

INDIAN INSTITUTE OF ADVANCED STUDY SIMLA

Library

IIAS, Shimla

PH 001 Un 3 J

00022739

Reprinted from the urnal of the University of Poona, nities Section, No. 23, pp. 139 to 152.

PH 001 Un3J

Mathematical Representation of Some Paninian Sutras

by M. D. Pandit

1. Introductory and Scope:

It will be at once acknowledged by one who studies Panini's grammar that Paninian description of the language is more comprehensive than that of any other grammarian, pre-Paninian or post-Paninian. Moreover, no sūtra-system other than Panini's has equalled the Paninian sūtra-system in matters of brevity as well as accuracy. The possible reason seems to be that the Paninian grammar is based upon certain principles which in turn have paved way for certain types of techniques, useful and most convenient for a certain kind of linguistic description. These principles or techniques could again be either borrowed from other sciences or be the product of the genius of the author. If, therefore, the techniques employed by Panini or the methods of statement adopted by him are critically studied and analysed, it may be possible to find out the underlying principles. The present paper aims at discovering the underlying principles of some Paninian sūtras which can be most conveniently represented mathematically.

2. Mathematical representation of the Paninian sutra 1.1.71:

The sūtra 1.1.71, ādir antyena sahētā is one of the most important sūtras in Pāṇṇii's grammar and lays down the technique of forming the pratyāhāras. What the sūtra states is that any non-it sound in the initial position together with any it-sound in the final position signifies or includes itself and all the sounds which come in between itself and the final it-sound. Thus the non-it sound, say a (of Māheśvara Sūtra No. 1) in the initial position and the final it-sound, say C (of the Māheśvara Sūtra No. 4) will form a pratyāhāra or abbreviation aC which will represent all the sounds including a between the limits a and C (excluding C and all other it-sounds in between a and C); the sounds represented by the pratyāhāra aC will then be: a, i, u, r, l, e, o, ai and au. Thus we get various pratyāhāras like aK, aN, aM, yaN, haL, jaS, jhaL etc. which stand for different sounds enclosed within their respective limits.

This technique of pratyāhāra-formation or phonemic abbreviations or sets gives us in all 305 sets, out of which only 40 sets are used by Pāṇini.

2.1. Implications of the sutra, adir antyena saheta, 1.1.71:

The technique of pratyāhāra-formation, defined in 1.1.71 looks apparently very simple and does not provoke any more curiosity. Yet it

^{1.} cf. BD. on the sūtra 1.1.71: antyenêtā sahita ādir madhyagānām svasya ca samjāā syāt; for a study of the Pāṇinian it-samjāā, cf. M. D. Pandit, "Paṇinian It-Samjāā—A Symbolic Zero", BDCRI, 25, pp. 78-94.

contains certain implications which drive us to guess a certain underlying principle.

- 2.1.1. Though the sūtra 1.1.71 specifies that the final sound of a pratyāhāra should be an it-sound from amongst those in the Māheśvara Sūtras (cf. the words antyena itā), it does not specify the category in terms of it or non-it of the initial sound of the same; the word adih in the sutra is without any specification. There are, therefore, two alternatives; (a) either the first sound of the pratyāhāra is also an it-sound, or (b) it is a non-it sound. If the first possibility is accepted, it would mean that a pratyāhāra is composed of two it-sounds. In that case both of the it-sounds will be reduced to zero according to the $s\bar{u}tra$, tasya lopah, 1.3.9. This would mean that a pratyāhāra contains a big zero which is impracticable, impossible and illogical. This circumstance, therefore, leaves us with no other alternative but the second one viz. that the initial sound of a pratyāhāra is and should be a non-it sound. A pratyāhāra with two it sounds, like KC (the it-sounds of the Māhesvara Sūtras 2 and 4 respectively) or MV or VL etc. is, therefore, not permissible. The initial non-it sound in the pratyāhāra is, therefore, to be included in the list of sounds represented by it while the it-sounds are to be excluded.
- 2.1.2. A pratyāhāra must end with an it-sound; it must not end with a non-it sound. This is explicitly laid down by the words antyena ita in the sūtra. A pratyāhāra, therefore, with two non-it sounds like ah (the non-it a of sūtra No. 1, and the non-it h of sūtra No. 5 or 14) or bakha or chasa etc. is not allowed in Panini's grammar. 2
- 2.1.3. A pratyāhāra, once formed, represents only the non-it sounds and excludes all the it-sounds; cf. BD's remark on the Paninian sutra 1.3.2: pratvāhāresv itām na grahaņam anunāsika ityādinirdesāt.
- 2.1.4. No non-it sound, included within the limits and signified by the pratyāhāra, must be left out of consideration. A pratyāhāra does not merely represent only the initial non-it and the final sound preceding the it with which it is composed. It represents the initial as well as all the non-it sounds enclosed within the limits. What this means is that while forming a pratvahara, we must traverse each and every non-it sound coming in between the limits; we cannot avoid any non-it sound on the way and jump to the next non-it. This is the significance of the word madhyaganam (=' falling in between') in the commentary by BD. Kāsikā explains the same point by the word tanmadhyapatitānām. Thus, a pratyāhāra like aK (a of sūtra No. 1 and K of sutra No. 2) signifies all the non-it sounds in between, viz. a, i, u, r, and l. Not only that it does not signify only some sounds, but also that it does not signify only the sounds a and K of which it is composed.

