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ith the aid of an exact formulation of the renormalization method in quan-

\RZ tum electrodynamics which has been developed earlier, it is shown that not
all of the renormalization constants can be finite quantities. It must be stressed
that this statement is here made without any reference to perturbation theory.

Introduction.

In a previous paper’, the author has given a formulation
of quantum electrodynamics in terms of the renormalized Hei-
senberg operators and the experimental mass and charge of the
electron. The consistency of the renormalization method was
there shown to depend upon the behaviour of certain functions
T (p®), Z1(p®) and Z,(p*)) for large, negative values of the ar-

gument p2 If the integrals

'rll(—u) ':‘, (—a) .
\ da, \-—Lm———-du (i—=1,%) (1)
o a (43

converge, quantum eclectrodynamics is a completely consistent
theory, and the renormalization constants themselves are finite
quantities. This would seem to contradict what has appeared to
be a well-established fact for more than twenty years, but it
must be remembered that all calculations of self-energies etc. have
been made with the aid of expansions in the coupling constant
e. Thus what we know is really only that, for example, the self-
energy of the electron, considered as a function of e, is not analy-
tic at the origin. It has even been suggested® that a different
scheme of approximation may drastically alter the results obtained
with the aid of a straightforward application of perturbation
theory. It is the aim of the present paper to show—without any
attempt at extreme mathematical rigour—that this is actually not
the case in present quantum electrodynamics. The best we can
! G. KirLeN, Helv. Phys. Acta 25, 417 (1952), here quoted as I.

* Cf., e. g., W. THIRRING, Z.1. Naturf. 6a 462 (1951). N. Hr, Phys. Rev. 80,

1109 (1950).
1*
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hope for is that the renormalized theory is finite or, in other
words, that the integrals

QH(_Q) da, S{S:a_) da, (2)

a? a®

appearing in the renormalized operators, (l_o converge. No dis-
cussion of this point, however, will be given here.

General Outline of the Method.

We start our investigation with the assumption that all the
quantities K, (1 — L)™' and _]if (for notations, cf. I) are finite or

that the integrals (1) converge. This will be shown to lead to a
lower bound for IT(p? which has a finite limit for — p®— oo,
thus contradicting our assumption. In this way it is proved that
not all of the three quantities above can be finite. Our lower
bound for IT(p?) is obtained from the formula (cf. I, Eqs. (32)
and (32 a))
A i
I = 0 Dol oy @
d pF=p
It was shown in I that, in spite of the signs appearing in (3), the
surn for II (p?) could be written as a sum over only positive terms.
Thus we get a lower bound for I (p*), if we consider the following

expression
Y>> = 2 <014, 10 g> O

q+q =p
In Eq. (4), <0j,]¢, q"> denotes a matrix clement of the cur-
rent (defined in I, Eq. (3)) between the vacuum and a state with
one electron-positron pair (for xy > —o0). The energy-momentum
vector of the electron is equal to ¢ and of the positron is equal
to ¢". The sum s to be extended over all states for which ¢ + ¢’ = p-
We can note here that, if we develop the function IT (p*) in
powers of e* and consider just the first term in this expansion,
only the states included in (4) will give a contribution. For this
case, the sum is easily computed, e. g. in the following way:

- 3
AR W IR SR TIAEY)
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. Vv " .(0) B 18
a0(p = g5 S [<01/, g a">|
ava=p
Ve? _ i - Y
= e 2 05, 0lp0 19> <alF10>7, < |90
a+q =p
e _2m? 4 n12 I pr44m?
= S 7 ' 1+ - 7779_'_v_2_— .
12 7% 2 | p?+ 4 m?|

2

The function I7 (p?) has the constant limit 1: ~ for large
prs

values of — p% This corresponds, of course, to the well-known
divergence for the first-order charge-renormalization.We shall see,
however, that with the assumptions we have made here the
lower bound for the complete /7 (p?), obtained from (4), is rather
similar to 17 (p2).

An Exact Expression for the Matrix Element of the Current.

