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PREFACE 

In order to prevent the reader from wasting his time in useless 
attempts to solve supposed riddles, I warn him that the persons 
of the dialogue arc not caricatures of liYing or deceased persons, 
much less their doubles. They are pegs to hang ideas on, and 
nothing else. To a certain extent this is eYen true for Int, who 
represents the position of intuitionism. For the sake of clearness 
I made him speak sometimes in a somewhat more absolute way 
than I should have done if I had freely expressed my own opinions. 
The discussion is strictly limited to intuitionism; other con­
cept.ions of mathematics are touched on only in so far as they 
lead to objections against intuitionism. I reject any reproach for 
incomplete exposition of other points of view. 

It was necessary to give proofs in great detail, even where they 
differ only by small additions from the well-known classical ones. 
There was no other way to indicate in which places these arld.itions 
had to be made. In the course of the book, as the reader is 
supposed to develop a feeling for the specifically intuitionistic 
difficulties, I have gradually adopted a more condensed style. 

I thank all those haYe contributed to improve the book. among 
them Dr. Paul Gilmore. Prof. Leon Henkin and Mr. William 
Tait, who read parts of the manuscript and snggesterl many 
linguistic improvements, Mr. J. J. de Iongh and ;\Ir. F. van de 
Oudeweetering, who accurately revised the manuscript. l\-Ir. de 
Iongh indicated many corrections and clarifications in the text. 

In many places of the book the reader will find old-fashioned 
reasonings which lack grnerality and which are more clumsy than 
the modern methnrls. This has different reasons. In the first place, 
the powerful methods often make an excessive use of indirect 
proof, so that it is almost impossible to introduce them in intui­
tionistic mathematics. In the second place, the very general 
modern theories proceed by the axiomatic method. Now this 
method can only work well, if some concrete theories exist, from 
which the axiomatic theory can be constructed by generalization. 
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For instance, general topology could only be developed after the 
topology of euclidean spaces was known in some detail. As a 
matter of fact, almost no part of intuitionistic mathematics has 
been investigated deeply enough to admit the construction of a 
general axiomatic theory. Thus in this book I had to confine 
myself to the most elementary case of integration; when this will 
be better known than it is at present, it will become possible to 
construct an axiomatic theory on the subject. Even in the case 
of algebra, where axiomatization is possible at this moment, it 
seemed better to treat the concrete example of the real number 
field, in view of the fact that the book is meant as an introduction. 

Probably in some cases I used antiquated methods because I 
did not know the modern ones. One of the aims of the book is, to 
enable working mathematicians to decide, which of their results 
can be proved intuitionistically. Intuitionism can only flourish, 
if mathematicians, working in different fields, become actively 
interested in it and make contributions to it. In order to build 
up a definite branch of intuitionistic mathematics, it is necessary 
in the first place to have a thorough knowledge of the corresponding 
branch of classical mathematics, and in the second place to know 
by experience where the intuitionistic pitfalls lie. I try in this 
book to teach the latter; I hope that some of my readers will give 
a more satisfactory treatment of details than I could, or that they 
will treat other theories intuitionistically. The "reading sugges­
tions" are intended to help them; they indicate the most important 
intuitionistic work on some special subjects. 

References have been made in the following way. 
"Th. 2" refers to theorem 2 of the same section. 
"Def. 2" refers to definition 2 of the same section. 
"6.2.1, Th. 2" refers to theorem 2 of section 6.2.1. 

A. HEYTING 
Amsterdam, August 1955. 



PREF ACE TO THE SECOND EDITION 

In this reprint I have made only minor changes and additions. 
Only section 6.5 has been partly rewritten. It would have been 
tempting to add chapters on the relations of intuitionism to the 
theory of recursive functions and to the recent Russian investiga­
tions on constructive analysis: however. it seemed better to confine 
the content to one subject. 

Amsterdam, Ma.rch l !l65. A. HEYTING 





Persons of the dialogue: Class, Form, Int, Letter, Prag, Sign. 

I 

DISPUTATION 

CLASS. How do you do, Mr. Int? Did you not flee the town on 
this fine summer day? 
INT. I had some ideas and worked them out at the library. 
CLASS. Industrious bee! How are you getting along? 
INT. Quite well. Shall we have a drink? 
CLASS. Thank you. I bet you worked on that hobby of yours, 
rejection of the excluded middle, and the rest. I never understood 
why logic should be reliable everywhere else, but not in mathe­
matics. 
INT. We have spoken about that subject before. The idea that 
for the description of some kinds of objects another logic may be 
more adequate than the customary one has sometimes been 
discussed. But it was Brouwer who first discovered an object which 
actually requires a different form of logic, namely the mental 
mathematical construction [L. E. J. Brouwer 1908]. The reaso1L is 
that in mathematics from the very beginning we deal with the 
infinite, whereas ordinary logic is made for reasoning about finite 
collections. 
CLASS. I know, but in my eyes logic is universal and applies to 
the infinite as well as to the finite. 
INT. You ought to consider what Brouwer's program was 
[L. E. J. Brouwer 1907]. It consisted in the investigation of mental 
mathematical construction as such, without reference to questions 
regarding the nature of the constructed objects, such as whether 
these objects exist independently of our knowledge of them. That 
this point of view leads immediately to the rejection of the principle 
of excluded middle, I can best demonstrate by an example. 

Let us compare two definitions of natural numbers, say k and l. 



2 DISPUTATION 

I. k is the greatest prime such that k- 1 is also a prime, or k = l 
if such a number does not exist. 
II. l is the greatest prime such that l- 2 is also a prime, or l = l 
if such a number does not exist. 
Classical mathematics neglects altogether the obvious difference 
in character between these definitions. k can actually be cal­
culated (k = 3), whereas we possess no method for calculating l, 
as it is not known whether the sequence of pairs of twin primes p, 
p + 2 is finite or not. Therefore intuitionists reject II as a definition 
of an integer; they consider an integer to be well defined only 
if a method for calculating it is given. Now this line of thought 
leads to the rejection of the principle of excluded middle, for 
if the sequence of twin primes were either finite or not finite, 
II would define an integer. 
Cuss. One may object that the extent of our knowledge about 
the existence or non-existence of a last pair of twin primes is 
purely contingent and entirely irrelevant in questions of mathe­
matical truth. Either an infinity of such pairs exist, in which case 
l= 1; or their number is finite, in which case l equals the greater;t 
prime such that l- 2 is also a prime. In every conceivable case l is 
defined; what does it matter whether or not we can actually 
calculate the numbed 
INT. Your argument is metaphysical in nature. If "to exist" 
does not mean "to be constructed", it must have some meta­
physical meaning. It cannot be the task of mathematics to in­
vestigate this meaning or to decide whether it is tenable or not. 
We have no objection against a mathematician privately admitting 
any metaphysical theory he likes, but Brouwer's program entails 
that we study mathematics as something simpler, more immediate 
than metaphysics. In the study of mental mathematical con­
structions "to exist" must be synonymous with "to be con­
structed". 

CLASS. That is to say, as long as we do not know if there exists a 
last pair of twin primes, II is not a definition of an integer, but as 
soon as this problem is solved, it suddenly becomes such a defi­
nition. Suppose on January 1, 1970 it is proved that an infinity 
of twin primes exists; from that moment l = l. Was l = l before 
that date or not1 [Menger 1930]. 
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INT. A mathematical assertion affirms the fact that a certain 
mathematical construction has been effected. It is clear that 
before the construction was made, it had not been made. Applying 
this remark to your example, we see that before Jan. 1, 1970 it 
had not been proved that l= 1. But this is not what you mean. 
It seems to me that in order to clarify the sense of your question 
you must again refer to metaphysical concepts: to some world of 
mathematical things existing independently of our knowledge, 
where "l = l" is true in some absolute sense. But I repeat that 
mathematics ought not to depend upon such notions as these. In 
fact all mathematicians and even intuitionists are convinced that 
in some sense mathematics bear upon eternal truths, but when 
trying to define precisely this sense, one gets entangled in a maze 
of metaphysical difficulties. The only way to avoid them is to 
banish them from mathematics. This is what I meant by saying 
that we study mathematical constructions as such and that for 
this study classical logic is inadequate. 
CLASS. Here come our friends Form and Letter. Boys, we are 
having a most interesting discussion on intuitionism. 
LETTER. Could you speak about anything else with good old Int? 
He is completely submerged in it. 
INT. Once you have been struck with the beauty of a subject, 
devote your life to it! 
FORM. Quite so! Only I wonder how there can be beauty in so 
indefinite a thing as intuitionism. None of your terms are well­
defincd, nor do you give exact rules of derivation. Thus one for 
ever remains in doubt as to which reasonings are correct and which 
are not [R. Carnap 1034, p. 41; 1937, p. 46) [W. Dubislav 1932, p. 57, 
7 5]. In daily speech no word has a perfectly fixed meaning; there is 
always some amount of free play, the greater, the more abstract 
the notion is. This makes people miss each other's point, also in 
non-formalized mathematical reasonings. The only way to achieve 
absolute rigour is to abstract all meaning from the mathematical 
statements and to consider them for their own sake, as sequences 
of signs, neglecting the sense they may convey. Then it is possible 
to formulate definite rules for deducing new statements from those 
already known and to avoid the uncertainty resulting from the 
ambiguity of language. 
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INT. I see the difference between formalists and intuitionists 
mainly as one of taste. You also use meaningful reasoning in what 
Hilbert called metamathematics, but your purpose is to separate 
these reasonings from purely formal mathematics and to confine 
yourself to the most simple reasonings possible. We, on the con­
trary, are interested not in the formal side of mathematics, but 
exactly in that type of reasoning which appears in metamathe­
matics; we try to develop it to its farthest consequences. This 
preference arises from the conviction that we find here one of the 
most fundamental faculties of the human mind. 
FORM. If you will not quarrel with formalism, neither will I 
with intuitionism. Formalists are among the most pacific of man­
kind. Any theory may be formalized and then becomes subject 
to our methods. Also intuitionistic mathematics may and will be 
thus treated fR. Carnap 1934, p. 44; 1937, p. ;il]. 
CLASS. That is to say, intuitionistic mathematics ought to be 
studied as a part of mathematics. In mathematics we investigate 
the consequences of given assumptions; the intuitionistic assump­
tions may be interesting, but they have no right to a monopoly. 
INT. Nor do we claim that; we are content if you admit the good 
right of our conception. But I must protest against the assertion 
that intuitionism starts from definite, more or less arbitrary 
assumptions. Its subject, constructive mathematical thought, 
determines uniquely its premises and places it beside, not interior 
to classical mathematics, which studies another subject, whatever 
subject that may be. For this reason an agreement between 
formalism and intuitionism by means of the formalization of 
intuitionistic mathematics is also impossible. It is true that even 
in intuitionistic mathematics the finished part of a theory may be 
formalized. It will be useful to reflect fo~ a moment upon the 
meaning of such a formalization. We may consider the formal 
system as the linguistic expression, in a particularly suitable 
language, of mathematical thought. 

Ifwe adopt this point of view, we clash against the obstacle of the 
fundamental ambiguousness of language. As the meaning of a word 
can never be fixed precisely enough to exclude every possibility of 
misunderstanding, we can never be mathematically sure that the 
formal system expresses correctly our mathematical thoughts. 
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However, let us take another point of view. '\Ve may consider 
the formal system itself as an extremely simple mathematical 
structure; its entities (the signs of the system) are associated with 
other, often very complicated, mathematical structures. In this 
way formalizations may be carried out inside mathematics, and 
it becomes a powerful mathematical tool. Of course, one is never 
sure that the formal system represents fully any domain of mathe­
matical thought; at any moment the discovering of new methods 
of reasoning may force us to extend the formal system. 
FORM. For several years we have been familiar with this situation. 
Godel's incompleteness theorem showed us that any consistent 
formal system of number-theory may be extended consistently in 
different ways. 
INT. The difference is that intuitionism proceeds independently 
of the formalization, which can but follow after the mathematical 
construction. 
CLASS. What puzzles me most is that you both seem to start from 
nothing at all. You seem to be building castles in the air. How 
can you know if your reasoning is sound if you do not have at 
your disposal the infallible criterion given by logic? Yesterday I 
talked with Sign, who is still more of a relativist than either of 
you. He is so slippery that no argument gets hold of him, and he 
never comes to any somewhat solid conclusion. I fear this fate for 
anybody who discards the support of logic, that is, of common 
sense. 
SIGN. Speak of the devil and his imp appears. Were you speaking 
ill of me? 
CLASS. I alluded to yesterday's discussion. To-day I am attacking 
these other two damned relativists. 
SIGN. I should like to join you in that job, but first let us hear 
the reply of your opponents. Please meet my friend Prag; he will 
be interested in the discussion. 
FORM. How do you do? Are you also a philosopher of science? 
PR.AG. I hate metaphysics. 
INT. Welcome, brother! 
FORM. Why, I would rather not defend my own position at the 
moment, as our discussion has dealt mainly with intuitionism and 
we might easily confuse it. But I fear that you are wrong as to 
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intuitionistic logic. It has indeed been formalized and valuable 
work in this field has been done by a score of authors. This seems 
to prove that intuitionists esteem logic more highly than you 
think, though it is another logic than you are accustomed to. 
INT. I regret to disappoint you. Logic is not the ground upon 
which I stand. How could it be? It would in turn need a founda­
tion, which would involve principles much more intricate and less 
direct than those of mathematics itself. A mathematical con­
struction ought to be so immediate to the mind and its result so 
clear that it needs no foundation whatsoever. One may very well 
know whether a reasoning is sound without using any logic; a 
clear scientific conscience suffices. Yet it is true that intuitionistic 
logic has been developed. To indicate what its significance is, let 
me give you an illustration. Let A designate the property of an 
integer of being divisible by 8, B the same by 4, C the same by 2. 
For Sa we may write 4 X 2a; by this mathematical construction P 
we see that the property A entails B (A ----+ B). A similar con­
struction Q shows B ->- C. By .effecting first P, then Q (juxta­
position of P and Q) we obtain Sa= 2 x (2 x 2a) showing A-+ C. 
This process remains valid if for A, B, C we substitute arbitrary pro­
perties: If the construction P shows that A -+ B and Q shows that 
B-+ C, then the juxtaposition of P and Q shows that A-+ C. 
We have obtained a logical theorem. The process by which it is 
deduced shows us that it does not differ essentially from mathe­
matical theorems; it is only more general, e.g. in the same sense 
that "addition of integers is commutative" is a more general 
statement than "2 + 3 = 3 + 2". This is the case for every logical 
theorem: it is but a mathematical theorem of extreme generality; 
that is to say, logic is a part of mathematics, and can by no means 
serve as a foundation for it. At least, this is the conception of logic 
to which I am naturally led; it may be possible and desirable to 
develop other forms of logic for other purposes. 

It is the mathematical logic which I just described that has been 
formalized. The resulting formal system proves to have peculiar 
properties, very interesting when compared to those of other 
systems of formal logic. This fact has led to the investigations to 
which Mr. Form alluded, but, however interesting, they are tied 
but very loosely to intuitionistic mathematics. 
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LETTER. In my oprmon all these difficulties are imaginary or 
artificial. Mathematics is quite a simple thing. I define some signs 
and I give some rules for combining them; that is all. 
FoRJ\1. You want some modes of reasoning to prove the consistency 
of your formal system. 
LETTER. Why should I ,vant to pro,·e it? You must not forget 
that our formal systems are constructed with the aim towards 
applications and that in general they prove useful; this fact would 
be difficult to explain if every formula were deducible in them. 
Thereby we get a practical conviction of consistency which suffices 
for our work. \Vhat I contest in intuitionism is the opinion that 
mathematics has anything to do with the infinite. I can write down 
a sign, say tX, and call it the cardinal number of the integers. After 
that I can fix rules for its manipulation in agreement with those 
which Mr. Class uses for this notion; but in doing this I operate 
entirely in the finite. As soon as the notion of infinity plays a part, 
obscurity and confusion penetrate into the reasoning. Thus all the 
intuitionistic assertions about the infinite seem to me highly 
ambiguous, and it is even questionable whether such a sign as 
I 01010 has any other meaning than as a figure on paper with which 
we operate according to certain rules [ J. Dieudonne 1949]. 
INT. Of course your extreme finitism grants the maxi.mum of 
security against misunderstanding, but in our eyes it implies a 
denial of understanding which it is difficult to accept. Children in 
the elementary school understand what the natural numbers are 
and they accept the fact that the sequence of natural numbers 
can be indefinitely continued. 
LETTER. It is suggested to them that they understand. 
INT. That is no objection, for every communication by means of 
language may be interpreted as suggestion. Also Euclid in the 
20th proposition of Book IX, where he proved that the set of 
prime numbers is infinite, knew what he spoke about. This 
elementary notion of natural numbers, familiar to every thinking 
creature, is fundamental in intuitionistic mathematics. We do not 
claim for it any form of certainty or definiteness in an absolute 
sense, which would be unrealizable, but we contend that it ia 
sufficiently clear to build mathematics upon. 
LETTER. My objection is that you do not suppose too little, as 
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Mr. Class thinks, but far too much. You start from certain principles 
which you take as intuitively clear without any explanation and 
you reject other modes of reasoning without giving any grounds 
for that discrimination. For instance, to most people the principle 
of the excluded middle seems at least as evident as that of complete 
induction. Why do you reject the former and accept the latter 1 
Such an unmotivated choice of first principles gives to your system 
a strongly dogmatic character. 
INT. Indeed intuitionistic assertions must seem dogmatic to 
those who read them as assertions about facts, but they are not 
meant in this sense. Intuitionistic mathematics consists, as I have 
explained already to l\Ir. Class, in mental constructions; a mathe­
matical theorem expresses a purely empirical fact, namely the 
success of a certain construction. '' 2 + 2 = 3 + l '' must be read as 
an abbreviation for the statement: "I have effected the mental 
constructions indicated by "2 + 2" and by "3 -i-- l" and I have 
found that they lead to the same result." Now tell me where the 
dogmatic element can come in; not in the mental construction itself, 
as is clear by its very nature as an activity, but no more in the 
statements made about the constructions, for they express purely 
empirical results. 
LETTER. Yet you contend that these mental constructions lead 
to some sort of truth; they are not a game of solitaire, but in some 
sense must be of value for mankind, or you would be wrong in 
annoying others with them. It is in this pretence that I see the 
dogmatic element. The mathematical intuition inspires you with 
objective and eternal truths; in this sense your point of view is not 
only dogmatic, but even theological [H. B. Curry 1951, p. 6]. 
INT. In the first instance, my mathematical thoughts belong to 
my individual intellectual life and are confined to my personal 
mind, as is the case for other thoughts as well. We are generally 
convinced that other people have thoughts analogous to our own 
and that they can understand us when we express our thoughts in 
words, but we also know that we are never quite sure of being 
faultlessly understood. In this respect, mathematics does not 
essentially differ from other subjects; if for this reason you consider 
mathematics to be dogmatic, you ought to call any human 
reasoning dogmatic. The characteristic of mathematical thought 



DISPUTATION 9 

is, that it does not convey truth about the external world, but is 
only concerned with mental constructions. Now we must distinguish 
between the simple practice of mathematics and its valuation. In 
order to construct mathematical theories no philosophical pre­
liminaries are needed, but the value we attribute to this activity 
will depend upon our philosophical ideas. 
SIGN. In the way you treat language you put the clock back. 
Primitive language has this floating, unsteady character you 
describe, and the language of daily life is still in the main of the 
same sort, but as soon as scientific thought begins, the formalization 
of language sets in. In the last decades significists have studied this 
process. It has not yet come to an end, for more strictly formalized 
languages are still being formed. 
INT. If really the formalization of language is the trend of science, 
then intuitionistic mathematics does not belong to science in this 
sense of the word. It is rather a phenomenon of life, a natural 
activity of man, which itself is open to study by scientific methods; 
it has actually been studied by such methods, namely that of 
formalizing intuitionistic reasoning and the signific method, but 
it is obvious that this study does not belong to intuitionistic mathe­
matics, nor do its results. That such a scientific examination of 
intuitionistic mathematics will never produce a complete and 
definite description of it, no more than a complete theory of other 
phenomena is attainable, is clearly to be seen. Helpful and in­
teresting as these meta-intuitionistic considerations may be, they 
cannot be incorporated into intuitionistic mathematics itself. Of 
course, these remarks do not apply to formalization inside mathe­
matics, as I described it a few moments ago. 
PRAG. Allow me to underline what Mr. Sign said just nm,·. Science 
proceeds by formalization of language; it uses this method because 
it is efficient. In particular the modern completely formalized 
languages have appeared to be most useful. The ideal of the modern 
scientist is to prepare an arsenal of formal systems ready for use 
from which he can choose, for any theory, that system which 
correctly represents the experimental results. Formal systems ought 
to be judged by this criterion of usefulness and not by a vague and 
arbitrary interpretation, which is preferred for dogmatic or meta­
physical reasons. 
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INT. It seems quite reasonable to judge a mathematical system 
by its usefulness. I admit that from this point of view intuitionism 
has as yet little chance of being accepted, for it would be premature 
to stress the few weak indications that it might be of some use in 
physics [J. L. Destouches 1951]; in my eyes its chances of being 
useful for philosophy, history and the social sciences are better. 
In fact, mathematics, from the intuitionistic point of view, is a 
study of certain functions of the human mind, and as such it is 
akin to these sciences. But is usefulness really the only measure of 
value 1 It is easy to mention a score of valuable activities which 
in no way support science, such as the arts, sports, and light 
entertainment. We claim for intuitionism a value of this sort, 
which it is difficult to define beforehand, but which is clearly felt 
in dealing with the matter. You know how philosophers struggle 
with the problem of defining the concept of value in art; yet every 
educated person feels this value. The case is analogous for the 
value of intuitionistic mathematics. 
FORM. For most mathematicians this value is affected fatally 
by the fact that you destroy the most precious mathematical 
results· a valuable method for the foundation of mathematics , 
ought to save as much as possible of its results [D. Hilbert 1922]. 
This might even succeed by constructive methods; for definitions 
of constructiveness other than that advocated by the intuitionists 
are conceivable. For that matter, even the small number of actual 
intuitionists do not completely agree about the delimination of the 
constructive. The most striking example is the rejection by Griss 
of the notion of negation, which other intuitionists accept as 
perfectly clear [H. Freudenthal 1936A] [G. F. C. Griss 194-6, p. 24; 
1946A]. It seems probable, on the other hand, that a somewhat 
more liberal conception of the constructive might lead to the 
saving of the vital parts of classical mathematics. 
INT. As intuitionists speak a non-formalized language, slight 
divergences of opinion between them can be expected. Though 
they have arisen sooner and in more acute forms than we could 
foresee, they are in no way alarming, for they all concern minor 
points and do not affect the fundamental ideas, about which there 
is complete agreement. Thus it is most unlikely that a wider 
conception of constructiveness could obtain the support of in-
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tuitionists. As to the mutilation of mathematics of which you 
accuse me, it must be taken as an inevitable consequence of our 
standpoint. It can also be seen as the excision of noxious ornaments, 
beautiful in form, but hollow in substance, and it is at least partly 
compensated for by the charm of subtle distinctions and witty 
methods by which intuitionists have enriched mathematical 
thought. 
FoRM. Our discussion has assumed the form of a discussion of 
values. I gather from your words that you are ready to acknow­
ledge the value of other conceptions of mathematics, but that 
you claim for your conception a value of its own. Is that right 1 
INT. Indeed, the only positive contention in the foundation of 
mathematics which I oppose is that classical mathematics has a 
clear sense; I must confess that I do not understand that. But 
even those who maintain that they do understand it might still be 
able to grasp our point of view and to value our work. 
LETTER. It is shown by the paradoxes that classical mathematics 
is not perfectly clear. 
FoRM. Yes, but intuitionistic criticism goes much farther than 
is necessary to avoid the paradoxes; l\fr. Int has not even mentioned 
them as an argument for his conception, and no doubt in his eyes 
consistency is but a welcome by-product of intuition.ism. 
SIGN. You describe your activity as mental construction, l\fr. 
Int, but mental processes are only observable through the acts to 
which they lead, in your case through the words you speak and 
the formulas you write. Does not this mean that the only way to 
study intuitionism is to study the formal system which it con­
structs 1 
INT. When looking at the tree over there, I am convinced I see 
a tree, and it costs considerable training to replace this conviction 
by the knowledge that in reality lightwaves reach my eyes, leading 
me to the construction of an image of the tree. In the same way, 
in speaking to you I am convinced that I press my opinions upon 
you, but you instruct me that in reality I produce vibrations in the 
air, which cause you to perform some action, e.g. to produce other 
vibrations. In both cases the first view is the natural one, the 
second is a theoretical construction. It is too often forgotten that 
the truth of such constructions depends upon the present state of 
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science and that the words "in reality" ought to be translated into 
"according to the contemporary view of scientists". Therefore I 
prefer to adhere to the idea that, when describing intuitionistic 
mathematics, I convey thoughts to my hearers; these words ought 
to be taken not in the sense of some philosophical system, but in 
the sense of every-day life. 
SIGN. Then intuitionism, as a form of interaction between men , 
is a social phenomenon and its study belongs to the history of 
civilization. 
INT. Its study, not its practice. Here I agree with l\Ir. Prag: 
primum vivere, deinde philosophari, and if we like we can leave 
the latter to others. Let those who come after me wonder why I 
built up these mental constructions and how they can be inter­
preted in some philosophy; I am content to build them in the 
conviction that in some way they will contribute to the clarification 
of human thought. 
PRAG. It is a common fault of philosphers to speak about things 
they know but imperfectly and we are near to being caught in that 
trap. Is Mr. Int willing to give us some samples of intuitionistic 
reasoning, in order that we may better be able to judge the quality 

of the stuffl 
INT. Certainly, and even I am convinced that a few lessons will 
give you a better insight into it than lengthy discussions. May 
I beg those gentlemen who are interested in my explanations, to 
foll0w me to my classroom? 



II 

ARITHMETIC 

2.1. Natural numbers 

INT. \Ve start with the notion of the natural numbers I. 2, 3, etc. 
They are so familiar to us, that it is difficult to reduce this notion 
to simpler ones. Yet I shall try to describe their sense in plain 
words. In the perception of an object we conceive the notion of 
an entity by a process of abstracting from the particular qualities 
of the object. \Y c also recognize the possibility of an indefinite 
repetition of the conception of entities. In these notions lies the 
source of the concept of natural numbers [L. E. J. Brouwer 1907, 
p. 3; 1948, p. 1237]. 
CLASS. Are these considerations not metaphysical in nature? 
INT. They become so if one tries to build up a theory about 
them, e.g., to answer the question whether we form the notion 
of an entity b)• abstraction from actual perceptions of objects, or 
if, on the contrary, the notion of an entity must be present in our 
mind in order to enable us to perceive an object apart from the 
rest of the world. But such questions have nothing to do with 
mathematics. \Ve simply state the fact that the concepts of an 
abstract entity and of a sequence of such entities arc clear to every 
normal human being, even to young children. 
CLASS. Let us admit that you have at your disposal the natural 
numbers. Now you must have some startingpoint for your deduc­
tions. Do you accept Peano's axioms? 
INT. \Vhile you think in terms of axioms and deductions, we 
think in terms of evidence; that makes all the difference. I do not 
accept any axioms which I might reject if I chose to do so. The 
notion of natural numbers does not come to us as a bare notion, 
but from the beginning it is clothed in properties which I can 
detect by :-:implc examination. Those properties which you describe 
by Peano's axioms are among them, as I shall show you. Let "N" 
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be an abbreviation for "natural number". The first two properties 
( I is an N and if x is an N, then the successor of x is an N) can 
immediately be seen to be true by carrying out the generating 
construction. The same applies to the third and fourth axiom (If 
x and y are N and the successors of x and y are equal, then x = y; 
the successor of an N is not equal to 1 ). As to the so-called axiom 
of complete induction, it must be seen as a general theorem on 
natural numbers. Some remarks will be useful in. preparation for 
its proof. 

Clearly the construction of a natural number n consists in 
building up successively certain natural numbers, called the 
numbers from I to n, in signs: I -+ n. At any step in the con­
struction we can pause to investigate whether the number reached 
at that step possesses a certain property or not. For instance, we 
can ascertain whether a given number m, different from n, occurs 
in I -+ n or not. In the first case we say that m < n, in the second 
case that m>n. Now it is a theorem that m,f=.n and m>n implies 
n < m. For if m does not occur in I -+ n, this fact proves that at 
the step at which we reach n, the construction of m is not termi­
nated; thus n occurs in I -+ m. 

The theorem of complete induction admits a proof of the same 
kind. Suppose E(x) is a. predicate of natural numbers such that 
E(l) is true and that, for every natural number n, E(n) implies 
E(n'), where n' is the successor of n. Let p be any natural number. 
Running over I -+ p we know that the property E, which is true 
for 1, will be preserved at every step in the construction of p; 
therefore E(p) holds. 

