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\
l.Tith the aid of an exact formulation of the renormalization method in quan-
1 \ tum electrodynamics which has been developed earlier, it is shown that not 

all of the renormalization constants can be finite quantities. It must be stressed 
that this statement is here made without any reference to perturbation theory. 

Introduction. 

In a previous paper1, the author has given a formulation 
of quantum electrodynamics in terms of the renormalized Hei­
senberg operators and the experimental mass and charge of the 
electron. The consistency of the renormalization method was 
there shown to depend upon the beliaviour of certain functions 
(II (p2), I 1 (p2) and I 2 (p2)) for large, negative values of the ar­
gunwnl. Ji2. H llH' inlc•grals 

~

/1( - u) 

Cl •. d11 , 
~

'r.(- u) 
-

1
--- rftt 

(! 
I , 

(i = I, 1) ( I) 

eonv<'rg<', riunnt11111 clectrorlynamics is n completely consistent 
theory, and the renonnalization constants themselves are finite 
quantities. This would seem to contradict what has appeared to 
be a well-established fact for more than twenty years, but it 
must be remembered that all calculations of self-energies etc. have 
been made with the aid of c>xpansions in the coupling constant 
e. Thus what we know is really only that, for example, the self­
l'ncrgy of the l'leclron, eonsidcrcd as a function of e, is not analy­
lic at the origin. It has even been suggested2 that a different 
scheme of approximation may drastically alter the results obtained 
with tli'e aid of a straightforward application of perturbation 
theory. It is the aim of the present paper to show-without any 
attempt at extreme mathematical rigour-that this is actually not 
the case in present quantum electrodynamics. The best we can 

1 G. KALLEN, Helv. Phys. Acla 2o, 417 (1952), here quoled as I. 
2 Cf., e.g., W. THIRRING, Z. f. Naturf. 6a 4G2 (1951). N. Hi:, Phys. Rev. 80, 

1109 (1950). 
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hope for is that the renormalized theory is finite or, in other 
words, that the integrals 

~

IIC-a) 
- ,, da, 
a· • ~

""_1:. (-a) 
' • -da, 

a· 
(2) 

appearing in the renormalized operators, do converge. Ko dis­
cussion of this point, however, will be given here. 

General Outline of the Method. 

\Ve start our i1westigation with the assumption that all the 

quantities K, (1 - L)-1 and ~ (for notations, cf. I) are finite or 

that the integrals (1) converge. This will be shown to lead to a 
lower bound for II (p2) which has a finite limit for - p2

--+- 00 , 

thus contradicting our assumption. In this way it is proved that 
not all of the three quantities above can be finite. Our lower 
bound for II (p2

) is obtained from the formula ( cf. I, Eqs. (32) 
and (32 a)) \' , -v 

JI(p2) = =:fp2 ~ l<Olj,,jz ) l2(-l)N~=>_1) 
p l=) = p 

It was shown in I that, in spite of the signs appearing in (3), the 
sum for II (p2

) could be written as a sum over only positive terms. 
Thus we get a lower bound for II (p2 ), if we consider the following 
expression 

IICp
2
) > _:P2 I'1<olj,,lq,q'>l2

-

q + q'=J) 

(4) 

In Eq . ( 4 ) , ( 0 Jj,, I 11, q') denotes a matrix element of the cur­
rent ( defin ed in I, Eq. (8)) between the vacuum and a stale with 
one electron-positron pair (for x

0 
➔ _ oo ). The energy-momentum 

n ' ctor of the electron is equal to q and of the positron is equal 
to q'. The sum is to he extended over all states for which q + q' = P · 
W e can note h ere that, if we develop the function II (p2

) in 
powers of e2 and consider just the first term in this expansion, 
only th e slates included in (4) will give a contribution. For this 
case, the sum is easily computed, e. g. in the following way: 

- '> J:' I <0 I iv I=> 12 = '\' (k_ I <o I i1c I=> 12 
- I (o I;., I => 12

) 
~ /, - 1 
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v Y' n<0>(p2) = -- . - . I ( O lj~0)1 q, q') 12 

