0. On the other hand, a # 0 would mean that we could find a
number ¢ so that a>2-¢; it follows that p would be tested before
the choice of a,. We can only know this if p has already been tested.
Note that a # 0 is not contradictory, for this would imply a=0.

Evidently Brouwer supposes that he does not know beforehand
which deductions will be made; if a law is passed throughout the
world prohibiting the making of any mathematical deduction
whatever, then the proof of a0 fails.

In van Dantzig’s version the result is as follows. For a, given n,
the assertion, that a=0 whatever w,,;, @45, ... may be, is false.
If a # 0, then a number ¢ is known such that a proof of either — b
or |1 p occurs 1n g,

Sian. That is to say, in van Dantzig’s terminology we have no
example of a real number a such that a0 while @ # 0 is unproved.
Int. That is so. Personally, I prefer van Dantzig’s terminology,
which avoids several equivocalities in Brouwer’s words. Van Dantzig
acutely analyses Brouwer’s definition and introduces many refine-
ments, for which I refer to his paper. In my opinion it is not very
important whether we express the result in Brouwer’s words or in
those of van Dantzig, provided we understand what is meant by
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it. Nor is it important whether we call it a mathematical result
or not. In any case it shows that it would be foolish to seek a proof
for the equivalence of the relations s and 3 between real numbers.
Crass. I have been convinced of that since 2.2.3.

Int. Brouwer’s example analyses one of the subconscious reasons
which made you feel this conviction.

Brouwer’s example can also be used to demonstrate that the
virtual order of the continuum is not a pseudo-order (see 7.3.1).
Let me repeat the example. Let p be a proposition which has not
been tested. I define a real number-generator a={a,} by an ips as
follows. As long as p has not been tested, I choose a,=2"", but if p
is tested between the choice of a, and that of a,_,, then I choose
Ay, q=2"" for every q. Now I define c={c,} as follows. As long as
p has not been tested, I choose ¢,=2"", but if p is tested between
the choice of a, and that of a,,;, and m s even, then I choose
Cmiq=2"™ for every g, but if m is odd, then I choose ¢,=2~" even
for r>m.

If ¢ # 0, then c=«; hence, if a>>¢, then ¢=0. If ¢>0, then
c#0. Hence, a>>c¢ or ¢>0 would imply that ¢=0 or ¢#0 and
therefore either that p will not be tested after an even number of
choices for a, or that it is impossible that p will not be tested after
an even number of choices for a. But as long as p has not been
tested, we can know nothing about the number of choices for a
after which it will perhaps be tested. Although a>0, we cannot
assert that a>>c¢ or ¢>>0, so that rule (6) of 7.3.1 is not fulfilled.

8.1.2. Contradictoriness of classical real number arithmetic

From here on I shall use Brouwer’s terminology, which has now
been sufficiently clarified to enable you to substitute another one
if you prefer to do so.

The theorems of this section are stronger than those of the
preceding one, in this respect, that they express the contradictority
of some classical results.

Theorem 1. It is contradictory that for every real number a,
a0 would imply a # 0.

Proof. Let J be a finitary spread which coincides with the
interval [0, 1] (3.4.1, Th. 1). We define simultaneously an element
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f of J and a real number-generator a(f)={a,(f)} as follows.
If f € J, let p(f) be the proposition “f is rational”. For every =, {, is
chosen between the choice of a,(f) and that of a,,,(f). As long as
p(f) has not been tested, we choose a,(f)=2"" If p(f) is tested
between the choice of a,, and that of @, ,, we choose a,,,,=2"™ for
every ¢. As in the preceding example, a(f)s:0 for every f. Let us
suppose that a(f) # 0 for every f; then for every f a natural number
7(f) is known, so that p(f) is tested before the choice of a,,,(f), that
is before the choice of f,,;. By the fan-theorem, a maximum s for
7(f) can be found, consequently p(f) is tested for every f before
the choice of f,,;. Now let f be an ips which after the choice of f, is
subject to no other restrictions than those contained in the
definition of J; we are free to continue f in such a way that either
a rational or an irrational number results. Hence, it is contra-
dictory that p(f) is tested before the choice of f, ;.

Thus (Vf) (a(f) #0) and — (¥f) (a(f) # 0) are both true, where f
ranges over JJ.
Forn. Evidently, in this formal notation the quantifiers must be
understood in an enlarged sense, corresponding with Brouwer’s
enlarged notion of an ips.
IntT. The proof shows also that it is contradictory that, for
every real number a, a#0 and a € 0 would imply @>0, or, in
the terminology of 7.3.1, that a>>0 would imply a>0.