Analogous remarks apply to the usual recursive definitions of 
sum and product in the domain of natural numbers. By running 
over I ->- p we see that indeed a+ p and p • a are defined for 
arbitrary natural numbers a and p. Once we possess the fundamental 
methods of induction and recursion, the arithmetic of natural 
numbers meets with no serious difficulties, nor does that of integers 
or even of rationals. Difficulties arise only where the totality of 
integers is involved in some way, as in our attempt II to define 
an integer in our discussion. But such problems <lo not belong to 
elementary arithmetic. 
FORM. You spoke repeatedly of equal natural numbers. What 
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does that mean 1 Is not a definition of equality, based for instance 
on a one-to-one relation, necessary? 
INT. Indeed this point needs some clarification; it forces me 
even to revise somewhat our notion of a natural number. If a 
natural number were nothing but the result of a mental con­
struction, it would not subsist after the act of its construction and 
it would be impossible to compare it with another natural number, 
constructed at another time and place. It is clear that we cannot 
solve this problem if we cling to the idea that mathematics is 
purely mental. In reality we fix a natural number, x say, by means 
of a material representation; to every entity in the construction 
of x we associate, e.g., a dot on paper. This enables us to compare 
by simple inspection natural numbers which were constructed at 
different times. 
FORM. That amounts to the application of one-to-one relations. 
INT. We may express it in that way, provided we are well aware 
that the process of comparison is staged at the pre-mathematical 
level. Mathematics begins after the concepts of natural numbers 
and of equality between natural numbers have been formed. Of 
course the dichotomy between mathematics and pre-mathematics 
is artificial, just as is every splitting up of human thought, but this 
dichotomy corresponds to an important difference in methods. 
LETTER. One would expect that the basic notions of mathematics 
were simple and clear, but your notion of a natural number turns 
out to be pretty complicated. 
INT. As far as I know, psychology has not discovered mental 
atoms. Every notion may be analysed, none is comprehensible by 
itself; any notion depends for its explanation upon its relations to 
other notions. The notion of a natural number is no exception to 
this rule. Yet it is suitable to serve as one of the main basic concepts 
of mathematics, mainly for the following three reasons: 

1. It is easily understood by any person who has a minimum of 
education, 

2. It is universally applicable in the process of counting, 

3. It underlies the construction of analysis. 

CLASS. Apart from these philosophical questions, your inter­
pretation of the arithmetic of rationals is identical with ours. 
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2.2 Real number-generators 
2.2.1. Definition; relation of coincidence 

INT. Yes, but at the next station, that of real numbers, we ente1· 
a totally different landscape. As in the classical mathematics, so 
in intuitionism different equivalent theories of real numbers are 
possible [L. E. ,J. Brouwer 1919A, p. 3; A. Heyting 1935]. I shall 
briefly expound Cantor's theory. which has some advantages for 
our purpose. 

Let us suppose that the theory of rationals, including their order 
relations, has been developed. A sequence {an} of rational numbers 
is called a Cauchy seq'llence, if for every natural number k we can 
find a natural number n=n(k), such that lan+v-a,.I < 1/k for every 
natural number p. This must be so understood, that, given k, we 
are able to determine effectively n(k). 

Example. The sequence a== {~-"} is a Cauchy sequence. Let 
the sequence b = {bn} be defined as follows: If the nth digit after 
the decimal point in the decimal expansion of jf is the 9 of the first 
sequence 0123456780 in this expansion, bn= 1, in every other case 
bn = 2-". b differs from a in at most one term, so b is classically a 
Cauchy sequence, but as long as we do not know whether a sequence 
0123456789 occurs in n, we are not able to find n such that 

lb -b I< 1/2 for every p; we have no right to assert that b is a n+p 11 

Cauchy sequence in our sense. 

Definition 1. A Cauchy sequence of rational numbers is a 
real number-generator. Where no confusion is possible, we shall 
speak briefly of a number-generator. 

Two number-generators a = {an} and b = {b,.} are identical, if 
a,.=b,. for every n. We express this relation by a= b. The following 
notion of coincidence is more important. 

Definition 2. The number-generators a= {an} and b = {b
71

} co­
incide, if for every k we can find n = n(k) such that I an+:11-bn+:111 < 1/k 
for every p. This relation is denoted by a= b. 

Theorem. The relation of coincidence between number-aener-o 
ators is reflexive, symmetrical and transitive. The easy proof is 
well-known. 

Remark. Given any number-generator a= (a,,}, a number-
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generator b = {bn} can be found such that a=b and that the 
sequence {br} converges as rapidly as we wish. For instance, in 
order that I bn+p - b" I < 1 /n for every n and p, it suffices to take 
bk= aniki for every k. 

If, in the following, a number-generator is denoted by one letter, 
v say, it will be silently understood that it can also be denoted by 
{vn}, so that vn is the nth component of the sequence v. 

As the notion of a real number presupposes the fundamental 
notions of set theory, I postpone the definition of a real number 
(as a set of coincident number-generators) till chapter III. 

2.2.2. Inequality relation between number-generators 

If a= b is contradictory (that means: if the supposition that 
a= b leads to a contradiction), we write a =I= b. 

Theorem 1. If a=1=b is contradictory, then a=b [L. E. J. 
Brouwer 1925, p. 254]. 

Proof. Determine n so that lan+v-a,.I < 1/41.- and lbn+i>-bnl < 1/4k 
for every p. Suppose la,. -bnl ~ 1/k; then we woulcl have 
la 11 ~ v-b,,+ 1,I > 1/2k for every p, which entails a =I= b. Thus Ian -bnl < 1/k 
and I an+p - bn+v I < 2/ k for e,,ery p, and as for e,-ery k we can find 
n so that this inequality is valid for every p, we have a= b. 

CLASS. w· e must get used to the fact that such a theorem needs 
a proof. 
INT. A proof of the impossibility of the impossibility of a property 
is not in every case a proof of the property itself. It will be instructive 
to illustrate this by an example [L. E. J. Brouwer 1925, p. 252]. 
I write the decimal expansion of n and under it the decimal fraction 
(! = 0. 33:3 ... , which I break off as soon as a sequence of digits 
0 l 2345678!) has appeared in n. If the !) of the first sequence 

0123456789 in n is the kth digit after the decimal point, (! = 
1t1-;;/. 

Now suppose that (! could not be rational; 

then o = IOk -
1 would be impossible and no sequence could appear 

~ 3.lUk 
in n; but then (! = 1/3, which is also impossible. The assumption 
that e cannot be rational has lead to a contradiction; yet we have 
no right to assert that (! is rational, for this would mean that we 
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could calculate integers p and q so that e = p/q; this evidently 
requires that we can either indicate a sequence 0123456789 inn or 
demonstrate that no such sequence can appear. 
CLA.ss. And you reject my argument that e is equal to one of 
the rational numbers 1/3, 0.3, 0.33, etc., though we do not know 
to which of them. 
INT. Exactly, and I think that the real state of affairs is better 
expressed by saying that e cannot be different from each of these 
numbers. 
CLA.ss. It seems to me that the difficulty is caused by your iuter­
pretation of negation, which diverges from the usual one. To you 
"e is not rational" means the same as "the supposition that e is 
rational, leads to a contradiction". Thus you only speak of falsity 
"de jure'·, whereas usually negation refers to falsity "de facto". 
This may account for the peculiar behaviour of your negation. 
INT. I can adhere to this view, if we agree that in intuitionistic 
mathematics only falsity "de jure" can play a part; the intro­
duction of mere "de facto" falsity would conflict with the principle 
of constructivity. 

Strictly speaking, we must well distinguish the use of "not" in 
mathematics from that in explanations which are not mathematical, 
but are expressed in ordinary language. In mathematical assertions 
no ambiguity can arise: "not" has always the strict meaning. "The 
proposition p is not true", or "the proposition p is false" means 
"If we suppose the truth of p, we are led to a contradiction". But 
if we say that the number-generator e which I defined a few moments 
ago is not rational, this is not meant as a mathematical assertion, 
but as a statement about a matter of facts; I mean by it that as 
yet no proof for the rationality of e has been given. As it is not 
always easy to see whether a sentence is meant as a mathematical 
assertion or as a statement about the present state of our know­
ledge, it is necessary to be ca.reful about the formulation of such 
sentences. Where there is some danger of ambiguity, we express 
the mathematical negation by such expressions as "it is impossible 
that", "it is false that", "it cannot be", etc., while the factual 
negation is expressed by "we have no right to assert that", "nobody 
knows that", etc. 

There is a criterion by which we are able to recognize mathe-
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matical assertions as such. Every mathematical assertion can be 
expressed in the form: "I have effected the construction A in my 
mind". The mathematical negation of this assertion can be 
expressed as "I have effected in my mind a construction B, which 
deduces a contradiction from the supposition that the construction 
A were brought to an end", which is again of the same form. On 
the contrary, the factual negation of the first assertion is: "I have 
not effected the construction A in my mind"; this statement has 
not the form of a mathematical assertion. 
PRAG. You seem to be very much interested in such examples as 
that of the number e- I find them in almost every one of your 
papers. To an outsider the construction of such far-fetched patho­
logical cases seems a somewhat futile occupation. 
INT. We are forced to construct such examples in order to convince 
others of the necessity of a proof for certain propositions. But it 
would be wrong to consider them as an essential part ofintuitionistic 
mathematics, just as it would be wrong to contend that the 
continuous non-differentiable function of Weierstrass is an essential 
part of the classical differential calculus. 

2.2.3. A partnc.ss-relation between number-generators 

But we have already insisted too much on the negative notion 
of inequality; negative concepts are for us even less important 
than in classical mathematics; whenever possible we replace them 
by positive concepts. In the case of inequality between real number­
gl'ncrators we do this by the 

Definition 1: For real number-generators a and b, a liM apart 

from b, a # b, means that n and k can be found such that 
lan+p-bn+-1>1 > I/k for every p [L. E. J. Brouwer 1919A, p. 3]. 

a # b entails a-=/:- b, but the converse assertion is not correct. 
This can be shown by an example which is still more sophisticated 
than the previous one. As it raises some rather delicate questions, 
I shall postpone it till a later lecture (8.1.1). I hope that for the 
moment it is sufficiently clear that a # b is a stronger condition 
than a-=/:- b, because the former demands the actual indication of 
the numbers n and k, whereas the latter contents itself with a mere 
proof of impossibility. 
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I shall now deduce the main properties of the # relation. 

Theorem 1. If a# b, then b # a .. 

Theorem 2. If a# b and a=a', then a' # b. 

Proof. '\Ve can find n and k so that 

I a11+:,, - b11+:,, I> I/k for every p. 

Now we determine m so that 

I am+:,, - a;,.+s, I< 1/2k for every p. 

Then, if h IS the largest of m, n: 

I a~+P - bh+P I> I/2k for every p. 

Theorem 3. If a# b is impossible, a=b [L. E. J. Brouwer 
1925, p. 254]. 
The proof of 2.2.2. Th. I has been so arranged as to establish 
this stronger theorem. 

Theorem 4. If a# b, then for any real number-generator c 
either a # c or b # c holds. 

Proof. Similarly as in the proof of Th. 2 we find k and h so that 

(i) 

(ii) 

(iii) 

(iv) 

I ah+i, - b,,+:,, I> I/k for every p; 

I a'h+1 - a'!+P I< I/8k for every p; 

I bh+1 - bh+:,, I < I /Bk for every p; 

I ch+l - c,,+i> I < I /Sk for every p. 

Then by (i) with p= 1, either jah+l -ch+il > 1/2k or jbh+1 -c,,+1! > I/2k. 
In the first case we derive from (ii) and (iv) that 

I a,,+:,, - ch+:,, I> I/4k for every p, 

hence a # c ; m the second case 

1.e. b # c. 

2.2.4. Fundamental operations with number-generators 

Definition 1. If a and b are real number-generators defined 
by the sequences of rational numbers {a,.} and {b

11
} respectiH•ly, then 
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i. a+b lS the sequence {a,. ,· b,.}; 

11. ab IS the sequence {a,.b,.}: 

iii. -(l, is the sequence { - an}; 

1v. If a # 0, then a- 1 is the sequence {en}, where c,. = a;; 1 if a,. ic- 0 
and c,. = o if a,. =-0 o. 

Theorem 1. a ;- b, ab, -a and a-1 are again real number­
generators. 

Proof. It is easily proved by known methods that the defining 
sequences 11re Cauchy sequences. 

Remarks. (1). Note that a-1 can only be defined if a# 0; this 
condition is necessary and sufficient to show that the defining 
sequence of a-1 is bounded. 

(2). The rational number r may be identified with the sequence 
every member of which is r. In this way the system of real number­
generators appears as an extension of that of rationals. This remark 
has been applied in def. 1. iv. 

(3). For rational numbers no difference need be made between 
i= and #, for if a i= b, then a - b is a rational number which is 
not 0, a-b=p/q>l/2q. 

Theorem 2. If a=a', b=b', then a+b=n'+b' and ab=a'b'. 
If a=a', then -a= -a'. 
If a # 0, and a= a', then a-1 = (a')-1 . 

Proof. It will suffice to prove the last assertion. As a # 0, we 
can find n and j so that la,.+,,I > 1/j for every p; similarly we find n' 
and j' so that ja~'+:1>1 > 1 /j', for every 1J. 
Given any natural number k, we can determine l so that 

I a,+JJ - a;+,, I< jj\ for every p. 

8et a- 1 = c, (a')- 1 = c', then, if m is the greatest of n, n', l, 

Hence c=c'. 
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2.2.5. Fundamental identities 

For a concise formulation of the fundamental identities I 
introduce the notion of a rational function. 

Definition 1. A rational function f(a, b, c, ... ) _is defined by 
a finite number of applications of the four fundamental operations. 
It is defined for such real number-generators a, b, c, ... , that, 
whenever in the calculation of I the inverse of a number-generator 
must be taken, this number-generator is # 0. E.g. 

f(a, b) =a-1 (a+b-l)-1 

is defined for such real number-generators a, b, that a, b and 
a+b-1 are all # 0. 

Lemma. If /(a, b, c, ... ) is any rational function, a, b, c are 
given real number-generators for which / is defined and 

f(a, b, c, ... ) = x, 

then we can find a natural number n so that 

Xn+1J = /(an+tJ• bn+1J> cn+P> •.. ) 
for every p. 

Proof. Let 'Pi(a, b, e, ... ), <p2(a, b, e, • • . ), . . . be the functions 
for which successively the inverse must be taken in the calculation 
of/. Then cp1(a, b, e, ... ) #.0 and we can find an index k1 so that 
cp1(an, bn, en, ... ) ¥= 0 for n >lei; thereupon we find k2 > k.i so that 
cp2(an, bn, en, ... ) ¥= 0 for n> k2, etc. If k, is the last index found 
in this way, it follows from 2.2.4. def. 1, that xn = /(an, bn, en, ... ) 

for n>k,. 

Theorem 1. Every rational identity that is valid for rational 
numbers holds also in the following sense for real number-gen­

erators: 
Let f(p, q, r, ... , x, y, z, . • •) and g(p, q, r, ... , x, y, z, ... ) be 
rational functions such that/ =(J if for P, q, r, ... are substituted 
given rational numbers Po, qo, ro, · · · and for x, y, z, ... arbitrary 
rational numbers, for which / and g are defined. Then 

f(p
0

, q
0

, r
0

, ••• , a, b, c, • • •) = g(po, qo, r0 , ••• , a, b, c, ... ) 

for any real number-generators a, b, c, ... , for which / and g 
are defined. 
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Proof. Set 

and 
g(p0 , q0, r0 , •.• , a, b, c, ... ) = w. 

As shown in the lemma, we can find an index k so that 

and 

g(po, qo, r o, · · ·, an, bn, en, · · · ) = wn 

for n>k. By supposition vn=wn; hence v=w. 

23 

This proves at one blow all the fundamental identities of 
arithmetic. We complete them by the following laws, which are 
of particular importance in analysis. 

Theorem 2. a# b implies a+c # b+c. 

Proof. If lan+1>-bn+1>I > 1/k for every p, then 

I ( an+-1> + cn+-1>) - ( bn+-1> + cn+i,) I > 1 / k for every p. 

Theorem 3. a# 0 and b # 0 imply ab # 0. 

Proof. If lan+-1>I > 1/k and lbn+1>I > 1/k for every p, then 

lan+1>bn+i>I > 1/k2 for every p. 

Theorem 4. ab # 0 implies a # 0 and b # 0. 

Proof. We can find k and n so that 

lan+1>bn+i>I > I/k, jan+J> -a,nl < 1, lbn+-1>-bnl < 1 

for every p; then 
I I 

jan+pl > k(lbnl +I) and lbn+i>I > k(ia,,I +l) 
for every p. 

Theorem 5. a+ b # 0 implies that either a # 0 or b # 0. 

Proof. Let a+b # 0. By Th. 2, -a+a+b # -a, b # -a. 
By 2.2.3, Th. 4, either b # 0 or - a # 0. In the latter case, add a 
to both members and apply Th. 2. 

CLASS. Classically, we read these theorems as negative properties 
and we give indirect proofs for them. For instance: If a+c=b+c, 
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then a= b; hence, if a=;= b, then a+ c =;= b + c. But I see that you need 
direct proofs because you consider the positive relation ;-:.1. instead 
of the negative relation ¥=. 
INT. The theorems about # as ,veil as their proofs are simpler 
than those invoh-ing =;= and = ; the latter must be handled 
with great caution, as I will illustrate by the following example. 

I define two real number-generators a and b by the following 
laws: If in the first n decimals of ;r no sequence 0123456iS!J occurs, 
a,.= b,. = 2- 11

; if a sequence does occur in the first n decimals, let 
the 9 in the first sequence be the kth digit; now if,~ is odd, a,.= :2-", 
b,. = 2- 11 but if k is even, a,.= 2-n, b,. = 2-1,. Neither for a nor for b 

are we able to decide whether it is O or not. But ab= O! In the first 
case a,.b

11
=2-2n, in the second a,.bn=2-k-n; in either ja,.b,.j < Ifni 

for n > m. Consequently the proposition "If ab= 0, either a= 0 or 
b = O" cannot be proved as long as there exist unsolved mathe­
matical problems of the sort we used in the example. 
CLASS. Yet, if ab= 0, it must be impossible that neither a nor b 

is 0. 
INT. That is right, for a cfc O and b #- 0 implies ab#- 0, as a negative 
counterpart of Th. 3. I prove this in different steps. 

(i) If ab= 0 and a # 0, then b = 0, for b # 0 would give ab # 0 

(Th. 3) and if b # 0 is impossible, then b=0 (2.2.3, Th. 3). 

(ii) If ab= 0 and b #- 0, then a= 0, for by (i) a # 0 would give b = 0. 

(iii) If a=;= 0 and b #- 0, then ab cfc 0, for by (ii) ab~ O in com bi nation 
with b =I= 0 would give a= 0. 

FoRl\1. Could we not say, that if ab= 0, either u = 0 or b =" 0, but 
we need not know which of the two relations is true? 
INT. It would be dangerous to adopt such a slipshod ,vay of 
expression for such a subtle question. We only assert a proposition 
if we can prove it; so we only assert that either a= 0 or b = 0 if 
we can prove one of these propositions. By asserting that it is 
imr,0ssible that a =I= 0 and b =fa O we indicate exactly what we have 
r,roved, and this expression is scarcely more complicated than 
that which you propose. If we used the latter, we ought always 
to remember that it has another meaning than that which the 
words suggest. 
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2.2.li. Order relations between number-generators 

I shall be brief about order relations. 

Definition l. a<b. if n and k can be found, so that 
b11 +11 -affTP > l/k for every p. a> b means the same as b < a. 

Theorem l. If a# b. either a<b or b<a. 
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Proof. Find n and k so that la,.+ 11 -b,.+vl > I/k for every p. Now 
determine m > n so that lam - am+vl ,_ I ,'-1l· and lbm - bm+lll < I/4k 
for every p. Either am -b,,. > 1/k or b,,. -am> I/k; in the first case 
am+:,, - b,,,+:r, > l /'!.k for every p, so b <a; in the second case we 
obtain a.< b. 

Theorem ~. If a< b, then a # b. 
This follows immediately from the definitions. 
Theorems I and 2 show, that a# bis equivalent to (a.<b or a>b). 

Theorem :L If a< bas well as b < a are contradictory, then a= b. 

Proof. We derive a contradiction from the supposition a # b 
by Th. I; then 2.2.3, Th. 3 gives a= b. 

Theorem 4. If a<b, then for every real number c holds either 
a.<c or c<b. 

Proof similar to that of 2.2.3, Th. -1. 

Theorem 5. If a<b, b=c, then a<c. 

Proof as for 2.2.3, Th. 2. 

Theorem 13. If a<b and b<.c, then a<c. 

Proof easy from the definition. 

Theorem 7. a,<b implies a+c<b+c. 

Proof as for 2.2.5, Th. :!. 

Theorem 8. If a>O and b>O, then ab>O. 

Proof as for 2.2.5, Th. 3. 

Definition 2. We write a ::t- b if a>b is impossible, and a-{:: b 
if a< b is impossible. 

Note that a :t, bis not the same as (a<b or a=b). For instance, 
in the example of 2.2.2, e ::t,- 1/3, but we do not know whether 
e<I/3 or e=l/3. 



26 ARITHM:ETIC 

Theorem 9. If a{:: b and b>c, then a>c. 

Proof. From b>c it follows that b>a or a>c. As the former is 
impossible, we have a > c. 

Theorem 10. If a>b and b {:: c, then a>c. 

Proof analogous. 

Theorem 11. If a::;}- b and b ::;}- e, ~hen a::;}- c. 

Proof. Suppose a>c, then a>b or b>c by Th. 4. 

2.2.7. Maximum and minimum of two number-generators 

Definition 1. If a={an}, b={bn}, then max(a,b)={max(an,bn)} 
and min (a, b) = {min (an, bn)}. 

Theorem 1. If a and b are real number-generators, then 
c=max (a, b) and d=min (a, b) are real number-generators. 

Proof. Find n such that for every p we have 

jan+2>-anl < 1/k, lbn+J>-bnl < 1/k. 

Suppose an~ bn, so that en= an. 
Then en+J>~an+J>>an-1/k=cn- I/k, 
and an+J> <an+ 1/k, b11 ~-'l) < bn + 1/k ~an+ 1/k, so en+J> <en+ I/k. 
It follows that the sequence {en} is a Cauchy sequence. 

Theorem 2. max (a, b) {:: a. max (a,b) {:: b. max (a,b) = max (b,a). 
min(a,b) has analogous properties. max(a,b){::min(a,b). 

Theorem 3. If x>max (a, b), then x>a and x>b. 
Conversely, if x>a and x>b, then x>max (a, b). 

Proof. The first part of the theorem follows immediately from 
max (a, b) {:: a and 2.2.6, Th. 10. To prove the second part it 

suffices to remark that from Xn+v - an-L- > I/ k and x _ b > I /k ,., n+J> n+J> 
there folJows 

Xn+J> - max (an+J>' bn+J>) > I/le. 

Theorem 4. max(ab,0)=max(a,0) max(b,0)+ 
+ min (a, 0) min (b, 0). 

Proof. This equation is easily verified for rational numbers a, b 
by examining the different cases as to the signs of a and b. It 
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follows for real number-generators by the definitions of ab and 
of max (a, b), min (a, b). 

Theorem 5. max (a, b)+min (a, b)=a+b. 

2.2.8. Absolute value of a number-generator 

Definition. If a is a real number-generator, then its absolute 
value la-I= max (a, -a), or what comes to the same thing, if 
a={an}, then lal={lanl}-
Rcmark. The graph of the function y= lxl is not the union 
of two half lines; it must be complemented by points for which 
it is unknown whether they correspond to a value of x which is 
> 0, < 0 or = 0. This is done by the definition above. which 
defines lxl for every real number-generator x. In general, if we 
wish to consider a polygonal line as a continuous curve, we must 
complement it at every corner in an analogous way. 

Theorem 1. If a and b are real number-generators, then 

lal + lbl <t la+bl. 
Proof. Suppose lal+lbl<la+bl; then we could find n and k 
so that 

lan-n,+bn+pl-(lan+pl+lbn+pl)>l/k for every p; 

but this can be true for no value of p. 

Theorem 2. 

Theorem 3. 
lal lbl = labl · 
1-al=lal. Ifa#0, la-11=1a-l-1

. 

2.3. Respectable real numbers 
FORM. Permit me to return to your example of two numbers 
whose product was zero without one of them being zero. In this 
and similar examples you use real numbers for which the order 
relations with respect to _the rationals are not completely known. 
Could we not evade such complications by restricting arithmetic 
to such real numbers which I venture to call respectable, l mean 
those that are completely located with respect to the rationals1 
IxT. That- 8eems a wise proposal, as most of the real numbers 
that occur in analysis are respectable in your sense. Yet I do not 
think that the difficulties to which you allude can really be solved 
in this way, but I shall not go into that question, because there 
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are even more serious objections. Before I discuss these, I think 
it is worth while to prove that some of the most important real 
numbers are respectable. 
The proof for e is quite simple. 

e = ,I J! (the partial sums of the series form a number-generator). 
0 

Suppose e = m/n. 

n I "" I 
Set Sn = ,2 k 1 , T n = ,2 "fi · 

0 " n+l " 

r,. = 
I 00 (n+I)! I 00 I 

(n+l)! t (n+k)! < (n+l)! t (n+2Jk-l = 

I n+2 I n+I I =-----<-------(n+l)! n+I (n+I)! n - n!n · 

This is impossible, for n! rn < l/n is not an integer. 
CLASS. This is a well-known proof for the irrationality of e, but 
does it settle the order relation between e and m/n ? 
INT. To do that, we must convert the last part into a positive 

reasoning. We note that 
l l 

-<e-s <-. 
(n+l)! " n!n 

I 1 -- < n! (e-sn) < - . 
n+l n 

As n! (~ -sn) is an integer, jn!(e-~)I > n! I" 
This giYcs je - ~1 > --1-; consequently, by calculating e with a 

n (n+I)! 
sufficient degree of accuracy, we can decide of its order relation 
with respect to m/n. 

As you see, in order to prove that a real number n is respectable, 
it suffices to give a proof for the irrationality of a, that establishc:-; 
at the same time a measure for the degree of irrationality of a, 

that is, an arithmetical function ip(n) such that /a_ ~1 > _}_ for 
n q,(n) 

all values of m and n. 
In order to find a measure of irratio11ality for the algebraic· 
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numbers [L. E. J. Brouwer Hl20, p. 960]. we consid<:>r two algebraic 
numbers a and b; by a calculation inYolving only operations on 
rational numbers we find an algebraic equation 

/(.t} cc:, Co-1:n ---i- .•• ---i-Cn = 0 (co> 0) 

with integer coefficients. that has a and b among its roots and 
whose discriminant d = 0 (d is an integer). Now 

d = c~"-~11 (1c;-wy, 

where w1 = a, I!'~ --- b. 11·1 •••.• /I'" ,tre th? roots of /(.r) = 0. DPtermine 
the integer h so that 

I 11·; - n·d --:_ !1 (i. I.:= I, ... , ;i); 

then la -bl 2 ::--- ., _,Id~- _.,. Co" - -h" n -

If for b we take a rational number, WE' f-ind a measure of irrationality 
for a. 

All this is rather ::;atisfac-tory, but on the other hand we do not 
know if Euler·,;; co!lstant (' is rational. so at the present state of 
our knowledge it doe:; not ,,ati,d\ your condition. EvPn more graYe 
is the fact that the sum of two rcsprrtabl!:' numbers need not be 
respectable. To ;;i\'C' an example. I define a rral number-generator c 
by writing the dl'Cimal Pxpansio11 of :-r. stopping after the first 
sequence OU34567S9 or 9S76543210, but if the latter occurs first, 
I change the O at thl' end into 1. :r as well as c arP respectable 
numbers. In the case of :r this was shown by Brouwrr [L. E. J. 
Brouwer 1!)20. p. llGl]: his proof shows that f,,r any rational 
number r we can f-ind a natural number 11 so that i:i:- rJ-:--> 10- 11

• 

By calculating ;;r to n digits aft<'r the decimal point ,ve find the 
order rdation between c ancl i'. But c - .-1 is not respectable (at 
least, we do not know if it is). for at this moment nobody is able 
to decide whether c - ;;r is equal to, great,C'r than or less than 0. 

For these reasons it seems unpractical to restrict arithmetic to 
respectable numbers. Therefore I drop this notion and stick to 
the definition 2.2.1, Def. 1. 
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2.4. Limits of sequences of real number-generators 

For the sake of completeness I formulate the definition of 
positive convergence: 
Definition 1. The sequence {a,.} of real number-generators is 
(positively) convergent to the limit a, if, given any natural number 
k, a natural number n can be found such that for every natural 
number p, 

(1) 

CLASS. In such definitions as this, it is not the words that are 
important, but the way in which they must be understood. You 
emphasize this by using the words "can be found", which express 
that the number n must not only exist, but that it must be effectively 
known. I have still a question to ask. Why do you use the expression 
"positively convergent" 1 Is there also a notion of negative con­
vergence? 
INT. In fact, as is the case for many other concepts, besides the 
positive notion of convergence, which results in a natural way if 
we take the usual definition in a constructive sense, there can be 
defined a weaker negative notion which is classically equivalent 
to the positive one. However, as the use of these negative notions 
involves logical difficulties connected with the properties of the 
intuitionistic negation, I think it better to treat them in a chapter 
on logic (7 .3.2). 

Cauchy's general principle of convergence is valid. I leave it to 
you to give the positive formulation of the principle and to prove 
that it gives a necessary and sufficient condition for convergence. 
Also the theorems about the convergence of a sub-sequence, those 
about the limit of the sum-sequence and the product-sequence of 
two sequences, and similar theorems subsist intuitionistically. 
However, many other classical theorems are no longer valid. 
I state as an example that a bounded monotone sequence need 
not be convergent. A simple counterexample is the sequence {a,.} 
which is defined as follows: a,.= 1 - 2-n if among the first n digits 

m the decimal expansion of n no sequence 0123456789 occurs; 
a,.=2-2-n if among these n digits such a sequence does occur. 
Nobody knows if the limit of this sequence, if it exists, will be I 
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or 2; so we are not allowed to say that this limit exists as a well 
defined real number-generator. 

I shall not stop to give definitions of such notions as the upper 
limit of a sequence, or the least upper bound of a sequence. They 
result from the usual definitions by wording them positively and 
by taking every existential assertion positively. 

