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Preface 

To understand the fundamental problems of modern mathematics, one 
must first study the history of mathematics. The meaning of modern formalism 
is made clear by the difficulties which arose from the classical view of the 
nature of mathematics in the nineteenth century. 

However, it is not easy for a modern mathematician to approach the history 
of his discipline. Most of the books on the subject try to give a comprehensive 
picture, omitting nothing of any importance. Thus in the thin volumes, cata
logues of names and dates take up a large part of the space. Even in the longer 
books, the achievements of individual investigators can only be summarized. 

For this reason it seems worthwhile to try to complement the invaluable 
comprehensive works (on one period or one person) with an approach to the 
history of mathematics of quite a different sort. I make no attempt at com
pleteness. Instead I try, through fairly detailed discussions of a few examples, 
to bring to life the ways of thought of mathematicians of earlier centuries. 

The choice of men is, of course, somewhat arbitrary. I might, for instance, 
have omitted Nicholas of Cusa and George Boole and taken up instead Newton 
and Euler. Nevertheless, I am quite willing to admit there is a principle in my 
selections. It is sometimes said that the modern mathematician lives in a sort 
of ghetto, in voluntary isolation, out of reach of problems which cannot be 
attacked by mathematical methods. In earlier times this was not trnc, and 
some of my examples were chosen to show this. 

This does not mean that today we make mathematics the handmaiden of 
a metaphysics which purports to be scientific, as Georg Cantor once did, or 
that we should use it as a collection of examples for philosophical or theological 
deductions, in the fashion of Cusanus. That has hardly been possible since the 
crisis in the foundations of mathematics around the turn of the century. Today 
the contribution of mathematics to philosophy is of a different sort. It lies, as 
I see it*, in the area rather of epistemology than of metaphysics. A glance at 
the history of our subject is just the thing to make this shift plain. 

Often, especially in the later chapters, I let the investigators speak for 
themselves. Three of the letters thus quoted_ arc published here for the 
first time: 

The letter from H. A. Schwarz to Georg Cantor (Chap. VIII) and that 
from Georg Cantor to Father Esser (Chap. IX) were kindly put at my 
disposal by private individuals. 

• See IA 121 (bibliography), Chap. XIII. 
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Preface 

The letter from Georg Cantor to F. Goldscheider (Chap. IX) is in the 
State and University Library of Lower Saxony, in Gottingen. 

It is hoped that the bibliography at the end of the book (reference numbers 
in square brackets) will stimulate the reader to further study. 

vi 

Herbert M eschkowski 
Berlin, June 1961 
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The Pythagoreans 

In fact, everything that can be known has number. 
For it is not possible to conceive of or to 

know anything that has not. 

Philolaus of Croton ((181, p. 77) 

Pythagoras 
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The Pythagoreans 

The order 
The origins of mathematics lie in the mists of antiquity. The historian who 
wants to study the mathematics of ancient Egypt must gain his insights from 
the study of only three major documents and some fragments ([I 6], p. 15). 
These papyri were instructions for practical reckoning: they were to show 
officials how to compute interest, or the amount of grain needed to make a 
given quantity of bread. 

Nevertheless, though its purpose is very practical, the Rhind papyrus 
begins with bold promises. It announces "proper entrance into the knowledge 
of all existing things and all obscure secrets." As a matter of fact, it contains 
only the "secrets" of how to multiply and divide. Behind this pretentious 
claim lies the belief common in ancient cultures, that the laws of numbers 
have not only a pr~ctical meaning but also a mystical or religious one. We 
will find that belief again later, among the Pythagoreans. 

It was the Greeks who, out of mystical numerology and the practical arts 
of measuring and reckoning, first developed the discipline based on axioms 
and proceeding by means of rigorous proofs, which today we call mathematics. 
Thus the age of the Pythagoreans is of particular importance for the historian 
of mathematics who is interested in the relations between cultures. Here are 
to be found primitive claims, alongside number-theoretic and geometric 
theorems which satisfy the demands of a modern mathematician. 

Today we think of Pythagoras• as a mathematician. i\Iost of his contem
poraries thought otherwise. Herodotus considered him an "important sophist." 
Others knew him as the founder of a religious order about which many 
wonderful tales were told. Finally, the comedians presented the followers of 
Pythagoras as poor and dirty vegetarians, and said nothing about their 
mathematical accomplishments. 
(Little is known of the life of Pythagoras. It is probably true that in his 

youth he travelled as a student to Egypt. Perhaps he also spent some time in 
Babylon - the relation between Pythagorean and Babylonian arithmetic 
makes the conjecture plausible. About 5:m n.c. he Aed from the dictator 
Polycrates to Croton in northern Italy. There he is said to have gathered 
about him a circle of enthusiastic disciples. He preached to them the immor
tality of the soul, demanded a life of abstinence and moderation, and taught 
astronomy, mathematics, music and philosophy. 

1 ca. :i80-.500 B.C. 
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To many of us today the close connection between religious or moral 
principles and mathematical propositions found in the Pythagorean order 
seems strange. For the Pythagoreans this unity was the foundation of their 
world view. According to their teachings God is one, and the multiplicity of 
the world can be understood by means of the laws of numbers. That was the 
great discovery of the Pythagoreans. Not only the paths of the stars but also 
the laws of musical harmony and architectural beauty are determined by 
simple ratios of whole numbers2 : "The whole world is harmony and number." 

We shall not go any further into the philosophical theories of the Pythag
oreans, but shall concern ourselves with their mathematical accomplishments. 
For the modern historian of mathematics it is admittedly not easy to say 
anything with confidence about the origins of specific mathematical theorems 
or methods from that period. Of Pythagoras' own writings not a line has 
come down to us. Hence one cannot determine with any certainty which 
discoveries were made by the Master himself and which by his students. 
Because of the great admiration for the "miracle worker" Pythagoras, it is 
quite likely that later generations ascribed to him results actually obtained 
by his students or contemporaries. We shall confine ourselves to discussing, 
in some detail,~v<l_c!_i_s~l?~eries ofthe Pythagoreans. 

The Pythagorean numbers 
In his introduction to the lore of numbers, Nichomachus of Gerasa collected 
what the Pythagoreans knew of the laws of whole numbers. It is to be assumed 
that this work, written about 100 A.D., contains those results which are 
actually due to Pythagoras and his circle. 

The Pythagoreans pictured the integers as groups of poin~s like constel
Iat10ns. From such configurations one can read some remarkable number
tlieoretic laws .. For example, Figure I shows the Triangular Numbers. !he 
ro,vs of the triangle contain I, 2, 3

1 
4

1 
••• points, and the number of pomts 

in an n-rowed triangle is the sum of the first n positive integers. For example, 
1 + 2 = 3, I + 2 + 3 = 6, 1 + 2 + 3 + 4 = IO, etc. In this way the Pythag
oreans obtained the well-known sequence of Triangular Numbers: 1, 3, 6, 10, 
15, 21, 28, ... Even more remarkable are the laws which can be read off from 
a square array (Figure 2). Clearly to a square array with n2 points one muSt 

'Note that the irmtional numbers were unknown in Greek mathematics. "Ratios of 
numbers" ure always ratios of whole numbers. 
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The Pythagoreans 

Fig. 2 

.:.:.: .. 
__ .J I I • • ,.1 • • 
_____ J : 

• • • I • • _______ J . . . . . 
. . . . . 

add n + l + n = 2n + 1 points to get a square with (n + 1)2 points. Thus 

(1) n 2 + (2n + 1) = (n + 1) 2
• 

From (1) we see that the differences between successive squares give the 
sequence of odd numbers. With the help of (1) we can also find sets of numbers 
a, b and c which satisfy the Pythagorean equation. 

(2) a2 + b2 = c2. 

To do this we need only make 2n + 1 in (1) a square. If we let 2n + 1 = m2
, 

then 3 

(3) n= 2 

Substituting (3) in (1) we get 

n + l m
2 + 1 

2 

ni2 - 1)2 (m2 2+ 1)2 
(4) 11i2 + ( 2 

For m = 3, 5, 7, 9, ... equation (4) gives Pythagorean numbers a, b and c, 
that is, integers which satisfy equation (2): 

m a b C 

3 3 4 5 

5 5 12 13 

7 7 24 25 

9 9 40 41 

Probably the Pythagoreans were led to discover the celebrated Pythagorean 
theorem4 by such number-theoretic arguments rather than by comparison 
of areas. 

Adding the successive positive integers leads, as we have seen, to the 
Triangular Numbers, while adding the successive odd numbers (sec Figure 2) 
leads to the Sf) uares: 

I + 3 + :> + · · · + (2n - I) = n 2
• 

What sort of sequence do we get if we add the successive even numbers? 

3 Note that m• is odd, so the fractions in (3) are integers. 
4 This theorem 01:1 right triangles was known to the Indians. However, they prob bl 

had no proof of it. a Y 
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2 + 4 + 6 + 8 + · · · + 2n = 2 (1 + 2 + 3 + 4 + · · · + n) = n(n + 1), 
as can be seen by considering a rectangular configuration of n(n + 1) 
numbers. Figure 3 shows the first four rectangular numbers in such an array. 
Adding odd numbers leads to a square schema, while adding even ones leads 
to a rectangle in which the ratio (n + I) /n of the sides depends on n. 

Thus the odd numbers generate a limited number of forms (the square 
above), while the even ones generate a multiplicity of rectangles which are not 
similar. From this the Pythagoreans deduced the following correspondence: 

odd +--+ limited 
even +--+ unlimited 

Of course, we would today no longer follow the Pythagoreans in drawing such 
conclusions. Nevertheless, one should respect the ways in which the modes of 
thought of past centuries differ from our own. It does not seem to us appro
priate to speak here of "idle speculation" and "nonsense" ([A 6], p. I 14). 
The Pythagoreans had a fault still common today: they made unsupported 
generalizations. This was true not only of the correspondences odd : limited 
and even : unlimited but also of their fundamental thesis "Everything 
is number." 

A fine characteristic of mathematics is that it does not allow wild specu
lation to go unpunished. Sooner or later valid counterexamples make it plain 
that the investigator who generalized too boldly has erred. In the humanities, 
on the other hand, unsupported speculations sometimes have quite a long 
life; they cannot be so clearly refuted. 

The discovery of incommensurable segments is perhaps the first example 
of how mathematics can veto too general a claim•. Soon after the ~laster's 
death the Pythagoreans discovered that in certain figures there were incom
mensurable segments, that is, segments the ratio of whose lengths could not 
be expressed in integers. The simplest example of such a pair of incommen
surable segments is that of a side a and a diagonal d of a square. If there> were 
integC'l"R p and q such that d:a = p:q, then since d 2 = 2a2

, 2 would have a 
rational Sf!Uarc root: ,12 = p 1q. It can easily be proved that this is not trues. 

• For further instances see, fur example, IA 121. 
'A proof can be found in IA 121, p. l(] ff. These counterexamples for the Pythagorean 

thesis came from the field of abstract mathematics. It must be admitted, however, that 
in atomic research modern physics continually encounters laws expressible in whole 
numbers. This supplies a sort of justifimtion for the reasoning of the Pythagoreans. 
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The Pythagoreans 

In scientific discoveries it is often not the first approach to new fields of 
investigation that proves the simplest. Thus the Pythagoreans first discovered 
incommensurable segments by studying the regular pentagon rather than 
the square. 

The discovery of the Golden Section 
In the first book of his work, On the Philosophy of the Pythagoreans1, Iamblichus 
of Chalcis (ca. 283-330 A.D.) says that Hippasus, a student of Pythagoras, 
was the first to describe "the sphere made up of 12 pentagons. Because of this 
he perished at sea, an impious man." He is further said to have been "the 
first to betray the nature of commensurability and incommensurability to the 
unworthy." For these reasons, it is said, he was expelled from the Pythagorean 
order, and a grave was prepared for him, as though he were going to disappear 
completely from the circle of his previous companions. 8 

The anger of those who took the teachings of the Pythagoreans literally is 
understandable. By proving the existence of incommensurable segments, 
Hippasus had cast doubt on the fundamental theories of the Pythagoreans, 
and he had clearly not hesitated to pass the information on to "unworthy" 
men (that is, men who did not belong to the order). 

Iamblichus tells us further that after the death of the Master, there was a 
split among the disciples of Pythagoras. The "acusmatics" (ci.KovcrµanKol) 

held to the "pure doctrine" and swore by the word of the Master. The 
"mathematicians," who, like Hippasus, were convinced of the existence of 
incommensurable segments, bent their efforts towards making further progress 
in mathematics. It is understandable that they were interested in exhibiting 
further pairs of incommensurable segments, and they soon discovered that 
the diagonal and side of a square have no common measure. 

Today, the historians of mathematics tell us that at the time of Hippasus 
the Golden Section was not yet known. How, then, could he draw a regular 
pentagon at all, and use it to prove the incommensurability of a side and a 
diagonal? We can see the answer to the first question° in Figure 4. From the 
theorems on the sum of the interior angles in a triangle and the base angles 
of an isosceles triangle one can show that all the angles in this figure are 

7 A complete bibliography on the subject matter of this section can be found in Heller II !JJ. 
8 A similar remark occurs in a scholium on Book 10 of EuC'lid (C'f. IA I 21, p. 8). 
0 We follow Heller II \JJ. 
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multiples of 36°. From the converse of 
the theorem about the base angles of 
an isosceles triangle it is then clear that 
triangles EF D and C BG are isosceles, 
and hence FD= ED= CG= CB= s. 
This shows that we can construct the 

figure by means of a marked ruler. First draw the segmen't AB, then its 
perpendicular bisector, and then the circle with center Band radius AB. Now 
place a ruler, with two marks a distances apart on it, so that it passes through 
A. If the first mark (starting from A) lies on the circle (at F), the second, 
lying on the perpendicular bisector, is the vertex D. In a similar way we find 
C and G. E is then determined by the circles about A and D with radius s. 

Now a construction using a marked ruler is something different from one 
with ruler and compass, and it is to be assumed that the Pythagoreans were 
aware of this difference. Nevertheless, this construction provided them with 
a proof of the existence of a regular pentagon, and from this it is not hard to 
prove the existence of incommensurable segments. To do so we need only 
show that we can build on to an arbitrary regular pentagon P1 an infinite 
sequence of smaller and smaller regular pentagons P,.. This can be done by 
making the shorter segment of a diagonal (CF in the first pentagon, P1) the 
side of the pentagon. In Figure_5, P 1(ABCDE), P2(BGHCF), Pa(GKLHJ) and 
P4 (KNOLM) are shown.10 

From the diagram the following relations between the sides Sn and the 
diagonals d,. of the pentagons can be read off: 

(.'i) Sn = d11 _1 - Sn-I , d" = s,,_ •. 

Now if s1 and di had a common measure E, we would have 

81 = ilf 1 • E, 

where i\/ 1 and N, arc positive integers. From this and (:>) it follows that 

(6) 

10 One obt11ins another sequence of pentagons Pn • which can be used in the same way by 
drawing 1111 the diagonals of P,*(=P,) and thus getting a new, smaller pentagon, P,•. 
A repetition of this procedure gives a sequence of pentagons which ure congruent to the 
odd-numbered pentagons of the first construction. 

7 
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with M 2 < MI and N 2 < N, . A repetition of this argument shows that 

This must come to an end after a finite number of steps, since M , and N, are 
positive integers. On the other hand, the construction can be repeated indefi
nitely. Thus the assumption that the side and the diagonal of a regular 
pentagon have a common measure is false. 

It is interesting to ask how the "mathematicians" among the followers of 
Pythagoras obtained the simple relation 

(7) d (d - s) = s2 

between the diagonal d and the side s of a regular pentagon. This relation (7) 
is the basis for the construction of the Golden Section, today known to 
every student. 

Heller [I 9] has suggested a very plausible hypothesis as to the path from 
the discoveries of Hippasus to (7 ). The "mathematicians" oon discovered 
that the side and the diagonal of a square were also incommensurable. This 
can b proved in a s imila r way, by constructing a sequence of smaller and 
smaller sq uares. If the square Sn has side Sn a nd diacronal dn , we define S,.+1 

a the square with the side d,. - Sn. Then, as is easily seen11
, the following 

relation hold between the parts of the squares: 

(8) 

From (8) the incommensurability of the side and the diagonal of a squa re can 
be proved very easily. What is important to us here, however, is that the 
order of thi con. truction can be reversed. If, in (8), we interchange n a nd 
n + ] , we get 

(9) rl,. + 1 = 2s,. + d., , 

In thi way we can construct a sequence of la rger and larger squares. Starting 
with an arbitrary SEf uare S 1* of ides, and diagonal d, as "unit," we construct, 
followin g (9), the larger a nd larger squares S2*, S3* .... 

11 See IA 121, p. 10. 
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Fig. 6 
R, 

The point of this is not obvious. But here we get a hint from the mystical 
philosophy of the Pythagoreans. According to Theon of Smyrna, the "unit," 
like a seed, carries in it all the characteristics of the future being. In our 
example it is able to generate the relation between the side and the diagonal 
of a square. "Just as the unit is at the beginning of everything, in the relation 
of the seed to the highest, so too the relation between the diagonal and the 
side is found in the unit." 

PracticalJy speaking, this means that one can construct a sequence of 
quadrilaterals in which the unit, that is to say the first quadrilateral, has 
a diagonal equal to its side. This seed is, therefore, not a square but a rhombus. 
Using (9) one can construct from this "unit" new rhombi which are more 
and more like a square. From (9) we can find the sides and diagonals of these 
rhombi. The table below gives the first few. 

s,. d. 

R, I I 
Rz 2 :1 
Ra !'i 7 
R4 12 17 
R5 29 -!I 

Figure 6 shows the rhombi R, and R 3 in this sequence. One can easily show 
that the quotient d. ls,. approaches V2. 
From (9) it follows that 

hence, in modern notation, 

n->m 

In order to avoid repetition, we shall not prove (10), sincP a similar relation 
for pentagons will be derived below.'2 

12 The proof of (10), which was already known to Theon of Smyrna, may be found, 
for example, in van der Waer<len II 6), p. 126. 
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Fig. 7 

According to an illuminating conjecture of Heller [I 91, the Pythagoreans 
may have discovered the Golden Section by means of a similar argument 
about a sequence of pentagons. In the proof of the incommensurability 
of the side and the diagonal of a pentagon we used a sequence of smaller and 
smaller pentagons. Let us, as we did in the case of a square, reverse the order 
of construction of the pentagons. Interchanging n and n - 1 in (5) gives 

(11) d,, = s,,_1 + d,,_1 , 

which is the law of construction for an infinite sequence of pentagons with 
increasing sides and diagonals. 