^{2.} Some other systems of grammar, however, allow a pratyāhāra with two non-it sounds; they have not employed the technique of it-samifa. Cf. for example, the Saraswata and the Hemacandra schools of grammar which do not lay down the it-sounds in the enumeration of phonemes; they, however, have used the technique of it-sainjāā, in the case of the terminations, agamas and adesas.

2.1.5. The last, and a very important, assumption in the pratyāhāra-formation is that the process of forming a pratyāhāra is always in the forward i.e. positive direction. We cannot form a pratyāhāra in backward or negative direction. We must always accept the first non-it sound as the starting point from which we must always go in forward i.e. positive direction, on the path determined by the order of succeeding sounds. Thus, a pratyāhāra, like haK, with the non-it h of either sūtra No. 5 or 14 in the initial position and the it K of sūtra No. 2 in the final position, is not allowed, since the pratyāhāra is always formed in the positive, fixed direction.

2.2. Principle Underlying the Sutra 1.1.71:

The rule of pratyāhāra-formation, viz. ādir antyena sahētā 1.1.71 together with its assumptions, especially assumptions nos. 4 and 5, gives us a clue to find out the principle underlying it. Assumptions Nos. 4 and 5 above, viz. of compulsory journey through each and every point on the way and of positive or forward direction suggest the concept of a straight line in mathematics, which is also based on compulsory journey through each and every point in a positive, fixed direction. If this parallelism between the assumptions of the mathematical straight line and the Pāṇinian sūtra of pratyāhāra-formation is correct, we may say that the Pāṇinian sūtra 1.1.71 is based on the same principle on which the mathematical concept of a straight line is based. The representation below of the Pāṇinian sūtra 1.1.71 in the form of a diagram of a straight line with the phonemes as different points on it to be traversed will make the point clear. (See Fig. 1).

Fig. No. 1

Imagine a straight line aL, with the non-it a as the starting point and the it L as the end, on which are situated all the phonemes from a to h in the same order as in the $M\bar{a}he\dot{s}vara$ $s\bar{u}tras$. The it-sounds, marked in capital letters, which are not to be included in the regular list of Sanskrit phonemes and which amount to zero, are marked above the line, exactly above those non-it phonemes which preceed them. Now, to obtain a pratyāhāra, say, of all vowels only, we start from the starting point, non-it, a and walk straight upto the point $\bar{a}u$; the zero, it-sound C above the line will mark the end of the journey and we get the pratyāhāra aC comprising of all vowels. So also with other pratyāhāras like haL, yaN, jaS etc. We must walk through each and every point on the way until we reach the end. The end will be represented by the it-sounds above the line. Moreover, we cannot reverse the direction which is determined by the order of phonemes succeeding the initial, non-it, a of the first $M\bar{a}he\dot{s}vara$ $s\bar{u}tra$, viz. aiuN.

This method of $praty\bar{a}h\bar{a}ra$ -formation applies to the $praty\bar{a}h\bar{a}ras$ of the phonemes in the $M\bar{a}he\bar{s}vara$ sutras as well as to those of the declensional and conjungational terminations which are enumerated in $s\bar{u}tras$ 4.1.2 and 3.2.78 respectively; the $praty\bar{a}h\bar{a}ras$, suP and tiN stand as abbreviations for the

respective groups of terminations of nominal declension and verbal conjungation.

