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Preface 

The minimum amount of information about statistics and 
measurement llS applied to education, including probability theory, 
electronic computers, and programmed instruction that every high 
school and elementary school teacher should know is presented in this 
book. No mathematics beyond the simplest arithmetic or algebra is 
used. 

This is, in part, a programiilid textbook, but not all of the chapters 
have been written in that format. Although the authors believe that 
statistics is a subject that lends itself especially well to presentation as 
programmed instructional materiar, the subjects of probability and 
the theory of computers and computational aids for educators can 
perhaps better be studied from conventionally written texts. Accord
ingly, the book has a variety of formats, each adapted to the particular 
subject matter being discussed. We feel that this contributes to the 
book's readability, and makes it appropriate as a supplement to the 
conventional textbook used in any of the general college level courses 
in education, learning psychology, or the social sciences where prob
ability, statistics, or the use of computers for instructional purposes 
are taught. 

The authors are aware that some readers of this book will be unfamil
iar with the technical and scientific language normally used in discus-
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vi Preface 

sions of electronic computers and programmed instruction; according
ly, a glossary of common computer and programmed instruction termin
ology has been included at the end of the book. Additionally, a list of 
mathematical symbols is provided. There are also selected readings at 
the end of each chapter for those who wish to investigate further any 
of the topics that are presented in the book. 

Our aim has been to write an elementary textbook for classroom 
teachers and for persons who are preparing themselves to become 
teachers, to introduce them to the fundamentals of probability, 
statistics, computers, and progammed learning as these subjects are 
related to the field of education. 

Many persons, too numerous to mention, have helped with the 
writing of this book by contributing valuable ideas and suggestions 
that have been incorporated in the text, and to them we wish to ex
press our deep appreciation. Special acknowledgments, however, 
should be made to Mrs. Bernice Brown of the Mathematics Depart
ment, The RAND Corporation, who helped plan the chapter on 
statistics and then engineered its early development, and to Dr. 
Richard E. Beckwith, Professor of Statistics and Dean of the School 
of Business Administration, Georgia State University, whose percep
tive reading of an early version of the manuscript resulted in numerous 
suggestions for improvements. Our thanks also go to Miss Shirley 
L. Marks, Mr. Malcolm R. Davis, and Mr. Joe Clayton of the 
Computer Sciences Department, The RAND Corporation, who read 
the chapter on new computational aids for educators. Mrs. Rebecca 
Karush, University of Southern California, ably prepared the final 
manuscript for publication. Chapter 7 draws upon ideas and issues 
presented at a 1970 Seminar conducted by Professor Lawrence E. 
Vredevoe, Graduate School of Educn.tion, U.C.L.A. 

The faults that will be found in this book, however, are entirely 
ours; and the authors, following the useful precedent of Allendoerfer 
and Oakley, 1 cheerfully blame each other for them. 

Santa Monica, California 
January 1970 

RICHARD BELLMAN 

JOHN C. HOGAN 

ERNEST M. SCHEUER 

'C. B. Allendoerfer and C. 0. Oakley, Principles of Ma!hemalics. New York: 
McGraw-Hill Book Company, 1955. 
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Chapter One 

ELEMENTARY PROBABILITY 
THEORY 

INTRODUCTORY REMARKS 

The purpose of this chapter is to discuss some elementary concepts 
of probability theory. No mathematics beyond the simplest arith
metic or algebra is used. HoweJ~er, the reader should have pencil and 
paper at hand and be prepared to work through the examples pre
sented here, and in addition he should work all the exercises to test his 
understanding of the material. 

The theory of probability is an approach to some kinds of un
certainty. H is u mathemttticnl idealization of eertn.in aspects of 
reality in much the same way that geometry is an idealization, or 
model, of other aspects of reality. Such models are valid to the extent 
that they are useful, that is, to the extent that they help us solve 
certain types of problems we encounter. We know, for example, that 
there are no physical entities corresponding to the abstract geometric 
concept of "line" and that the earth is not truly spherical. Neverthe
less, geometrical results are extremely useful in real life. The con
sequences of Euclidean geometry are, for many purposes, a satisfac
tory explanation of observed phenomena and enable us to build 

1 



2 Elementary Probability Theory 

bridges, construct freeways, and so on. Similarly, probability theory, 
although riot an exact mirror of reality, adequately describes many 
real situations and is, accordingly, useful. 

DEFINITION OF PROBABILITY 

We begin with the idea of an experiment in which there are a 
finite number, N, of distinguishable, equally likely elementary out
comes. For example, if the experiment is to draw one card from a 
standard pack of cards, then the 52 different cards of the deck con
stitute N = 52 distinguishable, equally likely elementary outcomes; 
if the experiment is to roll a die, then the six faces of the die constitute 
the N = 6 distinguishable, equally likely elementary outcomes; 
if the experiment is to toss a coin, then the two sides, heads and tails, 
constitute the N = 2 distinguishable, equally likely elementary 
outcomes; if a class of 100 students of unknown ability takes an 
arithmetic aptitude test, then we have N = 100 equally likely right 
or wrong answers to any particular question. 

Note that these examples are already models of reality in that we 
assume that the various elementary outcomes are equally likely. 
In any given situation the model may or may not conform to reality. 
A particular card may have some physical property (being slightly 
longer than the other cards, or somewhat sticky) that makes it more, 
or less, likely to be drawn than some other cards, so that the assump
tion of equally likely elementary outcomes is not precisely correct 
here. Or, a particular die or coin may be asymmetric and the respective 
outcomes not be equally likely. Or, a particular student may have 
superior or inferior arithmetical ability. One aspect of mathematical 
statistics (goodness of fit) deals with examining the validity of as
sumptions of tills sort. This topic is, however, beyond the scope of 
the chapter on statistics found in this book. 

A comment is in order on the use of the term elementary with regard 
to outcomes. One could, for example, be interested in the outcome 
of drawing, say, a facecard, such as a king, or a heart from a deck of 
cards. Such outcomes are called compound events, being composed 
of several elementary outcomes. "Drawing a king" is realized if any 
of four elementary outcomes (drawing the king of clubs, the king of 
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diamonds, the king of hearts, or the king of spades) occur; "drawing 
a heart" is realized if any of 13 elementary outcomes (drawing the 
2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, J{, or A of hearts) occur. An elementary 
outcome is one that can be realized in precisely one way, not in more 
than one way as in the examples just cited. 

We are now ready to define the probability of an event. An event, 
first of all, is the set of all elementary outcomes having a specified 
property. For example, we have already characterized the events of 
drawing a king or drawing a heart from a pack of cards. The event 
of rolling an even-numbered face on a die is composed of the equally 
likely elementary outcomes {2,4,6}. 1 

Let us denote the event of interest by E and the number of ele
mentary outcomes comprising E by #(E). We define the probability 
P(E) of an event E by 

P(E) = #~). (1) 

(Recall that N is the total number of distinguishable, equally likely 
elementary outcomes.) 

The number of outcomes favorable to an event E clearly is an 
integer that cannot be less than zero and cannot exceed N; Therefore 
the probability of any event must be at least equal to zero and cannot 
exceed one. This statement can be expressed in symbols as: 

0 =::, P(E) =::, 1. 

For example, a student cannot receive a negative grade on a test, 
or a mark of more than 100 percent. 

If an event E is so specified that every elementary outcome is 
favorable for E, that is, #(E) = N, then P(E) = 1. In this case E 
is called a certain event or a sure event. If an event E is so specified that 
no elementary outcome is favorable forE, then #(E) = 0 and P(E) = 

0. In this case E is called an impossible event. 
In some instances it will turn out to be convenient to calculate 

the probability P(E) of an event E by first obtaining the probability 
that E does not occur. Let us denote the event of the nonoccurrence 

'One way of designating a set is, as here, to display its members between 
braces. 



4 Elementary Probability Theory 

of E by E'.ZSince every elementary outcome not favoro.ble forE is 
favorable forE', then #(E') = N -#(E), and 

P(E') = #(E') = N - #(E) = 1 - #N(E) = 1 - P(E). (2) 
N N 

This is an elementary, but important, result-namely that for any 
event E and its complement E', 

P(E) + P(E') = 1. (3) 

In order to define probability we have spoken of the number of 
distinguishable elementary outcomes in an experiment and of the 
number of elementary outcomes favorable to an event. In some 
situations it is simple to get these numbers. In others it can be a 
complicated task. As in plane geometry, a particular problem may be 
hard to solve even though the fundamental ideas are straightfonvard. 
We next discuss some procedures for counting that will be an aid in 
probability calculations. 

COUNTING 

In this section we study some aspects of how the number of out
comes favorable to some complicated events can be obtained from the 
number of outcomes favorable to simpler, related events. This sub
ject is very important and an entire branch of mathematic~, called 
combinatorial theory, is devoted to it. Combinatorial theory rests on 
two basic principles. 'Ve state the first now and discuss some of its 
ramifications. The second principle and some of its consequences are 
discussed later. 

First Basic Combinatorial Principle 

Consider an event E that is specified by the joint occunence of two 
conditions. If there are n1 elementary outcomes favorable for the 

•The event E'c is ailed the cQmp/ement of E or the complementary event to E. 
Clearly (E')' =E. 
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first condition and, having selected one of those outcomes, there are 
n2 elementary outcomes favorable for .the second condition, then 

(4) 

This first basic principle of combinatorial theory can be extended to 
counting the number of outcomes specified by the joint occurrence 
of more than two conditions in the obvious way. Let us consider some 
examples to illustrate the principle. 

(I) Two coins are tossed. How many distinguishable outcomes 
are possible? We apply the first basic combinatorial principle. 
Here n1 = 2 since there are two outcomes (heads, tails) pos
sible for the first coin. Similarly, n 2 = 2. Therefore there 
are n1n2 = 2 X 2 = 4 distinguishable outcomes possible. 

This was rather a trivial example because it is easy to enumerate 
all the possible outcomes3 : {HH, HT, TH, TTl and observe that 
they are four in number. Let us look at a more complicated example. 

(2) Ten coins are tossed. How many distinguishable outcomes 
are possible? Using the obvious extension of the first basic 
principle with n1 = n2 = · · · = n1o = 2, we find the number of 
distinguishable possible.. outcomes4 to be 210 = 1024. While 
it is possible, in principle, to enumerate all of these possi
bilities, it is tedious and we should begin to see the power 
inherent in this basic principle. 

(3) A poker hand of five curds is to be drawn (without replace
ment) from a standard pack of cards. How many different 
such hands are there? [We distinguish (artificially) here 
between hands containing the same cards but appearing in 
a different order.] \V e apply the extended first basic principle. 
The first card can be selected in any of 52 ways. Having 

31\ote that we consider the outcomes HT and TH different here. They are 
different if one is concerned with what happened first und whut second. They 
are not different if one merely counts the number of heads (for example). One's 
point of view governs here. 

•Compare with footnote 3. 
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selected the first card, the second card can be selected in 51 
ways (the card selected in the first draw is not available for 
selection at the second draw). Having selected the first 
two cards, the third card can be any one of the remaining 
50 cards. Continuing in the same way, we find that the 
number of ordered poker hands is 52 · 51 · 50 · 49 · 48 = 
311,875,200. This number is sufficiently large to eliminate 
enumeration of cases as a practical alternative to the use 
of the (extended) first basic combinatorial principle. 

(4) The idea of the preceding example can be generalized to 
determine the number of distinct arrangements when r 
objects are selected without replacement from a set of n 
objects and order is important. Such ordered arrangements 
are called permutations. The number of distinct ordered 
arrangements of r objects selected without replacement from 
n objects, called the number of permutations of n things taken 
r at a time, and denoted P(n,r), can be determined by rea
soning identical to that of Example 3 to be: 

P(n,r) = n(n - l)(n - 2) · · · (n - r + 1). (5) 

[There are r factors in the product defining P(n,r) .) 
In particular, the number of arrangements of all n items is 

P(n,n) = n(n- l)(n- 2) · · · 3 X 2 X 1. (6) 

This product of all the integers beginning with n and going 
down to 1 is denoted by a special symbol, n!, which is read n 
factorial. Observe that this notation allows us to write 

n! 
P(n,r) = (n _ r)! (7) 

In order that the preceding formula make sense for the 
case r = n, that is, agree with the result P(n,n) = n! just 
derived, it is conventional to define the symbol 0! to equal 
one. 

The numbers n! grow very rapidly with n. You should 
verify the values in the following table. 



1!=1 

2! = 2 

3! = 6 

4! = 24 

5! = 120 

61 = 720 

7! =· 5040 

8! = 40,320 

9! = 362,880 

10! = 3,628,800 

Counting 7 

Calculate 15! and 20! to further appreciate the rapid growth 
of n! with n. It will save you some effort to realize that n! = 
n X (n - 1) !, so that you need not do each calculation 
afresh, but can proceed recursively. 

(5) If r objects are selected without replacement from n objects 
and order is not important, the result of the selection is 
called a combination. A combination differs from a permuta
tion in that only the composition, but not the order of selec
tion, is important. 

How many combinations of n things taken r at a time are 
there? Having selected such a combination, we could make 
from it r! distinct ordered arrangements, that is, permuta
tions. Thus, denoting the number of combinations of n 

things taken rat a time by (~),6 we haver{~)= P(n,r) 

or 

(n) · n! 
r =r!(n-r)!" (8) 

A convenient way of calculating these quantities, called 
the binomial coejfi.cients, is the "tree of Pascal": 

1 
1 

1 

5 

1 

4 

1 
1 1 

3 

10 

2 

6 
3 

10 

1 

4 
1 

5 
1 

1 

"6This symbol is read "n binomial r." (It is not a fraction. Do not put in o. 
fraction line when you write it.) 
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Observe that each number, apart from the l's, is obtained 
by adding the two immediately above. The ath entry in the 

bth row is (~ = ~). The top of the tree is (~); the first 

entry in the bth row is (b ~ 1) · 

EXERCISES 

1. Calculate the next three rows. 

2. Read off (a) G), (b) (~), (c) (n from the tree and ver

ify by using Equation (8). 

Applying Equation (8) to determining the number of poker hands 
(eliminating the previous artificial restriction that the order in which 
the cards appeared mattered in terms of distinguishing hands) we 
find the number to be: 

(
52) 52! 
5 = 5! 47! = 2,598,960. 

In what has preceded we dealt with selections made without re
placement from a set of objects. Both ordered and unorder1.1d con
figurations have been examined. In the following two examples we 
consider ordered and unordered selections made with replacement. 

(6) California automobile license plates contain three letters 
followed by three digits. Ignoring the fact that certain 
letter combinations will never be used, how many distinct 
California license plates are there? Each of the three letters 
can be chosen in 26 ways and each of the three digits can 
be chosen in 10 ways. By the (extended) first basic combina
torial principle the number is 26 X 26 X 26 X 10 X 10 X 
10 = 17,576,000. Note that each license plate is designated 
by an ordered drawing with replacement (from the 26 letters 
and the 10 digits). 
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(7) The idea used in the preceding example yields directly the 
number of ordered selections with replacement of r items 
selected from n items. Each of the r items can be selected in 
n ways. Therefore the number sought is: 

EXERCISES 

n X n X· · · X n = n•. · 

r factors 

(9) 

1. For each unused combination of letters, how many license 
plate designations are lost? 

2, How many four-letter "words" (pronounceability not con
sidered) are there? 

3. How muny three-letter "words" urc there whose first und 
third letters are consonants and whose middle letter is a 
vowel (n., e, i, o, u, y)? 

4. How many seven-digit telephone numbers are possible? 

5. How many numbers could there be in the GRanite exchange? 

(8) The reasoning leading to the number of unordered selections 
with replacement is too complicated to appear here, so we con
tent ourselves with stating the result. If r objects are selected 
with replacement from n objects, the number of unordered 

. . (n + r- 1) selectwns IS r · 

To illustrate this, consider an urn with four balls numbered 
1, 2, 3, 4 from which two balls are to be drawn. The first ball is 
to be returned before the second draw. Only the numbers on 
the balls, without regard for order, are to be considered. How 
many such distinct selections are there? Using the formula 

above with n = 4 and r = 2 we find the number to be(~) = 
5! 5·4 . 

2 !3 ! = 2 = 10. This number might be verified by actually 

displaying all the unordered selections with replacement: 
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(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4), 
and noting that they are 10 in number.6 

We are now ready to state and discuss the second basic com
binatorial principle. To do this we first must define the concept of . 
mutually exclusive events: Two events are mutually exclusive if the 
realization of either event precludes realization of the other. For example, 
if, in drawing one card from a standard pack, Dis the event of drawing 
a diamond and C is the event of drawing a club, events D and C are 
mutually exclusive. However, if Tis the event of drawing a 10, events 
T and D (as well as events T and C) are not mutually exclusive. 

Second Basic Combinatorial Principle 

If an event E occurs if either of two mutually exclusive events, F 
and G, occurs, then 

#(E) = #(F) + #(G). (10) 

Upon dividing through by N in Equation (10), the total number of 
outcomes possible for the experiment, it follows that for mutually 
exclusive events F and G 

P(F or G) = P(F) + P(G). (11) 

The following examples illustrate this second basic combinatorial 
principle. 

(9) In drawing a pair of cards without replacement from a stan
dard deck, how many pairs contain exactly one red card? 
The answer involves both basic combinatorial principles. 
First note that the event E = "exactly one red card" occurs 
if the draw resulted in one of the following two mutually 
exclusive, ordered events: F = "red card first, black card 
second" or G = "black card first, red card second." Then 

&We should make it clear, however, that we have displayed the selections 
here solely to verify the result given by the formula. Only if other methods of 
counting fail do we suggest this exhaustive (and sometimes exhausting) 
technique. Indeed, the whole purpose of this section is to show how to avoid 
enumeration. 
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note that #(F) = 262 = 676 (verify this) and similarly 
#(G) = 676, so that #(E) = 676 + 676 = 1352. 

(10) In rolling two dice, what is the probability that a "seven" 
will be rolled? We must determine the total number of these 
outcomes favorable for "seven." By t].:le first basic combina
torial principle we see that there are a total of 6 X 6 = 36 
outcomes possible when rolling two dice. Of these, the fol
lowing six combinations yield "seven": (1,6),7 (2,5), (3,4), 
(4,3), (5,2), (6,1). (We have used here an extended version of 
the second basic combinatorial principle. Of course, we would 
have been able to count the outcomes favorable for seven 
even if we had never heard of the second basic combinatorial 
principle, but the present example gives some instances of 
mutually exclusive events.) Thus 

EXERCISES 

6 1 
P(seven) = 36 = (f 

1. Verify for yourself that there are 36 possible outcomes, that 
there are no outcomes favorable for seven beyond those 
listed, and that these outcomes are mutually exclusive. 

2. Two students each take an examination containing five 
questions. Assume that three is a passing grade. In how 
many ways can both students pass? 

NON-MUTUALLY EXCLUSIVE EVENTS 

It is possible to extend the second basic combinatorial principle to 
count the number of outcomes favorable for an event, E, where E 
occurs if either of two perhaps non-mutually exclusive events, For G, 
occurs. Mathematicians use the word "or" in its nonexclusive sense. 
That is, the compou~d event "For G" will occur ifF occurs, or if G 

7The first number in the parentheses refers to the face showing on the first 
die; the second number refers to the second die. 
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occurs, or if both F and G occur. The last event is possible if F and G 
are not mutually exclusive. Let us consider that situation,_ and let us 
denote "For G" by E. If, in counting the number of outcomes favor
able forE, we add #(F) and #(G), we will have taken account twice of 
those outcomes favorable for both F and G. Thus, in general, 

#(E) = #(For G) = #(F) +#(G) - #(F and G). (12) 

Upon dividing through in Equation (12) by N, the total number of 
outcomes possible for the experiment, it follows that in general 

P(F or G) = P(F) + P(G) - P(F and G). (13) 

Note that if F and G are mutually exclusive, then #(F and G) = 0 
and we have agreement with the second basic combinatorial principle. 

Two examples of the use of Equations (12) and (13) follow. 

(11) In drawing one curd from a standard deck, what is the 
probability of selecting a red card (R) or a face card (F)? 

We observe: #(R) = 26, #(F) = 12, #(Rand F) = 6, N = 52, 
so that 

P(R or F) = P(R) + P(F) - P(R and F) 

= #(R) + #(F) _ #(R and F) 
N N N 

26 12 6 32 8 
=52+ 52- 52= 52= 13. 