-3p- ~ 
q +q' = p 

·-_'}= 2 y (O Jip(O) I q') Yv <o !1J.l(O) I q) (q Jip(O) I O) yv ( q' I 1J!(O) IO) 
pq+q'=p 

L 
- ~(1-2!1~2)1/1+!._m2!-l1- p2+-1m2 ]· 
- 12 n2 P2 p2 2 I p2 + 4 m2 I 

The function IJ<0> (p2) has the constant limit ~~ for large 
12 n-

values of - p 2 • This corresponds, of course, to the well-known 
divergence for the first-order charge-renormalization."; e shall see, 
however, that with the assumptions we have made here the 
lowe1' bound for the complete II (p2

), obtained from ( 4 ), is rather 
similar to l]<0> (p2). 

An Exact Expression for the Matrix Element of the Current. 

Our next problem is to obtain a formula for ( 0 / j,,, / q, r/) 
with which we can estimate the matrix element for large values 
of - ( q + q')2. For this purpose we first compute 

Uµ(x), vi1°>(x')] = -.N~}S13) Uµ(.1:), /"(3)] dx'" 

-iN(" S(l3)y4 [jt(x), vi(3)] d3.1!". J ,,, / 
' X., = X 0 

I (6) 

J 

(Cf. I, Eq. (54).) The last commutator can be computed with­
out difficulty if we introduce the following formula for j

1
t (x) 

ieN 2 L iJ2 A (:t:) 
j1,(x) = t = :.ttµ ;, s;_(x)+ 1_L~P;· ox"ot: - L/'J114 □ A4 (x) (7) 

• }_ • I! 

with 

and 
t.=o--Lo o-~,u /IA /l4 1, 4 

s2(x) = ~[ip(x), Y;,v-i(x)]. 

(7 a) 

(7 b) 

The expression (7) is written in such a way that the second time­
derivatives of all the .4

1
/s drop out. \\'ith the aid of I, Eqs. ( 4 )­

(7) " -e now get 

,.. 
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le - -,,, = - ~ --··· ~ . Y4 Y· 1P (x)b (:r-x ) . 
1- L /ll. I. 

It thus follows that 

[jfl(.r), 1/!(0J(.r')) = -N~_!:r.(13) [j
1
/.r), /(3)) dx'" l 

eN 1· (9) 
-l -L tp;_S(l :i:)y;_1f!(x). 

,ve then proceed bY computinr1 
" t, 

< 0 / { [j
1
t ( x) , 1/)<0> ( x')) , ip<0> ( x")} I O ) 

iei\T r-1' ,,, 
= 1 _ L t1,i. S ( 1 x ) y ;_ S ( x 2) - N }~ S 13) dx 

x [( 0/ Uµ (x), {ip(0> (2), /(3)})/ o >- < o / {[jµ (x), 1jj(0> (2)), /(3)) IO> l · 

If this expression is considered as an identity in x' and x" it 
will obviously give us a formula for ( 0 /jµ I q, q') and for 
( q ljµ I q') . (Cf. I, Eqs. (68) and (77).) We transform the right­
hand side of (10) in the following way: 

( 10) 

-.x'" . 

{ij,(0>(2_), /(3)} = N~i[,,_,(3), {(4)} S(42) d.-r.:1v-~ [ieyA. (3) + K] 5(32) (11) 

and, hence, 

<O/[jµ(x),{ip(0)~~,/'(3)} ] /0 ) = ir;_S(32) <<>IU1,(:r),A;,(3)J IO ) Jl (l
2

) 

+ N ~!;iv <o I [j1Jr), {/'(3), f (4))] 1 O) s ( 42). 

The last term in (10) can be -treated in a similar way: 

Up (x), ;;p<o) (2)) = N ruµ (x), 7 ( 4)) S.(12) d.r 1V + 1 eN L 1P (.r) Y;, S(x2H;.,t (13) 
-00 

and 

N \~ (13) d.r"' ( 0 I {VJ (x) ,f (3)} / 0) = - ( 0 I {vi (x), 1P<0> (x') 
• -QC 

+iN~~-~13)y4 lp(3)d3.1:"'}- I0) = iS(lx)[l- -N
1
-]. 