We can even get the required $praty\bar{a}h\bar{a}ra$, say aC, by yet another, longer or indirect, method. First prepare the $praty\bar{a}h\bar{a}ra$ haL in the way given in the $s\bar{u}tra$, comprising of all consonants; then detach or subtract it from the biggest $praty\bar{a}h\bar{a}ra$, viz. aL comprising of all sounds. And we get aL - haL = aC or contrarily, aL - aC = haL in the same way as in the straight line ABCD (see Fig. No. 2 below)

AD - BD = AB, or AD - AB = BD.

We unconsciously resort to this indirect method of $praty\bar{a}h\bar{a}ra$ -formation frequently when the sounds to which the given rules do not apply are to be excluded. Take the example of the $s\bar{u}tra$ hal antyam, 1.3.3 itself. The $s\bar{u}tra$ means that the final sounds included in the $praty\bar{a}h\bar{a}ra$ hal. (which are all consonants) are to be termed as it. On the basis of this rule we understand by implication that the sounds other than those from the $praty\bar{a}h\bar{a}ra$ hal (which means that the sounds in the $praty\bar{a}h\bar{a}ra$ al, which are all vowels) are not to be termed as it. We have arrived at this conclusion by the simple process of subtraction of the smaller $praty\bar{a}h\bar{a}ra$ hal from the bigger one, viz. al; thus al-hal = al. If, therefore, al = al and al = al is substituted by al = al we transform the statement "al = al in ot it" in symbols as follows: —

aC is not it i.e. a is not p i.e. (y - x) is not p (since a = y - x) i.e. aL - haL is not it.

Here the example of the $praty\bar{a}h\bar{a}r\dot{a}s$ aC and haL that is taken is of two mutually exclusive groups, so that the non-haL group contains only one $praty\dot{a}h\bar{a}ra$ viz. aC. There are innumerable cases, however, where the non-x group (i.e. that other than given) contains many $praty\bar{a}h\bar{a}ras$. Take, for example, the $praty\bar{a}h\bar{a}ra$ jaS; the non-jaS group will contain two $praty\bar{a}h\bar{a}ras$ aS (i.e. aS-jaS) and khaL (i.e. jaL-jaS).

One connot represent the $s\bar{u}tra$ 1.1.71 in the form of the diagram of a circle and the phonemes as points on the circumference, because first, the comparison is too odd and inapplicable. A $praty\bar{a}h\bar{a}ra$ along the circumference of the circle would mean that one can even start with the final phoneme h of the $M\bar{a}he\dot{s}vara\,s\bar{u}tra\,$ No. 14, go forward to the it-sound K of $s\bar{u}tra\,$ No. 2 (viz. r!K) and compose a $praty\bar{a}h\bar{a}ra\,$ like haK comprising of the sounds h, a, i, u, r, l. But no such circular $praty\bar{a}h\bar{a}ras\,$ are found used by Panini. Secondly, like the straight line, the $M\bar{a}he\dot{s}ara\,s\bar{u}tras\,$ have also fixed, starting and ending points which the circumference of a circle will not have.

The underlying principle of the Paninian sutra 1.1.71, therefore, seems to be that of a straight line in mathematics.

3. Mathematical representation of the Paninian Sutra 1.1.9:

An another Paninian sūtra which could be represented mathematically, or more accurately, graphically, is tulyāsyaprayatnam savarnam, 1.1.9. The sūtra states that two sounds having the same place and internal effort of articulation are to be taken or regarded as 'similar' or 'homoorganic'. This sūtra thus give us the principle on which the phonetic similarity of sounds cound be determined.³

It is well-known that the ancient Indian Sanskrit phoneticians have determined the $sth\bar{a}na$ i.e. place and prayatna i.e. effort of articulation of sounds. The $sth\bar{a}nas$ or places of sounds are in all eight, 4 they are: (1) chest (2) throat (3) head (4) root of the tongue (5) teeth (6) nose (7) lips and (8) palate. A monophthongal sound in Sanskrit has thus one, single place of articulation at a time. The diphthongs however, have two places of articulation at the same time; the diphthongs e and $\bar{a}i$ have throat and palate and the diphthongs o and $\bar{a}u$ have throat and lips as their places of articulation cf. BD. on 1.1.9: edaitoh $kanthat\bar{a}lu$; odautoh kanthostham. The only monophthong—and that too a semi-vowel—that is given as having two places of articulation at a time is the semi-vowel v which has teeth and lips as the places; cf. BD. on 1.1.9: $vak\bar{a}rasya$ dantostham. This raises the total number of places of articulation of all Sanskrit sounds to (8+3=)11.