Note that a = {an}, where the an are rational, implies lim an= a . 

• 
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SPREADS AND SPECIES 

3.1. Spreads 

3.1.1. Infinitely proceeding scquence:J 

Until now we have supposed that a real number-generator is 
determined by a law which, if n is any natural number, gives full 
prescriptions for the calculation of then-th number of the sequence. 
This point of view suffices as long as we consider only isolated real 
number-generators, but it becomes unsatisfactory in the theory 
of the continuum, considered as the set of all real number-gener­
ators. The notion of an arbitrary law is unnatural and unmanage­
able; it may be useful on the basis of some formal system, but 
then it does not lead to a theory which corresponds sufficiently tc, 
our intuitive idea of the continuum. Brouwer was the first to sho,v 
how a satisfactory theory of the continuum on an intuitiYe basis 
can be obtained without using the notion of an arbitrary law. 

A real number-generator is never ready at hand; we never 
possess more than a finite part of its defining sequence. This leads 
us to think of a real number-generator as in a constant state of 
growth. The notion of a, law of progression is essential here only 
in so far as it warrants the possibility of unlimited continuation 
of the sequence, hence we may eliminate it by postulating direcily 
this possibility [L. E. J. Brouwer l!llOA, p. 3; Hl20, p. !JiHl; rn2.i, 
p. 245]. Thus by an infinitely proceeding sequence (abbre,·iated: 
ips) we mean exactly what the words express, i.e. a sequence that 
can be continued ad infinitum. The question how the components 
of the sequence are successively determined. whether by a law, 
by free choices, by throwing a die, or by some other means, is 
entirely irrelevant. Of course two questions arise here: Is the 
introduction of the concept of an ips legitimate and is it. expedient? 
The former question can hf' answered in the aflirmatin, if the 
concept is sufficiently clear to be accPptahlP as a fundamental 
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notion in mathematics. Now I presume that you have serious 
doubts about its clearness. 
Fom,r. Indeed I have. By admitting this concept you introduce 
into mathematics the notion of time and a subjective element 
that do not belong there. An infinitely proceeding sequence proceeds 
in time and the way in which it proceeds may depend upon choices, 
that is upon voluntary acts of the choosing subject. 
INT. I agree to that; yet if we examine the proofs of the theorems 
on real number arithmetics in sections 2.2.4 and 2.2.5, we see that 
they only depend upon the possibility of indefinitely continuing 
the sequences; we never used the fact that their continuation was 
governed by a law; hence it must be possible to consider the 
continuation without demanding that a law governs it. For 
instance, in the definition of the sum of two real number-generators 
(2.2.4), the n-th approximation of a.+ b is known as soon as the 
n-th approximations of a and b arc given. Hence, if a and b are 
infinitely proceeding sequences, a+ b is an infinitely proceeding 
sequence. To arrive at the notion of an ips, we need not introduce 
new ideas, in particular not the notion of choice; the word "choice" 
is used here as a short expression for the generation of a component 
of the sequence. The idea of a law governing the production of the 
sequence is not necessary here and can be removed by a process 
of abstraction. On these grounds I beg you to admit that the 
notion of an ips is sufficiently clear. 

·with regard to the dependence of an ips upon the concept of 
time and its subjectivity a lengthier discussion is necessary. Let 
us, extending 2.2.1, Def. 1, define a real number-generator as an 
ips which is a Cauchy sequence of rational numbers. Here the 
condition of being a Cauchy sequence deserves special attention. 
If the numbers of the sequence are freely chosen, how can we 
know beforehand that the sequence will be a Cauchy sequence 1 
Evidently the only way is to restrict the freedom of choice by 
rules that warrant the Cauchy property before the choices are made, 
e.g., by the condition that I an -an+i> I< 1/n for every n and p. 
An ips subjected only to this condition is certainly a Cauchy 
sequence. 

In the same way the whole theory of real number-generators as 
explained in sections 2.2 and 2.4 can be extended to real number-
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generators in the wider sense as defined here: accordingly, from 
this moment on we shall adopt the latter definition. 

Generally speaking, we eliminate the subjective an<l temporal 
aspects in the notion of an ips by admitting only such reasonings 
as apply to a sequence independently of the choices that must 
still be made. 

The choices by which an ips is generated need not be entirely 
free; their freedom can be restricted in various ways, provided at 
every stage we are able to decide which components may be taken 
for the next choice and whlch may not. E.g., the condition that 
Ian - an+JJI < l/n for every n and every p meets this requirement, 
for after the choices of a,., ... , an we know which rational numbers 
can be chosen as a,.+1 and which may not. Brouwer aJlows that, 
after a certain number of choices, new restrictions for the further 
choices are added by a free decision [L. E. J. Brouwer 1924, 
p. 245]. 

3.1.2. Definition of a Spread 

The main interest of the notion of an ips lies in the mode of 
generality it conveys. A free Cauchy sequence of rational numbers 
represents the continuum of real number-generators much better 
than a sequence determined by an unspecified law; it corresponds 
to the intuitive concept of the continuum as a possibility of a 
ITTadual determination of points. Generalization of this idea leads 
t:, 

to Brouwer's definition of a spread [L. E. J. Brouwer 1918, p. 3; 
1924, p. 244; 1954, p. 8]. 

A spread j}J is defined by two laws; the first, which I shall call 
t.he spread-law AM, regulates the choices of natural numbers, while 
the effect of the second or complementary law I'.u is to assign a 
sequence of mathematical entities to any ips of natural numbers 
·which is generated according to the first law. 

It is convenient to introduce the following expressions con-
cerning finite sequences. ai, ... , .: , a,.+1 is an immediate descendant 
of a,., ... , an. Conversely, ai, ... , a11 is the immediate ascendant of 

U1, • • ·, an, an+l· 

Definition I. A spread-law is a rule .1t which divides the 
finite sequences of natural numbers into admissible and inadmissible 
sequences, according to the following prescriptions: 
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( 1) It can be decided by .-1 for every natural number k \vhether it 
is a one-member admissible sequence or not; 
(2) Every admissible sequence av a 2, ••• , an, a 11 +1 is an immediate 
descendant of an admissible sequence <ii, a2, ••• , an; 

(3) If an admissible sequence a1 , ... , an is given, A allows us to 
decide for every natural number k whether <ii, ... , an, k is an 
admissible sequence or not. 
(4) To any admissible sequence <ii, ... , an at least one natural 
number k can be found such that <ii, ... , an, k is an admissible 
sequence. 

Fig. 1 

Thus the admissible sequences can be represented as spreading 
out fanwisc as in Fig. 1; it must be remembered that an infinite 
number of branches can start from any vertex of the diagram. 

Definition :!. The complementary law I'M of a spread M 
assigns a definite mathematical entity to any finite sequence 
which is admissible according to the spread-law of M. 
F, m .,1. What sort of entities does I'M assign to the admissible 
SClJt1e11ces'/ 

INT. In the theory of real number-generators these are rational 
numbers; in general they can be any previously introduced mathe­
matical entities. 

Definition 3. An ips {a,.}, !mbjected to the condition that, for 
every n, a 1, ...• an must be an admissible sequence according to 
the spread-law .11.u, is called an adm-issible ips. Then the ips of the 
entities which the complementary law assigns to the sequences 
a 1 ; a 1, a 2 ; ... ; a 1 , ... , an; ... is an element of the spread !If. 

Thus an clement. b of a spread is an ips {bn}; we refer to bn as 
the nth component of b. 
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Definition 4. Two elements of spreads are e,q_ual if their nth 
components are equal for every n. 

Definition 5 . Two spreads are e,q_ual if to every element of 
either of them an equal element of the other can be found. 

It is easily seen that the relations of equality between elements 
of spreads and between spreads satisfy the usual conditions of 
reflexivity, symmetry and transitivity. 

3.1.3. Examples of spreads 

(i) Let r
1

, r2 , .•• designate an enumeration of the rational numbers. 
AM: Every natural number forms an admissible one-member 
sequence; if ai, ... , an is an admissible sequence, then a11 • •• , an, 
a _,_1 is an admissible sequence if and only if Ira -ra I< 2-". 

n, n n+l 

I'M: To the sequence lli, ... , an (if admissible) is assigned the 
rational number ra,.. 

The elements of M are real number-generators ra,, r a.. . . . To 
any real number-generator c a member m of M can be found so 
that c = m; in this sense M represents the continuum of real number­
generators. 

(ii) In example i, add to A..u the condition that O < r < 1 for 
an 

every n. Now M represents the real number-generators x such 
that O :;:t> x :::t> 1. 

(iii) In example ii, add to AM the condition that 

I 1/2-r,.,.I ~ I 1/2-ra,I for every n> I. 

Now M represents the real number-generators y such that O < y < 1. 

(iv) AM: Any sequence consisting only of O and 1, and no other, 
is admissible. 
I'M: To the sequence a1, ... , an is assigned the rational number 

n 
L ak2-k. 

k=l 

M represents the dually developable real number-generators x 
with O ::t,- x ::t,- 1, where x is called dually developable if for any 
number of the form a/2" = b, either x :::t> b or x {: b can be proved. 

(v) To AM in example iv add the restriction that a,.= 0 if n is odd. 
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M is a spread of real number-generators which is similar to Cantor's 
discontinuum. 

It is clear that by varying the restrictions contained in ./1M we 
can define various spreads of real number-generators. 

Note on the terminology. In his earlier publications, Brouwer 
used "Menge" for what is here called a spread. Later on he avoided 
terms like :Menge, set, class, ensemble, which suggest the con­
ception, not uncommon in the classical theory, of a set as the 
totality of its elements, and introduced the word "spread" (Dutch: 
"spreiding", French: "deploiement"). Another notion, also analo­
gous to the classical notion of set, is introduced in the next section 
under the name of "species". I follow Brouwer's terminology, 
using the word "set" in an informal way, in explanatory paragraphs, 
where I compare the intuitionistic with the classical theory. 

3.2. Species 

3. 2.1. Definition of a species 

Intuitionistically, there are two ways of defining a set: (i) by 
a common mode of generation for its elements; this case is realized 
in the spreads; (ii) by a characteristic property of its elements; 
sets of this sort are called species. 

Definition 1. A species is a property which mathematical 
entities can be supposed to possess [L. E. J. Brouwer 1918, p. 4; 
1924, p. 245; 1952, p. 142]. 

Definition 2. After a species S has been defined, any mathe­
matical entity which has been or might have been defined before S 
and which satisfies the condition S, is a member of the species S. 

3.2.2. Examples of species 

(i) The real number-generators which coincide with a given real 
number-generator form a species (more exactly: the property of 
coinciding with a given number-generator is a species; every 
definition of a species, given in the first form, ought to be so 
transposed); this species is called a real number. If xis a real number 
and if the number-generator g is one of its members, then we say 
that g represents x and also that g coincides with x. 
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(ii) The ipss which are equal to the elements of a spread j}f form 
a species, the corresponding spread-species SM. 

(iii) All real numbers form a species, which is not defined as a 
spread-species. This species is the (one-dimensional) continuum (of 
real numbers). 

(iv) The components of an ips ~ of natural numbers form a 
species, which, for brevity, we identify with f. 

3.2.3. Type of a species 

CLASS. In .,rder to avoid circular definitions, is it not necessary 
to introduce a hierarchy of types of species, analogous to that in 
Principia Mathematica? 
INT. Circular definitions are excluded by the condition that the 
members of a species S must be definable independently of the 
definition of S; this condition is obvious from the constructive 
point of view. It suggests indeed an ordination of species which 
resembles the hierarchy of types. Infinitely proceeding sequences 
and spread-species are also called species of zero type. A species 
that has as its members species of type zero is of type one. 

Definition I. A species is of type n if all its members have 
type less than n and at least one of its members has type n - I. 

Examples i and ii and iv are of type O; iii is of t_vpe l. 

3.2.4. Subspecies 

The notion of a subspecies of a girnn species gives no difficulty. 
I use the signs E, u, n with the usual meanings. SC T means 
that every member of Sis also a member of T; S = 11 (Sis eq1lal to T) 
if SC T and TC S. a¢ S means that it is impossible that a is a 
member of S. If Tis a subspecies of S, then S-T is the species of 
those elements of S which cannot belong to T. 

If T C:S, then S'=T U (S-T) is not always idPntical with S, 
for S' contains only those elements of S for which it can be decided 
whether they belong to T or not. For instance. if S is the species 
of real numbers and T that of rational numbers, then S -T is the 
species of negatively irrational numbers. A real number such as 
Euler's constant C, for which it is unknown whether it is rational 
or not, cannot be said to belong to TU (S-T). 
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Definition 1 . If the species S and T have the property that S 
can contain no element which does not belong to T, and that T 
can contain no element which does not belong to S, then Sand T 
are congruent species [L. E. J. Brouwer 1924, p. 246]. 

Theorem. If T is a subspecies of S, then S'=T u (S-T) is 
congruent with S. 

Proof. As S' CS, wc need only prO\-e that S contains no element 
which docs not belong to S'. Suppose that a ES, but a ff= S'; then 
a ff= T, so a E S-T, so a ES', which contradicts the hypothesis 
a ff= S'. Hence a ¢ S' is impossible for every element of S. 

Definition 2. If TC Sand Tu (S-T) is equal to S, then T 
is a detachable subspecies of S, and S is split up into T and 8-T 
[L. E. J. Brouwer 1924, p. 247]. 
CLASS. So this amounts to saying that we can decide for every 
element of S whether it belongs to T or not. Clearly, if T is a 
detachable subspecies of S, S-T is also a detachable subspecies 
of S. 
INT. Let me give some examples. 

The species of positive even numbers is a detachable subspecies 
of the species N uf natural numbers. 

The species of exponents n for which the equation xn + yn = zn 
has non-trivial integral solutions, is not known to be a detachable 
sn bspecies of N. 

,ve shall see later on (3.4.3, Th. 2) that the continuum has no 
other detachable subspecies than itself and the null species. 

3.2.5. The relation of equivalence between species 

As usual, two species, between which a one-to-one correspondence 
has been established, are called equivalent species. As we remarked 
in 2.1, the construction of a natural number n consists in building 
up successively the numbers from 1 to n; these numbers form the 
species 1 ->- n. A finite species is a species that is equivalent to 
1 ->- n for some natural number n. 

Definition 1. A species that is equivalent to the species N 
of all natural numbers, is den1tmerably infinite. 

Definition 2. A species that contains a denumerably infinite 
subspecies is called infinite. 
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Thus a species that cannot be finite, is not necessarily infinite. 

Definition 3. A species that is equivalent to a detachable sub­
species of N is called numerable [L. E. J. Brouwer 1918, p. 7; 
1924, p. 248], [A. Heyting 1929, p. 51]. 
Example. The species of twin primes (p, p+2) is numerable, 
though nobody knows whether it is finite or infinite. 

I shall not go into the theory of cardinal numbers, which differs 
much from the classical theory [L. E. J. Brouwer 1924], in this 
among other respects, that two species need not at all be comparable 
as to their cardinal numbers. It is easy to give an example of a 
species for which it is unknown whether it is the null species, a 
finite species or an infinite species. 
CL.Ass. The species of numbers n such that the nth to (n+ 9)th 
digits in :n; form a sequence 0123456789, provides such an example. 
INT. That the continuum is not denumerably infinite, is an 
immediate consequence of 3.4.3, Th. 2. 

3.3. Arithmetic of real numbers 

3.3.1. Relations and operations for real numbers 

In 2.2 we treated the arithmetic of number-generators. You 
will readily supply the definitions of equality and inequality between 
real numbers, and the proofs of the main properties of these 
relations. Also, after the definitions of the arithmetical operations 
have been given in an obvious way, the theorems in the arithmetic 
of real numbers are immediate consequences of those about real 
number-generators. I leave it to you to work this out. 

3.3.2. Intervals 

Definition 1. If a and b are real numbers, the closed interval 
[a, b] is the species of real numbers x such that it is impossible that 
x>a and x>b, and also impossible that x<a and x<b. 

Note. The definition must be given in this complicated form 
because it may happen that we do not know which of a, b is the 
grE>a.ter. 

Theorem 1. If max (a, b)=c, min (a, b)=d, then [a, b]= [d, c]. 

Proof. We saw in 2.2.7, Th. 3 that (x>a and x>b) is equivalent 
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to x > c, and this is equivalent to (x > c and x > d); thus the im­
possibility of (x>a and x>b) is equivalent to the impossibility 
of (x > c and x > d). By an analogous argument with d in place 
of c, we see that x E [a, b] is equivalent to x E [d, c ]. 

Theorem 2. If a ::t, b, then [a, b] is the species of the real 
numbers x which satisfy (x {: a and x ::t, b). 

Proof. Though this proof is very simple, it may seem difficult 
to those who are not accustomed to intuitionistic reasoning; for 
this reason I shall give it in some detail. First suppose x {: a and 
x :t, b. From x -4:: a it follows that a fortiori (x < a and x < b) is 
impossible; similarly. from x :I> bit follows that (x>a and x>b) 
is impossible. Thus :i: E [a, b]. 

Now suppose x E fa, b], and let us admit for a moment that 
x<a; then, since a ::t, b, we have x<b, so that (x<a and x<b), 
which is impossible by hypothesis. We have now proved that 
::r: {: a, and we can prove analogously that x :t, b. 

Corollary. If max (a, b)=c, min (a, b)=d, then [a, b] is the 
species of the real numbers x which satisfy x ::t, c and x {: d. 

3.3.3. Canonical number-generators 

It is often convenient to represent a real number by a number­
generator of a simple form. Let the real number x be given by the 
number-generator {r.,}. We can find k so that jx-rkl < 2-n- 3, and 
after that we can determine an integer x .. so that Irk - x .. 2-n I< 2-n-1, 
so that 

(1) I ')-n1 <5/ 2-11 x-xn~ 8 • 

If we do this for every n, we obtain a number-generator {x.,2-"} 
which coincides with x and which has the property that 

I x .. 2-n - x,.+1 ~-n-11 < 5/s 2-" + 5/16 2-" = l6/1s 2-" ; 

this implies that 

(2) Ix ')-n-x 2-n-11 ,,,- 2-11-1 
• .,~ n+l '::::: · 

Definition. A number-generator of the form {x.,2-"}, where 
every x., is an integer, and which satisfies (2), will be called a 
canonical number-generator. 

We have proved: 
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Theorem 1. Every real number x coincides with a canonical 
number-generator {xn2-n} which satisfies ( 1). 

It is clear from the proof, that in ( 1) the factor 5/8 can be replaced 
by 1/2 + En, where En> 0. 

3.4. Finitary spreads (Fans) 
3.4.1. Definition 

A spread M is finitary (is a /an) if the spreadJaw A.u is such that 
only a finite number of one-member sequences arc admissible and 
that for every admissible sequence a 1 , ... , a,, there is only a finite 
number of values of k such that a 1, ..• , a,,. k is an admissible 
sequence. 
LETTER. I wonder whether "finitary" is a new word in English. 
INT. The word has been used by Kleene for a similar notion. 
As to "fan", I think it wise to introduce sparingly such new words 
in mathematics, but the notion of a finitary spread will prove so 
important that it is convenient to have a short word for it. 

Theorem 1. Every closed interval of the continuum coincides with 
a finitary spread [L. E. J. Brouwer 1919A, p. 14; 1924B, p. 192]. 

Proof. Let two real numbers a, b be given and set max (a, b) = c, 
min (a, b)=d; then [a, b]= [d, c]. As in 3.3.3 we construct the 
canonical number-generators {dn2-·n}, {cn2-n}, which coincide with 
d and c respectively. We may suppose that dn~c,,, for if dn>cn we 
easily see that also ld-cn2-"I < 6/ 8 2-n. 

Consider the spread S of the canonical ipss {xn2-"} where ;1:,, 

satisfies 

(1) 

After x,. has been chosen, at least one and at most three values 
are admissible for x,.+1, so S is finitary. I shall show that S coincides 
with [ a, b]. ( 1) shows that every element of S coincides with an 
element of [d, c]. Conversely, let x be any element of [d, c], and 
let {xn2-"} be a canonical ips coinciding with x. As before, we may 
suppose that dn ~ xn ;£ c,,, so that x coincides with an element of 8. 

3.4.2. The fan theorem 

Theorem. If an integer-valued function gi(t:5) is defined for 
every element c5 of a finitary spread S, then a natural number can 
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be computed from the definition of cp, such that cp( c5) is determined 
by the first N components of c5; that is, if c51 and c\ are such elements 
of S that the first N components of c51 are equal to the first K 
components of 62, then <p(c51) =<p(c52 ) [L. E. J. Brouwer 1923, p. 4; 
1924B,p.192;1924D, p .. 646: 1926A. p. 66; 195:!, p.143; 1954. p. 15]. 

Proof. Let .1 be the spread-law of S and F the species of 
admissible finite sequences by .1. to which the null-sequence is 
added. Let /( be the linitary spread of admissible ipss by .1!. 
It is convenient to introduce the following expressions (see also 
3.1.2). 

a 1 . ... , a,,, a,,+i· ... , a,.+k (I:;,; 1) is a descendant of a1 . ...• a,,; the 
latter sequence is an ascendant of the former. 
The ips a= a1 . ... , an . ... is a continuation of the finite sequence 
a 1, ... , a.,., and this sequence is a segment of a. If a is an element 
of K, it is a K-continuation of a 1 ....• a,.. A sequence in Fis also 
called an F-sequence. 
If d is the element of J( to which ,~ is connected by I's, we set 
<p( c5) = f(d). f is defined for eYcry element of I{. As f(d) must be 
calculable, its Yalue must be determined b~, a finite number of the 
components of d; that is to say, by a sequence a(d) in F. Let C be 
the species of the a(d) which correspond in this way to the elements 
of J{; then every element of I{ has a segment a(d) in C. Also, if b is 
a sequence in F, every K-continuation of b has a segment in O; 
we shall express this property by saying that b is K-barred by C. 

Obviously it is only by means of a proof ffi, based on the data 
of the theorem, that we can become awarc of the fact that every 
F-sequence is K-barred by C. 

Now these data are of two sorts, to wit.: 

(i) the species C, 

(ii) the relations betwecn a sequence 111 F and its immediate 
descendants in F. 

Thus ffi, if expounded without abbreviations, consists of a finite 
number of inferences, each of which is either a ;-inference or a 
.f-inference. where the latter are defined as follows: 

.f-inforence: for a certain F-sequence a, every immediate descendant 
of a. in F is K-barred by C, so a is K-barred by C. 
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(-inference: for a certain F-sequence a, the immediate ascendant 
of a is K-barred by C, so a is K-barred by C. 

The last inference of ffi, affirming that the null-sequence is 
K-barred by C, must be a /"-inference, so the barred condition 
(that is, the property of being K-barred by C) of every I-sequence 
must be proved before that of the null-sequence. Thus, if the barred 
condition of a I-sequence is proved by a (-inference, it has been 
proved previously in ffi; for the first time it has been proved by a 
/"-inference. It follows that every (-inference which proves the 
barred condition of a I-sequence is superfluous. Moreover, the 
proof of the barred condition of a I-sequence must be preceded by 
the proof of the barred conditions of its immediate descendants. 
Repeating the same argument for 2-sequences, and so on, we prove 
by induction that all (-inferences can be eliminated from ffi; by 
doing this we obtain a proof ffi'. 

Furthermore from ffi' we may omit every /"-inference, which 
proves the barred condition of a sequence that belongs to C, or 
has an ascendant in C, or that has been proved previously in ffi' 
to be barred by C. After all these simplifications we obtain a 
proof m. 
Let Co be the subspecies of C', whose elements occur in inferences 
in ffi. The first inference of ffi must have the form: '' Every immediate 
F-descendant of the F-sequence a belongs to C, so a is K-barred 
by C." Obviously in this case every immediate F-descendant of a 
belongs to Co, so a is K-barred by Co. Any other inference in ffi 
is of the form: "Every immediate P-dcscendant of the P-sequence 
a belongs to C or has previously been proved to be K-barrc<l by(), 
so a is K-barred by c·•. From this it is easily seen by induction, 
that if it is proved in the course of ffi that a sequence a is K-barred 
by C, then a is also K-barre<l by Co. In particular the null-sequence 
is K-barred by Co. 

The num her of steps in ffi is finite; every step is a /"-inference 
which uses but a finite number of previous /"-inferences. It follows 
that the total number of /"-inferences in ffi is finite. The number of 
elements of Co which occur in any inference of ITT is finite; it follows 
that Co is finite. Thus there is a finite maximum N for the length 
of a sequence in C0 • This proves the theorem. 
CLASS. This is a remarkably simple proof for a theorem with 
such far-n•,iching consequences. 
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INT. It is Brouwer's original proof [L. E. J. Brouwer 1926A]; 
only Brouwer deduces the fan theorem as a special case of a general 
theorem on spreads. The above proof is obtained by selecting from 
his argument what is necessary for the proof of the fan theorem. 
Fon,;,.1. \Vhat strikes me most in this proof is the sentence: 
"Evidently we must be awarn of the fact that every F-sequence 
is K-barred by C. by mean:; of a proof m, based on the data of 
the theorem". lt :;eems here that a mathematical result is deduced 
by methods "·hich, in the tc>rminology of formalism, would be 
called metamathematical. Now the use of nwtamathematics for 
the deduction of mathematical results is not new; the simplest 
example is the principle of duality in projectfre geometry, and 
important applications of this mclhod to algebra have recently 
been made by A. Tarski, Abraham Robinson and Leon Henkin 
(see e.g. [A. Tarski Hl50]. [L. Henkin 1!)53], [.:\. Robinson 1951]). 
But it is noteworthy that similar methods are used by the 
intuitionists, who arc opposed to strict formalization and therefore 
cannot construct metamathernatics in the proper sense. 
INT. This is an important question which concerns the nature of 
intuitionistic proofs in general. Yon are right that the distinction 
between mathematics and metamathematics cannot be maintained 
if no strict formalization of mathematics is performed. In order 
to clarify in which respect the proof of the fan theorem differs from 
other proofs, the following remark may be useful. In every mathe­
matical theorem there occurs a reference to previous constructions. 
To take an example at random, consider 2.2.5, Th. 2: For real 
numbers n, band c. a #b implies a+c #b+c. Here the hypo­
thesis a # b does not refer to a supposed fact, but to a supposed 
construction of natural numbers n and k, satisfying 2.2.3, Def. 1, 
and the theorem affirms that this construction can be so completed 
as to produce natural numbers satisfying 2.2.3, Def. 1 with a+c 
and b + c instead of a and b. But in almost every case it is not the 
supposed construction itself that plays a part in the proof, but 
only its result. The new feature in the proof of the fan theorem is, 
that the possible form of the supposed construction is explicitly 
involved in it. If we are well aware that the hypothesis of a theorem 
consists always in the assumption of a previous execution of some 
construction, we can offer no objection against the use of con-
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siderations about the way in which such a construction can be 
performed as a means of proof. 

Kreisel [1958 A], Spector [1962] and Kleene [1965] have under­
taken a formalization of intuitionistic analysis including the theory 
of ipss, with special attention to the methods which Brouwer 
applied in his proof of the fan theorem. 

A pplicatioris of the fan theorem 

3.4.3. Continuity of functions 

The most conspicuous application of the fan theorem is 

Theorem 1. A real-valued function f(x) which is defined every­
where on a closed interval of the continuum is uniformly continuous 
on that interval [L. E. J. Brouwer 1923, p. 5; 1924B, D; U)26A, 
p. 67; 1954, p. 17]. 

Proof. By 3.4.1, Th. 1, the interval [a, b] coincides with a fan S. 
To every element$ of S there is associated a real number y=f($); 
y coincides with a canonical number-generator 'Y/ = {"1n2-n}. For a 
fixed value of n we associate "In to $; in this way we obtain an 
integer-valued function on S; thus, by the fan-theorem, a number 
N(n) ca11 be found so that, for every $ in S, "In is determined by 
the first N components of $. 

Now let x1 and x 2 be real numbers in [a, b] such that lx1 -x2
1 < 2-N-2; 

then x1 and x2 coincide with canonical number-generators $
1 

and $
2 

in which the first N components are the same. It follows that 'Y/,, is 
the same for $1 and $2 , consequently 

We have now proved: If lx1 -x21 < 2-N, then lf(x1)- f(x2)1<6/
4

2-n. 
That is to say, that f(x) is uniformly continuous in [a, b]. 

Theorem 2. A pointspecies which is a detachable subspecies 
of a closed interval is either the null species or the whole interval 
[L. E. J. Brouwer 1026A, p. 66]. 

Proof. Let the pointspecies Q be a detachable subspecies of the 
interval E. The function f(x), which is 1 if x belongs to Q and O 
if x belongs to E-Q, is defined in every point of E and thus must 
be continuous on E; this means that f(x) is constant. 
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Theorem 3. A function that is defined everywhere 011 a closed 
interval E, has on E a least upper bound and a greatest lower 
bound. 

Proof. From the proof of theorem 1 it follows that there is 
only a finite number of values for 'Y/n: let Cn be the smallest of them. 
Set t,.2-"=zn. It is easy to see that lzn-Zn+11~2-n-l, so lim Zn 

exists and is the g.1.b. of /(x). t1-+co 

Theorem 4. If a function is defined and positive everywhere 
on a closed interval E, its g.1.b. is positive. 