Here too we can take as "seed" or "unit" a pentagon with s = d = 1. Then 
from (11) we get for the sides and diagonals of the sequence 13 of (nonregular) 
pentagons the following results: 

1 2 3 5 8 13 21 

1 2 3 8 13 21 34 

Figure 7 shows the pentagons P 1, P 3, and P 6• In this case, too, intuition tells 
us that with increasing n the pentagons get more and more "like" a regular 
pentagon. In order to replace this vague formulation with a precise statement, 
we deduce from (11) the relation 

(12) d,,(d,, - Sn) - s,,2 = (- l)•. 

This can he expressed in words as follows: if the side s,, is laid off on the 
diagonal d,, of the pentagon P., of our sequence, the diagonal is divided into 
se,:?;ments such that the rectangle whose sides are the diagonal d,, and the 
shorter of the two segments has an area which is alternately one larger and 
one smaller than the square on the longer segments,,. This is easily proved by 
mathematical induction. Clearly, (12) is true for n = 1, since then d, = s1 = I. 
Ruppose it holds for n = k - I; that is, suppose 

13 The sequence Is,, I is the well-known Fibonacci sequence I Fib (11) I, which is defined by 
the difference equation 

Fib (n + 1) = Fib (n) + Fib (n - I) 
and the initial conditions Fib (I) = Fib (2) = I. Then d. = Fib (n + 1 ), which follows 
at once from (11). For the properties of this sequence see, for example, II 10), p. 17. 
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The Pythagoreans 

From (13) and (11) it follows that 

Sk2 - sk(dk - sk) - (dk - sk)2 = ( - I )k-I 
or 

dk(dk - Sk) - Sk2 = ( - l)k. 

Thus (12) holds for every natural number n. 
We have used here 14 the principle of mathematical induction. Can we 

assume it was already known to the Pythagoreans? It is often claimed that 
Pascal1 5 was the first to use this method of proof. According to van der 
Waerden ([I 6], p. 126), however, the Pythagoreans had actually proved (10) 
by a method one can call induction. Thus it is possible that a similar procedure 
was used in obtaining the Golden Section. From equation (10) one can 
deduce the relation d2 = 2s2 for the square. Thus from (12) it is an easy step 
to conjecture that (7) holds for a regular pentagon. 

Equation (7) has the following geomet1·ic meaning: in a regular pentagon, 
if a side is laid off along a diagonal, the diagonal is divided into two segments 
such that the area of a rectangle whose sides are the diagonal and the diagonal 
less the side equals the area of a square 011 the side of the pentagon. This 
division, known today to every high school student as the Golden Section, 
should not have proved hard for the "mathematicians" among the disciples 
of Pythagoras to carry out conectly with ruler and compass. Heller points 
out that similar constructions were often performed at that time. Everything 
depended, therefore, on discovering the truth of (7). 

So far, we have only made the conjecture that (7) holds, plausible. :\'ow, 
however, a complete proof presents no difficulties. It is easily shown (the 
theorem is to be found in Euclid, IV 10) that an isosceles triangle whose base 
equals the longer segment of a leg divided in the Golden Section has the 
property characteristic of t::,ACD (Figure 4) in the regular pentagon: the 
base angles are twice as big as the vertex angle. 

Archimedes once said that the man who first states a theorem deserves as 
much credit as the man who first proves it. This thesis is confirmed by the 
history of the Golden Section. In this case the real difficulty lay in discovering 
(7). Once this conjecture was made, it was not hard to prove. 

14 Heller avoids t.he in<lu<"tion step. 
1• Ree Chap. IV. 
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There are things which seem incredible to most men 
who have not studied mathematics. 

Archimedes 
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The uses of mathematics 
Plutarch reports that Plato scorned such mathematicians as Eudoxus and 
Archytas, who used mathematics to solve problems in mechanics. He accused 
them of "lowering the dignity of geometry by letting it sink from the im
material and intellectual to the material." To him the study of geometry was 
the best road to the world of ideas. One did not use this science to earn 
money16• Nor did one demean it by applying it to technical problems. 

What kind of mathematics was done in Plato's Academy can still be 
learned from the most famous textbook in the history of the world.17 The 1:3 
parts of the Elements, compiled by Euclid about 300 n.c., make it clear that 
the mathematicians of that era already knew how to use methods which can 
be called exact even by today's standards. 18 Every effort was made not to rely 
on the unsupported intuition but to construct geometry as a scientific system 
with a precise axiomatic foundation. There was no room for applications to 
technical problems. 

A new relationship between mathematics and technology was brought 
about by Archimedes of Syracuse (about 287-212 n.c.). He can be called the 
spiritual father of our modern institutes of technology. However, Plutarch 
reports that he, too, considered "mechanical work and every art concerned 
with the necessities of life an ignoble and inferior form of labor and therefore 
exerted his best efforts only in seeking knowledge of those things in which 
the good and the beautiful were not mixed with the necessary." 

:\""evertheless, it is known that Archimedes became remarkably skilled at 
this "ignoble" work. He used a compound pulley to draw freighters to shore 
effortlessly, and for King Hieron he constructed siege machines and other 
technical wonder-weapons. We shall not give any further details of this aspect 
of his activities19

• What interests us is his mathematical work, particularly 
the way he solved mathematical problems by reasoning about physical things. 

First let us note that Archimedes did not give up the sort of rigor in his 
proofs that had been usual in Greek mathematics until then. Quite the 

1
• It is reported that when a student asked Euclid what geometry could he used for, Euclid 

told a slave to give the voung man a few gold pieces, since he folt he must profit from 
his knowledge. · 

17 It is the only textbook in eornrnon use for over 2000 years. 
18 This i_s not to deny that today we must describe Euelid's system of axioms ns inc·omplete. 

In tlus connection see [A 12], p. J 5 ff. 
19 See, for example, IA 41, [II :n 
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contrary! His proofs in the field of stereometry, for example, are of an ex
emplary clarity, and one can only wish the reasoning in modern school 
mathematics were as precise as that of Archimedes. The proofs in his writings 
on "Sphere and Cylinder" are so complete that time after time one says to 
himself: "Beautiful, but how did he hit on it?"20 

Luckily we are in a position to answer this question, thanks to the discovery 
by Heiberg in 1906 of the Constantinople manuscript. We now have a letter 
from Archimedes to Eratosthenes which answers a number of riddles for us. 
Archimedes often attained insights into geometric relationships by means of 
mechanical considerations. He himself writes on this subject: 

Certain theorems first became clear to me by means of a mechanical 
method. Then, however, they had to be proved geometrically since the 
method provided no real proof. It is obviously easier to find a proof 
when we have already learned something about the question by means 
of the method than it is to find one without such advance knowledge. 
That is why, for example, we must give Democritus, who was the first 
to state the theorems that the cone is a third of the cylinder and the 
pyramid of the prism, but who did not prove them, as much credit as 
we give to Eudoxus, who was tlw first to provc them. 

We will give two examples of the reasoning of the great geometer: 

a) the (rigorous geometric) proof of the theorem about the area of a 
spherical surface, and 

b) the "heuristic" method of finding the volume of a sphere. 

Xowadays in the schools, the formula for the area of the surface of a sphere 
is usually derived by means of a shorter proccdurc. For that very rcasou it (s 
worthwhile to study the rigorous but somewhat detailed method that Arcln
mcdes used. His research on stereometry did much to prepare the way for the 
integral calculus. 

20 Schopenhauer called such mathematical deductions "mouse-trap proofs." 
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The surface of a sphere 
We now give (in modern terminology) Archimedes' proof of the theorem on 
the area of a sphere. 

Theorem 1. The area of a sphere is four times that of its greatest circle. 
To prove this we make use of the following auxiliary theorem: 

Theorem 2. If, for the segments x; and y; (i = 1, 2, 3, ... , in) , the 
equation21 

(I) 

holds, then 

m m 

(2) Xi L Y; = Y1 L X; • 
i=2 i=2 

For from (I) it follows that x1y; = Y1X; for i = 2, 3, ... , m , and by sum
ming; we get (2) at once. 

To prove Theorem I, Archimedes also used some properties of a cone and 
a frnstrum of a cone which we shall assume known :22 

1'heore111 ;j_ The lateral area of an isosceles cone is equal to that of a circle 
whose radius is the mean proportional between the slant height of the cone and 
the radius of the base. 

Theorem 4. The lateral area of a .frustrum of a cone with radii r1 and r 2 and 
slant height s is equal to the area of a circle whose radius is the mean propor
ti,med between s and r1 + r2 . 

The next step in the proof of Theorem I is: 

Theorem 5. J,et P be a regular 4n-sided polygon with vertices A, A 1, A 2 , ••• , 

A2,,, A2.,-1', ... , A/, A 1 ' inscribed in a circle of radius r. T,el V be the solid of 
re11oluhon r1eneraled by rotating J> about the a.ris .-1112... Then the area of th~ 
s111Ja1•p of I" is s111aller than four ti111es the area of the circle. 

" OnP must remember that in Arc·himedes' works, proportions, equations an<l inequalities 
must always lie interpreted geometrically. They arc 110/ statements about real numbers 
assoc·iated with t.he geometric objects. 

22 There is a proof of these theorems in III I). Fsing modern methods the_v ean he deduced 
easily from known formulas for volumes. 
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Fig. 8 

A.' 
Proof: Draw the diagonals AA2., A1A1', A2A2', ... , A2A1, A a.42 1

, ••• , 

A 1A2. of the polygon Figure 8. Let B ,-(C .-) be the intersection of A ,A .-'(A ,A ,-1') 
and AA2,,. Then the segments A1Ai', ... , A 2,,_ 1A2,,_1' are perpendicular to 
AA2,, and the diagonals A2A 1', A 3Ai', ... , A2,,A 2,,_i' are parallel in pairs. 23 

It follows that 

(3) 

From (3) and Theorem 2 it follows that 

A211-I B2n-l 
B2n-l C211-l 

A211-1 1 B2n-l 
B2n-l A211 

(4) AA1(A1A1' + A2A2' + · · · + A2,.-1A 2,._/) = A 1A 211 · A.42,.. 

We shall use this relation (4) to estimate the surface area of the solid of 
revolution V. 

This solid V is made up of 2 cones and 2n - 2 frustra of cones. With each 
of these pieces let us associate a circle whose area is equal to that of the 
lateral surface of the cone or frn:;trum of a cone. By Theorems :3 and -1 the 
sum of the squares of the radii of these 2n circles is 

L r,2 = AA1. A1B1 + A1A2(A1B1 + A2B2) + 
(ii) i= I 

In view of 1IA1 = A1.·l2 = · · · = .·12.,-1.-12,., 
2..-1 ,BI = .·I .A,' (i = I, 2, ... ' 211 

sqtmrPs of the radii can also be written 
I) and (-1), tlw :;um of the 

:!n 

i = I 

If fl is the radius of a circle whose area is equal to that of the surface of the 
solid of revolution, then from ((i) it follows that 

23 Th<> angles marked a in Figure 8 ure peripheral angles subtending equal ar<"S. 
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2n 

R2 = L r ;2 = A 1A 2n " A A 2n • 

i= I 

Since 

it follows that 
R2 < (AA2n)2 = 4r2 , q.e.d. 

Correspondingly we have for the circumscribed regular polygon with 4n 
sides: 

Theorem 6. Let P* be a regular polygon of 4n sides, with vertices A*, Ai*, 
A2*, .. . , A 2n *, A 2n-i'*, . .. , A2'*, Ai'* citcumscribed about a circle of radius r*. 
Let V* be the solid of revolution generated by rotating P* about the axis A* A 2n *. 
Then the area of the surface of V* is greater than four times the area of the 
circle (Figure 9). · 

The regular polygon P* circumscribed about the circle is inscribed in a 
certain larger circle. By (7), therefore, if R* is the radius of the circle whose 
area is equal to that of the surface of V*, 

(9) 

But (Figure 9) 

and so hy (9) 
R*2 > A 1* A 2n *2 = 4r*2, q.e.d. 

From our results we deduce also 

Theorem 7. The areas of the surfaces of the inscribed and circumscribed solids 
of revolution V and V* are to each other as the squares of their sides. 

Proof: From (7) and (9) and the similarity of the triangles A A 1A 2,. and 
A*A1*A2n* it follows that 

(11) 
S(V) R 2 A1A2n • AA2n AA/ 
S(V*) = R*2 = A1*A2n* · A*A2n* = A*A1*2. 

Finally, to prove Theorem I we also need 

Theorem 8. The area of the surface of the inscribed solid of revolution V is 
smaller, and the area of the swjace of the circumscribed solid of revolution V* is 
larger, than that of the sphere. 
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Fig. 9 

This theorem is an immediate consequence of the following assumption, 
which Archimedes made the axiomatic foundation of his reasoning ([II l], p. 4): 

Of other surfaces with the same extremities, the extremities being in 
a plane, [any two] such are unequal whenever both are concave in the 
same direction and one surface is either wholly included between the 
other and the plane which has the same extremities with it, or is partly 
included by, and partly common with, the other; and that [surface] 
which is included is the lesser [of the two in area]. 

Of course, it is an obvious question whether this assumption cannot be 
deduced from simpler axioms. However, we shall follow Archimedes' argu
ment and thus accept Theorem 8 on the basis of his assumption. 

\Ve can now proceed with the proof of Theorem I. Archimedes uses an 
indirect argument similar to many others we find in his writings. 24 Let S be 
the given sphere, with radius r, C a circle with radius 2r . 

(f1:ssumption I). Let us assume that the area of C, A(C), is smaller than the 
sw:f ace area A (S) of the sphere. 

Then there rxist segments of lengths band c (b > c) such that 

(12) A(S) 
b/c <A((')· 

Let d he the mean proportional between b and c, so that be = d2
• Given a 

great circle of S, construct the circumscribed and inscribed regular polygons 
of 4n sides referred to in Theorems n and ;'i. :\lake the number of ,·erticcs (4n) 
so large that the ratio of the sides of these polygons (A*.-11* .·1.41in Figures 
8 and 9) is smaller than b d .25 Rotating these polygons about the axis .-L-12,, 

" For example, the area of a circle and the volume of a sphere are determined in a similar 
way. 

26 We omit the proof that sueh an approximation exists. It is given in Arehimedes III I I, P· 6, 
Theorem :t 
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generates once more the solids of revolution V and V* referred to in Theorems 
,5 and 6, respectively. From Theorem 7 and equation (12) it follows that 

(13) A(V*) A*A1*2 b2 b A(S) 
A(V) = AA1* < dY = c < A(C). 

But by Theorems .5 and 8 

(14) 

Si11cc inequalities (1:3) and (14) are inconsistent, Assumption I is false. 

(Assumption II). Now assume that A(C) > A(S) -

Theu pick two segments of lengths b and c such that 

(15) 
A(C) 

b/c = A(S) . 

As before, let d be the mean proportional between h and c. Then by an 
argument similar to that used above, we get 

(Hi) A(V*) A(C). 
A(V) < A(S) 

But by Theorems (j and 8, 

(17) A(V*) A (C) 
A(V) > A(S). 

Since (lG) and (17) are inconsistent, Assumption II is also false. Tlw only 
remaining possibility is that A (C) = A (8), as Theorem 1 asserts. 

Using a similar procedure Archimedes proves 

Theore111 .9. The area of a sphere is.four ti111 es that 1~{ a cone whose base is equal 
in area. to a {/real rircle of the sphere and whose altitude ts equal lo the radius 
of the sphere. 

A heuristic argument 
ThP rather complicated method of proof found in Archimedes' investigations 
of volumes gives 110 hint as to how he discovered the theorems to be proved. 
From his IPtter to Eratosthenes ,w know, for examplP, that he found the 
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F~ _ ___,u,........ ____ c 

Fig. 10 

J T II 

volume of a sphere by au argument using i11li11itesimuls, in which u sphere is 
considered a sum of circular discs. Thus he anticipated the later "method of 
indivisibles." It must be emphasized, however, that Archimedes considered 
the procedure an aid to discovering theorems, not a valid method of proof. 

The proof of Theorem 9 then goes as follows: 
Let AB and CD be a pair of perpendicular diameters of a great circle G 

of the given sphere S. Let r be the radius of S, ill its center (Figure 10). 
Then AC D is a cross section of the cone of Theorem 9. Also shown in 

Figure IO is a cross section FGH.J of a right cylinder with axis .4 Band radius 
of base .-IF= AR. LPt UT be an arbitrary•parallel to CD, meeting AR in N 
(between .·I and M ), th<' circle' c; in Q and R, and th<' cross section of th<' 
cone in O and I'. 

In the following ,,·e shall denote a circle ,,·ith radius r = JI C by K(r l or 
K(il/C), a square with side a by S(a), and finally a rectangle with sides a and 
b by R(a, Ii). Then from Figure 10 we can read off the following equations: 

R(ON) + R(NQ) = S(AN) + S(NQ) 
= S(AQ) 
= H(AN, AB) 
= H(ON, N['). 

From I hPsP follow th<' proportions 

S(ON) + S(NQ) 
R{NU) 

R(ON, NU) ON 
S(Nl') = NC' 

and corr<'spond ingly, 

(18) 
K(ON) + K(NQ) ON 

K(NC) =NU. 
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Fig. 11 
A fl D J B 

Kow think of the axis AB extended beyond A a distance equal to AB. Then 
,ve can picture this axis as the arm of a balance, supported at A. We leave the 
cross section K.(NU) of the cylinder where it is, but hang the two circles 
K(ON) and K(NQ) at E. Then K(ON) + K(NQ) represents the weight 
hanging at E, K.(NU) the weight hanging at N. By (18) the cross section of 
the cylinder (hanging at N) and the cross sections of the cone and the sphere 
(hanging at E) are in equilibrium. 

X ow let this displacement of the cross sections of the cone and sphere be 
carried out for every intersection UT between A and B. Then we have a state 
of equilibrium for a lever, with the whole cone (of cross section AHG) and the 
whole sphere hanging at the point E. The cylinder remains in its place. From 
symmetry it is clear that Mis the center of gravity, and hence by the principle 
of levers 

(19) cone (A HG) + sphere = >12 cylinder, 

since the lever arm A ill is just half as long as the lever arm AH. 
Also, since 

cone (AC!)) = (!,ii) cone (AG/J) 
and 

cylinder = 3 cone (AGH) 

it follows from (I 9) that 

sphere = 4 cone (A CD) , q.e.d. 