The effort that goes into producing the sounds is mainly of two kinds: (1) the āntara or ābhyantara prayatna i. e. the internal effort and (2) the bāhya prayatna or what Pāṇinīya Śikṣā calls as the anupradāna6 i. e. the external effort. Now since only the internal effort is of use in deciding the phonetic similarity,7 we shall not take into account the external effort here. The internal effort is of four types: (1) spṛṣṭa (2) iṣat-spṛṣṭa (3) vivṛta and (4) samvṛta; cf. BD. on 1.1.9: ādyaḥ caturdhā/spṛṣṭeṣatspṛṣṭavivṛtasamvṛṭabhedāt.

^{3.} This was the principle used to decide the phonemes of the Sanskrit language from amongst the innumerable phones that could be produced by the tongue with the help of other physical organs; for a discussion, cf. M. D. PANDIT, "Some Linguistic Principles in Panini's Grammar", Indian Linguistics, 24, 1963, pp. 51-53.

^{4.} cf. Pāṇinīya Śikṣā 13 : aṣṭau sthānāni varṇānam uraḥ kaṇṭhaḥśiras tathā jihvāmū-laṁ ca dantāś ca nasikoṣṭhāu ca tālu ca.

^{5.} The sound ν raises many problems. For a phonetic description of Sanskrit sounds, cf. S. K. Chatterji, "The Pronuniciation of Sanskrit Sounds", Indian Linguistics, 1955, p. 81 f.

^{6.} cf. Pāņinīya Šikṣā, 10b, prayatnānupradānatah

^{7.} Cf. BD on 8.2.1: bāhyaprayatnāś ca.....savarṇasaṁjñōyām anupayuktāḥ. This is not the place to discuss the question: Why the external effort is left out while considering the sāvarṇya of sounds?

Thus we have the two criteria, viz. sthāna and prayatna by which we have to describe a Sanskrit sound so far as its phonetic similarity with other sound is concerned. In mathematical language, we may say that a Sanskrit sound could be marked down on the graph with the help of these two co-ordinates viz. sthāna and prayatna. The following figure will illustrate the point clearly.

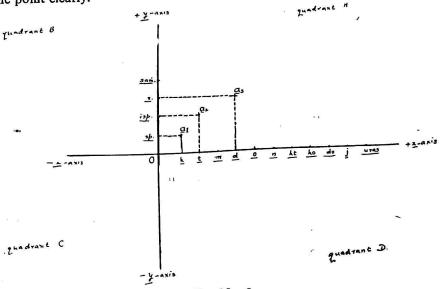


Fig. No. 3

Let x and y be the two axes with the origin O, the axis x representing the places of articulation and y representing the types of internal effort of articulation. The different places and types of internal effort will then be marked on the graph as the points or values of the different sounds. The sound a_1 which has k as the co-ordinate on the x-axis and sp as the co-ordinate on the y-axis will now be clearly marked on the graph. So also the sound a_2 and a_3 . All the possible sounds in the Sanskrit language could thus be pinned down on the graph. The only difference in the present graph and the graph in mathematics is that unlike in the latter, the value of the co-ordinate points on the y-axis in the present graph does not depend upon, or cannot be calculated in terms of, the value of the co-ordinate points on the x-axis; and x-axis are each of the values is independent of the other since obviously the two axes represent two independent characteristics of the sound. Moreover, unlike in mathematics the values of both x and y do not change; they are constant.

With this background, we can now represent graphically the Paninian sūtra, tulyāsyaprayatnam savarnam. 1.1.9, which states the principle of determining the phonetic similarity of two sounds.