(12) In drawing two cards with replacement from a standard deck 
what is the probability of drawing at least one club? Let c; 
denote the event of selecting a club on the first draw and C2 

the event of selecting a club on the second draw. Clearly the 
event "C1 or C2" is the symbolic way of designating the event 
"at least one club." We observe: 
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N = 522, so that 

P(Ct or C2) = #(Ct) + #CC2) _ #(Ct and C2) 
N N N 

13·52 13·52 132 

= 52'2 + 52'2 - 522 

1 1 1 7 = -+--- = -· 4 4 16 16 

CONDITIONAL PROBABILITY 
AND INDEPENDENCE 

There are situations in which one wants to calculate the probability 
of an event, A, given the knowledge that another event, B, has 
occurred. The term used for this concept is the conditional probability 
of A given B, and it is denoted by P(A\B). Applying the definition of 
probability, Equation (1), we find 

P(A I B) =#(A and B). 
#(B) 

(14) 

The reasoning supporting Equation (14) goes like this. Since we know 
that B occurred, the number of possible outcomes is #(B), not the 
total number of outcomes possible for the experiment, N. The number 
of outcomes favorable for A when we know B has occurred IS 

#(A and B). 
Equation (14) usually appears in a different form, namely 

P(A I B) = P(A and B). 
P(B) 

(15) 

Equation (15) is obtained from Equation (14) by dividing numerator 
and denominator by N, the total number of outcomes possible for the 
experiment, and then appealing to the definition of probability, 
Equation (1)- thus 

P(A I B) = #(A and B) = #(A and B)/N = P(1i and B). 
#(B) #(B)/N P(B) 

This development ·of conditional probability involved one tacit 
assumption which must be made explicit: Since division by zero is 
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not defined, it is necessary to require that #(B) :;e 0 or, equivalently, 
that P(B) :;e 0. (The symbol :;e is read "not equal to.") 

It is often convenient to write Equation (15) in the following 
equivalent form: 

P(A and B) = P(A I B)P(B). (16) 

Some examples follow. 

(13) What is the probability of drawing a king in a single draw 
from a standard deck if it is known that the card drawn will 
be a face card? Let K denote the event of drawing a king and 
F the ~vent of drawing a face card. #(F) = 12, #(K and F) = 

#(K) = 4, so that P(KIF) = .! = ~.Note that the ordinary 
12 3 

probability of drawing a king is_! = ...!.__Verify that for this 
52 13 

example the event (K and F) is the same as the event K. 
Generally speaking, the event (A and B) is not the same ns the 
event A. 

(14) What is the probability of drawing a king in a single draw 
from a standard deck if it is known that the card drawn will 
be red? Let K denote the event of drawing a king and R the 
event of drawing a red card. #(R) = 26, #(K and R) = 2, so 
that 

2 1 
P(K I R) = - = -· 

26 13 

Example 14 is but one instance of a general concept involving two 
events; namely that of the independence of two events. A formal 
definition follows directly from the example. 

Definition 

Two events A and B (neither of them an impossible event) are 
independent if 

P(A I B) = P(A). (17) 
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If we substitute Equation (15) on the left-hand side of Equation 
(17) we obtain 

P(A and B) = P(A) 
P(B) 

or, equivalently, we find two events A and B are independent if 

P(A and B) = P(A)P(B). (18) 

If two events are not independent they are called dependent. 

EXERCISES 

Verify the independence of the following pairs of events. 
1. A coin is tossed twice. H1 is the event of a head on the first 

toss, H2 the event of a head on the second toss. 

2. A card is drawn from a standard deck and a die is rolled. C is 
the event of drawing a three from the deck, D is the event of 
rolling a three with the die. 

3. Two dice are rolled. A is the event of rolling a one-spot on the 
first die, B is the event of rolling a one-spot on the second die. 

4. In Exercises 1-3, formulate some other events that can occur 
and investigate their inqependence. 

5. Can you prove that if two events, A and B - neither of which 
is impossible- are mutually exclusive, then they cannot be 
independent? 

6. An urn contains ten red and five white balls. Two balls are 
drawn without replacement. Let R1 denote the event that a 
red ball was selected on the first draw and R2 denote the 
event that a red ball was selected on the second draw. Are 
the events R1 and R2 independent? 

Solution to Exercise 6: We will compare P(R1 and R2) 
with P(R1)P(R2). To 9alculate P(R1 and R2) we use Equation (16): 

P(R, and R2) = P(R2\R1)P(R1) = 1
9
4 · ~~ = ?· 
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To calculate P(R 2) we make use of the fact that R2 occurs if one 
of two mutually exclusive events occur: either both balls drawn are 
red (denote this by F) or the first ball is white and the second ball is 
red (denote this by G). We calculate P(R2) as P(F) + P(G) and use 
Equation (16) to obtain each of these terms. [We have already cal- . 
culated P(F).] 

3 
P(F) = P(R1 and R2) = 'i' 

P(G) = P(R; and R2) = P(R2 I R;)P(R;) = ~~ · :5 = : 1• 

P(R2) = P(F) + P(G) = ; + :l = ;~ = ~-

Since P(R1) = 2/3, we have P(R1)P(R2) = 4/9 while P(R1 and R2) 
= 3/7. Since P(R1 and R2) r6 P(R1) P(R2), the events R1 and R2 

are dependent. 
Another way of investigating the independence of R1 and R2 is 

via Equation (16). We co.lculated above that P(RdRt) = 9/14 and 
that P(R2) = 2/3, so again we conclude R1 and R2 are dependent 
events. 

SUMMARY AND GENERALIZATIONS 

For ease of exposition the foregoing treatment of probatility has 
focused on experiments in which there are a finite number of distin
guishable, equally likely elementary outcomes. It turns out, however, 
that the results we obtained are valid in far more general situations. 
We summarize our results and stress their validity for a very broad 
definition of events and their probability. 

(1) For any event E, the probability of E, P(E), is a nonnegative 
number not exceeding one. 

(2) If E' is the nonoccurrence of E, then 

P(E') = 1 - P(E). 
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(3) Number of ways of selecting r items out of n: 

Selecting Selecting 
with without 

replacement replacement 

Ordered n! 
arrangements n• (n- r)! 

Order not cl + r- 1) = (n + r- 1)! (n) n! 
considered r (n- l)!r! r = (n- r)!r! 

(4) Two events E and Fare mutually exclusive if P(E and F) = 
0. For mutually exclusive events, P(E or F) = P(E) + P(F). 

(5) In general, for any pair of events E and F, P(E or F) 
= P(E) + P(F) - P(E and F). 

(6) The conditional probability of an event E, given that an 
event F has occurred, is 

P(E I F) = P(E and F) 
P(F) 

provided P(F) ;;C 0. 

(7) Two events E and F ~re independent if P(EJF) P(E) 
or, equivalently, P(E and F) = P(E)P(F). 

EXPECTED VALUE 

The great value of probability theory resides in the fact that it 
provides us with a rational approach to uncertainty, and, particularly, 
to decision making under uncertainty, by furnishing certain numerical 
measures of uncertainty. One way of doing this is by means of average 
or expected values. 

If in some situation in which we can realize exactly one of two 
outcomes, the first with probability p1 and the second with probability 
p2, and if the first yields a gain of v1 units and the second a gain of V2 
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units we can assess the situation in terms of an average gain of 
p1v1 + p 2v2• If there are N possible events (of which we can realize 
one) with respective probabilities of occurrence of Pl, p2, .- .. , PN and 
associated gains of v1, v2, ... , VN, we analogously assign an average 

gain of p1v1 + p2v2 + · · · +PNVN. 
On the other hand, we may not be satisfied with use of the average. 

Thus we may rank the gains say v1 :::; v2:::; · · · :::; Vn-1:::; VN, and compute 
the probability on one realization of achieving a gain of more than 
some specified number v. If 

we see that the probability that actual gain exceeds v is given by 

Pk+l + PH2 + ... +PN. 
The foregoing enables us to make a decision when the outcome is 

not completely known. If one decision leads to an expected gain of 
100, and another to 9.n expected gain of 10, we have a rational basis 
for choosing the first action. 

Unfortunately, the foregoing plausible procedure does not com
pletely dispose of the problem of decision making under uncertainty. 
In many situations, such as those faced by insurance companies or by 
instructors assigning grades in large sections of several hundred stu
dents, average values are meaningful. In other situations, for example, 
a class of 17 students, the average grade may provide little informa
tion. In general, the choice of criterion to employ in decision making 
-whether average value or probability of achieving a desired level or 
some other measure- is one of great difficulty, as is also the task of 
assigning values to the outcomes. 

These problems are not mathematical per se, but operational and 
psychological, requiring a deep understanding of the actual process. 
Probability theory is used, for want of a better tool, in situations 
involving ignorance; recall our earlier statement concerning the 
assumption of equally likely events. In all real situations there is 
always additional information available to supplement the results 
obtained from probabilistic calculations. However, it may be too 
expensive or time-consuming to obtain this supplementary data, and 
we may be forced to use the less complete results. 

We have briefly pointed out the difficulties involved in deciding 
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what measures of uncertainty to employ and the values to assign to 
outcomes. In some situations it is also difficult to make reasonable a 
priori estimates of the probabilities. To handle uncertainties of this 
type, we can conceive of nature as an opponent who is trying to choose 
the probabilities in such a way as to make it as difficult or as expensive 
as possible to discover the actual values. The problem of obtaining 
information, or of making appropriate decisions, can then be viewed 
as a game against nature. Many useful results can be obtained in this 
way, employing the Borel-von Neumann theory of games.8 

In general, the game theory approach is too e.xpensive to employ. 
It is not feasible to assume that everything is against us all the time, 
and the viewpoint is not one conducive to mental health. Different 
and more complex mathematical tools must be used, such as sequen
tial analysis, dynamic programming, and adaptive control processes. 
References to some expository accounts will be found at the end of 
the chapter. 

THE NUMBER OF SUCCESSES IN A SAMPLE 

By a sample of size n we mean the realization of n independent 
outcomes of some given events. Thus a sample of size n may consist of 
the result of tossing n coins once, or of tossing one coin n times, or of 
drawing n cards from a deck (with or without replacement), or of the 
responses of a student to a multiple-choice exam with n questions, or 
the response of a class of n students to one question. The term success 
is used in the sense of an outcome of interest (to someone). For 
example, we may arbitrarily call the occurrence of a head in the toss 
of a coin a success, even though a person who has bet on a tail turning 
up may not consider it so. Similarly, success may be defined as an 
incorrect response to a question on a multiple-choice exam. The term 
is well established even though it may appear rather inappropriate 

8See, for example, John von Neumann and Oskar Morgenstern, Theory of 
Games and Economic Behavior. (Princrton, N.J.: Princeton University Press, 
1944), and Emile Borel, Le Jcu, Ia Chance et Les Theories Scientijiques Mo
dernes. (Gullimurd, 1 941); other works arc: rvielvin Dresher, Games of Strategy: 
Theory and Applications. (Englewood Cliffs, N.J.: Prentice-Hall, Inc., 19Gl) 
and J. D. Williams, The Compleat Strategyst. (New York: McGraw-Hill, 
Inc., 1954 and 1966). 
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at times. Let us consider it as a technical term and not worry about 
its meaning in ordinary parlance. . 

We now want to consider the probability that a certain number of 
successes occur in a given number of trials. For example, suppose a 
multiple-choice exam is given, each question having five responses · 
listed with only one correct response. There are 100 questions, and 70 
questions must be answered correctly in order to get a passing grade. 
If a student merely guesses the answer to each question, with no 
knowledge at all about the subject what is the probability that he 
will get a passing grade"? "\Ve can answer this question by a series of 
simple steps which we now detail. First, we must model the process 
by which guesses are made. We assume that for each question one of 
the five responses is selected at random, that is, each response has the 
same probability of being picked, namely !. Next, we define success 
as the event of having the correct response on a question. Our model 
specifies that P(success) = k for each question. Since a passing 
grade requires at least 70 correct responses, the event of getting a pass
ing grade is composed of the events 70 successes or 71 successes or 
i2 successes or ... or 100 succe;;scf;. Since these latter c\·ents arc 
mutually exclusive (verify this), the probability of getting a passing 
grade is the sum of the probability of these events (verify this also). 
We will obtain these probabilities by first considering the prototype of 
the calculations we must make here. 

Consider n independent trials, each of which can result in only two 
outcomes, success (S) or failure (F). The probability of success on 
each trial is p. Consequently the probability of failure at eac.h trial is 
1 - p. (Verify this.) What is the probability of exactly k successes in 
these n trials? Note that for one particular order in which the k 
successes (and consequently n - k failures) occur, the probability 
is pk(l - p)"-k. (Verify this, using the assumption that then trials 

are independent.) Now, there are (~) patterns of successes and fail

ures with k successes in n trials and any two patterns are mutually 
exclusive. Therefore the probability of exactly k successes in n in
dependent trials having probability of success equal to p at each trial, 

is given by (~)pk(1 - p)"-k. 

We return now to the example. Based on the foregoing paragraph, 
we have 
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P {passing test) = P{at least 70 correct answers out of 100) 

= P {70 correct out of 100 I + P {71 correct out of 100 I + · · · + 
P {100 correct out of 100 I 

There are tables available listing the individual probabilities and 
the sum appearing in the preceding equation.9 (They are called 
binomial probabilities and cumulative binomial probabilities, respec
tively.) The terms are e.xceedingly cumbersome to evaluate numeri
cally, however. (Try, for example, to determine the first term, 

to get an appreciation of this fact.) The task of obtaining 

(~)pk(l - p)n-k becomes increasingly difficult as n increases. 

Fortunately, there is a good, easily obtainable approximation avail
able for the binomial probabilities. Further, its validity increases as 
n and k increase in a fixed ratio. This is the normal approximation to 
the 'binomial. The normal distribution is the familiar bell-shaped curve 
pictured in Figure 1.1. It has the properties of being symmetric about 
its center line (at zero) and of having a unit area bounded between 
it and the horizontal axis. The table in Appendix B gives the shaded 

FIGURE 1.1 

GFor example, Natio.nal Bureau of Standards, Tables of the Binomial 
Probability Distribution, Applied Math Series 6. U.S. Government Printing 
Office, 1950. 
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area of Figure 1.2; that is, A(x) denotes the area bounded by the 
vertical line at zero, the vertical line at x, the curve, and the horizontal 
axis. By symmetry, the striped area bounded by the vertical line at 

-x 0 X 

FIGURE 1.2 

zero, the vertical line at -x, the curve, and the horizontal axis is also 
equal to A(x). Using the symmetry and the fact that the entire area 
is one, it is easy to see that each of the dotted areas is equal to ! -
A(x). 

Let us accept the fact that the normal approximation to the 
binomial probability of at least k successes in n independent trials, 
where the probability of success at each trial is p, is given by the 
expression 

1 (k-!- np) -±A ' 2 ~np(1- p) 

+ if k - ! - np < 0 

- if k - ! - np > 0. 

Let us evaluate this numerically for the foregoing examination ex
ample. Here n = 100, p = !, k = 70; thus 

lc - ! - np = 70 - ! - 20 = 49.5, 

..,jnp(1 - p) = ~16 = 4, 

k - ! - np = 49.5 = 12.4, 
...jnp(1 - p) 4 

and A (12.4) is virtually .5, so that the probability of passing the test 
by guessing is essentially zero- as we might have predicted. Let us 
consider another example. 

Sixty fair coins are tossed (a fair coin is one for which probability of 
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heads equals probability of tails). What is the probability of at least 
35 heads? The normal approximation yields 

~- Ae5~~tt)~t~o) =~-A(~~~) 

= ~- A(:.:1) = ~- A(1.16) = ~- .3770 = .1230. 

This approximate value compares favorably with the exact value of 
.12253 obtained from tables of the binomial distribution. 

EXERCISES 

1. A multiple-choice exam containing 25 questions with five 
possible responses on each question is administered to a class 
of 30 students. 
(a) What is the probability that exactly four students miss 
question 1? State the assumptions you are making; that is 
specify the model you have set up to describe this situation. 

What is the probability that no more than four students 
miss question 1? 
(b) What is the probability that a particular student will get 
exactly 20 questions right? Again, state the assumptions you 
are making. 

What is the probability that this student will get at least 20 
questions right? 

2. A chest contains one each of 10 different pennants. Pennants 
are selected and arranged on a flag pole. 
(a) If each ordered arrangement constitutes a different 
pattern, how many patterns consisting of four pennants are 
there? 
(b) If order plays no role, but only which pennants are 
displayed is important, how many patterns are there? 

3. It has been observed that each year 10 percent of school 
vice-principals leave the post for one reason or another 
(reassignment, promotion, retirement, and so on). An ambi-
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p. 8: 

p. 9: 

p. 11: 

tious teacher hopes to be promoted to a vice-principal's posi
tion at his school. 
(a) What is the probability that a vacancy will occur this 
year? 
(b) For the first time next year? 
(c) For the first time two years hence? 
(d) Within the next two years? State your assumptions care
fully. 

ANSWERS TO EXERCISES 

1. 1 6 15 20 15 6 1 
1 7 21 35 35 21 7 1 

1 8 28 56 70 56 28 8 1 

2. (a) G) is the fourth entry in the eighth row, 35. 

C) 7! 7·6·5 
3 = 3!4! = 3·2·1 = 35· 

(b) (1) is the fifth entry in the seventh row, 15. 

e) 6! 6·5 
4 = 4!2! = 2·1 = 15· 

(c) G) is the fourth entry in the ninth row, 56. 

(8) 8! 8-7·6 
3 = 3!5! = 3·2·1 = 56· 

1. 1()3 = 1000 
2. 264 = 456,976 
3. 20X6X20=2400 
4. 107 = 10,000,000 
5. 1Qb = 100,000 

2. Each student can pass if he answers at least three questions 
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correctly, that is if he answers three questions correctly or four 
questions correctly or all five questions correctly. These out-

comes are mutually exclusive and can occur respectively in (~). 

(~). and (~) ways. Thus each student can pass in e) + 

(~) + (~)ways, or 10 + 5 + 1 = 16 ways. Thus both stu

dents can pass in (16)2 = 256 ways. 

P(H IH) = P(H, andH2) = l =! 
p. 15: 1. 2 I P(H,) t 2 

P(H2) = ~-

2 P(c d D) = #(C and D) = _!_ = _!_ 
· an N 52·6 78 

4 1 1 
P(C)P(D) = -·- = -· 52 6 78 

1 
3. P(A and B) = 

36 

1 1 1 
P(A)P(B) = -·- = -· 

6 6 ~6 

5. A and B are mutually exclusive, so P(A and B) = 0. But 
neither A nor B is the impossible event, so P(A) ~ 0 and 
P(B) ~ 0 and, consequently, P(A)P(B) ~ 0. If A and B were 
independent, P(A and B) would equal P(A)P(B), which cannot 
be in this instance. 

p. 23: 
1. (a) Assumptions: (i) Students answer at random, that is, the 
probability of a correct answer to any question is ! so that the 
probability of an incorrect answer is t (ii) Responses of any 
group of students are independent. P(exactly four students out 

. (30) (4)4(1)26 of 30 students miss question 1) = 
4 5 5 

. 
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P(no more than four students miss question 1) 
= P(zero or one or two or three or four students miss ques

tion 1) 

= P(zero students miss question 1) 

+ P(one student misses question 1) 
+ P(two students miss question 1) 
+ P(three students miss question 1) 
+ P(four students miss question 1) 

(3g)(~YGYO + (31°)(~YGY
9 

+ (32°)(~YGY
8 

= (3~)0)\D~ + (3~)(~YGY
6

• 
(Note where the concept of mutual exclusivity was used.) 
(b) Assumptions: (i) The student answers at random, that is, his 
probability of a correct answer to any question is l; (ii) his 
response to one question is independent of his response to any 
other question. 

?(exactly 20 correct answers) = (;~)GYo(~Y 

( 25)(1)20(4)" P(at least 20 correct answers) = 20 5 5 

+ (;~)GY\~Y + (;~)GY\~Y + (;~)GY\~Y 

+ (;~)GY'C~Y + (;~)GY\~Y. 
2. (a) P(l0,4) = 1

6
°
1
1 

= 10·9·8·7 = 5040. 

(
10) 10! 5040 

(b) 4 = 6!4!= 4·3·2·1 = 210· 

3. (a) ?(vacancy this year) = .10. 
(b) P(vacancy for first time next year) 

= P(no vacancy this year and a vacancy next year) 

= (.9)(.1) = .09. 
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(c) P(vacancy for the first time two years hence) 
P(no vacancy this year and no vacancy next year 

and a vacancy two years hence) 
= (.9)(.9)(.1) = .081. 

(d) P(vacancy within the next two years) 
= P(vacancy this year or vacancy for the first time 
next year or vacancy for the first time two years hence) 

= P(vacancy this year) + P(vacancy for the first 
time ne.xt year) + P(vncancy for the first time two 
years hence) 

= .10 + .09 + .081 = .271. 
(Note that this could also have been calculated as: 

P(vacancy within the next two years) 
= 1 - P(no vacancy within the next two years) 

= 1 - P(no vacancy this year or next year or two years hence) 

= 1 - P(no vacancy this year) P(no vacancy next year) 
P(no vacancy two years hence) 

= 1 - (.9) 3 = 1 - .729 = .271. 
Assumption: Vacancies in different years are independent 
events. 
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Chapter Two 

PROGRAMMED STATISTICS 

INSTRUCTIONS 

Read these Instructions carefully 

Your success in mastering the contents of this chapter will 
depend on how carefully you follow these instructions. 