In order to prove the contradictoriness of classical elementary
arithmetic, Brouwer proves the following extension of Th. 1.

Theorem 2. It is contradictory, that for every real nuwmizi .
a0 would imply a 3> 0O va 4 0.

Proof. As before, let J be a finitary spread coinciding with
[0,1], f any element of J, and p(f) the proposition ‘‘f is rational”’. We
define f and the real number-generator b(f) = {b,(f)} as follows. For
every =, f, is chosen between the choice of b,(f) and that of &,,(f).
As long as p(f) has not been tested, we choose b,(f)=(—1)"2-n.
If between the choice of b,(f) and that of b,,,,(f) it is proved that f
is irrational, we choose b,,.(f)=2"" for every gq. If between the
choice of b,(f) and that of b,,,(f) it is proved that f caniot bc
irrational, we choose b, (f) = — 2™ for every q. As before, b(f) + 0.
Suppose that for every f in .J, either b(f) 3 0 or b(f) 4 0.
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If f is irrational, then b(f)>0, so if b(f) 3 0, then f cannot be
irrational.

If f cannot be irrational, then b(f)<0, so if b 4 0, then { is
irrational. (Application of 7.1.2, (2) and (5)). Thus, [0, 1] would
be split up into the subspecies of numbers which cannot be irrational
and the subspecies of irrational numbers. This contradicts 3.4.3,
Th. 2.

Corollary. It is contradictory that for every real number =z
either 2 3 0 or z 4 0.

Theorem 3. It is contradictory that the equation az+b=0,
where ¢+ 0 and b0, has always a solution.

Proof. Let ¢ be a real number, ¢#0. Take a=c+2|c|, b=c—2|¢],
then a0 and b:£0. Let 2, be a solution of az+b=0. If ¢>0,
then @ = —3b, so b(3z,—1)=0, so z;=1/;. If ¢<0, then b = —3a,
so a(x,—3)=0, so x;=3. Thus, if 2,#1/;, then ¢ 3} 0, and if z, # 3,
then ¢ 4 0. As either z 1/, or £# 3, we have either ¢ 3> O or ¢ < 0.
Hence, if aa +b=0 had a solution for every ¢#0, then ¢ 0 would
imply ¢ 3 0 or ¢ < 0. which is contradictory by Th. 2.

Corollary. In euclidean plane geometry it is contradictory that
every two lines which can neither coincide nor be parallel, intersect.
For if a#0 and b0, and if d is any real number # 0, then
ax+dy="> is the equation of a line which does not coincide with
the axis of x and is not parallel to this axis. If all these lines inter-
sected the axis of z, az=b would always have a solution if a0
and bs0.

8.1.3. Ezample concerning the Bolzano—Weierstrass theorem

One of the forms of this theorem, discussed in 3.4.4, ran as
follows:

(C) Every bounded species of real numbers without a point of
accumulation is bounded in number.

Let p be a proposition which has not been tested. I form an
ips {b,) of rational numbers as follows. As long as p has not been
tested, I choose b,=2"". If p is tested between the choice of b,, and
that of b,,,,, I choose b,,,,=2"™ for every p. Let S be the species
of the components b, of this sequence. Suppose ¢ were a point of
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accumulation of S. It is clear that ¢ 4 0. But also ¢ >+ 0, for from
¢>0 it would follow that S were finite. Thus ¢=0, but this implies
that p can never be tested, which is contradictory. Consequently,
S can have no point of accumulation. On the other hand, if S were
bounded in number, a natural number m would be known such
that p will be tested before the choice of b,,,,, which is not the case.
So there is no hope of proving (C) intuitionistically [L. K. J.
Brouwer 1952B].

8.2. Negationless mathematics

Serious objections against the use of negation in mathematics
have been raised by Griss [H. Freudenthal 1936A; A. Heyting
1936; G. F. C. Griss 1946, p. 24 and p. 64; 1948; 1948A]. Though
agreeing completely with Brouwer’s basic ideas on the nature of
mathematics, he contends that every mathematical notion has its
origin in a mathematical construction, which can actually be
carried out; if the construction is impossible, then the notion
cannot be clear.

