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PREFACE 

A LBERT EINSTEIN was born on 
1 4 March, 1 879, in U Im. When he 

was only six weeks old his parents moved to 
Munich, where he spent his infancy, and went 
to school until his fourteenth year. When 
fifteen he came to Switzerland, attended for 
another year the Gymnasium in Aarau, and 
took there his school leaving examination. 
Then he studied Mathematics and Physics in 
the Zurich Polytechnic, where Minkowski was 
one of his teachers. In 1902 he came to Berne 
as Engineer in the Patent Office, and in addi
tion to his duties there, prepared himself for 
the examination for his Doctor's degree, which 
he took in the year 1905. At this time there 
appeared in rapid succession his first great 
works on the foundations of molecular physics, 
of which those relating to the Brownian motions 
are collected in this little volume ; as well as 
the well-known papers on the special Principle 
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of Relativity. In 1909 he accepted a call to 
a Professorship in the University of Zurich, 
and in 1911 a call to a full Professorship in the 
University of Prague; in 1912 he accepted 
a Chair in the Zurich Polytechnic. In 1914 

he was invited to Berlin as successor to 
Van't Hoff in the Royal Prussian Academy of 
Science, where in addition he undertook the 
duties of Director of the Kaiser Wilhelm In
stitute of Physics. To this period, up to the 
year 1915, belong his researches on the general 
Theory of Relativity, as well as a number of 
fundamental studies on the Quantum Theory. 
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INVESTIGATIONS ON THE THEORY 
OF THE BROWNIAN MOVEMENT 

I 

ON THE MOVEMENT OF SMALL PARTICLES 
SUSPENDED IN A STATIONARY LIQUID 
DEMANDED BY THE MOLECULAR
KINETIC THEORY OF HEAT 

IN this paper it will be shown that according 

to the molecular-kinetic theory of heat, bodies 
of microscopically-visible size suspended in a 
liquid will perform movements of such magnitude 
that they can be easily observed in a microscope, 
on account of the molecular motions of heat. 
It is possible that the movements to be discussed 
here are identical with .the so-called "Brownian 
molecular motion" ; however, the information 
available to me regarding the latter is so lacking 
in precision, that I can form no judgment in the 
matter (1). 

If the movement discussed here can actually 
be observed (together with the laws relating to 
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it that one would expect to find), then classical 
thermodynamics can no longer be looked upon 
as applicable with precision to bodies even of 
dimensions distinguishable in a microscope : an 
exact detennination of actual atomic dimensions 
is then possible. On the other hand, had the 
prediction of this movement proved to be in
correct, a weighty argument would be provided 
against the molecular-kinetic conception of heat. 

9 I. ON THE OSMOTIC PRESSURE TO BE ASCRIBED 

TO TIIE SUSPENDED PARTICLES 

Let z gram-molecules of a non-electrolyte be 
dissolved in a volume V* forming part of a 
quantity of liquid of total volume V. If the 
volume V* is separated from the pure solvent 
by a partition permeable for the solvent but 
impermeable for the solute, a so-called " osmotic 
pressure," p, is exerted on this partition, which 
satisfies the equation 

PV* = RTz . (2) 

when V* /z is sufficiently great. 
On the other hand, if small suspended particles 

are present in the fractional volume v• in place 
of the dissolved substance, which particles are also 
unable to pass through the partition permeable to 
the solvent: according to the classical theory of 
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thermodynamics-at least when the force of gravity 
(which does not interest us here) is ignored-we 
would not expect to find any force acting on the 
partition ; for according to ordinary conceptions 
the " free energy " of the system appears to be 
independent of the position of the partition and 
of the suspended particles, but dependent only 
on the total mass and qualities of the suspended 
material, the liquid and the partition, and on the 
pressure and temperature. Actually, for the cal
culation of the free energy the energy and entropy 
of the boundary-surface (surface-tension forces) 
should also be considered ; these can be excluded 
if the size and condition of the surfaces of contact 
do not alter with the changes in position of the 
partition and of the suspended particles under 
consideration. 

But a different conception is reached from 
the standpoint of the molecular-kinetic theory of 
heat. According to this theory a dissolved mole
cule is differentiated from a suspended body 
solely by its dimensions, and it is not apparent 
why a number of suspended particles should not 
produce the same osmotic pressure as the same 
number of molecules. We must assume that the 
suspended particles perform an irregular move
ment-even if a very slow one-in the liquid, on 
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account of the molecular movement of the liquid ; 
if they are prevented from leaving the volume V* 
by the partition, they will exert a pressure on the 
partition just like molecules in solution. Then, 
if there are n suspended particles present in the 
volume V*, and therefore n/V* = 11 in a unit of 
volume, and if neighbouring particles are suffi
ciently far separated, there will be a corresponding 
os;rnotic pressure p of magnitude given by 

RTn RT 
P= v•N= -w·"· 

where N signifies the actual number of molecules 
contained in a gram-molecule. It will be shown 
in the next paragraph that the molecular-kinetic 
theory of heat actually leads to this wider con
ception of osmotic pressure. 

~ 2. OSMOTIC PRESSURE FROM THE STANDPOINT 
OF TIii! Mnl.lcCI/LJ\H-[{ INETlC •r11EOllY 01' 

l-It!A't' (*) 
If j, 1 , j,3 , ... J•1 arc, l11c variables of state of 

(•) In this paragraph the pnpcrn of the author on tho 
" Foundations of Thermodynamics " arc assumed to be 
familia.r to the 1·c;ulcr (Ann. cl. Phys., 0, p. 417, 1902; 

11, p. 170, 1903). An understanding of the conclusions 
reached in the present paper is not dependent on a 
knowledge of the former papers or of this paragraph of 
the present paper. 
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a physical system which completely define the 
instantaneous condition of the system (for ex
ample, the co-ordinates and velocity components 
of all atoms of the system), and if the complete 
system of the equations of change of these variables 
of state is given in the form 

whence 

then the entropy of the system is given by the 
expression 

. (3) 

W!H~f!! f \s tJ,e µ,bsuJ4t~ ~emp!!f<l14f!!, !:; 1,~~ \!lWfBY 

pf t!1~ ~yst~m, f: P!P !!nerfiy .is il ftEWfiqn qf fv, 
The integral is extended over all possible values 

of P~ consistent with tile conditions of the prob

lem. x is connected with the constant N referred 
to before by the relation 2xN = R. We obtain 

hence for the free energy F, 

F = - NT tgJe-i:dp1 ••• dP1 = - ~ lg B. 
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Now let us consider a quantity of liquid enclosed 
in a volume V ; let there be n solute molecules 
(or suspended particles respectively) in the por
tion V• of this volume V, which are retained in 
the volume v• by a semi-permeable partition; 
the integration limits of the integral B obtained 
in the expressions for S and F will be affected 
accordingly. The combined volume of the solute 
molecules (or suspended particles) is taken as 
small compared with v•. This system will be 
completely defined according to the theory under 
discussion by the variables of condition P1 . . . p,. 

If the molecular picture were extended to deal 
with every single unit, the calculation of the 
integral B would offer such difficulties that an 
exact calculation of F could be scarcely contem
plated. Accordingly, we need here only to know 
how F depends on the magnitude of the volwne 
v•, in which all the solute molecules, or suspended 
bodies (hereinafter termed briefly " particles ") 
are contained. 

We will call x1, Yv z1 the rectangular co-ordinates 
of the centre of gravity of the first particle, 
x2, y 111 z1 those of the second, etc., Xn, Yn, Zn those 
of the last particle, and allocate for the centres 
of gravity of the particles the indefinitely small 
domains of parallelopiped form dx1, dy1, dz

1
; dx

2
, 
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dy2, dz2, • • • dxn, dyn, dzn, lying wholly within 
V*. The value of the integral appearing in the 
expression for F will be sought, with the limita
tion foat the centres of gravity of the particles 
lie within a domain defined in this manner. The 
integral can then be brought into the form 

dB = dx1 dyJ ... dzn . ], 

where J is independent of dx1, dy1, etc., as well as 
of V*, i.e. of the position of the semi-permeable 
partition. But J is also independent of any 
special choice of the position of the domains of 
the centres of" gravity and of the magnitude of 
V*, as will be shown immediately. For if a 
second system were given, of indefinitely small 
domains of the centres of gravity of the particles, 
and the latter designated dx/dy1'dzi'; dx2'dy,.'dz,.' 
... dxn'dyn'dzn', which.domains differ from those 
originally given in their position but not in their 
magnitude, and are similarly all contained in V*, 
an analogous expression holds :-

dB'= dx/dy1' ••• dz,.'.]'. 

Whence 

dx1dy1 • •• dzn = dx/dyi' . .. dz,.'. 
Therefore 

dB j 
dB;=]' 
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-But from the molecular theory of Heat given in the 
paper quoted,(*) it is easily deduced that dB /B (4) 
(or dB' /B respectively) is equal to the probability 
that at any arbitrary moment of time the centres 
of gravity of the particles are included in the 
domains (dx1 ••• dzn) or (dxi' ... dzn') respec
tively. Now, if the movements of single particles 
are independent of one another to a sufficient 
degree of approximation, if the liquid is homo
geneous and exerts no force on the particles, then 
for equal size of domains the probability of each 
of the two systems will be equal, so that the follow
ing holds: 

dB dB' 
s=13· 

But from this and the last equation obtained it 
follows that 

]=]'. 

We have thus proved that J is independent both 
of V* and of x1, y1, ••• Zn, By integration we 
obtain 

B = f ] dx1 ••• dzn = J . V*n, 
and thence 

RT 
F = - N {lg j + n lg V*} 

(•) A. Einstein, Ann. d. Phys., 11, p. 170, 1903. 
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and 
7)F RT n RT 

P = - i)v• = v• N = Nv. 

It has been shown by this analysis that the exist
ence of an osmotic pressure can be deduced from 
the molecular-kinetic theory of Heat ; and that 
as far as osmotic pressure is concerned, solute 
molecules and suspended particles are, according 
to this theory, identical in their behaviour at 
great dilution. 

§ 3. THEORY OF THE DIFFUSION OF SMALL 

SPHERES IN SUSPENSION 

Suppose there be suspended particles irregularly 
dispersed in a liquid. We will consider their 
state of dynamic equilibrium, on the assumption 
that a force K acts on the single particles, which 
force depends on the position, but not on the time. 
It will be assumed for the sake of simplicity that 
the force is exerted everywhere in the direction of 
the x axis. 

Let v be the number of suspended particles per 
unit volume ; then in the condition of dynamic 
equilibrium vis such a function of x that the varia
tion of the free energy vanishes for an arbitrary 
virtual displacement Sx of the suspended sub
stance. We have, therefore, 

f>F = f>E - Tas = o. 
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It will be asswned that the liquid has unit area 
of cross-section perpendicular to the x axis and 
is bounded by the planes x = o and x = l. We 
have, then, 

SE= - I:KvSxdx 

and 

J
1 v 'ilSx RJ' 'ilv SS = R- -dx = - - -Sxdx. 
o N 'ilx N o 'ilx 

The required condition of equilibrium is there
fore 

(r) 

or 

RT'ilv 
-Kv+ --=o 

N 'ilx 

Kv-!f = o . . (5) 

The last equation states that equilibrium with the 
force K is brought about by osmotic pressure 
forces. 

Equation (r) can be used to find the coefficient 
of diffusion of the suspended substance. We can 
look upon the dynamic equilibriwn condition con
sidered here as a superposition of two processes 
proceeding in opposite directions, namely:-

r. A movement of the suspended substance 
under the influence of the force K acting on each 
single suspended particle. 
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2. A process of diffusion, which is to be looked 
upon as a result of the irregular movement of the 
particles produced by the thermal molecular 
movement. 

If the suspended particles have spherical form 
(radius of the sphere= P), and if the liquid has 
a coefficient of viscosity k, then the force K im
parts to the single particles a velocity (*) 

K 
fnrkP . (6) 

and there will pass a unit area per unit of time 

vK 
61rkP 

particles. 
If, further, D signifies the coefficient of diffusion 

of the suspended. substance, and µ the mass of a 
particle, as the result of diffusion there will pass 
across unit area in a unit of time, 

or 

- D~(µv) grams 
~x 

D~v . l - ()x part1c es. 

(•) Cf. e.g. G. Kirchhoff, " Lectures on Mechanics," 
Leet. 26, § 4. 
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Since there must be dynamic equilibriwn, we 
must have 

(2) 
vK i'lv 
---D-=o. 
61rkP i'lx 

We can calculate the coefficient of diffusion 
from the two conditions (1) and (2) found for the 
dynamic equilibrium. We get 

The coefficient of diffusion of the suspended sub
stance therefore depends (except for universal 
constants and the absolute temperature) only on 
the coefficient of viscosity of the liquid and on the 
size of the suspended particles. 

§ 4. ON THE IRREGULAR MOVEMENT OF PARTICLES 

SUSPENDED IN A LIQUID AND THE RELATION 

OF THIS TO DIFFUSION 

We will tum now to a closer consideration of 
the irregular movements which arise from thermal 
molecular movement, and give rise to the diffusion 
investigated in the last paragraph. 

Evidently it must be asswned that each single 
particle executes a movement which is indepen
dent of the movement of all other particles ; the 
movements of one and the same particle after 
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different intervals of time must be considered as 
mutually independent processes, so long as we 
think of these intervals of time as being chosen 
not too small. 

We will introduce a time-interval T in our dis
cussion, which is to be very small compared with 
the observed interval of time, but, nevertheless, 
of such a magnitude that the movements executed 
by a particle in two consecutive intervals of time 
T are to be considered as mutually independent 
phenomena (8). 

Suppose there are altogether n suspended par
ticles in a liquid. In an interval of time T the 
x-co-ordinates of the single particles will increase 
by LJ, where LJ has a different value (positive or 
negative) for each particle. For the value of L1 
a certain probability-law will hold ; the number 
dn of the particles which experience in the time
interval T a displacement which lies between Ll 
and LJ + dLl, will be expressed by an equation of 
the form 

dn = n<f,(Ll)dLJ, 
where J:: cf,(Ll)dLl = I 

and cf, only differs from zero for very small values 
of L1 and fulfils the condition 

4,(Ll) = 4,(- Ll). 
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We will investigate now how the coefficient of 
diffusion depends on cf,, confining ourselves again 
to the case when the nwnber v of the particles per 
unit volwne is dependent only on x and t. 

Putting for the number of particles per unit 
volwne v = f(x, t), we will calculate the distri
bution of the particles at a time t + T from the 
distribution at the time t. From the definition 
of the function cf,(Ll,}, there is easily obtained the 
number of the particles which are located at the 
time t + T between two planes perpendicular to 
the x-axis, with abscissre x and x + dx. We get 

J,1- +"' 
f(x, t + T)dx = dx. .1J5.x"'+ L1,)rp(L1,)dL1,. 

Now, since Tis very small, we can put 
?Jj 

f(x, t + T) = j(x, t) + T~-

Further, we can expand f(x + L1,, t) in powers 
of L1, :-

f(x+LI, t) f(x, t)+LJ,?Jf(x, t) +Ll,2 ?J3/(~, t) ... ad inf. 
?Jx 2. ?Jx 

We can bring this expansion under the integral 
sign, since only very small values of L1, contribute 
anything to the latter. We obtain 

f+ ~ • T JJ: j(Ll)dLI + ~; J: :Llcf,(Ll)dLI 
+m 

?J3/f J:1 +-;, -</>(Ll,)dLJ ... 
?Jx• 2 

-m 
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On the right-hand side the second, fourfo, etc., 
terms vanish since cf,(x) = cf,(- x) ; whilst of the 
first, third, fifth, etc., terms, every succeeding 
te1m is very small compared with the preceding. 
Bearing in mind that 

and putting 
+en !f ~(LJ)dLJ = D, 

T 2 
-CD 

and talcing into consideration only the first and 
third terms on the right-hand side, we get from 
this equation 

(I) 

This is the well-known differential equation for 
diffusion, and we recognise that Dis the coefficient 
of diffusion. 