On the following pages is a Pre-Test. Take this test before you 
rend the chnptcr. Do not be concerned if you miss some of the 
questions on the Prt:>-Tt:>st. This is expected. 

At the end of the chapter is a Post-Test. Take this test after you 
have read the chapter. Do not look at the Post-Test until you 
have finished studying the chapter. 

Turn to the next page of the text and cover the right-hand 
column of the page with a slip of paper. Read the statement 
at the top of the page. Select the best answer to each of the 
multiple-choice questions that appear on the page. Then check 
your answer with. the correct answer which appears in the right
hand column of the page. Continue this procedure as you read 
through the chapter. 

29 
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PRE-TEST 

1. If the teacher returns a paper marked with a raw score of 
26 and says nothing further about the other grades on the 

examination, this means: 

(a) you failed the examination 
(b) you are in the 26th percentile 
(c) the raw score is not meaningful without more 

information 

2. The measures of central tendency listed below are: 

(a) the raw score 
(b) the mean 
(c) the median 
(d) standard deviation 

3. The middle point in a set of scores is called the 

4. Scores that differ greatly from the measure of 
central tendency are called: 

(a) raw scores 
(b) the best scores 
(c) extreme scores 
(d) Z-scores 

5. The ------ is sensitive to extreme scores, 
while the is not. 

6. Arithmetical average signifies: 

(a) the mean 
(b) the median 
(c) neither of these 

7. The effect that extreme scores have on the mean is to 
pull it in their direction. 

) True 
( ) False 

(c) 

(b), (c) 

Median 

(c) 

Mean 
Median 

(a) 

True 
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8. The elimination of all low extreme scores from a set 
has the effect of: 

(a) lowering the mean 
(b) raising the mean 
(c) no effect on the mean 

9. If all the scores on examination cluster around the 
mean, the dispersion is said to be: 

(a) small 
(b) large 
(c) normal 

10. One measure of dispersion is called:------

11 If the dispersion is small, the standard deviation is: 

(a) large 
(b) small 
(c) zero 

12. A --------score is more useful than 
a raw score because it gives information about how 
the score relates to other scores. 

13. A percentile gives the percentage of all scores 
that are located it. 

14. Extreme scores have more effect on the mean than 
on the median. 

True 
False 

15. The mean is calculated by adding all scores in the 
set and dividing by the number of scores using 
what formula? 

(b) 

(a) 

Standard 
Deviation 

(b) 

Derived 

Below 

True 

M - l:X 
- N 
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16. A correlation coefficient can range from 
---to ___ _ -lto+l 

This is the end of the Pre-Test. Continue on the next page and read 
the text of the chapter, using the same procedure for checking your 
answers to the multiple-choice questions. 



Programmed lvlaterial 33 

PROGRAMMED MATERIAL 

2.1 A score on an examination is more meaningful if you know 
how it compares with all the other scores on the same ex-
amination. 

If a teacher returns your paper marked with the raw 
score 26 and says nothing about the other grades on the 
examination, this means: 

(a) you failed the examination 
(b) you are in the 26th quartile 
(c) the raw score is not meaningful without more infor-

mation (c) 

2.2 The raw score on an examination is the number obtained 
by applying the scoring key to the test paper. It alone does 
not tell very much about how you did on the test. The raw 
score is usually the count of the number of correct an-
swers. 

On a test containing 100 questions, suppose that the 
professor says you got 60 percent of the answers correct. 
Your raw score on this test.would be: 

(a) 60 
(b) 40 
(c) 30 
(d) none of these (a) 

2.3 But sometimes on true-false tests the test will be scored by 
subtracting the number of wrong answers from the num-
ber of correct answers to obtain the raw score. In that case 
the raw score for the test in the previous example would 
be: 

(a) 60 
(b) 40 
(c) 20 
(d) none of these (c) 
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2.4 For a raw score on an examination to be meaningful, you 
must know its relation with the other scores on the same 
examination. You may want to compare your score with 
some measure of the central tendency of the group. The 
measurement of central tendency is sometimes the average 

of all the scores on the examination. 

Thus, if the average score for the examination is 30, a 
mcusurc of ccntrul tendency would be: 

(a) 26 
(b) 30 
(c) neither of these 

2.5 The arithmetic average (or the mean) of a sample or set of 
scores is not the only measure of central tendency. The 
median is also sometimes used for this purpose. 

The mean of an examination is 69, the median is 68, and 
the standard deviation is 2. The measures of central 
tendency for this examination are: 

(a) .26 
(b) 69 
(c) 68 
(d) 2 

2.6 Two measures of central tendency for a set of examination 
scores are the median and the mean. 

( ) True 
( ) False 

2.7 The word median signifies the middle point in a set of 
ordered scores. The median is obtained by arranging all 
the scores in order from the highest to the lowest, and 
then counting down the list half way. 

What is the median for this set of scores: 

60, 51, 40, 29, 11 

(b) 

(b), (c) 

True 

40 
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2.8 Where there is an odd number of scores in the list, the 
middle point or median will be an actual score, as in the 
previous example. But where there is an even number of 
scores in the list, the median is taken to be the point half 
way between the two scores located in the middle of the 
list. 

What is the median for this set of scores: 

DO, 88, 70, 60, 55, 44 

2.9 The word mean signifies the arithmetical average of the 
set of scores. It is obtained by adding all the scores to
gether and then dividing by the number of scores added 
up. 

65 

Calculate the mean for the following set of scores: 

100,80, 70,40, 20 
310 
s-=62 

2.10 What is the median in the previous example? 70 

2.11 l:X = M 
N 

The formula given above is used for calculating the sample 
mean. It signifies: 

Sum of the scores l\f 
Number of scores = 

1 
ean. 

Apply the formula to the following set of scores 
and calculate the mean: 

80,40, 35, 30,20 
205 
-=41 

5 

2.12 For the set of scores in the previous example, 
identify the median, mean, and mode. Median= 35 

Mean= 41 
No mode 
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2.13 The median i1:1 the middle point in o. set of ordered scores, 
and the mean is the arithmetical average of the set of 
scores. These two measures of central tendency do not 
always coincide. Nor is the mean necessarily equal to one 
of the observations. Identify the median and the mean for 

the following set of scores: 

100,80, 60, 10,10 = 60 Median 
= 52Mean 

2.14 Scores that differ greatly from the mean or the median 
are known as extreme scores. These are the very high scores 
at the top of the list and the very low scores at the bottom 

of the list. 

Identify the extreme scores in the following list: 

100, 40 = mean, 30 = median, 20, 10 

2.15 The mean is sensitive to extreme scores, while the median 
is not. That is to say, changing a few scores by making 
them larger or smaller may have a noticeable effect on the 
mean or arithmetical average of all the scores, but this 
need not affect the median or middle point of the set of 
scores. 

The measure of central tendency that is most sensitive 
to extreme scores is: 

(a) the mean 
(b) the median 
(c) both of these 

2.16 The effect that extreme scores have on the mean is to pull 
it in their direction. Thus a few extreme scores at the top 
of the set will raise the mean. Likewise, a few extreme 
scores at the bottom of the set will lower the mean. 

100, 10 

(a) 
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Calculate the median and the mean for the three sets of 
scores shown below. 

(a) 100, 60, 50, 30, 10 
(b) 100, 60, 50, 40, 30 
(c) 70, 60, 50, 40, 10 Median Mean 

(a) 
(b) 
(c) 

50 
50 
50 

2.17 The elimination of extreme scores at the bottom of the set 
has the effect of: 
(a) lowering the mean 
(b) raising the mean 

50 
56 
46 

(c) no effect (b) 

2.18 The elimination of extreme scores at the top of the set has 
the effect of: 

(a) lowering the mean 
(b) raising the mean 
(c) no effect 

2.19 Extreme scores will have the following effect on the 
median of an examination: 

(a) they may tend to raise it 
(b) they may tend to lower it 
(c) they muy have no effect on it 

2.20 The mode is defined as the item in a set of scores that 
occurs most often. It is the point of greatest frequency or 
density. A mode exists if there are two or more papers with 
the same score. 

Which score i~ the mode in the following set? 

16, 15, 14, 12, 12, 11 

(a) 

(c) 

12 
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2.21 Sometimes there is more than one mode in a set of scores. 
Any score for which there are two or more papers will 

constitute a mode. -

Identify the modes in the following set of scores: 

16, 16, 15, 14, 12, 12, 10, 9, 2 12 and 16 

2.22 Extreme scores on an examination have the following 
effect on the mode: 

(a.) they tend to raise it 
(b) they tend to lower it 
(c) they have no effect on it 

2.23 The most sensitive measure of central tendency, because it 
is influenced by every score in the set, is: 

(a) the mode 
(b) the mean 
(c) the median 

2.24 Which of the following statements is/are always true? 

(a) The mean has an effect on extreme scores. 
(b) The median has an effect on extreme scores. 
(c) Extreme scores have an effect on the mean. 
(d) Extreme scores have an effect on the median. 

2.25 Suppose you have a set of examination papers that con
tains many scores below 50 and only a few scores above 
50. The preferred measure of central tendency in this case 
would be: 

(a) the mean 
(b) the median 
(c) need more information to tell 

2.26 Which of the following statements is true? 

(a) Some sets of scores have a median, others have a 
mean, but no set has both of these. 

(c) 

(b) 

(c) 

(c) 
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(b) The median is always the same as the mean. 
(c) The median is never the same as the mean. 
(d) For a score to be meaningful, you must know some-

thing more than the median or the mean. {d) 

2.27 In this set of scores (40, 30, 29, 29, 20, 10), the frequency 
of score 29 is: 

(a) 1 
(b) 2 
(c) 3 
(d) 4 

2.28 When we say that a score has a frequency of 16, we mean 
how many students got this score? 

(a) 160 percent of the students 
(b) 16 students 
(c) 10 students 
(d) .016 percent of the students 

2.29 The frequency of a score in a set of scores is the same as 
the number of students who got that score. 

( ) True 

(b) 

(b) 

( ) False True 

2.30 Each score in a set of scores may be represented graphi
cally by a small rectangle, as in Figure 2.1. 

7 
r-----T-----+-----4-----~ 

6 
r-----T-----+-----4-----~ 

5 
r----+----4-~~~--~ 

4 

3 

2r----1----~----~--~ 

10 20 30 40 

FIGURE 2.1 
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At the bottom are shown the scores the students could 
make, while the squares above the numbers represent the 

(or number) of students who Fre-
made that score. quency 

2.31 In Figure 2.1, the frequency of the score 20 is: 

(a) 5 
(b) 3 
(c) 2 
(d) 7 

2.32 When there are many scores, the range of possible scores 
is often subdivided into equal intervals and the frequency 
of scores in each interval shown by the height of the graph 
above that interval. This graph is called a histogram. (See 
Figure 2.2.) 

10 

9 

8 

7 
~ 6 c 
QJ 
::J 5 
~ 
u. 4 

3 

Scores 

FIGURE 2.2 Histogram of Scores 

2.33 Another way of representing these data is via a frequency 
polygon. It is formed by joining adjacent centers of the 
tops of the line in the histogram by straight line segments. 
The process of constructing a frequency polygon and the 
result are shown in Figures 2.3 and 2.4. 

(b) 
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FIGURE 2.4 Frequency Polygon 

2.34 In the frequency distribution of Frame 2.32, which in-

41 

terval of scores has the largest frequency? 40 to 50 

2.35 Suppose that your raw score on an examination was 55, 
and the professor tells you that the mean for the examina
tion was 40, you will still need more information about 
the examination scores in order for your score to really be 
meaningful to you. You should ask about the dispersion 
or variability of the scores on the examination. 
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In order for you to interpret your score on an examina
tion, you must know: 

(a) the measure of central tendency 
(b) the measure of dispersion or variability 

(c) the raw score 
(d) all of these 

2.36 A measure of dispersion gives information about how the 
scores on an examination spread out; it tells whether all 
the scores cluster around the measure of central tendency 
(mean or median) or whether there is a small or large 
spread of the scores away from it. The dispersion is said 
to be small if the scores cluster around the mean; it is 
large if they spread out from the mean. 

How would you describe the dispersion of this set of 
scores? 

99, 98, 97 (Mean), 96, 95 

2.37 How would you describe the dispersion of this set of 
scores: 

100,80, 75, 30, 13,2 

2.38 If many of the scores on the examination cluster around 
the mean: 

(a) the dispersion is small 
(b) the dispersion is large 
(c) need more information to tell 

(d) 

Small 

Large 

(c) 

2.39 If the teacher says of the examination, "There was no dis- All 
persion," what does he mean? grades 

on the 
exam

ination 
were 

exactly 
the same 
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2.40 If there are many extreme scores on an examination, the 
dispersion is: 

(a) large 
{b) small 

(c) normal 

2.41 One measure of dispersion in a sample is called the sample 
standard deviation and is denoted by s. It is defined by the 
formula: 

where: n is the number of examination scores (or other 

measurements) 

and 

x1, x2, ... , Xn are the n examination scores (or 
other measurements) 

M is the arithmetic mean of xr, ... , Xn defined in 
Frame 2.11 

...[ denotes the square root. 

For purposes of computation, the following formula is 
often more convenient than the foregoing definition. 

2.42 An examination raw score can be converted to a new 
measure in which the unit is the standard deviation, and 
the origin (that is, zero point) of the scale is the mean of 

the raw scores. If a measurement in the new scale is 
denoted Y and the corresponding raw score by X, their 

X-i 
relation is Y = --. Negative values of Y correspond 

8 

to raw scores below the mean, positive values to raw 
scores above the mean. The numerical value of Y mea-

(a) 
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sures the distance the score is from the mean in units of 
the standard deviation. Generally speaking, Y values as 
large as +3 (small as -3) indicate raw scores considerably 

above (below) the mean. 

2.43 Calculate the standard deviation for the following set of 

scores, indicating the mean: 

100,20, 90, 30, 80,40, 70, 50,60 

Using the formula in Frame 2.41, one has: 

s2 = ![(1002 + 202 + 902 + 302 + 802 + 402 + 702 + 502 + 6Q2) 
8 

- !(100 + 20 + 90 + 30 + 80 + 40 + 70 + 50 + 60)2) 
9 

= 
100[(100 + 4 + 81 + 9 + 64 + 16 + 49 + 25 + 36) 
8 

- ~(10 + 2 + 9 + 3 + 8 + 4 + 7 + 5 + 6)2] 

= 
1~[ 384 - ~(54)2] 

= 
100

[384 - 324] 
8 

100 6000 = g-[60] = -8- = 750; s = 27.4. 

The mean is calculated to be M = 540/9 = 60. 

2.44 How would you describe the dispersion for the set of scores 
given in the previous example? Large 

2.45 The scores of students on an examination are influenced 
by many factors, e.g., knowledge of the subject, loss of 
sleep, misunderstanding of an examination question, 
breaking a pencil point during an examination, the kind of 
examination, and so on. If the outcome of a set of events 
such as the scores on an examination is determined by 
many factors, a frequency distribution representing the 
events often has a appearance. Bell-

shaped 
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2.46 This is called: 

(a) a bell-shaped frequency distribution 
(b) an abnormal curve 
(c) none of these 

2.47 Figure 2.5 shows the spread of grades 'that can be ex
pected in a normal distribution. The curve is bell-shaped. 
Z-scores, T-scores, ETS (Educational Testing Service)
scores, the WISC (Wechsler Intelligence Scale for Chil
dren), IQ, and percentiles are also shown on the chart. 
Study this chart, and then answer the questions that 
appear below. 

A normal distribution can be illustrated by a __ _ 

------ curve. 

2.48 

Standard 
Scores 

Z= 
-3 -2 -1 0 +1 +2 

T = 
20 30 40 50 60 70 

ETS = 
200 300 400 500 600 700 

WISC /0 = 55 70 85 100 115 130 

(a) 

Bell
shaped 

+3 

80 

BOO 

145 

Percentile 0.13% 2.27% 15.87% 50% 84.13% 97.73% 99.87% 

FIGURE 2.5 Normal Probability Distribution 

2.49 There are many factors that determine how many times 
the number seven will come up if two dice are rolled, for 
example, the manner in which the dice are held in the 
hand before the roll, how hard they are tossed, the size of 
the dice, and so on. 
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If the sum of the faces of a pair of dice is recorded in a 
frequency distribution, a curve Bell-
would be the expected result. shaped 

2.50 With more tosses of the dice, the curve of the frequency 
distribution representing the number of each toss would 

become: 

(a) more irregular 
(b) more smooth and regular 
(c) flat and straight 
(d) none of these 

2.51 If the dice were rolled many times, this would lead to an 
almost perfect bell-shaped frequency distribution similar 
to a curve mathematicians call a normal curve. 

( ) True 
( ) False 

2.52 Earlier we spoke of the mean and standard deviation of a 
sample (or set) of examination scores. These values are 
estimates of corresponding quantities in the (perhaps 
idealized) population of all examination scores. Often the 
distribution of examination scores in the population is 
adequately described by the normal distribution with a 
particular mean and standard deviation. To distinguish 
the mean and standard deviation of the population from 
the mean and standard deviation of the sample, the for
mer are often denoted J1. and u, respectively. (Recall that 
the sample mean is denoted by M and the sample stan
dard deviation by s.) The parameters J1. and u are not de
fined in terms of finite sums as in Frames 2.11 and 2.41, 
respectively, but through the process of integration, a 
concept from calculus which is outside the scope of this 
book. 

In the remainder of this chapter the terms "mean" and 
"standard deviation" refer to the population mean and 
population standard deviation. When you encounter these 
terms elsewhere, however, be sure to ascertain how they 

(b) 

True 
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are used - as descriptors of the sample or of the popula-
tion. Careful authors will observe the distinction. 

2.53 Suppose that the standard deviation of a normal distribu-
tion is taken as a unit of dispersion. The horizontal axis is 
then measured off in these standard score .units. The mean 
of the distribution is taken as a starting point, and mea-
surements go in both directions. If the mean corresponds 
to a standard score of zero, then a point 3 standard 
deviations to the right of the mean has a standard score 
of +3, while a point 2 standard deviations to the left of 
the mean has a standard score of: 

(a) +2 
(b) -3 
(c) -2 
(d) +3 (c) 

2.54 A point 1.5 standard deviations to the left of the mean 
would have a standard score of: 

(a) -1.5 
(b) +1.5 
(c) -3.5 
(d) +2.5 (a) 

2.55 A point 3 standard deviations to the right of the mean 
would have a standard score of: 

(a) +3 
(b) +2 
(c) -3 
(d) -1 (a) 

2.56 Of the scores in any normal distribution, almost 
percent of them arc within :3 standard deviations from the 
mean of the distribution? 

(a) 50 percent 
(b) 80 percent· 
(c) 100 percent 
(d) none of these (c) 
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2.57 About percent of all the scores in a normal dis-
tribution are within 3 standard deviations to the right of 

the mean? 

(a) 90 percent 
(b) 80 percent 
(c) 50 percent 
(d) 20 percent 

2.58 Almost 50 percent of all the scores in a normal distribution 
lie between a standard score of zero and -3. 

True 
False 

2.59 A normal distribution is symmetrical. The percentages of 
scores in terms of standard score units is the same to the 
left of the mean as to the right of the mean. 

) True 
) False 

2.60 The percentage of all the scores in a normal di~tribution 
included between a standard score of zero and -2 is: 

(a) 2 percent 
(b) 14 percent 
(c) 34 percent 
(d) 48 percent 

2.61 Between a standard score of -1 and + 1 the percentage 
of all the scores in a normal distribution is: 

(a) 34 percent 
(b) 17 percent 
(c) 68 percent 
(d) none of these 

2.62 In a normal distribution the percentage of grades that 
can be expected to fall between -1 and +2 standard 
deviations from the mean is: 

(c) 

True 

True 

(d) 

(c) 
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(a) 14 percent 
(b) 34 percent 
(c) 82 percent 
(d) 84 percent (c) 

2.63 A person whose ETS-score (Educational Testing Service) 
is 700 is how many standard deviations above or below 
the mean, given that the mean is 500 and the standard 
deviation is 100? 

(a) +1 
(b) -2 
(c) +3 
(d) +2 

2.64 A person whose ETS-score is 650 is ___ standard 
deviations from the mean. 

2.65 A derived score differs from a raw score in that a raw 
score gives no information about what the score means and 
says nothing about the relation between the raw score and 
the other scores in the distribution, while a derived score 
does give such information and is therefore meaningful. 

True 
False 

2.66 A standard score gives some information about the relative 
standing of the student with respect to other students in 
the population. 

( ) True 
( ) False 

2.67 T-scores are shown in Figure 2.5 on the second line below 
the Normal Probability Distribution graph. The T-score 
is also a derived score. To convert a standard score, some
times also called Z-score, to a corresponding T-score, 
multiply the Z-score by 10 and add 50. 