^{8.} Take the graph in mathematics, say, y=2x; If x=1, y=2; if x=2, y=4 and so on. The value of y, therefore, depends upon the value of x_0

The two points whose similarity is to be found out are both marked on the same graph. The similar phones will be represented on the graph as follows: 9—

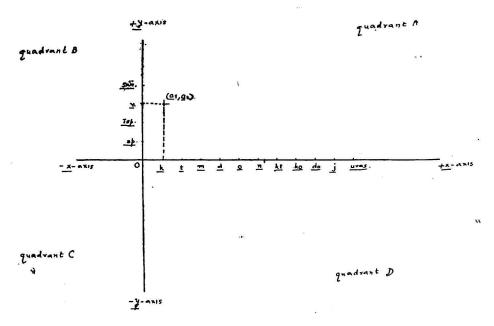


Fig. No. 4

Let the axes x and y represent as before the co-ordinates in terms of place and internal effort of articulation. Let a_1 be the sound with k as the place and v as the internal effect of articulation. It will be marked as a_1 opposite to the respective co-ordinates (see the fig.) Let there be another sound a_2 with the same phonetic description. New since the phonetic description of a_2 is identical with that of a_1 , the co-ordinate points of both the sounds will co-incide or be identical on the graph. And we actually get that a_2 falls on the same co-ordinates as those of a_1 .

The above graph presumes that both the points a_1 and a_2 are marked in the same quadrant viz. A.

It is also possible to mark the two points separately in two separate, yet adjecent quadrants, say A and B, keeping the y-axis as common. If we draw the two points like that we find that the straight line joining the two points is parallel to the x-axis (see fig. No. 5 below). k_1 , t_1 , etc. are the x-co-ordinates of the sound a_1 , and k_2 , t_2 , etc. are the x-co-ordinates of the sound a_2 .

^{9.} $k = kantha, t = t\bar{a}lu, m = m\bar{u}rdh\bar{a}, d = danta, o = ostha, n = n\bar{a}sik\bar{a}, kt = kantha-t\bar{a}lu, ko = kanthostha, do = dantostha, j = jihv\bar{a}m\bar{u}la; sp = spṛṣṭa, isp = iṣat-spṛṣṭa, v = vivṛta and sam = samvṛta, O = origin.$

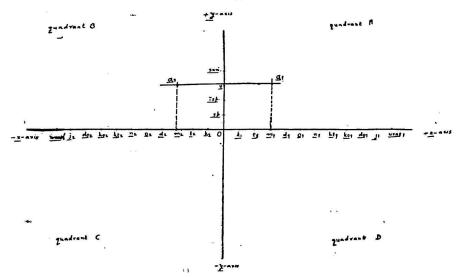


Fig. No. 5

The co-ordinates on both the positive and negative sides of the x-axis are marked in the same order on both the sides of the origin O and have equal distances from it so that $Ok_1 = Ok_2$ and so on. If the graph is in quadrants B and C, the straight line a_1 a will be parallel to the y-axis; if it is in quadrants C and D, the straight line will be parallel to x-axis; and if the graph is drawn in quadrants A and D, the straight line a_1a_2 will be parallel to the y-axis again. That the straight line joining the two points is parallel to either of the two axes could be proved mathematically.

The situation is different if we mark the two points separately in separate, non-adjecent, opposite quadrants (see fig. No. 6 below; the quadrants selected are opposite to each other, viz. A and C.).

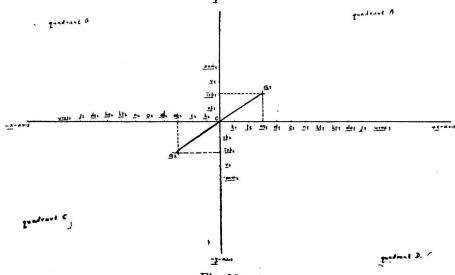


Fig. No. 6

We find that the straight line joining the similar sounds, viz. $a_1 a_2$ passes through the origin. Similar is the case if we draw the graph in the opposite quadrants B and C. Mathematical proofs could be given in this case also to prove that the straight line passes through the origin O.

Graphically represented, the Pāṇinian sūtra 1.1.9 gives us three graphical conditions for sounds to be similar to one another. The principle of phonetic similarity can then be graphically enunciated as: Two sounds can be said to be phonetically similar to each other if (1) they co-incide on the graph (as in Fig. No. 4), or if (2) the straight line joining them is parallel to either of the axes (as in Fig. No. 5), or if (3) the straight line joining them passes through the origin (as in Fig. No. 6).