Proof. As in the proof of Th. 1, to every element ~ of S there is 
associated a canonical number-generator 11 = 'Y/n2-n; 1J > 0, so for 
some value n1 of n, 'Y/n > 0. n1 is a function of~; by the fan theorem, 
a number Jl1 can be found so that n1 is determined by the first Jlf 

components oft so there is only a finite number of values for ni; 
let n0 be the maximum of these values. Then zn ;;;;2- 110 • Moreover, 
for every x, /(x)>z., - 5/ 8 2-n,, so the g.l.b. of t(x) is positive . . 
Remark. We may not assert that /(x) attains its g.l.b. for a. 
definite value of x. This is illustrated by the following example. 
/(x) = - 3x4 + 4cx3 + 6x2 - l 2cx, 
where c is a real number for which it is unknown whether c> 0, 
c=0 or c<O. 
/'(x) = - 12(x+ I) (x-1) (x-c). 
/(-1)=3+8c, /(1)=3-8c, /(c)=c4 -6c2

• 

The least upper bound of /(x) is 3 + 8 lei, but it is unknown whether 
/(x) takes this value for x = - I or for x = I. 

3.4.4. The Bolzano-W eierstrass theorem 

Brouwer investigated this theorem (L. E. J. Brouwer 1952B]. 
We consider the following special case 

(A) To every bounded infinite species of real numbers a point 
of accumulation can be found. 

This is classically equivalent to: 
(B) Every bounded species of real numbers without a point of 
accumulation is finite. 

Let the sequence {an} be defined as follmvs. If among the first n 
digits in the decimal expansion of :re no sequence 0123456789 
occurs, then a

11 
= 2-n; if such a sequence does occur in the first n 
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digits of n, then an= 1 - 2-". The species of the real numbers an is 
infinite, but nobody knows whether a point of accumulation, if it 
exists, would be O or 1. So at present we are not able to prove (A) 
intuitionistically. 

As to (B), Brouwer showed that there is no hope of proving 
even the weaker proposition (C), given below. I shall repeat his 
argument in 8.1.3. 

Definition. A species S is bounded in number if a natural number 
n is known such that S can contain no subspecies of n elements. 

Remark. Every finite species is bounded in number but the 
converse need not be true. 
(C) Every bounded species of real numbers without a point of 
accumulation is bounded in number. 

However, somewhat weakened versions of (A) and of (C) are true. 

Theorem 1. Let Q be a bounded infinite species of real numbers 
and let m, n be natural numbers. Then there exists an interval of 
length 2-n which contains at least m elements of Q. 
Proof. Let h, k be integers such that Q is contained in the 
interval (h, k). Set r= (/c-h+ 1)211

+1. Let R be a subspecies of Q 
with rm elements. For every element x of R we determine an 
integer xn+l so that (xn+1-1)2-n-i<x<(xn+1+I)2-n- 1• Since the 
number of these intervals which overlap (h, le) is r, at least one 
of them contains m or more elements of R. 
Theorem 2. If Q is a bounded species of real numbers with 
the property that for every real number x a natural number r(x) 
can be found such that the interval (x-2-,, x+ 2-•) cannot contain 
two different members of Q, then Q is bounded in number. 

Proof. Let Q be contained in the interval (h, k). The interval 
(x-2-•,x+2-•), where xE[h,lc], contains an interval i(a,r)= 
=(a-2-,- 1

, (a+2)2-•- 1
), where a is an integer, and where i(a, r) 

contains x. 
Let J be the canonical point fan which coincides with [h, k]. 

Since to every element t of J there are associated integers r(t) and 
a(fl, the fan theorem allows us to find m so that r(t) and a(t) 
depend only upon the first m choices of r Consequently, there is 
only a finite number, say s, of different intervals i(a, r), which 
together cover [h, k]. Since no i(a, r) contains two different elements 
of Q, a subspecies of Q with s -I- I elements cannot exist. 



IV 

ALGEBRA 

4.1. Algebraic fields 

I shall not give here a connected treatment of intuitionistic 
algebra [A. Heyting 1941]; the following fragments are mainly 
intended as applications of the theory of real numbers, but it is 
easy to formulate them for the case of an abstract algebraic field. 

4 .1.1. Apartness relations 

In a field, division must be defined, and, as we have seen, for 
real numbers division is only possible if the divisor lies apart 
from O; it follows that an apartness relation will be essential in the 
definition of a field. 

Definition. A symmetric relation# between the elements of a 
species S will be called an a,partness relation if it has the following 
properties (i)-(iii) (Compare 2.2.3). a, b, . . . are elements of S 

(i) If a # b, a= b is impossible. 

(ii) If a # b is impossible, a= b. 

(iii) If a # b, then for any element c of S, either a # c or b # c. 

4.1. 2. Definition of a field 

A mathematical species F is a field if it has the following pro­
perties R, Al, A2, Ml, M2, M3. 

R. In F an apartness relation # is defined. 

Al. In F a commutative and associative addition is defined; F 
contains a zero element and the negative of any of its elements. 

A2. If a# b, then for any element c of F, a+c # b-1-c. 

Ml. In Fa commutative and associative multiplication is defined, 
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which is distributive with respect to addition; F contains a unit 
element 1 and 1 # 0. 

M2. If a # 0, the reciprocal a-1 exists and a-1 # 0. 

M3. If a -;;1- b and c # 0, then ac # be. 

4.1.3. Properties of the apartness relation in a field 

Theorem 1. ab # 0 entails a # 0 and b # 0. 

Proof. If ab # 0, either a # 0 or ab # a. In case a # 0, also 
a-1 # O and (ab)a-1 # 0, that is b # 0. Now suppose ab # a, that 
is a(b-1) # 0. Now 1 # 0 gives that either b # 0 or b-1 # 0. 
If b # O, also b-1 # O and (ab)b- 1 # 0, a # 0. In the same way 
we treat the case b - 1 # 0. 

Theorem 2. a--,-b # 0 implies that either a# 0 orb fp 0. 

Proof. As for 2.2.5, Th. 5. 

Theorem 3. If ab # cd, then either a# c or b # d. 

Proof. ab-cd # O; a(b-d)+d(a-c) # O; by Th. 2 and Th. 1 
either b-d # 0 or a-c # 0. 

Theorem 4. If /(x1, ... , x11 ) is a polynomium with coefficients 
in the field F, and if Pi, ... , p .. , q1, •.. , q .. are elements of F such 
that /(Pi, ... , p .. ) # f(q1 , .•• , q .. ), then for at least one value of 
the subscript i, A # q;. 

Proof. By repeated application of Th. 2 we find a term 
c~• ... ~ in /(x1 , ... , x .. ) such that cp~• ... p':;' # cq~• ... q':;'. 
Then we establish the theorem by repeated application of Th. 3. 
FoRl\1. This theory of algebraic fields is essentially an axiomatic 
theory. 
INT. It illustrates how the axiomatic method may be applied in 
intuitionistic mathematics. But we must keep in mind that it 
plays no part in the foundations of mathematics; it is but a 
convenient way of presenting a theory in which many theorems 
have the same complicated system of suppositions. 

4.2. Linear equations 

The theory of linear equations illustrntes clearly m what way 
classical theories may be made more precise. 



LINEAR EQUATIONS 51 

4.2.1. Cramer's rule 

Let d be the determinant of the coefficients in the left members 
of the equations 

(1) 
n 

L ll;,.X1; = b; 
k-1 

(i = 1, ... , n) 

If d # 0, ( 1) can be solved by Cramer's rule: 

(k = 1, ... , n). 

This solution is unique in the following sharp sense: 

Theorem 1. If Pi, ... , Pn are numbers such that for some 
value of r, p, # d,/d, then a subscript i can be found such that 

fl 

L a;kPk#b, · 
k=l 

Proof. Let m;,, denote the minor of aik in d. We have 
71 n 

L m;, L a;1;P1; = dp, • 
i-1 k-1 

n 

L 711;, b;=d,. 
i=l 

n 71 fl 

L m;, L a;kPk # L m.,b, • 
i-1 k-1 i=l 

Then by 4.1.3, Th. :!, for at least one value of i, 
71 

m;, L aikpk # m;,b; , 
k=I 

whieli proves the thC'orem. 

4.2.2. rn Equations in n variables, with known rank 

Lei us now consider a system of m equations in n variables: 
71 

L; -cc L a-;1;Xk = b; 
k-1 

(i = 1, .. . , m). 

In order to solve the.~e equations by one of the usual methods, it 
is 11ecessary to know the rank r of the matrix A= (a,1:); moreover, 
division must be possible by some r-rowed minor. Therefore we 
define the notion of nmk more precisely: 

De fin it i o 11 1 . The matrix A is of rank r, if at least one r-rowed 
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minor in A is apart from 0, while all r+ 1-rowed minors are 0. 
If d is a11 r-rowed minor and d # 0, d is called a principal minor 
of A. 

Definition 2. A characteristic determinant c. of (2) is obtained 
from a principal minor d of A by adding a row containing coefficients 
of the sth equation (2) and the column of the right members of (2). 

A necessary and sufficient condition that (2) has a solution is 
that every characteristic determinant is 0. The necessity of this 
condition can be stated in a more precise form : 

Theorem 1. If some characteristic determinant c. # 0, then 
for arbitrary values x1,; = Pk (k = 1, ... , n). there is a Yalue of i such 
that L;(Pi, ... , p,.) # b;. 

Proof. Suppose the principal minor is 

all .... a,_, 

and c,= d 

a,1 ••.• a_., 

Take arbitrary values x1 = Pi, ... , x,. = p,.. 

bl 
I 

I # 0. 
I 
I 
I b, 

b, 

Substituting x,+1 = P,+v ... , x,. = p,. in the first r equations and 
solving for xv ... , x,, we obtain x1 = q1 , ... , x, = q,. 

L.(q1, ... ' q,, Pr+I> ... ' Pn)-b. = -c,/d # 0. 

Thus, either 
L,(Pi, ... , P,, P,+v · · ·, p,.) # b,, 

or, by 4.1.3, Th. 4, for at least one value of k (l ;;;,_ks_r), P1,; # q,.. 
In the latter case, by Th. 1, for at least one value of i (l~i~r), 

L;(Pi, · · ·, P,, P,+1, · · ·, p,.) # bi. 

If c, = 0 (s = r+ 1, ... , m), the system (:l) has a solution of the form 

(3) xk=fk(x,+1,···,x,.) (k=l, ... ,r). 

This solution is complete in the prechie sense; that is, if (Pi, ... , p,.) 
is a vector such that for every vector (q1 , ... , q

11
) contained in (3), 

Pk # qk for at least one value of k, then LlPi, ... , p,.) # b1 for at 
least one value of i. The proof of this theorem is analogous to that 
of 4.2.1., Th. 1. 
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4.2.3. Ranl: unknown 

ff the equations (2) are homogeneous and of rank r. it follows 
that they have a (n - r)-parameter solution which is complete in 
the precise sense. However, if the rank is not known, it may occnr 
that we can find no solution apart from the null-solution. even 
if all n-rowed minors are 0. Take, for instance, the equation 

ax+by=0, 

where a. b are real numbers such that neither a= 0 nor a # 0 nor 
b = 0 nor b fl- 0 is known. while the proportion of a and b is also 
unknown. (Example: a= {an}, where a,.= 2-n if in the first n digits 
of n no sequence 012345678!) occurs, a,.=2-k if such a sequence 
occurs and its n is the kth digit in ;c; b is defined analogously with e 

instead of n}. If a# 0 orb# 0, (x=b, y = -a) is a solution apart 
from (0, 0); if a= b = 0, arbitrary numbers # 0 can be chosen for x 
and y. But the first solution does not apply in the second case, 
nor does the second solution in the first case, and as long as we 
do not know which case is realized, we are mrnble to give a solution. 

4.2.4. Homoycneou.~ linear equations 

As a special case of 4. 2 .1, Th. 1 ,ve have for the equations 

(4) (i= 1, .. . ,m), 

Theorem 1. If the rank of the matrix A= (a,k) is n, then for 
any values u.1 , ... , lln such that uk # 0 for at least one value of k, 
there is at least one value of i such that 

Also the converse is true: 

n 

,2 aik'Uk # 0. 
k-1 

Theorem 2. If for an:v Yalues u1 , .... un such that U1: # 0 for 
at least one value of /.:, at least one of the left members in ( 4) 
is # 0, then the rank of the matrix A is n. 

Proof by induction with respect ton. For one variable the result 
is trivial. Let it be proved for equations in n - 1 variables. Putting 
xn = 0 in (4) we obtain equations in x 1, •.. , x,._1 satisfying the 
condition of the theorem; thus by hypothesis the matrix of the 
first n - I columns in A has rank n - I. Suppose the determinant 
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formed by its first n - 1 rows is d # 0. Solve the first n - 1 equations 
taking xn = 1 and substitute the result in the other equations (4). 
The left member of at least one, say the tth equation will be # O. 
The left member is equal to an n-rowed determinant of A, divided 
by d. 

4.3. Linear dependence 

4.3. l. Definitions 

As usual, the n-dimensional vector space Fn over J,' is the species 
of sequences (a1 •... , an) of elements of F. \Ve denote elements of 
F" by bold type: a= (a1, ... , an). Addition of vectors and multi­
plication of a vector by an element of F are defined in the usual 
way. As to the notion of linear dependence, it can he defined in 

two ways; in 

(1) 

we can require the coefficients ?. to be # 0 or to be -i= 0; this gives 
respectively the notions of strong a11d of weak dependence. As 
the former is by far the most important, dependence without 
adjective will mean strong dependence. A system of vectors that 
cannot be dependent will be called independent. Just as in many 
other cases, besides this negative notion we can define a positive 
one, classically equivalent to it. I think you can now give this 
definition yourselves. 
FoRM. If at least one A; is # 0, then 

?.1a1 + ... + ?.nan # 0. 

INT. In this case we say that the vectors are (mutually) free. 

Theorem l. A necessary and sufficient condition that the 
vectors 

(i=J, ... ,p) 

are free, is that their matrix has rank 7i. This is a11 immediate 
consequence of 4.2.4, Th. 1 and 2. 

4.3.2. A theorem and a counter-example 

The following theorem requires for its validity an extra condition. 

Theorem 1. If the vectors a1, •.. , a, are free and the vectors 
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b1, ... , b,+1 are free, then at least one vector b, is free from 
ai, ... , a, (that is, a1, ... , a,, b, are free). 

Proof. The matrix of the a1 has rank r; we may suppose that 
the determinant d formed out of its first r columns is # 0. Determine 
numbers A,k by the equations 

and put 

, 
b,; = L A.,,fl,1,,; 

k-1 
, 

c,= L l,kak 
k-1 

(i=l, ... ,r; 
s=l, ... ,r+l), 

(s=l, ... ,r+l) 

As the b; are free, there is a determinant, formed out of their 
components with subscripts j1 , ... , i,+1, which is # 0. The cor­
responding determinant formed out of the c;k is 0, so we find at 
least one pair of subscripts t, u with b1u # Ciu· Now form a r+ 1-
rowed determinant by extending d with the column a~u• ... , a"', C1u 

and the row c11 , .•• , c1,, Ccu· This determinant is 0, so, as d # 0, 
the corresponding determinant with b instead of c is # 0. This 
proves the theorem. 
Cr.Ass. Classically, the condition that a1 , ... , a, must be free, 
is superfluous. 
INT. That is why I drew your attention to this theorem; I shall 
show by a counter-example that for arbitrary vectors a1, ... , a, 
we have no hope of proving it. Take for F the field of reals, 
n= 3, r= 2, a1 = (0, 0, 1), ~= (a, b, 1), where a and b are real 
numbers such that neither for a nor for b it is known whether it 
is 0, and let nothing be known about the value of a/b (see 4.2.3). 
Then for none of the vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) can we 
assert that it is free from a1, a2 . 

4.3.3. Systems of unknown rank 

If the rank of a system of equations is unknown, in general no 
solution can be found. Yet in some ca~es we can derive a negative 
result. As an example we prove the 

Theorem 1. If every n-rowed determinant from the matrix A 
of the equations 

n 
! au.x.k = 0 (i= 1, ... , m) 
k-1 

is 0, then it is impossible that the equations have no solution # 0. 
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Proof. Suppose that there could be no solution # O; we have 
to deduce a contradiction from this supposition. 

The rank of A is not n. If it were n-1, there would be a solution 
# O; it follows that no (n-1)-rowed determinant in A can be # 0, 
thus they are all 0. If the rank were n- 2, we could deduce a 
contradiction in the same way, and· so on. After n steps we find 
that all the coefficients are 0, but then there certainly is a solution 
# 0. This is the desired contradiction. 



V 

PLANE POINTSPECIES 

5.1. General notions 

We shall develop the theory of plane point-species [L. E. J. 
Brouwer l !H9A]. An analogous theory can be developed for any 
number n of dimensions. For n= 1 it is identical with the theory 
of species of real numbers. Though it may seem somewhat tedious 
to give the definitions of all the fundamental concepts, including 
those which are identical with the usual definitions, it is never­
theless necessary to do so, because for almost every notion several 
definitions occur in the literature, which are equivalent classically, 
but not intuitionistically. 

5.1. l. Point-generators and points 

Definition 1. A point-generator ~ of the plane (abbreviated: 
p-g) is an ordered pair (~1, ~ 2) of real number-generators. 

Definition 2. A point x of the plane is an ordered pair (x1, x2) 

of real numbers. 
I leave it to the reader to supply the definitions of coincidence 

between two point-generators between two points and between 
a point-generator and a point. 

Theorem 1. Every point-generator determines one and only 
one point with which it coincides. 

Definition 3. A canonical point-generator is an ordered pair 
of canonical number-generators. 

By the proof of 3.3.3, Th. 1 every point coincides with a canonical 
p-g. 

5.1.2. Species and spreads 

Definition I. A p----g-spedes (pointspecies) is a species each 
of whose members is a p-g (point). 
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Definition 2. A p-g-spread is a spread each of whose elements 
is a p-g. A p-g-spread is canonical if every one of its elements is 
a canonical p-g. 

Definition 3. Two p-g-species coincide if every member of 
either of them coincides with some member of the other. 

Analogous definitions for the relation of coincidence between 
A and B, where each of A and B is a p-g-species, or a point­
species or a p-g-spread, are easily given. 

Theorem 1. Every p-g-species or p-g-spread determines one 
and only one pointspecies with which it coincides. 

Definition 4. Two p-g-species are geometrically congruent if 
neither of them can contain a member that cannot coincide with a 
member of the other. 

Here also analogous definitions must be given, as in the case of 

def. 3. 

5.1.3. Distance and topology 

Definition 1. The distance jx-yj of two points x= (xi, x2) and 

Y = (Yi, Y2) is max (!xi -Yil, lx2 -Y2I ). 

Remark. The theory could be developed as well with 

V{(xi -x2)2 + (Yi -Y2)2} 

as the distance of x and y. The above definition is chosen for the 
sake of simplicity of formulas. 

The notions of an e-neighbourhood and of a neighbourhood of 
a point p can be introduced in the usual way by means of this 
notion of distance. 

Definition 2. The points x and y are apart from each other 
(abbreviation x # y) if either Xi # Yi or x2 # y2• 

Theorem 1. (i) If p # q, then q # p. 

(ii) If p # q is impossible, then p coincides with q. 

(iii) If p coincides with q, then p #q is impossible. 

(iv) If p # q and q coincides with r then p # r. 

(v) If p # q, then for every poil).t r either p # r 
or q # r. 
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The proofs are easy, using the properties of the relation # between 
real numbers (2.2.3). 

Analogous definitions for the relation of apartness between two 
p-gs and that between a point and a p-g are easily formulated. 

Definition 3. 
Q if for every n 
lp-qnl < 2-n. 

The point p is a closurepoint of the pointspecies 
there can be found a point qn of Q such that 

Definition 4. The point p is a limit-point of the pointspecies 
Q if for every n we can find two points qn and r,. of Q such that 
qn # rn, IP-qnl < 2-n and IP-rnl < 2-n. 

CLASS. Is it true, that a closurepoint of Q is either a point of Q 
or a limit-point of Q? 
INT. The following example shows that this disjunction need 
not be valid. Let the sequence {an} be defined as follows. If among 
the first n digits in n no sequence 0123456789 occurs, a,n = 2-n; if 
among these n digits a sequence does occur, then an= 0. Let S be the 
species of the components of the sequence {a,.}. 0 is a closure-poiut 
of S, but it is unknown whether O is u point of S or a limitpoint of S. 

Definition 5. The closure Q of a pointspecies Q is the species 
of the closurepoints of Q. 

Definition 6. The derive,d species of a pointspecies Q is the 
species of the limit-points of Q. 

Definition 7. A pointspecies is close,d if it coincides with its 
closure. 

Theorem 2. The closure and the derived species of a point­
species are closed. 
The proofs are simple. 

Theorem 3. Every limit-point of the closure of Q belongs to 
the derived species of Q. 

Proof. Let p be a limit-point of Q, then for every n we can find 
points qn and rn in Q such that qn # rn, lp-q,.I <2-n-i and 
lp-r,.I < 2-n- 1 . Further we can find m so that lqn-rnl > 2-m, m>n, 
and points q;., r,; in Q such that lq;.-q,.I < 2-m- 2 and Ir;. -rnl < 2-m- 2 • 

Then lq;.-r;.1>2-m- 1 , so q;.#r;., lp-q;.1<2-" and lp-r;.1<2-n. 
This proves that p is a limit-point of Q. 
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5.1.4. Open species, regions and regioncomplemenls 

An open pointspecies can be defined as a pointspecies with only 
interior points. Then the complement of an open pointspecies is a 
closed pointspecies, but the complement of a closed pointspecies 
is not necessarily open; in one dimension take for the closed point­
species the point 0, then the complement is the species of points p 
such that p =;!:- 0, but the points for which p # 0 form an open 
species. However, this notion of an open species includes patho­
logical cases such as the following. If Euler's constant is rational, 
S denotes the square Ip - xi < 1 ; if not, S denotes the square 
lq-xl < 1/2, where p and q are different points. In order to avoid 
such cases, we replace the notion of an open species by the more 
constructive notion of a region [L. E. J. Brouwer 1918, p. 8; 
U)l9A, p. 20]. This notion is quite simple, but the precise formu­
lation of its definition is most conveniently obtained after some 
preparations. 

In the following, "E" denotes either the whole pl&.ne or a 
rectangle with rational vertices and with sides parallel to the 
axes of coordinates. If E is a rectangle, only points of E, where E 
is considered as a closed pointspecies, are considered, even if th.is 
restriction is not mentioned. It is supposed that E has been chosen 
once and for all and remaim; fixed throughout the chapter. 

Definition 1. An elementary set of rPctangles is a finite set of 
rectangles with rational vertices and with sides parallel to the 
axe~. of coordinates. No rectangles which degenerate into a line 
segment are admitted. The letters V, W, X, Y, Z will always 
denote such sets. 

Definition 2. The rational elementary domain R(V) is the 
species of the rational points which are interior to or lie on the 
frontier of at least one of the rectangles of V. The Pxterior rational 
elementary domain R* ( V) is the sp('cies of the rational points 
which are not interior to R( V) ("interior" being taken relatively 
to the species of the rational points). 

l t is clear what it means to say that V is interior to W; a:-: only 
rational points occur, no intuitionistic difficulties appear. 

De fi II it ion 3. The elementary domain ~ V is the same as R( V) ; 
the exlrri'.or elementary domain C\ *( V) is the same as R*( V). 
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Theorem I. £X* V =E-£X V. 
Proof. (i) If p E £X* V, then pis the limitpoint of a sequence of 
rational points in E - £XV, so p EE- e1: V. 

(ii) If p EE- c,; V, then we can find for every n a point Pn in 
E - c,; V such that IP- Pnl < 2-n- 1 , and furthermore a rational point 
q11 such that lp,.-qnl<2-n-:!. p,. is contained in the square 
lqn -xi< 2- 11

-
2 ; let a be this square. If a were contained in V, there 

would follow p,. Ea V, which is false, so that a part of a lies outside 
V (observe in this part of the proof that only rational points 
occur!). Let r11 be a rational point in a outside V, then rn ER*( V) 
and lp11 -r111<2-n-i, so lp-rnl<2-n. The sequence {r11 }showsthat 
p E ,-x* V. 

Remark. If Eis a rectangle, _,*V=cdV, where V and W fill 
up E without having interior points in common. w·e say that 
V and TY si1117Jly cover E. \Vhere no ambiguity need be feared, we 
often omit the IX and denote by V the elementary domain £XV. 
Yet some caution is necessary here, as the following example 
shows. Let V consist of the square with opposite vertices (0, 0) - ( 1, 1) 
and W of the square (0, 1)-(1, 2), and let X be the set of these 
two squares; then aX is not the same as IX V u £X JV; for, a point 
(Pt, p2) with O < p2 < I, but for which neither p1 :::t> I nor p1 <j::: 1 is 
known, belongs to £XX, but cannot be said to belong to £XV u £X W. 

This example shows at the same time that the formula 
(.Ju R=Q u R does not hold. Q u R ~ Q u R is always true. 

Definition 4. A region is the union of a sequence {V,.} of 
elementary domains such that Vn lies inside V,.+1 for every n. 
(If E is a rectangle and if a part ). of the frontier of V,. falls in the 
frontier of E, then it. is allowed that A belongs to the frontier of 
V n+1-) 

Every region is an open species; the complement of every region 
is a closed species. For many purposes the notion of a region­
complement can replace that of a closed species. 

Remark on 1wtation. We use the letters A, B. C, with or without 
subscripts, for regions; V, W. and sometimes X, Y, Z for ele­
mentary sets of rectangles or for elementary domains; .JI, N for 
region-complements; Q, R for unspecified pointspeci3s. Thus if the 
letter A is used, the reader is supposed to know that it designates 
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a region. A= {Vn} means that the sequence {Vn} satisfies the 
condition of def. 4 and that A= U Vn. 

n 

Theorem 2. If A={Vn}, then 
CO CO~-- 00 

E-A= n (E-Vm)= n (E-Vm)= n o;*Vm. 
m=l m~l m-1 

Proof. (i). If p EE-A, then p ¢ Vm for every m, so 

co 

(ii). Now suppose p En "'• V m· For a fixed value n of m, p E o;• V.,+1. 
m=l 

Let d be the minimum distance between the frontiers of Vn and 
Vn+1 (apart from parts of the frontier of E). We can find a rational 
point q outside Vn+1 such that jp-qj<½d; then we have for 
every rational point r in Vn, jp-rj > ½d, so that p ¢ Vn. As n is 
arbitrary, p belongs to no Vn, so pEE-A. 

This theorem shows that the notion of a region-complement, 
though its definition was negative, can be considered as con­
structive. 

Theorem 3. If it is impossible that p does not belong to E-A, 
then p belongs to E - A. 

Proof. This follows immediately from the fact that E-A is 
defined by a negation. 

LETTER. What strange logic are you applying here? 
INT. In fact I do not apply logic; I could not, for I have not yet 
developed it. But my argument may indeed be called logical, as it 
refers to the structure of the proposition. I shall expose it more 
elaborately. 

Let '' e'' be an abbreviation for '' p E A'' ; then the negation 
"--, e" is "p E (E-A)". The above theorem says that --,--,--, e 
implies --, e- This is obvious; for, if--,--,--, e is given, the suppo­
sition that e is true leads to --, --, (!, which contradicts --, --, --, (!. 

(Compare 7.1.2, (5).) 

5.1.5. Union and intersection 

Theorem I. The union of a finite or infinite sequence of regions 
is a region [L. E. J. Brouwer 1919A, p. 22]. 
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Proof. Let {An} be a sequence of regions; An= {V,,k}-
r ~ 

Set Wr= U Vmr; then the region B, defined by {Wr}, is U Am. 
m=l m-1 

Theorem 2. The intersection of two regions A= {V,,} and 
B= {JV,,} is a region, provided for some value of n, V,, and W 11 have 
a rectangle in common. 

Proof. Let X be the rectangle that is contained in V
11 

as well as 

in W,,. Set Vn+i> n JVn+p= YP for every p; then the sequence {YP} 
defines a region C that coincides with A n B. 

Theorem 3. The intersection of a finite or infinite sequence 
of region-complements is a region-complement; explicitly: 

n (E - A,,) = E - u A,, . 
n n 

Proof. "x En (E-A,,)" means: "for any n, x cannot belong 
to A,,". 11 

"x E (E- U A,,)" means: "for no n, x belongs to An"· The 
n 

two meanings are the same. 
The union of the two complements of two regions is not always 

a region-complement; it need not even be closed, as is illustrated 
by the example following 5.1.4, Th. 1. The elementary domains 
V and JV, defined there, are region-complements; the point p, 
which I considered there, is a closurepoint of Vu W. 

In the same way that the elementary domain X was formed 
from V and JV in the example cited just now, we can associate a 
region-complement to any pair (or finite set) of region-complements. 
The definition is the following. 

Definition. If M = n £X*Vn and N = n £X*W,,, then 
n ti 

* Mu N = n °'*(V,, n W11 ) 

n 

* Mu N is a region-complement, provided for some value of n, 
v,, ('\ wn contains a square. 

Theorem. If A and B are regions such that A n B is a region 
• (Th. 2), then (E-A) u (E-B)=E-(A n B). 

Proof. Clear from the definitions. 
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5.2. Located pointspecies 

5.2.1. Located pointspecies and point/ans 

Definition 1. The distance of the point p to the pointspecies Q, 
written e(P, Q), is the greatest lower bound of the distances of p 
to the points of Q. Thus e(P, Q) satisfies the conditions: 

(i) for every point q in Q, jp-qj <t e-

(ii) for every natural number n a point qn m Q can be found 
such that jp-qnl <e+2-n. 

Definition 2. A pointspecies Q is located [L. E. J. Brouwer 
1919A, p. 13], if e(p, Q) can be calculated for every point p. 

Remark. It is clear that e(P, Q) is a continuous function of p; 
thus, if the distance of every rational point to Q can be calculated, 
Q is located. 