(d) 

+1.5 

True 

True 

If the Z-score is +3, what is the corresponding T-score? 80 
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2.68 . If the Z-score is 0, what is the corresponding T-score? 50 

2.69 If the Z-score is -3, what is the corresponding T-sc-ore? 20 

2.70 In Frame 2.69, the -3 is multiplied by 10 to get -30, 
after which 50 is added to -30 making a T-score of 20. 

If the Z-score is -1 what is the corresponding T-score? 40 
' 

2.71 A Z-score that contains a decimal is likewise changed to a 
T-score by multiplying the Z-score by 10 and adding 50. 

If the Z-score is 2.5, what is the corresponding T-score? 75 

2.72 Percentiles are shown on the Normal Probability Dis
tribution graph in Figure 2.5. Percentiles represent the 
percentage of scores in the distribution that are located to 
the left of the number shown. 

Would a score that falls at the 40th percentile on the 
Normal Probability Distribution graph be to the left or 
to the right of the figure 50 percent? Left 

2.73 The population median is located at the 50th percentile, 
which means that half of the scores are to the left of it and 
half to the right of it. 

What percentage of the scores in a distribution are to 50 
the right of the 50th percentile'? percent 

2.74 What percentages of the scores in a distribution are 48 
located between the 50th and 98th percentiles? percent 

2. 75 What percentage of the scores in a distribution are located 16 
to the left of the 16th percentile? percent 

2.76 A distribution may be skewed either to the right or to the 
left. If the large bulk of scores in the distribution are low 
scores, with fewer and fewer scores to the right of the 
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2.77 

central tendency, the distribution is skewed to the right 
(the longer tail of the distribution extends toward the 
right). But if the large bulk of the ·scores are high scores 
and there are fewer scores toward the left of the central 
tendency, the distribution is skewed to the left (the longer 

tail of the distribution extends towards th_e left). 

/.~~ 
(a) (b) 

FIGURE 2.6 

The distribution shown in Figure 2.6 (b) is skewed to the 

The distribution shown in Figure 2.6 (a) is skewed to the 

2.78 When a distribution is skewed to the left, we say that it is 
negatively skewed, and when a distribution is skewed to the 
right, we say it is positively skewed. 

2.79 The distribution shown in Figure 2.6 (a) is: 

(a) negatively skewed 
(b) positively skewed 

2.80 The distribution shown in Figure 2.6 (b) is: 

(u) negatively skewed 
(b) positively skewed 

2.81 The difficulty of~ test question is measured by the propor
tion of students who get the question right. This propor
tion is inversely related to the difficulty of the question. 

Right 

Left 

(a) 

(b) 
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That is to say, the more students that get the question 
right, the less difficult (or the easier) the question is said 

to be. 

The difficulty factor, D = R/n, is determined simply by 
dividing the number of students who got the question 
right (R) by the total number of students (n) who an
swered the question. 

If 10 students answered the question and 8 answered it 
correctly, what is the difficulty factor for this question? .8 

2.82 We sometimes say that the average score received on a 
test indicates how difficult the test is. Likewise, the notion 
of a difficulty factor for determining the difficulty of a 
question on a test is analogous to this- it is the average 
score on the question. 

The proportion or percentage of students that answer 
a question correctly is related to 
the difficulty of that question. Inversely 

2.83 A difficulty factor of .8 would signify: 

(a) the question is difficult 
(b) the question is not difficult 
(c) more than half the students answered the question 

wrong 
(d) more information is needed 

2.84 A difficulty factor of .5 would signify: 

(a) the question is difficult 
(b) the question is not difficult 
(c) half of the students answered the question right 

(b) 

(d) more information is needed (c) 

2.85 A difficulty factor of .2 signifies that many students could 
not answer the question correctly and the question is 
therefore presumed to be difficult. 

True 
( ) False True 
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2.86 All the questions on an examination might involve about 
.5 difficulty, or there might be a rather wide range with 
some questions being significantly more difficult, but with 
the average of all items being about .5. 

If you want to motivate the poorest st.udents and to 
challenge the best students, what difficulty factor would 
you use for your test questions? 

(a) .5 on all questions 
(b) .2 on all questions 
(c) .8 on all questions 
(d) wide range of difficulty values 

2.87 Correlation coefficient is a decimal, signifying the amount of 
association between two variables. Each variable must 
actually vary or change in order for the pair to be cor
related. 

If one item is fixed and unchangeable and the other item 
varies, can you measure their correlation? 

Yes 
No 

. 
2.88 When two mriables tend to ~·ary together - that is, when 

the high scores in one variable are associated with the 
high scores in the other variable and when the low scores 
in one are likewise associated with the low scores in the 
other- these variables ure said to be posilit•cly correlated. 

Variables that tend to vary together directly result in a 

(d) 

No 

------- correlation. Positive 

2.89 But if the high scores in one of the variables tend to go 
with the low scores in the other variable, or vice versa, 
then these variables are said to be negatively correlated. 

Variables whose high and low scores vary inversely 
to one another result in a correlation. Negative 
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2.90 If the variables are totally unrelated, so that a high score 
in one is equally likely to be associated with a high score 
or a low score (or even a medium score) in the other, then 
these variables are said to be uncorrelated. 

If the figure + 1 signifies a perfect positive correlation 
and the figure -1 signifies a perfect negative correlation, 
then the figure 0 signifies: 

(a) a perfect correlation 
(b) uncorrelated variables 
(c) not significant 

2.91 Correlation is a decimal, not a percentage. It is measured 
on a scale, as shown in Figure 2.7, which extends from 
-1 through zero to + 1. 

-1 0 +1 

FIGURE 27 

There is no such thing as a correlation greater than + 1 
or less than - 1. 

True 
False 

2.92 A perfect correlation is signified by: 

(a) 0 
(b) +1 
(c) -1 
(d) +2 

2.93 Suppose that the correlation between age and mistakes 
on an automobile driving test is - .3. 

(b) 

True 

(b) 
or 
(c) 
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This statement means: 

(a) as the age of the driver increases, the number of 
questions he misses on the test tends also to increase 

(b) as the age of the driver increases, the number of 
questions he misses on the test tends to decrease 

(c) a perfect negative correlation exists,· so there is no 
relation between age and the test questions missed (b) 

2.94 A measure of association between two variables is called 
correlation. Since height and weight tend to be closely 
related, that is, short people generally weigh less than 
tall people, we can say height and weight are positively 
correlated variables. 

( ) True 
( ) False 

2.95 Variables are said to be correlated if information con
cerning one of them gives information concerning another 
variable. 

If we find that the average number of science books read 
by a student affects his grade in nonscience courses, we 
can say that there is a corrilation between reading books 
on science and the grade received in nonscience courses. 

( ) True 
( ) False 

2.96 If a history professor tells his class: "All those who got 
100 on the history test got 20 on the mathematics test, 
and all those that got 100 on the mathematics test got 20 
on the history test," he is saying that the correlation 
between the history test and the mathematics is: 

(a) negative 
(b) positive 
(c) uncorrelated variables 

True 

True 

(a) 
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2.97 Although correlation does not necessarily imply causation, 
a correlation coefficient is useful in making predictions. 
Thus, if the scores of students on one test are correlated 
with their scores on another test, a student's score on one 
test can be used to predict his score on the other test. 

If two events are perfectly correlated, this means that the 
one event is the cause of the other event. 

( True 
( ) False 

One way two events can be highly correlated is for 
both to be produced by a third event. 

2.98 The reliability of a test signifies dependability of the 
results obtained from using that test. 

The same test is given three times to a student. The 
three resulting scores differ widely. The test is probably 
not reliable. 

( ) True 
( ) False 

2.99 A test is said to be valid if it measures whatever it was 
designed to measure. 

Which statement is false? 

(a) A test can be valid without being reliable, but it 
cannot be reliable unless it is valid. 

(b) A test can be reliable without being valid, but it 

False 

True 

cannot be valid unless it is reliable. (a) 

2.100 You have now completed this chapter and are ready to 
take the Post-Test, which appears on the following pages. 

Go now to the Post-Test and answer the questions. 
Check your answers against the correct ones, which 
appear in the right-hand column of the page. 
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POST-TEST 

1. If the professor returns your paper marked with a raw score 
of 26 and tells you that the mean for the examination was 
20, what information do you still need in order for your 
score to be meaningful? 

(a) the median for the examination 
(b) the dispersion of the scores 
(c) the difficulty factor 
(d) none of these (b) 

2. Name two measures of central tendency. :Median, 
Mean 

3. The measure of central tendency most sensitive to extreme 
scores is the median. 

( 
( 

True 
False 

4. Which of these difficulty factors signifies an easy question: 

(a) .3 
(b) .5 
(c) .7 
(d) .9 

5. If the scores on an examination spread out far from the 
mean, the dispersion is: 

(a) large 
(b) small 

False 

(d) 

(c) normal (a) 

6. In a normal distribution, what percentage of the grades 
can be expected to fall between -2 and +2 standard devia- 96 
tions from the mean? percent 
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7. How many standard deviations above or below the mean 
is a person whose ETS-score is 700? 

(a) +3 
(b) +2 
(c) -2 
(d) -3 (b) 

8. A normal distribution is represented by a Bell-
curve. shaped 

9. A person with an ETS-score of 600 would be presumed to 
have an IQ of: 

(a) 100 
(b) 115 
(c) 130 (b) 

10. A very few large scores (or small scores) will have an effect 
upon the mean. 

( ) True 
( ) False True 

11. The middle point in a set of scores is called: 

(a) the mode 
(b) the mean 
(c) the median (c) 

12. The last step in calculating standard deviation involves 
finding Square 

13. Scores that differ greatly from the measure of central 
tendency are called: 

(a) raw scores 
(b) extreme scores 
(c) Z-scores 

14. The is a point or score that separates 

root 

(b) 

the bottom half of the set from the top half. Median 
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15. The is not pulled o.wo.y from the 
bulk of scores by a few scores that are extreme. 

16. Dispersion (or variability) for a set of scores signifies 
how spread out the scores are. 

( ) True 
( ) False 

17. scores o.re expressed in decimals 

59 

Median 

True 

and negative numbers. Standard 

18. On a graph, the of an interval 
of scores is represented by the height of a curve above 
that interval on the horizontal axis. Frequency 

19. A frequency distribution with many average scores 
and fewer extreme scores is often . Bell-shaped 

20. We say tho.t o. test is if the same 
or similar results are obtained every time it is used. Reliable 

21. We say that a test is if it measures 
whatever it is supposed to measure. Valid 

22. If a test is not a reliable or dependable measuring 
instrument, we say it has low -------
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Chapter Three 

THE DIGITAL COMPUTER 

Let us now present a brief and elementary discussion of one of the 
major scientific developments of the twentieth century, the digital 
computer. This is important for three reasons. In the first place, it is 
essential to understand why the existence of the digital computer 
makes it easy to apply simple statistical ideas in a number of sig
nificant ways. Second, the material is needed as a background to our 
subsequent discussion of "programmed instruction." Third, the 
computer has become an integral part of our culture, which means 
that every educated person must comprehend certain of its funda
mental aspects. 

There are three principle types of computer: digital, analog, and 
hybrid. A digital computer is a machine for doing arithmetic: addition, 
subtraction, multiplication, and division. The greater part of con
temporary computers operate according to electronic principles. 
An analog computer is a device for obtaining numerical answers to 
certain types of problems by converting the original problem into 
that of observing the behavior of a specific physical system. For 
example, we can solve ·systems of linear algebraic equations by the 
use of electrical or mechanical networks. A hybrid computer combines 
both digital and analog aspects. 

Gl 
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1 ft " " A digital computer does arithmetic in the sea eo wo;, a ye~-no 

t Th binary scale corresponds to the sequence of heads and sys em. e . _ . 
"tails" discussed in Chapter 1. Zeros and ones, hke heads and ta1ls 
are essentially oN and OFF symbols. (See Figure 3.1.) This is why we 
can use vacuum tube circuits, transistor circuits, solid state devices, 
and so forth, in computers. 

FIGURE 3.1 The Binary Number System 

ince multiplication can be carried out in terms of addition, and 
division in terms of multiplication and addition, all of the fundamental 
operations in the digital computer are done in terms of addition. 
Currently, commercially available computers require about one 
microsecond to add two 10-digit numbers and about 10 times as long 
to multiply two 10-digit number . In other words, in one second the 
computer can perform 100,000 multiplications of this formidable 
nature. This fantastic ability to do rapid arithmetic, and by simple 
extension, rapid symbol manipulation, is what has revolutionized 
science and society. 

A computer contains device for five main functions a pictured in 
Figure 3.2. Input signifi the proc s by which information nters the 
computer, while Output i the proce s whereby the results are taken 
out of the computer. Arithmetic indicates the part of the computer that 
perform the basic arithmetic operation on the data held in torage. 
Control signifie parts of the computer that dictate the functions to be 
performed by all the other part . 

The information as to the operations to be canied out by the 
computer i. contained in a compttter program, which may be written in 
any of a number of pecial computer languages, such as FORTRAN, 
BASIC, COBOL, ALGOL, or PLl. The logical organization of the 
sequence of operations is contained in a flow chart. To illustrate the 
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Storage 

Input Output 

Arithmetic 

FIGURE 3.2 The Logical Elements of a Compult>r 

basic idea, consider a flow chart for getting a reluctant student to 
school in the morning (Figure 3.3).. 

The successful application of statistical techniques to most prob
lems of importance requires extensive amounts of data handling : 
storage and retrieval of data and arithmetic processing of this data. 
There are a number of major obstacles: space, time, accuracy, and 
display. The huge ma s of data required often overwh lms even the 
largest of contemporary storage capacities; the time required to carry 
out the calculations is often prohibitively long; the input data are 
often of limi ted accuracy, which means that large numbers of arith
metical operations, and con equent round-off, produce unacceptable 
errors; the final results are so extensive that it is difficult to communi
cate them to the user in any fea ible fashion. The general principle to 
to be emphasized is that the use of a computer to extract information 
from data is seldom rout ine. 

Many major problems in the physical and ocial science can be 
translated into complex mathematical equations. With the use of 
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• Potential Dead End 

FIGURE 3.3 A Sample Flow Chart (Reprinted with permission from: Vincent S. 
Dornowski, Computers- Theory and Uses. Notional Science Teachers Association, 
Washington, D.C., 1964, p. 45) 
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sophisticated mathematical techniques these equations can be solved 
numerically by means of long sequence!? of arithmetic operations. 
As mentioned above, other types of problems involving logical opera
tions can also be transformed into arithmetic manipulation and re
solved by the digital computer. 

Most problems of importance in our society,· however, cannot be 
formulated totally in terms that permit a solution by digitial comput
er. They contain various imponderables susceptible only to that 
elusive quality called human judgment. 

Nonetheless, the computer can be profitably used for decision
making purposes in carefully selected components of significant 
problems. This utilization of the computer is part of the new field of 
artificial intelligence. One aspect of this activity is learning; that is, 
teaching the computer, where statistical ideas play a prominent role, 
to perform certain simple but extremely useful tasks. 

Significant improvements in the ability of the computer to carry 
out its many functions are constantly being made. Two of particular 
importance are miniaturization and parallelization. By miniaturization 
we mean the production of smaller, cheaper components that incrense 
both the availability and the speed of the computer. By paralleliza
tion we mean the ability of the computer to perform different opera
tions simultaneously. 

It is now generally recognized that the most efficient utilization of a 
digital computer to solve comple~ problems requires a man-machine 
partnership, with each member of the team contributing particular 
talents and with man occupying the principal role. 
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Chapter Four 

PROGRAMMED LEARNING 

One of the interesting ways in which the flexibility of the digital 
computer may be seen is in its use for training purposes. Many opera
tions of our society, as mentioned in Chapter 3, cannot be expressed in 
arithmetic terms. They can, however, be broken down into sequences 
of simple operations, often requiring choices at various stages. 
Consider, for example, the use o{ a digital computer as a teaching 
aid, a teaching machine. 

Suppose that we wish to drill a student in a language, say Latin. 
One function of the teacher is to describe the general structural fea
tures of the language, and to explain certain bnsic concepts. Others 
are far more complex, involving subtle combinations of psychological 
methods and assessment of the abilities of the student. Drilling, on 
the whole, however, is a low-level activity that can be safely left to 
animate or inanimate assistants. Let us see how we might employ a 
digital computer for this purpose. 

The basic point is that all possible questions and answers that we 
allow are enumerated ahead of time and labeled with numbers. Hence 
the instruction to display a specific question is an instruction to 
display a number. Suppose that the first question is the following: 

What is the first pe1·son singular of "to love?" 

67 
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Let us suppose that we want to use a multiple-choice format and 
display four possible answers for the student: 

1 2 3 

none of 
these 

4 

If the student chooses the right answer, amo, which is to say if he 
pushes the second button, or types in "2," the computer displays a 
second question and choice of answers; for example: 

What is the infinitive of "to love?" 

1 2 3 

The process continues in this fashion. 

none of 
these 

4 

There are a number of possibilities that we can explore if the 
student chooses the wrong answer: 

(I) The computer Can flash WRONG; CHOOSE ANOTHER ANSWER. 

(2) An explanation of the mistake can be provided, or a number 
of possible explanations. 

(3) The student can be referred to the appropriate place in the 
text where the correct answer is given. 

With the aid of a digital computer programmed in the foregoing 
fashion, on the basis of cooperation between an experienced teacher 
in the particular subject and a programmer, we readily can provide 
drill in any part of the subject when both the questions and the 
answers can be simply stated. We cannot expect a teaching machine 
to be of any use in providing fundamental concepts, nor in any gen
uinely complex area requiring subtlety. It is designed to supplement, 



Programmed Learning 69 

but not replace, the teacher. Note that this book is designed in part 
as a teaching machine. 1 

If we do not approve of multiple-choice questions, we can ask the 

student to type in his answer in certain standard format. In the near 

future we can expect to use two-way verbal communication with the 

computer as long as the questions and answers are both of simple form 
and prescribed ahead of time. The idea is again a simple one. The 

sound impulses are transformed into electrical impulses and proceed 
as before. 'Ve cannot expect anything like ordinary conversation. 
Once again, this is where the teacher plays a paramount role. 

Programmed instruction materials can be used as self-instruction 
if carefully prepared on the basis of extensive experience. The point 
is that a student can go into a booth and a computer acting like a 

teacher can instruct and test various subjects using different tech

niques. Programmed learning at a slightly more sophisticated level is 

also possible with the computer. Thus: 

Computer assisted instruction (CAl) can take many forms. At the 
most rudimentary level the trainee-machine interaction is minimal. The 
computer presents instructional material via a display such as a tele
printer or cathode-ray tube (CRT); the trainee scans the presentation 
and indicates when he is ready to go on by means of a switch or push
button. The computer then may give further information, or it may 
present questions whose answers are to be recorded in a notebook or 
programmed textbook. Again thll trainee notifies the computer when he 
is ready to proceed ... and so on to the end of the lesson. 

Here the level of interaction is limited to a relatively primitive se
quence without evaluation, interpretation or variation on the part of 
the computer. As refinement increases, the computer is brought into 
pln.y with growing subtlety and flexibility. 

First the relationship between trainee and machine is solidified by 
doing away with the text or notebook. The computer then presents all 
instructional material and records the trainee's responses. At a later 

1A medieval teaching machine used to train knights was known as u. 
"quintain," which consisted of an object (usually a shield) attached to a 
movable crossbar mounted on a post and used as a target in the sport of 
tilting. The appropriate response was for the knight to strike the shield 
directly in the center with.his lance; if struck off center, the device would 
deliver feedback by striking the horseman a blow ns he rode by. A "quintain" 
is pictured in The Random /louse Dictionary of the English Language. (New 
York: Random House, Inc., 1966), p. 1181. 
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stnge the computer actively scores the trainee and presents the results 
to him; by this time the displays could include pictorial matter that 
changes to show evolving relationships. Ultimately, as CAI approaches 
its full development, the computer continuously evaluates the trainee's 
responses and leads him through remedial material if he fails to demon
strate understanding of key points in the main presentation. At this · 
level displays can be as simple or as complex as the course material 
demands; and, if necessary, trainee responses can be in graphic form, 
conveyed to the computer by 'drawing' on the face of the scope with a 
light pen.• 

The main point is self-instruction, whether it is provided by a pro
grammed textbook that the student holds in his hand or by an elabo
rate computer-assisted educational system; these devices can be used 
in classroom situations involving both slow and fast learners. When 
there is a small body of knowledge to be learned by rote, such as the 
multiplication tables, a programmed book leads the student in small 
steps through a small amount of information until he has mastered 
the task. Computers will free classroom teachers from these low level 
activities and will give them more time for instruction. Teachers will 
have time to evaluate each student's work and to determine what is 
the right match between the use of programmed learning materials 
and individual instruction. A teacher may find it desirable to assign 
several students to work that involves programmed instructional 
materials while she concentrates the greater part of her efforts on one 
or two other children in another subject. Once again emphasis is upon 
a man-machine mixture, in which machines do what they Cf...n do very 
well (which is low-level rote work) while people do what they can do 
best (which is imaginative and creative thinking). 