Another important consideration can be related 
to this method of development. We have assumed 
that the single particles are all referred to the 
same co-ordinate system. But this is unneces
sary, since the movements of the single particles 
are mutually independent. We will now refer 
the motion of each particle to a co-ordinate 
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system whose origin coincides at the time t = o 
with the position of the centre of gravity of the 
particles in question ; with this difference, that 
f(x, t)dx now gives the number of the particles 
whose x co-ordinate has increased between the 
time t = o and the time t = t, by a quantity 
which lies between x and x + dx. In this case 
also the function f must satisfy, in its changes, 
the equation (1). Further, we must evidently 

have for x ~ o and t = o, 

f(x, t) = o and J::/(x, t)dx = n. 

The problem, which accords with the problem of 
the diffusion outwards from a point (ignoring pos
sibilities of exchange between the diffusing par
ticles) is now mathematically completely defined 
(9) ; the solution is 

. (ro) 

The probable distribution of the resulting dis
placements in a given time tis therefore the same 
as that of fortuitous error, which was to be ex
pected. But it is significant how the constants in 
the exponential term are related to the coefficient 
of diffusion. We will now calculate with the help 
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of this equation the displacement A;r in the direc
tion of the X-axis which a particle experiences on 
an average, or-more accurately expressed-the 
square root of the arithmetic mean of the squares 
of displacements in the direction of the X-axis; 
it is 

(II) 

The mean displacement is therefore propor
tional to the square root of the time. It can 
easily be shown that the square root of the mean 
of the squares of the total displacements of the 

particles has the value 'Az.J3 . (r2) 

§ 5. FORMULA FOR THE MEAN DISPLACEMENT OF 

SUSPENDED PARTICLES. A NEW METHOD OF 

DETERMINING THE REAL SIZE OF THE ATOM 

In § 3 we found for the coefficient of diffusion D 
of a material suspended in a liquid in the form of 
small spheres of radius P-

RT I 
D = N . &rrkP" 

Further, we found in§ 4 for the mean value of the 
displacement of the particles in the direction of 
the X-axis in time t---

>.:,, = ..j2Dt. 
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By eliminating D we obtain 
---

- !RT I 
Az = ,.j t . "v N 3TrkP' 

This equation shows how,\: depends on T, k, and P. 
We will calculate how great>.,, is for one second, 

if N is taken equal to 6·1023 in accordance with the 
kinetic theory of gases, water at 17° C. is chosen 
as the liquid (k = 1·35 . 10-2

), and the diameter of 
the particles ·oor mm. We get 

>i., = 8·10- 5 cm. = o·Bµ,. 

The mean displacement in one minute would be, 
therefore, about 6µ,. 

On the other hand, the relation found can be 
used for the determination of N. We obtain 

I RT 
N = ,.\.,2 • 3-rrkP" 

It is to be hoped that some enquirer may succeed 
shortly in solving the problem suggested here, 
which is so important in connection with the 
theory of Heat. (13) 

Berne, May, 1905. 

(Received, II May, 1905.) 



II 

ON THE THEORY OF THE BROWNIAN 
MOVEMENT 

(From the Annalen der Physik (4), 19, 1906, pp. 
371-381) 

SOON after the appearance of my paper (•) 
on the movements of particles suspended 

in liquids demanded by the molecular theory of 
heat, Siedentopf (of Jena) informed me that he 
and other physicists-in the first instance, Prof. 
Gouy (of Lyons)-had been convinced by direct 
observation that the so-called Brownian motion 
is caused by the irregular thermal movements of 
the molecules of the liquid.(t) 

Not only the qualitative properties of the 
Brownian motion, but also the order of magnitude 
of the paths described by the particles correspond 
completely with the results of the theory. I will 
not attempt here a comparison of the slender 
experimental material at my disposal with the 

(•) A. Einstein, Ann. d. Phys., 17, p. 549, 1905. 
(t) M. Gouy, Journ. ds Phys. (2), 7, 561, 1888. 

19 
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results of the theory, but will leave this comparison 
to those who may be handling the experimental 
side of the problem. 

The following paper will amplify in some points 
the author's own paper mentioned above. We 
will derive here not only the translational move
ment, but also the rotational movement of sus
pended particles, for the simplest special case 
where the particles have a spherical form. We 
will show further, up to how short a time of obser
vation the results given in that discussion hold 

true. 
To derive these we will use here a more general 

method, partly in order to show how the Brownian 
motion is related to the fundamentals of the mole
cular theory of heat, partly to be able to develop 
the formula for the translational and the rota
tional movement in a single discussion. Suppose, 
accordingly, that ot is a measurable parameter of 
a physical system in thermal equilibriwn, and 
assume that the system is in the so-called neutral 
equilibrium for every (possible) value of ot. Ac
cording to classical thermodynamics, which dif
ferentiates in principle between heat and other 
kinds of energy, spontaneous alterations of ex 

cannot occur ; according to the molecular theory 
of heat, it is otherwise. In the following we will 
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investigate according to what laws the alterations 
implied by the latter theory take place. We must 
then apply these laws to the following special 
cases:-

I. IX is the X-co-ordinate of the centre of gravity 
of a suspended particle of spherical form 
in a homogeneous liquid (not subject to 
gravitation). 

2. IX is the angle which determines the position 
of a particle, rotatable about a diameter, 
that is suspended in a liquid. 

§ I. ON A CASE OF THERMODYNAMIC 

EQUILIBRIUM 

Suppose a physical system placed in an environ
ment of absolute temperature T, which system 
has thermal interchange with the environment 
and is in a state of thermal equilibrium. This 
system (which therefore has also the absolute 
temperature T) is fully defined in the terms 
of the molecular theory of heat (*) by the vari
ables of condition p1 • • • Pn• In the special 
cases to be considered, the co-ordinates and velo
city-components of all the atoms forming the 
particular system can be chosen as the variables 
of condition P1 ... Pn• 

(•) Cf. Ann. cl. Phys., 11, p. 170, 1903 ; 17, p. 549, 
1905. 
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For the probability, that at any arbitrarily
chosen moment of time the variables of condition 
p1 . . . Pn lie within an indefinitely small n-fold 
domain (dp 1 ••• dp,.), the equation holds-("') 

(I) 

where C is a constant, R the universal constant of 
the gas equation, N the number of the actual 
molecules in a gram-molecule, and E the energy. 

Suppose a. is a parameter of the system that 
can be measured, and suppose each set of values 
p1 • • • p,. implies a definite value a., we will 
indicate by Ada. the probability that at any 
arbitrarily-chosen moment of time the value of 
the parameter a. lies between a. and a. + da.. 
Then 

(2) 

where the integration is taken over all combina
tions of values of the variables of condition, whose 
a. value lies between a. and a. + da.. 

We will confine ourselves to the case, which is 
clear without further discussion from the nature 
of the problem, where all (possible) values of a. 

have the same probability (frequency) ; where, 
therefore, the quantity A is independent of a.. 

(•) L.c. §§ 3 and 4. 
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A second physical system can now be studied 
which differs from that already considered only 
in that a force, of potential «P(a.), dependent solely 
on a., is acting on the system. If E is the energy 
of the former system, then the energy of the present 
system will be E + «P, so that we obtain a relation 
analogous to the equation (r)-

N 
dw' = C'e_ii.T(E+~>dp1 •• • dPn• 

From this can be deduced an expression analogous 
to the equation (2), for the probability dW that 
at any arbitrarily-chosen moment of time the 
value of a. lies between a. and a. + da.-

r dW = Jc·e-:i.(E+ ~) dpl . .. dpn 

(I) l C' - N ~ - N 
=ce Rt Ada=A'e Ftda. 

where A' is independent of a.. 
This relation, which corresponds exactly with 

the exponential law frequently used by Boltz
mann (14) in his investigations in the theory of 
gases, is characteristic of the molecular theory of 
heat. It explains how far a parameter of a sys
tem, when a constant external force is applied, 
can diverge from the value which corresponds 
to stable equilibrium, as the result of irregular 
molecular movements. 
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§ z. EXAMPLES OF THE APPLICATION OF THE 

EQUATION OBTAINED IN § I 

We will consider a body whose centre of gravity 
can move along a straight line (the X-axis of a 
co-ordinate system). The body is surrounded by 
a gas and there is thermal and mechanical equi
librium. According to the molecular theory, as 
the result of the irregularity of the impacts of the 
molecules, the body will move backwards and 
forwards along the straight line in an irregular 
manner, so that in this movement preference is 
given to no particular point in the straight line
provided that no forces act on the body in the 
direction of the straight line, other than the forces 
of impact of the molecules. The abscissa x of the 
centre of gravity is then a parameter of the system, 
which possesses the properties indicated above for 
the parameter «. 

We will introduce now a force K = - Mx 
acting on the body in the direction of the straight 
line. Then, according to the molecular theory, 
the centre of gravity of the body will also execute 
irregular movements, without departing far from 
the point x = o, while according to classical ther
modynamics it must remain stationary at the 
point x = o. According to the molecular theory 
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(formula (I)), 

is equal to the probability that at an arbitrarily
chosen moment of time the value of the abscissa 
x lies between x and x + dx. From this we find 
the mean distance of the centre of gravity from 
the point x = o--

J 
+"' N .If.ta 

= _ "'x2 A' e - ift 2 dx 

✓X2 = J+"' N Mx• A'e-ITT- 2 dx 
- "' 

In order that .../ x2 may be large enough to be 
capable of direct observation, the force establishing 
the equilibrium position of the body must be very 
small. Let us put for the lower limit of observa-

tion ✓ x2 = 10-• ems. ; then, if T = 300 we get 
M = s•ro- 8 approximately. In order that the 
body may carry out vibrations visible in the 
microscope the force acting on it when the dis
placement is I cm. must not exceed five millionths 
of a dyne. (rs) 

We will add a further theoretical observation 
to the equation we have obtained. Suppose the 
body in question carries an electrical charge dis
tributed over a very small space, and that the gas 
surrounding the body is so tenuous that the body 
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carries out vibrations of only slightly modified 
sine-form in the surrounding gas. Then the body 
will radiate electric waves into the space, and will 
absorb energy from the radiation of the surround
ing space ; it brings about, therefore, an energy 
exchange between the radiation and the gas. We 
can derive the limiting law for temperature
radiation, which appears to hold for long wave
lengths and for high temperatures, if we lay down 
the condition that the body in question emits on 
the average just as much radiation as it absorbs. 
We obtain thus(*) the following formula for the 
density of radiation corresponding to the fre-
quency v--

R 81Tv2 

pv= NVT, 

where L is the velocity of light. (16) 
The radiation formula of Planck (t) can be trans

formed into this expression when the frequency 
is small and the temperature is high. The quan
tity N can be determined from the coefficients in 
the limiting law, and we obtain thus Planck's 
calculation of the elementary quanta. The fact 
that we obtain in the manner indicated not the 
true law of radiation, but only a limiting law, 

(")Cf.Ann. d. Phys., 17, p. 132, 1905; §§ I and 2. 
(t) M. Planck, Ann. d. Phys., 1, p. 99, 1900. 
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appears to me to have an explanation in a funda
mental incompleteness in our physical concep
tions. 

We will now apply the formula (I) to determine 
how small a suspended particle must be in order 
that it may remain permanently suspended in 
spite of gravitation. We can confine ourselves 
to the case where the particle is of greater density 
than the liquid, since the opposite case is fully 
analogous. If v is the volwne of the particle, 
p its density, p0 the density of the liquid, g the 
acceleration of gravity, and x the vertical distance 
of a point from the bottom of the vessel, equation 
(I) gives 

-.!'!...v(p-po)gd.r 
dW = const. e RT dx (17) 

We shall find, therefore, that suspended particles 
are able to remain suspended when for values of 
x which do not escape observation on account of 
their minuteness, the quantity 

has not too high a value-with the understanding 
that particles which may reach the bottom of the 
vessel are not held fast there by some peculiar 
condition of the latter. 
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§ 3. ON THE CHANGES IN THE PARAMETER ex 
BROUGHT ABOUT BY THERMAL MOTION 

We will return to the general case considered 
in § I, for which we have derived equation (I). 
However, for the sake of a simpler mode of ex
pression and presentation, we will now assume 
that there are a very large number (n) of identical 
systems of the type indicated there ; we have, 
then, to do with numbers in place of probabilities. 
Equation (I) then expresses:-

Of N systems, in 
Nit 

(la) dn = q,e -RT dex = F(ex)dex 

the value of the parameter ex at an arbitrarily
chosen moment of time falls between ex and ex + dex. 

We will use this relation to ascertain the magni
tude of the irregular changes of the parameter ex 
produced by the irregular thermal phenomena. 
For this purpose we express in symbols that the 
function F(ex) does not alter within the time
interval t under the combined effect of the force 
corresponding to the potential <P and of the 
irregular thermal processes; t indicates here so 
small a time that the corresponding changes of 
the quantity ex of the single systems can be looked 
upon as indefinitely small changes in the argu
ment of the function F(ex). 
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If lengths are marked out from a definite zero 
point along a straight line, each numerically equal 
to the quantities ix, each system determines a 
point (ix) on this straight line. Now, during the 
time t precisely as many points (determined each 
by a system) must pass through a particular 
point (a:0) in one direction, as in the other direc
tion. The force corresponding to the potential <P 
produces a change in IX of the magnitude 

i) 
Ll 1 = - B-t 

i'llX ' 

where Bis independent of IX, that is, the velocity 
of change of IX is proportional to the imposed force 
and independent of the value of the parameter. 
We will call the factor B the "Mobility of the 
system in respect to IX." 

If, therefore, the external force operates, whilst 
the quantity ix is not changed by the irregular 
molecular thermal processes, there will pass 
through the point (a:0) during the time t 

n1 = Be'P) · tF(rJ.o) 
i'llX 11 - 11(1 

points (determined each by a system) in the direc
tion of the negative side. 

Suppose, further, that the probability that the 
parameter ix of a system experiences a change in 
the time t (on account of the irregular thermal 
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processes) whose value lies between .1 and .1 + dLl, 
is equal to i/,(Ll), where i/,(Ll) = if,(- .1) and i/, is 
independent of a:. 

The number of points (each detennined by a 
system) which pass through the point (a:0) during 
the time t in the direction of the positive side as 
the result of the irregular thermal processes is then 

n 3 = J/3. F(a.:0 - .1)x(.1)dLl, 
.i- 0 

where we put 

J: i/,(.1)d.1 = x(.1). 

The nwnber of points which pass in the direction 
of the negative side as the result of the irregular 
thermal processes is 

na = J: F(a:o + .1)x(.1)d.1. 

The mathematical expression for the invariability 
of the function F is therefore 

- n1 + n2 - n3 = o. 
If we introduce the expressions found for n1, n2, 

n3, and bear in mind that .1 is indefinitely small, 
or that i/,(A) only differs from zero for indefinitely 
small values of .1, respectively, we obtain after 
simple manipulation 

BG:) F(rx.o)t + ½F'(ctc,).1 2 = 0 • (18) 
a.-cag 
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Here 

signifies the mean value of the squares of the 
changes in the quantities o; produced by the 
irregular thermal processes during the time t. 
From this relation we obtain, with due reference, 
the equation (Ia)-

(II) /= !zR -
"" LI 2 = 'V N · ,J BTt. 

Here R is the constant of the gas-equation 
(8·3r. ro 7

), N the number of the actual molecules 
in a gram molecule (about 6·ro23} (rg), B the " mo
bility of the system in respect to the paramet~r o;," 

T the absolute temperature, t the time within 
which the changes in o; take place that are pro
duced by the irregular thermal processes. 

§ 4. APPLICATION OF THE EQUATION DERIVED, TO 

THE BROWNIAN MOTION 

We will now calculate with the help of equa
tion (II), in the first instance, the mean displace
ment which a body of spherical form suspended 
in a liquid experiences in the time t in a definite 
direction (the direction of the X-axis in a co-ordi
nate system). For this purpose we must insert 
the corresponding value for Bin the former equa
tion. 
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If a force K acts on a sphere of radius P, which 
is suspended in a liquid of viscosity k, it will 
move ("') with a velocity K /fnrkP. (6) Accordingly 
we can put 

I 

B = fnrkP' 

so that we get-in conformity with the paper 
mentioned above--for the mean displacement of 
the suspended sphere in the direction of the X-axis 
the value 

,=- - /RT I 
...., LI! = ✓ t'\j N 3r.kP-

Secondly, we will consider the case where the 
sphere in question is mounted in the liquid so as 
to be freely rotatable, without friction, about its 

diameter, and investigate the mean rotation ✓ LJ2 

of the sphere during the time t, as the result of 
the irregular thermal processes. 