4. The principle of anuvetti in the Paninian Sutra-system :

It is well-known that anuviti or borrowing a word from the previous $s\bar{u}tras$ for the sake of intelligent and consistent interpretation of the following $s\bar{u}tra$ or $s\bar{u}tras$ is one of the wonderful axiomatic devices employed by Pāṇini in the $s\bar{u}tra$ -system. This principle is exploited by Pāṇini to the fullest extent and is conspicuously absent — with the exception of its scattered employment here and there — in all other pre-Pāṇinian and contemporaneous $s\bar{u}tra$ -systems. Pāṇini is the first to employ this technique to its perfection and all the post-Pāṇinian $s\bar{u}tra$ -systems owe the debt to Pāṇini.

Before deciphering any principle in the technique of anuvṛtti it is necessary to know its working and nature. This will be clear from the following example.

Let us take the sūtras 1.3.2-1.3.8, in all seven, laying down the it-sounds and the conditions for the sounds to be it. The following is the Paninian statement and order of the sūtras which are quoted here for easier and clear understanding:—

(a) Pāṇinian statement:

- 1. upadeše ac anunāsika it, 1.3.2
- 2. hal antyam, 1.3.3.
- 3. na vibhaktau tusmāḥ, 1.3.4
- 4. ādir ñitudavah, 1.3.5.
- 5. sah pratyayasya, 1.3.6
- 6. cutū, 1.3.7
- 7. lasakvataddhite, 1.3.8

All of these sutras lay down the different conditions for the various sounds to be it; sutra No. 3, viz. 1.3.4, however, prohibits certain sounds to be it under certain conditions.

If we read the sūtras, we find that except the one, single sūtra, viz. 1. 3. 2. which contains the words upadese and it, all the rest do not have any such words; yet, we have to borrow these words in consistently interpreting the rest of the sūtras. While sūtras No. 2 and 3, viz. 1. 3. 3 and 1. 3. 4 require the anuvrtti of two terms viz. upadese and it, sūtra No. 5, viz. 1. 3. 6 requires the anuvrtti of three terms, viz. upadese, it (both from the

first sūtra i.e. 1. 3. 2) and ādih (from the forth sūtra i.e. 1. 3. 5); sūtras No. 6 and 7, viz. 1. 3. 7 and 1. 3. 8 on the other hand are meaningless without the anuvetti of four terms viz. upadese, it, adih and pratyayasya (the last from the fifth sūtra i.e. 1.3.6). Not only this, but also that the absence of anuvetti of these terms in places where they are required will create chaos and upset the whole Paninian sutra-system; its absence will hinder any intelligent interpretation of the sutras, will create technical and grammatical difficulties and further lead to interpretational deadlocks. affecting the grammar of the language. The importance of anuvetti in the Paninian principles of axiomatics can, therefore, hardly be exaggerted.

We know, therefore, that many times and in many places in Panini's sūtra-system, we have to read many sūtras by assuming the existence of certain words even if they are not there. This assumption of their existence there is based upon their actual inclusion in some preceding sutra or sutras. If, therefore, in the above example, we put the borrowed words in the places in which they are required but are not there, we may perhaps get a clue as to the underlying principle of anuvetii. The Paninian statements in their solved form will then be:-

(b) Solved Pāninian statements:

upadese ac anunāsika it, 1.3.2.

upadese hal antyam it, 1.3.3

3 upadeše na vibhaktau tusmāh it, 1.3.4

upadese adir nitudavah it. 1.3.5

5 upadese ādih sah pratyayasya it. 1.3.6

upadese ādih cutū pratyayasya it, 1.3.7

upadese ādiḥ lasakvataddhite pratyayasya it. 1.3.8

The dissolved form of the Paninian statements at once now helps us to decipher the principle on which the technique of anuvetti seems to be employed. We can easily see that the words, which are required to be borrowed are common words in all or some of the Paninan statements. other words, what Panini did is that he took out all the common words occurring in all the sutras and inserted them in one single sutra which would stand at the head of all its dependent sutras. The concept underlying the principle of anuvitti is, therefore, purely mathematical, viz. that of taking out of the brackets the highest common factor from amongst the given, numerous algebraic expressions. The Paninian statement of rules, therefore, looks like bracketted algebraic or mathematical expressions with the highest common factor or factors out of the brackets. The point will be clear if we put symbols for all the words and rewrite the sutras symbolically.

```
Put a for the words ac anunasikah
```

b hal antyam

C na vibhaktau tusmah

d ñitudayah ,,

e sah ,, ..

cutū

Put g for the words lasakvataddhite

and the sign+(plus) for showing the Paninian order of sutras.