The following idea hW:I often been ~:;uggestcd. A small box is located 
in a small room with a television screen in front of a desk where th~re 
is a typewriter. Programmed learning instruction materials are fed 
by a technician into a computer, a student pulls or pushes a knob; 
a report is sent electronically to the computer, where it is recorded on 
tape; and the whole operation during the period of instruction takes 
place without a teacher in the room. It is a mistake to think that the 
educational process will someday become completely automated; 

•"Command/Control & CAl," SDC Magazine, Volume 10, Number 2, 
February 1967, pp. 4-5. 
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instead of taking away from the teacher's function, the computer will 
actually enhance it. For the first time she will actually be able to 
handle classes with large numbers of students. The versatility of 
programmed instruction when assisted by computers should be 
emphasized: not only will it benefit slow learners and fast learners; it 
will be a way of keeping every student gainfully employed in the 
classroom. 

It may be true that we are about to see a revolution in our teaching 
methods, and that 20 years from now much of our education will be 
presented by automated computers and teaching machines; but what
ever the cost of these devices, it must be included in the current costs 
of public and private school operations. The most affluent schools and 
districts will, naturally, be the first to adopt the new technologies. 

EXAMPLES OF PROGRAMMED INSTRUCTION 

The Linear Program 
A linear program follows a sequential development of the material, 

with each student pmceeding in the same order regardless of his 
response. (See Figure 4.1.) Despite any errors, the student proceeds 

FIGURE 4.1 

from item to item, each of which is normally short, and proceeds 
through a gradual development. He is informed of the correctness or 
incorrectness of his replies. 

The Branching Program 

A branching program, through interaction with the student, 
presents instructions based on his previous responses. (See Figure 
4.2.) Item 1 presents information, followed by a test question on the 
material. A correct response refers the student to Item 5, the next 
unit of information; while an incorrect response refers him to either 
Item 9 or 13 for additional information before taking the test question 
again. It continues this way at Item 5 and through all subsequent 
items in the program. 
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FIGURE 4.2 
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Chapter Five 

SELECTING AT RANDOM 

By selecting an element at random from a collection of elements we 
mean simply that every element of the collection has the same prob
ability of being selected. Specifically, if one item is to be drawn at 
random from a collection containigg a finite number, n, of items, the 
probability of drawing any specified element is 1/n. 

Similarly, if k items are to be drawn at random from a collection of 
n elements, each possible subset of size k must have the same prob
ability of selection. (Just what this probability is, in terms of n and 
k, depends on whether the drawings arc made with or without re
placement and whether the order in which the elements appear is 
important. Once the mode of sampling has been determined, the 
appropriate probabilities can be found in Chapter 1.) 

How can random selection be achieved'? The items comprising the 
collection can be numbered, these numbers written down on slips of 
paper or counters of some sort, these slips or counters put into a 
container and thoroughly mixed, and then drawings can be made from 
the container. The number chosen determines the item to be selected 
from the collection. Whether this results in random selection depends 
on the physical process of mixing and drawing. 
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There is available a ten-sided die- actually a cylindrically shaped 
object whose cross section is a regular decagon- whose faces are 
labeled 0-9. A roll of this device produces a random decimal digit; two 
rolls yield two random decimal digits that can be taken to be one of the 
100 numbers 0-99; three rolls provide a random one of the 1000 . 

numbers 0-999, and so on. 
Another procedure for selecting at random is to use specially 

prepared tables of random numbers. Such a table is an array of 
numbers produced in such a way that each digit 0 through 9 appears 
with frequency 1/10, every pair of digits 00 through 99 appears with 
frequency 1/100, and so on. Perhaps the most famous table of random 
numbers is the set produced by the RAND Corporation. 1 An excerpt 
from this table appears at the end of this chapter. 

To illustrate the process of random selection, consider drawing 11 
items at random without replacement from a collection of 73 items. 
Only the composition of the sample, not the order in which it is 
drawn, is of importance. 

For the first method discussed one would put slips of paper num
bered from 1 to 73 into a container, stir, and drn.w 11 slips. 

Using the 10-sided die, one would make a series of pairs of rolls (or, 
equivalently, make a series of rolls of two such dice) and select the 
first 11 distinct numbers between 1 and 73. The repetition of a number 
already rolled, the occurrence of a number larger than 73 or of 00 is 
ignored and another pair of rolls is made. 

To use a table of random numbers, one selects a page and some 
starting point on the page2 and reads off pairs of nuro.bers from 
left to right beginning at the starting point. Suppose that one had 
selected p. 103 of the RAND Corporation tables (the reproduced 
extract) and the upper-left-hand corner of the page as the starting 
point. (Note that the first column of five digits merely number the 
rows of the table and are not random digits.) Reading off pairs of num-

v./.,/.,/./ ././ ./ ./ 
bers, one obtains 12, 65, 16, 46, 11, 76, 97, 51, 09, 86, 99, 69, 76, 69, 25, 

,/ .,/ 

75, 73, 25, 35, .... Notice that 20 pairs of numbers had to be read off 

1The RAND Corporation, A Million Random Digi~ with 100,000 Normal 
Deviates. (Glencoe, Illinois: The Free Press, 1955). 

•The introduction to the RAND Corporation tables suggests that these be 
randomly selected also and that one take steps to assure that on different 
occasions, different portions of the tables be used. 
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before 11 suitable numbers (that is, between 1 and 73) were found. 
One had to ignore repetitions (16, 69, 25) and numbers larger than 73 
(76, 97, 86, 99, 76, 75) in the selection process. 

The ideas inherent in the preceding discussion should be sufficiently 
clear to let the reader construct procedures for sampling with replace
ment as well as for obtaining ordered samples. 
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Table of Random Digits 
C!) 

05100 12651 61646 11769 75109 86996 97669 25757 32535 07122 76763 

05101 81769 74436 02630 72310 45049 18029 07469 42341 98173 79260 

05102 36737 98863 77240 76251 00654 64688 09343 70278 67331 98729 t"r.l 
"' 

05103 82861 543il 76610 94934 72748 44124 05610 53750 95938 01485 ~ 
R 

05104 21325 15732 24127 37431 09723 63529 73977 95218 96074 42138 ~· 

05105 74146 47887 62463 23045 41490 07954 22597 60012 98866 90959 a 
05106 90759 64410 54179 66075 61051 75385 51378 08360 95946 95547 ~ 

05107 55683 98078 02238 91540 21219 17720 87817 41705 95785 12563 ~ ;:s 

05108 79686 17969 76061 83748 55920 83612 41540 86492 06447 60568 ~ 

05109 70333 00201 86201 69716 78185 62154 77930 67663 29529 75116 ~ 

05110 14042 53536 07779 04157 41172 36473 42123 43929 50533 33437 

05111 59911 08256 06596 48416 69770 68797 56080 14223 59199 30162 

05112 62368 62623 62742 14891 39247 52242 98832 69533 91174 57979 

05113 57529 97751 54976 48957 74599 08759 78494 52785 68526 64618 

05114 15469 90574 78033 66885 13936 42117 71831 22961 94225 31816 

05115 18625 23674 53850 32827 81647 80820 00420 63555 74489 80141 

05116 74626 68394 88562 70745 23701 45630 65891 58220 35442 60414 

05117 11119 16519 27384 90199 79210 76965 99546 30323 31664 22845 

05118 41101 17336 48951 53674 17880 45260 08575 49321 36191 17095 

05119 32123 91576 84221 78902 82010 30847 62329 63898 23268 742,83 

05120 26091 68409 697CI4 82267 14751 13151 93115 01437 56945 89661 

05121 67680 79790 48462 59278 44185 29616 76531 19589 83139 28454 

05122 15184 19260 14073 07026 25264 08388 27182 22557 61501 67481 

05123 58010 45039 57181 10238 36874 28546 37444 80824 63981 39942 

05124 56425 53996 86245 32623 78858 08143 60377 42925 42815 11159 



05125 82630 84066 13592 60642 17904 99718 63432 88642 37858 25431 
05126 14927 40909 23900 48761 44860 92467 31742 87142 03607 32059 
05127 23740 22505 07489 85986 74420 21744 97711 36648 35620 97949 
05128 32990 97446 03711 63824 07953 85965 87089 11687 92414 67257 
05129 05310 24058 91946 78437 34365 82469 12430 84754 19354 72745 

05130 21839 39937 27534 88913 49055 19218 47712 67677 51889 70926 
05131 08833 42549 93981 94051 28382 83725 72643 64233 97252 17133 
05132 58336 11139 47479 00931 91560 95372 97642 33856 54825 55680 
05133 62032 91144 75478 47431 52737 30289 42411 91886 51818 78292 
05134 45171 30557 53116 04118 58301 24375 65609 85810 18620 49198 

05135 91611 62656 60128 35609 63698 78356 50682 22505 01692 36291 
05136 55472 63819 86314 49174 93582 73604 78614 78849 23096 72825 
05137 18573 09729 74091 53994 10970 86557 65661 41854 26037 53296 
05138 60866 02955 90288 .}32136 83644 94455 06560 78029 98768 71296 
05139 45043 55608 82767 60890 74646 79485 13619 98868 40857 19415 

05140 17831 09737 79473 75945 28394. 79334 70577 38048 03607 06932 [(:! 
05141 40137 03981 07585 18128 11178 32601 27994 05641 22600 86064 (;)' 

05142 77776 31343 14576 97706 16039 47517 43300 59080 80392 63189 C'> 

0514:3 69605 44104 40103 95635 05635 81673 68657 09559 23510 95875 !· 
05144 19916 52934 26499 09821 87331 80993 61299 36979 73599 35055 a 
05145 02606 58552 07678 56619 65325 30705 99582 53390 46357 13244 :::0 

~ 

05B6 65183 73160 87131 35530 47946 09854 18080 02321 05809 04898 [ 
05B7 10740 98914 44916 11322 89717 88189 30143 52687 19420 60061 0 

05148 98642 89822 71691 51573 83666 61642 46683 33761 47542 23551 
~ 

05149 60139 25601 93663 25547 02654 94829 48672 28736 84994 13071 

Reprinted with permission from: The RAND Corporation, A MiUior1 Random Digits With 100,000 Normal Deviates. (Glencoe, Illinois: ~ 
~ 

The Free Press, 1955), p. 103. 





Chapter Six 

NEW COMPUTATIONAL AIDS 
FOR EDUCATORS 

JOSS 1 

JOSS is a personalized computigg service developed at The RAND 
Corporation that allows the user- student, teacher, or researcher
to interact directly with a central high-speed computer by means of a 
typewriter console. (See Figure 6.1.) Unlike most other systems de
signed for computer specialists, no technical "language" or program
ming techniques need be learned to operate JOSS. The student 
communicates with JOSS in simple imperative English language sen
tences that follow the standard rules for spelling, capitalization, 
punctuation, spacing, and so on. (See Figure 6.2.) Because of the ease 
with which JOSS can be learned, elementary and high-school students 
can use it to solve problems in basic arithmetic, algebra, trigonome
try, and logic. Professional mathematicians, engineers, and others also 
use it in their research work to solve more sophisticated numerical 
problems. · 

1JOSS is the trademark and service mark of The RAND Corporation for its 
computer program o.nd services using that program. 

79 



80 N ew Computational Aids for Educators 

A unique feature is the dialogue that is possible between the student 
and JOSS ; whenever a user of the console violates a mathematical 
convention or a standard rule of English grammar, JOSS will type for 
him an "error message" - an instruction that helps him decide what 
he did wrong so that he can correct his error and continue. 2 

FIGURE 6.1 The JOSS Console, Consisting of a Modified IBM Selectric Typewriter 
and a Control Box 

JOSS is ideally suited for solving numerical problems ; the student 
is able to approach his console with only a partially formed idea of 
his problem and yet come away in a few minutes or hours with the 
correct answer. He must be able to specify " all data relevant to de
scribing his problem and the algorithm for its solution, but need 
only provide a minimum of detail regarding how his problem is to be 

!There is also a users' manual of operation entit led The JOSS Primer, 
coauthored by S. L. Marks and G. W. Armerding (RAND Memorandum 
RM-5220-PR) which the student can consult for assistance when he is in 
trouble at the console. 
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solved .... " 3 The JOSS service is estimated to be about ten times 
faster than the usual approach used in solving problems by a com
puter. The result has been that many problems that formerly were not 
worth the effort are being solved with ease by the use of JOSS. 

The JOSS service is time-shared; that is, it provides simultaneous 

Type 2+2. 
2+2 = 4 

T ypn "ok" d 501). 3' () 1000. 
ok 
type 2•2 
Eh7 
Set x=3. 
Type x. 

X = 3 
Ty~e x+2, x-2. x·2, x/2, x·2. 

x+2 = 5 
x-2 = 1 
)(• 2 = 6 
x/2 = 1.5 
x'2 = 9 

Type i(Jx-51· 3+4) · 2- 15] · 3+10. 
(( Jx-5]· 3+4) · 2-15] · 3+10 = 25 
x=7 
Type (x-7(· 3+4) · 2 • 
Type ((lx-51·3+4)·2-15)·3+10. 
[( Jx-51· 3+4)· 2-15]· 3+10 = 25 
Type sqrt (3)._, sqrt (4). 

sqrt ( 3) = 1. 7320508 1 

sqrt (4) = 2 
Type sqrt (- 1). 
I have a negative argument for sqrt. 
Type sin 1.5). cos (.5). 

sin (.5) = .479425539 
cos (.5) = .877582562 

Type exp (0), exp ( 1). exp (20). 
exp (0) = 1 
exp (1) = 2.71828183 

exp (20) = 4.85165195·10'8 
y c -1.2345G·10'2 
Type Y.ip(y). fp(y).up(y).xp(yl. 

y = -123.456 
ip(y) = -123 
fp(y) = -.456 
dp(y) = -1.23456 
xp(y] = 2 

N=100 
Type surn (i=1(1)N:i'2]. 
sum [i=1(1)N:i'2] = 338350 
Type prod (N,N+1,2· N+1]/6. 
prod (N,N+1,2 · N+1 I /6 = 338350 

FIGURE 6.2 An El\ample of JOSS, Showing the Actual Typewriter Output 

3G. E. Bryan, .JOSS: Introduction to the System Implementation (RAND 
Paper P-3486, November 1966), p. 1. 



82 New Computational Aids for Educators 

service to a number of different users at the same time, each at their 
own individual typewriter consoles, which are connected ~y telephone 
lines to a central computer. 

The name JOSS stands for "JOHNNIAC Open Shop System." 
Work was first started on JOSS in 1960. The system was originally· 
implemented on the JOHNNIAC computer (which is now displayed 
at the Los Angeles County Museum and was riamed in honor of John 
Von Neumann) by J. C. Shaw of RAND, to whom goes the bulk of 
the credit for the design. 

THE RAND TABLET4 

The RAND Tablet is a graphical input device that enables the 
student, using a special stylus, to input graphic information into a 
digital computer, and when accompanied by an appropriate computer 

FIGURE 6.3 

4T. 0. Ellis and M. R. Davis, "Digital Computer and Graphic Input 
System." (United States Patent No. 3,399,401, issued August 27, 1968). 
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program, it can be used to solve mathematical and other problems in 
a natural way. (See Figure 6.3.) 

The Tablet, invented by T. 0. Ellis and M. R. Davis at The RAND 
Corporation, consists of a 10 in. X 10 in. horizontal surface on which 
the student writes or sketches with a. stylus ("electronic pen"). His 
manipulations of the stylus- handwritten text (mathematical equa
tions, formulas, and so on) or hand drawings (curves, sketches, and so 
on)- serve as inputs to the computer and also to a cathode-ray tube 
(CRT) display. The computer through appropriate programming 
(GRAIL,6 and so on) interprets the manipulations of the stylus in 
such a way that as the student, 

... draws, moves, erases, and connects the various graphic symbols, 
the system responds with a variety of feedback. The primary response 
when the physical stylus is pressed lightly against the Tablet (closing a 
microswitch in the tip) is the appearance of display 'ink.' The ink fol
lows the virtual stylus movement until the stylus is raised and the 
switch opens. The ink track is processed to determine whether the 
symbol and its position are appropriate. If everything checks, the track 
is replnced by a stylized symbol. Otherwise, the ink merely disappears.• 

The fact that the student is "on-line" with the computer makes it 
possible to express himself directly and naturally, and he has the 
ability to control the activities of the computer and the information 
it presents to him. .• 

The RAND Tablet has potential in such applications as digitizing 
map information and as a working tool for mathematicians or en
gineers in those areas where graphical languages are applied to man
machine interactions. For example, one of its uses has been in the area 
of building design .... A scaled floor plan of a school building is 
drawn on the writing surface of the Tablet and then viewed on the 
CRT display during study and analysis; the data thus generated can 
then be transmitted to the digital computer for comparison of 
optimum floor space allowances, classroom positioning, student flow 
patterns, and so on. This technique is useful in the design of optimum 
patterns for school or college libraries. 

6GRAIL-Graphic /npu~ Language, which is under development at The 
RAND Corporation. 

•T. 0. Ellis and W. L. Sibley, On the Problem of Directness in Camputer 
Graphics. (RAND Paper P-3697, March 1968), p. 12. 
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Other educational applications of the RAND Tablet exist in the 
areas of mathematical models, psychological testing,_ automated 

teaching, and situations involving the use of teacher-student ques

tionnaires. 

REFERENCES 
JOSS 

Baker, C. L., JOSS: Introduction to a Helpful Assistant. (RAND 
Memorandum RM-5058-PR, July 1966). 

This is a description of the capability of the JOSS system, presented 
through a step-by-step demonstration of the process, with illustrative 
material taken from the actual JOSS output. 

Bryan, G. E., JOSS: Introduction to the System Implementation. 
(RAND Paper P-3486, November 1966). 

This paper provides an overview of the JOSS system, its history, a 
description of the hardware, and the JOSS language. 

Bryan, G. E., and Smith, J. W., JOSS Language. (RAND Memoran
dum RM-5377-PR, August 1967). 

This memorandum is designed to serve as an introduction to JOSS for 
people with some programming experience. It presents summaries of 
the actions that can be requested of JOSS and of the language for re
questing these actions. 

Gimble, E. P., JOSS: Problem Solving for Engineers. (RAND 
Memorandum RM-5322-PR, May 1967). 

This memorandum, written from the engineer's point of view, intro
duces the busic principle of JOSS operation, in a sequence designed to 
enable the engineer to solve ~uccessively more involved scientific prob-

• !ems. It contains an overview of the JOSS ~ystcm, including descrip
tions of the console and the language. 

Marks, S. L., and Armerding, G. W., The JOSS Primer. (RAND 
Memorandum RM-5220-PH, August 19G7). 

This is the users' manual of operation. It is designed to introduce JOSS 
to the beginning user by means of examples thut cun be followed by a 
reader without uny programming experience. 



References 85 

THE RAND TABLET 

Davis, l\1. R., and Ellis, T. 0., The RAND Tablet: A ilfa11rMachine 
Graphical Communication Device. (RAND Memorandum RM-4122-
ARPA, August 1964). 

This is the original report describing the RAND Tablet which is be
lieved to be the first such man-machine graphical communication device 
that is digital. 

Ellis, T. 0., and Sibley, W. L., On the Problem of Directness in 
Computer Graphics. (RAND Paper P-3697, :March 1968). 

This report describes on-going work in the field of "Computer Graph
ics" and also discusses the history of the RAND Tablet. 





Chapter Seven 

THE NEXT DECADE 
IN EDUCATION 

In this book, wo lmvu mldres!lecl oun;ulveEI to the bt,cst dcvclop
lllCnls iu ecluenlion in llw field!! or progmmnwrJ (ertrninp; tcxt.R, COm

puter-assisted instruction, new computational aids for learning, and 
so on. A word should now be added about how these developments 
will apply to schools and colleges in the future. 

Our country has entered the 1970s in a state of dramatic social 
change which is affecting all of our institutions, especially education. 
This occurs at a time when studen-t enrollments in colleges and in 
elementary and secondary schools, both public and private, have 
increased steadily and sharply since the 1950s; in 1969 it has been 
estimated that there were about 60 million students in public and 
private schools in grades K-12 and another 7 million attending 
colleges and universities. If our extrapolations or the trend are borne 
out, we can expect to see in the next few decades an eventual total 
school and college enrollment of over 100 million students. 1 (See 
Figure 7.1.) 