If the moment D acts on a sphere of radius P, 
which is mounted so as to be capable of rotation 
in a liquid of viscosity k, it rotates with the angular 
velocity (t) 

(*) Cf. G. Kirchhoff, "Lectures on Mechanics," Leet. 
26. 

(t) Ibid. 
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We have, therefore, to put 
I 

B = 81rkP3 • 

Accordingly, we get 
- - /RT I 

✓ .J~ = ✓t,y N 41rkP3 

33 

(20) 

The angular motion produced by the molecular 
motion decreases therefore with increasing P 
much more rapidly than the progressive motion. 

For P = 0•5 mm. and water at r7° the formula 
gives for the angle described on an average in 
one second about II seconds of arc ; in an hour 
about II minutes of arc. For P = 0·5µ, and 
water at r7° we get for t = I second about roo0 

of arc. 
In the case of a totally unconstrained suspended 

particle, three mutually independent angular 
motions of this kind are possible. 

The formula derived for ✓ LJ2 can be applied 

further to other cases. For example, if for B is 
inserted the reciprocal of the electrical resistance 
of a closed circuit, the formula states how much 
electricity will flow on an average during the time 
t across any particular cross-section of the con
ductor, which relation again is connected with the 
limiting law for the radiation of a black body for 
long wave-lengths and high temperatures. (2r) 
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However, since I have been able to find no 
further consequences that can be checked up 
experimentally, it appears to me to be unprofitable 
to consider other special cases. 

§ 5. ON THE LIMITS OF APPLICATION OF THE 

FORMULA FOR ..,/ Ll 2 

It is clear that the formula (II) cannot be applied 
for any arbitrarily small time. For the mean 
velocity of change of ct as the result of the thermal 
processes 

..,/ .12 _ /2RTB r 
-t---v--w-·...;, 

becomes infinitely great for an indefinitely small 
interval of time t ; which is evidently impossible, 
since in that case each suspended particle would 
move with an infinitely great instantaneous velo
city. The reason is that we have implicitly 
asswned in our development that the events 
during the time t are to be looked upon as phe
nomena independent of the events in the time 
immediately preceding. But this asswnption be
comes harder to justify the smaller the time t is 
chosen. 

If the instantaneous value of the velocity of 
change, at a time z = o, is 

dct 
dt = /Jo, 
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and if the velocity of change fJ is not affected by 
the irregular thermal processes ~n a certain sub
sequent interval of time, but the change of fJ is 
solely determined by the passive resistance (1/B), 
then this relation will hold for dfJ/dz :-

- µd/3 = f!_ 
dz B' 

µ is here defined by the condition that µ(/3 2/2) must 
be the energy corresponding to the velocity of 
change fJ. In the case, therefore, of translational 
movement of the sphere µ({1 2/2) is, for example, the 
kinetic energy of the liquid carried with it. It 
follows by integration 

• 
f3 = floe -;s. 

We conclude from this result that the formula 
(II) only holds for intervals of time which are large 
compared with µB. (22) 

For small bodies of 1µ diameter and unit density 
in water at room-temperature, the lower limit 
of availability of the formula (II) is about ro- 7 

seconds ; this lower limit for the interval of time 
increases in proportion to the square of the radius 
of the body. Both hold for the translational as 
well as for the rotational motion of the particle. 

Berne, December, 1905. 

(Received, 19 December, 1905.) 



III 

A NEW DETERMINATION OF MOLECULAR 
DIMENSIONS 

(From the Annalen der Physik (4), 19, 1906, 
pp. 289-306. Corrections, ibid., 34, 19n, pp. 
591-592.) (23) 

T HE kinetic theory of gases made possible 
the earliest determinations of the actual 

dimensions of the molecules, whilst physical 
phenomena observable in liquids have not, up to 
the present, served for the calculation of molecular 
dimensions. The explanation of this doubtless 
lies in the difficulties, hitherto unsurpassable, 
which discourage the development of a molecular 
kinetic theory of liquids that will extend to details. 
It will be shown now in this paper that the size 
of the molecules of the solute in an undissociated 
dilute solution can be found from the viscosity of 
the solution and of the pure solvent, and from 
the rate of diffusion of the solute into the solvent, 
if the volume of a molecule of the solute is large 

36 
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compared with the volume of a molecule of the 
solvent. For such a solute molecule will behave 
approximately, with respect to its mobility in 
the solvent, and in respect to its influence on the 
viscosity of the latter, as a solid body suspended 
in the solvent, and it will be allowable to apply 
to the motion of the solvent in the immediate 
neighbourhood of a molecule the hydrodynamic 
equations, in which the liquid is considered homo
geneous, and, accordingly, its molecular structure 
is ignored. We will choose for the shape of the 
solid bodies, which shall represent the solute mole
cules, the spherical form. 

§ I. ON THE EFFECT ON THE MOTION OF A LIQUID 

OF A VERY SMALL SPHERE SUSPENDED IN IT 

As the subject of our discussion, let us take an 
incompressible homogeneous liquid with viscosity 
k, whose velocity-components u, v, w will be given 
as functions of the co-ordinates x, y, z, and of the 
time. Taking an arbitrary point x0, y0, z0, we 
will imagine that the functions u, v, w are de
veloped according to Taylor's theorem as func
tions of x - x0, y - Yo, z - z0 , and that a domain 
G is marked out around this point so small that 
within it only the linear terms in this expansion 
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have to be considered. The motion of the liquid 
contained in G can then be looked upon in the 
familiar manner as the result of the superposition 
of three motions, namely, 

I. A parallel displacement of all the particles 
of the liquid without change of their 
relative position. 

2. A rotation of the liquid without change of 
the relative position of the particles of 
the liquid. 

3. A movement of dilatation in three directions 
at right angles to one another (the prin
cipal axes of dilatation). 

We will imagine now a spherical rigid body in 
the domain G, whose centre lies at the point x0, 

Yo, z0, and whose dimensions are very small com
pared with those of the domain G. We will 
further assume that the motion under considera
tion is so slow that the kinetic energy of the 
sphere is negligible as well as that of the liquid. 
It will be further assumed that the velocity com
ponents of an element of surface of the sphere 
show agreement with the corresponding velocity 
components of the particles of the liquid in the 
immediate neighbourhood, that is, that the contact
layer (thought of as continuous) also exhibits 
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everywhere a viscosity-coefficient that is not 
vanishingly small. 

It is clear without further discussion that the 
sphere simply shares in the partial motions r and 2, 

without modifying the motion of the neighbouring 
liquid, since the liquid moves as a rigid body in 
these partial motions; and that we have ignored 
the effects of inertia. 

But the motion 3 will be modified by the pres
ence of the sphere, and our next problem will be 
to investigate the influence of the sphere on this 
motion of the liquid. We will further refer the 
motion 3 to a co-ordinate system whose axes are 
parallel to the principal axes of dilatation, and we 
will put 

X - X 0 = ~' 
Y -Yo= TJ, 

Z - z0 = '• 
then the motion can be expressed by the equations 

u0 = A[, 

v0 = BT/, 
W0 = Ct, 

in the case when the sphere is not present. 
A, B, C are constants which, on account of the 
incompressibility of the liquid, must fulfil the 
condition 

. (24) 
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Now, if the rigid sphere with radius P is intro
duced at the point x0, y 0 , z0 , the motions of the 
liquid in its neighbourhood are modified. In the 
foliowing discussion we will, for the sake of con
venience, speak of P as " finite " ; whilst the 
values of {, 11, '1 for which the motions of the 
liquid are no longer appreciably influenced by the 
sphere, we will speak of as " infinitely great." 

Firstly, it is clear from the symmetry of the 
motions of the liquid under consideration that 
there can be neither a translation nor a rotation 
of the sphere accompanying the motion in ques
tion, and we obtain the limiting conditions 

u = v = w = o when p = P 

where we have put 
~---~ 

p = ,.j[2 + 11z + ,2 > o. 

Here u, v, w are the velocity-components of the 
motion now under consideration (modified by the 
sphere). If we put 

U =A[+ U1, 

(3) v = B11 + Vi, 

W =CC+ W1, 

since the motion defined by equation (3) must be 
transformed into that defined by equations (1) 
in the " infinite" region, the velocities u1 , vi, w

1 

will vanish in the latter region. 
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The functions u, v, w must satisfy the hydro
dynamic equations with due reference to the 
viscosity, and ignoring inertia. Accordingly, the 
following equations will hold :- (*) 

{
"i:JP "i:JP "i:JP l)U l)V t\W 

(4) -5g=kLlu, "i:JTJ=kLlv, "i:Jt=kLlw, "i:J~+"i:JTJ +"i:J,=o, 

where Ll stands for the operator 
"j)2 "j)2 "j)2 

"i:Jt2 + "j)T/2 + "j),2 

and p for the hydrostatic pressure. 
Since the equations (r) are solutions of the 

equations (4) and the latter are linear, according 
to (3) the quantities u1, v1, w1 must also satisfy the 
equations (4). I have determined tt1, v1, w1, and p, 
according to a method given in the lecture of 
Kirchhoff quoted in § 4 (t), and find 

(•) G. Kirchhoff, "Lectures on Mechanics," Leet. 26. 

(t) " From the equations (4) it follows that t:,,.p = o. 
If p is chosen in accordance with this condition, and a 
function V is determined which satisfies the equation 

I 
t:,,.V =kp, 

then the equations (4) are satisfied if we put 

u = "i:J V + u', v = "i) V + v', w = "i) V + w' 
i)E i),, "i:J( 

and chose u', v', w', so that t:,,.u' = o, .a.v' = o, and 
~w' = o, and 
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'j)Z(I) 'j)2(I) 

P =- ~kP3{A-P- + B_P_ 
3 'i)fZ 'j)7]2 

(S) 

Now if we put 

and in agreement with this 

,.r 

and 

V .,. c~ + b ___..e. + - t• - - - -'j)• " - a( '1• ~) 
'j)f• 'i)f1 2 2 2 

I 'j)-
u' = - 2c-1! v' = o w' = o 'j)f. • • 

the constants a, b, c can be chosen so that when p = p, 
u = v = w = o. By superposition of three similar 
solutions we obtain the solution given in the equations 
(5) and (sa). 
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where 

D = A{~pa"i)2p + !prtG)} 
6 i)~2 6 j)e2 

j)l(I) 
+ n{~pai)'l.p + !p&_i__} 

6 i)17'1. 6 i)17• 

(5a) 

+ a{~paj)2p + !p&j)I(~)}. 
6 j)'S 6 j)'I 

It is easy to see that the equations (S) are solu
tions of the equations (4). Then, since 

and 

we get 

I 
L1 ! = o, Ll- = o p , 

2 
Llp = -

p 

But the last expression obtained is, according to 
the first of the equations (S), identical with dp/df 

In similar manner, we can show that the second 
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and third of the equations (4) are satisfied. We 
obtain further-

But since, according to equation (Sa), 

L1D = ~pa{A 
02

(~) + B
02G) + c°2G)}, 

3 'j)g2 'i)172 ara 

it follows that the last of the equations (4) is 
satisfied. As for the boundary conditions, our 
equations for u, v, w are transformed into the 
equations (1) only when p is indefinitely large. 
By inserting the value of D from the equation 
(Sa) in the second of the equations (5) we get 

(6) i, = Ag - ~ pag(Ag2 + B112 + Ct2) 
2 pfl 

+ ~ p 5

g(Ag2 + B'Tl2 + Gt2) - ~~Ag (25) 
2 p7 -, p5 

We know that u, vanishes when p = P. On the 
grounds of symmetry the same holds for v and w. 
We have now demonstrated that in the equations 
(S) a solution has been obtained to satisfy both 
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the equations (4) and the boundary conditions of 
the problem. 

It can also be shown that the equations (5) are 
the only solutions of the equations (4) consistent 
with the boundary conditions of the problem. 
The proof will only be indice.ted here. Suppose 
that, in a finite space, the velocity-components of 
a liquid u, v, w satisfy the equations (4). Now, if 
another solution U, V, W of the equations (4) can 
exist, in which on the boundaries of the sphere in 
question U = u, V = v, W = w, then (U - u, 
V - v, W - w) will be a solution of the equa
tions (4), in which the velocity-components vanish 
at the boundaries of the space. Accordingly, no 
mechanical work can be done on the liquid con
tained in the space in question. Since we have 
ignored the kinetic energy of the liquid, it follows 
that the work transformed into heat in the space 
in question is likewise equal to zero. Hence we 
infer that in the whole space we must have u = u', 
v = v', w = w', if the space is bounded, at least 
in part, by stationary walls. By crossing the 
boundaries, this result can also be extended to 
the case when the space in question is infinite, as 
in the case considered above. We can show thus 
that the solution obtained above is the sole 
solution of the problem. 
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We will now place around the point .x0 , Yo, z0 a 
sphere of radius R, where R is indefinitely large 
compared with P, and will calculate the energy 
which is transfonned into heat (per unit of time) 
in the liquid lying within the sphere. This energy 
W is equal to the mechanical work done on the 
liquid. If we call the components of the pressure 
exerted on the surface of the sphere of radius R, 
Xn, Yn, Zn, then 

W = f (Xnu + Vnv + Znw)ds 

where the integration is extended over the surface 
of the sphere of radius R. 

Here 

where 

X 
t)U 

t=P-2k't,f 

y~ =P-2kt)V 
?i-r,' 

Z 
i)w 

,=P-2ki){' 

Y,= z~ = - kG~ + !;) 
Ze = x, = - k(tlw + ?Ju) 

?if t)' 
x~ =Ye==- - kG; + !~)-
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The expressions for u, v, w are simplified when we 
note that for p = R the terms with the factor 
P 6/p6 vanish. 

We have to put 

u = Af- ~p 3f(Af2 + BrJ2 + CC2
) 

2 p" 

(6a) v = B71 - ~pa11(Af2 + ~112 + cc2) 

w = Ct - 2pat(Agz + BT/2 + cc2) 
2 p" 

For p we obtain from the first of the equations (S) 
by corresponding omissions 

p = - 5kPaAf2 +Bf+ cca + const. 
p 

and from this 

X,.=2Ai-5AkP3£ + 2okP3f(Aga + BT/ll + cca)_ (23) 
p p' P' 

With the aid of the expressions for Yn and Zn, 
obtained by cyclic exchange, we get, ignoring all 
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terms which involve the ratio P/p raised to any 
power higher than the third, 

X 11u + Y 11v + Z11w = 2\A 2g2 + B 27J2 + c 2, 2) 
p 

- 5kp3(A zg2 + B27]2 + CZt2) +15kps(At2+n112+c t2)2.(23) 
p' pa 

If we integrate over the sphere and bear in mind 
that 
5 ds = 4R21T, 
S gads= S 7J 2ds = S , 2ds = -}n-R', 
J g,ds = S TJ'ds = S ''ds = t,rR6, 

$ 7]
9

,
2ds = S t2e2ds = S e21]2ds = r'-r.1TR8, 

S (Ae2+B112+Ct2
)

2 ds = -b-,rR8(A 2+B2+C2), (23) 
we obtain 

(7) W = !1TR3k82 + ¼1TP3k82 = 282k ( V + :) , (23) 

where we put 
32 = A z + n2 + c2, 

41T R3 = V and 41Tpa = <P 
3 3 

If the suspended sphere were not present (<P = o), 
then we should get for the energy used up in the 
volume V, 

(7a) W = 282kV. 

On account of the presence of the sphere, the 
energy used up is therefore diminished by 82k<P. 

(26) 
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§ 2. CALCULATION OF THE V1scos1TY-COEFFICIENT 

OF A LIQUID IN WHICH A LARGE NUMBER 

OF SMALL SPHERES ARE SUSPENDED IN IR

REGULAR DISTRIBUTION 

In the preceding discussion we have considered 
the case when there is suspended in a domain G, 

of the order of magnitude defined above, a sphere 
that is very small compared with this domain, 
and have investigated how this influenced the 
motion of the liquid. We will now assume that 
an indefinitely large number of spheres are dis
tributed in the domain G, of similar radius and 
actually so small that the volume of all the 
spheres together is very small compared with the 
domain G. Let the number of spheres present in 
unit volume be n, where n is sensibly constant 
everywhere in the liquid. 