X 0 X ., 
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Collecting (12), (13) anti (14) we get 

(0 I {[j
1
, (x), "P(o) (x')], v;<0> (x")} IO) 

= _ ze_ (1+2(N-l)]t ,S(lx)y1 S(x2) 
1-L fir· · 

~ . 

-e ~~S13) Y;_ S (32) dx"' ( 0 I [j
1
, (:r), A.i. (3)] I 0) 

-N 2 ~!;:;"' ~!~'v 5(13) <o I Uµ (x), {f(3), {(4)}] IO) 5(42) 

+ N 2 ~!;'" ~!;;rv 5 (13) (0 I {f (3), [j
1
/x), f ( 4)]} I 0) 5 ( 42) • 

The second term in (15) can be rewritten with the aid of the 
functions II (p2

) and II (p2). 

(0IUµ(x),.4;_(3)]10) = ~DR(34) ( 0l[jµ(x),J°;.(4) ] IO) dx1v 

- 1 ~ ip(:Jx) 0 II(p2
) = -- ---3 dpe e(p) [p p -p-c5 ] - . . (2 n) I' ). ft). p-

•- . 

\Ye are, however, more interested in the expression 

(15) 

( 16) 

~ (1 +e(x3)] (0 I Uµ(x), A.;.(3)] I 0) = c:b:;4 \ dp/P(-< 3
) [ii(p2) 

'-· 

+ i:rr:e (p) II (p2)] + ¾ (1 + e (x 3)] o2 rp (3 x), 
- ox ox, µ r. 

l (17) 

I 
where 

rp (x) = __ 1 __ ~• d ip.r ( ) II (p•) 
(2 n)" _, pe e P p2 · · 

'· 
Obviously, we have 

rf>(3a:)=0 

a~c~,x) = -ill(O)b(x-x"') 
Xo 

for xt = x0 • It thus follows 

( 17 a) 

(18 a) 

(18 b) 

e(x3)o
2

rf>~~~ = 0 .
0
~. [e(x3)rf>(3.r)] + 2ill(O)b

1
~4 b;_~b(x3). (19) 

OXµ X;. x,, X;_ 

·•· 
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Using the equation 

af;, S(13)r;_S(32) = o, 
}. 

(20) 

-, ~}~! + ,(x 3)] S(13) Yl S (32) (0 I [j
1
, (.s), .s, (3)] I 0) dx"' 

~ -(/:)' ~ dx"' ~ dp/''"' S(13) y
1
, S (32) [fl (p') + Im (p) II (p')] 

+ib
1
H

1 
LL S(l x)y4 S(x2). 

Introducing (21) into (15) we obtain 

( 0 I {[j µ (;i::) , 1p<0l (x')], :;p<0
) (.-r")} I O) 

= ie ~ dx"' ~ (:~)4 /P<xs> S (13) y1, S(32) [1 -ii (p
2) 

+ ii (0)-ins (p) II(p 2
)] 

- ~v2 \xdx"' \x~:-i:;IV S (13) ( O I u,, (x), ({(3), {( 4)}] I 0) S ( 42) 
t - oc t,-:::t: 

+ S 2 \ .td.-i::'" ~xdx1V S ( 13) ( 0 I { f ( 3), [j µ ( .r), f ( 4))} I O) S ( 4 2) 
•. - oc , .. -oc 

+ 2ie(N-1) 1c S(l ) S( ·'>). 
1-L c;,,J. X Y;. X -

The first te rm in (22) describes the vacuum polarization and is 
quite simi lar to the corresponding expression for a weak externa l 
field (cf. I, Appendix) . The remaining terms contain the ano­
malous magnetic moment, the main contribution to the Lamb shift 
etc. Introducing the notation 

- :V2 0 (x 3) 0 (34) ( 0 I U,,(x), {f (?,), j (-l)}) IO ) 

+N2 0(x3)0(x4) ( 0l{f(3), u,,(:r), {(-l)] }IO > 

2ie(N-1) 
l-L Lb1dy4 b(x3)b(3-l) 

= ~- \~d d, ip'(R x ) + ip(x 4)A ( , ) 
(2 n)8 ' P Pe f' P 'P 

'·. 