We now represent the Paninian statements symbolically as:

$$x \, a.y + x.b.y + x.c.y + x.p.d.y + x.p.e.q.y + x.p.f.q.y + x.p.g.q.y.$$

Taking out the highest common factor viz. xy out of the brackets, we get,

$$xy [a+b+c+p.d+p.e.q+p.f.q+p.g.q]$$

We can again take out some more common factors and we get the factorised expression as:

 $xy [a+b+c+p \{d+q(e+f+g)\}]$ which is the perfect alegbraic representation of the Paninian statement of the seven $s\bar{u}tras$. While the factors xy are common to all of the $s\bar{u}tras$ (and hence they are taken out of the biggest brackets), the factors p and q are only partially common to some of the $s\bar{u}tras$.

The principle followed by Pāṇini in employing the technique of anuvṛtti in his sūtra-system, therefore, seems to be similar to the simple principle of factorisation or finding out the highest common factor from amongst the given expressions in algebra. The highest common factor taken out may be a single word or group of many words.

There are many examples in Pāṇini's grammar in which the technique of anuvṛtti is employed. The scope of the anuvṛtti varies from two to a number of $s\bar{u}tras$; cf. the $s\bar{u}tras$ 3.2.95 and 3.2.96 where the anuvṛtti of the word yudhikṛñaḥ is limited only to the two sūtras, whereas the anuvṛtti of the word tac extends upto $22 s\bar{u}tras$ from 5.4.91–5.4.112; while the anuvṛtti of the word dhātoḥ in the $s\bar{u}tra$, 3.1.91 covers almost one, entire adhyāya (viz. the 3rd) of four pādas containing in all 541 $s\bar{u}tras$, the anuvṛtti of the word prātipadikāt in the $s\bar{u}tra$ 4.1.1. embraces in all 1190 $s\bar{u}tras$ from two complete adhyāyas (viz. 4th and 5th) of four $p\bar{a}das$ each.

The anuvetta word can either be the subject or what is technically called in Indian grammars as uddesya or predicate or what is called as vidheya. The anuvetta word it in the above example belongs to the grammatical category of vidheya or predicate while the word upadese belongs to the category of uddesya. 10

4.1. Types of anuvrtti:

If we examine all the examples wherever anuvetti is to be resorted to for the interpretation of the $s\bar{u}tras$, we find three different, broad types:

^{10.} It is to be noted in this connection that according to the Indian Sanskrit grammarians, any category other than vidheya is to be included in the category of uddeśya; and hence upadeśe belongs to the category of uddeśya and not to that of vidheya-vistūra i.e. extension of predicate.

(1) formal anuvetti - (2) semantic anuvetti and (3) semi-formal or semi-semantic anuvetti.

4.1.1. Formal anuvitti:

This type is visible in cases in which only the form of the word is to be borrowed; the anuvita word there does not refer to any meaning, social or technical. This is the case where the suffixes or pratyayas in their form are to be borrowed; cf. the sūtras 5.4.91-5.4.92 where the word tac in the sūtra 5.4.91, which is a termination, is to be borrowed in its own form in interpreting all the rest of the sūtras; the word tac does not refer to any linguistic or technical meaning in this context. It is pure śabdānuvṛtti i.e. borrowing of the form of the word.

4.1.2. Semantic anuvitti:

There are circumstances where the linguistic meaning conveyed by the words used in the $s\bar{u}tra$ has to be borrowed in interpreting the following $s\bar{u}tras$; cf. for example the $s\bar{u}tra$, $tasy\bar{a}patyam$, 4.1.92. Neither the word tasya nor the word apatya is to be borrowed; what is borrowed in the following $s\bar{u}tras$ is the linguistic meaning that the phrase tasya apatyam ('his/her child/progency') conveys. The same is the case with the $s\bar{u}tras$, $tatra\ jatah$, 4.3.25, $tatra\ bhavah$, 4.3.53 etc.

Actually Kāśikā on the sūtra, 4.1.92 remarks: arthanirdeśo'yam ('this is a reference to the meaning' and not to the form of the words tasyāpatyam). This type of anuvṛtti is purely on the semantic plane; it is pure arthānuvṛtti.