I o 

Example. Let E be the square with vertices (± I, ± 1), and 
let A be the region which is defined by the sequence {V,.} which is 
obtained as follows: 
If in the first n digits of n no sequence 0123456789 occurs, V,. is a 
set of three rectangles, with the opposite vertices 
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( -1 + 2-n, - 1 + 2-n) and (1- 2-n, - 2-n), 

( -1 + 2-n, - 2-n) and ( - 2-n, + 2-n), 

(-1+2-n, +2-n) and (l-2-n, 1-2-n) 

respectively; if in the first n digits of :n; a sequence 0123456789 does 
occur, Vn is the square with vertices ± (1- 2-n). 

Now let p be any rn.tional point. Either p EE, so that e(p, A)= 0, 
or p lies outside E; then e(p, A)= e(p, E). 

Thus A is located. However, 1.W = E-A iR not located; for, 0 being 
the point (0, 0), e(O, .M) = 0 if no sequence 0123456789 occurs in :n;, 

but e(O, .M) = 1 if such a sequence does occur. 

Theorem 1. Every bounded closed located pointspecies coin­
cides with a canonical finitary p-g-spread (with a p-g-fan) 
[L. E. J. Brouwer 1919A, p. 14]. 

Proof. Let Q be a bounded closed located pointspecies. For 
convenience, let us call a point (a-2-n, b-2-n), a and b integers, an 
nth lattice-point. We divide the nth lattice-points, for n= 1, 2, ... 
successively, into admissible and inadmissible points, in such a 
way that for every admissible nth lattice-point p we have 
e(p, Q) < 5 i 8 · 2- 11

, and for every inadmissible nth lattice-point q we 
have e(q, Q) > 2-n- 1 : this can be done in view of 2.2.3, Th. 4. If p 

is an admissible nth lattice-point, a point q in Q can be found so 
that Ip-qi < 5/ 8 - 2-n, and after that an (n+ l)th lattice-point r 
so that lq-rl< 5/ 8 -2- 11 - 1 . e(r, Q)< 5/ 8 -2-n- 1, so r can be taken as 
admissible, and Jp- rJ < 2-n. Consider the spread of all canonical 
point-generators {Pn}, where Pn is an admissible nth lattice-point. 
After Pn has been chosen, at least one and at most nine choices for 
Pn+l are admissible, so S is a p-g-fan. I wish to prove that S 
coincides with Q. 

(i) If p E Q, then a canonical p-g of p belongs to S. 

(ii) Lets be a point which coincides with a p-g s0 in S. s0 = {p,.}, 
where Pn is an admissible nth lattice-point; lso-Pnl :} 2-n and 
we can find a point qn in Q so that IPn -qnl < 2-n; consequently 
lso-qnl <2-"+I. As every qn is in Q, s0 is a closurepoint ofQ, and 
as Q is closed, s0 E Q. 

Corollary. Let q and r be points of the closed located point-
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species Q, such that lq-rl<2-n-s and lets be the middle of qr. 
We can find an nth lattice-point Pn such that ls-pnl < 9 • 2-n- 4 ; then 
lq- Pnl < 6/ 8 · 2-n and Ir- Pnl < 5/ 8 · 2-n. It follows that p,. is admissible. 
We have proved the lemma: 

If q and r are points of a closed located pointspecies Q, such 
that lq-rl<2-n- 3 , then the p-g-fan 8 that coincides withQ 
contains two elements which coincide with q and r respectively 
and in which the first n components p1, ... , p,. are the same. 

Theorem 2. The closure of every canonical pointfan S coincides 
with a located region-complement. 

Proof. Let H be the set of then-th components in the elements 
of S; H is a finite set of n-th lattice-points. With every point of H 
as centre, describe the square with sidelength 3 • 2-n; let Vn be the 

00 

set of these squares. Set M = f"I Vn, then Mis a region-complement. 
n-1 

It is clear that S is geometrically contained in M; as M is closed, 
also Sis geometrically contained in M. I shall prove that conversely 
M is geometrically contained in S. 

Let q be a point of llf, then q E V", so we can find a point p,. of H 
so that lq - Pnl < 2-n+i. Pn is a component of at least one p-g of S, 
say of sn; I sn - Pnl ::t> 2- ". In this way we find for every n, a p-g sn 
in S such that lq-snl <2-"+z; thus q is a closure point of S. 

It must still be proved that M is located. Let p be any point of 
the plane and set e(P, Vn) = en• It is clear from the construction of 
Vn and Vn+1 that en ::t> e,.+1 ::t> en+ 5

/ 4 ·2-n. Thus lim en=eo exists 
and eo-en ::t> s/2· 2-n. 

I wish to prove that e(p, M) = eo, thnt is to say that 

(i) if q EM, then jp-ql <t: eo; 
(ii) for every n a point qn in M can be found so that 

IP-qnl <eo+ 2-n. 

Proof of (i). q E vn, so jq-pj {: (!,. -t eo+ 5/4·2-n for every n, 
that is jq - Pl {: eo-
Proof of (ii). We can find successively a square a of V,. so that 
e(p, a) <en+ 2-n, and a point r in a so that lp-rl <On+ 2, 2-n; then 
lp-rl <(!0+9/2·2-n. 

Corollary 1. It follows from the two preceding theorems that 
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every hounded closed located pointspecies coincides with a region­
complement. 

Theorem 3. A real-valued function ,.,,·hich is defined every­
where on a bounded closed located pointspecies is uniformly 
continuous on that species. 

Theorem 4. A real-valued function which is defined every­
where on a bounded closed located pointspecies has a g.l.b. and 
a l.u.b. on that species. 

Theorem 5 . If a real-valued function is defined and every­
where positive on a bounded closed located pointspecies, its g.l.b. 
is positive. 

The proofs of these theorems are exactly analogous to thol'e 
in 3.4.3. 

5.2.2. The intnitionistic form of the Heine-Borel theorem 

Theorem. Let Q be a bounded closed located pointspecics. 
If to every point p of Q there is associated a neighbourhood U(p) 
in E, then we can fintl a finite set U(q1), ... , U(qm) of these neigh-

m 
bourhoods so that Q is contained in u U(qk). 

k~l 

Proof. By definition a neighbourhood U(p) contains a square 
Ip-xi< 2- 1•, where h is a natural number, associated to p. Let S 
be a canonical point.fan that coincides with Q; if the point p of Q 
coincides with the p-g p' = {p~} of S, then h is associated to p'. 
By the fan-theorem we can find a maximal value h0 for h, so that, 
for every p, U(p) contains the square lp-xl<2-ho. The (h0 +l)th 
lattice-points ·which occur as components of elements of S can be 
arranged in a finite i-:equence p;.,+i.i (i = 1, ... , rn0). For each of 
these values of i we tletermine a fixed element of S, say q;, in 
which p;,,+1.i occurs. Let <]; be the point of Q that coincides with q;; 
lq;-p;,,+l.il : 5/s·'2-,,,-i. 

An arbitrary point r of Q coincides with an element r = {r~} of S; 
r;,,+ 1 = p;,,+i.i for some i, so lr-p;,,+i.il < 6

/ 8 -2-h0
-

1
• It follows that 

lqi -rl < 5/ 8 · 2- 11,, that is r E U(q;)- This means that U(q1) U ... uU(qm) 
• 

contains Q. 

Remark. L. E. J. Brouwer [l!l26C, p. 867] proved this theorem 
in a more general form (for what he calls located-compact species). 
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MEASURE AND INTEGRATION 

In this chapter E is the unit-square lx-01 :::}- 1/z-

6.1. Measurable regions and region-complements 

6.1.1. Measurable regions 

Definition. The measure, to be denoted by m V, of an elementary 
domain V is its area in the ordinary sense. If a region A is defined 
by the sequence { V ,.} of elementary domains, and if lim m V" 
exists, then A is measurable and its mea,sure is n-+00 

mA = lim m V,. [L. E. J. Brouwer 19l!)A, p. 26]. 
n-+00 

Class. By this definition, not even every bounded region is 
measurable. 
INT. That is an immediate consequence of the fact that a bounded 
monotone sequence of real numbers need not be convergent. 
The proof of the following theorem is less simple than might be 
expected. 

Theorem 1. If A and Bare measurable regions, and if A 'J B, 
then mA -t mB. 
The proof rests on the following Lemma: 

Lemma 1. If the elementary domain W is contained in the 
region A= {Vn}, then a number m can be found so that W is 
covered by V m· 

Proof. To every point p of W there is associated a natural 
number h(p) so that p belongs to Vh,vi· As W is bounded, closed 
and located, it follows from 5.2.1, Th. 1 and the fan-theorem that 
there is a maximum m for h(p); every point of W belongs to V ,,.. 

Proof of theorem 1. Let A= {V,.}, B= {W,.}. Given k, we 
first determine n so that mB-m W,. < 2-k, and then (by the lemma) 
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m OU LlmL Jl m cuvc,i·<> Ill". 'Pl,,,,, '"A>·'" II,,, _1 Hi W,. ( __ i1l U u=f: AJ=1 

thiH iH l,rllf' ror ovr,ry le. mA ,f-' m n. 
Theorem 2, If the regiu11 A cui11ci<lc1, with the region B, an<l 

if A is measurable, then B is measurable and mA = mB. 

Proof. A= {Vn}, B= {Wn}· By lemma 1, for every n, m Wn <mA. 
On the other hand, as A is measurable, given k, we can find i 
so that mV,>mA-2-t, and then h so that Wh covers V, (using 
the lemma), so that mWh > mA-2-k. Hence lim mWn=mA. 

n->-00 

Theorem 3. If A and B are measurable regions, the region 
0=A u B is measurable and mO::} mA +mB. 
The proof follows easily from the definition. 

Theorem 4. Let {An} be a sequence of measurable regions such 
r 00 

that lim m u An =µexists; then A= u An is a measurable region 
,-,.a, n = 1 n = 1 

and mA=µ. 
r min. r.a 

Proof. Put U An= Br, U Vns = Wm Wu= U8 ; then 
n-1 n-1 

B,= {Wrs}, A= {Us}, 
mUs=mWss<mBs::} µ. 
Determine n 1 such that µ - mBn1 < 2-k-I and n2 > n1 such that 
mBn1 -m Wn1n2 < 2-k-I_ Then µ-mUn 2 <µ-mWn 1n:! < 2-k, 

It follows that lim mU8 = µ, thus mA = µ. 
,-,.00 

6 .1. 2. Measurable region-complements 

Definition 1. If the region-complement Mis the complement 
of the measurable region A, then M is measurable and its measure 
mM is 1-mA. 

Theorem 1. If M 1 and M 2 are measurable region-complements, 
mM1 =ffii, mM2 =m2, m(M1 n M 2)=m, then mi+mz::} l+m. 

Proof. M 1 =E-Av M 2 =E-A2, M1 n M 2 =E-(A1 u A2). 

In view of 6.1.1, Th. 3 we have 

m(A1 u A2) ::} mA1 + mA2 

1-m::} l-172-i+l-m2 

172-i + m2 ::} I+ m. 
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Theorem 2. [L. E. J. Brouwer 1919A, p. 26]. Every measurable 
region-complement of positive measure contains a located measur­
able region-complement L such that mL>mM-2-P, where p is 
an arbitrary natural number. 

Proof. There is a sequence {Vn} of elementary domains such 
co 

that M = r'I V8 • From this sequence we select a subsequence 
n-1 

{Wn} such that mW
8
-mM <2- 4n-p for everyn. Now Lis obtained 

by the following construction. Divide E into subsquares of side­
length 2-n; these squares are called i!n-squares. From every Wn we 
remove its intersection with those x1-squares which have with W1 

an intersection < 2-:r>- 3 ; the rest is W~. From every W~ we remove 
the intersection with those x2-squares with which W~ has an inter­
section < 2-p-1 , and so on. In general, W~k+I> (n > k) is obtained 
from TV:I-1 by removing the intersections with those xk+i-squares 
which have with Wf<_/. 1 an intersection < 2-J>- 4k- 3 

00 

L= n w::I). 
n-1 

In view of 5.1.5, Th. 3, L is a region-complement. 
By hypothesis, m J,Vn - m W,.+1 < 2- 4n-JJ_ A fortiori. 

m W~n> _m W!~+i < ~-41'-J>_ 

In passing from w~n+ 1 to JV~n.t/>, the removed area is at most 
22n+2.2-p-411-a = 2-:r,-211-1, so mW!i"> -- mw:~;\ll < 2-4n-p+ 2-:r>-Zn-1 

< 2-:r>-271_ 

It follows that lim m W)~1 exists. 
One is not allowed to infer at once that lim m W~n> = mL, because 

w~n_;\11 need not be strictly interior to w~n)_ However, by a slight 
extension of every W~n> we easily construct a sequence { U11 } of 
elementary domains such that Un+1 is always strictly interior to 
Un, L= r'I Un, and lim mUn=lim mW~">. 
Thus L is measurable and mL = lim m JV~n>. 

From the construction of W/;1
> we see that 

n-1 
m TF _ mUf(n) < ""' •)2k !-2 •J-p-4k-3 _- 2/ •_l-p 

t'P' n ft' n £., - • - ......_ :J • - • 
k~O 

By a passage to the limit we ha,·e 

m~f -mL< ~-P_ 
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It remains to be shown that L is located. Let x' be one of 
the xn-squares which have a positive intersection with JV~n1, then, 
by the above construction, this intersection is ;?; 2-p- 4n+ 1 • As 
m w~nl -m w:~+l < 2-J>- 411, m( JV~n+l ("'\ x') > 2-p- 4n-'-l _ 2-p- 4n = 2-p-4n_ 
Passing from w:~+1 to JV~n,:/1, we remove from x' at most an area 
4. 2-p- 4n- 3 , so JV~~/ 1 has a part in common with x'; hence W~n,:/ 1 

has a part in common with at least one of the ;.,:11 +1 -squares which 
are parts of ;.c'. Continuing this process, we find a sequence {q,.} 
in which every q,. is a r.:n+1,-square, so that for every h, W~njl1 haa 
a part in common with q,.. Let xth1 be a point in w~nj,.hl n q,.; the 
sequence {xth1 } converges to a point x 0 • As xtii E JV~n,:l'1 for j;?; h, 

x0 E W~n_:,~>; as this is true for every h, x0 EL. Thus every ,e,.-square 
which has a positive intersection with W~nl, has at least one point 
in common with L. 

Now let H be the set of ,e,.-squares which have a positive inter­
section with W~"1• Lis contained in H, while every square of H has 
at least one point in common with L. Therefore for any rational 
point p, e(p, H) ::I> e(p, L) ::I> e(p, H) + 2-n. 
This proves that L is located. 

Corollary. It follows from the proof just given that every 
bounded region-complement of positive measure contains at least 
one point. 

Theorem 3. If the measurable region-complement M is con­
tained in the elementary domain V, then mM ::I> m V. 

Proof. M= n W,.. Suppose that mM>mV. We can find q so 
that mM>mV +2-q; then for every n, mW,.>mV +2-q. Let U,. be 
the part of W,. outside V. mU,.> 2-q. By cutting from every U,. a 
small strip along the boundary of V, we obtain T,.. We can do 
this in E1uch a manner that T,.+1 is interior to T,. and that mT,.>2-q 
for every n. Set n T,.=N. N is a measurable region-complement 
and mN {: 2-q. -Hence, in view of the last corollary, N contains 
at least one point p. It is clear that p cannot belong to V, so 
mM > m V has led to a contradiction. 

6.1.3. Negligeable and almost full pointspecies 

Definition 1. A pointspecies which can be enclosed in a. 
measurable region of arbitrarily small measure is called negligeabk. 
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Definition 2. A pointspecies which contains for every n a 
region-complement of measure greater than 1- 2-n, is called almost 
full. A property which is true on an almost full species will be said 
to be true almost everywhere. 

The complement of a negligeable pointspecies Q is almost full, 
for QC A implies E-A CE- Q. The converse is not always true, 
for from E-A CR it follows that E-R C E-(E-A), but this 
last species does not necessarily coincide with A, and we are not 
sure that it is a region. 

Theorem 1. The meet of two almost full species is an almost 
full species. 

Proof. Let Q and R be almost full species, and M, N region 
complements of measure > 1- 2-n, contained in Q and R respec­
tively. Then Mn NC Q n R; set m(M n N)=m. By 6.1.2, Th. 1, 
1-2-n+1-2-n<l+m; m>l-2-n+i_ 

Remarkf. If Vis an elementary damn.in, Vis a region-comrle­
ment and the interior of V is a region of the same measure. The 
boundary of V is a region-complement of measure 0. It ·can be 
enclosed in a measurable region A of measure < 2-n, which can 
be so chosen that, for some numbers, every point at a distance less 
than 2- • from the boundary belongs to A. 

Let W be the elementary set of rectangles which together with 
V simply covers E. For an arbitrary point p in E - A we can 
decide, by approximating it to less than 2-•, whether it belongs 
to V or to W. 

THE BROUWER INTEGRAL 

I shall develop the theory of integration for the case of functions, 
defined on a subspecies Q of the unit-square E. Various extensions 
are possible, but their place is not in this introduction. 

6.2. Bounded measurable functions 

6.2.1. Definition of the integral 

Definition 1. A bounded function f(x), defined on a subspecies 
Q of E, is measurable [L. E. J. Brouwer 1923, p. 6], if for every 
natural number n the following conditions are fulfilled. 

(i) a measurable plane region An with mAn < 2-n is given; 
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(ii) E is simply covered by elementary domains 

v .. h(h= -l .. , ... , -1,0, 1, ... ,k .. ), 

(iii) If M,. = E - A .. , then 
(a) for XE v .. h n M .. , h=l=0, we have 

(h-1)2-n-I :::j> /(x) :::j> (h+ 1)2-n-1 , 

(b) for x E Q n v .. 0 n M .. we have 
_ 2-n-l :::j> /(x) :::j> 2-n-1. 

The set of threedimensional intervals 

x E v .. h, (h-1)2-n-l ::} z::} (h+ 1)2-n-l 

(h = - l .. , ... , o, ... , k .. ) 

will be called the n-th approximating strip of /(x) ./(x) is said to be 
measurable by {V .. h} and {A .. }. 

Definition 2. 
defined by 

(1) 

The integral of the measurable function f(x) is 

k,. 

J f(x)dx = lim 2-n-I L h m V nh. 
E n-oo h- -1,. 

Remarks. 1. It imposes no restriction to suppose An+l CA .. for 
00 

every n, for if we set U Ak = Bn and W .. _1_ h = V,., 21., then /(x) is 
k-n 

also measurable by {B .. } and {W .. k}, and the sequence {W .. d gives 
the same integral. Similarly we may suppose that the boundaries 
of all the V .. ,, are contained in A .. ; for if mA .. <2-n-2-n', we may 
enclose these boundaries in a measurable region c .. with measure 
less than 2-n' and then substitute A .. u a .. for A ... This has the 
advantage that for every point of E - (A,. u C .. ) we know to which 
of the v .. h it belongs. 
2. It is often convenient to modify clause (ii) of def. I as follows: 
(ii bis). E is simply covered by elementary domains V!m; every 
V!m is contained in one V~q~i.;, and to read in clause (iii) u ( V!m n M .. ) 
in place of v,.h ('\ 1l1,.. 11 

CLASS. That is a well-known definition of a Lebesgue integral. 
INT. Yes, but it was necessary to select a constructive definition 
from among those which are classically possible. For instance, if 
/(x) is defined in E and has the constant value a, where a is a real 
number for which neither a<½ nor a=½ nor a>½ is known, 
then the species of points for which /(x) < ½ is not measurable; 
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I can say that now, though I have not yet given a general definition 
of measurable pointspecies. Of course the same remark applies to 
f(x) = ½ and to /(x) > ½-

An important difference is that a classical mathematician can 
always suppose his functions to be defined over all of E, by 
assigning to them the value O at every point where they were 
undefined. This does not work intuitionistically, since for some 
points it will be unknown whether the function is defined or not. 
Brouwer's definition of a measurable function is so formulated, 
that for such a function we know almost everywhere either that 
it is defined or that, if it is defined, it is smaller than 2-n, where n 
can be chosen arbitrarily. 

The pointspecies on which /(x) is defined, will be called the 
domain of /(x). 

Theorem I. The limit (I) exists for every measurable function. 

Proof. Let /(x) be measurable by {V,,h} and {A,,}. We suppose 
that the An fulfill the conditions of remark I. 

Let p be any number greater than n, and let v,.h n vpk= whk· 

Each whk is either an xhk or a yhk> as follows: 

w,.k=X,,1c if lh2-n- 1-k2-p-l1<2-n; 

w,.k=Yhk if jh2-n-1-k2-11-11~2-n. 

It is clear that 

(2) 2-p-l L km v11k- 2-n-l L h m vnh = L (k2- 11 - 1 -h2-n-l) m w hk· 
k h ~k 

From the definitions we have for x E V,, 11 n M,. (h#O), 

(3) (h-1)2-n-l :;-j:,- /(x) :;-j:,- (h+ 1)2-n-l, 

and forxEVPknM11 (k#O), 

(4) (k-1)2- 11 - 1 ::J> /(x) ::J> (k+ 1)2-11-1. 

Consequently for X E w,.k n Mn n Mp, 
(5) jh2-n-l _ k2-p-ll ::J> 2-n-l + 2-11-1 < 2-n. 

This is also true for h = 0, k # 0 or h =I- 0, k = 0, for, in the first case, 
V11k r. .ilf11 C Q, so Wok n M 11 n M,. C Q, and (3) is valid on 
Wok n M 11 n Mn. For h=k=O, (5) is trivial. 
Every point of Mn n M 11 belongs to some W 11k; in view of (5) this 
can be no yhk> BO Mn n J.lf11 Cu xhk. 

Now, by 6.1.2, Th. 1, m (M,, n Mp) <t I-2- 11 -2-11>1-2-n+i_ 
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So mu Xhk> l -2-n+1 and mu Yhx,< 2-n+ 1• 

Thus if 1/(x)I < M, 
(G) 2 lk2-p-l -h2-n- 11mY111:< (21lf + 2)2-n+l_ 

h.l: 

(7) 2 ik2-p-l -h2-n-11mx11l:< 2-n mu xhk ~ 2-n_ 
h,k 

By (2), 

(8) 12-i>- 1 2kmVi,1:-2-n-l 2hmVn111<(4.M+5)2-n. 

75 

Applying Cauchy's principle (2.4) we see that the limit in (1) exists. 

Theorem 2. If the bounded function f(x) is merumrable by 
{Vn 11 } and {A,.} and also by {Wnd and {Bn}, then 

(9) lim 2-n-l 2hmV,111 = lim 2-n-l 2kmWnk• 
n-+00 tl· ➔ OO 

Let An U Bn =On, E-Cn = Jl11 • \Ve may suppose that 0 11 contains 
the boundaries of vn,, and wnk· 

Set vnh ("'\ T-V.,1; = xhk if ih -kl~ 1. 
vnh ("'\ W,.x,= l\1: if lh-kl > 1. 

A point of Y,.,., cannot belong to ..tlf,.; so Jf,. ~ u X11,.,. Hence (6.1.2. 
Th. 3) m.111,. ::;=- m. u x,,k.m u X111.:~ 1- 2-n+I. ,nu Y,,k~ 2-n+ 1• 

12-11-1 2hml',.11-2-11-1 2kmVnkl= 

= 2- 11 - 112(h-k)mX11,, ·:· iu, -k)ml\1:I ~ 

~ 2-n-1 2 mXhk + (2.M --t- 2-11 ) 2 mYhk~ 2-11 - 1 • 2.M • 2- 11 +1 + 
+ 2-211+1 < (8M .. 2)2- 11 -1. This proves (9). 

G.2.2. Conditions of measnrabilify 

Theorem 1. A bounded function which is defined almost e\"cry­
where is measurable [B. van Rootselaar l!l54. p. 7]. 

Proof. By hypothesis /(x) is defined on the species Q, and Q 
contains for eYery n a measurable region-complement .Jf,. such 
that m.1.l/11 > 1- 2- 11 -~-

By 6.1.2, Th. 2 . ...11,. contains a measurable located region-comple­
ment £

11 
such that mL

11
> l-2-n-~. L,.=E-A~. Applying 5.2.1, 

Th. 3, we see that /(x) is uniformly continuous on £ 11 , so that for 
every point x of l.,n there is given a neighbourhood Un(x) such that 
lf(x)- f(x')I < 2- 11

-
2 , if x' lie8 in Un(x) n L,.. Un(x) contains an 

elementary domain V"(x) which contains x in its interior. The 
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Heine-Borel-theorem (5.2.2) can be applied to L,.. so tlwre is a 
finite number of domains Vn; (i = 1, ... , m) which cover Ln. 
We define disjoint elementar:v domains W.,; by 

i-1 

H' .. 1 = VHI, W,.; = v .. ;- U (Vni ('\ w .. k), 
k-1 

The total area covered by the W
11

; is at least 1-2-n-2
; the rest ofE 

can be enclosed in a measurable region An of measure < 2-n- 1 . 

Let us enclose the boundaries of the W,.; in a measurable region 
Bn with mBn<2-n- 2 , and set Cn=A .. u BTI uA,;, so that rnC11<2-n. 
Then /(x) is measurable by {Wn;} and {C,.}. 

Conversely we shall show that every measurable function can 
be completed to an almost everywhere defined measurable function 
with the same integral. 

Definition 1. g(x) is a completion of f(x) if it satisfies the 
following conditions: 

(i) g(x) is defined almost everywhere, 

(ii) g(x) = f(x) in every point where /(x) and g(x) are defined, 

(iii) /(x) is defined in every point where g(x) # 0. 

Theorem 2. If /(x) is measurable by {V.,h} and {A 11 }, then the 
function g(x) defined below is a completion of /(x). 
g,.(x)=h2-n-l in v.,h n (E-An); g(x)=lim Yn(x). 

Theorem 3. If g(x) is a completion 01" the bounded measurable 
function f(x), then g(x) is measurable and 

f g(x)dx = f f(x)dx. 

Theorem 4. If a completion of f(x) exists, then f(x) is measur­
able. 
The proofs of these theorems are immediate from the definitions. 
In the proof of Th. 4 we use Th. 1 to prove that the completion of 
/(x) is measurable. 

Theorem 5. If /(x) is measurable, /(x) and g(x) are bounded 
and /(x) = g(x) almost everywhere, then g(x) is measurable and 
J f(x)dx = J g(x)dx. 

Proof. Let f(x) be measurable by {V.,h} and {An}, and let B,. be 
a region with measure less than 2-n such that /(x) = y(x) on E - Bn. 
Then /(x) is also measurable by {V11_ 1,h} and {A,. U B

11
}, and from 

the definition the statement in the theorem is clear. 
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6.2.3. Sums and products of measurable funclion,c; 

Theorem 1. If the bounded measurable functions /(x) and 
g(x) have the same domain Q, or if /(x) and g(x) are defined a.e., then 
f(x)+g(x) is measurable and Jf(x)dx+Jg(x)dx=J(f(x)+g(x))dx. 

Proof. Let f0(x) and g0(x) be completions of f(x), g(x), respectively. 
Then f 0(x) + g0(x) is a completion of f(x) + g(x). The equality of the 
integrals is easily inferred from the definition (6.2.1, Def. 1). 

Theorem 2. If f(x) and g(x) are bounded measurable functions, 
then f(x) g(x) is measurable. 

Proof. Here also, if /0(x) and g0(x) are completions of f(x), g(x), 

respectively, then /0(x) g0(x) is a completion of f(x) g(x). 

Remark. Note that in Th. 2 it is not necessary to suppose, as in 
theorem 1, that f(x) and g(x) have the same domain. The reason is, 
that f 0(x) g0(x) # 0 implies f 0(x) # 0 and g0(x) # 0, while f 0(x) + 
+ g0(x) # 0 implies only that f 0(x) # 0 or g0(x) # 0. The domain 
of /(x) g(x) is, of course, the intersection of the domains of /(x) 
and of g(x). 

Definition 1. The non-negative part f+(x) and the non-positive 

part f-(x) of f(x) are defined as follows: 

/+(x) = max (/(x), 0); J-(x) = min (/(x), 0). 

Obviously, f+(x) and f-(x) have the same domain as /(:r), and 
f(x) = j+(x) + J-(x). 

Theorem 3. If /(x) is bounded and measurable, then /+(x) and 
J-(x) are measurable, and 

f f+(x)dx+ f f-(x)d:r= f f(x)dx. 

Proof. If f0(x) is a completion of /(x), then max (/0(x), 0) is a 
completion of /+(x); the analogous result holds for f-(x). f+(x) and 
f-(x) have the same domain as /(x), so we may complete the proof 
by applying Th. 1. 

Theorem 4. If /(x) is bounded and measurable, then lf(x)I is 
measurable. 

Proof. 1/(x)I = f+(x)-f-(x). 
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6.2.4. A limit theorem 

Definition 1. The sequence of functions {/n(x)} is convergent 
at the point x0 , if a number N is known so that f n(x0) is defined for 
n>N and if the sequence fN+n(x0) converges in the ordinary sense. 

Theorem 1. If the functions of the sequence {/n(x)} are measur­
able and uniformly bounded, and if the sequence converges a.e. 
to /(x), then /(x) is measurable and 

lim J fn(x)dx= J f(x)dx. 
n-+CO 

Proof. For every m we can find a region-complement Mm such 
that mMm > 1-2-m- 1 and that lim /n(x) exists at every point of 

n-+co 

Mm. Mm contains a located region-complement L,,. of measure 
> 1- 2-m. For every point x of L,,. we can find a number N(x), 

such that /n(x) is defined for n>N(x) and that 1/(x)-fn(x)j < 2-m for 
n>N(x). In view of 5.2.1, Th. 1 and the fan-theorem we can find 
a maximum value of N(x), say N1 . Hence if n> N

1
, then /,.(x) is 

defined and I f(x) - f n(x) I < 2-m for every x in Lm. In the following 
I suppose that n > N1 . 