1These extrapolations were made using u linear least-squares fit to a\'nilable 
data from 1950 in the case of public schools (K-12), from 1940 in the case of 
nonpublic schools (K-12), and from 1950 for higher education. As with all 
extrapolations, the present ones must be cautiously intcrpn•ted. Their ac
curacy is subject to many Uliknowable contingencies, such as worldwide and 
national economic, social, and political developments, trends in family plan
ning (the "pill"), and so on. 
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FIGURE 7.1 School and College Enrollments from 1870-2000 

SOURCES: Historical Statistics of the United States, Colonial Times to J9S7, Supple
ment 1962 
Statistical Abstract of the United States, 1969 
Digest of Educational Statiatics, 1968 
Projections of Educational Statistics to 1975-1976 

The sheer number of students will make use in the classroom of 
educational television, computer-assisted instruction, programmed 
learning devices, and so on, very attractive. Indeed, these innovations 
arc already now in limited use. 

It is becoming generally recognized that accountability in out· 
public schools and colleges is overdue; far too long we have been 
"wasteful" in education in the United States. Classroom space is 
going unused at certain hours and days of the week; teachers are not 
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always performing at their capacities (due in part to some weaknesses 
in the tenure system); grading, testing, and evaluation methods used 
in our schools and colleges are in need of much study and improve
ment, and so on. The rising costs of teachers' salaries, mounting 
student enrollments, increased costs of new building construction, 
faculty and student unrest, all these are factors which point to 
accountability as a key word in education in the 1 970s and beyond. 
As a result, parents, taxpayers, legislators, and the general public 
will be seeking educational reforms in such areas us teacher tenure, 
faculty promotion practices, obsolete staffing procedures, credential 
and Ph.D. requirements to teach, and so on. Even the "compulsory 
attendance" law, which requires attendance at school until either 
a certain age or the receipt of a diploma, must be considered for possi
ble change. (In some districts today, this law is not rigidly enforced 
because of insufficient truant officers, on the one hand, and because 
some school administrators realize that their overall discipline prob
lems are eased by the absence of certain students, on the other.) 

Public education in the past has been :t monopoly; now this is 
changing and on the horizon is competition, not just competition from 
nonpublic (private) schools but from business itself. The manufac
turers of the new educational devices, the "outsiders" who have stood 
by and seen their materials and machines unused or misused, can be 
expected in the next decade to move into the teaching field themselves. 
This has, for some time, been the • case with post-secondary trade 
schools. Certain computer manufacturing firms (for example, Control 
Data Corporation) and othet· private companies, are now offering 
commercial courses of study in computer programming and in com
puter maintenance. Already, some school districts have contracted 
out to private firms some of the functions which traditionally were the 
domains of the public school, (e.g., the San Diego City Schools recently 
talked with t'vo printte companies which will "guarantee" reading 
improvement of minority-gl'Oup students or face a financial penalty. 
The two firms are Educational Development Laboratories of New 
York, a subsidiary of the l\IcGmw-Hill Publishing Company, and 
Science Research Associates of Chicago, a subsidiary of IBl\,1). When 
the results of these, and other, experimental pl'Ograms become known, 
state legislatures will surely be making certain changes in the educa
tion law. Program budgeting, cost analysis, and statistical tech
niques (many of which arc far more sophisticated than those described 
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in the second chapter of this book)2 are a necessary part of the evalua
tion of the affectiveness (and effectiveness) of these nmv programs. 

There is much evidence, therefore, that needed educational reforms 
will occur, at all levels, in our public schools and colleges during the . 
next decade and that some of the ideas described in this book will 
play an important role in these reforms. 

2A fuct which suggests thut one should pursue his study of stu tis tics beyond 
the present book. 
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TABLE OF SQUARES AND SQUARE ROOTS 

N N2 VN ...;'iON N N2 VR ...;'iON 

1 1 1.00 000 3.16 228 50 2 600 1.01 fo7 22.36 07 
2 4 1.41 421 4.47 214 61 2 601 7.14 143 22.58 •32 
3 9 1.73 205 5.47 723 52 2 704 7.21 110 22.80 35 
4 16 2.00 000 6.32 456 63 2 809 7.28 Oil 23.02 17 
5 25 2.23 607 7.07 107 64 2 916 7.34 847 23.23 79 

65 3 025 7.41 620 23.45 21 
6 36 2.44 949 7.74 597 
7 49 2.64 575 8.36 660 56 3 136 7.48 331 23.66 43 
8 64 2.82 843 8.94 427 57 3 249 7.54 983 23.87 47 
9 81 3.00 000 9.48 683 68 3 364 7.61 577 24.08 32 

10 100 3.16 228 10.00 00 59 3 481 7.68 115 24.28 99 
60 3 600 7.74 597 24.49 49 

11 121 3.31 662 10.48 81 
12 144 3.46 410 10.95 45 
13 169 3.60 555 11.40 18 
14 196 3.74 166 I 1.83 22 
15 225 3.87 298 12.24 74 

61 3 721 7.81 025 24.69 82 
62 3 844 7.87 401 24.89 98 
63 3 969 7.93 725 25.09 98 
64 4 096 8.00 000 25.29 82 
65 4 225 8.06 226 25.49 51 

16 256 4.00 000 12.64 91 
17 289 4.12 311 13.03 84 
18 324 4.24 264 13.41 64 
19 361 4.35 890 13.78 40 
20 400 4.47 214 14.14 21 

66 4 356 8.12 404 25.69 05 
67 4 489 8.18 635 25.88 44 
68 4 624 8.24 621 26.07 68 
69 4 761 8.30 662 26.26 79 
70 4 900 8.36 660 26.45 75 

21 441 4.58 258 14.49 14 
22 484 4.69 042 14.83 24 
23 529 4.79 583 15.16 58 
24 576 4.89 898 15.49 19 
25 625 5.00 000 15.81 14 

71 5 041 8.42 615 26.64 58 
72 5 184 8.48 528 26.83 28 
73 5 329 8.54 400 27.01 85 
74 5 476 8.60 233 27.20 29 
75 5 625 8.66 025 27.38 61 

26 676 5.09 902 16.12 45 
27 729 5.19 615 16.43 17 
28 784 5.29 150 16.73 32 
29 841 5.38 516 17.02 94 
30 900 5.47 723 17.32 05 

76 5 776 8.71 780 27.56 81 
77 5 929 8.77 496 27.74 89 
78 6084 8.83 176 27.92 85 
79 6 241 8.88 819 28.10 69 
80 6400 8.94 427 28.28 43 

31 961 5.56 776 17.60 68 
32 1 024 5.65 685 17.88 85 
33 1 089 5.74 456 18.16 59 
34 1 156 5.83 095 18.43 91 
35 I 225 5.91 608 18.70 83 

81 6 561 9.00 000 28.46 05 
82 6 724 9.05 539. 28.63 56 
83 6 889 9.11 043 28.80 97 
84 7 056 9.16 515 28.98 28 
85 7 225 9.21 954 29.15 48 

30 1 296 6.00 000 18.97 37 
37 1 369 6.08 276 19.23 54 
38 I 444 6.16 441 19.49 36 
39 I 521 6.24 500 19.74 84 
40 1600 6.~2 456 20.00 00 

80 7 396 9.27 362 29.32 58 
87 7 569 9.32 738 29.49 58 
88 7 744 9.38 083 29.66 48 
89 7 921 9.4~ 398 29.8~ 29 
90 8 100 9.48 683 30.00 00 

41 I 681 6.40 312 20.24 85 
42 I 764 6.48 074 20.49 39 
43 I 849 6.55 744 20.73 64 
44 I 9~6 6.6~ ~25 20.97 62 
45 2 025 6.70 820 21.21 32 

91 8 281 9.53 939 30.16 62 
92 8 464 9.59 166 30.33 15 
93 8 649 9.64 365 30.49 59 
94 8 836 9.69 536 30.65 94 
95 9 025 9.74 679 30.82 21 

46 2 116 6.78 233 21.44 76 96 9 216 9.79 796 30.98 39 
47 2 209 6.85 565 21.67 95 97 9 409 9.84 886 3l.l4 48 
48 2 304 6.92 820 21.90 89 98 9 604 9.89 949 31.30 50 
49 2 401 7.00 000 22.13 59 99 9 801 9.94 987 31.46 43 
50 2 500 7.07 107 22.36 07 100 10000 10.00 000 31.62 28 

N N2 Vii v'10N N N2 v'N v10N 
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N N' v'N V1oN N N' v'N V1oN 
:--- f--
100 10 000 10.00 00 31.62 28 11SO 22 500 12.24 74 38.7298 
101 10 201 10.04 99 31.78 05 161 22 801 12.28 82 38.85 87 
102 10 404 10.09 95 31.93 74 152 23104 12.32 88 38.98 72 
103 10 609 10.14 89 32.09 36 153 23 409 12.36 93 39.11 52 
104 10 816 10.19 80 32.24 90 154 23 716 12.40 97 39.24 28 
105 11 025 10.24 70 32.40 37 155 24025 .12.44 99 39.37 00 

106 11 236 10.29 56 32.55 76 11S6 24 336 12.49 00 39.49 68 
107 11 449 10.34 41 32.71 09 157 24 649 12.53 00 39.62 32 
108 11 664 10.39 23 32.86 34 158 24 964 12.56 98 39.74 92 
109 11 881 10.44 03 33.01 51 159 25 281 12.60 95 39.87 48 
110 12 100 10.48 81 33.16 62 160 25 600 12.64 91 40.00 00 

111 12 321 10.53 57 33.31 67 161 25 921 12.68 86 40.12 48 
112 12 544 10.58 30 33.46 64 162 26 244 12.72 79 40.24 92 
113 12 769 10.63 01 33.61 55 163 26 569 12.76 71 40.37 33 
114 12 996 10.67 71 33.76 39 164 26896 12.80 62 40.49 69 
115 13 225 10.72 38 33.91 16 165 27 225 12.84 52 40.62 02 

110 13 456 10.77 03 34.05 88 166 27 556 12.88 41 40.74 31 
117 13 689 10.81 67 34.20 53 167 27 889 12.92 28 40.86 56 
118 13 924 10.86 28 34.35 11 168 28 224 12.96 15 40.98 78 
119 14 161 10.90 87 34.49 64 169 28 561 13.00 00 41.10 96 
120 14 400 10.95 45 34.64 10 170 28 900 13.03 84 41.23 11 

121 14 641 11.00 00 34.78 51 171 29 241 13.07 67 41.35 21 
122 14 884 11.04 54 34.92 85 172 29 584 13.11 49 41.47 29 
123 15 129 11.09 05 35.07 14 173 29 929 13.16 29 41.59 33 
124 15 376 1l.l3 55 35.21 36 174 30 276 13.19 09 41.71 33 
125 15 625 1l.l8 03 35.35 53 175 30 625 13.22 88 41.83 30 

120 15 876 11.22 50 35.49 65 176 30 976 13.26 65 41.95 24 
127 16129 11.26 94 35.63 71 177 31 329 13.30 41 42.07 14 
128 16 384 11.31 37 35.77 71 178 31684 13.34 17 42.19 00 
129 16 641 11.35 78 35.91 66 179 32 041 13.37 91 42.30 84 
130 16 900 11.40 18 36.05 65 180 32400 13.41 64 42.42 64 

131 17 161 11.44 55 36.19 39 181 32 761 13.45 36 42.54 41 
132 17 424 11.48 91 36.33 18 182 33124 13.49 07 42.66 15 
133 17 689 11.53 26 36.46 92 183 33 489 13.52 77 42.77 85 
134 17 956 11.57 58 36.60 60 184 33 856 13.56 47 42.89 52 
135 18 225 11.61 90 36.74 23 185 34 225 13.60 15 43.01 16 

130 18 496 11.66 19 36.87 82 186 34 696 13.63 82 43.12 77 
137 18 769 11.70 47 37.01 35 187 34 969 13.67 48 43.24 35 
138 19 044 11.74 73 37.14 84 188 35 344 13.71 13 43.35 90 
139 19 321 11.78 98 37.28 27 189 35 721 13.74 77 43.47 41 
140 19 600 11.83 22 37.41 66 190 36100 13.78 40 43.58 90 

141 19 881 11.87 43 37.55 00 101 36 481 13.82 03 43.70 35 
142 20 164 11.91 64 37.68 29 192 36864 13.85 64 43.81 78 
143 20 449 U.95 83 37.81 53 193 37 249 13.89 24 43.93 18 
144 20 736 12.00 00 37.94 73 194 37 636 13.92 84 44.04 54 
145 21025 12.04 16 38.07 89 195 38 025 13.96 42 44.15 88 

146 21316 12.08 30 38.20 99 190 38 416 14.00 00 44.27 19 
147 21 609 12.12 44 .38.34 06 197 38 809 14.03 57 44.38 47 
148 21 904 12.16 55 38.47 08 198 39 204 14.07 12 44.49 72 
149 22 201 12.20 66 38.60 05 199 39 601 14.10 67 44.60 94 
150 22 600 12.24 74 38.72 98 200 40 000 14.14 21 44.72 14 
f-

N N" ¥N V10N N N' ¥N V1oN 
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N N" v'N ViON N N" v'N V1oFi 

200 40 000 14.14 21 44.7214 230 62600 15.ai 14 50.0000 
201 40401 14.17 74 44.83 30 251 63 001 15.84 30 50.09 99 
202 40804 14.21 27 44.94 44 252 63 604 15.87 45 50.19 96 
203 41 209 14.24 78 45.05 55 253 64 009 15.90 60 50.29 91 
204 41 616 14.28 29 45.16 64 254 64 516 15.93 74 50.39 84. 
205 42 025 14.31 78 45.27 69 255 65 025 15.96 87 50.49 75 

~06 42 436 14.35 27 45.38 72 236 65 536 16.00 00 50.59 64 
207 42 849 14.38 75 45.49 73 257 66 049 16.03 12 50.69 52 
208 43 264 14.42 22 45.60 70 258 66 564 16.06 24 50.79 37 
209 43 681 14.45 68 45.71 65 259 67 0111 16.09 35 50.89 20 
210 44 100 14.49 14 45.82 58 260 67 600 16.12 45 50.99 02 

211 44 521 14.52 58 45.93 47 261 68 121 16.15 55 51.08 82 
212 44 944 14.56 02 46.04 35 262 68 644 16.18 64 51.18 59 
213 45 369 14.59 45 46.15 19 263 69 169 16.21 73 51.28 35 
214 45 796 14.62 87 46.26 01 264 69 696 16.24 81 51.38 09 
215 46 225 14.66 29 46.36 81 265 70 225 16.27 88 51.47 82 

216 46656 14.69 69 46.47 58 266 70 756 16.30 95 51.57 52 
217 47 089 14.73 09 46.58 33 267 71 289 16.34 01 51.67 20 
218 47 524 14.76 48 46.69 05 268 71824 16.37 07 51.76 87 
219 47 961 14.79 86 46.79 74 269 72 361 16.40 12 51.86 52 
220 48400 14.83 24 46.90 42 270 72 900 16.43 17 51.96 15 

221 48 841 14.86 61 47.01 06 271 73 441 16.46 21 52.05 77 
222 49 284 14.89 97 47.11 69 272 73 984 16.49 24 52.15 36 
223 49 729 14.93 32 47.22 29 273 74 629 16.62 27 62.24 94 
224 50 176 14.96 66 47.32 86 274 75 076 16.55 29 52.34 50 
225 50 625 15.00 00 47.43 42 275 75 625 16.58 31 52.44 04 

~26 51 076 15.03 33 47.53 95 
227 51 529 15.06 65 47.64 45 

276 76176 16.6132 52.63 6"/ 
277 76Z29 16.64 33 52.63 08 

228 51 984 15.09 97 47.74 93 278 77 284 16.67 33 52.72 57 
229 52 441 15.13 27 47.85 39 279 77 841 16.70 33 52.82 05 
230 52 SJOO 15.16 58 47.95 83 280 78 400 16.73 32 52.9160 

~31 53 361 15.19 87 48.06 25 
232 53 824 15.23 15 48.16 64 

281 78 961 )<; "76 31 53.00 94 
282 79 524 !<:i./9 29 53.10 37 

233 54 289 15.26 43 48.27 01 
234 54 756 15.29 71 48.37 35 

283 80 089 16.82 2(, 53.19 77 
284 so 656 16.85 23 53.29 17 

235 55 225 15.32 97 48.47 68 285 81 225 16.88 19 53.38 54 

236 65 696 15.36 23 48.67 98 280 81 796 16.91 15 53.47 90 
237 66 169 15.39 48 48.68 26 ";!87 82 369 16.94 11 63.57 24 
238 66 644 15.42 72 48.78 52 288 82 944 16.97 06 53.66 56 
239 67 121 15.45 96 48.88 76 289 83 521 17.00 00 53.75 87 
240 57 600 15.49 19 48.98 98 290 84 100 17.02 94 53.85 16 

~·U 58 081 15.52 42 49.09 18 
242 58 564 15.55 63 49.19 35 

291 84 681 17.05 87 53.94 44 
292 85 264 17.08 80 54.03 70 

243 59 049 15.58 85 49.29 50 293 85 849 17.11 72 54.12 96 
244 59 536 15.62 05 49.39 64 294 86436 17.14 64 54.22 18 
245 60025 15.65 25 49.49 75 295 87 025 17.17 56 54.3139 

246 60 616 15.68 44 49.59 84 296 87 616 17.20 47 64.40 69 
247 61009 15.71 62 49.69 91 297 88 209 17.23 37 54.49 77 
248 61 604 15.74 80 49.79 96 298 88 804 17.26 27 64.68 94 
249 62 001 15.77 97 49.89 99 299 89 401 17.29 16 64.6809 
260 62 600 15.81 14 50.00 00 300 90 000 17.32 05 64.77 23 
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300 90 000 17.32 05 54.77 23 ~ISO 122 500 18.70 83 59.16 08 
301 90 601 17.34 94 54.86 35 351 123 201 18.73 50 59.24 53 
302 91 204 17.37 81 54.95 45 352 123 904 18.76 17 59.32 96 
303 91 809 17.40 69 55.04 54 353 124 609 18.78 83 59.41 38 

304 92416 17.43 56 55.13 62 354 125 316 18.81 49 59.49 79 

305 93 025 17.46 42 55.22 68 355 126 025 18.84 14 59.58 19 

306 93 636 17.49 29 55.31 73 3/S6 126 736 18.86 80 59.66 57 
307 94 249 17.52 14 55.40 76 357 127 449 18.89 44 59.74 95 
308 94 864 17.54 99 55.49 77 358 128 164 18.92 09 69.83 31 
309 95 481 17.57 84 55.68 78 
310 96 100 17.60 68 55.67 76 

359 128 881 18.94 73 59.91 66 
360 129 600 18.97 37 60.0000 

~11 96 721 17.63 52 55.76 74 
312 97 344 17.66 35 55.85 70 

361 130 321 19.00 00 60.08 33 
362 131 044 19.02 63 60.16 64 

313 97 969 17.69 18 55.94 64 363 131 769 19.05 26 60.24 95 
314 98 596 17.72 00 56.03 57 364 132 496 19.07 88 60.33 24 

315 99 225 17.74 82 56.12 49 365 133 225 19.10 50 60.41 62 

316 99 856 17.77 64 56.21 39 366 133 956 19.13 11 60.49 79 

317 100 489 17.80 45 56.30 28 367 134 689 19.15 72 60.58 05 
318 101 124 17.83 26 56.39 15 368 135 424 19.18 33 60.66 30 
319 101 761 17.86 06 56.48 Ol 369 136 161 19.20 94 60.74 54 
320 102 400 17.88 85 56.56 85 370 136 900 19.23 54 60.82 76 

~21 103 041 17.91 65 56.65 69 
322 103 684 17.94 44 56.74 50 

~11 137 641 19.26 14 60.9098 
372 138 384 19.28 73 60.99 18 

323 104 329 17.97 22 56.83 31 373 139 129 19.31 32 61.07 37 
324 104 976 18.00 00 56.92 10 374 139 876 19.33 91 61.15 55 
325 105 625 18.02 78 67.00 88 375 140 625 19.36 49 61.23 72 

~26 106 276 18.05 55 57.09 64 
327 106 929 18.08 31 57.18 39 

~76 141 376 19.39 07 61.31 88 
377 142 129 19.41 65 61.40 03 

328 107 584 18.11 08 57.27 13 378 142 884 19.44 22 61.48 17 
329 lOB 241 18.13 84 57.35 85 379 143 641 19.46 79 61.56 30 
330 108 900 18.16 59 57.44 56 380 144 400 19.49 36 61.64 41 

~31 109 561 18.19 34 57.53 26 
332 110 224 18.22 09 57.61 94 

381 145 161 19.51 92 61.72 52 
382 145 924 19.54 48 61.80 61 

333 110 889 18.24 83 57.70 62 383 146 689 19.57 04 61.88 70 
334 Ill 556 18.27 57 57.79 27 384 147 456 19.59 59 61.96 77 
335 112 225 18.30 30 57.87 92 385 148 225 19.62 14 62.04 84 