I (23) 

(21) 

(22) 
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1 
O(x) = 2[1+s(x)], (23 a) 

we obtain from (22) . 

< 0 lj/1 I q, q') I 
= (O UJ;1> I q, q') [ l - n ((q + q')2) + ll(O)- inll ((q + q')2

) 

N-11 . I j +2 (=L +ie(Oiip<0Jlq')l1
1
t(-q',_q)(Ol1P<0> q). 

This is the desired formula for the matrix element of the current. 

Analysis of the Function Aµ (p',p). 

\Ve now want to investigate the function Ap (p', p) in some 
detail, especially studying its behaviour for large values of 
-(q + q')2 in (24). For simplicity, we put /t = J.: =!= 4 and study 

ieAk (p', p) = ~ ~ dx"'d:i:IY e- ip'(
3

x)-ip(x'1) N 2 { O(x 3) 0(:r: 4) ( 0 I { ((3), l 
[jk(x),f(4)]}/O)-0(x:3)0(34)(0/fjk(x),{f(3),f(-!)}]/O)}. j 

,ve treat the two terms in (25) separately. The first Yacuum ex­
pectation value can be transformed to momentum space with the 
aid of the functions 

Ai+\p',p) = l'2 > ( 0ifl.:' )( z'liklz )( :i/lO ) (26) 
p ( :: _) = J) 

Ak- >(p',p) = V2 ~ ( Ul/l.:' )(.:'IJkl.: )( zlfiO) (27) 

Bi+\p',11) = 1'2 ~ ( 0/flz' )( z'//lz )( .:/j,,/o ) (28) 

It then follows that 

(24) 

(25) 

; ol:f(:l),[jk(:r),/(4)] }In >= ,!2 ) - 7{/JJ'(:Jxhip(.rl)At\J>',p) l 
p , p' 

ip'(34) + ip(4 .r)B( +)(, )+ ip'(x4) + ip(4a) 8 (- )(, ) j (30) 
- e k /!,/! e k /l,P 

ip'(4.r) + ip(x:J) ,(- )( , ) I 
- C .-,,,. /J , /J I • 
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Our discussion started with the assumption that all the renorm­
alization constants and, of course, all the matrix clements of 
the operators jp(.1:) and f(x) are finite. As this is a condition on 
the behaviour of, for example, the function II (p2) for large values 
of - p2

, and as this function is defined as a sum of matrix ele­
ments, it is clear that we also have a condition on the matrix 
elements themselws, i. e. on the functions A. and B defined in 
(26)-(29) for large rnlues of -p2, - p' 2 and - (p- p')2. To get 
more detailed information on this point we consider the expres­
sion 

< zl [1~(x),A~
0
)(x')] lz> 

_ . L a2
n(x'-x) \ 11 ( ")D( 1 ·") - -, -----------+ dx F x-x .1: -.1: 

1-L ax ax /lV • 
• fl • I' I 

l 
1· (31) 

with 
(32) 

( cf. I, Eq. (A. 8) and the equation of motion for A1, (x)). Sup­
posing, for simplicity, that I z ) does not contain a photon with 
energy-momentum yector k , we haYe 

<zJjfl(x)Jz,k ) I 
= - - 1

~ 1,- J,: < OJA_(o)(x)Jk )+ il'dx"F ,(x-.r") ( OJA'.,
0)(x")lk >. J 

' 1 - L '11 1' V -' /II 

Writing 

,, ,, - 1 ~• ip (.r-x"J 
F .(x - x) = 0(x-x )(-'> . ) '1 dpe Fµi. (p) (34) 

µ1. _n; . 
and using th e formula 

") 1 \ dr . < ") c (.i·-x == -; ·- P - e1r xo-xu 
In T 

• I , 

we get 
,. 