Lm is the complement of a region B"'. Let fn(x) he measurable by 
{Vni,h} and {An11}. Set Cnm=AnmuBm, Knm=E--Cnm· \Ve have 
mCnm < 2-m+l. 

For x E V nmh n K nm we have lf(x) - f,.(x)j < 2- m and further 

(1) (h-1)2-m-i_z-m :::I> /(x) >. (h+l)2-m- 1 +2-m. 

Then we can find a number k such that 

(2) (k- 1)2-m+2 ::t- /(x) ::t- (k + 1)2-mn; here 

(3) jk2-m+2_7iz-m-1I ~ 2-m+i. 

This proves that f(x) is measurable by {V,.m,.} and {0nm), where n 
is a function of rn. 

From inequality (8) in the proof of 6.2.1, Th. 1 we infer that 

(4) IJ f(x)dx- 2-m+ 2 I km vnmhl < (4M-1 5)2-m+3; 

(5) jJ /,.(x)dx-2-m-l }:hmVnmhl<(4M+G)2-m. 

li""'rom (3) we deduce 
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(6) 12-m+2 L km v .. m,,- 2-m-l L h m V,,mhl ::1> 
L 12-m+2k-2-m-lhlmV,.mh ::1> 2-111+1 ImVnmh ::1> 2-m+I_ 

By (4), (5) and (6) we see that 

(7) IJ f(x}dx- J f ,.(x)dxl < (36M + 47)2-"'. 

Since this is true for every n>N(m), we have proved the theorem. 

6.3. Measurable pointspecies 

6.3.1. Fundamental notions 

Definition I. The characteristic functinn /Q(x) of a point­
species Q is defined as follows: 

/Q(x)=l if xEQ; /Q(:r)=O if x¢Q. 

Definition 2. Q is measurable if /Q(x) is measurable and the 
measure of Q is mQ = J /Q(x)dx. 

Theorem 1. Definition 2 is equivalent with the following one: 
Q is me11Surable if, for every n, an elementary domain V n and 

a measurable region An can be found such that mA,. < 2-n and 
Q n (E -A,.)= Vn n (E-An)- Then mQ= lim ml',. [L. E. J. 

n->oo 

Brouwer 1919A, p. 29]. We say in this case that Q is measurable 
by { V,.} and {A,.}. 

Proof. (i) If /Q(x) is measurable by {W,.h} and {A,.}, then Q is 
measurable by {W,., 2n.1} and {An}-
(ii) If Q is measurable by {V ,.} and {A,.}, then /Q(x) is measurable 
by {W,.,.} and {A,.}, where W,., 2 •• 1= Vn, W,.0 =E- V,. and the other 
W,.,. are empty. 

Theorem 2. If Q is measurable, then Q U (E-Q) is an almost 
full species. 

Proof. Let fQ(x) be measurable by {W,.,.} and {A,.}. For abbrevi­
ation, set X,. = W,., 2 •• 1. We suppose that A,, contains the frontier 
of X,. and of W,.0, so that every point of E-A,. belongs either to 
X,. or to W,.0• E-An=M,.. Q n M,.=X,. n .1lf,.. 
If xEW,.0 nM,., fQ(x)=!=I, so x¢Q, xEE-Q; consequently 
W,.0 n M,.=(E-Q) n M,.. 

(Q u (E-Q)) n .1.lf,. = (X,. u W,.0 ) n M,.= M,.. Q u (E-Q) :2 M,.. 
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6.3.2. Conditions of measurability 

Theorem I. If Q is measurable, then E-Q is measurable and 
m(E-Q)=l-mQ [L. E. J. Brouwer 1919A, p. 30]. 

Propf. As in the preceding proof, we find Mn eo that 
Q u (E- Q) J M,. and mM,. > I - 2-n. Then for every n, 

/Q(x) + f E-Q(x) = 1 on M"" Hence f Q(x) + f E-Q(x) = I almost every­
where. Consequently 

J f Q(x)dx + J f E-Q(x)dx = J dx = I. 

Corollary. If Q is measurable, then E-(E-Q) is measurable 
and has the same measure. This is very convenient, as it often 
permits us in the theory of measure to neglect double negations. 

Theorem 2. Every measurable species Q contains for every n 
a located measurable region-complement L.. of measure greater 
than mQ-2-n. 

Proof. Let Q be measurable by {V,.} and {A,.}, E-A .. =M,.. 
We can find k=k(n)>n+I so that lmV1;-mQl<2-n- 2 • Also 
mMk {: I-2-n- 2• By 6.l.2, Th. 1, 

mVk+mMk :::t, l+m(Mk n Vk); 

m(M1; n Vk) {: mVk+mM1;-l >mQ-2-n-2+ l-2-n-2_ 1 = 
=mQ-2-n-1. 

The region-complement M1; n V1; contains a located region­
complement Ln such that mL,.>m(M1; n V1;)-2-n- 1 • Thus 
mL,.>mQ-2-n. 

As M1; n Vk=Q n Vk ~ Q, the theorem is proved. 

Theorem 3. A necessary and sufficient condition that the 
point-species Q is almost full, is that Q is measurable and mQ = 1. 

Proof. (i) The condition is necessary, for if Q is almost full, 
then /Q(x) is defined a.e., so by 6.2.2, Th. 1, fQ(x) is measurable, 
and / Q(x) = 1 a.e. so mQ = I. 

(ii) The condition is sufficient by the preceding theorem. 

Theorem 4. A necessary and sufficient condition that the 
pointspecies Q is measurable, is that Q v (E - Q) is an almost full 
pointspecies. 
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Proof. (i) The condition is necessary by 6.3.1, Th. 2. 

(ii) The condition is sufficient: as (i) in the preceding proof. 

Theorem 5. Every detachable subspecies R of a measw-able 
species Q is measurable [B. van Rootselaar 1954, p. 5]. 

Proof. Qu(E-Q)CRu(E-R), for every element of Q belongs 
either to R or to E-R, and E-QCE-R. Thus, as Qu (E-Q) 
is almost full, R u (E - R) is almost full, and R is measurable. 

Corollary. If Q u (E-Q) is measurable, then Q is measurable. 

Theorem 6. If Q and R are measurable and RC Q, then 
mQ=mR+m(Q-R). 

Proof. The characteristic functions /Q(x), fR(x) and fo-R(x) are 
all defined on the almost full species 

(Q u (E-Q)) n (Ru (E-R)), 

and on this species /0 (x) = f R(x) + fo-R(x). 

This proves the theorem. 

Theorem 7. If Q and Rare geometrica-lly congruent measurable 
pointspecies, then mQ = mR. 

Proof. E-Q=E-R, so 1-mQ= 1-mR. 

6.3.3. Union and intersection of measurable pointspecies 

Theorem 1. If Q and R are measurable pointspecies, then 
Q n R and Q u R are also measurable. m(Q U R) ::t,- mQ + mR; if 
Q and Rare disjoint, then m(Q u R)=mQ+mR [L. E. J. Brouwer 
1919A, p. 32]. 

Proof. IQnR(x) and IQu 8 (x) are defined on the almost full species 
(Q U (E-Q)) n (Ru (E-R)), and on this species we have 
IQ n R(x) = IQ(x) f R(x) and IQ u R(x) ::t,- f 0(x) + f R(x); if Q and R are 
disjoint, then IO u R(x) = /Q(x) + I R(x). 

Theorem 2. If {Q,.} is a sequence of measurable pointspecies, 
" S,. = U Qh, m,. =mS,., and if lim m,. =m exists, then the species 

1,-1 n-►oo 
00 

S,,, = U Q" is measurable and mSw = m. 
h~l 

[L. E. J. Brouwer 1919 A, p. 33]. 
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Proof. By 6.3.1, Th. 2, we can find for every Q,. a measurable 
region B .. such that mB,. < 2-h-n and that Q,. U (E-Q,.) d E - B,.. 

00 

Set B= u B .. , then mB<2-h. 
n-1 

Next we determine the numbers n,., n2, ••• so that m-m11 , <2-h-2
, 

m-m < 2-h- 3 , etc. After that we find the measurable regions n, 

0 1 , 0 2, • • • such that mO,< 2-h-i and E-0, CE - (SflJ.1 -SnJ 
00 

Set O = u 0,, so that mC < 2-h, and D =Bu 0, so that mD < 2-h+i. 
i=l 

Let x be any point of E-D. x EE-Bn for every n, so x E Qn or 
xEE-Q,.; consequently, xES

111 
or xEE-S

111
• If xES111 , then 

XE Sa,. 
Let us now suppose that x E E-S

111
• As x E E-Oi, x does not belong 

to s .. -s .. ' so XE E-Sn. 
Simil~rly, 

1

because x EE :_02, we have x E E-S,.,, and so on. It 
follows that x E E-Sw. We have proved that any point of E-D 
belongs either to Sw or to E-S,,,; thus fsw is defined on E-D. 
Moreover, we have on E - D, lim fsn = fsw· Now the theorem 
follows by 6.2.4. 11

~
00 

Theorem 3. If {Q .. } is a sequence of measurable pointspecies, 
ti 

R,. = n Q,., mR11 = mn, and if lim m,. = m exists, then the species 
,, = 1 fl--+00 

00 

Rw = n Qh is measurable and mRw = m. 
h=l 

[L. E. J. Brouwer 1919A, p. 33]. 
The proof is almost word for word the same as that for the pre­
ceding theorem. 

Theorem 4. Every measurable region or region-complement 
(6.1.1 or 6.1.2) is also a measurable point species (as defined in 6.3.1) 
and the two measures are equal [L. E. J. Brouwer 1919A, p. 30]. 

Proof. For a region this is an immediate consequence of theorem 
2; for a region-complement it follows by 6.3.2, Th. I. 

Theorem 5. If /(x) is a bounded measurable function, defined 
on the pointspecies Q, and if p is any natural number, then we 
can find disjoint measurable species Q,,h (h = - l,,, ... , 0, ... , k,,), 
such that I mQ,,h = 1 and 

h 
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(h-I)2- 11 - 1 </(x)<(h+l)2-11 - 1 on Q
11

h (h#O), 

-2- 11 - 1 </(x)< 2-s,-i on Qp0 ri Q. 

Proof. Let /(x) be measurable by {Vnh} and {An}. Set Mn =E-A. 
and N nh = 111 n n V nh. Order the N nh ( n ~ p) by the following rule: 
N nh precedes N mi, if either n < m or n = m, h < i. Let Rnh be the 
species of the points of N nh which belong to none of the region­
complements that precede Nnh in this sequence. Now divide the 
sequence of the Rnh into partial sequences, beginning with 
N 11 __ 1,,, ••• , N1>.k,, respectively, as follows. Rn1 belongs to the partial 
sequence beginning with N1>h' if his the smallest number such that 

(h- 1)2-p-l ~ (i- 1)2-n-l < (i + 1)2-n-l ~ (h+ 1)2-11 - 1 • 

Let Q
11

h be the union of the species in the sequence beginning with 
N1>h; the Q11 __ 1p, ••• , Q11.~ have the desired properties. 

Remark. Brouwer [L. E. J. Brouwer 1923, p. 9] proves that 
the Q11h can be taken as outer limiting species. I do not introduce 
this notion. 

6.4. The integral as the measure of a pointspecies 

In the following three-dimensional as well as plane pointspecies 
occur. In order to prevent confusion, three-dimensional species 
will be denoted by german capitals. 

Theorem 1. Let /(x) be a bounded function, defined on a 
imbspecics S of E. Let %1 and ¾ be the species of the points in 
space with coordinates (Pi p2 , p3), such that (Pt, p2, 0) ES and 
0 ::I> p3 ::I> /(p1, p2), respectively O {: p3 {: /(p1, p2); then 
(a) /(x) is measurable if and only if %1 and ¾ are measurable 
three-dimensional pointspecies; 
(b) if /(x) is measurable, then f /(x)dx=m%1 -m~. 

Proof of (a), if. Let 1/(x)I <Mand let ~ be the elementary 
domain in space defined by (pi, p2, 0) EE, IP31 < M. Let '1:,1 be 

measurable by {m1n} and {m'.1n}• Suppose the notation is so chosen 
that m2l1n < 2- 2n. 211n is defined by a sequence of elementary 
domains {ll1n,.}; let ig be chosen such that mU1 . > (1- 2-2<1-s)mor 

~~ ~h• 
Then, if 
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The parallel to the axis of p3 drawn through a point X= (p1 , P2 , 0), 
intersects m!1n,a in a segment or segments of total length l(x); 
let X1 ... a be the species of the points x such that l(x) ~ 2-n-a- 3

, 

mXln,a < 2-n-a- 2 and we may enclose xln,q in a region 01'1,(I with 
00 

measure <2-n- 12 - 2 • Set B1 .. = u oln,a• then mB1 .. <2-n-1, and if 
a-1 

x E E - B1 .. , then the parallel to the axis of Z drawn through x 
00 

intersects mln in a species D such that mD< I 2-n-a- 9 =2-n- 3
, 

Set E- Bin= M1n· a-1 

Now we divide E into a finite set of elementary domains Y nh• 

such that if x E Y nh, the parallel of the axis of pa drawn through x 

intersects ~hn in a segment (0, s) which satisfies the condition 

Combining this inequality with the earlier result: if x E M 1 .. , then 
the parallel to the axis of pa drawn through x intersects m1 .. in a 
species of measure < 2-n- 3

, and with the fact that mln n (~ - m1 .. ) = 
=%1 ("'I (Q:-m1 .. ), we see that for XE ynh ("'\ M1 .. , 

(h-1)2-n-l ::j> f(x) ::j> (h+l)2-n- 1 ; 

for h = 0 this inequality is valid at all those points where f(x) is 
defined and f(x) {: 0. 

We have now proved that f+(x) is measurable by {Ynh} and 
{B1 .. }; in the same way, by starting with ~, we can prove that 
r(x) is measurable. 
Then f(x) is measurable by 6.2.3, Th. 1. 

Proof of (a), only if. Without loss ofgeneralitywemayassume 
that f(x) is bounded by 1. Let f(x) be measurable by {V.,h} and 
{A .. }, and let m! .. be the n-th approximation-strip, 58

11 
the three­

dimensional region of points (p1, p2, Pa) such that (p1, p2, 0) EA,., 
and Q: .. the species of points in space such that -2-n <Pa< 2-n, 
then 'Il .. = m! .. u 58 .. U Q: .. is measurable and m'Il,. < 2- 11 +2; '1) 11 can 
easily be enclosed in a region ij .. such that mij .. < 2-n+ 3 • Consider 
the finite set of rectangular blocks U1n, consisting of the points 
(Pi, P2, Pa) such that for some h, (p1 , p2, O) E V,.h (h> 0) and 
0 ::I> p3 ::j> h2-n- 1

, and the set U2 .. , which contains the points such 
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that, for some h, we have (Pi, p2, 0) EV",. (h< 0) and 0 {:: p3 {:: h2-n- 1 • 

%1 is measurable by {U1n} and fir n}; %z is measurable by {l¼n} 
and {ijn}• 

Proof of ( b). This follows at once from 

mU1n-mU2n=2-n-l .l hmVnh 

by passing to the limit. 11 

As an application we prove 
Theorem 2. If /(x) and g(x) are bounded measurable functions, 
then max (/(x), g(x)) and min (/(x), g(x)) are measurable functions. 

Proof. Set max (/(x), g(x))=h(x), min (f(x), g(x))=k(x). Let 
%,(F) (i = 1, 2; Ji'= f, g, h, k) be defined in the same way as %1 

and ~ in Th. 1. 

%1(h) =%1(/) u %i(g). 
%1(k)=%1(/) n %i(g). 

%z(h)=%z(/) n ~(g). 
%:i(k) = ~(/) u ~(g). 

%,(/) and %,(g) are measurable; by 6.3.3, Th. 1, so are %,(h) and 
%,(k). It follows that h(x) and k(x) are measurable. 

Remark. This theorem can a.lso be proved by the completion 
method (see 6.2.2). 

6.5. Unbounded functions 
6.6.1. Unbounded measurable functions 
The definition and many properties of bounded measurable 

functions can be immediately extended to unbounded functions. 
I repeat them for the convenience of the reader. 
De fi ni ti on 1 . A function /, defined on a subspecies Q of E, 
is measurable, if for every natural number n the following conditions 
are fulfilled : 

(i) a measurable plane region An with mAn < 2-11 is given; 
(ii) E is simply covered by elementary domains 

Vnh (h= -ln,, .. ,-1, 0, 1, ... , kn); 
(iii) if 111n=E-An, then 

(a) for x E Vnh n Mn, h ¥= 0, we have 
(h- 1)2-n-l :::t, /(x) :::t, (h + 1)2-n-1, 

( b) for x E Q n V no n Mn we have 
- 2-n-1 ::t, /(x) ::t, 2-11-1. 
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Theorem 1. A function which is defined almost everywhere is 
measurable [B. van Rootselaar 1954, p. 7]. 
Proof. See 6.2.2, Th. 1. 
Theorem 2 . The function / is measurable if and only if a 
completion of / exists. 
Proof. See 6.2.2, Ths. 2 and 4. 
Theorem 3. If the measurable functions f and g have the same 
domain, or if both are defined a.e., then f + g is measurable. 
Proof. See 6.2.3, Th. 1. 
Theorem 4. If / and g are measurable functions, then their 
product is a measurable function. 
Proof. See 6.2.3, Th. 2. 
Another proof of Th. 3 and Th. 4 was given by van Rootselaar [1956]. 
Theorem 5. If / and g are measurable functions, defined on 
the same domain, then max(/, g) and min(/, g) are measurable 
functions. 
Proof. If /0 and g0 are completions of/ and g respectively, then 
max (/0 , g0 ) is a completion of max (/, g) and min (/0 , go) is a comple­
tion of min (/, g). 
Corollary. If / is a measurable function, then /+ and /- are 
measurable functions, and I/I is a measurable function. 
Theorem 6. If the functions of the sequence {In} are measurable, 

and if the sequence {/n(x)} converges a.e. to /(x), then / is a measur­
able function. 
Proof. See the first part of the proof of 6.2.4, Th. 1. 
Definition 2. For any function / we denote min (/(x), 2k) by 
k/(x). 
Theorem 7. A non-negative function / is measurable if and 
only if k/ is measurable for every natural number k. 
Proof. The only-if-part is an immediate consequence of Th. 5. 
To prove the if-part, suppose that k/ is measurable by {Vknh} and 
{Akn} and that each Akn contains the boundaries of the correspond­
ing Vknh• E-Akn=Mkn• Then Wkn= U (Vknh n Mkn) is a region-

h>o 
complement. From here on, k is a fixed natural number. By 6.2.1, 
Th. 2, W kn contains a located region-complement Ln such that 
mLn >mW kn - 2-n. k/ and also / is defined everywhere on Ln; 
by 5.2.1, Th. 4, / is bounded on Ln, say /(x) < 21 on Ln, If we denote 
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Ln U ( V knO n 111kn) by Kn• then Kn is a region-complement with 
the properties 
(i) mK n > I - 2-n+1, 

(ii) x E Kn--+ /(x) < 21. 

By hypothesis z/ is measurable by { V1nh} and {Azn}; this means that 
XE V1nh ("'\ Min & h> 0--+ (h-1)2-n ::t> z/(x) ::t> (h-1.. 1)2-n. 

x E Vino n .Minn Q --+ 0 ::t> d(x) ::} 2-n. 
Q is the domain of /. 
These inequalities remain valid if Min is replaced by Min n Kn= 

=Hin. mH1n>I-2-n+2• On Hin, /(x)=z/(x), so 
XE Vlnh ("'\ Hin & h > 0--+ (h- 1)2-n ::t> /(x) ::t> (h + 1)2-n, 
x E V11,o n Hin n Q --+ 0 ::} /(x) ::t> 2-n. 

Thus, considering l as a function of n, we see that / is measurable 
by {V1nh} and {Din}, where H1n=E-D1n, 

6.5.2. Summable functions 

Definition. A measurable function / (x) is summable if 

lim J ,J+(x)dx + lim J ,t-(x)dx 
1--->CO 

exists; this limit is J f(x)dx. 

Theorem 1. If/ and g have the same domain, /(x) is summable 
and g(x) is measurable, and if O ::} g(x) ::t> /(x), then g(x) is summable. 

Proof. Let g(x) ::} /(x) be true on the almost full pointspecies Q. 
The inequality 

( 1) min (g(x), 2k+m)- min (g(x), 2k) ::t> min (/(x), ~k+m)- min (/(x), 2k) 
is obvious for such points x in Q where 

(2) either g(x) <j::: 2k, or g(x) < 2k. 

Thus, if for some x in Q ( l) were false, x could not satisfy condition 
(2); but this is a contradiction. 
Finally, if ( 1) cannot be false, then ( 1) is true. 

From ( 1) we infer that 

f k+mg(x)dx- f~(x)dx ::t> f k-t-mf(x)dx- fkf(x)dx. 

It follows that lim ha(x)dx exists. 
k-+co 

Theorem 2. If /(x) and g(x) are summable functions with the 
same domain, then /(x) + g(x) is summable and 
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f (/(x) + g(x))dx = f /(x)dx + f g(x)dx. 

The proof will be given by means of three lemmas. 

Lemma 1. Th. 2 is true for non-negative functions /(x) and g(x). 

Proof. Set /(x) + g(x) =h(x), then h(x) is measurable by 6.5.1, Th. 3 

1,-1/(x) + k-1g(x) ::t> ,,h(x) ::t, J(x) + ,,g(x). 

Passing to the limit, we see that f h(x)dx exists and is equal to 
f /(x)dx + f g(x)dx. 

Lemma 2. If /(x) and (g)x are summable functions, defined 
on the same domain, and such that O :::J:, g(x) J.:, /(x), then /(x) - g(x) 

is summable. 

Proof. By 6.5.1, Th. 3, /-g is measurable. Further O :::j:, /(x)-g(x) 

> /(x), so f- g is summable by Th. 1. 

Lemma 3. If /(x) and g(x) are non-negative summable functions 
with the same domain, then /(x)-g(x) is summable. 

Proof. If /(x)-g(x)=h(x), then 

h+(x) = max (/(x), g(x))-g(x), 

-h-(x) = g(x)- min (/(x), g(x)). 

As O ::t, g(x) ::t, max (/(x), g(x)) > f(x) +g(x) and 
O ::t, min (/(x), g(x)) ::t, g(x), we see by 6.5.1, Th. 5, 6.5.2, Th. I 

and lemma 2, that h(x) is summable. 

Proof of theorem 2. 

/(x) + g(x) = (j+(x) + g+(x)) - ( - /-(x)- g-(x)) 

is summable by lemmas 1 and 3. 

Theorem 3. If/ and g have the same domain, /(x) is measurable 
and g(x) is summable, and if J/(x)J < g(x), then /(x) is summable. 

Proof. 0 ::t, f+(x) ::t- J/(x)J and O ::t- -f-(x) ::t, J/(x)J. 
It follows that 

0 ::t, f+(x) < g(x) and O ::t- - f-(x) < g(x). 

In view of Th. I, /+(x) and - /-(x) are summable. 
As /(x) = J+(x) - ( - /-(x)), lemma 3 gives the desired result. 

Theorem 4. If /11 (x) is summable for every n and lim f
11
(x)=f(x) 

n-HX) 
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uniformly, then /(x) is summable and lim J f n(x)dx= f f(x)dx. 
rt-+CIO 

Proof. For sufficiently large values of n, 

1/(x)-/n(x)j <t:, so by Th. 3, /(x)-/,.(x) 

is summable. By Th. 2, also /(x) is summable. 
The second part of the theorem is easily proved. 

Theorem 5. If f(x) is summable and g(x) is bounded and 
measurable, then h(x) = f(x)g(x) is summable. 

Proof. Suppose lg(x)I <s. d(x)g(x) is measurable for every k, 
so h(x) is measurable. 

First let f (x) -{:: 0 and g(x) -{:: 0. If /(x) is summable, then sf(x) 
is summable, so we need only consider the case that g(x) < I. Then 
it is easily seen that, for l > k, 

min (lg, 21)- min (lg, 21.) :;j> min (/, 21)- min (/, 2"). 

f zli(x)dx - f ,Ji(x)dx :::I> J ,f(x)dx - f J(x)dx. 

This proves that h(x) is summable. 
In the general case we have 

h+(x) = f+(x)g+(x) + f-(x)g-(x); 

h-(x) = j+(x)g-(x) + f-(x)g+(x); 

so h+(x) and /1-(x) are summable. 

6.5.3. Fmiclion.s, summable on a pointspecies 

Definition I. The function f(x) is measurable on the specie.s G, 

if f(x)fa(x) is measurable. 
The function f(x) is summable on G, if f(x)fa(x) is summable; in 
this case 

Sa f(x)dx = fE f(x)f0 (x)dx. 

Theorem 1. A measurable function is measurable on every 
measurable species G. A summable function is summable on every 
measurable species G. 

Proof. (i) If /(x) is bounded, f(x)f0 (x) is measurable by 6.2.3, 

Th. 2. 

(ii) If /(x) is not bounded, kf(x)f 0 (x) is measurable for every k, by (i). 

(iii) By the preceding theorem, f(x)f0 (x) is summable. 
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Definition 2. J!f(x)dx=Ja f(x)dx where G is the interval (a, b). 

Theorem 2. If f(x) is summable, then 

lim IJa f(x)dxl = 0 uniformly. 
mG--+O 

Proof. (i) If f(x) is bounded, IJaf(x)dxl ::t, (max lf(x)l)mG. 

(ii) In the general case we determine k so that 

h(f+(x)-,J+(x))dx < 2-n-i and 

£E.(f-(x) -,J-(x))dx < 2- 11
-

2
• 

For mG < 2-n-k-z we have 

IJaf(x)dxl ::t, JG J+(x)dx + Jo kf-(x)dx + 
+ J0 (f+(x)-J+(x))dx+ J0 (f-(x)-J-(x))dx ::t, 
::t, 2"mG+ 2kmG+ 2-n- 2 + 2-n-z < 2-n. 

Remark. Van Rootselaar [B. van Rootselaar 1954, p. 16] has 
given another definition of J0 f(x)dx, which is perhaps more general 
than the definition given here. 

6.5.4. Limit theorems 

Theorem 1. If the sequence of non-negative functions {/11(x)} 
satisfies the conditions 

(i) every f n is summable, 

(ii) fn+l(x) <I:: fn(x), 

(iii) the limit lim f n(x) = f(x), exists almost everywhere, 
fl ➔OO 

(iv) lim fEfn(x)dx exists; 
n--+oo 

then f(x) is summable and 

71--+00 

Proof. li.m J f,.(x)dx= lim lim f ,j
71
(x)dx . 

.,._..o;i n-t-o;i k-+-oo 

As J Jn(x)dx is non-decreasing for increasing n and k, we may invert 
the order of the limits, obtaining 

Jim lim f J,.(x)dx. 
k~oo n-+-CO 

The sequence {k/n(x)} satisfies the conditions of 6.2.4, Th. 1, so 
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lim f kf,.(x)dx=f ,J(x)dx. 
n-+OO 

This proves the theorem. 

CLASS. Is that theorem about inverting the order of the limits 
in a double series intuitionistically valid? 
INT. Yes, and I propose its proof as an exercise. 

Theorem 2. (Egorof's theorem [B. van Rootselaar 1954, p. 10].) 
If the functions of the sequence {/ ,.} are all defined on the measur­

able species Q, and if lim f,.(x)=f(x) exists a.e. on Q, then, for 
n-+OO 

every m, a measurable subspecies Qm of Q can be found such that 
mQ-mQm<2-"', and that lim f,.(x)=f(x) uniformly on Qm. 

Proof. Let Q0 be the species of measure mQ0 =mQ, on which 
lim / ,.(x) = f(x). For Qm we choose a measurable located region-
n-.co 

complement of measure greater than mQ- 2-m, contained in Q
0 

(6.3.2, Th. 2, 6.1.2, Th. 2). Qm coincides with a point-fan S (5.2.1, 
Th. 1); to every element x of S there is associated a natural number 
N(x) such that 

lfn(x)-f(x)I < 2-1> for n> N(x). 

The fan-theorem assures us that a natural number B can be found 
such that N(x) depends only upon the first B components of the 
ips x; it follows that a maximum value N 0 of N(x) can be calculated. 
Then 

j/,.(x)-/(x)j<2-P, for every n>N0 

and every x in Q,,.. 

6.G. Hilbert space 

I shall prove that the functions f (x) which are defined a.e. and 
such that / 2(x) is summable, form a Hilbert space B 2• 

Real Hilbert space can be defined in different ways, of which 
the following two are relevant here: 

(i) the constructive definition as the species of (positively) 
convergent sequences of real numbers, in which the inner product 
is defined as usual. 
(ii) the axiomatic definition by von Neumann's axioms [J. von 
Neumann 1929, p. 64-66], [M. H. Stone 1932, p. 3]. 
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It can be proved that the two definitions are intuitionistically 
equivalent if the axioms are slightly modified in the following 
manner. 
For the sake of briefness the elements of Hilbert space H will be 
called vectors. 

Axioms for Hilbert space. 

Axioms I. The usual axioms for a real linear space. 

Axioms II. The usual axioms for the inner product, including 
Ila, (x, x) <t O; 
Ilb, If (x, x) = 0, then x = 0. 

(The null-element of H is simply denoted by 0). 
An apartness relation is introduced by 

Definition 1. x lies apart from 0 (x # 0) if (x,x) # 0. 

x lies apart from y (x # y) if x-y # 0. 