Our next problem is to obtain a formula for <0 |/, ] ¢, ¢
with which we can estimate the matrix element for large values

of —(q + ¢’)% For this purpose we first compute

U @), w0 @] = —N{SAD L@, 1 ar | o
- (6

—iv{ 513 9, (), w (D] . ]

Yx =,

(Cf. I, Eq. (54).) The last commutator can be computed with-
out difficulty if we introduce the following formula for j,u (x)

IeN2 L 024, ()
-]/t( ) = — 1, #;S;(l)-f— Lt,u}ar 01 Ié/HD" (@) (D)
with
‘5‘1(}. = 6/1/'1—1‘6”46/'.4 (7a)
d
an - |
s; () = 5[ (@), 7,9 (). (7b)

The expression (7) is written in such a way that the second time-
derivatives of all the 4,'s drop out. With the aid of I, Eqs. (4)—
(7) we now get

)



[j,l(m,w(zs)];m:, = MCICRTCO |

1

= — [ Sariy @ E—T").
It thus follows that

@90 ] = N S8 1, ), £ o -
9
“ie?NZ #;.S(Im)yﬂp(a:).

We then proceed by computing

Ol @), 9@ @)1, 5@ ")} 0> l
ieN
= 1 6,8 (12)y, S e — NS (18) da”” (10)
<0’Jﬂ<x> \w“”(z) F3))110>—<0 ([, (), 7 ()], £ (3)} 0] J

If this expression is considered as an identity in a’ and x” it
will obviously give us a formula for <0|j | ¢, ¢’> and for
<qlinla>. (CE 1, Eqs. (68) and (77).) We tansform the right-
hand side of (10) in the following way:

g

1;’(")(‘)) f(3)}_N.\{fy(3) F(4)) S(42) dx™V — [1eyA(3)+I\]S(3°) (11)

and, hence,

- (12)

€011, (), FO (), FBRT105 = %7, 8(32) <0| [ (), 4,(3)]] 0> l
+N \xdﬂ" O] L, (), {F(3), TCRT| 05 S (42). ]

The last term in (10) can be treated in a similar way:

o

[, (), 7 ()] = \[J“(l) 7(4) S(42) dat¥

and

Lw(l)y}S(U?') El,u (13)

o Si‘“‘) da" 0 | {5 (), F(3)}[ 0> = — <0 |{B (x), v® (') l (1
|

-+ fNS%gS) yap (3) P2} 0) = iS(1 x) [1 -—i}] 3



Nr. 12 ]
Collecting (12), (13) and (14) we get
Ol @), ¥® @)1, FO @)} 0>

= 1EL[1+2(N—1)] EH;'S(I-’C)‘}/;'S(IL'Q)

. Si(w)y;_s(w) d” <0 [, (2), 4, (3)]|0> -

W L

—N? \ dx’™ \ da™V § (13) 0| [, (), {F (3), F ()}1]0> S (42)

+N2\d1'"§d11V5(13)<o]\f(3) [, (@), F (013055 (42).

C—x

The second term in (15) can be rewritten with the aid of the
functions I7(p* and II(p?).

O[[j,(®), 4,3)]]0> = 51) (384)<0[[j, (), j; (] 1105 datV
—1 7 (16)
(:) )3\‘1113 Pl )S(P) [P,up} P 6#;] I(JP )
We are, however, more interested in the expression
1 10,7
E [1 +e(x 3) <0| J,u(l‘) 41(3) |O> P (2_?;)4§dpelp(x3) [H (1)2)
i e (17)
ime () I+ 5 114 e (23] 5282,
= T2
where
1 ' ipx 2
D(x) = (‘27;)’ \ dpe™ ¢ (p) II—;EP ) (17 a)
Obviously, we have ‘ ‘
P@Ba) =0 (18 a)
09 (3x) )
dx III = “_‘IH(O)(S(I ! ‘ (18}))
i :c('," = x,. It thus follows
D (3x) _ o ; ‘ p— .
8( 3)_8—‘(3_8’": 0.13H0 .]' [8(T3)(D(31)]-—}—2117(0)(5‘“4(5;46(1,3) (19)
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Using the equation

0 ¢
e v (32) = 0’ (20

we get

o+
—eSé[l +e(x3)]S(13)y,S(32)<0] [j”(.v), 4,305 dx'"
ie

(97)48 Sdpe"’(ﬂ)S(lJ)y S(32) T (p?) + ize (p) IT (p*)]

+id s(1 x) v, S(x2).