·p ( ") -l ~-d i/J(x - x")!-p -( ) + 1"=F ·(JJ) 1 
, µ.} .• -i: - x = (2;;)4, pe , ·w fl , . w , 

t : 

with 

Ff1i. (p) = P~ ~• F1,;. (p, Po+ r) · 

(3;'i) 

(36) 

(37) 

(3:l) 
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\Ve further note that from (34)·it follows that 

F
11

;_(p) = V2 <z/)j_/ z')(z'/j
11

/z ) -V,>(z/j11 /z' )( :'/)j_/z). (38) 
• p(:' 1=/J(: )+ JJ 1i='•=p(;: 1_ ,J 

If every expression appearing in our formalism is finite, the 
integral in (37) must converge. This means that1) 

lim F,11. (p' Po) = 0. 
Po+:::::x: 

Putting ft = A = k we then get from (38) and (39) 

Jim Y' I< z U,.. I z' > /2 
(- 1)-'':" + .\'\'' ' = 0 

[)o-).X p i:' l=p(: )T/J 

and 
Jim 1:' I< z U,.. I z' > /2 

(- 1)'\';'' + .\'•,=· • = 0. 
Po+ - ~ p <:'J=pr:l _ p 

(39) 

( 40 a) 

(40 b) 

If we first consider a state J z > with no scalar or longitudinal 
photons, it can be shown with the aid of the gauge-invariance 
of the current operator (cf. I, p. 426. Eq. (47) there can be 
verified explicitly with the aid of (32) and (33) above) that 
only states I z' ) with transversal photons ,vill gh-e a non-vanish­
ing contribution to (40a) and (40b), and these contributions are 
all positive. \Ve thus obtain the result 

lim I < z /j k I z' ) I 2 = 0 
IP~:1_pf'l 1+:ic 

( 41) 

if none of the states I z > and I z' > contains a scalar or a longitu­
dinal photon. Because of Lorentz invasiance which requires that 
Eq. (.41) is valid in every coordinate system, it follows, however, 
that ( 41) must be valid for all kinds of states. If we make a 
Lorentz transformation, the "transversal" states in the new 
coordinate system will in general be a mixture of all kinds of 
states in the· old system. If ( 41) were not valid also for the scalar 
and longitudinal states in the old system, it could not hold for 
the transversal states in the new system. 

') The case in which the inl_egrals converge without the functions vanishing 
will !Jc discussed in the Appendix. 

,, 
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From equation (41) we conclude that 

lim Ai=> (p', p) = 0 
-(p-p')•?oo 

limBi+>(p',p) = 0 
-p2➔ o: 

lim B};-> (p', p) = 0. 
-p''+oc 

Nr. 12 

(42 a) 

(42 b) 

(42 c) 

It is, of course, not immediately clear that the sum over all the 
terms in (26)-(29) must vanish because every term vanishes. 
What really follows from ( 40) is, however, that the sum of all 
the absolute values of ( z Uµ I z') must vanish. If the limits in 
A and B are then performed in such a way that p 2 and p'2 are 
kept fixed for A and (p-p')2 and one of the p 2 's are kept fixed 
for the B's, equations (42) will follow. 

To summarize the argument so far, we have shown that if 
we write 

< 0 I {{(3), [}k(x), /(4)]} IO)= (
2 

~)6 ~ \ dpdp' /P'<3
-~)+ip(x

4>pk(p',p) (43) 

• • we have 

limFk(p',p) = 0. (44) 
-(p-p')'+oc 

Introducing the notations 

and 

p ( , ) \ dr . , ) 
k P,p = r;F1c(JJ -t:r,p (45 a) 

i\ (r(, p) = ~ ~T Fk (p', p + er) ., (45 b) 

(e is a ··ve~tor" with the components Ek= 0 for k =l= 4 and 
Eo = 1

) we fmd from ( 44) and the assumption that the integrals 
in ( 45) converge that 

limFk(p',p) = limFk(p',p) = 0 (46) 
- (p - p ' )'-->-oc - (p _:_ p ' )'-->-oo 

(cf. the Appendix). \Vith the ai<l of the notations (45) we can 
now write 
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0 (x 3) (J (x 4) ( 0 / {{(3) , [jk (x) ,l( 4)]} / 0 ) 

- _-1 ~\·d d I ip'(3i·)+ip(.x ,l)[F.::. ( / ) - · 
- (2 n) 8 ., P P e k P 'P 

t, l, . 

--:12 Fk (p', p) + in (Pk (p', p) + pk (p', p))]. 