Definition 2. The vectors x1, ... , x,k are mutually free, if for 
every set of k real numbers a 1 , ... , ak such that a; fj: 0 for at 
least one value of i, we have 

a1x1 + ... + a,._.xk f,l: 0. 

Axiom III. For every k we can find k mutually free vectors. 

Axiom IV. (Axiom of separability in the strong form.) 
There exists a sequence S = {en} of vectors such that every finite 
subsequence of S is free and that the species of finite linear 
corr.binations of vectors in 8 is dense in H. 

Axiom V, the axiom of completeness in its usual form. 

Remark. Axiom III is a consequence of axiom IV. 
In order to formulate the announced theorem, I need the 

following definitions. 

Definition 3. /(x) ~ 0 means that /(x)=O a.e. /(x) is equivalent 
to g(x), /(x) ~ g(x), if /(x) - g(x) ~ 0. 
The species of the functions which are equivalent to a given function 
will be called a meta/unction. 
In this section /(x) means sometimes a function, sometimes the 
metafunction of which the function /(x) is a member. 

Theorem l. The species B 2 of metafunctions /(x) such that the 
function /(x-) is defined a.e. and that /2(x) is summable, becomes a 
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Hilbert space if (/(x), g(x)) is defined as denoting J f(x) g(x)dx. 

Proof. Of axioms I. II, only lib needs a proof. 
We must prove that (/, /) = 0 implies / ::::,, 0. 

Set h(x) = /2(x), then kh(x) is mensurable and J Jz(x)dx= 0. 
Let Jz(x) be measurable by { V nh} and {A,.}. 
Suppose m( u v,.h)>2-n. Set Jf,.= U v,.h-A,., then ml,f,.>0. 

h>l h>l 

Define g(x) = ,!1(x) on .M" and g(x) = 0 on E- M,.. 

J g(x)dx J, J f2(x)dx = 0 and 
f g(x)dx > 2-u- 1 null,. > 0. 

The supposition m( U V nh) > 2-" has led to a contradiction, so 
h>l 

m( U V,,h) J> 2-n. 
h>l 

Enclose u V,.h in a region B,. of measure ....::::2-u+ 1 ; 

11>1 

set C,. = A,. U B,.. mC,. < 2- 11 +2. On E - C,. we have /(x) < 2- 11
• 

0:, 

Set Dn= u ck. mD,. < 2-n+ 3_ Let N,. = E- D,.. On N,, we have 
k-n o:, 

/(x) < 2- 11 -v for every p, so /(x) = 0. u N k is a species of measure 
k-n 

1 on which /(x) = 0. 
Axioms III and IV are satisfied. The proof of this fact is identical 
with the classical proof. 

Proof of axiom V (the Itiesz-Fischer theorem). 

I formulate this as 

Theorem 2. Let {/
11

} be a sequence of functions in B2 such 
that J Uno - f 

11
)2dx tends to 0, if m and n tend to infinity; then there 

exists a function / in B 2 such that lim J(/- /,,)2d:r = 0 [A. Heyting 
1951]. 

n--~oo 

The proof follows closely von Neumann's proof. 
First, we determine the integers NP so that 

J (/,,.-/n)2dx<2- 3
P form, n;;;; Nr. 

For the purpose of abbreviation set flv = I/ Np+l - f N,, I and hv(x) = 
= min (gv(x), 1). By the method of 6.3.3, Th. 5, we determine the 
disjoint measurable species Qvh (h = 0, ... , s) such that L mQvh = 1 
~d h 

(h- l)::!-P- 1 <hp(x) < (h+ 1)2-1>- 1 on Qvh (h+0), 
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- 2-i>- 1 < hp(x) < 2-i>- 1 

Define QP0 u QP1 =Rp, u QJJ,.=Sp. Then 
h>l 

2- 31>> J h~dx= In,, h;dx+ fsp h;dx <t 2- 2
1>-

2 mSP. 

mSp<2-i>+ 2 .mRp>I-2-i>+2 • Set n Rp=T
12
,thenmT12 >I-2-«+ 3

• 

PC:'1 

If, finally, u T 11 =T0 , then mT0 = 1. 
a 

The sequence {/Np} converges on T 0 to a function /, the con-
vergence being uniform on any T 11 • 

JUm-fNp) 2dx :;j> J Um-fN) 2dx<e form, NP>N(e). 
Ta E 

The desired result is obtained by passing to the limit, q -'r oo. 
Classically, this can be done by the simple remark that the left 
members of (A) for q = l, 2, ... form a bounded monotone sequence. 

Intuitionistically, the existence of the limit must be proved by 
direct calculation. To do this we first prove a lemma. 

Lemma. If 

1. every function of the sequence {f n(x)} is measurable, 

2. J f;.(x)dx exists for every n, 

3. f n(x) converges uniformly to /(x) when n -> =; 
then / 2(x) is summable and lim J f;.(x)dx = J f 2(x)dx. 

n-+OO 

Proof. By 6.5.2, Th. 4, /(x) and also 1/(x)I is summable. Let e 

be an arbitrary small positive number and 'I]= 6 J ( I f(x;I + l) dx 
A number N can be found so that 

1/(x)-/,.(x)I <11 for n>N. 
Then 

1/;.(x)- /;.(x)I < 2'1'Jlfm(x) + f n(x)I < 
< 4'1'}(1/(x)I +'l'J) for m, n> N. 

IJ (/;.(x)- f;.(x))dxl < 417 J(i/(x)I + I)dx < e. 

It follmvs that lim J f;.(x)dx=S exists. 
n-+oo 

We ohoose a fixed value of n>N so that 
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(1) If f!(x)dx-SI <e/3. 

In the same way as above we find 

lf2(x)-/~(x)I < 21) (I/(x)I +1J). 
A fortiori: 

IJ2(x) - ,J!(x)I < 27J (1/(x)I + TJ ). 

(2) If ,j2(x)dx- f J!(x)dxl < 27J f(l/(x)I + 1 )dx = e/3. 

By definition 6.5.2, we can determine K so that 

(3) If f!(x)dx- f kf!(x)dxJ <e/3 for k>K. 

From ( 1 ), (2) and (3), we see that 

If kf2(x)dx-SI < E for k > K. 

Thus f f 2(x)dx=S. 
I now continue the proof of Th. 2. 

For abbreviation, set f.v:p(x) = F 11(x). 

From Schwarz's inequality there follows (q > p): 

VJ F~(x)dx ~ jlJ F~(x)dx + I1J (FJ)(x)- F,ix))2dx. 

(1) I VI F;(x)dx- VI F~(x)dxl ~ III (Fp(x)- Fa(x)) 2dx< 2- 11 • 

Thus, lim Vf F;(x)dx exists and as a consequence also 
p-+00 

lim I F;(x)dx exists; lim I F;(x)dx=S. 
p-+ 00 p-+00 

The inequality ( 1) remains true when the integrals are taken over 
an arbitrary Tk. Now for r>r0, 

J F;(x)dx<S+ 1; VJ F;(x)dx< V(S+ l)=A. 
Tk Tk 

IJ F~(x)dx - f F~(x)dxJ < 2A2- 11 for q> p>r0 • 

Tk 7'k 

As Fa(x) converges uniformly to /(x) in Tk for q-. =, we may 
pass to the limit (6.5.2, Th. 4): 

(2) I I F;(x)dx- I f2(x)dxl < A2- 11+1 for p > r0 • 

Tk Tk 

On the other hand, as mT0 = 1 and lim I F;(x)dx=S, 
p-+00 

(3) IJ F~(x)dx-SJ < 2-n- 2 for p>r1(n). 
T, 

By 6.5.3, Th. 2 we have 
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(4) f F;(x)dx<2-n- 2 for k>rz(n,p). 
T 0 -T1: 

n being given, I choose p so that p > r0, p > r1(n) and A2-:i>+ 1 < 
< 2-n-2 ; then by (2), (3) and (4), 

If f2(x)dx-S I< 2-n for k > r 2(n). 
Tt 

lim f f2(x)dx=S, or, more explicitly, ,._oo Tk 

(5) Jim Jim f J2(x)dx=S. 

As J J 2(x)dx is monotone non-diminishing with respect to k as 
T1: 

well as to h, we may, using the property which was mentioned 
already in the proof of 6.5.4, Th. 1, invert the order of the limits. 

S = Jim Jim f J2(x)dx = lim f J 2(x)dx= f f2(x)dx. 
/1-+00 k-+eo 1'k h--,oo T0 T, 

The existence of the last integral having been proved, 

J (/(x) - f n(x) )2dx 

also exists and by 6.5.3, Th. 2, this integral is equal to 

lim f (f(x) - f n(x))2dx. 

Thus, according to formula (A), 

f (f(x)-fn(x))2dx :::j:,- e for m>N(e). 

As mT0 = 1, the theorem is proved. 

6. 7. Derivation 

I shall not treat the theory of derivation here. The proofs of the 
main theorems have been adapted to intuitionistic requirements 
by van Rootselaar [B. van Rootselaar 1954, p. 33]. 
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LOGIC 

7 .1. The propositional calculus 

The word "logic" has many different meanings. I shall not try 
to give a definition of intuitionistic logic, any more than I have 
begun this course by a definition of mathematics. Yet a preliminary 
remark will be useful. Our logic has only to do with mathematical 
propositions; the question whether it admits any applications 
outside mathematics does not concern us here. The letters p, q, r 
occur in this chapter as variables for mathematical propositions; 
German letters p, q, twill be used as abbreviations for mathematical 
propositions. It is not my purpose to give a complete formal 
treatment of intuitionistic logic; a formal system which codifies all 
the logical inferences of intuitionistic mathematics known at 
present, is easily accessible in K.leene's book [S. C. Kleene 1952], 
where the reader will also find an account of the metamathematical 
investigations of this system. Among later investigations I mention 
papers by E. W. Beth [1956, Hl59], R. Harrop [HJ56. 1960], 
K. Schroter [Hl56, 1957]. G. Kreisel and H. Putnam [Hlfi7], 

J. Porte p958], H. Rasiowa and R. Sikorski [l!J5H], R. Sikorski 
[1959], Th. Skolem (1958], S. C. Kleene [Hl62] and N. K. Vorob'ev 
[Hl58J. Kreisel [1958, 1962 A] formulated the completeness problem 
for intuitionistic logic and obtained important results un this subject. 
He also proposed a formal theory of constructions [1962] which is 
intended to serve as a basis for intuitionist.ic mathematics. Here I 
shall only call your attention to some formulas which express 
interesting methods of reasoning and show why these methods are 
intuitively clear within the realm of intuitionistic mathematics. 

It will be necessary to fix, as firmly as possible, the meaning of 
the logical connectives; I do this by giving necessary and sufficient 
conditions under which a complex expression can be asserted. 
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7 .1.1. Interpretation of the signs 

The conjunction A gives no difficulty. ,I:) A q can be asserted if 
and only if both p and q can be asserted. 

I have already spoken of the disjunction v (2.2.5, at the end). 
p v q can be asserted if and only if at least one of the propositions 
p and q can be asserted. 

The negation --, is the strong mathematical negation which we 
have already discussed (2.2.2). In order to give a more explicit 
clarification, we remember that a mathematical proposition ,I:) 

always demands a mathematical construction with certain given 
properties; it can be asserted as soon as such a construction has 
been carried out. We say in this case that the construction proves 
the proposition p and call it a proof of p. We also, for the sake of 
brevity, denote by p any construction which is intended by the 
proposition p. Then --, p can be asserted if and only if we possess a 
construction which from the supposition that a construction .p 
were carried out, leads to a contradiction. 
SIGN. Is it not necessary to clarify the notion of a contradiction 1 
INT. I think that contradiction must be taken as a primitive 
notion. It seems very difficult to reduce it to simpler notions, and 
it is always easy to recognize a contradiction as such. In practically 
all cases it can be brought into the form 1 = 2. As a simple example, 
let us consider the proposition p = ( V2 is rational). It demands 
the construction of integers a, b, such that a2 = 2b2• By a well­
known argument we may suppose that a and b are relatively 
prime. On the other hand, a is even, so 4 divides a2

, hence 4 divides 
2b2, and b is even; thus a and b have the common divisor 2. This 
contradicts the fact that a and b are relatively prime. The contra­
diction can be given the form: The GCD of a and b is at the same 
time 1 and 2. 

Some mathematicians, and notably Griss, have raised objections 
against the use of contradiction in mathematical reasoning. I shall 
treat these objections in the next chapter; here I take the point 
of view that the notion of a contradiction is sufficiently clear and 
that the negation which is based on it can be used in mathematics. 

The implication p -. q can be asserted, if and only if we possess 
a construction r, which, joined to any construction proving p 
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(supposing that the latter be effected), would automatically effect 
a construction proving q. In other words, a proof of .p, together 
with t, would form a proof of q. 

Almost every proof in this book consists of such a construction 
as t above. One of the first instances, and a very clear one, is the 
proof of 2.2.3, Th. 2. 

A logical formula with proposition variables, say ~((p, q, ... ), 
can be asserted, if and only if W(.p, q, ... ) can be asserted for 
arbitrary propositions .p, q, ... ; that is, if we possess a method of 

construction which by specialization yields the construction 
demanded by W(.p, q, ... ). For example consider 

W(p, q) = (p A • p ->- q . ->- q). 

m(.p, q) demands a construction E, which from a proof C of .p and 
a proof D of .p ->- q yields a proof of q. By the definition of impli­
cation, E consists simply in the juxtaposition of O and D. Thus 
W(p, q) can be asserted. 

In 2.2.2 I gave a criterion for mathematical propositions, namely 
that every mathematical proposition has the form "I have effected 
a construction with the following properties: ..... ". This form is 
preserved by the four logical connectives. It is necessary to 
understand the word "construction" in the wider sense, so that 
it can also denote a general method of construction, as was meant 
in the last paragraph but one. If I do this - and I shall do it - , 
every logical formula expresses a mathematical proposition. 

7.1.~. Theorems of the propositional cakulus 

In the formulas I use points and brackets in the usual way, 
assuming the convention that -+ binds less strongly that A and v. 

Asserted formulas are marked with ~-
Though the main differences between classical and intuitionistic 

logic are in the properties of the negation, they do not coincide 
completely in their negationless formulas. p-+ q · v • q ->- p is 
a valid formula in classical logic, but it cannot be asserted in 
intuitionistic logic, as is clear from the definitions. 

In the theory of negation the principle of the excluded middle 
fails. p v, p demands a general method to solve every problem, 
or more explicitly, a general method which for any proposition .p 
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yields by specialization either a proof of .p or a proof of -, .p. As 
we do not possess such a method of construction, we have no right 
to assert the principle. 

Another form of the principle is-,-, p -> p. \Ve have met many 
examples of propositions for which this fails: the first was "e is 
rational" in 2.2.2. However, 

It is clear that from .p it follows that it is impossible that .p is 

impossible. I leave it to you to describe completely the method of 
construction which is demanded by (1), according to the definitions 
of ->- and -, . 

Another important formula is 

(2) r P - q . ->- • -, q - -, p. 

Of course, the inverse formula, -, q ->--, p • - • p - q, is 
not assertable. (Take q == a # b, .p == a #- b, where a and b are 
real numbers.) 

Applying (2) twice, we find 

(3) r P -> q. ->-. -,-, P ->- -,-, q. 

By substitution in (1) we find 

(4) r• P-•••P· 

If we substitute -,-, p for q in (2), wc find, usmg (1), 

(5) r,,,p->, p. 

(4) and (5) show that we need never consider more than two 
consecutive negations. 

From r p - p v q follows, by (2), r -, (p v q) -->- -, p; in the 
same way we have r-, (p V q) - -, q, so 

(6) r-, (p V q) - -, p A-, q. 

The inverse formula is easily seen to be also true: 

(7) r -, p A -, q - -, (p V q). 

(6) and (7) form one of de Morgan's equivalences. The other 
one is only half true: 

(8) r -, p V-, q - -, (p A q). 
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---, (p A q) - ---, p v ---, q cannot be asserted. aa the following 
example shows. Let .µ be a=;!= 0 and q be b =t= 0, where a and b are 
real numbers; then ---, .µ is a= 0 and ---, q is b = 0. I proved in 
2.2.5 that ab =I= 0 is equivalent to p A q, so ab= 0 is equivalent to 
---, (.µ A q): but just before the cited place in 2.2.5 I gave an example 
of real numbers a and b for which ab= 0, but neither a= 0 nor 
b = 0 1s known. 

(9) f- ---, ---, (p V---, p). 

For ---, (.P v---, .p) would imply, by (6), ---, .µA---,---, p, which 1s a 
contradiction. (8) gives by means of (2) and (6) 

f- ---, ---, (p A q) -> ---, (---, p V ---, q) - ---, ---, p A ---, ---, q. 

(10) f- ---,---, (p A q) ->- ---,---, p A---,---, q. 

The inverse formula, is also true: 

( 11) f- ---, ---, p A ---, ---, q -> ---, ---, (p A q ). 

Ji'or it is clear from the above interpretation of the logical connectives 
that I- ---, (p A q) A p --;- ---, q; then also I- ---, (p A q) A ---, ---, q -> ---, p. 
So, if ---, ---, p A ---, ---, q is giYen, the hypothesis ---, (P A q) would 
lead to ---, p, which is contradictory with the given ---, ---, p. 
It is easy to see that 

( 12) f- ---, ---, p V---,---, q - ---, ---, (p V q), 

but the inverse implication does not hold because of the strong 
interpretation of v. 

7.1.3. A formal system 

The intuitionistic propositional calculus has been developed [A. 
Heyting 1930] as a formal system with A, v, -, ---, as undefined 
constants, and on the basis of the following axioms 

I. I- p - (p A p). 

II. I- (p A q) - (q A p). 

III. I- (p ____,.. q) - ((p Ar)-> (q Ar)). 

IV. I- ((p ->- q) A (q - r))--+ (p ->- r). 

V. I- q -> (p ->- q). 

VI. I- (p A (p ->- q)) ->- q. 
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VII. 

VIII. 

IX. 

X. 

XI. 

LOGIC 

I- p -> (p V q). 

f- (p V q) -> (q V p). 

I- ((p--+ r) A (q--+ r)) -> ((p v q) -> r). 

I- -, p --+ (p ->- q). 

I- ((p->q)A (p->, q))->, p. 

The rules of deduction are the usual ones from the classical propo­
sitional calculus. 

Axiom X may not seem intuitively clear. As a matter of fact, 
it adds to the precision of the definition of implication. You 
remember that .p --+ q can be asserted if and only if we possess a 
construction which, joined to the construction .p, would prove q. 
Now suppose that I----, .p, that is, we have deduced a contra­
diction from the supposition that .p were carried out. Then, in a 
sense, this can be considered as a construction, which, joined to a 
proof of .p (which cannot exist) leads to a proof of q. I shall interpret 
the implication in this wider sense. 

A system of intuitionistic logic in which --+ is interpreted in the 
narrower sense and in which, accordingly, X is rejected as an 
axiom, has been developed by Johansson in his "minimal calculus" 
[I. Johansson 1936]. 

It must be remembered that no formal system can be proved 
to represent adequately an intuitionistic theory. There always 
remains a residue of ambiguity in the interpretation of the signs, 
and it can never be proved with mathematical rigour that the 
system of axioms really embraces every valid method of proof. 

7 .2. The first order predicate calculus 

7. 2.1. J nterpretation of the quantifiers 

Let .p(x) be a predicate of one variable x, this variable ranging 
over a given mathematical species Q. Then I- (Vx).p(x) means 
that .p(x) is true for every x in Q; in other words, we possess a 
general method of construction which, if any element a of Q is 
chosen, yields by specialization the construction .p(a). In the case 
that Q is a spread-species, we must be able to effect the construction 
.p(x) for every ips x in Q; in the proof of the fan-theorem we 
saw that this is a very strong interpretation of the generalizing 
quantifier. The existential quantifier will also be interpreted in a 
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strong way. (3x)p(x) will be true if and only if an element a of Q 
for which p(a) is true has actually been constructed. 

The introduction of predicates with more than one argument 
presents no difficulty. A formula of the first order predicate calculus, 
which contains propositional and predicate variables, can be 
asserted if it is true for every substitution of propositions and 
predicates for these variables. A simple formalization of the 
intuitionistic predicate calculus is obtained by adjoining to the 

intuitionistic propositional calculus the symbols, axioms and rules 
of the usual predicate calculus as stated by Hilbert and Ackermann 
([D. Hilbert und W. Ackermann 1949, p. 59]; see also [A. Heyting 
Hl46]). I shall not develop this formal system, but instead I shall 
prove some formulas by intuitive methods. 

7 .2.2. Theorems of the predicate calculu,s 

The following theorems are clear. 

(1) I- (Vx)p(x) ->----, (3x)-, p(x). 

(2) I- (3x)p(x) ->- ---, (Vx) ---, p(x). 

The inverse implications do not hold. Counterexamples: 

(i) Let x range over the real numbers and let .\)(x) be "x is rational 
or x is irrational". 

(ii) Let x range over the rational numbers and let l)(x) be "x is 
equal to the real number (!, defined in 2.2.2.". 

(3) I- (Vx) -, p(x) ->--, (3x)p(x). 

(4) I--, (3x)p(x) - (Vx)-, p(x). 

(5) f- (3x)-, p(x) - -, (Vx)p(x). 

The inverse implication of (5) does not hold. 
Counterexample: 
Let x range over the rational numbers and let l){x) be "x is not 
equal to the real number (!, defined in 2.2.2.". 
By substitution in (3) we obtain 

(6) f- (Vx)-,-, p(x) - -, (3x)-, p(x). 

Substitution in (4) gives 

(7) f----, (3x)-, p(x) - (Vx) -,-, p(x). 
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Applying the formulas of the propositional calculus 7.1.2. (3) and 
(5) to (6) of thi,;; section we obtain 

(8) f-- -, -, (Vx) -, -, p(x) ->--, (3x)-, p(x). 

This can be weakened to 

(9) f-- -, -, (Vx)p(x) - -, (3x) -, p(x). 

(9) and (7) yield the important result 

(10) f-- -,-, (Vx)p(x) ->- (Vx) -,-, p(x). 

It is one of the most striking features of intuitionistic logic that 
the inverse implication does not hold, especially because the 
formula of the propositional calculus which results if we restrict x 
to a finite set, is true. In fact, if x takes only two values we obtain 
7.1.2, (11). Brouwer [L. E. J. Brouwer 1924, p. 256; A. Heyting 
1930A, p. 65; S. C. Kleene 1952, p. 491] gave the following counter­
example: 

A spread .111 is defined by the spreadlaw AM and the r-omple­
mentary law r M· 

A.,,1 . The first component of an admissible sequence can be O or 1. 

If li:i, ... , an is an admissible sequence and an= 0, then an+t may 
be O or I ; if a,. = I, then a,.+1 = 1. 
I'M assigns an to the admissible sequence a1, ... , an. 

In plain words, },f consists of all ipss in which only o and 1 can 
be components, while I can only be followed by 1. 
Tl~•, following law E assigns numbers to certain elements of JI.I. 
E: The sequence, all of whose components are 0, has number 1. 
'l'he sequence, all of whose components are 1, has number 2. 
The sequence which consists of n components O followed by 
components 1 has number n + 2. 

Let x range over the elements of M and let .p(x) be "E assigns 
a number to x". Then (Vx)-,-, p(x) is true. I prove the equivalent 
proposition, -, (3x) -, .p(x), by deducing a contradiction from the 
supposition that E assigns no number to a certain element a of M. 
Under this supposition, the first component of a cannot be I, for 
then E(a) would be 2, so the first component is O. The second 
component cannot be I, for then E(a) would be 3, so the second 
component is 0. Continuing in this way we see that every component 
of a is O; it follows that E( a)= 1, a result which contradicts the 
supposition. 
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Yet, -,-, (Vx).p(x) does not hold; we can even prove that 
-, (Vx).p(x). Supposing that (Vx).p(x), the fan-theorem allows us 
to infer that E(x) must be known after a finite number .:.Y of 
components of x are given, but this clearly contradicts the 
definition of E. 
Cuss. This is the first instance of a classical theorem which is 
intuitionistically not only unprovable, but even false. 
INT. Of course, this divergence is brought about by the intro­
duction of ipss; especially, the generalizing quantifier has quite n, 

different meaning if applied to ipss. 
It has been conjectured [S. Kuroda 1951, p. 46] that the formulo. 

(Vx)-,--, p(x) -'>--,--, (Vx)p(x) is always true if x ranges over a 
denumerable infinite species. In all the counterexamples that 
have been given, x ranges over a species that is not denumerably 
infinite (this holds for ]If above, though llf is denumerable from 
the classical point of view!), but no way of proving the conjecture 
presents itself at present. 

From (3) and (4) we infer, applying 7.1.2,(2): 

( 11) r -, --, (3x)p(x) -'>- -, (Vx) --, p(x). 

( 12) r --, (Vx) --, p(x) -'>- --, --, (3x)p(x). 

By substitution in (5): 

(13) r (3x) --,--, p(x)-'>---, (Vx)--, p(x). 

From (13) and (12): 

(14) r (3x) --,--, p(x)-'>- --,--, (3x)p(x). 

Here also the inverse implication is not valid, but the fact is less 
surprising than for (10), because the corresponding formula of the 
propositional calculus, which would be--,--, (pvq)-'>-,-, pv--,--, q, 
is also not provable. 

7.3. Applications 

In some cases a negative theory can be developed parallel to a 
positive theory. In the latter every notion is defined by a positive 
definition; in the former some notions are introduced by negative 
definitions, involving double negations, but in such a way t.hat 
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definitions of corresponding notions m the two theories are 
classically equivalent. 

7.3.1. Order relations in the continuum 

Definition 1 . If S is a mathematical species and if < is a. 
predicate, defined on a subspecies of S x S, which satisfies rules 
(1)- (4) below, then < is a partial order relation in S and S 1s 

partially ordered by <. (a>b mea,ns the same as b<a.) 

(1) a<b-+--, (a>b) A--, (a=b). 

(2) a=bAb<c->-a<c. 

(3) a<b A b=c-+ a<c. 

(4) a<b A b<c-+ a<c. 

Definition 2 . A partial order relation in a species S is an order 
relation in S and S is ordered by it, if it satisfies rule (5a). 

(5a) a=b v a<b v a>b. 

The relation < between natural numbers or rational numbers 
is an order relation. The relation < between real numbers, as 
defined in 2.2.6. in connection with 3.3, is not an order relation; 
this follows immediately from 3.4.3, Th. 2. 
Instead of (5a), it satisfies (5b) and (6), which are both consequences 
of (1)- (4), (5a). 

(5b) --, (a>b) A--, (a<b)-+ a=b 

(6) a<b-+ (Vc)(a<c v c<b) 

(Compare 2.2.6, Th. 3). 

(Compare 2.2.6, Th. 4). 

Definition 3. A partial order relation in a species Sis a pseudo­
order relation and S is pseudo-ordered by it, if it satisfies rules 
(5b) and (6). (Note that (2) and (3) follow from (1) and (6).) 

In the following < always denotes a pseudo-order relation in a 
species S. 

Definiti0n 4. a<b means --, (a>b) A--, (a=b). 

Theorem 1. --, (a<b) is equivalent to --, (a<b). 

Proof. By (1), a<b-+ a<::.b, so--, (a<b) ->---, (a<b). (7.1.2, (2)). 
To prove the converse, I remark that a<::_b A--, (a<b) means the 
same as --, (a>b) A--, (a<b) A--, (a=b), which contradicts (5b). 
So a< b A--, (a< b) is impossible; consequently --, (a< b) ->- --, (a<h. 

Theorem 2. a<b is equivalent to --,--, (a<b). 
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Proof. By def. 4 and 7.1.2. (6). (7), a<.b is equivalent to 
, (a>b v a=b), so 
,, (a<b) ~'" a<b (7.1.2, (5)). 
, (a<b)---,,., (a<b) by Th. I, so 
,, (a<b)---,,. ,, (a<.b) (7.1.2, (2))---,,. a<.b. 

, (a<b)---,,.---, (a<.b) by Th. 1, so 
a<.b ->- ---,---, (a<b) (7.1.2, (1), (2)). 

Theorem 3. The relation < satisfies (1)-(4), (5b). 

Proof. (1) follows from def. 4 and Th. 1. 
(2). From (2) for <, by 7.1.2, (3) and Th. 2, as follows: 

a=b 11. ,---, (b<c) -► ---,---, (a<c)---,,. a<c. 

(3). Analogously. 
(4). From (4) for < by 7.1.2, (11), (3) and Th. 2. 
( 5b) follows from Th. 1 and ( 5b) for < . 

In the case of the continuum < does not satisfy (6) (see 8.1.1). 
Instead, it satisfies (5c): 

(5c) , (a<b) 11.---, (a=b) - a>b. 

Theorem 4 . If < is a pseudo-order relation in a species S, the 
relation < which corresponds to it by def. 4, satisfies (5c). 

Proof. Immediately from Th. l and def. 4. 

Definition 5. A partial order relation in a species S which 
satisfies (1)-(4), (5b), (5c), is a virtual order relation in S and S is 
virtually ordered by it [L. E. J. Brouwer Hl25A, p. 453]. 

Theorems 3 and 4 can now be expressed as follows. If < is a 
pseudo-order relation in a species S. then <, as defined by def. 4, 
is a virtual order relation in S. 

Remark on notation. My notation is different from Brouwer's. 
Here follows a small dictionary. 
This book: -- -t: < 
Brouwer : <o > < 

The reason for changing the notation waa, that in analysis the 
pseudo-order relation between real numbers is the most important; 
therefore, it should be denoted by the simplest sign. Also in 
Brouwer's notation there is danger of confusion between a> b and 
(a>b v a=b). I use a"i;_b in the latter sense. 
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According to def. 5, the rules for a virtual order relation are: 

(1) a<b-+--, (a:>b) A--, (a=b). 