We will now start once more from the motion 
of a homogeneous liquid, without suspended 
spheres, and consider again the most general 
motion of dilatation. If no spheres are present, 
by suitable choice of the co-ordinate system we 
can express the velocity components u0 , v0 , w0 , in 
the arbitrari.!y-chosen point x, y, z in the domain 
G, by the equations 



(8) 
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where 

u0 = Ax, 
v0 = By, 
w0 = Cz, 

A= B + C = o. 

Now a sphere suspended at the point x., y. z., 
will affect this motion in a manner evident from 
the equation (6). Since we have assumed that 
the average distance between neighbouring spheres 
is very great compared with their radius, and 
consequently the additional velocity-components 
originating from all the suspended spheres to
gether are very small compared with u0 , v0 , Wo, 
we get for the velocity-components u, v, w in the 
liquid, taking into account the suspended spheres 
and neglecting terms of higher orders-
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where the summation is extended over all spheres 
in the domain G, and we put 

71• =y-y., 
,. = z - z •. 

x., y., z. are the co-ordinates of the centre of the 
sphere. Further, we conclude from the equa
tions (7) and (7a) that the presence of each of the 
spheres has a result (neglecting indefinitely small 
quantities of a higher order) (23) in an increase 
of the heat production per unit volume, and that 
the energy per unit volume transformed into heat 
in the domain G has the value 

W = 282k + n82k<I>, (23) 

or 

(23) 

where rf, denotes the fraction of the volume occu
pied by the spheres. 

From the equation (7b) the viscosity-coefficient 
can be calculated of the heterogeneous mixture of 
liquid and suspended spheres (hereafter termed 
briefly " mixture ") under discussion ; but we 
must bear in mind that A, B, C are not the values 
of the principal dilatations in the motion of the 
liquid defined by the equations (8), (23) ; we will call 
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the principal dilatations of the mixture A*, B*, 
C*. On the grounds of symmetry it follows that 
the principal directions of dilatation of the mix
ture are parallel to the directions of the principal 
dilatations A, B, C, and therefore to the co-ordi
nate axes. If we write the equations (8) in the 
form 

we get 

u• = Ax + .Eu., 
v =By+ .Ev., 
w = Cz + Ew., 

If we exclude from our discussion the immediate 
neighbourhood of the single spheres, we can omit 
the second and third terms of the expressions for 
u, v, w, and obtain when x = y = z = o :-

(9) 

where we put 

r. = ,Jx.2 + y/· + z.2 > o. 
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We extend the summation throughout the volume 
of a sphere K of very large radius R, whose centre 
lies at the origin of the co-ordinate system. If 

we assume further that the irregularly distributed 
spheres are now evenly distributed and introduce 
an integral in place of the summation, we obtain 

A* = A - n J K !:?x.dy.,dz., 

= A - nJuvX. ds 
r. . (27) 

where the last integration is to be extended over 
the surface of the sphere K. Having regard to 

(9) we find ' 

A• = A - ~ ~:n J x0
2(Ax0

2 + By0
3 + Cz0

2)ds 

= A - n(§Plln-)A = A(r - cp). 

By analogy 

We will put 

B* = B(r - cf,), 
C* = C(r - cf,). 

S*2 = A•2 + B*2 + c•2, 
then neglecting indefinitely small quantities of 
higher order, 
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We have found for the development of heat per 
unit of time and volume 

w• = 282k(r + t) 
Let us call the viscosity--coeffi.cient of the mixture 
k*, then 

W* = 23* 2k*. 

From the last three equations we obtain (neglecting 
indefinitely small quantities of higher order) 

k* = k(r + 2·5</,) (23) 

We reach, therefore, the result:-
If very small rigid spheres are suspended in a 

liquid, the coefficient of internal friction is thereby 
increased by a fraction which is equal to 2•5 times 
the total volume of the spheres suspended in a 
unit volume, provided that this total volume is 
very small. 

§ 3. ON THE VOLUME OF A DISSOLVED SUBSTANCE 

OF MOLECULAR VOLUME LARGE IN COMPARISON 

WITH THAT OF THE SOLVENT 

Consider a dilute solution of a substance which 
does not dissociate in the solution. Suppose that 
a molecule of the dissolved substance is large com
pared with a molecule of the solvent ; and can be 
thought of as a rigid sphere of radius P. We can 
then apply the result obtained in Paragraph 2. 
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If k* be the viscosity of the solution, k that of 
the pure solvent, then 

k* 
k = I + 2·5¢,, (23) 

where ,f, is the total volume of the molecules 
present in the solution per unit volume. 

We will calculate ,f, for a I per cent. aqueous 
sugar solution, According to the obsen1ations 
of Burkhard (Landolt and Bornstein Tables) 
k* /k = I·o245 (at 20° C.) for a I per cent. aqueous 
sugar solution ; therefore ¢, = 0•0245 for (approxi
mately) o·or gm. of sugar. A gram of sugar dis
solved in water has therefore the same effect on 
the viscosity as small suspended rigid spheres of 
total volume 0·98 c.c. (23) 

We must recollect here that r gm. of solid sugar 
has the volume o•6r c.c. We shall find the same 
value for the specific volumes of the sugar present 
in solution if the sugar solution is looked upon as 
a mixture of water and sugar in a dissolved form. 
The specific gravity of a I per cent. aqueous sugar 
solution (referred to water at the same tempera
ture) at r7·5° is r•oo388. We have then (neglect
ing the difference in the density of water at 4° 
and at r7·5°)-

I 

88 = 0'99 + O•OIS. 
I·003 

Therefore S = 0·6I. 
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While, therefore, the sugar solution behaves, as 
to its density, like a mixture of water and solid 
sugar, the effect on the viscosity is one and one-half 
times greater than would have resulted from the 
suspension of an equal mass of sugar. It appears 
to me that this result can hardly be explained in 
the light of the molecular theory, in any other 
manner than by assuming that the sugar mole
cules present in solution limit the mobility of the 
water immediately adjacent, so that a quantity 
of water, whose volume is approximately one
half (23) the volume of the sugar-molecule, is bound 
on to the sugar-molecule. 

We can say, therefore, that a dissolved sugar 
molecule (or the molecule together with the water 
held bound by it respectively) behaves in hydro
dynamicrelationsasa sphere of volumeo·98. 342/N 
c.c. (23), where342 is the molecular weight of sugar 
and N the number of actual molecules in a gram
molecule. 

§ 4• ON THE DIFFUSION OF AN UNDISSOCIATED 

SUBSTANCE IN SOLUTION IN A LIQUID 

Consider such a solution as was dealt with in 
Paragraph 3. If a force K acts on the molecule, 
which we will imagine as a sphere of radius P, 
the molecule will move with a velocity w which 
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1s determined by P and the viscosity k of the 
solvent. 

That is, the equation holds :-(*) 

k 
(r) w = 61rkP (6) 

We will use this relation for the calculation of the 
diffusion-coefficient of an undissociated solution. 
If p is the osmotic pressure of the dissolved sub
stance, which is looked upon as the only force 
producing motion in the dilute solution under con
sideration, then the force exerted in the direction 
of the X-axis on the dissolved substance per unit 
volume of the solution= - dp/dx. If there are 
p grams in a unit volume and m is the molecular 
weight of the dissolved substance, N the number 
of actual molecules in a gram-molecule, then 
(p/m)N is the number of (actual) molecules in a 
unit of volume, and the force acting on a molecule 
as a result of the fall in concentration will be 

(2) 
m ?JP K----- pN ?Jx· 

If the solution is sufficiently dilute, the osmotic 
pressure is given by the equation 

R 
(3) p = -,,:,,PT, 

(•) G. Kirchhoff, " Lectures on Mechanics," Leet. 
26 (22). 
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where T is the absolute temperature and 
R = 8·3r. ro7• From the equations (r), (2), and 
(3) we obtain for the velocity of movement of the 
dissolved substance 

RT I "i)p 
w = - &rrk NP "i)x" 

Finally, the weight of substance passing per unit 
of time across unit area in the direction of the 
X-axis will be 

RT I "i)p 
wp = - &rrk . NP "i)x· 

We obtain therefore for the diffusion coefficient 
D-

Accordingly, we can calculate from the diffusion
coefficient and the coefficient of viscosity of the 
solvent, the value of the product of the number N 
of actual molecules in a gram-molecule and of the 
hydrodynarnically-effective radius P of the mole
cule. 

In this calculation osmotic pressure is treated 
as a force acting on the individual molecules, 
which evidently does not correspond with the 
conceptions of the kinetic-molecular theory, since, 
according to the latter, the osmotic pressure in 
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the case under discussion must be thought of as 
a virtual force only. However, this difficulty 
vanishes if we reflect that (dynamic) equilibrium 
with the (virtual) osmotic forces, which correspond 
to the differences in concentration of the solution, 
can be established by the aid of a numerically 
equal force acting on the single molecules in the 
opposite direction ; as can easily be established 
following thermodynamic methods. 

Equilibrium can be obtained with the osmotic 

force acting on unit mass,-~ ~P, by the force - Px 
p vX . 

(applied to the individual solute molecules) if 

I llp ----Px=o. 
p IJX 

If we imagine, therefore, two mutually eliminat
ing systems of forces Px and - Px applied to the 
dissolved substance (per unit mass), then -Px 
establishes equilibrium with the osmotic pressure 
and only the force Px, numerically equal to the 
osmotic pressure, remains over as cause of motion. 
Thus the difficulty mentioned is overcome.(•) 

(•) A detailed statement of this train of thought will be 
found in Ann. d. Phys., 17, 1905, p. 549. 
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§ 5. DETERMINATION OF MOLECULAR DIMENSIONS 

WITH THE HELP OF THE RELATIONS ALREADY 

OBTAINED 

We found in Paragraph 3 

k• 4 k = I + 2·5ef, = I + 2•5n . 3 Pa (23) 

where n is the nwnber of solute molecules per unit 
volume and P the hydrodynamically-effective 
radius of the molecule. If we bear in mind that 

N P -=-n m 

where p is the mass of the dissolved substance 
present in writ volwne and m is its molecular 
weight, we obtain 

NP3 = I~;(k: - r). 
On the other hand, we found in § 4 

RT I 
NP= 6-rrkD' 

These two equations put us in the position to 
calculate each of the quantities P and N, of which 
N must show itself to be independent of the nature 
of the solvent, of the solute and of the tempera
ture, if our theory is to correspond with the facts. 
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We will carry out the calculation for an aqueous 
sugar solution. Firstly, it follows from the data 
given above for the viscosity of sugar solution at 
20° C. 

NP8 = Bo . (23) 

According to the researches of Graham (calcu
lated out by Stephan), the diffusion-coefficient of 
sugar in water at 9·5° is 0·384, if the day is taken 
as unit of time. The viscosity of water at 9·5° is 
0·0135. We will insert these data in our formula 
for the diffusion-coefficient, although they were 
obtained with IO per cent. solutions, and it is not 
to be expected that our formula will be precisely 
valid at so high a concentration. We get 

NP = 2·08 . 1018• 

It follows from the values found for NP3 and NP, 
if we ignore the difference in P at 9·5° and 20°, 
that 

P = 6·2 . ro-8 cm. 
N = 3·3 . ro2a. 

. (23) 

The value found for N agrees satisfactorily, in 
order of magnitude, with the values obtained by 
other methods for this quantity. 

Berne, 30 April, 1905. 

(Received, 19 August, 1905.) 
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Supplement 

In the new edition of Landolt and Bornstein's 
" Physical-Chemical Tables " will be found very 
useful data for the calculation of the size of the 
sugar molecule, and the number N of the actual 
molecules in a gram-molecule. Thovert found 
(Table, p. 372) for the diffusion-coefficient of sugar 
in water at 18·5° C. and the concentration 0·005 
mol./litre the value 0·33 cm. 2/day. From a table 
(p. 81), with the results of observations made by 
Hosking, we find by interpolation that in dilute 
sugar solutions an increase in the sugar-content 
of r per cent. at 18•5° C. corresponds to an increase 
of the viscosity of 0·00025. Utilizing these data, 
we find 

and 
P = 0·49 . ro- 0 nun. 

N = 6·56. ro23• 

Berne, January, 1906. 



IV 

THEORETICAL OBSERVATIONS ON THE 
BROWNIAN MOTION 

(From Zeit. f. Elektrochemie, 13, r907, pp. 4r-42) 

IN connection with the researches of Sved
berg, (29) recently published in the Zeit. J. 

Elektrochemie, on the motion of small suspended 
particles, it appears to me desirable to point out 
some properties of this motion indicated by the 
molecular theory of heat. I hope I may be able 
by the following to facilitate for physicists who 
handle the subject experimentally the interpreta
tion of their observations as well as the com
parison of the latter with the theory. 

I. From the molecular theory of heat we can 
calculate the mean value of the instantaneous 
velocity which a particle may have at the absolute 
temperature T. Thus the kinetic energy of the 
motion of the centre of gravity of a particle is 
independent of the size and nature of the particle 
and independent of the nature of its environment, 

63 
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e.g. of the liquid in which the particle is suspended : 
this kinetic energy is equal to that of a monatomic 

gas molecule. The mean velocity ,J v2 of the par
ticle of mass m is therefore determined by the 
equation 

v2 3RT 
m-=--

2 2 N' 

where R = 8·3. 10 7, T is the absolute tempera
ture, and N the number of the actual molecules 
in a gram-molecule (approximately 6. 1018, (19)). 

We will calculate the value of ,J v2, as well as 
other quantities discussed in the following, for 
particles in colloidal platinum solutions such as 
Svedberg has investigated. For these particles 
we have to put m = 2·5. 10-16, so that we get 
for T =-= 292 

- /3RT I ,J vz = 'V mN = 8·6 cm. sec. 

2. We will now examine whether there is any 
prospect of actually observing this enormous velo
city of a suspended particle. 

If we knew nothing of the molecular theory of 
heat, we should expect the following to happen. 
Suppose that we impart to a particle suspended 
in a liquid a certain velocity by an impulsive force 
applied to it from without ; then this velocity 
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will die away rapidly on account of the friction 
of the liquid. We will ignore the inertia of the 
latter and note that the resistance that the par
ticle moving with the velocity v experiences is 
61rkPv,(6) where k is the viscosity of the liquid 
and P the radius of the particle. We obtain the 
equation 

dv 
m dt = - 61rkPv. 

From this it follows that for the time 0 in which 
the velocity falls to a tenth of its original value-

9= m 
0·434 . 61rkP" 

For the platinum particles (in water), mentioned 
before, we have to put P = 2·5. ro- 8 cm. and 
k = o·or, so that we get(•) 

0 = 3·3 . ro- 7 seconds. 

If we turn back again to the molecular theory 
of heat, we have to modify this conception. In 
fact, we must now also assume that the particle 
nearly completely loses its original velocity in the 
very short time 0 through friction. But, at the 
same time, we must assume that the particle gets 

(•) For particles of "microscopic " size 6 is appreciably 
greater, since 6 is proportional to the square of the radius 
of the particles, other conditions being the same. 
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new impulses to movement during this time by 
some process that is the inverse of viscosity, so 
that it retains a velocity which on an average is 

equal to .J v2• But since we must imagine that 
direction and magnitude of these impulses are 
(approximately) independent of the original direc
tion of motion and velocity of the particle, we 
must conclude that the velocity and direction of 
motion of the particle will be already very greatly 
altered in the extraordinary short time 0, and, 
indeed, in a totally irregular manner. 

It is therefore impossible-at least for ultra-

microscopic particles-to ascertain .J~ by obser
vation. 

3. If we confine ourselves to the investigation 
of the lengths of path, or, more precisely ex
pressed, the changes in position in times -r, which 
are substantially greater than 0, then from the 
molecular theory of heat 

,- - /RT I 
,_,, AX2 = ✓ -r,y N 3TTkP' 

if the change in the X-co-ordinate of the particle 
that has taken place in the time -r is indicated by 
AX. (42) 

For the mean velocity in the interval of time -r 

we can define the quantity 
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,j,\x2 _ W 

-T- - ,.;-;. 

where for brevity we put 

✓RT I 
N JTTkP = w. 