,u41
Introducing (21) into (15) we obtain
<O [{j,, (), p@ @), 5O @)} 0

» . -
= fe \da:"'S(QdP)4 P S (13) y#S(SQ) [1—17(p?»

v +H(0)—1ns(p)]7(p )]
—.\"2\d.7c"' dnl"s(13)<0| ju(l),’f(S) F()]0> S(42)

¢ —oC S

detV S (13) <O [{F (3), [, (), F($)]}]0> S (42)

\
or o
v
L3

o —0oC oc

2je(N—1)

Ti—&

The first term in (22) describes the vacuum polarization and is
quite similar to the corresponding expression for a weak external
field (ef. I, Appendix). The remaining terms contain the ano-
malous magnetic moment, the main contribution to the Lamb shift

ete. Introducing the notation

—N20(23)0(34) 0| [, (), {[(3), fON0>
+N20(x3) 0 (x 4) <O |{f(3), [, (@), F(DI} 0>
_2ie(N—1)

=g L8y va 0 (x3)8(3D - (23)

ie (\ , ip'(32) + ip (x4) ,
(97)8\\611)(1]) en+ T A 65 )
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[(1+e(@)], (23 a)

| =

0(x) =

-

we obtain from (22)
<O Ij‘u | q’ (I’>

— <0 lj/(?) [q, ¢ ['1 __]_]((q +4¢)H)+ IT(0)— izl ((g+ ¢')») l (24)

N—1 . — i ’
+2 i*:zJ+le<(),1p((’)lq >A/‘(_(1 ,q)(OIw(O)l(I)

This is the desired formula for the matrix element of the current.

Analysis of the Function Ay (p', p).

We now want to investigate the function Au (p’, p) in some
detail, especially studying its behaviour for large values of
—(g+q’)* in (24). For simplicity, we put x = k + 4 and study

ie A, (p', p) = SSd.v"’d.v“' e MENTIED N2 g (23) (21 CO[{FB). |
Ui (), 13105 —=0(x3)0(3) <0 [, (), { £(3), F(H)} ][0}

We treat the two terms in (25) separately. The first vacuum ex-
pectation value can be transformed to momentum space with the

aid of the functions
(+) 4 r2 ’ P e -
A5G p) = V20| f] 25 (| =><=] flo>  (26)
ps=p

,)1:'| s ’)’

AW p) = VRS OIS =<z floy (@)
B Gp) = V'{Z(Olfl XAV T EITATD (28)
B (0 p) = VEX 01| 5 <L 1> <] 10>, (29)

It then follows that

—

Yy dp @) +ip(xd) (&)
{e A7 (' p) '

p.p’
ip’ (34) + ip (43) p(+) P’ (@) +ip (43) pl—
B g”)( )+ ip (42) B;\ )(1)/,[))_’_01[7 (x4) +ip (43) B; )(l’,:[))
ip’ (43) +ip (x3) ,(—)
—e AI.' (pl’p):'

(25)

(30)
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Our discussion started with the assumption that all the renorm-
alization constants and, of course, all the matrix elements of
the operators j,(x) and f(x) are finite. As this is a condition on
the behaviour of, for example, the function IT (p2) for large values
of —p% and as this function is defined as a sum of matrix ele-
ments, it is clear that we also have a condition on the matrix
elements themselves, /. e. on the functions 4 and B defined in
(26)—(29) for large values of — p2, — p'2 and — (p—p’)% To get
more detailed informalion on this point we consider the expres-

sion

<z, (@), 49 @)]] 2> ]
= — L 62D(.1’——1;) " =/ - i (31)
- I—Lﬁa:l-‘/:a ; —{—gdx Fm(.L YD (' —a") l