(2) a=bAb<:..c-+a<c. 

(3) a<b" b=c -> a<c. 

(4) a<b A b<c -> a<c. 

(5b) --, (a<b) A--, (a:>b)-+ a=b. 

(5c) --, (a< b) A--, (a= b) -> a> b. 

Theorem 5. If< is a virtual or<ler relation in a species S, then 
--,--, (a<b)-+ a<b and--,--, (a=b)-+ a=b. 

Proof. By (1) and (5c), a<b is equivalent to--, (a>b) A--, (a=b), 
'"·hich, by 7.1.2, (6), (7), is equivalent to--, (a>b v a=b). Thus, by 
7.1.2, (5), --,--, (a<b)-+ a<b. 

From (1) and 7.1.2, (2), (1) we infer that a=b ->--, (a<b). 
Similarly, a=b-+--, (a>b). Thus, using (5b) and 7.1.2, (6), (7), 
we see that a=b is equivalent to--, (a<b v a>b). This proves that 
--,--, (a=b)-+ a=b. 

Definition 6. Let 
0< be a partial order relation in the species 

S, and let L be the species of formulas a= b or a< b, which are 
valid for elements a, b of S. < is called unextensible if it has the 
following properties: Whenever x, y ES and --, (x < y) cannot be 
deduced from z by applications of ( 1 )-( 4), then x < y E z; similarly, 
whenever x, y ES and --, (x = y) cannot be deduced from 2 by 
::i.pplications of (l)-(4), then x=y EL· 
Theorem 6. Every virtual order relation is unextensible 
[L. E. J. Brouwer 1927]. 

Proof. If x>y E z, then --, (x<y) can be deduced from 2 by 
(1), so if --, (x<y) cannot be deduced from z by (1)-(4), then 
--, (x>yE,l), and similarly,--, (x=yEz). 
Thus, by (5c), x<y E z. 

The proof for = is analogous. 

Theorem 7. Every unextensible partial order relation is a 
virtual order relation. 
For the proof, see Brouwer [L. E. J. Brouwer 1927]. 
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7 .3.2. The negative theory of convergence 

2.4, Def. 1 can be formulated as follows: 

109 

The sequence {a,.} of real numbers is positively convergent to 
the limit a if 

(1) (Vk) (3n) (Vp) (la-a,.+PI < 2-1:). 

As the corresponding negative definition I choose: 

Definition 1. The sequence {a 11 } is negatively convergent to the 
limit a (-lim an= a) if 

(2) (Vk)-,-, (3n) (Vp) (la-a,.+PI <2-k) [J. G. Dijkman 1952]. 

Cauchy's general criterion for convergence 1s 

(3) (Vk) (3n) (Vp) (lan+P-a,.I < 2-k). 

Definition 2. The sequence {an} is non-oscillating, if 

(4) (Vk) -,-, (3n) (Vp) (lan+p-anl < 2-k). 

It is well-known that if a sequence {an} satisfies (3), then a real 
number a can be found so that (1) is true. The corresponding 
relation does not hold between ( 4) and (2), as example (ii) shows. 

Examples. (i) a,.= 1 if the n-th digit after the decimal point 
in the decimal expansion of n is the 9 of the first sequence 
0123456789 in this expansion (let us call this value of n, if it exists, 
the sequence-number); otherwise an= 0. In order to show that 
this sequence satisfies (2) with a= 0, I first remark that (2) is 
equivalent to 

(5) -, (3k) (Vn)-, (V p) (la-an+PI < 2-k). 

Suppose we had found /,·0 such that 

(ix) (Vn), (Vp) (la,>+PI < 2-1co). 

Suppose further that a sequence occurs in n and that s is the 
sequence-number; then 

(/3) (Vp) (a-.+p = 0), so (Vp) (la-+PI < 2-1co). 

So (ix) cannot be true. ,v e have now proved: 
If (oc) is true, then no sequence 0123456789 can occur in n; but 
then (Vn) (an= 0), and (cx) is false. Thus, (cx) has led to a contra-
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diction, and (5) is proved. Yet it is clear that we cannot assert 
that the sequence {a,.} is positively convergent. 

(ii) a,.= 0 if no sequence 0123456789 occurs in the first n digits 
after the decimal point in n; a,.= 1 if such a sequence does occur 
in the first n digits. This sequence {a,.} is non-oscillating; the proof 
is analogous to the preceding one. Yet we cannot assert that it is 
negatively convergent, for it is unknown whether a limit, if it 
exists, will be O or 1. 

Theorem. Every negatively convergent sequence is non-oscil­
lating. 

Proof. Let us abbreviate 

(3n) (Yp) (lan+JJ-a,.I <2-k) by W(k), and 

(3n) (Yp) (lan+JJ - a I< 2-k) by 5.B(k, a). Then ~(le~- 1, a)-.- ~((k). 

--,--, 5.B(k+ I, a)->--,--, W(k). 

(Y k)--,--, 5.B(k, a) -> (Y k)--,--, fil(lc) 

(3a) (Yk)--,--, 5B(k, a)-+ (Vk) --,--, ~((k). 

This proves the theorem. 

Theorem 2. If -Jim a,.=a and -Jim b,.=b, then -lim(a,.+b,.)= 
=a+b. 

Proof. Set a,.+ b,. = c,., a-1-b = c. 
Let us abbreviate 

(3n) (Vp) (la,.+P - al< 2-k) by W(k), 

(3n) (Vp) (lbn+:v - b I< 2-k) by Q3(k), 

(3n) (Vp) (lcn+:v -cl< 2-1&+ 1 ) by Cf(k). 

Then fil(k) 11 5.B(k) -> Cf(k), thus --, --, 9!(k) A --, --, 5.B(k) -+ --, --, Cf(k) 

(Application of 7.1.2, (11) and (3)). 

(Vk) --,--, fil(k) 11 (Vk)--,--, 5.B(k) -:• (V k) --,--, Cf(k). 

This proves the theorem. 

Theorem 3. If -Jima,.=a and -Jima,,=b, then a=b. 

Proof. From -Jim a,.=b it follows that -Jim -a,.~~ -b. Thus by 
Th. 2, -Jim c,. = a - b, where every c,. = 0. 



.ti'PLICATIONS 

(Vk) ,---, (3n) (Vp) (la-bJ <2-k). 

(V k)---,---, (la- bJ < 2-k). 

(Vk) (Ja-bJ ::t, 2-k). 

a= b. 

Ill 

The following theorem has no parallel in the positive theory. 

Theorem 4. Every bounded monotone sequence of real numbers 
is non-oscillating. 
For the sequence {a,.}, we have by hypothesis, 

(1) (Vn) (a.n <.ilf), 

(2) (Vn) (a,.+l {: an). 

It must be proved that 

(X) (V k)---,---, (3n) (Vp) (an+P - an< 2-k), 

which is equivalent to 

(Y) ---, (3k) (Vn)---, (Vp) (an+1> - a,.< 2-k). 

Let us suppose that we have found a number k1 such that 

(5) (Vn),(Vp) (an+P-a,.<2-k•). 

It suffices to deduce a contradiction from (1), (2) and (5). Now from 
,(3p) (an+p-an>z-k,- 1 ), it follows that (Vp) (an+p-an<2-ki), BO 

from ( 5) it follows that 

(6) (Vn),---, (3p) (a
11
+1>-an>2-1c,-i). 

The theorem will be proved if we deduce a contradiction from 
(1), (2) and (6). 
As a special case of (6) we have 

(7) ---,---, (3p) (aJ)-a1 >2-k•- 1). 

Let us suppose that we have found a number p1 such that 
a -a >•J-k,-1.then by(6) ---,,(3r)(a-a >2-k•- 1 ) and further 

P1 1 - J ' ' r P1 ' 

---,---, (3r) (ar-Gi,> 2.2-k•- 1). 

We have now proved from (1), (2) and (6), 

(8) (3p) (aP-a1 >2-k•- 1) - ---,---, (3r) (a,-a1 >2.2-k1 -
1). 

Using the propositional calculus (7.2.1, (3), (4), (2)), we infer from 
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(7) and (8) that 

(9) -,-, (3r) (a,-Ui> 2.2-k1 -
1
). 

By repeating h-1 times this reasoning, we find 

(10) -,-, (3s) (a,-a1 >h.2-k•- 1). 

Now take h = [~~~:] + 1 ; we find 

(JI) -,,(3.s)(a,>M). 

This contradicts (1). 

Remark. It is easily seen that instead of (1), the hypothesis 
, -, (3M) (Vn) (an< M) is sufficient. 

7.3.3. Negative interpretation of classical analysis 
It was first proved by Godel [K. Godel 1932] that the classical 

propositional calculus and classical arithmetic can be developed as 
parts of the corresponding intuitionistic systems. In order to 
establish such theorems it is necessary first to formalize the relevant 
part of intuitionistic mathematics. The remarks which I made 
concerning the intuitionistic calculus of propositions apply to 
every formal system which is constructed with the intention of 
representing an intuitionistic mathematical theory: it can never 
be proved rigorously that such a system is adequate. However, 
formal systems have been constructed for the propositional calculus, 
predicate calculus and elementary arithmetic, such that every 
provable formula of one of these systems, if interpreted in the 
right way, expresses a theorem of intuitionistic mathematics. 
These systems are described in detail by Kleene in his book [S. C. 
Kleene 1952, p. 492]; he gives them in such a way that, by adjoining 
to each of them the axiom -, -, p -+ p, we obtain the corresponding 
eLssical systems. 

Kleene proves various extensions of Godel's theorem, of which 
I mention the theorems I, 2 and 3 below. 

Definition I. p + q means --, (, p A---, q). 
p ::) q means ---, (p A ---, q). 

(Vx)p(x) means -, (Vx)-, p(x). 

By 7.3.1. (3) and (4), the latter is equivalent to ,,(3x)p(x). 
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Theorem 1. For the propositional calculus with " as con­
junction, + as disjunction, ::> as implication and I as negation, 
every classically provable formula is true intuitionistically. 

Theorem 2. For the number-theoretic formal system (elemen­
tary arithmetic) with " as conjunction, + as disjunction, ::> or -
as implication, 1 as negation, and (V ) as existential quantifier, 
every classically provable formula is true intuitionistically. 

Theorem 3. For the predicate calculus, with " as conjunction, 
+ as disjunction, ::> or - as implication, , us negation, and (V ) 
as existential quantifier, every classically prov i.Lblc formula becomes 
true intuitionistically after every prime formula .i:, which occurs 
in it, has been replaced by 11 p. 

Rem ark . The transformation of p in to 1 1 p is unnecessary 
in the propositional calculus, because 1, .i:, ::> p, that is 
1 (, 1 p" -, p), is true, and in the number-theoretic system, 
because the prime formulas haYe the form a.=b or a>b, where 
a and b are natural numbers, so that 11 (a=b) - a=b and 
11 (a>b) - a>b are true. 

These theorems contain consistency proofs for the classical 
systems relatively to the corresponding intuitionistic systems. 

I shall now apply these theorems to the arithmetic of real 
numbers. A number-generator was defined as a Cauchy sequence 
of rational numbers. For the application of Th. 2, in the definition 
of a Cauchy sequence, (Vx) must be substituted for (3x), so that 
we obtain the definition of a non-oscillating sequence. 

Definition 2. A weak real number-generator is a non-oscillating 
sequence of rational numbers. 

The definition of coincidence for real number-generators was 
as follows: If a= {an} and b= {bn}, then a=b means that 

(Vk) (3n) (Vp) (lan+P-bn+pl <2-k). 

Definition 3. The weak number-generators a= {an} and b = {b,.} 
coincide in the weak sense (a~b) if 

(Vlc) (Vn) (Vp) (lan+P-bn+PI <2-k). 

Definition 4. A weak real number is the species of the weak 
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number-generators which coincide in the weak sense with a given 
weak number-generator. 

The definition of the order relation between real number-genera­
tors was as follows: a> b means that 

(3k) (3n) (Vp) (an+p-bn+p>2-k). 

Definition 5. For weak number-generators a= {an} and b= {bn}, 
a is weakly greater than b (a:> b) means that 

(Vk) (Vn) (Vp) (a,.+J> -bn+J> > 2-k). 

This is equivalent to the double negation of a>b, for from 7.2.2, 
(11) and (12) we infer easily that -,-, (3x)p(x) is equivalent to 
-, -, (3x) -, -, p(x). 

As a corollary of Th. 2 we have 

Theorem 4. Let S be the system which is obtained from the 

number-theoretic formal system by adjoining to it free Yariables 
for real numbers and the relations = and ;:;.- for real numbers. 
Let T be a theorem of classical arithmetic which can be formalized 
in S. Let T' be the theorem which is obtained from T by repl.acing 
v by +, (3x) by (Vx), the variables for real numbers by variables 
for weak real numbers, = by · and > by :>, then 1'' is true 
intuitionistically. 

In order to extend theorem 4 to analysis, it will be necessary 
to extend Th. 2 or Th. 3 to a predicate calculus of higher order or 
to some other calculus in which the main part of classical analysis 
can be formalized. Probably a consistency proof for analysis 
relatively to intuitionistic mathematics can be derived by this 
method. 



VIII 

CONTROVERSIAL SUBJECTS 

8.1. Infinitely proceeding sequences, depending upon the solving 
of problems 

8. I. I. The method 

Since 1948 Brouwer has published a number of papers, many of 
them in Dutch [L. E. J. Brouwer 1048, p. 1246; 1948A; 1948B; 
HJ49; 1949A; 1950; 1950A; UJ5 l ; UJ52B; 1!)54B; 1954C], in 
which he gives counterexamples to classical theorems. All these 
examples are based on a principle which he indicated in his con­
ference for the 10-th Int. Congress of Philosophy, Amsterdam 1948. 
I begin by illustrnting it by means of the following definitions. 

We shall say that a mathenmtical proposition µ has been tested 
if either ---, µ or ---, ---, µ has been proved. Let .p be a proposition 
which has not been tested (e.g. "a sequence 0123456780 occurs in 
the decimal expansion of 71:"). Now I define a real number-generator 
a= {a,.} by an ips as follows. As long us µ has not been tested, 1 
choose a,.= 2- 11

, but if µ is tested between the choice of am and 
that of a111+1, then I choose am+u= 2- 111 for every q. 
SIGN. This does not sound like a mathematical definition. Can 
a sequence of rational numbers be considered as mathematically 
well-defined if it;; components depend upon material facts, such 
as the existence at a given moment of a proof for a certain pro­
pm,ition? 
INT. I agree to this objection; and, indeed, I doubt whether it is 
advisable to adopt such definitio11:-.; us mathematical. As I stress('d 
before, no verbal definition can be perfectly unambiguous; we see 
now that the definition of an ips left us some free play. In such a 
case we may decide freely which interpretation we adopt. 
FORM. As van Dantzig has remarked [D. van Dantzig 1949], 
Brouwer's definition and the reasoning which lw based on it ca11 

be fully justified from a formal point of view. 
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INT. Van Dantzig's methods, as he indicates, also throw some 
light on the subject as it is seen by the intuitionists. I shall try to 
characterize briefly his point of view. 
Let wi (i = 1, 2, ... ) denote for every i a finite set of mathematical 
deductions. The sequence {wJ will be denoted by .Q. 

n 
Set an= u w;. Let .p be a mathematical proposition. The real 

i-1 

number-generator a depends upon .Q; a(.Q) = {an(.Q)}. If an contains 
no deduction of either-, .P or -,-,.p, then an(.Q)=2-n. If an 
contains a deduction of -, .)J or of -, -, .)J, and if -m is the 
least number such that am contrt.ins a deduction of-, p or of-,-, p, 
then an(.Q) = 2-m. In this form the definition of a sounds more 
mathematical; the question remains whether it is adequate for 
Brouwer's purpose. 

Brouwer wished to show that a# 0 while a # 0 has not been 
proved (This is the example which I promised in 2.2.3). For suppose 
a= 0; then neither -, .p nor -, -, .)J could ever be proved, so -, -, .p 
and -, -, -, p would both be true, a contradictory result. Hence 
a# O. On the other hand, a # 0 would mean that we could find /l. 

number q so that a> 2-a; it follows that .P would be tested before 
the choice of aa. We can only know this if .P has already been tested. 
Note that a, # 0 is not contradictory, for this would imply a= O. 

Evidently Brouwer supposes that he does not know beforehand 
which deductions will be made; if a law is passed throughout the 
world prohibiting the making of any mathematical deduction 
whatever, then the proof of a,:/=O fails. 

In van Dantzig's version the result is as follows. For a given n, 
the assertion, that a= 0 whatever Wn+I• Wn+2, ••• may be, is false. 
If a # 0, then a number q is known such that a proof of either-, .p 
or -, -, .p occurs in aa. 
SIGN. That is to say, in van Dantzig's terminology we have no 
example of a real number a such that a# 0 while a # O is unproved. 
INT. That is so. Personally, I prefer van Dantzig's terminology, 
which avoids several equivocalities in Brouwer's words. Van Dantzig 
acutely analyses Brouwer's definition and introduces many refine­
ments, for which I refer to his paper. In my opinion it is not very 
important whether we express the result in Brouwer's words or in 
those of van Dantzig, provided we understand what is meant by 
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it. Nor is it important whether we call it a mathematical result 
or not. In any case it shows that it would be foolish to seek a proof 
for the equivalence of the relations ¥- and # between real numbers. 
CLASS. I have been convinced of that since 2.2.3. 
INT. Brouwer's example analyses one of the subconscious reasons 
which made you feel this conviction. 

Brouwer's example can also be used to demonstrate that the 
virtual order of the continuum is not a pseudo-order (see 7.3.1). 
Let me repeat the example. Let .p be a proposition which has not 
been tested. I define a real number-generator a= {an} by an ips as 
follows. As long as .p has not been tested, I choose an= 2-n, but if .p 
is tested between the choice of am and that of am+1, then I choose 
am+a= 2-m for every q. Now I define c= {en} as follows. As long as 
.p has not been tested, I choose en= 2-n, but if .p is tested between 
the choice of am and that of am+I• and m is even, then I choose 
cm+a=2-m for every q, but ifm is odd, then I choose c,=2-•even 
for r>m. 

If c # 0, then c=a; hence, if a>c, then c=0. If c>0, then 
c ,6 0. Hence, a::,. c or c::,. 0 would imply that c = 0 or c ¥, 0 and 
therefore either that .p will not be tested after an even number of 
choices for a, or that it is impossible that .p will not be tested after 
an even number of choices for a. But as long as .P has not been 
tested, we can know nothing about the number of choices for a 
after which it will perhaps be tested. Although a> 0, we cannot 
assert that a>c or c>0, so that rule (6) of 7.3.1 is not fulfilled. 

8.1.2. Contradictoriness of classical real number arithmetic 

I◄'rom here on I shall use Brouwer's terminology, which has now 
been sufficiently clarified to enable you to substitute another one 
if you prefer to do so. 

The theorems of this section are stronger than those of the 
preceding one, in this respect, that they express the contradictority 
of some classical results. 

Theorem 1. It is contradictory that for every real number a, 
a ¥-c 0 would imply a # 0. 

Proof. Let J be a finitary spread which coincides with the 
interval [0, l] (3.4.l, Th. I). We define simultaneously an element 
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f of J and a real n um her-generator a(f) = { an (f)} as follows. 
If f E J, let p(/) be the proposition "f is rational". For every n, In is 
chosen between the choice of an(!) and that of an+I(f). As long as 
p(/) has not been tested, we choose an(!)= 2-n. If p(f) is tested 
between the choice of am and that of am+v we choose amH= 2- 111 for 
every q. As in the preceding example, a(f) ,.~ 0 for ernry /. Let us 
suppose that a(/) # 0 for every/; then for every fa natural number 
r(/) is known, so that p(f) is tested before the choice of ar+IU), that 
is before the choice of /,+1· By the fan-theorem, a maximum s for 
r(/) can be found, consequently p(f) is tested for every / before 
the choice of /,+1· Now let/ be an ips which after the choice of/, is 
subject to no other restrictions than those contained in tlw 
definition of J; we are free to continue f in such a way that either 
a rational or an irrational number results. Hence, it is contra­
dictory that p(f) is tested before the choice of f,+1· 

Thus (V /) (a(/)¥= 0) and -, (V /) (a(/) # 0) are both true, when~ i 
ranges over J. 
FoRM. Evidently, in this formal notation the quantifiers must be 
understood in an enlarged sense, corresponding with Bronwer's 
enlarged notion of an ips. 
INT. The proof shows also that it is contradictory that., for 
every real number a, a ic O and a {: 0 would imply a,> 0, or, in 
the terminology of 7 .3.1, that a> 0 would imply a> 0. 

In order to prove the contradictoriness of classical elementary 
arithmetic, Brouwer proves the following extension of Th. I. 

Theorem 2. It is contradictory, that for every real 11111111,:·;· ,, . 

a¥c0 would imply a ::t, 0 v a{: 0. 

Proof. As before, let J be a finitary spread coinciding with 
(0, l ], / any element of J, and .p(f) the proposition "f is rational". We 
define / and the real number-generator b(f) = {bn(f)} as follows. For 
every n, f n is chosen between the choice of bn(f) and that of b

11
+1(/). 

As long as p(/) has not been tested, we choose bn(f) = ( - l)":2-". 

If between the choice of bm(/) and that of bm+1U) it is proved that f 
is irrational, we choose bm+11U) = 2-m for every q. If between the 
choice of b,,.(/) and that of b111+1(/) it is proved that f canaot be 
irrational, we choose b111 +q(f) = - 2-n, for every q. As before, b(/) -f= O. 

l::;uppose that for every f in .J, either b(/) :::t> 0 or b(/) {: O. 
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If / is irrational, then b(f) > 0, so if b(f) ::t,- 0, then / cannot be 
irrational. 

If / cannot be irrational, then b(/) < 0, so if b {:: 0, then / is 
irrational. (Application of 7.1.2, (2) and (5)). Thus, [O, l] would 
be split up into the subspecies of numbers which cannot be irrational 
and the subspecies of irrational numbers. This contradicts 3.4.3, 
Th. 2. 

Corollary. It is contradictory that for every real number x 

either x ::t,- 0 or x {:: 0. 

Theorem 3. It is contradictory that the equation ax+b=0, 
where a =I= 0 and b c;= 0, has always a solution. 

Proof. Let c be a real number, c#0. Take a=c+2lcl, b=c-2lcl, 
then a,;60 and bc;60. Let x1 be a solution of ax+b=0. If c>0, 
then a= -3b, so b(3x1 -1)=0, so x1 = 1/ 3 . If c<0, then b= -3a, 
so a(x1 - 3) = 0, so x1 = 3. Thus, if x1 # 1/ 3 , then c ::t,- 0, and if x1 =I= 3, 
then c {: 0. As either x # 1 / 3 or x # 3, we have either c ::t,- 0 or c {: 0. 
Hence, if ax+ b = 0 had a solution for every c # 0, then c =I= 0 would 
imply c ::t,- 0 or c {: 0. which is contradictory by Th. 2. 

Corollary. In euclidean plane geometry it is contradictory that 
every two lines which can neither coincide nor be parallel, intersect. 
For if a# 0 and b # 0, and if d is any real number # 0, then 
ax+ dy = b is the equation of a line which does not coincide with 
the axis of x and is not parallel to this axis. If all these lines inter­
sected the axis of x, ax= b would always have a solution if a# 0 
and b =I= 0. 

8.1.3. Example concerning the Balzano- Weierstrass theorern 

One of the forms of this theorem, discussed in 3.4.4, ran as 
follows: 
(C) Every bounded species of real numbers without a point of 
accumulation is bounded in number. 

Let ,I:) be a proposition which has not been tested. I form an 
ips {bn} of rational numbers as follows. As long as +1 has not been 
tested, I choose bn = 2-n. If +1 is tested between the choice of b,,. and 
that of bm+1• I choose bm+1> = 2-m for every p. Let S be the species 
of the components b,, of this sequence. Suppose c were a point of 
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accumulation of S. It is clear that c <f:: 0. But also c :::/> 0, for from 
c > 0 it would follow that S were finite. Thus c = 0, but this implies 
that .p can never be tested, which is contradictory. Consequently, 
Scan have no point of accumulation. On the other hand, if S were 
bounded in number, a natural number m would be known such 
that p will be tested before the choice of bm+1• which is not the case. 
So there is no hope of proving (C) intuitionistically [L. E. J. 
Brouwer 1952B ]. 

8.2. Negationless mathematics 

Serious objections against the use of negation in mathematics 
have been raised by Griss [H. Freudenthal 1936A; A. Heyting 
1936; G. F. C. Griss 1946, p. 24 and p. 64; 1948; 1948A]. Though 
agreeing completely with Brouwer's basic ideas on the nature of 
mathematics, he contends that every mathematical notion has its 
origin in a mathematical construction, which can actually be 
carried out; if the construction is impossible, then the notion 
cannot be clear. 

Brouwer admits such theorems as "a square circle cannot exist"; 
we can prove this theorem by deriving a contradiction from the 
supposition that we had constructed a square which were at the 
same time a circle. According to Griss, this supposition has no 
clear sense, because it can never be realized. In other words, if a 
square circle does not exist; how can we have a cJear notion of 
what it would be if it existed? Therefore Griss rejects negation 
as a mathematical concept. 

In many cases the proof of a negative theorem suggests a positive 
form of it. For instance, in the proof of "no square circle exists" 
we meet some assertion like the following: 

"If S is a square and P any point, then we can find points Q 
and R on the boundary of S, such that PQ # PR." For Griss, 
this positive assertion expresses the real content of the negative 
theorem. Of course in most cases one negative theorem admits 
several positive translations. Griss tried to rebuild intuitionnistic 
mathematics without negation and reached some remarkable 
results in this direction [G. F. C. Griss 1946A; 1950; 1951]. 

In the arithmetic of integers and rational numbers negation is 
not essentially used. Here a =fa b is the same as a> b v a< b, which 
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contains no negation. The first negative notion which occurred 
in these lectures was that of inequality bet,ween real numbers, 
ae;l=b. Griss cannot admit this notion as well defined; he uses 
instead the relation a # b, which is defined positively. However, 
among the basic properties of the relation # is the following: 
, a # b ->- a= b. Instead of this property Griss uses the following. 

Theorem. If a and b are real numbers such that every real 
number c which lies apart from a lies also apart from b, then a=b. 

It is not easy to give a negationless proof for this theorem; 
Griss succeeds only by an application of the fan-theorem. 

Let a and b satisfy the hypothesis of the theorem. We may 
suppose that a and b are defined by canonical number-generators, 
a= {an2-n}, b= {bn2-n}, rmch that la-an2-nl < 2-n, Jb-bn2-n1 < 2-n. 
For a given value of n, either bn < an, bn = a,. orb,,> a,,. First suppose 
b,. > an. Consider the interval i = [(an - 1)2-n, (b,. - 1)2-n], and 
construct the finitary spread S, which coincides with i, as in 3.4.l, 
Th. 1. Let c= {cn2-"} be an element of S;, then c < b, so, by 
hypothesis, c # a. This means that 

(3k) (3m) (Vp) (lcm+i,-am+i>l2-m-P>2-k). 

Then, a fortiori, 

(1) (3k) (lck-akl2-k> 2-k). 

Thus to every element c of S there is associated a natural number k 
so that (1) is satisfied. By the fan-theorem we can find r so that k 
is known after that the first r components of c have been chosen; 
thus k takes but a finite number of values and we can find k0 = max k, 
so that ••5

1 

(2) !ck, -~J2-1<o > 2-1ca 

is valid for every c in S,, that is, for every latticepoint c,._2-t. 

of order k0 in i. 
ako2-ko>(an-1)2-n; moreover, by (2), a,._2-ko is different from 

every latt,icepoint, of order k0 in i ("different" for rational num­
bers is a. positive notion!), so ak,2-k. > (bn -1)2-n. But also 
at.2-J:. <(an+ l)2-n, so bn <an+ 2. We have supposed that bn > a.,, 
so b., =a.,+ I. Similarly, if b,. < an, then b., = an - 1. We have proved 
that Jb,. - a.,J ~ 1 for every n, so b = a. 
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In the theory of spreads and species the null species cannot 
be defined. A species is defined by a property of mathematical 
objects, as explained in 3.2.1, but such a property can only have 
a clear sense after we have constructed an object which satisfies it. 
As a consequence of this exigency, the intersection of two species 
is only definable if it contains at least one element. For instance, 
we can speak of the species of algebraic fields, and of the species 
of species of six elements, but not of their intersection. The relation 
of difference between species is defined by induction as follows. 
Two species are different if one of them contains an element which 
is different from every element of the other one. 

The logic of negationless mathematics is difficult to formalize, 
for several reasons. First of all, there is no calculus of propositions, 
because only true propositions make sense. Furthermore, the 
restriction on the use of conjunction between propositional functions 
(species) must be taken into account. Attempts at a formalization 
have been made by Griss [G. F. C. Griss 1949; 1950A], Gilmore 
[P. C. G. Gilmore 1953], and Vredenduin [P. G. J. Vredenduin 
1953] and Valpola [V. Valpola 1955]. 
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Point, 56 
Point-generator, 56 
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l'~eudo-order relation, 106 



13.6 

Rank, 51 
Rational elementary domain, 60 
- - function, 22 
Real number, 37 

respectable - - - - , 27 
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spread 

Spread-law, 34 
Spread-species, 38 
Strong dependence, 54 
Subspecies, 38 
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Tested, 113 
Truncated function, 85 
Type, 38 

Unextensible, 108 

Vector, 89 
Virtue.I order relation, 107 
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- - real number-generator, 113 
- - real number, 113 
Weakly greater, 113 
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