This argument may appeal to the reader and he may not see why this 
fairly short derivation is not a valid proof. Archimedes himself did not consider 
the argument incomplete because it used the principle of levers. In "The 
Quadrature of the Parabola," which was published officially durinµ; his 
lifetime, h<' made use of theorems 011 centers of gravity. Theoretical me
chanics, after all, can lw drveloped axiomatically just as precisely as "pure" 
mathematics. 

The criticisms of the type of reasoning employed above are directed against 
the "indivisibles," that is, against the division of a solid figure into an infinite 
numbrr of infinitely thin slices. Figure 11 shows that careless use of this 
procPdurP can lead to false conclusions. In triangle ABC, let AC> BC. 
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Then the triangle ACD(CD l_ AB) is certainly larger than the triangle CBD. 
On the other hand, every parallel FG to AB associates with the perpendicular 
FH to AB exactly one equally long perpendicular GJ. The correspondence 
is one-to-one and every interior point of the two sub-triangles is on just one 
perpendicular. In this way each subtriangle can be dissected into infinitely 
many perpendiculars, and the two sets of perpendiculars can be put into 
one-to-one corrrspondence in such a way that corresponding ones have equal 
lengths. I\'cvcrthelcss, it "·ould be wrong to assert that the two figures have 
the same area. 

This example26 shows that care is required in the use of infinitesimal 
methods. Archimedes only used this argument involving a lever to discover 
relationships between the sphere and the cylinder and between the sphere 
and the cone at first only conjectured to hold. The proofs of the conjectures 
then followed along the lines indicated in the second section of this chapter. 

" Example not due to Arl'himedes. 
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If we can approach the Divine only through symbols, 
then it is most suitable that we use mathematical 

symbols, for these have an indestructible certainty. 

Nicholas of Cusa ([III 21, p. 90) 
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On informed ignorance 
In the first centuries of the Christian era, mathematics was not in a flourishing 
state. It was suspect because of its close connection with heathen philosophy. 
Many even considered it the work of the devil, since the soothsayers and 
astrologers often called themselves mathematicians. 

Towards the end of the Middle A~es, h?wever, this cha~ged, at !_east among 
the theologians, who were schooled m philosophy. As the mterest m the ideas 
of the ancient world grew, so did the tendency to use mathematical pic
tures and symbols in philosophical and theological reasoning. There were 
even thinkers who were seriously concerned with advancing mathematical 
knowledge. 

The most important among the mathematicians of this era was the German 
cardinal, 2\Ticholas of Cusa (1401-1464). Admittedly, measured by modern 
standards his accomplishments in the field are not exciting. He got no further 
than Archimedes with the problem of squaring the circle. Furthermore, today 
we must reject some of his deductions as incorrect. I'\evertheless, we must 
rate him as one of the great thinkers who learned much from mathematics 
because his work in that field made him aware of both the possibilities and 
the limitations of all human thought. 

He says that mathematical entities arc "of the highest constancy and 
certainty." 

Thus wise men have been right in taking examples of things which 
can he investigated with the mind from the field of mathematics 
and not one of the ancients who is considered of real importune~ 
approached a difficult problem except by way of a mathematical 
analogy. That is why Boethius, the greatest scholar among the Romans 
said that for a man entirely unversed in mathematics, knowledge of 
the Divine was unattainable. 

This statement is taken from the book On Informed Ignorance (De docta 
ignorantia). The ideas in this work about the meaning of numbers are related 
to those of Plato and the Pythagoreans, but he reaches conclusions not found 
among the mathematicians of antiquity. For Plato, the path from a mathe
matical deduction to a metaphysical speculation is very short.27 Cusanus 

27 See, for example, IA 12), Chapter II. 
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also uses mathematical pictures and symbols to clarify theological and 
philosophical statements, but mathematical reflections always lead him to 
critical observations on the limitations of all human knowledge. The problems 
about infinitesimals make him realize how uncertain many metaphysical 
arguments are. His goal, therefore, is to achieve a state of "informed 
ignorance" ([III 2], p. 7T>). 

If we fully achieve this, we shall have attained to a state of informed 
ignorance. For even he who is most greedy for knowledge can achieve 
no greater perfection than to be thoroughly aware of his own ignorance 
in his particular field. The more he knows, the more aware he will be 
of his ignorance. It is for this reason that I have taken the trouble to 
write a little about informed ignorance. 

He came to hold this critical point of view regarding all human knowledge 
through his work on squaring the circle ([III 2], p. 78). 

The finite mind can therefore not attain to the full truth about things 
through similarity. For the truth is neither more nor less, but rather 
indivisible. \Vhat is itself not true can no more measure the truth than 
what is not a circle can measure a circle, whose being is indivisible. 
Hence reason, which is not the truth, can never grasp the truth so 
exactly that it could not be grasped infinitely more exactly. Reason 
stands in the same relation to the truth as the polygon to the circle: 
the more vertices a polygon has, the more it resembles a circle; yet 
even when the number of vertices grows infinite, the polygon never 
becomes equal to a circle, unless it becomes a circle in its true nature. 

The real nature of what exists which constitutes its truth, is there
fore never entirely attainable. It has been sought by all the phil
osophers, but never really found. The further we penetrate into 
informed ignorance, the closer we come to the truth itself. 

8imilar insights have been reached by modern thinkers (though for different 
reasons) through investigation of the foundations of mathematics. 29 By com
parison, Cusanus' purely technical achievements in mathematics were modest. 

28 Sec, for example, Stegmiiller's J.,fetapltysik, Wisse11sclwfl, Skepsis, Frankfort on the 
Main - Vienna, 1954, or [A 12[, Chapter XIII. 
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He advanced only slightly beyond the point Archimedes had reached in the 
problem of finding the area and the circumference of a circle. 

Squaring the circle 
Cusanus devoted many papers to the classical problem of squaring the 
circle.29 In other words, he tried to construct, with ruler and compass, a side 
of a square equal in area to a given circle. This is related to the problem of 
rectification: to find a segment whose length is equal to the circumference of 
a given circle. 

Kicholas of Cusa gave many solutions which he believed could not be 
improved on. ~evertheless, he said again and again that the quadrature 
problem could not be solved, because "the area of a circle is incommensurable 
with that of any non-circle" ([III 11, p. fil). 

There seems to be a contradiction here. We sec how Cusanus avoids it in 
a passage from his paper "De circuli. quadratura" ([III I], p. 41): 

Those who hold firmly to the first view30 seem to be satisfied with the 
fact that given a circle, there cxistR a square which is neither larger 
nor smaller than the circlf' .... If, hm\·PvPr, this squarp is IIC'ithPr 
smaller nor largf'r than thP circlP, hy PvPn tllC' smallest assignable 
fraction, they call it equal. For this is how they understand equality _ 
one thing is equal to another if it neither exccf'ds it nor falls short of 
it by any rational fraction, even the smallest. If one understands the 
notion of equality in this way, then, I believe, one can correctly say that, 
gi1•en the circu111ference r~J" a certain polygon, there e.rists a circle with the 
sa111e circumference. 31 If, however, one interprets the idea of equality, 
insofar as it applies to a quantity, ahsolutPly and without rf'gard to 
rational fractions, then thr statrment of thr others is right: /herr is 110 

,umrircular area which is precisely NJ1tal lo a cirrular arra . 

.J. E. Hofmann has given the following interpretation of Cusanus' position 
(!III I], p. 20(i): he considers it possible to construct a scgmcnt which is equal 
to thP eircumf PrPncP of thP cirrlf' "to within an infinitf'Rimal quantity." ThP 

29 They are all mntained in the volume !III J j. 
ao This refers to the view that the quadrature problem is solvahlP. 
31 Jtali<"s added by :\Iesr-hkowski. 
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Fig. 12 

C 

error, which cannot be eliminated, is thus, according to this view, smaller 
than any rational fraction of unity. It seems possible to us that Hofmann's 
interpretation attributes to Cusanus a way of thinking which first became 
usual among the founders of the infinitesimal calculus. Our cardinal is quite 
convinced that he can constrnct a segment which is neither smaller nor 
larger than the circumference of the circle. He simply docs not venture to use 
the word "equal" because by doing so he would deny the differences between 
a circle and a line. The circle is not merely a polygon with "very" many 
vertices, and thus the circumference of a circle and a segment are simply 
"incommensurable." A corresponding statement holds true, of course, for 
the quadrature problem. 

However, no matter how they arc interpreted, Cusanus' views on the 
possibility of the constrnction arc simply false. All the procedures he gives 
arc approximate constructions and one can always find ordinary rational 
bounds for the error, which exists ia each. Archimedes knew that the value 
22 -i which he gave for the ratio of the circumference to the diameter of a 
circle was an approximation. Cusanus succeeded, more than Hi centuries 
later, in getting a little better estimate of this ratio. But he was wrong in 
thinking his procedure could not be improved upon. 

We shall restrict ourselves to presenting the most accurate of his 
constrnctions. 

In Figure 12, ABC is an equilateral triangle with altitude CD and circum
centcr :11. \Ve are to find the radius of a circle with the same circumference as 
triangle .I BC. To accomplish this, bisect BD at E and extend JI E beyond E 
by an amount 1 

4 :11 E. Then ill F = 5:i ;l/ E is the desired radius. 
To establish this construction the cardinal says: 

So you will not think that this is mere conjecture. that one> is not led 
to this claim by any other line of thought, you can draw a rigorous 
conclusion, which in this case is completely_accurate and is dep~ndable 
to within the smallest rational fraction. Draw through32 J/ a hne to a 

32 Tia• points are lahrlrd hrrP as they werr in Figure I:!. 
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point near D, say G, and extend it in the ratio DG/AB. Then the new 
segment33 is shorter than the one we are seeking. If we extend it in the 
ratio GB/AB, then it is also shorter than the one we are seeking. If we 
draw through M another line to a point near B, say J, and extend it in 
the ratio JB/AB, the new segment is longer than the one we are 
seeking. If we extend it in the ratio DJ/ AB, it is also longer, as we can 
see. Thus we can draw through M towards DB a segment which is 
neither longer nor shorter than the desired one, by extending it in the 
ratio between the segment from its endpoint to D, and the segment AB. 

The modern mathematician needs no proof that this argument is not valid. 
Clearly Cusanus has been guided by the intuitively obvious fact that for 
points "near D" this construction gives a value of the desired radius which is 
too small, for points "near B" one which is too large. This does not mean, of 
course, that the midpoint E gives the right value. Nevertheless, his con
struction gives an approximation to the number 71' which is a little better 
than that of Archimedes. 

The ratio of the circumference of a circle to its diameter, later called 71', is, 
according to Cusanus, 

- (j . V2700 - 24/ . ~21 
'Ire - - 735 V ;;;1 . 

%·Vl575 
(1) 

In fact, if we substitute the number 60, for the radius r of the circumscribed 
circle we get 

DJI! = %DC = ~fi,/1/C = 0-i)r = 30 

DB= y2700. 

The perimeter P of the triangle T and (it is claimed) of the circle O of equal 
perimeter with center 111 and radius MF, is, then 

P = 6 · y2700. 

But the diameter of O is 2/1/ F = % yl.57fl. This gives for 1r the approximate 
value 

(2) 

31 MIJ in Figure 12. 
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Fig.13 ~ 
M N 

This is only slightly better than Archimedes' value 

(3) 1TA = 277 = 3.142857 .... 

There is still an error of 

(4) 1Tc - 1T = 3.142337 ... - 3.1415926 ... = 0.00074 ... > 7 · 10- 4 

Thus Cusanus is wrong in thinking that by his construction the error can be 
made smaller than "a rational fraction." 

His later attempts did not improve this approximation to 1r. It is inter
esting, however, to see what he considers a "practical" solution of the converse 
problem, that is, the rectification of a given circle. 

The construction shown in Figure 12 gives the radius of a circle whose 
circumference is approximately equal to a given segment. This segment is 
three times the side AB of the given triangle (Figure 12). Figure 13 shows the 
circle with radius MF of Figure 12, and a segment MN (perpendicular to MF) 
equal to half the perimeter of the equilateral triangle ABC: MN= %AB• 
If we draw the corresponding figure for another radius ]I/ F' , we get a triangle 
MF'N' similar to triangle MFN. The angle a= L MFN (= arc tan 1r) is 
thus independent of the radius of the circle. 

Cusanus uses this fact to solve the "converse problem." He says to construct 
the angle a "of brass or wood." 

If you want to straighten out a circular arc, draw through the center 
a line of indefinite length which makes a right angle with the diameter. 
Then lay the angle on the intersection of the diameter and the circum
ference so that the shorter side lies along the diameter. Then, on the 
line of indefinite length, the longer side of the angle cuts off a segment 
equal to half the circumference of the circle ([III 11, pp. 86-87). 

Of course, this is not a "ruler and compass" construction, but it 1s 
a thoroughly practical way of solving the rectification problem. 
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The mathematicians who are merely mathematicians 
reason correctly, but only when everything has 

been explained to them in terms of definitions and 
principles. Otherwise they are limited and 

insufferable, .for they only reason correctly when 
they are dealing with very clear principles. 

Pascal ([IV I], p . 53) 
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The course of a prodigy 
Gilberte Pascal-Perier, the sister of the mathematician, says34 of the unique 
educational methods of their father, Etienne Pascal, that because he knew 
"mathematics fills and satisfies the soul, he did not want my brother to learn 
anything about it, so that he would not neglect Latin and the other languages." 
However, it did not help. In his hours of recreation, Blaise Pascal (1623-1662) 
dreamt in geometric figures; he drew circles and triangles with chalk on the 
flagstones of the floor. 

But since my father had been so careful to conceal all these things 
from him that he did not even know their names, he was forced to 
invent his own names. Thus he called a circle a "round," a line a "rod," 
and similarly for all the rest. Using these names, he set up axioms and 
finally complete proofs. And since, in these matters, one proceeds from 
one thing to another, he continued to make progress and pushed his 
investigations to the point where he reached the 32nd proposition of 
Book 1 of Euclid. And just as he was occupied with this, my father 
happened to enter the room in which he was working, without my 
brother's hearing him. He found my brother so busy that for some time 
he was not aware of my father's entrance. It is impossible to say who 
was the more surprised: the son when he saw his father and thought of 
the explicit prohibition the latter had uttered, or the father, when he 
found his son thus occupied. The astonishment of the father was even 
greater, however, when he asked his son what he was doing and the 
latter answered that he was investigating a certain matter - which 
turned out to be Proposition 32 of Book I of Euclid. 35 My father was 
so shocked by the greatness and ability of this genius that he left him 
without saying a word. 

In this way the twelve year old, if one can believe his sister's account, 
discovered substantial parts of geometry for himself. Now his father let him 
read Euclid's J~'lements. 

" The Life of Blaise Pascal, by his sister, Gilberte Pascul-Perier. Included in [IV ll and 
[IV 2]; quoted here from [IV I], p. XXX ff. 

•• This is the theorem uhout the sum of the interior angles of a triangle. 
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He used only his hours of recreation on this study, since he was learning 
Latin according to the rules my father had laid down for him. Since, 
however, he found in this science the truth, which he had always so 
passionately sought, it satisfied him so completely that he threw his 
whole soul into the work. Thus no matter how little time he had left 
for it, he made such strides that at the age of sixteen he wrote a paper 
on the conic sections36 which was considered such an important intel
lectual achievement that it was said nothing so powerful had been 
seen since Archimedes. 

In his later years, however, Pascal turned almost entirely away from 
mathematics. Gilberte reports: 

When he was not yet twenty-four years old, 37 Divine Providence 
induced him to read pious books, and God enlightened him so much by 
this reading of holy works that he saw clearly that the Christian 
religion requires us to live only for God and to have no other goal but 
Him. And this truth seemed to him so enlightening, so necessary and 
so useful, that it put an end to all his investigations. ([IV II, p. XXXV.) 

And thus Pascal became the uncompromising religious thinker, the author of 
Lettres a un Provincial and of the Pensees, which is still often read. It is not 
our job to assess Pascal's religious writings. We shall concern ourselves with 
the mathematician Pascal. 

Although the young thinker, plagued by constant pain from his eighteenth 
year, 38 devoted only a few years of his short life to the exact sciences, it is 
difficult to choose a few typical examples from his many-sided works. Pascal 
was not merely a geometer. He also discovered new results in arithmetic and 
probability theory. And his work on infinitesimal problems later led Leibnitz 
to use the "characteristic triangle" to solve the tangent problem. 39 Finally, 
he also designed a calculating machine and busied himself with problems of 
mathematical physics. 

36 This work has not come down to us. 
37 In the opinion of modern scholnrs, Gilberte Pusc-Rl-P~rier's chronology is not dependable. 
•• See [IV, l], p. XXXIV. 
" See Chapter \'. 
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We shall give an account of his method of "mathematical induction" and 
of his ideas on the use of axioms in mathematics, which he described in his 
Methods and Psychology of the Scholar. 

The principle of mathematical induction 
Nowadays, if we want to prove a theorem concerning the natural numbers, 
we often use the "principle of mathematical induction": if a statement A(n) 
holds when n = 1, and if, from the truth of the statement for any natural 
n_umber n, it follows that the statement is also true for n + 1, then the 
statement A (n) is true for every natural number. 

In the language of a formal calculus, this can be expressed as follows: 

A( I); A (n)-> A (n I) I- A (n) . 
K 

Here K is any formal calculus which contains the "atom" I and the rule 
a-> al.4o 

Every first term coilege student knows simple examples of the use of this 
principle.41 In the opinion of some historians of mathematics42

, it was already 
known hy the Pythagoreans, hut it became accessible to modern mathe
maticians through the work of Pascal. He first w,ed it in hi!< 'l'raite du 
Trian(lle A rilh111et£que. 

Figure 14 shows "Pascal's triangle" in the form Pascal himself used in his 
writings. Ten rows, each of 11 - n(n = 1,2, ... , 10) numbered squares, are 
arranged so that the squares with the same number in different rows lie in a 
vertical column. 

Today we would use double subscripts for such a system of squares (or 
"cells"): 

I ffmn j , where 111 = 1,2, ... , N, 
n = 1,2, ... , N + 1 - 111 • 

The first suhscript indicates the row, the second the column m which the 
square (or cell) lies. 

• 0 Hee, for example, IA 121, pp. 111 ff. 
" We think every high school graduate should know this met.hod of proof. 
"See 11 6]. 
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9 

Fig. 14 

Then the line containing the diagonal through squares qN1 and q1N cuts 
from the whole schema* a system of squares arranged in the form of an 
isosceles right triangle. Each such array of squares leads to the formation of 
an "arithmetic" or "Pascal" triangle. The number N which determines the 
diagonal is called the order of the triangle. 