Brouwer admits such theorems as ‘‘a square circle cannot exist”’;
we can prove this theorem by deriving a contradiction from the
supposition that we had constructed a square which were at the
same time a circle. According to Griss, this supposition has no
clear sense, because it can never be realized. In other words, if a
square circle does not exist, how can we have a clear notion of
what it would be if it existed? Therefore Griss rejects negation
as a mathematical concept.

In many cases the proof of a negative theorem suggests a positive
form of it. For instance, in the proof of “no square circle exists”
we meet some assertion like the following:

“If § is a square and P any point, then we can find points Q
and R on the boundary of S, such that PQ # PR.” For Griss,
this positive assertion expresses the real content of the negative
theorem. Of course in most cases one negative theorem admits
several positive translations. Griss tried to rebuild intuitionnistic
mathematics without negation and reached some remarkable
results in this direction [G. F. C. Griss 1946A; 1950; 1951].

In the arithmetic of integers and rational numbers negation is
not essentially used. Here a+b is the same as a>b va<b, which



NEGATIONLESS MATHEMATICS 121

contains no negation. The first negative notion which occurred
in these lectures was that of inequality between real numbers,
asb. Griss cannot admit this notion as well defined; he uses
instead the relation a # b, which is defined positively. However,
among the basic properties of the relation 7 is the following:
—1 a # b — a=>. Instead of this property Griss uses the following.

Theorem. If a and b are real numbers such that every real
number ¢ which lies apart from a lies also apart from b, then a=5.

It is not easy to give a negationless proof for this theorem;
Griss succeeds only by an application of the fan-theorem.

Let a and b satisfy the hypothesis of the theorem. We may
suppose that e and b are defined by canonical number-generators,
a={a,27"}, b={b,27"}, such that |a—a,27" <27%|b—b,2"" < 2",
For a given value of », either b, <a,, b,=a, orb,>a,. First suppose
b, > a,. Consider the interval i = [(a@, — 1)27", (b, —1)27 "], and
construct the finitary spread S; which coincides with ¢, as in 3.4.1,
Th. 1. Let c={c,2™"} be an element of S,, then ¢<¥b, so, by
hypothesis, ¢ # a. This means that

(3k) (am) (Vp) (]Cm+p_am+p|2—m—p>2_k)'
Then, a fortiori,
(1) (3%) (lck—a,k|2—k> 2-k),

Thus to every element ¢ of S there is associated a natural number k&
so that (1) is satisfied. By the fan-theorem we can find r so that %
is known after that the first » components of ¢ have been chosen;
thus k takes but a finite number of values and we can find 4y=max#k,
so that cesSt

(2) e, —a|27% > 27k
is valid for every c in S;, that is, for every latticepoint ¢, 2%
of order k, in <.

ako2"">(an—1)2"‘; moreover, by (2), ak‘2"" is different from
every latticepoint of order k, in ¢ (‘different” for rational num-
bers is a positive notion!), so ak.2“'~ > (b,—1)2-". But also
@, 27" < (a,+1)27", so b, <a,-+2. We have supposed that b, > q,,
80 b,=a,+ 1. Similarly, if b, < a,, then b,=a,—1. We have proved
that |b,—a,|=1 for every =, so b=a.
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In the theory of spreads and species the null species cannot
be defined. A species is defined by a property of mathematical
objects, as explained in 3.2.1, but such a property can only have
a clear sense after we have constructed an object which satisfies it.
As a consequence of this exigency, the intersection of two species
is only definable if it contains at least one element. For instance,
we can speak of the species of algebraic fields, and of the species
of species of six elements, but not of their intersection. The relation
of difference between species is defined by induction as follows,
Two species are different if one of them contains an element which
is different from every element of the other one.

The logic of negationless mathematics is difficult to formalize,
for several reasons. First of all, there is no calculus of propositions,
because only true propositions make sense. Furthermore, the
restriction on the use of conjunction between propositional functions
(species) must be taken into account. Attempts at a formalization
have been made by Griss [G. F. C. Griss 1949; 1950A], Gilmore
[P. C. G. Gilmore 1953], and Vredenduin [P. G. J. Vredenduin
1953] and Valpola [V. Valpola 1955].
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Absolute value, 27
Admissible sequence, 34
— — latticepoint, 65
Almost everywhere, 71
Almost full, 71
Apart (number-generators), 19
— — (in a field), 49
— — (point), 58
— — (in Hilbert space), 91
Apartness relation, see apart
Approximating strip, 73
Ascendant, 43

immediate — —, 34

Barred, 43
Bolzano—-Weierstrass theorem, 47,
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Bounded in number, 48