~6 112 896 18.33 03 57.96 55 
337 113 669 18.35 76 58.05 17 

386 148 996 19.64 69 62.12 89 
387 149 769 19.67 23 62.20 93 

338 114 244 18.38 48 58.13 78 388 160 544 19.69 77 62.28 96 
339 114 921 18.41 20 58.22 37 389 151 321 19.72 31 62.36 99 
340 115 600 18 43 91 58.30 95 390 152 100 19.74 84 62.45 00 

/J41 116 281 18.46 62 58.39 52 
342 116 964 18.49 32 58.48 08 

391 152 881 19.77 37 62.53 00 
392 153 664 19.79 90 62.60 99 

343 117 649 18.52 03 58.56 62 393 154 449 19.82 42 62.68 97 
344 118 336 18.54 72 58.65 15 394 155 236 19.84 94 62.76 94 
346 119 025 18.67 42 58.73 67 395 156 025 19.87 46 62.84 90 

~46 ll9 716 18.60 11 58.82 18 
347 120 409 18.62 79 58.90 67 

396 156 816 19.89 97 62.92 85 
397 157 609 19.92 49 63.00 79 

348 121 104 18.65 48 58.99 15 398 158 404 19.94 99 63.08 72 
349 121 801 18.68 15 59.07 62 399 159 201 19.97 50 63.16 64 
350 122 500 18.70 83 59.16 08 400 160 000 20.00 00 63.24 56 
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~ 160 000 20.00 00 63.24 56 
160 801 20.02 50 63.32 46 

14150 202 500 21~21 32 67.08 20 
451 203 401 21.23 68 67.15 65 

402 161 604 20.04 99 63.40 35 452 204 304 21.26 03 67.23 09 
403 162 409 20.07 49 63.48 23 453 205 209 21.28 38 67.30 53 
404 163 216 20.09 98 63.56 10 454 206 116 21.30 73 67.37 95 
405 164 025 20.12 46 63.63 96 455 207 025 21.33 07 67.45 37 

406 164 836 20.14 94 63.71 81 456 207 936 21.35 42 67.52 78 
407 165 649 20.17 42 63.79 66 457 208 849 21.37 76 67.60 18 
408 166 464 20.19 90 63.87 49 458 209 764 21.40 09 67.67 57 
409 167 281 20.22 37 63.95 31 459 210 681 21.42 43 67.74 95 
410 168 100 20.24 85 64.03 12 460 211 600 21.44 76 67.82 33 

f411 168 921 20.27 31 64.10 93 
412 169 744 20.29 78 64.18 72 
.413 170 569 20.32 24 64.26 51 

i61 212 521 21.47 09 67.89 70 
462 213 444 21.49 42 67.97 06 
463 214 369 21.51 74 68.04 41 

414 171 396 20.34 70 64.34 28 464 215 296 21.54 07 68.11 75 
415 172 225 20.37 15 64.42 05 465 216 225 21.56 39 68.19 09 

416 173 056 20.39 61 64.49 81 460 217 156 21.58 70 68.2642 
417 173 889 20.42 06 64.57 55 467 218 089 21.61 02 68.33 74 
418 174 724 20.44 50 64.65 29 468 219 024 21.63 33 68.41 05 
419 175 561 20.46 95 64.73 02 469 219 961 21.65 64 68.48 36 
420 176 400 20.49 39 64.80 74 470 220 900 21.67 95 68.55 65 

j42t 177 241 20.51 83 64.88 45 
422 178 084 20.54 26 64.96 15 

1471 221 841 21.70 25 68.62 94 
472 222 784 21.72 56 68.70 23 

423 178 929 20.66 70 65.03 85 473 223 729 21.74 86 68.77 50 
424 179 776 20.59 13 65.11 53 474 224 676 21.77 15 68.84 77 
,425 180 625 20.61 55 65.19 20 475 225 625 21.79 46 68.92 02 

426 181 476 20.63 98 65.26 87 1476 226 576 21.81 74 68.99 28 
427 182 329 20.66 40 65.34 52 477 227 529 21.84 03 69.06 62 
428 183 184 20.68 82 65.42 17 478 228 484 21.86 32 69.13 76 
429 184 041 20.71 23 65.49 81 479 229 441 21.88 61 69.20 98 
430 184 900 20.73 64 65.57 44 480 230 400 21.90 89 69.28 20 

fist 185 761 20.76 05 65.65 06 
432 186 624 20.78 46 65.72 67 

14st 231 361 21.93 17 69.35 42 
482 232 324 21.95 46 69.42 62 

433 187 489 20.80 87 65.80 27 483 233 289 21.97 73" 69.49 82 
434 188 356 20.83 27 65.87 87 484 234 256 22.00 00 69.67 01 
435 189 225 20.85 67 65.95 45 485 235 225 22.02 27 69.64 19 

436 190 096 20.88 06 66.03 03 480 236 196 22.04 54 69.71 37 
437 190 969 20.90 45 66.10 60 487 237 169 22.06 81 69.78 54 
438 191 844 20.92 84 66.18 16 488 238 144 22.09 07 69.85 70 
439 192 721 20.95 23 66.25 71 489 239 121 22.11 33 69.92 85 
440 193 600 20.97 62 66.33 25 490 240 100 22.13 59 70.00 00 

iut 194 481 21.00 00 66.40 78 491 241 081 22.15 85 70.07 14 
442 195 364 21.02 38 66.48 31 492 242 064 22.18 11 70.14 27 
443 196 249 21.04 76 66.55 82 493 243 049 22.20 36 70.21 40 
444 197 136 21.07 13 66.63 33 494 244 036 22.22 61 70.28 51 
445 198 025 21.09 50 66.70 83 495 245 025 22.24 86 70.35 62 

fi46 198 916 21.11 87 66.78 32 
447 199 809 21.14 24 66.85 81 

l4oo 246 016 22.27 11 70.42 73 
497 247 009 22.29 35 70.49 82 

448 200 704 21.1660 66.93 28 498 248 004 22.31 59 70.56 91 
449 201 601 21.18 96 67.00 75 499 249 001 22.33 83 70.63 99 
450 202 500 21.21 32 67.08 20 500 250 000 22.3607 70.71 07 
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llOO 250 000 22.36 07 70.71 07 llllO 302 500 23.45 21 74.16 20 
501 251 001 22.38 30 70.78 14 551 303 601 23.47 34 74.22 94 
502 252 004 22.40 54 70.85 20 552 304 704 23.49 47 74.29 67 
503 253 009 22.42 77 70.92 25 553 305 809 23.51 60 74.36 40 
504 254 016 22.44 99 70.99 30 554 306 916 23.53 72 74.43 12 
505 255 025 22.47 22 71.06 34 555 308 025 23.55 84 74.49 83 

ll06 256 036 22.49 44 71.13 37 IS ISO 309 136 23.57 97 74.56 54 
507 257 049 22.51 67 71.20 39 557 310 249 23.60 08 74.63 24 
508 258 064 22.53 89 71.27 41 558 311 364 23.62 20 74.69 94 
509 259 OBI 22.56 10 71.34 42 559 312 481 23.64 32 74.76 63 
610 260 100 22.58 32 71.41 43 560 313 600 23.66 43 74.83 31 

~u 261 121 22.60 53 71.48 43 
512 262 144 22.62 74 71.55 42 

!SOl 314 721 23.68 54 74.89 99 
562 315 844 23.70 65 74.96 67 

513 263 169 22.64 95 71.62 40 563 316 969 23.72 76 75.03 33 
514 264196 22.67 16 71.69 38 564 318 096 23.74 87 75.09 99 
515 265 225 22.69 36 71.76 35 565 319 225 23.76 97 75.16 65 

IS16 266 256 22.71 56 71.83 31 566 320 356 23.79 08 75.23 30 
517 267 289 22.73 76 71.90 27 567 321 489 23.81 18 75.29 94 
518 268 324 22.75 96 71.97 22 568 322 624 23.83 28 75.36 58 
519 269 361 22.78 16 72.04 17 569 323 761 23.85 37 75.43 21 
520 270 400 22.80 35 72.ll 10 570 324 900 23.87 47 75.49 83 

!l21 271 441 22.82 54 72.18 03 ll11 326 041 23.89 56 75.56 45 
522 272 484 22.84 73 72.24 96 572 327 184 23.91 65 75.63 07 
523 273 529 22.86 92 72.31 87 573 328 329 23.93 74 75.69 68 
524 274 576 22.89 10 72.38 78 574 329 476 23.95 83 75.76 28 
525 275 625 22.91 29 72.45 69 575 330 625 23.97 92 75.82 88 

ll26 276 676 22.93 47 72.52 59 576 331 776 24.00 00 75.89 47 
527 277 729 22.95 65 72.59 48 577 332 929 24.02 08 75.96 05 
528 278 784 22.97 83 72.66 36 578 334 084 24.04 16 76.02 63 
529 279 841 23.00 00 72.73 24 579 335 241 24.06 24 76.09 20 
530 280 900 23.02 17 72.80 11 580 336 400 24.08 32 76.15 77 

!l31 281 961 23.04 34 72.86 97 581 337 561 24.10 39 76.22 34 
532 283 024 23.06 51 72.93 83 582 338 724 24.12 47 76.28 89 
533 284 089 23.08 68 73.00 68 583 339 889 24.14 54 76.35 44 
534 285 156 23.10 84 73.07 63 584 341 056 24.16 61 76.41 99 
535 286 225 23.13 01 73.14 37 585 342 225 24.18 68 76.48 53 

!l30 287 296 23.16 17 73.21 20 ll86 343 396 24.20 74 76.55 06 
537 288 369 23.17 33 73.28 03 587 344 569 24.22 81 76.61 59 
538 289 444 23.19 48 73.34 85 588 345 744 24.24 87 76.68 12 
539 290 521 23.21 64 73.41 66 589 346 921 24.26 93 76.74 63 
540 291 600 23.23 79 73.48 47 590 348 100 24.28 99 76.81 15 

~41 292 681 23.25 94 73.55 27 
542 293 764 23.28 09 73.62 06 

IS91 349 281 24.31 05 76.87 65 
592 350 464 24.33 11 76.94 15 

543 294 849 23.30 24 73.68 85 593 351 649 24.35 16 77.00 65 
544 295 936 23.32 38 73.75 64 594 352 836 24.37 21 77.07 14 
545 297 025 23.34 52 73.82 41 595 354 025 24.39 26 77.13 62 

MO 298 116 23.36 66 73.89 18 596 355 216 24.41 31 77.20 10 
547 299 209 23.38 80 75.95 94 597 356 409 24.43 36 77.26 58 
548 300 304 23.40 94 74.02 70 598 357 604 24.45 40 77.33 05 
549 301 401 23.43 07 74.09 45 599 358 801 24.47 45 77.39 51 
550 302 500 23.45 21 74.16 20 600 360 000 24.49 49 77.45 97 
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~ 360000 24.49 49 77.45 97 
361 201 24.61 53 77.52 42 

650 422 500 25.49-51 80.62 26 
651 423 801 25.51 47 80.68 46 

602 362 404 24.63 67 77.58 87 652 425 104 25.53 43 80.74 65 
603 363 609 24.65 61 77.65 31 653 426 409 25.55 39 80.80 84 
604 364 816 24.57 64 77.71 74 654 427 716 25.57 34 80.87 03 
605 366025 24.59 67 77.78 17 655 429 025 25.59 30 80.93 21 

~06 367 236 24.61 71 77.84 60 
607 368 449 24.63 74 77.91 02 

~56 430 336 25.61 25 80.99 38 
657 431 649 25.63 20 81.05 55 

608 369 664 24.65 77 77.97 44 658 432 964 25.65 IS 81.11 72 
609 370 881 24.67 79 78.03 85 659 434 281 25.67 10 81.17 88 
610 372 100 24.69 82 78.10 25 660 435 600 25.69 OS 81.24 04 

611 373 321 24.i'1 84 78.16 65 661 436 921 25.70 99 81.3019 
612 374 544 24.73 86 78.23 04 662 438 244 25.72 94 81.36 34 
613 375 769 24.75 88 78.29 43 663 439 569 25.74 88 81.42 48 
614 376 996 24.77 90 78.35 82 664 440 896 25.76 82 81.48 62 
615 378 225 24.79 92 78.42 19 665 442 225 25.78 76 81.54 75 

616 37!i 456 2-\:.81 93 78.48 57 666 443 556 25.80 70 81.60 88 
617 380 689 24.83 95 78.54 93 667 444 889 25.82 63 81.67 OL 
618 381 924 24.85 96 78.61 30 668 446224 25.84 57 81.73 13 
619 383 161 24.87 97 78.67 66 669 447 561 25.86 so 81.79 24 
620 384 400 24.89 98 78.74 01 670 448 900 25.88 44 81.85 35 

~21 385 641 24.91 99 78.80 36 
622 386 884 24.93 99 78.86 70 

671 450 241 25.90 37 81.91 46 
672 451 584 25.92 30 81.97 56 

623 388 129 24.96 00 78.93 03 673 452 929 25.94 22 82.03 66 
624 389 376 24.98 00 78.99 37 674 454 276 25.96 15 82.09 75 
625 390625 25.00 00 79.05 69 675 455 625 25.98 08 82.15 84 

626 391 876 25.02 00 79.12 02 676 456 976 26.00 00 82.2I 92 
627 393 129 25.04 00 79.18 33 677 458 329 26.01 92 82.28 00 
628 394 384 25.05 99 79.24 65 678 459 684 26.03 84 82.34 08 
629 395 641 25.07 99 79.30 95 679 461 041 26.05 76 82.40 IS 
630 396 900 25.09 98 79.37 25 680 462 400 26.07 68 82.46 2I 

631 398 161 25.11 97 79.43 55 681 463 761 26.09 60 82.52 27 
632 399 424 25.13 96 79.49 84 682 465 124 26.11 51. 82.58 33 
633 400 689 25.15 95 79.56 13 683 466 489 26.13 43 . 82.64 38 
634 401 956 25.17 94 79.62 41 684 467 856 26.I5 34 82.70 43 
635 403 225 25.19 92 79.68 69 685 469 225 26.I7 25 82.76 47 

~6 404 496 25.21 90 79.74 96 
637 406 769 26.23 89 79.81 23 

~86 470 596 26.I9 I6 82.82 51 
687 471 969 26.21 07 82.88 [jlj 

638 407 044 25.25 87 79.87 49 688 473 344 26.22 98 82.94 58 
639 408 321 25.27 84 79.93 75 689 474 721 26.24 88 83.00 60 
640 409 600 25.29 82 80.00 00 690 476 100 26.26 79 83.06 62 

641 410 881 25.31 80 80.06 25 
642 412164 25.33 77 80.I2 49 

~91 477 481 26.28 69 83.12 64 
692 478 864 26.30 59 83.18 65 

643 413 449 25.35 74 80.18 73 693 480 249 26.32 49 83.24 66 
644 414 736 25.37 72 80.24 96 694 481 636 26.34 39 83.30 67 
646 416 025 25.39 69 80.31 19 695 483 025 26.36 29 83.36 67 

646 417 316 25.41 65 80.37 41 
647 4I8 609 25.43 62 80.43 63 

~96 484 416 26.38 18 83.42 66 
697 485 809 26.40 08 83.48 65 

648 419 904 25.45 58 80.49 84 698 487 204 26.4I 97 83.54 64 
649 421 201 25.47 55 80.56 OS 699 488 601 26.43 86 83.60 62 
650 422 600 25.49 51 80.62 26 700 490 000 26.45 75 83.66 60 
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700 490000 26.45 75 83.66 60 11m 562 500 27.38 61 86.60 25 
701 491 401 26.47 64 83.72 57 751 564 001 27.40 44 86.66 03 
702 492 804 26.49 53 83.78 54 752 565 504 27.42 26 86.71 79 
703 494 209 26.51 41 83.84 51 753 567 009 27.44 08 86.77 56 
704 495 616 26.53 30 83.90 47 754 568 516 27.45 91 86.83 32 
705 497 025 26.55 18 83.96 43 756 570 025 27.47 73 86.89 07 

706 498 436 26.57 07 84.02 38 71S6 571 536 27.49 55 86.94 83 
707 499 849 26.58 95 84.08 33 757 573 049 27.51 36 87.00 57 
708 501 264 26.60 83 84.14 27 758 574 564 27.53 18 87.06 32 
709 502 681 26.62 71 84.20 21 759 576 081 27.55 00 87.12 06 
710 504 100 26.64 58 84.210 15 760 577 600 27.56 81 87.1780 

711 505 521 26.66 46 84.32 08 761 579 121 27.58 62 87.23 53 
712 506 944 26.68 33 84.38 01 762 580 644 27.60 43 87.29 26 
713 508 369 26.70 21 84.43 93 763 582 169 27.62 25 87.34 99 
714 509 796 26.72 08 84.49 85 764 583 696 27.64 05 87.40 71 
715 511 225 26.73 95 84.55 77 765 585 225 27.65 86 87.46 43 

716 512 656 26.75 82 84.61 68 766 586 756 27.67 67 87.52 14 
717 514 089 26.77 69 84.67 59 767 588 289 27.69 48 87.57 85 
718 515 524 26.79 55 84.73 49 768 589 824 27.71 28 87.63 56 
719 516 961 26.81 42 84.79 39 769 591 361 27.73 08 87.69 26 
720 518 400 26.83 28 84.85 28 770 592 900 27.74 89 87.74 96 

721 519 841 26.85 14 84.91 17 771 594 441 27.76 69 87.80 66 
722 521 284 26.87 01 84.97 06 772 595 984 27.78 49 87.86 35 
723 522 729 26.88 87 85.02 94 773 597 529 27.80 29 87.92 04 
724 524 176 26.90 72 85.08 82 774 599 076 27.82 09 87.97 73 
725 525 625 26.92 58 85.14 69 775 600 625 27.83 88 88.03 41 

726 527 076 26.94 44 85.20 56 116 602 176 27.85 68 88.09 09 
727 528 529 26.96 29 85.26 43 777 603 729 27.87 47 88.14 76 
728 529 984 26.98 15 85.32 29 778 605 284 27.89 27 88.20 43 
729 531 441 27.00 00 85.38 15 779 606 841 27.91 06 88.26 10 
730 532 900 27.01 85 85.44 00 780 608 400 27.92 85 88.31 76 

731 534 361 27.03 70 85.49 85 781 609 961 27.94 64 88.37 42 
732 535 824 27.05 55 85.55 70 782 611 524 27.96 43 88.43 08 
733 537 289 27.07 40 85.61 54 783 613 089 27.98 21 88.48 73 
734 538 756 27.09 24 85.67 38 784 614 656 28.00 00 88.54 38 
735 540 225 27.1109 85.73 21 785 616 225 28.01 79 88.60 02 

736 541 696 27.1293 85.79 04 786 617 796 28.03 57 88.65 66 
7:.17 G-13 J(j1J 27.1·1 77 R!J.H-1 H7 
738 544 644 27.16 62 85.90 69 

7117 61Q :.16'1 28.06 36 88.71 30 
788 620 944 28.07 13 88.76 94 

739 546 121 27.111 46 85.96 51 789 622 621 28.08 91 88.82 57 
740 547 600 27.20 29 86.02 33 790 624 100 28.10 69 88.88 19 

741 549 OS! 27.22 13 86.08 14 791 625 681 28.12 47 88.93 82 
742 550 564 27.23 97 86.13 94 792 627 264 28.14 25 88.99 44 
743 552 049 27.25 80 86.19 74 793 628 849 28.16 03 89.05 05 
744 553 536 27.27 64 86.25 54 794 630 436 28.17 80 89.10 67 
745 555 025 27.29 47 86.31 34 795 632 025 28.19 57 89.16 28 

746 556 516 27.31 30 86.37 13 796 633 616 28.21 35 89.21 88 
747 558 009 27.33 13 86.42 92 797 635 209 28.23 12 89.27 49 
748 559 504 27.34 96 86.48 70 798 636 804 28.24 89 89.33 08 
749 561 001 27.36 79 86.54 48 799 638 o\!!ll 28.26 66 89.38 68 
750 562 500 27.38 61 86.60 25 800 640 000 28.28 43 89.44 27 
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lsoo 640 000 28.28 43 89.44 27 
801 641 601 28.30 19 89.49 86 
802 643 204 28.31 96 89.55 45 
803 644 809 28.33 73 89.61 03 
804 646 416 28.35 49 89.66 60 
805 648 025 28.37 25 89.72 18 

830 722 500 29.15 48 92.19 54 
851 724 201 29.17 19 92.24 97 
852 725 904 29.18 90 92.30 38 
853 727 609 29.20 62 92.35 80 
854 729 316 29.22 33 92.41 21 