But this mean velocity is the greater, the smaller 
T is ; so long as T is great compared with 0, the 
velocity does not approach any limiting value as 
T decreases. 

Since an observer operating with definite means 
of observation in a definite manner can never 
perceive the actual path traversed in an arbi
trarily small time, a certain mean velocity will 
always appear to him as an instantaneous velocity. 
But it is clear that the velocity ascertained thus 
corresponds to no objective property of the motion 
under investigation-at least, if the theory corre
sponds to the facts. 

Berne, January, 1907. 

(Received, 22 January.) 



V 

THE ELEMENTARY THEORY OF THE 
BROWNIAN (*) MOTION 

(From the Zeit. fiir Elektrochemie, 14, 1908, 

pp. 235-239) 

PROF. R. LORENTZ has called to my 
attention, in a verbal communication, that 

an elementary theory of the Brownian motion 
would be welcomed by a number of chemists. 
Acting on this invitation, I present in the following 
a simple theory of this phenomenon. The train 
of thought conveyed is briefly as follows. 

First we investigate how the process of diffusion 
in an undissociated dilute solution depends on the 
distribution of osmotic pressure in the solution 
and on the mobility of the dissolved substance in 
the solvent. We thus obtain an expression for 
the diffusion-coefficient in the case when a mole-

(•) We mean by Brownian motion that irregular move
ment which small particles of microscopic size carry out 
when suspended in a liquid. Refer e.g. to Th. Svedberg, 
Zeit. /. Flektrochom., 12, 47 and 51, 1906. 
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cu1e of the dissolved substance is great compared 
with a molecu1e of the solvent, in which expression 
no quantities dependent on the nature of the solu
tion appear except the viscosity of the solvent 
and the diameter of the solute molecu1es. 

After this we relate the process of diffusion to 
the irregular motions of the solute molecu1es ; 
and find how the average magnitude of these ' 
irregular motions of the solute molecu1es can 
be calcu1ated from the diffusion-coefficient, and 
therefore, with the help of the resu1ts indicated 
above, from the viscosity of the solvent and the 
size of the solute molecu1es. The resu1t so ob
tained holds not only for actual dissolved mole
cu1es, but also for any small particles suspended 
in the liquid. 

§ I. DIFFUSION AND OSMOTIC PRESSURE 

Suppose the cylindrical vessel Z (Fig. 93) filled 
with a dilute solution. The interior of Z is divided 
by a movable piston k, which forms a semi
permeable partition, into two parts A and B. If 
the concentration of the solution in A is greater 
than that in B, an exterior force, directed towards 
the left, must be applied to the piston in order to 
retain it in equilibrium ; this force is in fact equal 
to the difference of the two osmotic pressures 
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which the dissolved substance exerts on the piston 
on the left and on the right side respectively. If 
this external force is not allowed to act on the 
piston, it will move under the influence of the 
greater osmotic pressure of the solution present in 
A so far to the right that the concentrations in 
A and B no longer differ. From this considera
tion it follows that it is the forces of osmotic 
pressure that bring about the equalization of the 

z 
/ 

A- -B 
. 
I 

: 
I 

k 
FIG. 93. 

concentrations in diffusion ; for we can prevent 
diffusion, that is, an equalization of concentra
tion, by balancing the osmotic differences, which 
correspond to the differences of concentration, 
by external forces acting on semi-permeable par
titions. It has long been realized that the os
motic pressure can be looked upon as the driving 
force in diffusion phenomena. It is familiar that 
Nernst (32) made this the foundation of his investi-
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gations into the connection between ionic mobility, 
diffusion-coefficient, and E.M.F. in concentration 
cells. 

Suppose a diffusion process is taking place 
within the cylinder Z (Fig. 94), of unit area of 
cross-section, in the direction of the axis of the 
cylinder. We will investigate first the osmotic 
forces given rise to by the motion--0.ue to di£-

z pp' 

- -
T th. X , 

EE 
Fm. 94. 

fusion-of the dissolved substance contained be
tween the planes E and E' at an indefinitely short 
distance from one another. The osmotic pressure 
force p acts on the surface E of the layer from 
left to right, the force P' acts on the surface E' 
from right to left ; the resultant of the pressure 
forces is therefore 

p-p'. 
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We will now call x the distance of the surface 
E from the left end of the vessel, x + dx the dis
tance of the surface E' from that end ; then dx 
is the volume of the layer of liquid in question. 
Since p - p' is the osmotic pressure which acts 
on the volume dx of the dissolved substance, 
then-

p - P' P' - P dp K = -----,:--"- = - -- = - -
dx dx dx 

is the osmotic pressure, which acts on the dissolved 
substance contained in unit volume. Since, 
further, the osmotic pressure is given by the 
equation 

P=Rv (2) 

where R is the constant of the gas-equation 
(8·31 . ro 7

}, T the absolute temperature, and v 

the number of gram-molecules of solute per unit 
volume, we get, finally, for the osmotic force K 
acting on the dissolved substance per unit volume 
the expression 

(r) dv 
K= -RT dx· 

Now, in order to be able to calculate the motions, 
due to diffusion, to which these active forces can 
give rise, we must know how great a resistance 
the solvent offers to a movement of the dissolved 
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substance. If an active force K acts on a mole
cule, this will impart to the molecule a propor
tional velocity v, according to the equation 

k 
V=-~• 

where !tt is a constant, which we will call the 
frictional resistance of the molecule. This fric
tional resistance cannot in general be deduced 
theoretically. But when the dissolved molecule 
can be looked upon approximately as a sphere, 
which is large compared with a molecule of the 
solvent, we may ascertain the frictional resistance 
of the solute molecule according to the methods 
of ordinary hydrodynamics, which do not take 
account of the molecular constitution of the liquid. 
Within the limits ·of valid application of ordinary 
hydrodynamics, for a sphere moving in a liquid 
the equation (2) holds, where we put 

(3) !tt = 67TTJp. • (6) 

Here 1J denotes the coefficient of viscosity of the 
liquid, p the radius of the sphere. If it can be 
assumed that the molecules of a solute are approxi
mately spherical and are large compared with the 
molecules of the solvent, the equation (3) may be 
applied to the single solute molecules. 

We can now estimate the mass of a solute 
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diffusing across a cross-section of the cylinder per 
unit of time. There are v gram-molecules present 
in the unit volume, therefore vN actual mole
cules, where N signifies the number of actual 
molecules in a gram-molecule. If a force K is 
distributed over these vN molecules contained in 
the unit volume, it will impart to these a vN-times 
smaller velocity than it is able to impart to a 
single molecule, if acting on the latter alone. 
Reverting to equation (2) : for the velocity v, 
which the force K is able to impart to the vN 
molecules, we obtain the expression 

I K 
V = vN° m· 

In the case under consideration, K is equal to 
the osmotic force previously calculated, which acts 
on the vN molecules in a unit volume ; so that we 
obtain from the above, using equation (r), 

RT I dv 
(4) vv = - N . /Ji . dx· 

On the left-hand side we have the product of 
the concentration v of the solute, and of the 
velocity, with which the latter substance will be 
moved forward by the process. This product 
therefore represents the mass of the dissolved 
substance (in gram-molecules) which is carried 
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per second by diffusion through unit area of cross
section. The multiplier of dv/dx on the right
hand side of this equation is therefore (*) nothing 
else but the coefficient of diffusion D of the solu-
tion in question. 

(S) 

We have, therefore, in general 

RT I 
D = N. !ft' 

and, in the case when the diffusing molecules can 
be looked upon as spherical, and large compared 
to the molecules of the solvent, introducing 
equation (3), 

(Sa) (33) 

In the last case, therefore, the coefficient of 
diffusion depends upon no other constants charac
teristic of the substance in question but the 
viscosity T/ of the solvent and the radius p of the 
molecule. (t) 

("') It is to be noted that the numerical value of the 
coefficient of diffusion is independent of the unit taken 
for concentration. 

(t) This equation enables the radius of large molecules 
to be deduced approximately from the coefficient of 
diffusion, when the latter is known ; it is then 

RT I 
P = 6rrN-;, · Y5 

where R = 8·31 . 107, N = G . ro•3 • Of course, a degree 
of uncertainty of some 50 per cent. is involved in the 
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§ 2. DIFFUSION AND IRREGULAR MOTION OF THE 
MOLECULES 

The molecular theory of heat affords a second 
point of view, from which the process of diffusion 
can be considered. The process of irregular 
motion which we have to conceive of as the heat
content of a substance will operate in such a 
manner that the single molecules of a liquid will 
alter their positions in the most irregular manner 
thinkable. This wandering about of the mole
cules of the solute-fortuitous to a certain extent
in a solution will have as a result that an originally 
non-uniform distribution of concentration of the 
solute will gradually give place to a uniform one. 

We will now examine this process somewhat 
more narrowly, whilst we confine ourselves again 
to the case considered in § I, fixing our attention 
on the diffusion in one direction only, namely, in 
the direction of the axis (x-axis) of the cylinder Z. 

We will imagine that we know the x-co-ordinates 
of all solute molecules at a certain time t, and also 
at the time t + T, where T indicates an interval of 
time so short that the relation of the concentra
tions of our solution alters only very slightly 
during this interval. During this time T the 

value of N. (34) This relation should be of importance for 
the determination of the approximate dimensions of the 
molecules in colloidal solutions. 
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x-co-ordinates of the first solute molecule will 
have changed, through the irregular thermal 
motion, by a certain amount .d1 , that of the second 
molecule by .d 2, etc. These displacements, Ll 1, 

Ll 1, etc., will be partly negative (towards the 
left), partly positive (towards the right). The 
magnitude of this displacement will, further, be 

FIG. 95. 

different for the individual molecules. But since, 
as before, we presuppose a dilute solution, this 
displacement is controlled only by the surrounding 
solvent, and not to a sensible extent by the rest 
of the solute molecules; hence, in portions of the 
solution of different concentrations these displace
ments .d will be on an average of equal magnitude, 
just as frequently positive as negative. 
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We will now see how large the mass of the sub
stance turns out to be, which diffuses in the time 
-r through unit area of cross-section of a solution, 
when the magnitude is known of the displacement 
LI in the direction of the axis of the cylinder, which 
the solute molecules experience on an average. 
To simplify this investigation, we will make our 
calculations as if all the molecules had experienced 
an equally great displacement LI, actually one-half 
of the molecules having the displacement + LI 
(i.e. to the right), and the other half the displace
ment - LI (i.e. to the left). We will, therefore, 
replace the individual displacements Ll 1, Ll 2, etc., 
by their mean value LI. 

With these simplified assumptions, there will 
be able to pass from left to right across a plane E 
of our cylinder (Fig. 95) during the time -r, only 
such solute molecules as were situated before the 
period of the time -r on the left of E. and at a 
distance from E which is less than LI. These 
molecules are all situated between the planes Q1 

and E (Fig. 95). But since only half of these 
molecules experience the displacement + LI, only 
half of them will also pass across the plane E. 
The half of the solute substance situated between 
Q and E is, however, when expressed in gram
molecules, equal to 
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I 
- v1LI 2 , 

where v1 is the mean concentration in the volume 
Q1E, i.e. the concentration in the middle layer M 1 . 

Since the cross-section is unity, L1 is the volume 
included between Q1 and E, which, when multi
plied by the mean concentration, gives the amount 
of the solute in gram-molecules contained in this 
volume. 

By similar reasoning, it follows that the mass 
of the solute which passes across E from right to 
left in the time ,. is equal to 

where v2 denotes the concentration in the middle 
layer M 2 • The quantity of substance which 
diffuses across from left to right during the time 
,. is then obviously equal to the difference of 
these two expressions, therefore equal to 

(6) 

v1 and v2 are the concentrations in two cross
sections which are separated by the very small 
distance LI. Again, if we denote by x the distance 
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of a cross-section from the left cylinder-end, 
according to the definition of a differential, 

thence 

Vz - v1 dv 
-LI-= dx' 

so that the quantity of the substance which diffuses 
across E during time -r is also equal to 

(6a) 

The quantity of the substance (expressed in 
gram-molecules) which diffuses across E in a unit 
of time is therefore-

I .1 2 dv 
- 2---;;:- dx· 

We have thereby obtained a second value for 
the coefficient of diffusion D. It is 

I JI 
(7) D = - -, 

2 T 

where J signifies the length of path described on 
an average(•) by a solute molecule during the time 
-r in the direction of the x-axis. 

(•) More accurately, A should be put equal to the 
square root of the mean of the squares of the individual 
displacements A 1 •, A1

1 , etc. We should therefore write, 

with greater accuracy, ,JA 1 in place of A. 
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Solving the equation (7) for Ll, we obtain 

D =..J2D.j;. 

§ 3. MOVEMENT OF THE SINGLE MOLECULES : 

BROWNIAN MOTION 

If in the equations (5) and (7) we put the values 
given for the coefficients of diffusion equal to one 
another, we obtain, solving for Ll, 

(8) LI ✓2RT -= NSJt.j-r. 

We see from this formula that the path described 
by a molecule on an average is not proportional 
to the time,(*) but proportional to the square root 
of the time. This follows from the fact that the 
paths described during two consecutive unit time
intervals are not always to be added, but just as 
frequently have to be subtracted. We can cal
culate the displacement of the molecule result

ing on an average from the irregular molecular 
motion : by means of equation (7a) from the 
coefficient of diffusion, by means of equation (8) 
from the resistance which is offered to a forced 
motion of velocity v = r. 

(•) Compare A. Einstein, Z.f. Elektroch., 13 (1907); and 
pp. 63-67 of this volume. 



82 THEORY OF BROWNIAN MOVEMENT 

In the case when the solute molecule is large 
compared to the molecule of the solvent, and is 
spherical, we can put the value of R given in 
equation (3) in equation (8), so that we obtain 

(8a) ✓RT I -
A = N- 37TTJP. ,./T 

This equation enables the mean displacement 
A (*) to be calculated from the temperature T, the 
viscosity of the solute TJ and the radius p of the 
molecule. 

According to the molecular kinetic conception, 
there exists no essential difference between a 
solute molecule and a suspended particle. We will 
therefore consider equation (8a) as also valid for 
the case where we deal with any kind of small 
suspended spherical particles. 

We will calculate the length of path A which a 
particle of rµ, diameter describes on an average 
in one second in a certain direction in water at 
room temperature. We have to put 

R = 8·3r . ro 7• 

T = 290. 

N = 6·ro23 • 

'TJ = o·or35. 
p = 0·5 . ro-4• 

T = I. 

(•) More accurately the square root of the mean value 
of a•. 
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We obtain 

LI = o·B x ro- 4 cm. = 0·8,-,.. 

This number is subject to an error of some 
± 25 per cent. on account of the limited degree 
of accuracy with which N is known. (34) 

It is of interest to compare the mean individual 
motions of microscopic particles calculated in this 
manner, with those of solute molecules and of 
ions respectively. For an undissociated dissolved 
substance, whose coefficient of diffusion is known, 
we can calculate LI from the equation (7a). For 
sugar at room temperature 

0·33 D=-~-~ 
24. 60. 60' 

Hence we calculate from equation (7a) for -r = I 

LI = 27·6µ.. 

One can deduce from the number N and the 
molecular volume of solid sugar that the diameter 
of a molecule of sugar is of the order of magnitude 
of Iµ.µ., therefore about a thousand times smaller 
than the diameter of the particle considered above. 
From the equation (8a) we must therefore expect 

that LI for sugar will be about ✓ rooo times 
greater than for the particles of rµ. diameter. 
This is actually approximately correct, as can be 
seen. 
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From the equation (8) we can calculate the 
value of l for ions from their velocity of migration. 
l is equal to the quantity of electricity in coulombs, 
which passes across a square centimeter in one 
second for a concentration v = I of the ion in 
question, and for a potential gradient of I volt 
per centimeter. In the case we are considering, 
the velocity v of the ionic motion (in cm./sec.) is 
evidently determined by the equation 

l = V. 96000. 

Since, further, I volt is equivalent to 108 elec
tromagnetic units, and the charge of a (univalent) 
ion is equal to 9600/N electromagnetic units, the 
force k acting on one ion in the case considered is 

k - 108 • 9600 
- N . 