In Pascal's day the double-subscript notation was not yet common, and 
hence he restricts himself (Figure 14) to denoting single squares by arbitrarily 
chosen Latin or Greek letters (G, cJ,, A, D, ... ) . The Pascal triangle is then 
formed as follows: we imagine a number a(m,n) written"in eacl! cell according 
to the following rule ([IV 2], p. 98): 

ThC' 11t1mbcr in the first cell by the right angle is arbitrary, but when 
this has been chosC'n, all tlic rest arc determined. For that reason this 
number is called the 'generator' of the triangle. Every other number 
is then determined according to the following rule: the number in each 
cell is equal to that in the preceding cell of the vertical column, in
creased by that in the preceding cell of the horizontal row. Thus cell 
P, that is, the number in cell F, is equal to cell C increased by cell E, 
and similarly for the rest. 

Today we can express the rulr for constructing Pascal's triangle (with 
generator I, as in Pascal's drawing, Figure 14) conveniently by means of a 
dilTerencc> equation. In cell q"'" we writr thC' numhN a(111,n) satisfying the 
difforc>ncc> <"quation 

(I) a(111,n) = a(111 - 1,n) + a(m,n - 1) 

• Trunslalor's note: Here the schema is thought of as consisting of infinitely many rows, 
r-nd1 eontnining infinitely many squares. 
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and the "initial conditions" 

(1 ') a(O,n) = a(m,0) = 0 . 

Starting with a(l,l) (equal to I in Figure 14) and using (I) and (I') we can 
easily calculate the numbers in the triangle, one after the other. From the 
law of formation, the symmetry 

(2) a(m,n) = a(n,m) 

of the arithmetic triangle is immediately clear. Pascal did not explicitly refer 
to the initial conditions (I'). He undoubtedly felt they could be taken for 
granted, since to the left of the first column and above the first line 
stands "nothing." 

Pascal proves the following theorems on arithmetic triangles: 

Theorem 1. In every A. T. (arithmetic triangle) the cells in the first row and 
those in the first column are equal to the generating number. 

This follows at once from (1) and (1 '). 

Theorem 2. In every A. T., each cell is equal to the sum of the cells in the 
preceding row, from the one in the same column to the firs/. 

We can Rt.ate this theorem by means of the following formula: 

" 
(3) a(m,n) = I: a(m - 1,i). 

t=l 

Pascal proves it in the following way. Let w be any cell. Then 43 w = R + C, 
C = ® + B, B = ,J; + A, and A = tJ, . From these it follows at once that 

Actually this does not prove the theorem for an arbitrary cell but only for 
w = q3_4 (Figure 14). However, it is, of course, not hard to generalize this 
proof, using (I) and (I') and following Pascal's proof for a specific example. 
In the notation of the day, "general" proofs could only be given by means of 
representative cases. In any case, Pascal knew that the proof he had given 
for w could also be used for any other cell. 

The next theorem can be proved in a similar way: 

43 See Figure 14. 
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Theorem 3. In every A. T., each cell is equal lo lhe sum of the cells in the 
preceding column, from the one in the same row to the first. 

We shall not mention the many other laws Pascal read off from his triangle. 
Instead, we shall proceed to the place where he first uses induction. This hap
pens where he uses the A. T. to solve combinatorial problems ([IV 21, p. 110). 

In modern mathematics, the number of ways44 of picking k elements from 

n is denoted by(~). This number is easy to compute. It is known that 

(4) (n) = n(n - 1) ... (n - k + 1) = n! . 
k le! k!(n-k)! 

This can be proved by mathematical induction, for example. Pascal knew 
neither our notation nor formula (4). He begins his remarks on combinatorial 

problems with simple, easily proved lemmas about 45 (n) , (~) , etc. Of im-
porf·.ance for what follows is46 n 

Theorem 4. If there are four arbitrary numbers, of which the first is arbitrary, 
the ·econd one greater than the first, the third arbitrary but not smaller than the 
sec.11id, and the fourth one greater than the third, then the number of combinations 
of Ille first in the lhird, increased by the number of combinations of the second in 
the third, is equal lo the number pf combinations of the second in the fourth. 

In our modern notation this theorem can be expressed by the simple formula 

(,5) 

We shall give a generalization of the proof given in the Traile for the case 
n = 4, k = 2. 

Following Pascal, let us think of the objects to be chosen as different letters, 

of which the first is A. Then(~ ! D is the number of ways of choosing 

k + 1 out of n + 1 given letters (n > k). Now the combinations of k + 1 
letters can be divided into two classes: all the combinations which contain the 
letter A belong to the first, all the rest to the second. But the first class 

" Pascal speaks of "kin 11" combinations. 
"We shall stick to modern terminology. 
•• Pascal's "Lemma IY." 
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contains exactly (~) combinations. (To see this, we need only omit the ;ver

present A from the letters open to choice and from the letters chosen.) 
Further, we get all the combinations of the second class if from n letters 
(namely those from which we may choose, except for the A) we choose k + I 
arbitrarily. From this argument, formula (.5) follows at once. 

We are now in a position to understand Pascal's inductive proof of his 
"Proposition I." We call the result to be proved 

Theorem i>. In every A. T., the sum of the cells in any row is equal lo the 
number of combinations of the row number in the order of the triangle. 

Before we begin the proof, let us express this theorem in modern termi
nology. The order N of an arithmetic triangle is determined by the diagonal 
which passes through squares q1N and qNi . This diagonal cuts across precisely 
those squares q.,,, for whose indices the equation 

m+n-I=N 

holds. These cells form the "base" of the triangle of order N. In the mth row 
of this triangle there are N + 1 - m cells. Thus in om terminology Theorem 
5 is as follows: 

N-m+l 

(6) ~ a(m,i) = (N) ~ ,n . 
i= 1 

Pascal says of the proof he is about to give that he will be brief, "although 
there are infinitely many cases." This remark makes it clear that he under
stood the importance of the new method of proof. As before, he gives his 
proof "in examples" (with his notation, nothing else is possible), but the 
principle of "mathematical induction" is used, and it guarantees the generality 
of the proof. 
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cells in its only row, namely G, is equal to the number of combinations 
of I (the number of the row) in I (the order of the triangle). 

2. If there is an A. T. for which this assertion is correct, no matter 
what row one chooses (that is, in which the sum of the cells is equal to 
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the number of combinations of the row number in the order of the 
triangle), then (I claim) the following triangle has the same property. 
From this it follows that all A. T.'s satisfy this equation. For by the 
first lemma47 the equation holds for the first triangle, and it is also 
obvious for the second. Then by the second lemma, the next triangle 
also has the same property, and the next, and so on forever. 

Thus Pascal only needs to prove the statement numbered 2. It is true that 
once more he docs this for a special case: assuming his theorem true for the 
third triangle, he proves its truth for the fourth. 

Our modern, more suitable notation allows us to give this argument without 
restricting ourselves to a special case. Formula (6) is, as we have already 
observed, correct for N = I. We now show that if it is correct for N = k, it 
is correct for N = k + 1. Thus by our "induction hypothesis," for every row 
of the triangle of order k, 

k-m+I 

(G') L a(111,i) = (,~) 
i=l 

and we must pro,·1• t.hat 

!\ow by (G') and (:3), 

k-m+2 k-ni+l 

(7) L a(m,i) = L a(m,i) + a(m,k - 111 + 2) 
j,,.-1 i=l 

= (k) + )m+: a(111 - I, i). 
II/. 

i=l 

47 This is the statement numbered I above. 
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By the induction assumption, however, for row m - 1 of the triangle of 
order k, 

Then from (7), (6"') and (5) we get 

Even though Pascal only carries out this last argument for "an example," 
his method of mathematical induction provides the basis for many modern 
proofs. 

Nowadays it is usual to draw Pascal's triangle not as he did but with the 
diagonals horizontal: 

1 
(8) 

1 

.5 

1 

4 

1 1 
2 

3 3 
6 

1 

4 
5 

We shall denote the numbers in this Pascal triangle by B(N,m). Here the 
first subscript indicates the row in the new triangle (8) (that is, the diagonal 
in Figure 14), the second the position of the number in this row. If, in both 
cases, we start our numbering with zero, we have Theorem fia. The number 
B (N,1n) in the mth place of the Nth row of triangle (8) is equal to the number 
of combinations of m elements N at a time: 

(9) B(N,m) = ( ~) . 
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For by (6), (3) and (2), 

(10) (~) = )~

1 

a(m,i) = a(m + 1,N - m + I) 

•-
1 = a(N - m + I,m + I) . 

We now set 

(11) a(N - m + I,m + I) = b(N + I,m + I) 

and thereby identify each number in the triangle by its position in the 
diagonal. Thus, for example, 

10 = (n = a(4,3) = a(3,4) = b(6,4) . 

Finally we start numbering with O by making the substitution 

(12) b (N + I, m - 1) = B (N,m) , 

and thus (9) is proved from (10), (II) and (12). 

On geometric proof 
Pascal enriched various mathematical disciplines with important results, but 
he also had ideas on the nature ··and value of the "mathematical method." 
By his investigations of proof in geometry and of "the difference between the 
spirit of geometry and the spirit of intuition" he built a bridge between the 
mathematical thought of the ancients and our modern conception of the 
nature of the exact sciences. 

In his Methods and Psychology of the Scholar48 he gives a series of rules for 
definitions, axioms and proofs in geometry. 

Rules for definitions 
1. Define nothing which is itself so well known that there are no 

still clearer notions to use in defining it. 
2. Leave undefined no unclear or ambiguous concepts. 
:3. In defining concepts, use only words which are well known or 

which have already been defined. 

•• [IV l], p. 11 ff. The "rules" nre on po.gee 42-4:3. 
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Rules for axioms 

1. Of each necessary principle, no matter how clear and obvious it 
may be, ask first whether it is accepted. 

2. Use as axioms only things which are completely self-evident. 

Rules for proofs 

I. Prove nothing that 1s so obvious that there is nothing clearer 
to use in proving it. 

2. Prove every theorem which is not quite clear, nnd in its proof 
use only self-evident axioms or theorems which have already been 
accepted or proved. 

3. In your mind, always put the definitions in place of the things 
defined, so as not to be deceived by the ambiguity of the concepts on 
which one has set limits by means of the definitions. 

The improvement over Euclid's Elements lies in the recognition that not 
everything should or can be defined. All mathematical concepts and all proofs 
rest on certain things "which themselves arc so well known there are no 
clearer concepts in terms of which to explain them." Euclid delines "point" 
and "line." Pascal, however, knows that there is a limit to what can he 
defined. 

Of course, this docs not mean Pascal was a formalist 49 in the modem sense. 
When he requires that only "self-evident things be used as axioms," we may 
infer that to him mathematical axioms were not simply a basis for a formal 
game - arbitrary postulates of which one requires only consistency and 
independence. For him they were clearly statements about something real. 
It was not until the nineteenth century that doubt was cast on the Platonic 
conception of the nature of mathematics. 

In the last section of the work quoted, Pascal speaks of the "difference 
hetwC'cn the spirit of geometry nnd the spirit of intuition." It seems proper 
that we modems, too, should reflect on the power and the limitations of the 
mathematical method. We quote without comment a few of Pascal's sentence:-; 
on thf' subject from this section. 

49 Hee, for example, {A 12{, Chapter X. 
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The principles (of the spirit of geometry) are evident, but removed 
from common use; and so it is an effort to turn one's head in that 
direction, since the habit is lacking ..... 
But the principles of the spirit of intuition are in common use and in 
plain sight of everyone. One does not need to turn his head or force 
himself. One need only have good eyes. But they must be good, for the 
principles are so delicate and so numerous, it is almost impossible to 
see them all . . . . 
And so it is seldom the case that mathematicians are men of intuition or 
men of intuition mathematicians, because the mathematicians want to 
treat these delicate things mathematically and thus make themselves 
laughable by beginning with definitions and going on to principles, 
which is not the right method for this way of forming judgments .... 
If, on the other hand, one presents to intuitive people used to making 
up their minds at the first glance, propositions of which they under
stand nothing, and which one can only understand by means of dry 
definitions and principles, propositions they are not used to looking 
at in detail, they are so stupefied they let themselves be frightened 
off and lose nil their eagerness . . . . 
Thus the mathematicians who are merely mathematicians reason 
correctly, but only if one··explains everything to them in terms of 
definitions and principles. Otherwise they are limited and insufferable, 
for they only reason correctly when they are dealing with very clear 
principles . . . . 
And the intuitive people who are merely intuitive do not have the 
patience to descend to the first principles of speculative things, things 
which they have never seen in the world and which are not used at all. 
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Dalis ordinatis etiam quaesita sun/ ordinata. 

Leibniz ([V 3], p . 84) 
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The polyhistor 
In the twentieth century, science is a field for specialists. A man who wants to 
do original research must prepare himself by hard work in some narrow, 
special area of his science. He must first try to understand what others before 
him have devised or discovered. This material is so extensive that every 
investigator must become a specialist. He must know a great deal, but what 
he knows does not cover a wide field. It is concentrated in the fields of science 
which are important for the problem he has chosen. In our academic education 
there is a vital question of how to overcome this isolation of research workers 
without jeopardizing the concentration of their efforts. 

Thus it is with a certain regret that one looks back on a period in which 
a highly gifted and hard-working scholar could master all that was known at 
the time. It is said that Gottfried Wilhelm Leibniz (1646-1716) was the last 
to achieve this state of universal knowledge. He earned a master's degree in 
philosophy and a bachelor's degree in law50 at. Leipzig; he talked with 
alchemists and physicists like Otto von Guericke and tried his hand at papers 
on problems in mechanics. His trip to Paris in 1672 led him to take up the 
study of mathematics. He met Huygens, who called his attention to Pascal's 
mathematical writings. Add to this the fact that the philosopher of the 
"preestablished harmony" entered the field of theology with his Theodicee 
and it becomes clear that Leibniz had, in truth, a universal mind, and did 
stimulating work in many areas of intellectual life. \Ve cannot undertake here 
the task of assessing the whole breadth of his activity. 

In the field of mathematics, Leibniz was entirely self-taught. He attended 
no lectmes on mathematics but was stimulated by the Paris circle to read 
mathematical publications and to do work of his own. Because his early 
training was of this sort, it is easily understandable that he sometimes dis
covered theorems that others had found before him. It is also true that in his 
day communication between scholars through publication in widely circulated 
scientific journals was not common. Thus it could easily happen that im
portant discoveries for which the time was ripe were made independently by 
different scholars. The founding of the infinitesimal calculus by Newton and 
Leibniz is one example of such a duplication, the discovery of non-Euclidean 
geometry by Bolyai and Lobachevski in the nineteenth century another. 

• 0 Later, at Altdorf, he wns awarded the degree of Doc/or juris 11trillsq11e. 
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Today it no longer seems so important to us which investigator can claim 
priority of publication. It is not the date of a publication that counts but the 
contents. Every scholar has his own way of attacking problems, and so it can 
perfectly weII happen that the second work to appear is no less important 
than the first. Newton looked at the problems of infinitesimal calculus from 
the point of view of physics. Leibniz started from the tangent problem and 
created a practical calculus which is still in use today. After many years 
of controversy over the question of priority, it can now be considered as 
established that Newton's work was done a few years earlier than that of 
the German scholar. On the other hand, it also seems certain that Leibniz 
made his discoveries independently of Newton and his fellow countrymen. 51 

In discussions of Leibniz's mathematical achievements it is usual to speak 
of his founding the infinitesimal calculus. It should not be forgotten, however, 
that he also did stimulating work in many other fields of mathematics. 
Until the ninteenth and twentieth centuries, his proposal of a "universal 
language of ideas" understandable to people of all lands was not properly 
appreciated. In 1666, at the age of twenty, he earned the right to teach at the 
University of Leipzig with his paper on this subject entitled Dissertatio de 
Arte Combinatoria. Nevertheless, his idea of a "language of concepts" was not 
taken up at that time. It was not until the work of George Boole52 (who 
probably did not know Leibniz's paper) that an algebra came into existence 
which can be called a realization of Leibniz's ideas. 

In addition, Leibniz made important contributions to the theory of deter
minants and the calculus of finite differences. 53 If we want, in the short 
compass of a chapter, to document his work as a mathematician with examples, 
we are in something of a dilemma. What shall we choose? We must and can64 

dispense with a connected account of the origins of his infinitesimal calculus. 
However, his own philosophy justifies our illustrating the whole with a 
typical example - just as every "Monad" is a "living mirror of the universe," 
so the working methods of an investigator can he seen in a few suitably 
chosen examples. 

" See, for example, I\' 41, IV 71, [V RI and [V OJ. 
• 2 See Chapter VII. , 
•• For more on this topic see, for example, IA 41, p. 125 ff., and I\" 5J. 
" A detailed 11crount is given in [\' 71. 
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The .. harmonic triangle" 
When Leibniz was being introduced to the problems of mathematics by 
Huygens in Paris, his teacher assigned him the problem of summing the 
infinite series 

(1) 

The terms of this series (I) are the reciprocals of the Triangular Numbers55 

d = (n + I) = n(n + 1) 
" 2 2 . 

Leibniz showed he was equal to the problem. He wrote the terms of the 
series ( l) in the form 

2 2 l (1 1 ) 2 · 3 = 2<½ - ½) ' ~ = 2(½ - ¼) ' ... ' ~. = d. = 2 n - n + 1 . 

Then one gets as an "approximating sum" s. for (I), 

and finally (in modern notation) 

S = Jim s. = 2 . 

It is typical of the turn of our investigator's mind toward the universal that 
he later generalized this procedure and was then able to read off from his 
"harmonic triangle" many convergent scries. 56 The harmonic triangle is a 
counterpa_rt of Pascal's arithmetic triangle in the form of Eq. (8) Chap. IV: 

so Cf. p. :3. 
"See IV 5]. Thia paper also contains a detailed list of sources, references to Leibniz's 

rnnnuacripta, et!'. 
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(3) -
1 

1 I - -
2 2 

1 1 1 - - -
3 6 3 

I - -
4 12 12 4 

I I - - -
5 20 30 20 5 

1 1 1 - - -
6 30 60 60 30 6 

1 I I I I I I 
-

7 42 105 140 105 42 7 

This triangle of numbers is characterized by the following properties: 

(I) The nth row67 begins and ends with 1/(n + I) . 

(II) Every number is the sum of the two below it. 