with
F,(x—x") = 0(e—a")<z| [, (2).j, @D ]z>  (32)

v

(cf. I, Eq. (A. 8) and the equation of motion for 4, (x)). Su.p-
posing, for simplicity, that |z> does not contain a photon with

energy-momentum vector k, we have

<z|j'u(x)|z’]">

- i"fi k, k, <0 AV () [ k> +i \ dx'' F,,, (x—a"")<0] AV () k> I
Writing
F,;(x—a") = 0(z—a") (%3 \. dpe” " Fua(p)  (34)
and using the formula .
e(v—2a") = l,lpqd%:gir(xn—x;') (33)

we get

—I s o= _ »
fF/d. (.L'-—J:”) = (2 7)4 \ dpe”’ ') (F/U'. (P) + ’ﬂF,u/'. (P)) (36)
o

with

- dr _ _
Fu(p) = PS-; Fu;(P.pot1). (37)

(33)
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We further note that from (34)-it follows that

F,,Z(P) = "Z(:,jz|2'><2'lj/‘|z>—"z<:|jﬂ|z'>{:'|j;'|z>. (38)

% p(:')=l,<:l +p l)':'|= I)(:r_,,,

If every expression appearing in our formalism is finite, the
integral in (37) must converge. This means that?)

lim F,;, (B, po) = 0. (39)
Po>£ %
Putting « = 4 = k we then get from (38) and (39)
lim >’ [Kz|j | D (=1)NF+¥ =0  (404)
Do> % ,,1:’l=n|:)_|_p
and
lim 37[<z]j, |22 F (=) N+ = 0. (40 b)

Po>—% p=pls—p

If we first consider a state |z> with no scalar or longitudinal
photons, it can be shown with the aid of the gauge-invariance
of the current operator (cf. I, p.426. Eq. (47) there can be
verified explicitly with the aid of (32) and (33) above) that
only states |z’ with transversal photons will give a non-vanish-
ing contribution to (40 a) and (40 b), and these contributions are
all positive. We thus obtain the result

lim [<z|j, 2> =0 (41)

1P —piE 1>

if none of the states |z> and |z’ > contains a scalar or a longitu-
dinal photon. Because of Lorentz invariance which requires that
Eq. (41) is valid in every coordinate system, it follows, however,
that (41) must be valid for all kinds of states. If we make a
Lorentz transformation, the “transversal” states in the new
coordinate system will in general be a mixture of all kinds of
states in the old system. If (41) were not valid also for the scalar
and longitudinal states in the old system, it could not hold for

the transversal states in the new system.

1) The case in which the integrals converge without the functions vanishing
will be discussed in the Appendix.
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From equation (41) we conclude that

lim A (p', p) = 0 (42 a)
—(p—pyro .
lim B (p', p) = 0 (42 b)
—pi>x :
lim B;\,_) (p', p) = 0. (42 ¢)
._p’!_)x

It is, of course, not immediately clear that the sum over a.ll the
terms in (26)—(29) must vanish because every term vanishes.
What really follows from (40) is, however, that the sun.i 9f Efu
the absolute values of (zljﬂlz'> must vanish. If the hmllots in
4 and B are then performed in such a way that p? and p’ are
kept fixed for A ang (p—p’)? and one of the p*s are kept fixed
for the B’s, equations (42) will follow. .

To summarize the argument so far, we have shown that if

we write
¢ ’ 1 ¢ PGB+ ipad) . oo 43
\0|(f(3),[J,\.(:c),f(4)])|0>=»(—9~7;)-6\<dpdpep P Fk(P,P) (43)
- e
we have
limF, (p’,p) = 0. (44)
—(p—p')y>x