If we put in equation (2) this value of k, and the 
value of v obtained in the former equation, 

we get 

l 
v=--

96000' 

,u _ k _ 108 • 9600 . 96000 
;.,~ - -,;- lN ' 

This expression also holds, with the usual 
definition of l, for polyvalent ions. Introducing 
this value for R in equation (8), we get 

L1 = 4·25. 10-r...;tr.,.. 
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The formula gives for room temperature, and 
-r=I:-

Ion 

H 
K . . . . . 
Diisoamyl-ammonium, C10HuN 

I. 

300 
65 
24 



NOTES 

(1) p. I .-The so-called " Brownian move
ment " was described for the first time in the 
year 1828 by the botanist Robert Brown.1 In 
investigating the pollen of different plants he 
observed that this became dispersed in water in 
a great number of small particles, which were 
perceived to be in uninterrupted and irregular 
" swanning " motion. As the phenomenon re
peated itself with all possible kinds of organic 
substances, he believed that he had found in 
these particles the "primitive molecule" of 
living matter. He found later that the particles 
of every kind of inorganic substance presented the 
same phenomenon, so that he drew the conclusion 
that all matter was built up of " primitive mole
cules." 

Of the authors who canied out investigations on 
the Brownian movement before Einstein, we will 
mention the following : Regnault (1858) thought 
that the motion was caused by irregular heating 

1 Phil. Mag. (4), 1828, p. 161 ; Ann. d. Phys. u. Chem., 
14, 294 (1828). 

86 
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by incident light. Chr. Weiner (1863) concluded 
that it could not have been brought about by 
forces exerted by the particles on one another, nor 
by temperature differences, nor by evaporation. 
Cantoni and Oehl (1865) found that the movement 
persisted unchanged for a whole year when the 
liquid was sealed up between two cover-glasses. 
S. Exner (1867) found that the movement is most 
rapid with the smallest particles, and is increased 
by light and heat rays. The idea of Jevons (1870) 
that the phenomenon is caused by electrical forces 
was denied by Dancer (1870), who showed that 
electrical forces had no influence on the motion. 
In 1877 Delsaux expressed for the first time the 
now generally-accepted idea that the Brownian 
movement has its origin in the impacts of the 
molecules of the liquid on the particles. This 
point of view was also expressed by Carbonelle. 

The first precise investigations we owe to Gouy, 1 

who found that the motion is the more lively the 
smaller the viscosity of the liquid is (as follows 
also from the theory of Einstein) ; that very 
considerable changes of the intensity of illumina
tion had no influence, nor had an extraordinarily 
strong electromagnetic field. He also ascribed 
the motion to the effect qf the thermal molecular 
motions of the liquid, and found by measurement 

1 M. Gouy, Journ. de Phys. (2), 7, 561, 1888. 
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the velocity of different particles to be about a 
hundred-millionth of the molecular velocity. 

Ramsay in r892 disputed the possibility of an 
electrical origin of the Brownian movement, and 
affirmed. that it must give rise to a pressure, by 
which certain departures from the established 
laws of osmotic pressure could be explained. 
Maede Bache, in r894, also accepted Gouy's point 
of view; while Quincke, in r898, looked upon the 
motion as a result of temperature differences in 
the liquid. 

Besides Gouy's work there is only one other 
investigation of a precise nature before Einstein's 
treatment of the problem : that carried out by 
F. M. Exner,1 who challenged Quincke's assertion, 
and established that the velocity of the movement 
decreases with increase of size of the particles and 
increases with rise of temperature. He expressed 
also the view that the kinetic energy of the 
particle must be equal to that of a gas molecule. 
Since, however, he calculated the former from 
the observed " velocity " of the particle, which is 
actually much smaller than the true velocity, his 
results did not agree. It first became possible to 
verify this relation by means of measurements of 
the Brownian motion made according to Einstein's 
method. 

1 F. M. Exner, Ann. d. Phys., 2, 843, 1900. 
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(2) p. 2.-Van't Hoff's law. 
(3) p. 5.-The formula for the entropy S of 

a system depending (in the manner implied in 
statistical mechanics) upon the variables of con
dition Pv p2 • • • Pn, used in the following treat
ment, is derived by Einstein in the paper quoted,1 
on the foundations of statistical mechanics. The 
underlying idea is roughly as follows :-

It is first shown that for the case when the 
system under consideration stands in statistical 
equilibrium with a second of the same tempera
ture, but of indefinitely large energy content, the 
probability for a condition of the system in ques
tion in which the parameters lie between the 
values p1 ••• p1 + dPv Pa . . . Pa + dP2, . . ., 
Pn • • •Pn + dpn, will be given by the expression 

dW = const. e-•11Edp1 • • • dPn· 

Here E denotes the energy of the system cor
responding to the statistical states p1 •.• Pn, 
and 2h = N /RT. This expression corresponds to 
the "canonic " distribution in Gibbs' statistical 
mechanics. The equation can also be written 

(1) hW = eC - ohEdpl ... dp"' 

where the constant c is determined by the 
condition 

Je' -•hEdp1 - dpn = I, 

1 A. Einstein, Ann. d. Phys., 11, 170, 1903. 
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Now let the system be dependent on a definite 
parameter,\ which we can control arbitrarily from 
without, as well as on the parameter p. If we 
carry out an indefinitely small alteration in our 
system by varying this parameter ,\ : whilst before 
this change equation (2) holds, after the change 

{3) J el'+ de) - 2(h + dh) CE + :I~dA) dp1 . . . dPn = I ; 

from (2) and (3) it follows 

J ~E 
(de - 2Edh - 2hl: ()A d,\)ee - 2"EdP1 . . . dpn = o. 

Since in the process the energy E undergoes only 
an indefinitely small change, it follows that 

~E 
(4) de - 2Edh - 2hl: ~,\ d,\ = o. 

But since 

(s) dE = 1:~f d,\ + dQ, 

as is easily seen, where dQ indicates the quantity 
of heat absorbed during the process, there follows 
from (4) and (S) 

2h. dQ = d(2hE - e); 

or multiplying by 2k 

1 = d(f- 2xe) = dS. 
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The expression introduced in the text for the 
entropy follows immediately from this in con
junction with (2). 

The definition of entropy given here is in sub
stantial agreement with the entropy formula of 
Boltzmann, when taken in connection with the 
expression (r), which has also been already given 
by Boltzmann as a generalization of Maxwell's 
law of distribution of velocities. 1 

(4) p. 8.-From expression (r) it follows that 

dB= dW. e-e 

and since from (2) 

SdB =re= B, 
it follows that 

dw
_dB 
- lf• 

(5) p. ro.-From the relation B = J . V*" there 
follows 

E R E R 
S = T + N log B = T + N (log J + 1t log v•), 

thence, since J is independent of the x-co-ordinates 

R n J1 
R J1 

R J' R i'lSx 8S=N V•Sv• = 
0 

NvSdx = 
0 

NvdSx = 
0 

Nv~dx. 

1 Viele, amongst others, M. v. Smoluchowski : the 
limits of validity of the second law of thermodynamics. 
Lectures on "The Kinetic Theory of Matter and Elec
tricity," Leipzig and Berlin, 1914. 
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We obtain by partial integration from the last 
part of this expression, since the variation S 
vanishes at the boundaries of the domain, 

SS = - J' RN ~ Sxdx. 
D ~X 

The expression K v - ~ can also be deduced 

directly without this calculation, from the existence 
of a force of osmotic pressure which was estab
lished at the end of § 2, equilibriwn with which 
must be maintained by the force K. 

(6) p. II.-This expression for the resistance 
experienced by a sphere in a uniform movement 

. of translation through a viscous liquid was first 
deduced by Stokes hydrodynamically, with the 
asswnption that the liquid adheres completely to 
the surface of the sphere and its velocity becomes 
vanishingly small : so that the velocity of motion 
does not exceed a certain value. 

There is no doubt that when the above condi
tions are fulfilled Stokes' formula really gives the 
motion of the sphere accurately, but it is a ques
tion whether the conditions are really fulfilled in 
the case of the Brownian motion of very small 
spherical particles. 

Then, on account of its derivation, the formula 
is only valid for the case when the hydrodynamic 
equations still hold, which from the Atomic point 
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of view can only approximately be the case so 
long as the radii of the spheres are large compared 
to the free paths of the liquid molecules. This 
condition is actually fulfilled by the particles of 
visible size in liquids, but not in gases, so that it 
is necessary in the latter case to apply certain 
corrections to Stokes' formula, which can be 
derived by consideration of the kinetics of gases. 
The first correction of this type was given by 
E. Cunningham 1 for the case when P is compar
able with the free path of the gas molecule. It 
appears that the expression for the velocity of the 
particle must be multiplied by the factor 

1 +A. l/P, 
where A is a constant which can have values 
between 0·815 and 1·63, according as to whether 
all impacts of the molecules against the particles 
are elastic or inelastic in nature. According to 
F. Zerner, however, these limits must be corrected 
to 1·40 and 1·575.11 

Experimental tests of the law of resistance in 
gases have been carried out by different investiga
tors: by M. Knudsen and S. Weber 3 by variation 
of the gas-pressure whilst employing a fixed size 
of sphere, and by L. W. McKeehan 4 also for 

1 E. Cunningham, P1'oc. Roy. Soc. (A), 83, 357. 
• F. Zerner, Phys. Zeil., 20, 546, 1919. 
1 Knudsen and Weber, Ann. d. Phys., 86, 981, 1911. 
• McKeehan, Phys. Zeit., 12, 707, 19n. 
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different sized spheres. They obtained the fol
lowing empirical formula for the correction-factor 
A as a function of the quantity P/l :-

p 
A = 0·68 + 0·35e-l-86l" 

This formula also holds for the case when the 
radius of the sphere is small compared with the 
free path. The researches of E. Meyer and 
W. Gerlach,1 and of J. Parankiewicz 2 are in 
agreement with this, whilst J. Roux 3 obtained 
values between 1·23 and 1·64. That there can 
be no agreement with Cunningham's law is also 
evident from the researches of R. Furth 4 on the 
determination of mobility from the Brownian 
movement. 

It appears, further, that it might well be 
assumed that the velocities of the particles in
volved in the Brownian movement remain below 
the limits for which the Stokes formula is valid. 
It can be taken, from an investigation of H. D. 
A"llold, 6 that the Stokes formula holds below a 

1 E. Meyer and W. Gerlach, Elster-Geitel Festsc/irift, 
Vieweg, pp. 1961 etc. 

2 J. Parankiewicz, Phys. Zeit., 19, 280, 1918. 
• J. Roux, Ann. de Chim. et Phys., viii., 29, 69, 1913. 
• R. Furth, Ann. d. Phys., 60, 77, 1919; 63, 521, 

1920. 

• Arnold, Phil. Mag., 22, 755, 1911. 
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velocity V, which satisfies the inequality condition 

PaV 
-k-<0·2, 

where a indicates the specific gravity of the liquid. 
As is shown by an approximate calculation, it is, 
in general, scarcely to be expected that the veloci
ties resulting from the Brownian motion could 
reach these upper limits. 

Finally, it must be borne in mind that the 
Stokes formula is deduced for constant motions 
of translation and established experimentally for 
these conditions ; so that it is not impossible that 
considerable divergencies may occur with ac
celerated motions. For certain special cases of 
accelerated motion, the form of the law of resist
ance has also been determined theoretically, e.g. 
for the case of small pendulum vibrations; and 
can also be established experimentally in a satis
factory manner. It is then a question whether 
it is permissible to apply the Stokes law to the 
Brownian motion, which in reality exhibits no 
regular translation, but has an irregular character. 
Again, if the formula cannot be applied with cer
tainty to the single zig-zags of the Brownian 
motion, it can be still assumed that, on account of 
the irregular character of the motion, the depar
tures from the Stokes law cancel out on an average. 
Einstein's deduction given here corresponds to 
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this thought: in which there is assumed to be 
a statistical equilibrium between the process of 
diffusion and a fictitious constant force K. 

In addition, the Stokes law has been proved 
for accelerated motions of a regular character at 
high frequencies in gases, and is known to hold 
with very close approximation up to periods of 
about 60 per second.1 

A detailed discussion of all the problems sug
gested here is to be found in a paper by J. W eysen
hoff.Z 

(7) p. 12.-It is notable that the result for D 
no longer contains the applied force K. This 
must, however, be the case, if the method intro
duced here is successful in its aim, since K is a 
completely fictitious force which has nothing to 
do with the process of diffusion itself. This cir
cumstance indicates that it must also be possible 
to obtain the result without the introduction of 
the fictitious force. Such deductions have actually 
been carried out; amongst others might be par
ticularly mentioned, on account of its special 
simplicity, the deduction by Ph. Frank 3 with 

1 N. A. Shewhart, Phys. Rev. (2), 9, 425, 1917; 
R. B. Abott, Phys. Rev., 12, 381, 1918; A. Snethlage, 
Versl. K. Akad. v. Wetensch. Amst., 25, 1173, 1917; 
R. Filrth, Ann. d. Phys., 63, 521, 1920. 

• J. Weysenhoff, Ann. d. Phys., 62, 1, 1920. 
• Ph. Frank, Wiener Ber., 124 (2a), 1173, 1915 ; Ann. 

d. Phys., 52, 323, 1917. 
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the help of the conception of the Virial introduced 
by ·Clausius. 

(8) p. 13.-The introduction of this time
interval T forms a weak point in Einstein's 
argument, since it is not previously established 
that such a time-interval can be assumed at all. 
For it might well be the case that, in the observed 
interval of time, there was a definite dependence 
of the motion of the particle on the initial state. 

A deduction of the formula for the Brownian 
motion, which does not involve this presupposi
tion, has been given by L. S. Ornstein 1 according 
to a method suggested by Frau de Haas-Lorentz,• 
as well as by R. Ftirth 3 (in agreement with the 
former) by another method. 

In contrast with the formula of Einstein, given 
on page 17 of the text, this formula runs 

.x2 = 2D(t - mB + e-:.B) 
where B = I /61rkP indicates the " Mobility " of 
the particle and m its mass. For a sufficiently 
large time-interval, the formula actually comes 
into line with Einstein's, whilst for very short 

1 L. S. Ornstein, Proc. Amst., 21, 96, 1918. 
• L. de Haas-Lorentz, " The Brownian Movement and 

some Related Phenomena," Die Wissenschaft, B. 52, 
Vieweg, 1913. 

• R. Furth, Zeit. J. Phys., 2, 244, 1920. 
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times it indicates a rectilinear and uniform 
motion. 

As an approximate calculation shows, the 
Einstein formula holds for particles of a size that 
can be observed, under all circumstances. 

(9) p. 16.-There is sought here a so-called 
" Source-Integral" (" Quellenintegral ") of a dif
ferential equation of the second order, that is, a 
solution for which the boundary condition is 
assumed as a definite value for the integral of 
the diffusion-stream over the source. The corre
sponding diffusion problem is: if at time t = o 
the concentration of the diffusing substance is 
everywhere zero with the exception of an· indefi
nitely narrow space around the plane x = o, but 
such that the whole mass of the substance is 
given at all times by 

J:{(x, t)dx = n, 

then the formula given for f(x, t) wili be the ex
pression for the distribution of the concentration 
of the substance at some later time t and at any 
point x. 1 

Similar methods have been applied to different 
problems of the Brownian motion by Smoluchow-

1 Vide e.g. B. Riemann-Weber, "The Partial Differen
tial Equations of Mathematical Physics," 4th edit., 
Book 2, p. 91. 
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ski, 1 Schrodinger, 2 and Fiirth, 3 by the solution 
of the diffusion equation under corresponding 
boundary conditions. 

(ro) p. 16.-The meaning of the probable dis
tribution found 

is as follows : one imagines a large number of 
similar particles accumulated at the time t = o 
in the immediate neighbourhood of the plane 
x = o, and then left to themselves; now, after 
a time t such a distribution of the particles is 
spontaneously established that the relative num
ber of particles between the planes x and x + dx 
is given by ef,(x, t)dx. Here we assume that the 
particles exert no forces on each other. Such a 
summation of systems may be called in statistical 
mechanics a "space-summation." If we now 
look upon this space-summation as a single system 
and imagine that a very large number of exactly 
similar systems are set up, and the same experi
ment carried out with these, it is asserted that the 

1 The reader will find further information on this 
subject in the next volume of the Ostwald's" Klassiker," 
which comprises Smoluchowski's papers on the Brownian 
movement. 