The corresponding statements about Pascal's triangle (in the form of Eq. (8) 
Chap. IV) are 

(I') Every row begins and ends with 1. 

(II') Every number not on the boundry is the sum of the two above it. 

It will be convenient to use the language of modern mathematics in estab
lishing the properties of the harmonic triangle (3). Following Hofmann and 

Wieleitner we shall denote the general number in (:3) by [:], where n indi

cates the row, k the place in the row. Then Huie (II) can be stated as follows: 

(4) 

"We begin numbering with zero. 
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Further, by Rule (I) 

(5) n = 0, I, 2, .... 

Equations (4) and (5) are the counterparts to the well-known formulas 

( 4') 

and 

for the numbers in Pascal's triangle. 58 The numbers in (3) can be computed 
by first writing down the "oblique row" corresponding to k = 0 

Uo : }, %, ½, % , , , , 

then using (4) to determine, one after the other, the numbers in the oblique 
row u, , etc. That every row ends with I !(n + ]) must be proved. This fact 
and, more generally, thr symmetry of the harmonic triangle, follow from 
the formula 

(6) k!(n - k)! 
(n + I)! 

which establishes a relation between the numbers in the harmonic triangle 
and those in Pascal's triangle. Equation (6) can be prnved easily by mathe
matical induction. Clearly it gives the right results for the first oblique row, 
since hy (6) 

[
n] O!n! I 
0 = (n + I)!= n +I· 

Now assume that (6) holds for the 111th oblique row, that is, for le = m - I . 

•• Cf. Chapter IV Eq. (5). 
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From (4) nnd the induction hypothesis it follows that 

(m-l)!(n-m)! 
n! 

m!(n-m)! 
( n + I)! 

(m - I)! (n - m + I)! 
(n + I)! 

From (Ii) one can immediately infer the symmetry of the harmonic triangle: 

(7) 

an<l, further, the important limit 

(8) 

Equation (8) can be used to !ind the> sum of the numbers in an oblique row. 
For the partial sums 

equation (4) shows that 

and from this and (8) il follow:-; that 

(10) 

11=--k 
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From this we can get, for example, the series 

[OJ 2 1 1 1 
2 . S1 = 2 0 = 1 = 1 + 3 + 6 + 10 + ... 

(11) [1] 3 1 1 1 3 . 82 = 3 1 = 2 = l + 4 + 10 + 20 + ... 

[
2] 4 1 1 1 4 . Sa = 4 2 = 3 = l + 5 + 15 + 35 + ... 

These series are also in Leibniz's manuscript. He obtained them by using the 
rules of formation (I) and (II), though not, of course, in the form given here. 

However, in addition to (11), Leibniz gives the series 

(12) 

This series is obtained by a formal argument from analogy: one need only 
add the series for k = 0 to the collection of series for (k + l)Sk given in (11). 
Equation (12) may be interpreted as saying that the series obtained in this 
way diverges. 

This is true, but the argument from analogy is nevertheless not valid. For 
(4) holds only for le ~ 0, so (9) holds only fork ~ 1. Thus we have an example 
both of the power and of the limitations of Leibniz's way of working. Perhaps 
it was his belief in the harmony of all that is knowable59 that made him prone 
to such daring arguments from analogy. Modern mathematicians are aware 
that only under specific hypotheses can one reason from the "order of the 
given" to the "order of the sought." 

Leibniz's series 
Today Leibniz's series 

(13) 

is usually derived from the series for arc tan x. However, Leibniz happened 011 

this representation by way of a unique treatment of the problem of finding 
the area of a circle. In our account of his method we shall not hesitate to 
speak of "infinitesimal triangles" and "neighboring points," as was usual in 

'" See the motto ut the beginning of this chapter. 
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', ,, ,, 
',, 

Fig. 15 

'C,.. __ .u....1.--_____ L..,.....:..:,:..1..._x 

0 

his day. The reader who is accustomed to the precise language of modern 
analysis should at this point quiet his mathematical conscience with a fairly 
powerful sleeping pill, and then later try to translate this argument into the 
language of modern calculus. 

Leibniz wishes to determine the area of a quarter of a circle (of _radius 1). 
To do this he divides the quarter circle into an isosceles right triangle (ABO 
in Figure 1.5) and a segment (with arc AB).60 

The quadrature of the segment is then accomplished by dividing it into 
"infinitesimal" triangles ADE, using "neighboring" points D and E on the 
circumference. Let K and L be the feet of the perpendiculars from D and E 
to the x-axis, AO. Let H be the intersection of the line DE and the tangent 
at A (the y-axis), G the foot of the perpendicular from A to the line DE. 
Finally, the perpendicular from D to EL gives us the typical infinitesimal 
triangle DE.I. 

It is clear at once that triangles DE./ and AHG are similar, from which 
follows 

DE :DJ= AH :AG 

or 

AG · DE = AH · DJ . 

Now suppose the parallel to the x-axis through H meets the segments DK 
and .IL in A1 and N. Then if F(ADE) is the area of the infinitesimal triangle 
ADE, 

F(ADE) = J:.iAG · ds = ~2 F(KUIIN) 

or 

(14) ~2AG · ds = H_ydx. 

00 We follow here largely [V 4). Thie paper contuins detailed information on the manuscripts. 
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Here ds stands for DE, y for AH= KM, x for AK and dx for DJ= 
MN= KL. 

Further, we let cJ, be the angle DOA and thus obtain 

(1.5) x = AK = 1 - cos q, = 2 sin2 q,/2. 

Kow AH is tangent to the circle, and we can also say that the secant DE 
joining neighboring points "touches" the circle. Hence 

(16) 

Since 

y = AH = KM = tan cJ, .12 . 

• 2 tan2a 
sm a = 1 + tan2a 

it follows from (I;j) and (lfi) that 

(17) x(l + y2) = 2y~. 

This cubic equation determines the curve on which lie all possible points M 
with coordinates x and y. Using (14) we now replace the summation of all 
the triangles A DE by an integration of y with respect to x: 

(18) S = Y2 f AG ds = ~2 f y dx . 

Here S is the required area of the segment. Now for every curve y = y(x) 
the integration with respect to x can be replaced by an integration with 
respect to y. Thus, in our case from (18) we get 

(19) S = >2 f y dx = }-2 x y - ½ f x dy = }-2 x .II - f 
1 
f 112 dy • 

Then Leibniz develops the fraction in (19) in a series: 

2 

(20) Y 2 .\ G 
1+y2=!J -y +!I- ... 

Inteµ;ratinµ; term by term01 µ;ivei-; 

(21) 

' 1 From the modern point of view, this proredure re<Juircs a proof of the uniform c·,mvcrgcnce 
of the series (20). 
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If</, = 1r/2 and x = y = 1 , (21) implies that 

s = ½ - H + ½ - ½ + >§ - .. · 
If, finally, we add the area of the right triangle ABO to tl1is, we get for the 
area of a quarter of the unit circle: 

F = 1r /4 = I - H + }& - ½ + }6 - ... 

The .. infinitely small" 
Through the work of Cauchy, Weierstrass, and other ninteenth century 
mathematicians, analysis has been given a foundation which avoids the 
dubious notion of the infinitely small. 62 It is not hard to translate Leibniz's 
derivation of the series for 1r/4 into modern terms. 

However, in order to understand Leibniz's way of thinking and that of 
his conklmporaries, one must know what they meant by the infinitely small 
and the "principle of continuity." For that reason we shall quote, without 
comment, several passages from the correspondence between Varignon and 
Leibniz, which concerns this topic ([V 3], pp. 94-100). 

Varignon to Leibniz 

Paris, l\'o\"ember 28, 1701 

Permit me to assure you of my deepest respect and at the same time 
to inform you of a work which is being circulated here under your 
name. It concerns the disagreement between l\Ir. Rolle and myself, 
of which you know, regarding your infinitesimal calculus, which he 
terms false and to which he attributes errors in reasoning. The Abbe 
Galloys, who is really behind the whole thing, is spreading the report 
here that you have explained that you mean by the "differential" or 
the "infinitely small" a very small, but nevNtheless constant and 
definite quantity, such as the earth in relation to the heaYens or a 
µ;rain of sand in relation to the earth. I, on the other hand, have 
called a thing i111initcly small or the dilfcrential of u q1mntit.y if that 
quantity is inexhaustible in comparison with the thing. Thus I have 
called infinite or indefinite everything which is inexhaustible, whilP 

•• See Chapter VIII. 
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58 

I have called infinitely or indefinitely small everything with respect 
to which a given quantity is inexhaustible. From this I have drawn 
the conclusion that. in the differential calculus the terms infinite, 
indefinite, inexhaustible in size, greater than any assignable quantity, 
indeterminately large; like the terms infinitely or indefinitely small, 
smaller than any assignable quantity, indeterminately small; are 
entirely synonymous. I entreat you to give me your verdict on this 
matter, so that I can tell the opponents of this calculus to stop misusing 
your name in order to deceive il!;norant people and fools ... 

Leibniz to Varignon 

Hanover, February 2, 1702 

I no longer remember the exact terms I used; my intention, however, 
was to show that one does not need to make mathematical analysis 
depend on metaphysical quarrels; in other words, that one need not 
assert that there exist in nature lines which in comparison with our 
ordinary one are, in the strict sense, infinitely small . . . . 

In order, therefore, to avoid these subtle matters of dispute and 
because I wanted my ideas to he generally understood, I contented my
self with explaining the infinite as the incomparable. In other words, I 
assumed there were quantities which were incomparably larger or 
smaller than ours. For in this way one obtains arbitrarily many degrees 
of incomparable quantities, in so far as an incomparably much smaller 
quantity may be disregarded when one is calculating an incomparably 
much larger one. Thus a tiny particle of the magnetic material which 
can pass through glass is not comparable with a grain of sand, or a 
grain of sand with the earth, or, finally, the earth with the heavens. 

One must remember, however, that incomparably small quantities, 
even when understood in the popular sense, arc by no means constant 
and dctermirwd. 011 thr contrary, since they may be made as small 
as we like, they play the same part in geometric reasoning as the 
infinitely small in the strict sense. For if an antagonist denies the 
correctness of our theorems, our calculations show that the error is 
smaller than any given quantity, since it is in our power to decrease 
the incomparably small, which one can always assume as small as 
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he likes, as much as is necessary for our purpose. This is perhaps what 
you mean by the inexhaustible, and there is no doubt that therein 
lies the rigorous proof of our infinitesimal calculus. 

One must not think, however, that the science of the infinite is 
depreciated and traced back to fictions by this explanation. For there 
always remains, if I may express myself as the Scholastics do, a 
syncategorematical infinity. For example, it is always true that 2 is 
equal to 

1 + }2 + }:i + ... ' 
that is, equal to an infinite series containing all fractions whose numer
ators are 1 and whose denominators form a geometric progression . . . . 
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Pauca sed malura. 63 

Gauss 

•• Pauca sed 111at11ra is the inscription on the seal of Gauss. The three words are 
a rranged around a laurel tree that has only a few berries, bu t those are ripe. 
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.. Prince of mathematicians" 
When Carl Friedrich Gauss died, on Feburary 23, 1855, the King of Hanover 
had a memorial coin struck off with the dedication, "Georgius V Rex 
Hannoverae Mathematicorum Principi." It is not hard to explain why, to 
his contemporaries, Gauss was the "prince of mathematicians." One can 
point out the sweep of what he accomplished, ranging from pure number 
theory, algebra and analysis, to applied mathematics, astronomy and physics. 
However, such an enumeration is convincing only if in addition one can give 
detailed appreciations of individual accomplishments. 

We do not have space for that here. 64 However, in Gauss' co.se one can 
justify the royal dedication in another way. His publications are mature; 
the elegance and compactness of his presentation make it clear to the initiated 
that each of his papers is the work of a master. This characteristic of his works 
impresses the modern reader again and again. It stems from a maturity as a 
human being that we today do not always possess: Gauss could wait. He could 
wait until he found the definitive form for a proof. He once wrote to his 
friend Schumacher about this: 

You know that I write slowly. This is chiefly because I am never 
satisfied until I have said as much as possible in a few words, and 
writing briefly takes far more time than writing at length. 

And Sartorius von Walterhausen says in his obituary for Gauss:66 

Gauss always strove to give his investigations the form of finished 
works of art. He did not rest until he had succeeded, and hence he 
never published a work until it had achieved the form he wanted. He 
used to say that when a fine building was finished, the scaffolding 
should no longer be visible. 

For this reason, the works of the prince of mathematicians have o, cold 
beauty; it is disturbing to those of his readers who would like to find out how 
he discovered his proofs. Abel says of him: "He is like the fox, who effaces his 

•• A detailed appreciation of Gauss' accomplishments is given in [VII 3]. The biography 
by Worbs [VI 2] gives a good picture of his personality. 

•• We quote from [VI 21, p. 130. 
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tracks in the sand with his tail," and .Jacobi calls his proofs "stark and 
frozen, ... so that one must first thaw them out." 66 

Working according to the principle "pauca sed matura" had consequences 
for Gauss which a less fertile mind would have found very annoying. Because 
he waited so long before publishing his ideas, it sometimes happened that 
others anticipated him. That is what happened with the theory of elliptic 
functions. Jacobi and Abel are credited with being the founders of this 
theory, but we now know from Gauss' notebooks that by 1800 he had already 
developed the main features of the theory. It was much the same with non
Euclidean geometry. He kept his ideas to himself (because he feared "the 
outcry of the Boeotians," as he wrote in 1829 in a letter to Bessel), and 
Lobachevski and Bolyai became the founders of this important new discipline 
in mathematics. 

We close this section with an illustration of Gauss' ability "to compress 
every mathematical discussion into its most elegant and simplest form" 
([VI 21, p. 227). 

In a letter of August 22, 1836, to Gauss, Schumacher presents a construc
tion, due to Riimcker, of the tangents to an ellipse through a point P outside 
the ellipse (Figure 16). 

Riimcker draws any four secants PA,B,- (i = 1,2,3,4) through P, and also 
the segments A1B2, A2B1, AaB4, A4B 3 with intersections C and D. Then the 
line CD meets the ellipse67 in the points Q1 and Q 2 of tangency of the tangents 
t1 and t2 through P which we are looking for. Schumacher observes that this 
"pretty problem" can be solved even more simply: three secants will do, 
since the intersection of A2Ba and A 3B2 also lies on the line CD. 

Finally, in an answer written six days later, Gauss has an even simpler 
solution: he manages with only two secants, observing that the intersection R 
of the lines A1A2 and B1B2 also lies on the line CD. 

As a good example of Gauss' way of working we give next one of his proofs 
of the Fundamental Theorem of Algebra. Gauss gave many proofs of the fact 
that every algebraic equation with real coefficients has at least one (real or 
complex) solution. His thesis, presented to Pfaff in Helmstedt in 1797, is the 
first proof of this important theorem. In the next section we give the purely 
analytic proof which appeared in 1816 in the "Gottinger Gelehrten Anzeigen." 

•• Compare this with the point of view of Weierstrass (in the mott<l of Chapter YIII, p. 85). 
67 CD is the polar of the point P. 
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Fig. 16 

And now we shall leave it to the reader to decide whether he will merely 
admire the elegance and clarity with which this proof is presented, or whether 
he will also look for the tracks which the fox "elTaced with his tail," in other 
words, whether he wants to find out how Gauss discovered this solution. In 
the main we follow his presentation, but we add a few remarks to make it 
easier to check his deductions. 

An analytic proof of the Fundamental Theorem of Algebra 
We must show that every polynomial 

(1) f(z) =z'"+A1zm-1 +A2z .. - 2 + · · · +.:l.,_iz+.-1., 

with real eoeffieients Aµ(µ= 1,2, ... , 111) has at least one (real or complex) 
zero. Let 

z = :r + iy = r(eos q, + i sin q,) , 
(2) 

f(z) = I + iu = t(r,q,) + iu(r,q,) 

so that 

IJ(z) 12 = 12 + u2 . 

If _((z) wrrr eyerywherr different from zero, tlw function 

g (r,q,) 
(12 + u2)2 

would lw cont.inuous and diffrrcntiahlc evrrywhrrc in the finite plane a;; long 
as the fqnetion g(r,q,) in the numerator has these properties. (The denominator 
would have no zrros.) Int.hat casr onP could evaluate thr integral 

(3) 
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over a circle K(R) with radius R and center the origin, using a well known 
theorem of real analysis, either by integrating first with respect to r from 
0 to Rand then with respect to cf, from Oto 21r, or by integrating in the opposite 
order. The value of n is independent of the order of integration. If we can show 
that for a certain function g(r,q,) the order of integration in the evaluation of 
the integral (3) does make a difference, it follows that the hypothesis f(z) ~ 0 
is false. Thus the Fundamental Theorem of Algebra will be proved if we show 
the existence of such an integral (3). 

To do this we introduce, following Gauss, the definitions 

(
1 = 1/l/"m COS 111,P + (111 - 1) A1rm-I COS (Ill - 1) tf, + 

+ Am-Ir cos"' 
u' = mrm sin mq, + (m - I) A 1rm-I sin (m - 1) cf,+ · · · 

+Am-Ir sin"' 
(4) 

t" = m2rm cos mq, + (m - 1)2 A 1rm- 1 cos (m - 1) + · · · 
+Am-Ir cos"' 

u" = 111 2,-m sin mcf, + (m - 1)2 A1rm-I sin (m - 1) cf,+ · ·• · 
+ Am_1r sin cf, 

The quantities defined in (4) are r.elated to the real part 

(!i) t(r,q,) = rm cos mq, + A1rm-i cos (m - I) cf,+ · 
+ Am-11" COS cf, + Am 

and the imaginary part 

(!i') u(r,q,) = r"' sin 1114' + A r- 1 sin (111 - I) ct, + · · · 
+ A .,_1r sin cf, 

of the given function f(.r + iy) as follows: 

( (j) 

We note further the relations 

1¢¢ = - r · U¢r , 1l¢¢ = - r · I,:,, 

(7) 
U¢ = r ·I,, / 0 = - r · u, 
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which are easily deduced from (4), (,'5), (.'5') and (6). 
the following additional definitions: 

Finally we introduce 

T = Rm cos i- + A1 Rm-I cos (i + tp) + 
(8) 

U = Rm sin ;f + A I Rm-1 sin (i + 4') + 

· + Am COS (i + mt/,) 

· + Am sin (i + mt/,) 

and 
T' = 1n Rm cos i + A1(m-l) Rm-l cos (i + f/, )+' ' ' + Am-l R cos 

(8') (i+Cm-l)q,) 
V' = m Rm sin i + A 1 (m-1) Rm-I sin (i + t/,) + · · · + Am-I Rsin 

G + cm-1)"' )· 

Here R is an arbitrary positive, real number satisfying the inequality 

(9) R > max (Jm [A.I . v2) 'n = 1,2,. '.' Ill. 