13 

I (47) 

j 
In quite a similar way it can be shown that the second term in 
(25) can be written in a form analogous to ( 4 7) with the aid of 
a function Gk(p',p) which also has the properties (44) and (46). 
It thus follows 

limAk(p',p) = 0. (48) 
-(p-p')'➔ oo 

It must be stressed that this properly of the function Ak (p', p) 
is a consequence of ( 41) and thus essentially rests on the as­
sumption that all the renormalization constants are finite quan­
tities. 

It is clear from (24) that the function Aµ transforms as the 
matrix Yµ under a Lorentz transformation. The explicit verifica­
tion of this from (23) is somewhat involvl'rl but can be carried 
through with the aid of the identity 

0(x3) 0(x4) {f(3); u,t (x) ,f( 4)]}- 0 (x 3) 0 (34) U,/x), {/(3) JC 4)}l } 

= 0(x 4)0(x3){f(4), u,t(a:),f(3)]}-0(x4)0(43) u,t(x),{1(4),{(3)}] C
49

) 

and the canonical commutators. Eq. ( 49) can also be used to 
prove the formula 

- c- 1 1 ( , ) (' Ar( ') / fl - q ' '/ ' = fl - q ' q (50) 

which is, howeYer, also evident from (24) and the eharge in­
variance of the formalism . From the Lorentz invariancl' it fol­
lows that we can write 

where the functions F, G and H are uniquely defined and dt·-
. I 2 

1
2 ( ')• • l . pendmg on Y on P ,p , p-p - a11<, t 1e signs s(p), e(p') and 

s(p-p') . From (50) it then follows 
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F oo'( . ') Fo'n ( ' ) -- - p' p = - " - p 'p 

Nr.12 

(52 a) 

GI!!!' (-p,p') = H e'l!(--p',p) . (52 b) 

Uilizing (51) and (52) we get 

where, in Yiew of ( 48), 

limR((q+q')2) = 1imS((q+q')2) = 0. (54) 
- (q + q'J' ➔ :e -(q + q' )'-,.OO 

The equations (53) and (54) are the desired result of this pa­
ragraph. 

Completion of the Proof. 
\Ve are now nearly at the end of our discussion. Fro.2_n the 

assumptions made about n (p2) (and its consequences for ll (p2), 
cf. the Appendix), Eqs. (53) and (54), the limit of Eq. (24) 
reduces to 

r I [ - .v-11 
( 1m ( o j11 Jq,q' ) = ( OJJ·<nJJq.~i' ) 1+ll(0) + 2

1 
-I-·· 

- q + q')' ➔ oc . I' - J 

?J\l-1 
= < o I 1·<0) I <1 c.1' > ~ · 

/l ' 1-L 
Our inC'q ualit_\' (, ·) . 

-. 110\\' g J\'l' S 

1 

(56) 

Except ~~ the possibility of N being exactly ½ (independent of 

e2 and µ2) \\'e ha Ye then proved that, if all the renormaliza-

(55) 
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J( 
1 and 1 are finite, the function 

tion constants , N (1 _ L) 

II ( 2) cannot approach zero for - p2 --+ co. This is--an obvious 
confi·adiction and the only remaining possibility is that at least 
one (and probably all) of the renormalization constants is in-

finite. 1 . . 
The case N = - is rather too special to be considered seriously. 

2 
\Ve can note, however, that N must approach 1 for e--+ 0 and 
that one of the integrals in I Eq. (75) will diverge at the lower 
limit for p --+ 0, independent of the value of e. The constant N 

1 . 1 b. could thus at the utmost be equal to - for some specia com ma-
2 

2 

lion ( or combinations) of e2 and ~. As fl is an arbitrarily 
fl2 

small quantity it is hardly possible to ascribe any phy~ical 
significance to such a solution, even if it does exist. 

The proof presented h ere makes no pretence at being salis­
faetory from a rigorous, mathematical point of view. It contains, 
for example, a large number of interchanges of orders of inte­
grations, limiting processes and so on. From a strictly logical 
point of view we cannot exclude the possibility that a more 
singular solution exists where such formal operations are not 
allowed. It would, however, be rather hard to understand how 
the excellent agreement between experimental results and lowest 
order perturbation theory calculations could be explained on 
the basis of such a so lution. 