1 E. Schrodinger, Phys. Zeit., 16, 189, 1915. 
3 R. Furth, Ann. d. Phys., 53, 177, 1917. 
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mean value of the distribution rf,(x, t) obtaining in 
all these systems at the time t will correspond 
exactly to the function/(x, t) in the above formula. 
The purely imaginative summation used here is 
called a "virtual summation." For an approxi
mate realization of this one can proceed in such 
a manner (as the experimenter is generally careful 
to do) that we make use only of one and the same 
space-summation, and after carrying out an 
investigation, this is always brought back to the 
original condition by artificial means. 

But another important meaning can be given to 
the formula if we consider as our system not, as 
before, the whole space-summation, but the single 
particle in this space-swnmation. Then j(x, t) 
denotes the probability that the particle has 
been displaced in the time t to a region between 
x and x + dx. If one observes the movement of 
a single particle and notices the displacements 
experienced in successive intervals of time, the 
relative frequency of these displacements will 
likewise be given by our formula, in the limiting 
case of an indefinitely large number of observa
tions. This is what is indicated in statistical 
mechanics by "time-summation." 

Both methods of observation are actually 
carried out in connection with the Brownian 
movement, and both lead to the establishment of 
Einstein's formula. It would appear also as if 
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in this case the mutual substitution of the two 
kinds of summations were pennissible without 
any further conditions, which is most decidedly 
not self-evident from first principles. The ques
tion as to the exchangeability of virtual and time
summations belongs to some controversial points 
in the foundations of statistical mechanics. It 
can be shown that this exchange can always be 
carried out when a so-called " ergodisch " system 
is in question; yet it has not been possible up to 
now to give a single example of such an " ergo
disch" system. The reader will find a compre
hensive discussion of related problems in the 
article on " The Conceptual Foundations of the 
Statistical Treatment of Mechanics," by P. and 
T. Ehrenfest.1 A paper of R. v. Mises a intro
duces a new view-point. 

(n) p. 17.-According to the definition of the 
mean value the mean square displacement is 
obtained from the expression 

- rJ+m I J+m .rt x2 = - f(x, t)x2dx = 1 Dt e-,.mx•dx 
n m v 41r -m 

= j~t✓Y e-Vdy = ~{[ - ,./y e-v ]: 

+ - e-u-= = -= e--11idu = 2Dt. 1Jm dy} 4DtJ"' 
2 o ,.jy ,..,!1r o 

1
" Encyclop~dia of Mathematical Science," vol. iv, 

2II, part 6. 
1 R. v. Mises, Phys. Zeit., 21, 225, 1920. 
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(r2) p. r7.-If r is the total displacement of the 
particle, then 

therefore 

and since on account of the homogeneity of the 
liquid these are all equal-

;2 = 3x2, ,J;"2 = ,J"j'>ix. 

(r3) p. r8.-The wish expressed here by Einstein 
was very soon fulfilled, resulting in a complete 
confirmation of his theory. Amongst the numer
ous experimental investigations there will only be 
mentioned here those which have given a direct 
confirmation of Einstein's formula in its original 
meaning. The first of these investigations was 
carried out by Seddig,1 who took two photographs 
of an aqueous suspension of cinnabar on the same 
plate at an interval of o·r second, and measured 
the distance of corresponding images on the plate. 
He found that on an average the displacements at 
different temperatures were inversely proportional 
to the viscosities, as the theory demanded. 
Henri 2 found similarly with the aid of cinemato-

1 R. Seddig, Phys. Zeit., 9, 465, 1908 ; Zeit. f. Elek
trochem., 73, 360, 1912. 

1 V. Henri, Comptes Rendus, 146, 1024, 1908; 147, 
62, 1908. 
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graph records of the mean displacement of par
ticles of caoutchouc that the time law, x11 propor
tional to t, was followed. 

The establishment of the first complete and 
absolute proof of the formula lies to the credit of 
Perrin 1 and his pupils Chaudesaigues, Dabrow
ski, and Bjerrum, who followed the movements of 
single particles of gamboge or mastic under a 
microscope and recorded their positions at equi
distant time intervals by means of an indicating 
apparatus. In this manner they could also use 
the formula to determine the Loschmidt number 
Nin a new way, and found values between 56 and 
88·1022• They could also confirm the distribution 
law for the probability of different displacements 
f(x, t) in a quite unexceptionable manner. 

Svedberg 2 and Inouye made their measure
ments in similar manner in metal sols of appre
ciably smaller particle size, and found a good 
agreement with the formula with large particles, 
but systematic departures from it with small 
particles : this is most probably to be ascribed 
to a breakdown of Stokes' law in connection 
with very small particles. They found the time
law well confirmed, and obtained approximately 

1 Perrin-Lottermoser, "The Atom," Leipzig and 
Dresden, 1914. 

• Th. Svedberg, "The Existence of the Molecule," 
Leipzig, 1912. 
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62·ro22 for Loschmidt's number. Similar results 
were obtained by Nordlund with an automatic
registering photographic arrangement. 

Finally, a paper of K. Seelis 1 should be men
tioned, which forms a continuation of Seddig's 
work and amplifies it suitably. 

The Brownian motion was first described in 
gases by F. Ehrenhaft, 2 who has also shown that 
the order of magnitude corresponds with the 
Einstein formula. A direct confirmation of Ein
stein's formula is out of the question here, since 
the determination of the size of the particles 
cannot yet be carried out with accuracy; never
theless, it appears to be established from the 
former investigations that the formula can be 
applied with accuracy in this case too. 3 

(!4) p. 23.-The law of Boltzmann mentioned 
here by Einstein is that known by the name of 
the r"'C-iheorem, which plays a great part in 
Statistical Mechanics. It leads to the inference 
that a system which is in statistical equilibrium 
with another of indefinitely large energy is actually 
subject to fluctuations, whose relative frequency 
is given by the law (I). Wherever, therefore, 

1 K. Seelis, Zeit. f. Phys. Chem., 86, 682, 1914. 
• F. Ehrenhaft, Wiener Ber., 116, (Ila), u39, 1907. 
• Further details will be found in the report of 

Th. Svedberg, Jahrbuch der Rad. u. Elektr., 10, 467, 
1913; and R. Fiirth, ibid., 16, 319, 1920. 
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similar equilibria exist, this law should be applied 
for the calculation of the magnitude of the fluc
tuations. The reader will find a detailed dis
cussion of all phenomena of this type in Physics 
in Fiirth's paper, "Fluctuation Phenomena in 
Physics." 1 

(r5) p. 25.-M. v. Smoluchowski 2 has given a 
detailed theory of the Brownian movement under 
the influence of an elastic force, and, in this 
particular case, has set forth in a very pleasing 
manner the points of agreement and differences 
between the statistical and purely thermodynamic 
conceptions of natural processes, especially con
cerning the apparent contradiction between the 
principal reversible mechanical and the irrever
sible thermodynamic processes. He pointed out 
also that this case can be verified experimentally 
by observation of Brownian torsional vibrations 
of a small mirror fastened on a thin thread, or of 
the vibrations of the free end of a thin elastic 
quartz fibre. The last suggestion was experi
mentally verified quite recently by P. Zeeman, 
though finally satisfactory results have not been 
obtained up to now. 

1 R. Furth, Vieweg Collection, No. 48, Brunswick, 
1920 ; and Phys. Zeit., 20, 1919. 

1 M. v. Smoluchowski, Krakauer Ber., 418, 1913 ; 
Lectures on " The Kinetic Theory of Matter and Elec
tricity," loc. cit. 
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(r6) p. 26.-If it be assumed that the energy E 
of the system is continuously divisible, from the 
definition of the mean value of a function we 
obtain for the mean energy per degree of freedom, 
regarding the energy itself as the parameter ex, 
from the expression (I)-

Accordingly the mean energy of a linear oscil
lator is also equal to this quantity. On the other 
hand, Planck has shown in the paper quoted that 
the mean energy of such an oscillator, which is 
in dynamic equilibrium with the radiation in a 
hollow body, is given by 

- LB 
Ev= 81rv2Pv, 

where L indicates the velocity of light, v the fre
quency, and pvdv the energy of that part of the 
radiation per unit volume wh0se frequency lies 



NOTES 107 

between v and v + dv. By equating the two 
expressions, it follows that 

RT L3 
N = 81rv2pv, 

and thence the expression given in the text for pv. 

But if it be assumed that the energy Eis not dis
tributed to the oscillator in a continuous manner, 
but only in multiples of an elementary quantum 
hv, where h is a universal constant, as Planck and 
Einstein have assumed, there is obtained for E a 
summation of the form 

As can be seen by expanding the denominator, 
for small values of v and for high temperatures 
respectively this formula becomes E = kT, which 
agrees with the former expression. In general, 
however, by equating the value of E with Planck's 
value given above, there is obtained 

hv L3 

"• = 81rvapv, 
eiii' - I 
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from which follows 
81rv8h 

pv=-----
L3(et _ 1 ) 

which is in agreement with Planck's radiation law. 
Hence the " incompleteness of our physical 

conceptions" perceived by Einstein is related to 
the necessity for introducing the quantum hy
pothesis. 

(17) p. 27.-This expression can be interpreted 
again, in the meaning of statistical mechanics, in 
two ways (vide Note rn). If one considers a very 
great number of particles similar to one another, 
it gives the relative mass of those particles 
which will be found on an average at a height 
x . . . x + dx above the ground. As the form 
of the expression shows, the "space-summation" 
of the particles corresponds with the well-known 
vertical aerostatic distribution: which is implied 
by the nature of the case, since only a quantita
tive, and not a qualitative, distinction exists 
between the gas built up of molecules and a sus
pension of microscopic particles. We can now 
investigate whether a suspension of small, similar 
particles is actually arranged in accordance with 
this formula, and, on the other hand, whether it 
agrees with the absolute figure, i.e. whether by 
determining the other data Loschmidt's number 
can be calculated. This was the manner in 
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which, for the first time, an exact confirmation of 
Einstein's theory was obtained, a result for which 
thanks are due to Perrin and his pupils (vide 
Note r3). Their method of procedure was first 
to prepare, by the device of " fractional centri
fuging " worked out by Perrin, a suspension of 
gamboge or mastic with particles of exactly equal 
size. This was then enclosed in a microscopic 
chamber and the distribution in height of the 
particles determined, after equilibrium had been 
established, by counting in the microscope the 
particles in different layers above the bottom of 
the chamber. In order to facilitate the counting, 
a small screen was introduced in the ocular of the 
microscope, so that at all times only a small 
number of particles were in the field of vision at 
the same moment; these were made visible at 
regular intervals of time by intermittent illumina
tion of the preparation, and so a great number 
of observations were arranged for. Observations 
carried out on different sizes of particles and 
suspension-media showed throughout a very good 
agreement between theory and experiment, and 
for Loschmidt's number figures between 55 and 
Bo· ro112• 

Perrin's investigations have been recently ex
tended by Westgren 1 to still smaller particles of 

1 A. Westgren, Zeit. /. Phys. Chem., 83, 151, 1913 ; 
89, 63, 1914; Arch./. Mat. Astr. och Fysik, 11, Nos. 8 
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colloidal metals, which were prepared of equal 
particle-size by the germ method of Zsigmondy. 
The method of observation was somewhat similar 
to that of Perrin ; the results of the extremely 
accurate investigation were in complete agreement 
with the exponential distribution in height ex
pected, and give, therefore, pretty well the most 
accurate direct determination of Loschmidt's 
number, which was fixed thus as (60·6 ± 2·0) . ro21• 

If the concentration of the particles becomes 
so great that the forces (operative at a distance) 
acting between the particles exclude the assump
tion of the mutual independence of the particles, 
we must expect divergences from the aerostatic 
distribution in height. Actually, Costantin 1 

found such divergences in gamboge emulsions 
at very high concentrations, following Perrin's 
method : which can be accounted for, in the 
manner indicated, by forces of repulsion between 
the particles, which are evidently of an electrical 
nature. 

But principally we can look upon our formula 
in quite a different manner, namely, as a picture 
of the time-summation for a single particle, if we 
imagine that a single particle is freely movable 

and 14, 1916; Zeit. /. anorg. Chem., 93, 231, 1915; 95, 
39, 1916. 

1 R. Costantin, C.R., 158, 1171, 1914; Ann. de phys. 
et chim. (9), 3, 1ou, 1915. 
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above a floor to which it cannot adhere. Then, 
as a result of its Brownian motion, it will not 
simply sink to the bottom, as one might expect, 
and remain lying there, but will always raise 
itself spontaneously and dance hither and thither 
in an irregular manner. The formula gives, then, 
simply the " relative length of sojourn " of the 
particle in the different layers x . . . x + dx above 
the bottom within a long period of observation. 
This procedure was introduced by R. Fiirth, 1 

and he was able to show that the formula applies 
very well to the movement of the particle : here 
there is further the advantage over the former 
method that it is necessarily independent of 
irregularity of particle size and of forces acting at 
a distance between particles. It was also possible 
in this manner, by simultaneous determination of 
the size of the particle according to Stokes' law, 
to make a fresh determination of Loschmidt's 
number: which gave N = 64. 1022 • We see 
established here in the most pleasing manner 
Einstein's assertion that the particles can be 
suspended in the liquid if they be fine enough. 

(18) p. 30.-On account of the small magnitude 
of .:::1, we can put the lower limit of the integral in 
n3 equal to zero, and develop the function F in 
the following manner :-

F( a.0 ± .:::1) = F(a.0) ± .:::1 . F'(a.0)-

1 R. Furth, Ann. d. Phys., 58, 177, 1917. 
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Thence it follows further that 

n 2 - n 3 = - 2F'(a.0) f gdgJ; yi(A)cu:1. 

If we exchange here the order of the integrations 
the limits for~ will be o and A, and the limits for 
LJ, o, and oo, from which it immediately follows 
that 

n 2 - n 3 = - F'(a.0) J~ L1 2yi(A)dA 

= - F'(a.o)J+"' Ll2yi(A)dA 
2 _,. 

on account of the condition that 

(rg) p. 3r.-In the original paper there is given 
here in error 4 . ro23 : actually the value of 
Loschmidt's number is N = 60·6 . ro112, according 
to the most accurate measurements that we possess 
up to the moment. 

(20) p. 33. - The formula for the rotary 
Brownian movement was established in 1909 by 
Perrin, by suspending spheres of mastic of about 
r2µ, diameter in water and following their rota
tional movement, as a function of the time, by 
observation of small, differently coloured inserts 
in the particles. The formula could thus be 
closely confirmed, as well as the absolute dimen
sions: for Loschmidt's number was obtained 
N = 65. ro22. 
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(21) p. 33.-If we call e the quantity of elec
tricity that is displaced across any given cross
section of the conductor in time t, and identify ex 
with the quantity of electricity which has flowed 
across this cross-section since the time t = o, 
then LI = e, and ex will be the current i. The 
potential energy corresponding to the displace
ment LI is evidently identical with the electrical 
potential difference, and hence the fictitious force 
of the E.M.F. E. According to its definition, 
therefore, 

B = i/E = r/w 

if w indicates the resistance of the closed circuit. 
We obtain therefore 

3 _ 2RT t 
e - Nw · · 

A number of similar questions which are form
ally related in the closest manner with the 
Brownian movement have been dealt with by 
Frau de Haas-Lorentz 1 according to the method 
of Einstein and Hopf .1 The list of possible in
vestigations given by her could be considerably 
increased : however, it has not yet been possible 
to discover these phenomena experimentally, 

1 G. L. de Haas-Lorentz, "The Brownian Movement 
and Related Phenomena," Sammlung Wissenschaft, 52, 
Vieweg, 1913. 

1 A. Einstein and Hopf, Ann. d. Phys., 88, uo5, 1910. 
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since on account of their minuteness they escape 
our measuring instruments. 1 

(22) p. 35.-For the lower limits of validity of 
Einstein's formula and its substitution by a more 
accurate one valid for any desired small time
interval, refer to Note (8). R. Fiirth has also 
derived an estimate for the lower limits of validity, 
from the formula quoted above and from other 
considerations communicated in the same paper, 
and arrives at the conclusion that this time must 
be of the order mB, where m indicates the mass 
and B the mobility of the particle. Actually, one 
obtains in this manner, i.e. in the order of magni
tude, an agreement with Einstein's estimate. 