For this choice of R the quantities T, V, T' and V' are always positive. This 
can be seen at once for T, for example, if we write it in the form 

T = ~ Rm-n -[R• + m A. v2 cos (i + nq, )] . 
L.Jm · v2 

n-1 

(IQ) 

Since I cos (1r/4 + nt/,) : :$ 1 , and (9) holds, none of the terms of (10) is 
negative. Since, further, it is clear that not all of them vanish, 1' is always 
positive. A similar argument can be used for V, T' and U'. 

Finally, we observe that for r = R the quantities I, u, I' and u' defined by 
(!i), (!i') and (-!) have the following values: 

(II) 
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t (R, q,) = T cos (i + m,f,) + V sin(i + m,f,) 
u (R, q,) = 'l' sin (i + m,f,) - U cos(i + m,f,) 
t' (R, q,) = T' cos (i + mt/,) + V' sin (i + mtf,) 

u' (R, q,) = T' sin (i +mt/,) - U' cos (i + mq,) . 
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From these it follows at once that if r = R, the quantities t2 + u 2 = T 2 + U2 

and tt' + uu' = TT' + UU' are both positive. 

t2 + u2 = T2 + U2 > 0 
(12) 

tt' + uu" = TT'+ UU' > 0. 

After these preparatory steps we proceed to the evaluation of the integral 

(2') 

where 

(13) 

n = J y drd<t,, 
K(R) 

Here K (R) is a circle about the origin with radius R satisfying the inequality 
(9). Note that every term occurring in the numerator of (13) has a factor r, 
so the r in the denominator can be cancelled. We now assume that t 2 + u 2 

does not vanish in the circle K(R), and evaluate (2') by integrating first with 
respect to <f,, then with respect to r: 

(2") 

Now the inner integral in (2") can be written in the form 

(14) f tu' - ut' 
y d<t, = ,. (12 + u2) . 

This is easily seen by differentiating the quotient 

( I ,'j) tu' - ut' 
<J (r,<J,) = r (12 + u2) 

with respect to <f,. In carrying out this calculation (which, following Gauss' 
example we leave to the reader), it is convenient to use (6) and replace/' and u' 
in (I.1) by the partial derivatives u., and - I,;, • 

67 



Carl Friedrich Gauss 

From (.5) and (4) we see at once that q (r,0) = q (r,21r) = 0. Hence 

(16) R ( 2r ) n = f f ydq, dr = 0 . 
r=O 4>= 0 

However, one can also evaluate (2') by integrating first with respect 
tor. Then 

(2"') 2r ( R ) n = .L ,la ydr d,p . 

This time the inner integral can be written in the form 

(17) JR d = [It' + uu']R 
y r t2 + u2 

0 
0 

Here too one can convince himself of the correctness of this assertion by 
finding the partial derivative of 

(18) q*(r, 4,) 
tt.' + uu' 

t2 + u2 

with respect to r. To do this we use (6) to write q* in the form 

( 18') * . _ tu,:, - ut.,, 
q (1,q,) - t2+u2 

Using the quotient rule and taking account of (G), (7) and (1:3), a simple 
calculation gives 

aq* _ (t
2 + u2

) (It,:,,:, + uu.,,,.) + (tu,:, - ut,:,}2 - (It,:, + uu,.)2 

cir - - r (12 + u2)2 = Y 

Thus (17) is proved. 
Using (12), and noting that I' (0,4,) = u' (0,4,) = 0, it follows from (17) 

that 

H 

f 'l'T' + UU' 
Ydr=--->0 

0 r2+u2 . 
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Thus our integral n must also be positive: 

27 

(19) f TT'+ UU' 
!1 = T2 + u2 drt, > 0 . 

Since (19) and (16) arc contradictory, the hypothesis that f(z) >'6- 0 is false. 
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Pure mathematics was discovered by Boole in a 
work called "The Laws of Thought." 

B. Russell 68 

71 



George Boole 

The self-taught man 
It seems that in our era of specialization an admirable type of mathe

matician is becoming extinct: the self-taught man who, without a complete 
knowledge of the technical literature, thinks his way into a problem and 
following his own path, penetrates into new territory, previously closed to 
the experts. There are still, of course, mathematical cranks who, untroubled 
by any knowledge of the field, try to solve problems which are demonstrably 
unsolvable. The editors of mathematical journals and the authors of popular 
books are acquainted with such correspondents, hard to deal with because of 
the consistent tenacity of their misunderstanding. 

In earlier times, this unpleasant sort of self-taught man was not the only 
kind. In the field of number theory, for example, there were highly gifted 
outsiders who, as late as the 19th century, worked out results the experts 
were forced to recognize. As a result of increasing specialization the chances 
for such independent thinkers are now much smaller. 

E. T. Bell, the British historian of mathematics, says ([A 71, p. 478) that 
his fellow countrymen are addicted to that stubborn sort of mathematical 
brooding which pays no attention to what others have already thought or 
written. They do mathematics because they enjoy working with numbers 
and figures, just as others like to play cricket. 

In the field of technical mathematics, one such outsider was George Boole 
(18I.'i-18G4), who "discovered pure mathematics," according to no less a man 
than Bcrtra11d Russell. His father, .John Boole, was a cobbler in Lincoln, 
and in addition, a remarkable philosopher. He built optical instruments and 
invited people "to observe the works of God in a spirit of veneration" 
([VII T>], p. G7). Years after Boole's death, when someone praised the author 
of The Laws u.f 'J'lwughl to his mother, she replied: "Ah, but you didn't know 
his father? He really was a philosopher." And George Boole's wife once said 
of her father-in-law, "He seemed to be capable of doing everything but look 
after his own business." 

Though the family of .John Boole was comfortably off, George did not get, 
his education easily. He learned Latin and Creek largely out of borrowed 
books, at~one time wanting to be a minister. His motivation for this was not 
a desire for social advancement. 69 The son of the philosophizing cobbler was 

• 9 Taylor, a nephew of George Boole, criticizes Bell's trentrnent of this matter IA 71, 
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a deeply religious man, and there is no reason to suspect that his first choice 
of a career was based on anything other than religious grounds. 

At first George Boole earned his living as an elementary school teacher, 
and at 20 he founded his own school. He occupied himself with mathematics 
only because books on mathematics were cheaper than those on the Classics.70 

He soon learned that the current textbooks were very poor, and therefore 
sought stimulation from the great men of his time. He studied Abel and 
Galois and, without any outside help, Laplace's M ecanique Celeste. 

His "discovery of pure mathematics" is far more an insight of universal 
importance. He discovered that the symbolism of algebra is useful not merely 
for making statements about numbers and numerical variables. One can also 
introduce an algebra into the field of logic - an algebra related to the algebra 
of numbers. This discovery made the meaning of mathematical formalism 
clear: one can develop the laws of mathematical calculi without being restricted 
to special meanings - which is what Russell meant by "pure mathematics." 
Later the statements of the algebra can be interpreted in various branches 
of mathematics. Thus today "Boolean algebra" is important not only in the 
field of formal logic but also in the geometry of sets, the theory of probability, 
and the general theory of lattices. 

Boole was stimulated to study the problems of logic by a dispute between 
the logician de Morgan, who was mathematically oriented, and the Scotch 
philosopher Sir William Hamilton71 (1788-18:'iCi). In his little book The ./llalhc-
111alical A nalysi,s <~{ J,ogic, Boole developed the idea of formal lov;ic. This 
notion had already occurred to Leibniz (p. -Hl), but it was Boole, the elementary 
school teacher, who first developed a practical algebra from the idea, nearly 
two hundred years later. 

His book which aroused the admiration of de Morgan, freed him from the ' . 
drudgery of elementary teaching. He became professor of mathematics at 
Queens College in Cork. Six years later he published a more comprehensive 
work [VII 21, in which he gave a detailed development of his algebra of 
mathematical logic, and showed how it could be applied to the theory of 
probability, among other fields. 

70 This is no longer true. Are there, as a result, undiscovered mathernntil'nl geniuses who 
will never get a start? 

71 Not to be confused with the Irish mnthemntician Sir William Rowan Hamilton (1805-
1865). 
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This work of Boole's founded a new scientific discipline, formal logic, which 
may be considered either a part of philosophy or of mathematics, a<>cording 
to one's preference. For the mathematician, however, it is almost more 
important that with this work formalism in mathematics was given a new 
push. Peacock, in 1830 in his Treatise on Algebra, had already pointed out 
that the letters x, y, z, ... in equations such as x(y + z) = xy + xz and 
x + y = y + x do not have to stand for numbers. For him they were abstract 
symbols which satisfied certain relations. Now this idea received a new 
impetus from the work of Boole. He made it clear that similar formalisms are 
also possible in logic. 

Thus the way was opened for the liberation of mathematics from meta
physical notions. For the thinkers of earlier centuries, most of whom had 
been schooled in the Platonic teachings, the theorems of mathematics were 
statements about the world of ideas. When, later (in part through the dis
covery of the paradoxes of set theory72), mathematicians became suspicious 
of such unsupported metaphysical concepts, they tried to construct "formal
istic" foundations for mathematics. Mathematics became the "science of 
formal systems," which consciously renounced any theory of the reality of its 
fundamental concepts. One may regret this turning away from the bright 
world of Plato, but it is based on the legitimate desire to eliminate all un
certain elements from mathematics. Thus, spurred on by Hilbert, modern 
proof theory was born. To it modern science owes many epistemologically 
important insights.1a 

We shall now discuss the fundamental ideas of Boole's Investigation of the 
Laws of Thought and the place of "Boolean algebra" in modern mathematics. 

A new algebra 
The concepts of our thought are expressed in different words in different 
languages. •·•state" is "Staat" in German, "civitas" in Latin. It is not the 
sequence of letters that matters, but the idea we associate with the sequence 
of letters. There is nothinµ; to prevent 11s, Boole says ([VII 2], p. 26), from 
denoting an idea by a single letter. All that matters is that we do not change 
the meaning in the course of an argument. If we now replace combinations 

72 See Chapter IX and [A 12], Chapter X. 
73 See, for example, [A 12[, Chapters X-Xll. 
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of ideas by mathematical symbols like +, - , X, etc., logical deductions can 
be "translated" into algebraic ones. This leads to Boole's first proposition. 

Proposition I 

All the operations of language, as an instrument of reasoning, may be 
conducted by a system of signs composed of the following elements, viz.: 

First. Literal symbols, as x, y, etc., representing things as subjects of 
our conceptions. 

Second. Signs of operation, as +, - , X, standing for those operations 
of the mind by which the conceptions of things are combined or resolved 
so as to form new conceptions involving the same elements. 

Third. The sign of identity, = . 

These symbols of Logic are in their use subject to definite laws, partly 
agreeing with and partly differing from the laws of the corresponding 
symbols in the science of Algebra. 

Let us begin with some simple examples. If the symbol x stands for "white 
things," the symbol y for "sheep," then the symbolic product xy stands for 
the class of things which belong both to x and to y: that is, white sheep. 
Clearly the commutative law 

(1) xy = yx, xyz = xyz = yu; = ... 

holds for this sort of product. This law (1) also holds in "ordinary" algebra. 
That is not, however, true of the proposition 

(2) xx=x2 =x. 

Whatever class of things we think of x as representing, the "intersection" xx 
is always identical with 'x. The relation 

(3) yx = xy = x 

expresses a "containing." For example, (3) holds if x stands for the Germans, 
y for the Europeans: every European who is also a German, is a German. 

The symbol + is used to translate the conjunctions "and" and "or." If 
x stands for "men" and y for "women", then x + y stands for "men and 
women," or the class of beings who are "men or women." Here "or" is to be 
understood in the sense of the Latin vel. "Either-or" (aut-aut) can also be 
expressed in the new symbolic language, as we shall show later. This language 
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is superior to ordinary language in that it avoids such ambiguities as exist 
in the meaning of "or." 

In the new algebra, the distributive law 

(4) z(x + y) = zx + zy 

also holds. Boole interprets this relation in the following way. Let z stand for 
"Europeans," x and y for "men" and "women." Then (4) says that "European 
men and women" are simply "European men" and "European women." 

The minus sign is used to express an exception. If x stands for human 
beihgs and y for Asiatics, then x - y is the class of human beings who are 
not Asiatics. Clearly the law 

(4') z(x - y) = zx - zy 

holds for the difference, in analogy with (4). If we use 1 to stand for the 
"universe," that is, for the set containing everything, and O for the "empty 
set," then we can get from (2) by formal rearrangement, the relation 

(."i) x - x2 = 0 , x(l - z) = 0. 

Here 1 - xis the class of things that do not belong to x, and thus x(l - x) = 
0 HII.YH there are 110 things which belong to x and do not belong to x. 

N"ow we can also express the Latin aut-aut in our algebra. For "either x or 
y" means "x and not y or y and not x," that is 

(G) x(l - y) + y(l - x) . 

By a "logical function" we shall, with Boole ([VII 2], p. 71), understand, 
in what follows, an algebraic expression with one "variable" x, which is 
interpreted here as a "logical symbol." Similarly one can construct "logical 
functions" with several symbols, such as 

f(x, y) = (x + y) (1 - x) . 

Boole Htarts with the fact that every function .f(x) defined for numerical 
values of x can be represented in the form 

(7) .f(.r) = .f(l)x + .f(O) (1 - x). 

This is easily seen if we substitute O or 1 for x in (7). Boole gives, as an example, 
the representation 
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(8) 

However, (8) is clearly valid only if no values of x but 0 and 1 are admitted. 
From (7) it follows that for a corresponding function of two variables, 

(9) J(x, y) = J(l, y)x + f(0, y)(l - x) . 

If in (9) we replace f(l, y) and J(0, y), following (7), by 
f(l, y) = J(l, l)y + J(l, 0)(1 - y) 
f(0, y) f(0, l)y + f(0, 0)(1 - y) 

we get 

(10) f(x, y) = f(l, l)xy + f(l, 0)x(l - y) + J(0, 1)(1 - x)y 
+ J(0, 0)(1 - x)(l - y) . 

An analogous result holds for a function of three variables under corresponding 
hypotheses: 

(11) ((x, y, z) = J(l, 1, l)xzy 
+ .f(l, 1, 0)xy (1 - z) + f(l, 0, l)x(l - y)z 
+ J(l, 0, 0)x (1 - y) (1 - z) = J(0, 1, 1) (1 - x)yz 
+ f(0, 1, 0) (1 - x)y(l - z) 
+ f(0, 0, 1) (1 - x) (1 - y)z 
+ f(0, 0, 0) 0 - x) (1 - y) (1 - z) . 

Boole uses this form of representation for functions in which x, y, and z 
are logical symbols. As before, 1 is to be understood as the "universe," 0 as 
the "empty set." 

Now there is a serious objection to this procedure. Boole derived relation 
(7) under the assumption that x takes on only the values 0 and 1. If we inter
pret x, y and z as logical, symbols, then this hypothesis must be "translated" 
as follows: for the logical symbols x, y, z, ... , only the "universal set" 1 and 
the "empty set" 0 are to be submitted. Actually, however, Boole uses the 
representations (10) and (11) for arbitrary symbols x, y, z, .... 

This procedure can be defended by pointing out that later "truth values" 
are introduced for the "secondary propositions" (seep. 79). Then the functions 
can be interpreted as statements about truth values. Thus Boole's procedure 
is justified. However, we can do without the "secondary propositions" at 
this point. We need merely recognize that in Boolean algebra only functions of 
a very simple type appear, for which (7), (10) and (11) are identities for all 

77 



George Boole 

x, y, z, .... We do not need to represent any fractions like the one in (8) -
just (for one variable), functions of the form 

(12) J(x) = ax + {3 . 

Because of (2) we can restrict ourselves to functions in which x occurs linearly. 
Functions of the form (12), however, can always be written identically in 
the form 

(12') J(x) = ax + b(l - x) . 

From this is follows at once that a = f(l), b = J(O) . Thus Boole is justified 
in using relations (7), (9) and (11) for arbitrary logical symbols. One can 
transform (12) into (12') using algebraic laws which are valid for symbols 
standing for statements too. 

Boole shows by a simple example ([VII 2], p. 84) how (12) can be used in 
a logical analysis. In the Mosaic Law those animals are called "clean" which 
have two characteristics: they are ruminants and they have cloven hoofs 
(Leviticus 11 :1-3). Thus if we write x for clean animals, y for animals with 
cloven hoofs, and z for ruminants, we have x = yz or 

(13) X - yz = 0. 

If we use (I 1) to express this function f(x, y, z) = x - yz of three variables, 
we get 

0 xyz + xy(l - z) + xz(l - y) + x(l - y) (1 - z) 

(14) - (1 - x)yz + 0(1 - x)y(l - z) + 0(1 - x) (1 - y)z 

+ 0(1 - x) (1 - y) (1 - z) = 0 . 

This equation clearly holds only if all the terms which do not have the factor 
0 vanish individually. Thus we have 

xy(l - z) = 0 , xz(l - y) = 0 
(I.5) 

x(I - y) (I - z) = 0 , (I - x)yz = 0 . 

Relations (15) express the nonexistence of the following classes of things: 
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1. Animals which are clean and have cloven hoofs, but are not ruminants; 
2. Animals which are clean and are ruminants, but do not have cloven hoofs; 
3. Animals which are clean, but are not ruminants and do not have cloven 
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4. Animals which are clean but have cloven hoofs and are ruminants. 
Of course, it can be claimed that such insights can be deduced from the 

definition of clean animals without Boole's algebra. Nevertheless, the Bible 
does not consider such an analysis of the definition given in Leviticus 11 :3 as 
trivial. In the following verses (4-7) it gives examples, to take the place of 
an analysis. 

Until now we have substituted for the symbols x, y, z, ... classes of concrete 
objects. Boole calls the logical formulas interpreted in this way, "concrete" 
or "primary" statements. In addition there are relations which combine 
statements. Such combinations Boole calls "abstract" or "secondary" state
ments. 74 We shall not go into any more detail concerning the theory of these 
secondary statements,7 5 but shall limit ourselves to showing how Boole's 
algebra can be used in probability theory. 

Application to probability 
Classical probability theory is based on the notion of "equal likelihood."76 

If, of n "equally likely" events, m are "favorable" to the appearance of some 
characteristic, then the probability p(x) of the appearance of this character
istic is 

p =. p(x) = m/n . 