Appendix. 

It has been stated and used above that: if 

f(x) = P~"'fi//.2_ dy (f(O) = O) 
y-x 

t. 0 

(A. 1) 

where f (x) is bounded and continuous for all finit e values of x 

and fulfills 

lf(x + y)-· f(x) l <Mlyl for all x (A. 2) 
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and if the integral converges, both f ( x) and f ( x) ,vill vanish for 
large values of the argument. This is not strictly true, and in 
this appendix we "ill study that point in some de!ail. 

We begin by proving that if the integral in (A. 1) converges 
absolutely and if 

lim logxlf(x)I = 0 (A. 3) 
x+xi 

it follows that 
Jim f(x) = O. (A. 4) 

x+±oc 

(Note that the integral~•"' dx is not convergent and that the J x - log x 

vanishing of f(x) is already implicit in (A. 3) .) To get an upper 
bound for f (x) when :r > O we write 

f(x) = P lilJJ_dy = +P + l_(y)_dy. (A.5) 

~

"' (~x/2 ~3x/2~"' ) 
y-X y X 

o u x/2 • ax/2 

(The limit x - _ oo is simpler and need not be discussed ex­
plicitly.) The absolute value of the first term in (A. 5) is ob­
viously less than 

~ ~~/~ (y) I dy < const. ~ ~x1

12

dy - 0 • 
X X ogy 

O 0 

(A. 6) 

The last term can be treated in a similar way and yields the 
r esult 

~

"'f(y) d < ~lf(y)ldy->-0. 
y-x y = y /3 

3x/2 3:r /2 

The remaining term can be written 

~

3x/2 

p l_(y) dy = 
y -x 

X/2 

~

t:dy 
< - f(x + y) - f(.t:- y) 

y 
() 

\x/2 
JJI!_ [f(:r + y)- f(:r-y)] 

+ ~x;ll f(x + y) + ~x~~l/ f(.r - y) 
. y y 
, ., t-; e 

(A. 7) 

(A. 8) 
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In view of (A. 2) and (A. 3), the three terms in (A. 8) vanish 

separately for large values of x. It thus follows 

lim f(x) = 0 
x+,o q. e. d. 

As the function IJ(p2) is positive the condition (A. 3) seems 
rather reasonable from a physical point of view. On the other 
hand, the functions Fk in ( 45) are not necessarily positive. It 
is, however, also possible to construct a more general argument 
where (A. 3) is not used, and where even the vanishing of f(x) 

is not needed. lnJtead, we then require that from 

will follow 

f(x) = P~"'f(y) dy;f(y) = 0 for y < O 
y-x 

t, 0 

~

+"' 
f(x) = _ _!__ P f(y) dy 

:n:2 y-x 
-c,; 

where both f(x) and f(x) are finite. 
Note that 

'i+"' 
_!_pr dz 
:n:2 .E~-x) (z-y) 

(A. 9) 

(A. 10) 

~ 4x; ~ ~ dw,dw, ~ dz/'•• +•a),. ,-<w,,-;,,,, / :::: / I (A. 11) 

= __!__ \ dw eiw,(u-x) _ _. ( ) 
2:n; J 1 - u y-_x. 

It then follows that the integral 

~

ll+f(x)+i:n:f(x)J 2 ~j1+2f(x)Jd ~~---~--''-'- d:r; > '---.:__-'--'-_c_, X 
X X 

is divergent, because the second term is convergent in view of 
(A. 10). This is everything that is needed for the proof. 

non. Mnt. Jl·ys. Medd. 27, no. 12. 2 
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It is, of course, possible to construct functions f(x) where 
(A. 10) does not follow from (A. 9). In that case we are not 
allowed to interchange the order of the integrations in ( A. 11); 
but we have already excluded such cases from our discussion. • 

For simplicity, the statement that the functions "vanish" for 
large values of the variables has been used in the text. If a more 
careful argument is wanted the phrase 

"the functions have the property that the integral 

converges" should be substituted for the word "vanish" in many 
places. 
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