Introducing the notations

Fk(p',p) = Kd__:pk (p'—et, p) (45 a)
and ¢
Fo(p',p) = \ dr F.(p',p+er) (45 b)
T

(e is a “vector” iy, the components & = 0 for k+4 and

g = 1) we find from (44) and the assumption that the integrals
in (45) converge that

lim F, (p, p) =limF (p',p) =0 (46)
T —(p—p'y>w

(cf. the Appendix). Wiy the aid of the notations (45) we can
now write



i

A ([) [)) "Y 7(1717 +111)O [

Nr.12
0(x3)a(x4)<0|’f(3) [ (@), F(DIH 0>

g\dldpl zp ‘(Bx)+ip(xd) [F ([) [)) -

(9 i - (47)

—2 F (p', p) + in (F, (p', p)+ E,. (p', p)]. ,

In quite a similar way it can be shown that the second term in
(25) can be written in a form analogous to (47) with the aid of
a function G (p’, p) which also has the properties (44) and (46).

It thus follows
lim 4, (p’, p) = 0. (48)

—(p—p)>x

It must be stressed that this property of the function 4, (p’, p)
is a consequence of (41) and thus essentially rests on the as-
sumption that all the renormalization constants are finite quan-
tities.
It is clear from (24) that the function A, transforms as the
matrix Yu under a Lorentz transformation. The explicit verifica-
tion of tlns from (23) is somewhat involved but can be carried
through with the aid of the identity

0(@3)0@F(3); 1), (x), F(H]) —0(3)0(34) [j, (@), {F(3), F(4))] } |

0@ D03 T, [, (@), F(3)]) —0(xH)0(43) [, (2),{F(4), F(3)}]

and the canonical commutators. Eq. (49) can also be used to
prove the formula

*C__IAL(~(I', q) C = AZ(—Q,QI) (50)

which is, however, also evident from (24) and the charge in-
variance of the formalism. From the Lorentz invariance it fol-
lows that we can write

g~()10 0,1

where the functions F, ¢ and H are uniquely defined and de-
pending only on P p” (p—p')? and the signs e(p), e(p’) and
e(p—p’). From (30) it then follows

(49)

Foe + Py G +P,:z H??) (iyp+m)? (51)
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F2' (—p,p') = F¥e(—p', p) (52:a)
' (—p.p") = H(~p, p). i

Ctilizing (51) and (52) we get

re<0|w‘°)lq P4, (=g, )0 p0|q> = <0[jPlq.q'>R(g+ )"
S((q-rq)z)(q _qﬂ)<0|w(0)|q ><0|1/,(0)|(l>

where, in view of (48),

]1111R((q+ q')*) = lim S((¢+¢)*) = 0. (64)
—@+gpr> —(g+g)>»
The equations (83) and (54) are the desired result of this pa-
ragraph.

Completion of the Proof.

We are now nearly at the end of our discussion. From the
assumptions made abouyt I7 (p® (and its consequences .f01 H(}‘;z)
cf. the Appendix), Egs. (53) and (54), the limit of Eq. (24)
reduces to '

—(@+q) >

. = N—1
hm(()|jﬂ|q, @'y = <(),j;ln)|q, (['>[1 +II(0)+2 1 ——'LJ '

1(0) HAI—I
=<01idlq. ¢> 5=
Our incqualily (4) now gives
1'/(172)')_*“;[)0 > vl\/oljﬂ](l'(l,)rz
—, TG =p 1 3
. 1 2
\;,,-2 fotple P oo
9+qg'=p
’ 2 Q2N—1
S Lo
P” )( 1—1 1222\ 1—L

Except foi' the possibility of A bemg exactly 5 (indepe“dent ok

.
e® and ;2) We have then proved that, if all the renormaliza-

(53)
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1 . .
and -———— are finite, the function

ti tants K l
ion consta s N a—0

IT (p?) cannot approach zero for — p*—> co. This is™an obvious

contradiction and the only remaining possibility is that at least
one (and probably all) of the renormalization constants is in-
finite. 1

The case N = 3 is rather too special to be considered seriously.