Here x stands for the "appearance of the characteristic." Correspondingly, 
the probability that the characteristic will not appear is 

(16) p(l - x) = n - m/n = 1 - m/n = 1 - p . 

In (16) we have used Boole's terminology and denoted the event "comple
mentary" to x by (1 - x) . 

Furthermore, if .r and y are events with probabilities p and q, then -
if x and y are independent - pq is the probability that both events will 
happen. Accordingly we can associate with the compound events determined 
by x and y the corresponding probabilities by means of the followinp; table: 

74 "The sun is shining" and "The e11rth is being w11rmed" 11re ex11mples of "primary_" 
statements; "If the sun is shining, the earth is being warmed," on the other hand, 1s 
secondary ([VII 2), p. 53). 

76 Modern propositional logic uses a terminology very different from Boole's. 
76 See, for example, Wahrscheinlic/1keitsrec/1111m1;, by Wellnitz, Brnuns~hweig 1954. 
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(17) 

Event 

xy 
x(l - y) 
(1 - x)y 
(1 - x) (1 - y) 

Probability 

pq 
p(l-lq) 
(1 - p)q 
(1 - p) (1 - q) 

The simple correspondences shown in this table can then be used to solve 
more complicated problems in the theory of probability. We cite only one 
example, given by Boole ([VII 2], p. 260). In doing so we use a modern 
notation for a "conditional probability." 

The conditional probability that an event x will occur, under the hypothesis 
that y already occurred, is denoted by PlX/y). For this probability we have 

(18) p(x/y) = p(xy) . 
p(y) 

Now let p, q and r be the probabilities that the events x, y and z will occur. 
We ask for the probability that if either x or y occurs, y or z will occur. 

Let u be the event that either x or y occurs, v the event that either y or z 
occurs. Then by (6) 

(I!)) u = x(l - y) = y(l - x) ; v = y(I - z) + z(l - y). 

The probability p(u/v) we are looking for can now be found from (18). For 
this, however, we need the probability p(uv). Boolean algebra turns out to be 
a useful tool for computing it. From (19) we get 

uv = xy(l - y) (1 - z) + yy(I - x) (1 - z) 
+ xz(l - y) (1 - y) + yz(l - x) (1 - y) 
= xz(I - y) + y(l - x) (1 - z) . 

From (18), (20) and Table 17 we get for p(u/v) : 

(u/v) = p(uv) = pr(l - q) + q(l - p) (I - r) 
p p(v) p(l - q) + q(l - p) 

Boolean algebra today 
Today we find the name of Boole not only in books on mathematical logic. We 
read of "Boolean Algebra" in books on algebra, lattice theory, the theory of 
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probability, and information theory, and in publications on set theory. Only 
now, in the twentieth century, is the full fruitfulness of Boole's formalism 
apparent. It will underline the meaning of Boole's investigations, if we report 
briefly on the place of Boolean algebra in modern mathematics. 

To make the generality of the concepts clear it is useful to replace the 
symbols used by Boole for plus and times by others which do not immediately 
make us think of operations on numbers. In the modern theory of lattices 
the synbols U and n are used in their place.77 With the help of these symbols, 
abstract Boolean algebra can be defined as follows: 

A set B with binary operations n and U is called a Boolean algebra if for 
the elements a, b, c, ... of the set the following axioms hold: 

1. anb = bna aUb = bUa 
2. (anb)nc=an(bnc) (aUb)Uc=aU(bUc) 
3. an (aUb) = a aU (anb) = a 
4. an (b Uc) = (an b) U (an c) a U (b n c) = (a U b) n (an c) 
5. B contains a zero element and a universal element with the properties 

a U [O) = a, an (1) = a. 
G. For each element x of B there is at least one element y of B78 such that 

x n Y = [OJ , x u Y = r11 . 
One can easily convince himself that these six axioms are satisfied for 

Boole's symbols x, Y, z, ... if X u y is replaced by X + y ' X n y by xy . In 
this way our axioms give us a foundation for the propositional calculus. They 
can also, however, be realized in quite a different way. 

The simplest way of doing so is provided by the set consisting of the 
symbols O and 1, with the operations U and n defined by the following 
schema:79 

(21) 

0 
1 

u 
0 

0 
1 

1 
1 

0 
1 

n 
0 

0 
0 

1 

0 
1 

77 These are read "a intersection b" and "a union b", or, still more briefly, "a cap b" and 
"a cup b." See, for example, [VII 3]. 

1a Elements x and y are called complementary. 
7G For the use of this schema in propositional logic see, for example, [A 12], p. 67. 
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Fig. 17a and 17b 

A further example is provided by the set consisting of the following eight 
digits or sequences of digits: 

0; 1; 1; 2; 12; 13; 23; 123 . 

Here the operations U and n are defined as follows: a U b is the union, a n b 
the intersection of the digits in a and b. The zero is the digit 0, the unity the 
sequence 123: [1] = 123. The laws of this simple Boolean algebra can be 
read off directly from Figure 17a. The segments drawn in the figure are to 
help in finding the union a U b and the intersection a n b of the elements 
a and b. 

If we replace the digits 1, 2 and 3 by the primes 2, 3 and ,5, and the sequences 
12, 13, etc. of digits by the corresponding products 2 · 3 = 6, 2 · 5 = 10, 
etc., we get the schema for our algebra which is shown in Figure 17b. Now 
a U b and an b have simple number theoretic meanings: a U b is the least 
common multiple, a n b the greatest common divisor of a and b. Here the 
number 1 turns out to be the "zero clement." 

Another Boolean algebra is the set of subsets of the points of a plane. Herc 
an bis the intersection, a U b the union of a and b. Axiom 4 (on page 81) can 
then be illustrated by Figures 18a and 18b. 

We can now add to our definition of a Boolean algebra by explaining what 
is meant by a normed Boolean algebra: A Boolean algebra is said to be normed 
if to each element a in B can be assigned a number a' or p(a) satisfying 
the conditions80 

1. 0 ~ p(a) ~ 1 ; p([O]) = 0, p([I]) = I . 
2. If an b = a, then p(a) = p(b) . 
3. If an b = [O], then p(a U b) = p(a) + p(b). 

One example of such a normed Boolean algebra is the set of all measurable 
subsets of -the unit square. The square itself is the unity, the empty set the 
zero. As norm we choose the area of a subset. 

•°Fora n b = a one cun ulso write a Cb: "a is contuined in b." 
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Fig. 18a and 18b 

Another example is provided by the "events" of the theory of probability: 
here the probability p(E) is the norm. Finally, one can interpret propositional 
logic as a normed Boolean algebra: here only the "truth values" 0 and I are 
admitted as norms. 

These few references to the concepts of modern mathematics make it clear 
how fruitful was Boole's idea of interpreting the symbols of mathematics 
formally. 
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The teacher should let science develop before the eyes 
of his pupils. As it develops and lakes form 

in the mind of the mature thinker, oill of his 
fundamental ideas, so shall he present it, 

merely adjusting it to the youthful 
power of understanding. 

K. Weierstrass81 

81 "On the Socratic method of teaching and its use in school teaching," in 
[VIII 1 I, vol. 3, pp. 315-329. 
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The arithmetization of analysis 
One morning at the Gymnasium in Braunsberg in East Prussia - it was in 
the fifties of the last century - there was an absolutely inexcusable uproar. 
The teacher, Karl Weierstrass (1815-1899), had not appeared, and his class 
was kicking up an awful row. The principal hurried to the home of his young 
colleague and found him with curtains drawn and working by lamplight on a 
paper about .Jacobi functions. He had worked all night and had not noticed 
that it was long past time to go to school. 

In the long run it doesn't work - teaching school all day and searching at 
night for new paths in the theory of functions. Thus it was a good thing that 
Weierstrass let his great paper on the theory of Abelian functions appear in 
Crelle's .Journal and not in the annual report of his high school, like his 
earlier papers. The paper he published in Crelle in 1854 was a success. The 
professor of mathematics at Konigsberg procured an honorary doctorate for 
the Braunsberg school teacher, and travelled to the provincial town to present 
the diploma himself. Then the Prussian Minister of Culture gave Weierstrass 
a year's leave from his school duties, to give him time for his scientific work. 
Those who know Prussian thriftiness can judge from this the quality of the 
work of our teacher. Soon after this he became a professor at the Polytechnic 
School (now the Technical University) in Bcrlin-Charlottenburµ;, a little later 
professor at the Friedrich-Wilhelm University in Berlin. 

In modern textbooks on function theory there are many theorems and 
methods of proof which we owe to Weierstrass. Of no less importance for 
twentieth-century mathematics, however, is the "arithmetization of analysis" 
he and his school introduced. In the notebooks of students of Karl Weierstrass 
we no longer find those dubious "infinitely small quantities" which were 
common in the textbooks of the 19th century. Weierstrass and his students 
"arithmetized" analysis: they reduced statements about limits to equations 
or inequalities between rational numbers. 82 

Weierstrass did not disown his past as a schoolmaster. At the university, 
too, he was a good teacher, and his ability as a mathematician and teacher 
attracted many students to Berlin. Among the most important of his students 
were Hermann Amandus Schwarz (184~-1921), Sonya lfovalevski (18.'i0-1891 ), 

82 We cannot go into the objections Kronecker, and later the intuitionista, rnised against 
Weierstrass' methods. There is more about, this in [A 12], Chapter VII. 
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Georg Cantor (1845-1918), Magnus Costa :Mittag-Leffler (1846-1927), and 
David Hilbert (1862-1943). 

As an illustration of the work of the school of Weierstrass, we present a 
previously unpublished letter of Hermann Amandus Schwarz. H. A. Schwarz 
became known for his many papers in the field of analysis and differential 
geometry. Later he was Weierstrass' successor in Berlin. 

Our letter was written in 1870. At that time Schwarz was Privaldozenl at 
Zurich. The letter contains a proof of the theorem, now familiar to every 
student, that a differentiable function whose derivative vanishes is constant. 
Nowadays we prove it using the mean-value theorem. ·when the Privatdozent 
H. A. Schwarz tells his friend Georg Cantor in Halle that he has found, in a 
few hours, the first correct proof of this theorem, we may safely believe him: 
he had probably studied the literature of his time thoroughly. 

The first part of the letter presents results from notes of a lecture by 
Weierstrass. Then follows Scharz's own contribution. Thus the letter illus
trates the working methods of Weierstrass and of his student and successor, 
H. A. Schwarz. 

H. A. Schwarz to Georg Cantor 

My dear Georg, 

Hottingen near Zurich 
February 2.'i, 1870 

The fact that I wrote to you at length yesterday is no reason why I 
should not write again today. For I have something to tell you which 
I am sure will interest you. A few hours ago I discovered what I think 
is the first rigorous proof of the following theorem: 

If for every x such that a ::; x ::; b, Jim F(x + h) - F(x) = 0, then 
h- h 

F(x) is constant. 
The separate steps I take from a lecture by Professor Weierstrass 

which I heard him give in 1861 at the Gewerbeinstitut.* 
Let x be a continuous variable with bounds a and b, f(x) a con

tinuous, finite, single-valued function of x with a derivative f'(.1:) 

which is also continuous. finite, and single-valued. 

• Translntor's Note: A technical institute, now called the Technical University, in Berlin. 
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I. Lemma. If, for a specific value x. in the interior of the x-intcrval, 
the derivative of the function J(x) is not zero, then there are always 
values of x in the neighborhood of x 0 for which f(x) is greater 
than .f(x.) , and also values for which f(x) is smaller than .f(x.) . 
Proof: let.f'(x.) be unequal to zero and let x lie in the neighborhood of 
x.; i. e. , x = x. + h. Then .f(x. + h) - f(x 0 ) is made up of the two 
parts.f'(x.)h + hh1, where h1 is an otherwise entirely unknown function 
of hand x, of which we know only that for every value of x it becomes 
infinitely small as h does . 

.f(x. + h) - .f(x.) = h(f'(x.) + h1) . 

.f'(x.) is not zero. Let h1 be made smaller than.f'(x.) by making h small. 
This gives I h I < o . Then for every h for which I h I < o , f'(x.) + h1 
has the same sign as .f'(x0 ) • Hence .f(x0 + h) - .f'(x0 ) changes sign 
when h does, q.e.d. 

II. Lemma. If, for two specific values x1 and X2, f(x1) = .f(x2) , then, 
between X1 and X2 there is at least one value x for which the first 
derivative is zero. 
Proof: There is a value x 3 between X1 and X2 for which .f(xa) is not 
equal to .f(x1) , since otherwise .f(x) would be constant. If f(.ra) is 
smaller (larger) than .f(x1) , then there is a lower (an upper) bound for 
the values of .f(x) with x 1 5 x 5 x2. This bound is also a bound for 
an arbitrarily small region containing the point x • . Because of con
tinuity, the bomid is actually attained at x •. Thus f'(x.) = 0, since 
otherwise, by Lemma I there would be both larger and smaller values 
of the function in the neighborhood of :r., which contradicts the previ
ously proved result that .f(x0 ) is a minimum (maximum). 

Ill. Theorem. If, throughout the interval a 5 x 5 b, .f'(x) is always 
positive and never zero, then .f(b) > .f(a) ; .f(b) is the largest, f(a) the 
smallest value that f(x) can take on in this interval. 
Proof: First, f(b) is not equal to .f(a) , since if it were, Lemma I would 
apply, and the conclusion of that lemma contradicts the hypothesis 
thaf J'(x) is everywhere positive and nowhere zero. Nor is f(x) = f(a) 
or f(x) = f(b) anywhere in the interval.· There exist an upper and a 
lower bound for the values of .f(x) . This upper and lower hound are 
attained. (Argument as in II.) In the interior of a· · · h, f(x) has 
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neither a maximum nor a minimum, since if it had, J'(x0 ) would have 
to be zero. Thus of the two valuesf(a) andf(b), one is the largest, the 
other the smallest. We need only decide which is larger. 

Up to this point 1 have followed my notes on Weierstrass' lecture. 
Now let F(x) be a function about which we know nothing else but 

that it is finite, continuous, and single-valued, and that for every 
value of x, 

r F(x + h) - F(x) _ 
0 

h~o h - · 

From this follows the existence of the derivative, F'(x) , which is 
constant and has the value zero. 

Now let k be a small positive quantity. Consider the functions 

F(x) - F(a) - k(x - a) 

and 
F(x) - F(a) + k(x - a) . 

The derivatives of these functions arc - k and k, respectively. For 
x = a , both functions are zero. By Theorem III and the corresponding 
theorem with J'(x) < O, F(b) - F(a) - k(b - a) is negative while 
F(b) - F(a) + k(b - a) ie positive. Thus in any case the difference 
F(b) - F(a) lies between k(b - a) and - k(b - a) . But83 can make 
the quantity k arbitrarily small. Thus the difference F(b) - F(a) , 

whose value is entirely independent of the value of k , must equal 
zero. But b can be replaced by any value of x between a and band the 
same conclusion drawn. Hence F(x) = F(a) , that is F(x) is constant. 

The proof above seems to me completely rigorous. It is the founda
tion of differential and integral calculus. 

Be so good as to give the enclosed letter, whose contents may 
interest you too, to Mr. Hentschel. 

83 We must supply "one." 

Your true friend, 
H. A. Schwarz 
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I n re mathematica ars proponendi questionem 
pluris facienda est quam solvendi. 

84 The third thesis in Cantor's doctoral dissertation. 
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A disputed .. paradise" 
It is not always a reflection on the author when the editors of a scientific 
journal hesitate to publish a paper submitted to them. It is precisely when 
the contents of the paper are out of the ordinary that a responsible editor 
will ask himself two or three times whether there is not an error somewhere. 
Thus, when a paper was submitted to Crelle's Journal on July 12, 1877, 
publication was postponed time and time again in favor of manuscripts 
submitted later, to the great annoyance of its author, Associate Professor 
Georg Cantor (1845-1918) of Halle. 85 

But Georg Cantor had himself been taken aback by the results of his 
research. On ,June 20, 1877, he had written to his friend, Richard Dedekind: 
"Je le vois, maisje ne le crois pas." Thus it is understandable that the gentle
men of Crelle's Journal at first did not want to believe what appeared in 
Cantor's "Contributions to the theory of sets." 

This theory of sets is the creation of Georg Cantor. Stimulated by 
Weierstrass, his teacher, and Heine, he first published several papers on 
analysis. Then, however, he broke new ground. He compared infinite sets by 
establishing one-to-one correspondences between their elements. It turned 
out that such correspondences exist between sets of very different kinds. One 
can establish a one-to-one correspondence between an infinite set and a 
proper subset. For the set N of natural numbers I, 2, :3, ... and the set E 
of even numbers this can be done as follows: 

I 

i 
l 
2 

2 

T 
l 
4 

3 

i 
l 
(j 

4 

T 
l 
8 

T 
l 
10 

6 

i 
l 

12 

Such a correspondence also exists, as one can easily show86, between the set 
of natural numbers and the set R of all rational numbers. Cantor called two 
sets between whose elements there exists a one-to-one correspondence, equiva
lent, or of the same power. In 187.5 he succeeded in proving that the set of 
points on a line was of higher power87 than the sets N, E and R mentioned 

•• The po.per did finally appear in Crelle's Journal in 1878. 
•• See, for example, [A 12], Chapter IV. 
87 M, is said to be of lower power than M, if there is a one-to-one correspondence between 

llf, and a subset of M 2, but not between M, and M, it6elf. 
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above. This paper Crelle's Journal accepted without objection, but the 
editors hesitated when he submitted a proof in 1877 that sets of points of 
different dimensions may also be equivalent: for example, the sets of points 
in a segment and in a square. 

David Hilbert once called Cantor's theory of sets a "paradise from which 
no one must be permitted to drive us." 88 This statement of the great mathe
matician does more than show his frank enthusiasm for Cantor's beautiful 
theory. It also makes it clear that our stay in that paradise is threatened in 
one way or another. The fact that his influential Berlin colleague Kronecker 
declined to accept his work lay like a dark shadow over the life of the gifted 
and sensitive Halle mathematician. It was Kronecker, undoubtedly, who was 
responsible for the delay in the publication of the fundamental paper of 
1877. He objected to Cantor's use of the "actually infinite." He and his 
followers, the intuitionists, held that one can not consider an infinite set as 
given in its entirety. 