(23) p. 36.-A correction of the following paper 
appeared a few years later with the title : A. Ein
stein, " Correction of My Paper, ' A New Deter
mination of Molecular Dimensions'" (Ann. d. 
Phys., 34, 591, rgrr), in which some numerical 
errors in the previous communication were 
rectified, which had also some influence on the 
results. In the reprint given here the resulting 
corrections are already introduced in the text 
with the aid of the paper mentioned, in order to 
facilitate the reader's task. The points of correc
tion are indicated in the text by reference to this 
note. 

1 R. Fiirth, " Fluctuation Phenomena in Physics," 
Sammltmg, Vieweg, No. 48, Brunswick, 1920. 
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(24) p. 39.-0n account of the incompressibility 
of the liquid, the " divergence" of the liquid flow 
must be, on the whole, equal to zero, i.e. 

d . = i)uo + i)Vo + i)wo _ 
1 V U i)g i)7J i) t - 0 

or 
A+ B + C = o. 

(25) p. 44--Since 
i)2p I g2 IJ2p I 71 2 i)2p I ~2 

0g2 - P pa' 071 2 = P pa' ~2 = P - p3 

Since A + B + C = o, two of these terms vanish, 
and the remainder, put in u (5), gives 

u =A[_ ~PaA1 _ ~psi.(Ag2 + s 71 2 + c~2) 
3 p3 2 P" 

+ ~ p 6
[(A[2 + Bn2 + C~ 2) + 2psAi. - psA[ 

2 p1 ., 2 p3 p" 

from which equation (6) follows immediately. 
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(26) p. 48.-A remark is omitted here which 
refers to the amount of energy consumed, since 
this is no longer involved after correction of an 
error of calculation (vide Note (23)). 

(27) p. 53 -Following from Gauss' law 

S div u do = Sunds ; 

since u lies in the direction of the x-axis, and in 
sum-total is equal to u, then 

and 

div U = ()U 
()x 

X 
Un = U COS (x, n) = U-. 

r 

(28) p. 62.-The values given here for the 
radius of the sugar molecule and Loschmidt's 
number agree remarkably well with determina
tions of these quantities made in other ways. 

The most accurate value for Loschmidt's num
ber at the moment is 6·06. ro23, determined from 
the "Faraday" of electrolysis and Millikan's 
value for the elementary quantum. The values, 
from the Brownian movement, given in the pre
ceding notes, agree, therefore, remarkably well; 
as well as that derived from the radiation of heat 
according to Planck's equation, 64. ro22• Further, 
from the Einstein1-Smoluchowski 2 theory of 

1 A. Einstein, Ann. d. Phys., 33, 1294, 1910. 
1 M. v. Smoluchowski, Ann. d. Phys., 25, 205, 1908. 
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density-fluctuations in gases and liquid mixtures, 
a value can be obtained for Loschmidt's number 
from measurements of "critical opalescence," in 
gases in the neighbourhood of the critical tem
perature, in liquids in the neighbourhood of the 
critical miscibility point. The former observa
tions were carried out by Kamerlingh Onnes and 
Keesom,1 and gave approximately 75. 10

21
, the 

latter by R. Furth 2 gave 77 . ro12
, and by F. 

Zernike 3 with more accurate equipment, 62 to 
65. 1022• According to this theory, Loschmidt's 
number can also be determined from the extinc
tion-coefficient of air for sunlight, by which 
method Dember" obtained 64. 1022

• We see, 
therefore, that a very large number of completely 
independent methods exist which all lead to 
approximately agreeing values for this important 
constant. 

With regard to the size of the sugar molecule, 
there is available for comparison the diameter of 
the first electron ring of hydrogen, derived from 
Bohr's theory of the hydrogen spectrum, about 
0·5. ro-s cm., whilst the sugar molecule would be 
about roo times as large as this, the smallest of 
the atoms. According to the kinetic theory of 

1 W. A. Keesom, Ann. d. Phys., 35, 597, 1911. 
• R. Filrth, Wiener Ber., 124 (2a), 577, 1915. 
s F. Zemike, Dissertation, Amsterdam, 1915. 
'H. Dember, Ann. d. Phys., 49, 590, 1916. 
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gases, the diameters of gas molecules are of the 
order of magnitude ro- 7 cm. 

(29) p. 63.-Th. Svedberg, " On the Spon
taneous Movements of Particles in Colloidal Solu
tions." First paper, Zeit. f. Elektrochem., I2, 

853-860, r906. Second paper, Zeit.j. Elektrochem., 
12, 909-gro, r906. 

(30) p. 65.-From 

dv 
m dt = - 6TTkPv 

it follows that 

and by integration 

m 
t = - 6TTkP log v + const. 

or, since when t = o, v will equal v0 

m v0 
t = 6TTkP log v' 

from which it follows, for v = v0 /10 

O = mlog IO_ m 
6TTkP - 0•434 . 6TTkP° 

(3r) p. 66.-See, e.g., the treatment in Section 
I of this volume on p. 17. 

(32) p. 70.-Compare, e.g., the section, " Os
motic Theory," in W. Nernst, "Theoretical 
Chemistry" (Stuttgart), under Electrochemistry. 
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(33) p. 75.-Compare Section I of this volume, 
paragraph 3, p. 12. 

(34) p. 76.-With reference to the Note on p. 75, 
the uncertainty in the value of N indicated here 
corresponds with the contemporary state of pro
gress in the enquiry. To-day this uncertainty can 
be put at scarcely more than 2 percent. Vide the 
agreement in the different methods for the deter
mination of N, Note (28), p. rr6. 



SUBJECT INDEX 

ATOMIC dimensions, 17. 

BOUNDARY conditions, 44, 45, 98, 
gg. 

" CANONIC " distribution, 89. 
Classical thermodynamics, 2 1 20, 

24. 
Colloidal solutions, 1og, no, n8. 
Critical opalescence, 117. 

DBORBB of freedom, 106. 
Diffusion, 9, n, i:2, 16, 36, 

61, 62, 68, 6g, 76, 96, 
gg. 

- coefficient of, xo, 11, 12, 
15, I6, 17, 57, 58, 61, 
71, 75, So, 81. 

Dilatation, 38, 49, 51, 52. 
Distribution of particles, 

108, Iog, IIO. 
- - velocities, 91. 
" Divergence," 115, 116. 

56, 
98, 

• -"x theorem, 104. 
Electrical forces, 84, 113. 
- resistaDce, 33, 113. 
Energy, 23, 35, 46, 48, 51, 89, 

1o6, 107. 
- free, 3, 5. 
Entropy, 3, 5, Sg, 91. 
Equilibrium, 23, 24, 1og. 
- dynamic, 9, i:2, 59, 106. 

FLUCTUATION phenomena, 105. 
Forces, on body, etc., 24, 25, 29, 

32,56,57,59,64,74,92,96, 
IIO. 

- elastic, and Brownian move-
ment, 105. 

Fractional centrifuging, 1og. 
Free paths, 93, 94. 

GABBs, Brownian movement in, 
104. 

- Stokes' law in, 96. 

HYDRODYNAMIC equations, 37, 
41, 92. 

- methods, 73, 92. 
-,- relations, 56. 
Hydrodynamically effective 

radius, 6o. 

INCOMPLBTBNBSB in physical con
ceptions, 271 108. 

Instantaneous velocity, 34, 63, 
67. 

Ions, 81, 85. 

KINETIC energy, 35, 38, 45, 63, 
64, 88. 

Kinetic-molecular theory, 58. 
Kinetics of gases, 93. 

LENGTH of path, 66, 81, 82. 
Linear motion, 21, 1o6. 

- with osmotic forces, 10, 
6g, 92. 

59, Lower limits of validity, II4. 

- statistical, 96, 104. 
"Ergodisch " system, 101. 

a• 
MEAN displacement, 17, 31, 32, 

78-85, IOI, 102, IOJ. 



THEORY OF BROWNIAN MOVEMENT 

Mean energy, rn6. 
- rotation, 32. 
- velocity, 64, 66, 67. 
Mobility of particles, 97· 
- - system, 29. 
Molecular dimensions, 2, 36, 60, 

n4, n6-n8. 
kinetic theory, I, 2, 3, 4, 36. 

- movement, 4, II, 12, 19, 23, 
33, 69, 76, BI, 87. 

- theory, 56, 82. 
- theory of heat, B, 19, 20, 21, 

23, 63, 65, 66. 
Motion of liquid, 37, 49• 

NuMBl!R N, 18, 31, 56, 57, 58, 
6o, 61, 62, 64, 83, 103 1 III, 
n9. Vide also Loschmidt. 

OSMOTIC pressure, 2, 3, 4, 9, 57, 
58, 59, 68, 6g, 88, 92. 

PARAMETER 11, 20, 22, 24, 28. 
Platinum particles, 64, 65. 
Pollen, 86. 
Potential +, 23, 28. 
11 Primitive molecule," 86. 
Probable distribution, 16, 99, 

103. 

Sugar, viscosity of solution, 55, 
56. 

- values of P, N, ll., 61, 62, 83, 
u6, u7. 

Surface tension, 3. 
Suspension of particles, 37. 

Tnui: interval -r, 13, 76, 78, Bo, 
97. 

- of observation t, 20, 34, 35• 
11 Time summation " (time 

aggregate), 100, no. 
Theories of Brownian move

ment, 86, 87, 88. 
Thermal processes, irregular, 29, 

30, 31, 32, 34, 35, 77. 
Thermodynamic conceptions, 

105. 
- equilibrium, 21. 
- methods, 59. 
- processes, 105. 
Torsional vibrations (Brownian), 

105. 
Translational motion, 20, 24, 25, 

31, 35, 40. 

VARIABLES of condition (state), 
4, 6, 21, 22, 8g. 

Probability, 8, 13, 22, 23, 25, 28, 
29, 89. 

Velocity components, 38, 40, 45, 
49, 50. 

- of diBSOlved substance, 58. 
QUANTUM1 26, 107, I08, n6. 
11 Quellemntegral,11 9b. 

RADIATION law, 26, 33, 106, 108, 
n6. 

Rotational movement, 20, 21, 32, 
33, 35, 40, n2. 

~EMIPl!RMEABLE partition, 2, 6, 
6g, 70. 

Source integral, 98. 
11 Space summation," 99, 100, 

Io8. 
Statistical equilibrium, 96, 104. 
- mechanics, h9, IOI, 104, Io8. 
Stokes' law (vide Stokes) 

- - particle, 34, 63, 64, 66, 
67, 74, 88. 

Vertical distribution, 1og, no. 
Virial, 97. 
Virtual force, 59. 
11 

- summation, " 100, 101. 
- - exchangeability with 

" time summation," 
IOI. 

Viscosity coefficient, u, 39, 49, 
SI, 54• 

- (friction), II, 12, 32, 36, 49, 
54, 55. st, S7, 61, 62, 65, 
66, 73, 7S, 87. 

Volume of dissolved substance, 
54• 



ARNOLD, 94. 

BJERRUM, 103. 
Bohr, 117. 

AUTHOR 

Boltzmann, 23, 91, 104. 
Brown, Robert, 86. 
Burkhard, 55. 

CANTONI, 87. 
Carbonella, 87. 
Chaudesaignes, 103. 
Clausius, 97. 
Costantin, uo. 
Cunningham, 93, 94• 

DABROWSKI, 103. 
Dancer, 87. 
Delsaux, 87. 
Dember, n7. 

EHRBNFEST, IOI. 
Ehrenhafc, 104-
Einstein, 4, 19, 26, 36, 59, 63, 68, 

81, 89, II3. 
Exner, 87, 88. 

FRANK, Ph., 96. 
Fiirth, 94, 97, 99, 105, III, II4, 

117. 

GAUSS, 116. 
Gerlach, 94. 
Gibbs, 89. 
Gouy, 19, 87, 88. 
Graham, 61. 

HASS-LORENTZ, Frau de, 97, n3. 
Henri, 102. 
Hopf, u3. 
Hosking, 62. 

INOUYE, 103, 

]RVO!'IS, 87. 

KAMMERLINGH ONNES, n7. 
Keesom, u7. 
Kirchhoff, 11, 32, 41, 57. 
Knudson, 93. 

INDEX 

LAllDOLT-BoRNBTEIN, 55, 62. 
Lorentz, 68. 
Loschmidt, 103, 104, 108, 109, 

110, III, II21 116, 117. 

MAEDE BACH, 88. 
Maxwell, 91. 
McKeehan, 93. 
Meyer, 94. 
Millikan, 116. 
Mises, IOI. 

NERNST, 70, n8. 
Nordlund, 104. 

OBHL, 87. 
Ornstein, 97. 

PARANKIEWICZ, 94• 
Perrin, 103, xog, 110, 112. 
Planck, 26, 106, 107, 108, 116. 

QUINCKE, 88, 

RAMSAY, 88. 
Regnault, 86, 
Roux, 94. 

SCHR0DINGBR, 99, 
Seddig, 102, 104. 
Seelis, 104. 
Siedentopf, 19. 
Smoluchowski, gr, 98, 105, u6. 
Stephan, 61, 

Stokes, 92, 93, 94, 95, 96, 103, 
III, 

Svedbcrg, 63, 64, 68, 103, n8. 

THOVERT, 62. 

VAN'T HOFF, 89. 

WEBER, 93. 
Weiner, 87, 
Wcstgren, xog. 
Wcysenhoff', 96. 

ZEEMAN, 105. 
Zcmcr, 93. 
Zemike, n7. 
Zsigmondi, no. 



1 7 
I 

I. I. A, S. LIBRARY 

Acc. No. 

This book was issued from the library on the 
elate last stamped. It is due back within one 
month of its date of issue, if not recalled earlier. 


	20191219144752
	20191219144753
	20191219144801_001
	20191219144801_002
	20191219144810_001
	20191219144810_002
	20191219144819_001
	20191219144819_002
	20191219144828_001
	20191219144828_002
	20191219144837_001
	20191219144837_002
	20191219144846_001
	20191219144846_002
	20191219144855_001
	20191219144855_002
	20191219144904_001
	20191219144904_002
	20191219144913
	20191219144914
	20191219144922
	20191219144923
	20191219144931_001
	20191219144931_002
	20191219144939
	20191219144940
	20191219144948
	20191219144949
	20191219144957
	20191219144958
	20191219145116
	20191219145117
	20191219145125
	20191219145126
	20191219145134
	20191219145135
	20191219145143
	20191219145144
	20191219145152
	20191219145153
	20191219145201
	20191219145202
	20191219145210
	20191219145211
	20191219145219
	20191219145220
	20191219145228
	20191219145229
	20191219145237
	20191219145238
	20191219145246
	20191219145247
	20191219145255
	20191219145256
	20191219145304
	20191219145305
	20191219145313
	20191219145314
	20191219145322
	20191219145323
	20191219145331
	20191219145332
	20191219145340
	20191219145341
	20191219145349
	20191219145350
	20191219145358
	20191219145359
	20191219145407
	20191219145408
	20191219145438
	20191219145439
	20191219145447
	20191219145448
	20191219145456
	20191219145457
	20191219145505
	20191219145506
	20191219145514
	20191219145515
	20191219145523
	20191219145524
	20191219145532
	20191219145533
	20191219145541
	20191219145542
	20191219145550
	20191219145551
	20191219145559_001
	20191219145559_002
	20191219145608_001
	20191219145608_002
	20191219145617_001
	20191219145617_002
	20191219145625
	20191219145626
	20191219145634
	20191219145635
	20191219145643
	20191219145644
	20191219145652
	20191219145653
	20191219145701
	20191219145702
	20191219145710
	20191219145711
	20191219145719
	20191219145720
	20191219145728
	20191219145729
	20191219145737
	20191219145738
	20191219145746_001
	20191219145746_002
	20191219145755_001
	20191219145755_002
	20191219145804_001
	20191219145804_002
	20191219145813_001
	20191219145813_002
	20191219145822
	20191219145823
	20191219145831_001
	20191219145831_002
	20191219145840_001
	20191219145840_002
	20191219145849_001
	20191219145849_002
	20191219145858_001
	20191219145858_002
	20191219145906
	20191219145907