4.1.3. Semi-formal or semi-semantic anuvitti:

This category is seen where Pāṇini intends a technical term like prātipadika, dhātu or aṅga to be borrowed in the following sūtra. The result is that mere physical borrowing of the technical term, say prātipadika (in the sūtra, 4.1.1), does not work or suffice, since in actual grammatical operation, we have to take into consideration some concrete prātipadika like rāma or hari or bhānu which would satisfy the criterion of being a prātipadika laid down in the definition (cf. the sūtras, 1.2.45; 46). That is to say, a technical term requires that it must be borrowed both physically or formally as well as semantically. This type of anuvṛtti is both formal as well as semantic; also, it is neither purely formal nor purely semantic. We may term this type as semi-formal or semi-semantic.

The whole discussion above aims to bring into foreground one important point, viz. that to take out 'only the semantic import' or 'meaning' of the words, detached of their formal counter-parts, as the common factor is certainly a stage further than taking out 'simply the pure form' of the words as the common element. In the case of the pure semantic anuvṛtti, Pāṇini seems to have transcended the limits of formal plane. He thus seems to have repudiated the claim that algebraic representation is possible only in the case of formal—and not semantic—categories. And no one

would deny that this is certainly a great advance in analytical techniques if only one takes into account the context of time in which Panini flourished.

We can represent algebraically those sūtras also in which semantic anuvṛtti is available by ascribing suitable symbols to the semantic categories.

The whole technique of *anuvṛtti* can, therefore, be said to have been based on the same principle on which the technique of factorisation or finding out the highest common factor in algebra is based.

5. Other instances:

The same technique of factorisation or taking out the highest common factor is clearly visible in the definition of prātipadika laid down by Paṇini in the sūtra, arthavad adhātur apratyayah prātipadikam, 1.2.45.11

The use of the concept of zero indicates the utilisation by Panini of the mathematical principle of 'division'; ¹² especially the cases where an inserted zero has its non-zero counter-part in other forms lend support to such a supposition. Moreover, the concept of zero itself pre-supposes morphological analysis in terms of position or order of morphemes, bound or free. Panini has actually stated explicitly the position of suffix as para i. e. posterior to the prātipadika; cf. the sūtra, para's ca, 3.1.2. All these points add greater strength to the hypothesis that Pāṇini has utilised certain mathematical techniques and principles in his linguistic description of Sanskrit. The idea of position can only come from mathematical logic.

All this, it must be confessed, presupposes a certain advance in mathematics prior to Pāṇini's times which, in the absence of any pre-Pāṇinian evidence in the field, cannot be proved.

It is at this stage of our study of Pāṇini's grammar very premature to hasten to the conclusion that Pāṇini knew mathematics. The affirmative or negative answers to the questions like whether Pāṇini knew mathematics, or whether he borrowed certain mathematical principles or algebraic techniques to describe the Sanskrit language depend upon stronger internal and external evidences. It is also possible that the ancient Indian mathematicians might also have borrowed certain techniques from Pāṇini.

The question who borrowed from whom, will get its answer only in the context of wider and stronger evidence. The problem could to a certain extent be solved if at least one third, or even one-fourth, of the $4000 \ s\bar{u}tras$ of Panini could be suitably represented mathematically. In doing so, it must be borne in mind that linguistic techniques or description can never be represented fully mathematically; that is to say, such mathematical representation of grammatical rules will never satisfy all the rigorous criteria of the mathematical rules. One has, therefore, to make certain allowance for the looseness in such representations. What is important to see in such cases is only the

^{11.} For details, cf. M. D. PANDIT, op. cit, pp. 56-60.

^{12.} Cf. M. D. Pandit, "Zero in Pāṇini", Journal of the M. S. University of Baroda, (Humanities), Vol. XI, No. 1, 1962, pp. 63-65.

basic resemblance of the technical principles employed in mathematics and in Panini's grammar. If the two basically agree, we have sufficient grounds to believe that either Panini has borrowed the principles from mathematics or mathematics owes some debt to Panini.

It is also possible that both might have borrowed from an altogether different yet common source. Can it be logic or mathematical calculus? All this, it must be confessed, would again pre-suppose a certain advance in the field of logic, mathematics and mathematical calculus; unfortunately there is no pre-Paninian evidence in the field. But that certain Paninian and mathematical principles resemble one another cannot be forgotton.

Author	8.	Acc. No.
	hor :	
Title		
	Borrower	Ssued Retur
	,	
125		,
	,	
, 1		
	. %	
3		A. C.
» ((ý	
		1
		, r