What we call infinite is, according to Poincare, "merely the possibility 
of continually constructing new objects, no matter how many have already 
been constructed."B9 Consistent adherence to this fundamental principle 
leads to the view that a secure mathematics can deal only with countable 
sets. These objections to Cantor's theory assumed added importance when 
the paradoxes of set theory were discovered at the turn of the century. Cantor 
had intentionally made the concept of a set very broad and had admitted as 
elements of sets all "objects of perception or thought." It now appeared that 
such notions as the set of all sets led to contradictions.90 Russell, the discoverer 
of these paradoxes, was at once able to come to the aid of the young mathe
matical theory: if the notion of a set is restricted and aggregates which are 
too vague are excluded,. then Russell's paradoxes are avoided. 

Later the formalists of the school of Hilbert showed that an axiomatic 
foundation of set theory is quite possible. To be sure, this does not dispose of 
the objections of the radical intuitionists. However, it would be fair to say 
that Cantor's theory of sets is as secure (or as insecure) as classical analysis. 

Thus, Cantor won, from the mathematicians of the twentieth century, the 
recognition that not all his contemporaries would grant him. 

88 [A 8], p. 371. 
81 Acta Math. 32, 1909, p. 156. 
•• See [A 12], Chapter VI. 
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To be sure, the discussion of the paradoxes of set theory led research in the 
foundation of mathematics a long way from the classical view of the nature 
of mathematics so passionately defended by Cantor. Intuitionists and for
malists are united in their effort to eliminate all metaphysical elements from 
the foundations of the exact sciences. For example, in order to achieve a 
secure and generally accepted development of mathematics, ontological 
statements about mathematical objects are eliminated. Modern axioms are 
not statements about any sort of reality, but rather the foundations of formal 
mathematical systems. They must be consistent and independent. This 
restriction springs not from a malicious nihilistic whim but from the desire 
for absolute certainty. 

Georg Cantor, schooled in Plato and the scholastics, thought differently 
about the matter. For him, mathematics was a sort of auxiliary science to 
metaphysics, and his set theory was actually a part of metaphysics. 

In this connection we quote several sentences from a previously unpublished 
letter (dated February 2, 1896) from Georg Cantor to Father Thomas Esser 
in Rome: 91 

The establishing of the principles of mathematics and the natural 
sciences is the responsibility of metaphysics. Hence metaphysics must 
look on them as her children and as her servants and helpers, whom 
she must not let out of her sight, but must watch over and control, as 
the queen bee in a hive sends into the garden thousands of industrious 
bees, to suck nectar from the flowers and then together, under her 
supervision, to turn it into precious honey, and who must bring her, 
from the wide realm of the material and spiritual world, the building 
blocks to finish her palace .... The general theory of sets, which you 
will find in the paper "On the lore of transfinite numbers," as well as 
in the first article of the work Contributions to the Foundations of 
Transfinite Set Theory, which I have begun, belongs entirely to meta
physics. You can easily convince yourself of this by testing the cate
gories of cardinal number and ordinal type, these fundamental concepts 
of _set theory, with respect to the degree of their generality, and also 

•
1 We quote from the first draft of the letter. In Cantor's notebook many things are crossed 

out, corrected, etc. This explains the somewhat uneven style. It is to be assumed that 
the clean copy read somewhat differently. 
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notice that the reasoning about them is quite pure, so that fancy has 
no room for play. 

This is in no way changed by the pictures which I, like all meta
physicians, sometimes make use of to explain metaphysical concepts. 
Nor does the fact that my work appears in mathematical journals 
affect its metaphysical character and content. 

It is part of the tragedy of our investigator's life,92 so full of disappoint
ments, that his own theory gave rise to a new concept of mathematics which, 
for good reasons, put an end to basing the exact sciences on metaphysics. 

Among the friends and admirers of Georg Cantor was the Berlin high 
school teacher Goldscheider. On one occasion he asked the Halle professor 
several questions about the latter's theory of sets. Cantor answered with a 
completeness that is amazing to us today. Did he have so much more time 
than a modern professor, or may we take it as proof of his good nature, that 
one of his letters to Goldscheider turned into a small, handwritten textbook? 

This letter of ,June 18, 1886, introduces Cantor's investigations. 

Georg Cantor to F. Goldschelder 

Halle, .June 18, 188(3 
To Mr. F. Goldschcider iii" Berlin 

I. Given a certain set lil, consisting of concrete things or abstract 
concepts, which we call elements; if we disregard the nature of the 
elements and the order in which they are given, there remains a certain 
general notion, which I call the power of M or the cardinal number 
corresponding to Al. 

II. Two fixed sets Mand M I are called equivalent, in symbols M ,.._, 1111, 
if it is possible to put them into one-to-one correspondence, element by 
element, according to some rule. If ill,.._, ]1[ 1 and llf1 ,.._, llf 2, then 
11f,.._,llf2. 

Examples: 
1. The set of colors of the rainbow is,.._, the set of tones in an octa\'e. 

92 [IX 11 contains n biography of Georg C11ntor by A. Fruenkel. 
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2. The set of fingers on my two hands is ,..._, the set 

a 
b C 

d e J 
g h i k 

:3. The set (Y) of all real, positive whole numbers is,..._, the set 
(n + mi) of all complex whole numbers, ,..._, the set (n/m) of all 
real, rational numbers, ,..._, the set of all real and complex algebraic 
numbers. (Crelle, vol. 77, p. 258.) 

4. The set of all points on a line AB is,..._, the set of all points on 
another line, ,..._, the set of all points of an arbitrary regular curve, 
but also ,..._, the set of all points of a surface, a solid figure, etc. 
(Crelle, vol. 84, p. 242). 

III. From I and II it follows that equivalent sets always have the 
same power, and conversely, that sets with the same cardinal number 
are equivalent. 

IV. If two sets M and N are joined to form a set S, and two sets M 1 

and N,, equivalent to !if and N respectively, are joined to form a set 
S,, then S ,..._, S, . If the power of M and MI is denoted by a , the power 
of N and N, by a', and the power of Sand S, by b, then we express 
the relation between a , a' and b by the equation 

a+ a'= b. 

This contains the definition of the sum of two powers or cardinal 
numbers. 

It is easy to see that 

a+ a'= a'+ a 

a + (a' + a") = (a + a') + a" , 

i.e. the commut,ative and associative laws hold for the addition of x 
cardinal numbers. 
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V. If inn. set N of power a' one replaces each element by a set of power 
a, one obtains a new set whose power we shall call c. Then c is called 
the product of the multiplicand a and the multiplier a', in symbols 

a• a'= c. 

It can be proved that 

a· a'= a'· a 
a • (a' • a") = (a • a') · a" . 

Thus the commutative and associative laws also hold for the multipli
cation of powers. 

VI. These basic laws apply as well to finit,e as to actually injinit,e 
sets and their powers or cardinal numbers. For finit,e cardinals it is 
easily seen that in an equation 

a+ a'= b 

b is never equal to either of the summands a and a'. For actually 
infinite cardinals, however, it is easily proved that the last theorem 
does not hold. For example, if a is any actually infinite cardinal, 

.l+a=a 
a+a=a·2=a 
a· a= a 

and so forth. There is no contradiction to be found in this if one goes 
back to the definitions in I and II. In general, why should a set 111 not 
have the same property, called here its power, as an extended set 
M+N? 

It is our.familiarity with finite sets that makes us at first find difficulties 
here. Yet the situation is analogous to that of the general concept 
"man," which applies to my person n.t this moment just as much as it 
did 40 yen.rs ago, though I have grown somPwhat and changed a lot 
since then. 

VII. Now I shall acquaint you with the general notion of a well
ordered set, as it is defined on page 4 of the "Foundations" (i.e. the 
fifth of the papers in Math. Ann., "On infinite linear point sets," 
vol XXI, p. 548). 
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Examples: 
1. (a, b, c, d, e, J, g, h, i, k) is a well-ordered set, in contrast to 

a 
b C 

d e f 
g h i k 

Both sets consist of the same elements, and hence have the 
same power. 

2. The sequence of finite cardinals in their natural order: 

(1, 2, 3, ... , n , ... ) 

3. The set of all positive rational numbers arranged in the following 
order: 

(1/i, >1, 31, ½, ¾, >i, %, %, ~1, >&, ~1, ¾, %, ¾, %, %, ~1, ... ) 
The rule for ordering here is that of two positive rational numbers 
m/n and m' /n' in reduced form, 93 the first has a lower or higher 
rank than the second according as m + n is smaller or larger 
than m' + n'; however, if m + n = m' + n', the ranks depend 
on the relative sizes of m and m'. 94 In this ordering, every non
empty subset has a first element. With the usual order relation 
(a < b) this is not the case: the set of all rational numbers of the 
form l/n has no smallest element. 

4. (1, 3, .'5, 7, 9, ... , 2, 4, 6, 8, 10, ... ) 
Here the finite cardinals are thought of with the odd numbers 
in their natural order, followed by the even numbers in their 
natural order. 

;j_ (3, ;i, 7, 9, 11, ... , 2, 4, 6, 8, 10, .... , 1) . 
This is also the set of all finite whole numbers as a well-ordered 
set, but here 1 has the highest rank. 

6. Consider a system of elements am., with two finite but unbounded 
indices, and determine the rank by the following rule: of two 

13 That ie, in lowest terms. 
"One can also say briefly: a-< b (a precedes b) when, in Cantor's sense, a has a lower 

rank than b. 
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elements am. and am••· , the first has lower or higher rank than 
the second according as mis smaller or larger than m'; if, however, 
m = m', the order of ranks is determined by the sizes of n and n'. 
This gives the following well-ordered set: 

(au , a,2 , ... , a,. , ... , a21 , a22 , ... , a2. , ... 

. . . , a31 , a32 , ... , a3. , .. . 

. . . , aml 1 am2 , ... , amn , .. . 

• • • , am+l,l , am+t,2 , ... , llm+lrn , · • , · · ,) 

VIII. If, in a well-ordered set lll, we disregard the nature of the elements 
but not the order in which they are given, we get a certain general 
notion which in the "Foundations" I call the number of elements in 
the well-ordered set M, but which I here prefer to call the ordinal 
number of the well-ordered set M, or the form or type of the well
ordered set M. 

IX. I call two well-ordered sets M and Jlf1 similar or conformal* -
in symbols, M cf M 1 - if there is a one-to-one correspondence between 
the two such that the relation between the ranks of any two elements 
of 11/ is the same as the rel_p.tion between the ranks of the corresponding 
elements of llli. There is at most one such correspondence, whereas if 
there is one correspondence of the kind used in the definition of 
equivalence in II, there are many. 

Two similar well-ordered sets are necessarily equivalent, hence of the 
same power. 

If M cf JI! 1 and lll I cf M 2, then 111 cf 111 2• 

Examples: 
I. The well-ordered sets (a, b, c, d, e, J, g, h, i, k) and (a', b', c'. d', 

e', .f', g', h', i', k') arc similar. In the one-to-one correspondence, 
a corresponds to a', b to b', ... , k to k'. 

2. The well-ordered sets introduced in VII 2 and VII 3 are similar. 

• Translator's note: this word, a literul translation of the German konform, is not used 
in this sense in English. 

99 



Georg Cantor 

100 

3. The two well-ordered sets 

(1, 3, ,;, 7, ... , 2, 4, 6, 8, ... ) 
and 

are similar. In the correspondence, 1 must correspond to a2, 3 to 
a,, .i to a 6 , etc., 2 to a1, 4 to aa, 6 to as, etc. No other one-to-one 
correspondence between the sets (such as the one, for example, 
in which n in the first set corresponds to a. in the second) satisfies 
the requirement that the relation between the ranks of any two 
elements of the first set is the same as that between the ranks of 
the corresponding elements of the second. 

4. The two well-ordered sets 

(I, 2, 3, ... , n, ... ) 
and 

(2, 3, 4, ... , n + I, ... ) 

of which the first is a part of the second, arc similar. On the other 
hand, neither is similar to the well-ordered set 

(2, 3, 4, ... , 1) , 

although this last set consists of exactly the same numbers as 
the first of the three. 
The last of these three well-ordered sets has a highest, "last" 
element in the sense of rank, namely, I; the first two have no 
"last" element. 

X. From VIII and IX it follows that similar well-ordered sets have 
the same ordinal number, form, or type, and conversely, that well
ordered sets with the same ordinal number are similar. Thus the well
ordered sets 

(1, 2, :3, ... , n, .. . ) 
and 

(2, 3, 4, ... , n + I, ... ) 
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have the same ordinal number, although the second is only a part of 
the first. On the other hand, the well-ordered sets 

(1, 2, 3, ... , n, ... ) 
and 

(2, 3, 4, •.•I n + 1, ... I 1) 

have different ordinal numbers or types, although they are made up of 
the same elements. 

XI. The ordinal type or number of the well-ordered set 

(1, 2, 3, • • • J n, ... ) 

I denote by w . 

XII. If two well-ordered sets 111 and N of ordinal types a and a' are 
combined to form a new well-ordered set -y in such a way that the 
elements of 111 and N preserve their rank relationships, but all the 
elements of llf have lower ranks than any element of N, the ordinal 
number /3 of -Y is called the sum of the ordinal numbers a and a' of 
Jlf and N: 

.• Ot + o,' = f3. 

Here a is called the augend, o,' the addend. 
In general, a + 0t' and 0t' + 0t are different. If 0t and 0t' are both 

finite, a + a' = 0t' + 0t • On the other hand, it is always the case that 

a + (0t' + 0t") = (0t + 0t') + a" . 

Thus while the commutative law does not hold in general for addition 
of ordinal numbers, the associative law does. 

Examples: . . 
1 1 + w = w , while w + 1 1s different from w . 
. d. I 

2_ The well-ordered sets in VII 2 and VII ;3 have the same or ma 

number, w. 

3_ The well-ordered set in ~II 4 has the ordinal number w + w • 

d that in VII 5 the ordmal number w + w + 1 . 
~ ,. 

XIII. If every element in a well-ordered set N of order t~pe a is 
replaced by a well-ordered set of order type a , the result 1s a new 
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well-ordered set P whose order type 1' is called the product, a · a', 

of the multiplicand a and the multiplier a' : 

a· a'= 1'. 

In the "Foundations" the multiplier was written first, then the multi
plicand; but the opposite order is preferable. 
Here, too, a · a' and a' • a are in general different. If a and a' are 
finite ordinal numbers, then a • a' = a' • a . On the other hand, it 
is always true that a · (a' · a") = (a · a') · a" . For example, let 
a = w, a' = 2. Here N is (a,b,), say. Replace a by (a1 1 a2, ... , a., ... ) 
of type w , b by (bi, b2, ... , b., ... ) of type w. The result is the well
ordered set P: 

whose order type is w • 2 . 
On the other hand let a = 2, a' = w. Then N is, say, (n1, n 2, ••• , 

nk, .. . ). If n is replaced by the well-ordered set (pk, qk) of type 2, 
the resulting well-ordered set P is 

which is of type 2 • w . However, since the last set has type w" we 
conclude that 

2 · w = w. 

Thus the numbers w + wand w + w + I which occur in XII can also be 
written w · 2 and w • 2 + 1. The example of a well-ordered set given 
in VII 6 clearly has ordinal number w • w = w2 

• 

XIV. The power of the set of all finite numbers is the smallest trans
finite power, just as w is the smallest transfinite ordinal number. I call 
this power the first transfinite power or, more simply, the first power, 
and denote it by w. In general, I denote the power of a well-ordered 
set _of ordinal type a by & . Clearly 

(w + 1) = (w + 2) = 
also, 

(w : 2) = (w · 2 + 1) = (w · 2 + 2) = · · = w 



Georg Cantor 

and 

Thus we see that when we construct the ordinal numbers 

w, w + 1, ... , w · 2, w · 2 + 1, ... 

the corresponding powers at first remain the same. 

XV. The collection of all ordinal numbers which are the ordinal types 
of sets of power C:, I call the second number class: 

w, w + 1, ... , Wµ/J.o + wr 1µ. 1 + ... + W/J.µ-I + /J.µ, ... , w"', ... , w"'; .. • • 

This second number class itself forms, in its natural order, a well
ordered set whose order type I call Q ; Q is the smallest number in the 
third number class. The power n of the second number class is 
not = c:i again but, as I prove in section 13 of the "Foundations," 
the next power greater than c:i . 

XVI. While the finite ordinal numbers obey the same laws as the 
finite cardinals (which is why the difference has not previously been 
made clear in number theory), the difference between transfinite 
ordinal and transfinite ciirdinal numbers becomes sharp and clear. 

Example of an uncountable set 
In Cantor's letter of June 18, 1886, to Goldscheider, the fundamental ideas of 
set theory up to well-ordering are developed. Strangely enough, however, the 
existence of sets with different powers is merely mentioned, not proved. For 
that reason we shall supplement the letter by proving that the set of points 
in any interval is uncountable, that is, does not have the same power as the 
set N of natural numbers. It is through this proof that the meaning of Cantor's 
concepts first becomes clear: there are sets of different powers, and hence t~e 
notion of power is adapted to making distinctions in the previously quite 
inaccessible realm of the infinite. · 

Usually the theorem referred to is proved by Cantor's diagonal process. 
Here we reproduce Cantor's less familiar first proof. His theorem95 reads: 

•• Crelle's Journal, 77, 1874, pp. 258-262, or IIX I I, p. 115 ff. 
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Let 

(1) 

be an infinite series96 of distinct real numbers, constructed according 
to any rule. Then in any given interval (c,d) 97 there is a number y 
(and hence infinitely many such numbers) which does not occur in 
series (1). 

To prove this we call the first two numbers in series (1) which lie in the 
interval (c,d) c, and d,. Similarly, Cn+l and dn+l are the first two numbers in 
series (1) which lie in the interval (c., d.) (n = 1, 2, 3, ... ) . We must now 
distinguish two possibilities: 

1. There are only a finite number of intervals (c., dn): n = 1, 2, ... , N. 
Then in the last interval there are not two numbers of (1) but at most one. 
In that case there is certainly a number y in this interval (hence also in 
(c, d)) which does not appear in (1). 

2. There are infinitely many intervals (c., d,.). Then the bounded sequences 
c. and d. are respectively monotone increasing and decreasing. Hence there 
exist limits 

C = Jim c., D = lim d • . 
n--+a, n--+a, 

If C = D, this number is contained in every interval (c., d.) of the sequence. 
Thus it is not equal to any of the numbers in (1). If C ,= D, the same is 
true of every number in the (closed) interval [C, D]. Thus in both cases 
there is at least one number y which is not contained in (1). 

•• We say "sequence" today. 
07 (a, b) denotes an open interval, [A, Bl a closed interval. 
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