We can note, however, that N must approach 1 for e—>0 and
that one of the integrals in I Eq. (75) will diverge at the lower
limit for # — 0, independent of the value of e. The constant N

could thus at the utmost be equal to % for some special combina-

2
tion (or combinations) of e* and —5. As p 1s an arbitrarily
n

small quantity it is hardly possible to ascribe any physical
significance to such a solution, even if it does exist. ]
The proof presented here makes no pretence at being salis-
factory from a rigorous, mathemalical point of view. It contains,
for example, a large number of interchanges of orders of inte-
grations, limiting processes and so on. From a strictly logical
point of view we cannot exclude the possibility thatva :mre
singular solution exists where such formal operations are not
allowed. It would, however, be rather hard to understand how
the excellent agreement between experimental results and lowest
order perturbation theory calculations could be explai !
the basis of such a solution. SpEinEd w

Appendix.
It has been stated and used above that: if

Pl == 2 -yf-f%—’—)v dy (f(0) = 0) (A. 1)

x

0
where f(x) is bounded and continuous for all finite values of x
and fulfills

[fx+y)—Ff(@)|<M|y| for all a (A. 2)
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and if the integral converges, both f(x) and f(x) will vanish for
large values of the argument. This is not strictly true, and in
this appendix we will study that point in some delail.

We begin by proving that if the 1nteg1al in (A. 1) converges
absolutely and if

lim logx|f(x)| = 0 (A.3)
>
it follows that
lim f(ax) = (A.4)
T> ko

Ll
(Note that the integralS—UIIL is nof convergent and that the

x-logx
vanishing of f(x) is already implicit in (A. 3).) To get an upper
bound for f(x) when x> 0 we write

o x/2 03 1/2 9 =
fx) = PS ) dU—<S+PS+X );91 dy. (A.5)
0 0 x/2 ©/3x/2

(The limit x - — o is simpler and need not be discussed ex-
plicitly.) The absolute value of the first term in (A.3) is ob-
viously less than

x/2 x/2
2 2\ dy
;Slf(y)ldy<c0nst-—xglogy—>0. (A.6)

0 0

The last term can be treated in a similar way and yields the
result

The remaining te

@ 3x/2
Iy
y— ’l

x/2

)

<Sagl [@+y)—flx—y)

“ry)

3x/2

rm can be

x/2
— |\
y
0
0 x/2 0152
+\d- g +\~-"- flx—y) -
Y y
[} e

€&

Trwl,

3x/2

written

[f(x+y)—flx—y)]

YNee+y)

(A.7)

(A.8)
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In view of (A.2) and (A. 3), the three terms in (A.8) vanish
separately for large values of x. It thus follows -

limf(x) =0

] . 3 q.e. d.

As the function IT(p?) is positive the condition (A. 3) seems
rather reasonable from a physical point of view. On the other
hand, the functions F; in (45) are not necessarily positive. It
is, however, also possible to construct a more general argument
where (A. 3) is not used, and where even the vanishing of f(=)
is not needed. Instead, we then require that from

f(x)=P§yf(_—yldy;f(y)=0 for y<0 (A.9)

0
will follow

o+
f(@) =—7§2pgyf_(_y2r.dy (A. 10)

where both f(x) and f(x) are finite.
Note that

1 °+ o
d:
= | P
n \(Z—x) (z—y)
1 () $ei—
= 4—7_5—25 S dwldw2 dzei(w‘+'0')z- e—iw,x—iw.nw (A. 11)
o ,wl lUg'

=1 f
_ﬂgdwlew‘(u Y=oy —a).

1t then follows that the integral

@ Hin [, STI +2/@] 4,

is divergent, because the second term is convergent in view of
(A. 10). This is everything that is necded for the proof.
Dan. Mat. Fys. Medd. 27, no.12. s
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It is, of course, possible to construct functions f(x) where
(A.10) does not follow from (A.9). In that case we are not
allowed to interchange the order of the integrations in (A. 11);
but we have already excluded such cases from our discussion.

For simplicity, the statement that the functions ‘‘vanish’’ for
large values of the variables has been used in the text. If a more
careful argument is wanted the phrase -

“the functions have the property that the integral

@dm
x

converges’ should be substituted for the word ‘‘vanish” in many
Places.
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