Cenonical number-generator, 41

— — point-generator, 57

— — p-g-spread, 58

Cauchy sequence, 16, 33

Characteristic determinant, 52

— — function, 78

Closed interval, 40

— — Ppointspecies, 59

Closure, 59

Closurepoint, 59

Coincide (number-generators), 16

— — (real numbers with number-
generators), 37

— — (p—g-species), 58

— — in the weal sense, 113

Complementary law, 35

Completion, 76

Component, 35

Congruent species, 39

— —. geometrically, 58

Conjunction, 97

Continuation, 43

Continuum, 38

Contrediction, 98

Convergent, positively, 30

— — (sequence of functions), 77
— —, negatively, 108

Denumerably infinite, 39
Dependence, 54
weak — —, 54
strong — —, 54
Derived species, 59
Descendant, 43
immediate — —, 34
Detachable subspecies, 39
Disjunction, 97
Distance (between points), 68
— — (between a point and a point-
species), 64
Domain of a function, 74
elementary — —, 60
rational elementary — —, 60
exterior elementary — —, 60
Dually developable, 36

Element of a spread, 35
Elementary domain, 60

rational — —, 60
exterior — —, 60
— — set of rectangles, 60
Equality

(natural numbers), 14
(elements of spreads), 36
(spreads), 36
(species), 38

Equivalent species, 39

— — functions, 38

Exterior elementary domain, 60



Fan, 42

— — theorem, 42
Field, 49

Finitary spread, 42
Finite, 39

Free vectors, 54

— — (in Hilbert space), 92
Functions, charactoristic, 78
— —, rational, 22

— —, bounded measurable, 72
— —, measurable, 85

— —, truncated, 85

Geometrically congruent, 58
Heine—Borel theorem, 67

Identical number-generators, 16
Immediate ascendant, 34
— — descendant, 34
Implication, 98
Inadmissible sequence, 34
— — lattice-point, 65
Independent, 54
Inequality between number-gen-
erators, 17
Infinite, 39
denumerably — —, 39
Infinitely proceeding sequence, 32
Integral, 73, 86, 89
Interval (closed), 40
Inverge, 21
Ips, 32

Lattice-point, 65
Limit, 30
Limit-point, 59
Located, 64

Maximum, 26

Measure (elementary domain; re-
gion), 68

— -- (region-complement), 69

— {point-species), 78

Measurable region, 68

-— — region-complement, 69

bounded function, 72
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— — pointspecies, 78

~ — function, 85
Member of a species, 37
Menge, 37
Metafunction, 92
Minimal calculus, 102
Minimum, 26

Natural number, 13
Negatively convergent, 108
Negation, 97

Negligeable, 71
Non-negative part, 77
Non-oscillating, 109
Non-positive part, 77

Number
natural — —, 13
real ——, 37
weak real ——, 113

Number-generator, real, 16
— —, canonical, 41

— —, weak real, 113
Numerable, 40

Open, 60

Order relation, 25, 106
partial —— ——, 105
pseudo- — — ——, 106
virtual —— ——, 107

Partial order relation, 105
Peano’s axiom, 13
pP-8, see point-generator

p—g-species, see
species
p-g-spread, sce point-generator
spread
Point, 56
Point-generator, 56
canonical — —, 56
— — species, 57
— — spread, 58
canonical —— — — 58

Pointspecies, 57
Positively convergent, 30
Principal minor, 52
Pseudo-order relation, 106
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Rank, 51

Rational elementary domain, 60
— — function, 22

Real number, 37

respectable — — — —, 27
Real number-generator, 16
Region, 61

measurable — —, 68
Region-complement, 61

measurable — —, 69

Relation, apartness —, see apart
Represent, 37

Respectable real number, 27
Riesz—Fischer theorem, 93

Segment, 43
Species, 37
member of a — —, 37
Split up, 39
Spread 34
finitary — —, 42
element of a ——, 35

INDEX

— —, p—g, see point-generator-
spread
Spread-law, 34
Spread-species, 38
Strong dependence, 54
Subspecies, 38
detacheble — —, 39
Summable, 86, 89

Tested, 113
Truncated function, 856

Type, 38
Unextensible, 108

Vector, 89
Yirtual order relation, 107

Weak dependence, 54

— — real number-generator, 113
— — real number, 113

Weakly greater, 113
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