855 731 025 29.24 04 92.46 62 

806 649 636 28.39 01 89.77 75 
807 651 249 28.40 77 89.83 32 
808 652 864 28.42 53 89.88 88 
809 654 481 28.44 29 89.94 44 
810 656 100 28.46 05 90.0000 

lsr>o 732 736 29.26 75 92.52 03 
857 734 449 29.27 46 92.57 43 
858 736 164 29.29 16 92.62 83 
859 737 881 29.30 87 92.68 23 
860 739 600 29.32 68 92.73 62 

lsu 657 721 28.47 81 90.05 55 
812 659 344 28.49 56 90.11 10 
813 660 969 28.51 32 90.16 65 
814 662 596 28.53 07 90.22 19 
815 664 225 28.54 82 90.27 74 

861 741 321 29.34 28 92.79 01 
862 743 044 29.35 98 92.84 40 

863 744 769 29.37 69 92.89 78 

864 746 496 29.39 39 92.95 16 

865 748 225 29.41 09 93.00 54 

~16 665 856 28.56 67 90.33 27 
817 667 489 28.58 32 90.38 81 
818 669 124 28.60 07 90.44 34 
819 670 761 28.61 82 90.49 86 
820 672 400 28.63 56 90.55 39 

~66 749 956 29.42 79 93.05 91 

867 751 689 29.44 49 93.11 28 

868 753 424 29.46 18 93.16 65 

869 755 161 29.47 88 93.22 02 

870 756 900 29.49 58 93.27 38 

821 674 041 28.65 31 90.60 91 
822 675 684 28.67 05 90.66 42 
823 677 329 28.68 80 90.71 93 
824 678 976 28.70 54 90.77 44 
825 680 625 28.72 28 90.82 95 

~71 758 641 29.51 27 93.32 74 
872 760 384 29.52 96 93.38 09 
873 762 129 29.54 66 93.43 45 

874 763 876 29.56 35 93.48 80 

875 765 625 29.58 04 93.54 14 

826 682 276 28.74 02 90.88 45 
827 683 929 28.75 76 90.93 95 
828 685 584 28.77 50 90.99 45 
829 687 241 28.79 24 91.04 94 
830 688 900 28.80 97 91.10 43 

js76 767 376 29.59 73 93.59 49 

877 769 129 29.61 42 93.64 83 

878 770 884 29.63 11 93.70 17 

879 772 641 29.64 79 93.75 50 

880 774 400 29.66 48 93.80 83 

!sst 690 561 28.82 71 91.15 92 
832 692 224 28.84 44 91.21 40 
833 693 889 28.86 17 91.26 88 
834 695 556 28.87 91 91.32 36 
835 697 225 28.89 64 91.37 83 

js81 776 161 29.68 16 93.86 16 

882 777 924 29.69 85 93.91 49 

883 779 689 29.71 53 93.!.6 81 

884 781 456 29.73 21 94.02 13 

885 783 225 29.74 89 94.07 44 

836 698 896 28.91 37 91.43 30 
837 700 569 28.93 10 91.48 77 
838 702 244 28.94 82 91.54 23 
839 703 921 28.96 55 91.59 69 
840 705 600 28.98 28 91.65 15 

Is so 784 996 29.76 58 94.1276 

887 786 769 29.78 25 94.18 07 

888 788 544 29.79 93 94.23 38 

889 790 321 29.81 61 94.28 68 

890 792 100 29.83 29 94.33 98 

~· 707 281 29.00 00 91.70 61 
842 708 964 29.01 72 91.76 06 
843 710 649 29.03 45 91.81 60 
844 712 336 29.05 17 91.86 95 
845 714 026 29.06 89 91.92 39 

~91 793 881 29.84 96 94.39 28 

892 795 664 29.86 64 94.44 58 

893 797 449 29.88 31 94.49 Bi 

894 799 236 29.89 98 94.55 16 

895 801 025 29.91 66 94.60 44 

~ 716 716 29.08 61 91.97 83 
847 717 409 29.10 33 92.03 26 
848 719 104 29.12 04 92.08 69 
849 720 801 29.13 76 92.14 12 
850 722 500 29.15 48 92.19 54 

896 802 816 29.93 33 94.65 73 

897 804 609 29.95 00 94.7101 

898 806 404 29.96 66 94.76 29 
899 BOB 201 29.98 33 94.81 56 
900 810 000 30.00 00 94.86 83 

N Nl Vii v1oN N N' Vii VfON 
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N N' v'N ...!fON N ,.,. v'N VfON 

l9oo 810 000 30.00 00 94.86 83 
901 811 801 30.01 67 94.92 10 

lo~o 902 500 30.82 21 97.46 79 
951 904 401 30.83 83 97.51 92 

902 813 604 30.03 33 94.97 37 952 906 304 30.85 45 97.57 05 
903 815 409 30.05 00 95.02 63 953 908 209 30.87 07 97.62 17 
904 817 216 30.06 66 95.07 89 954 910 116 30.88 69 97.67 29 
905 819 025 30.08 32 95.13 15 955 912 025 30.90 31 97.72 41 

906 820 836 30.09 98 95.18 40 
907 822 649 30.11 64 95.23 65 

lo~6 913 936 30.91 92 97.77 53 
957 915 849 30.93 54 97.82 64 

908 824 464 30.13 30 95.28 90 958 917 764 30.95 16 97.87 75 
909 826 281 30.14 96 95.34 15 959 919 681 30.96 77 97.92 85 
910 828 100 30.16 62 95.39 39 960 921 600 30.98 39 97.97 96 

~11 829 921 30.18 28 95.44 63 961 923 521 31.00 00 98.03 06 
912 831 744 30.19 93 95.49 87 962 925 444 31.01 61 98.08 16 
913 833 569 30.21 59 95.55 10 963 927 369 31.03 22 98.13 26 
914 835 396 30.23 24 95.60 33 964 929 296 31.04 83 98.18 35 
915 837 225 30.24 90 95.65 56 %5 931 225 31.06 44 98.23 44 

916 839 056 30.26 55 95.70 79 
917 840 889 30.28 20 95.76 01 

[96a 933 156 31.08 05 98.28 53 
967 935 089 31.09 66 98.33 62 

918 842 724 30.29 85 95.81 23 968 937 024 31.11 27 98.38 70 
919 844 561 30.31 50 95.86 45 969 938 961 31.12 88 98.43 78 
920 846 400 30.33 15 95.91 66 970 940 900 31.14 48 98.48 86 

021 848 241 30.34 80 95.96 87 
922 850 084 30.36 45 96.02 08 

~71 942 841 31.16 09 98.53 93 
972 944 784 31.17 69 98.59 01 

923 851 929 30.38 09 96.07 29 973 946 729 31.19 29 98.64 08 
924 853 776 30.39 74 96.12 49 974 948 676 31.20 90 98.69 14 
925 855 625 30.41 38 96.17 69 975 950 625 31.22 50 98.74 21 

jo26 857 476 30.43 02 96.22 89 
927 859 329 30.44 67 96.28 08 

976 952 576 - .24 10 98.79 27 
977 954 529 31.25 70 98.84 33 

928 861 184 30.46 31 96.33 28 978 956 484 31.27 30 98.89 39 
929 863 041 30.47 95 96.38 46 979 958 441 31.28 90 98.94 44 
930 864 900 30.49 59 96.43 65 980 %0400 31.30 50 98.99 49 

931 866 761 30.51 23 96.48 83 
932 868 624 30.52 87 96.54 01 

los1 962 361 31.32 09 99.04 54 
982 964 324 31.33 69 99.09 59 

933 870 489 30.54 50 96.59 19 983 966 289 31.35 28 99.14 64 
934 872 356 30.56 14 96.64 37 
935 874 225 30.57 78 96.69 54 

984 968 256 31.36 88 99.19 68 
985 970 225 31.38 47 99.24 72 

[936 876 096 30.59 41 96.74 71 
937 877 969 30.61 05 96.79 88 
938 879 844 30.62 68 96.85 04 
939 881 721 30.64 31 96.90 20 

980 972 196 31.40 06 99.29 75 
987 974 169 31.41 66 99.34 79 
988 976 144 31.43 25 99.39 82 
989 978 121 31.44 84 99.44 85 

940 883 600 30.65 94 96.95 36 990 980 100 31.46 43 99.49 87 

j&41 885 481 30.67 57 97.00 52 
942 887 364 30.69 20 97.05 67 

jo91 982 081 31.48 02 99.54 90 
992 984 064 31.49 60 99.59 92 

943 889 249 30.70 83 97.10 82 993 986 049 31.51 19 99.64 94 
944 891 136 30.72 46 97.15 97 994 988 036 31.52 78 99.69 95 
945 893 025 30.74 09 97.21 11 995 990 025 31.54 36 99.74 97 

946 894 916 30.75 71 97.26 25 996 992 016 31.55 95 99.79 98 
947 896 809 30.77 34 97:31 39 997 994 009 31.57 53 99.84 99 
948 898 704 30.78 96 97.36 53 998 996 004 31.59 II 99.89 99 
949 900601 30.80 58 97.41 66 999 998 001 31.60 70 99.95 00 
950 902 500 30.82 21 97.46 79 1000 1000 000 31.62 28 100.00 00 

N N' v'N V1oFi N N' v'N V1oFi 
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NORMAL CURVE AREAS 

0 X 

X A(x) X A(x) X A.(x) X A(x) X A(x) 

.00 .0000 .10 .0398 .20 .0793 .30 .1179 .40 .1554 

.01 .0040 .11 .0438 .21 .0832 .31 .1217 .41 .1591 

.02 .0080 .12 .0478 .22 .0871 .32 .1255 .42 .1628 

.03 .0120 .13 .0517 .23 .0910 .33 .1293 .43 .1664 

.04 .0160 .14 .0557 .24 .0948 .34 .1331 .44 .1700 

.05 .0199 .15 .0596 .25 .0987 .35 .1368 .45 .173~ 

.06 .0239 .16 .0636 .26 .1026 .36 .1406 .46 .1772 

.07 .0279 .17 .Qii75 .27 .1064 .37 .1443 .47 .1808 

.08 .0319 .18 .0714 .28 .1103 .38 .1480 .48 .1844 

.09 .0359 .19 .0754 .29 .1141 .39 .1517 .49 .1879 



.50 .1915 .75 .2734 1.00 .3413 1.25 .3944 1.50 .4332 

.51 .1950 .76 .2764 1.01 .3438 1.26 .3962 1.51 .4345 

.52 .1985 .77 .2794 1.02 .3461 1.27 .3980 1.52 .4357 

.53 .2019 .78 .2823 1.03 .3485 1.28 .3997 1.53 .4370 

.54 .2054 .79 .2852 1.04 .3508 1.29 .4015 1.54 .4382 

.55 .2088 .80 .2881 1.05 .3531 1.30 .4032 1.55 .4394 

.56 .2123 .81 .2910 1.06 .3554 1.31 .4049 1.56 .4406 

.57 .2157 .82 .2939 1.07 .3577 1.32 .4066 1.57 .4418 

.58 .2190 .83 .2967 1.08 .3599 1.33 .4082 1.58 .4430 

.59 .2224 .84 .2996 1.09 .3621 1.34 .4099 1.59 .4441 

.60 .2258 .85 .3023 1.10 .3643 1.35 .4115 1.60 .4452 

.61 .2291 .86 .3051 1.11 .3665 1.36 .4131 1.61 .4463 

.62 .2324 .87 .3079 1.12 .3686 1.37 .4147 1.62 .4474 

.63 .2357 .88 .3106 . 1.13 .3708 1.38 .4162 1.63 .4485 

.64 .2389 .89 .3133 1.14 .3729 1.39 .4177 1.64 .4495 

.65 .2422 .90 .3159 1.15 .3749 1.40 .4192 1.65 .4505 

.66 .2454 .91 .3186 1.16 .3770 1.41 .4207 1.66 .4515. 

.67 .2486 .92 .3212 1.17 .3790 1.42 .4222 1.67 .4525 

.68 .2518 .93 .3238 1.18 .3810 1.43 .4236 1.68 .4535 

.69 .94 .3264 1.19 .3830 1.44 .4251 1.69 .4545 
.2549 

.70 .2580 .95 .3289 1.20 .3849 1.45 .4265 1.70 .4554 

.71 .2612 .96 .3315 1.21 .3869 1.46 .4279 1.71 .4564 

.72 .2642 .97 .3340 1.22 .3888 1.47 .4292 1.72 .4573 

.73 .2673 .98 .3365 1.23 .3907 1.48 .4306 1.73 .4582 

.74 .2704 .99 .3389 1.24 .3925 1.49 .4319 1.74 .4591 



Normal Curve Areas (continued) 

X A(x) X A(x) X .l(x) X A.(x) X A(x) 

1.75 .4599 1.95 .4744 2.15 .4842 2.35 .4906 2.55 .4946 

1.76 .4608 1.96 .4750 2.16 .4846 2.36 .4909 2.56 .4948 
1.7i .4616 1.97 .4756 2.17 .4850 2.37 .4911 2.57 .4949 
1.78 .4625 1.98 .4762 2.18 .4854 2.38 .4913 2.58 .4951 
1.79 .4633 1.99 .4767 2.19 .4857 2.39 .4916 2.59 .4952 

1.80 .4641 2.00 .4773 2.20 .4861 2.40 .4918 2.60 .4953 
1.81 .4649 2.01 .4778 2.21 .4865 2.41 .4920 2.61 .4955 
1.82 .4656 2.02 .4783 2.22 .4868 2.42 .4922 2.62 .4956 
1.83 .4664 2.03 .4788 2.23 .4871 2.43 .4925 2.63 .4957 
1.84 .4671 2.04 .4793 2.24 .4875 2.44 .4927 2.64 .4959 

1.85 .4678 2.05 .4798 2.25 .4878 2.45 .4929 2.65 .4960 
1.86 .4686 2.06 .4803 2.26 .4881 2.46 .4931 2.66 .4961 
1.87 .4693 2.07 .4808 2.27 .4884 2.47 .4932 2.67 .4962 
1.88 .4700 2.08 .4812 2.28 .4887 2.48 .4934 2.68 .4963 
1.89 .4706 2.09 .4817 2.29 .4890 2.49 .4936 2.69 .4964 

1.90 .4713 2.10 .4821 2.30 .4893 2.50 .4938 2.70 .4965 
1.91 .4719 2.11 .4826 2.31 .4896 2.51 .4940 2.71 .496'6 1.92 .4726 2.12 .4830 2.32 .4898 2.52 .4941 2.72 .4967 1.93 .4732 2.13 .1.834 2.33 .4901 2.53 .4943 2.73 .4968 1.94 .4738 2.14 .4838 2.34 .4904 2.54 .4945 2.74 .4969 



2.75 .4970 3.00 .4987 3.25 .4994 3.50 .4998 3.75 .4999 

2.76 .4971 3.01 .4987 3.26 .4994 3.51 .4998 3.76 .4999 

2.77 .4972 3.02 .4987 3.27 .4995 3.52 .4998 3.77 .4999 

2.78 .4973 3.03 .4988 3.28 .4995 3.53 .4998 3.78 .4999 

2.79 .4974 3.04 .4988 3.29 .4995 3.54 .4998 3.79 .4999 

2.80 .4974 3.05 .4989 3.30 .4995 3.55 .4998 3.80 .4999 

2.81 .4975 3.06 .4989 3.31 .4995 3.56 .4998 3.81 .4999 

2.82 .4976 3.07 .4989 3.32 .4996 3.57 .4998 3.82 .4999 

2.83 .4977 3.08 .4990 3.33 .4996 3.58 .4998 3.83 .4999 

2.1H .4777 3.09 .4990 3.34 .4996 3.59 .4998 3.84 .4999 

2.85 .4978 3.10 .4990 3.35 .4996 3.60 .4998 3.85 .4999 

2.86 .4979 3.11 .4991 3.36 .4996 3.61 .4999 3.86 .4999 

2.87 .4980 3.12 .4991 3.37 .4996 3.62 .4999 3.87 .5000 

2.88 .4980 3.13 .4991 ' 3.38 .4996 3.63 .4999 3.88 .5000 

2.89 .4981 3.14 .4992 3.39 .4997 3.64 .4999 3.89 .5000 

2.90 .4981 3.15 .4992 3.40 .4997 3.65 .4999 3.90 .5000 

2.91 .4982 3.16 .4992 3.41 .4997 3.66 .4999 3.91 .5000 

2.92 .4983 3.17 .4992 3.42 .4997 3.67 .4999 3.92 .5000 

2.93 .4983 3.18 .4993 3.43 .4997 3.68 .4999 3.93 .5000 
2.94 .4984 3.19 .4993 3.44 .4997 3.69 .4999 3.94 .5000 

2.95 .4984 3.20 .4993 3.45 .4997 3.70 .4999 3.95 .5000 
2.96 .4985 3.21 .4993 3.46 .4997 3.71 .4999 3.96 .5000 
2.97 .4985 3.22 .4994 3.47 .4997 3.72 .4999 3.97 .5000 
2.98 .4986 3.23 .4994 3.48 .4998 3.73 .4999 3.98 .5000 
2.99 .4986 3.24 .4994 3.49 ,4998 3.74 .4999 3.99 .5000 
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APPENDIX C 

GLOSSARY OF COMPUTER AND PROGRAMMED 
INSTRUCTION TERMS 

ACCESS TIME The time required to transfer information from storage 
to where it is going to be used. 

ADAPTIVE TEACHING MACHINES Teaching machines that automati
cally alter the instructional presentation sequence as a function of 
the pupil's performance. Example: The machine may shift to a 
smaller step size if the pupil is making more than four incorrect 
responses out of every ten frames. 

ADAPTIVITY The capacity of the teaching machine and its associated 
program to adjust in one or more ways, on the basis of the learner's 
responses, to his specific needs. 

ADDRESS A label, usually a number, identifying a place in storage 
where a piece of information may be stored. 

ALGORITHM A step-by-step routine for computation. 

ANALOG COMPUTEH A computer that represents numbers by actual 
physical changes; contrasting with digital. 

BINARY ARITHMETIC A number system based on only tv:o choices, 
0 and 1. 

BRANCHING A style of programming in which selection of the next 
frame to be presented depends on the response given in the current 
frame. 

CODING The processing of representing rules for handling the pro
cessing of information in a synthetic or computer language. 

COLLATOH Component of a teaching machine that measures and 
records the learning process by collecting and recording data such 
as the number of errors, the type of error, time intervals required 
for response, and so on, in such a way that each item is collated with 
the part of the program to which it pertains. 
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coMPARATOR Component of a teaching machine that judges the 
correctness of the pupil's response. This evaluation is then trans
mitted, depending on the mode of operation, to the pupil, the 
reinforcement dispenser, the collator, and/or the sequence control 

unit. 

COMPILER A special set of instructions contained in a computer to 
translate a source program into machine language. 

CONTROL Part of the computer that effects an orderly sequence of 
operation of the other parts of the computer. 

DISPLAY MECHANISM The unit of a teaching machine that presents 
the content material in a series of frames. 

FEEDBACK The function of a teaching machine that consists of 
providing the pupil with knowledge of results. 

FLOW CHAHT A diagram or graphic representation of a plan for the 
sequence of operations in solving a problem on a computer. 

FOHTRAN Formula Translation, a scientific code usable in many 
computers for computer operations. 

FRAME A unit of a program: the segment displayed at each step in 
the sequence. Usually the unit that requires a response. 

HAHDWARE The mechanical, electrical, and magnetic devices and 
materials from which an automatic computer system is constructed. 

HYBHID coMPUTEH A machine having different functions and rep
resenting n cross between two types of computers, as the analog 
and digital. 

INPUT Information that is transferred from the outside to the inside 
of a computer for the purpose of processing; also refers to machinery 
used to bring information into the computer. 

ITEM Any single unit of a test or experiment; that is a single question 
on a test or a single nonsense syllable in a list of syllables. 

LOGICAL OPERATION ·An operation dealing with the validity of 
thought in an arithmetic computation, or other activities such as 
comparing or selecting information. 
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MACHINE LANGUAGE The coded operations that control information 
and addresses in a digital computer. 

MACHINE WORD A set of characters occupying one storage location 
and treated as a unit. May be of fixed or variable length. 

MICROSECOND One millionth part of a second (.000001 sec). 

MILLISECOND One thousandth part of a second (.001 sec). 

NANOSECOND One billionth part of 11 second (.000000001 sec). 

OUTPUT Information transferred out of any part of a computer as a 
result of data processing. 

PROGRAM A plan of detailed instructions for solving the machine 
problem in a digital computer. 

PROGRAMMER One who prepares the sets of instructions. 

PROGRAMMING The process of arranging the material to be learned 
into a series of sequential steps; usually moves the student from a 
familiar background into a complex and new set of concepts, 
principles, and understandings; also refers to preparation of 
instructions for a computer. 

PROMPT Programming techniques designed to insure the desired 
response to a frame. 

PUNCHED CARDS Cards containing information expressed QY means 
of specially coded holes. 

REAL TIME Computer operation simultaneous with the occurrence 
of the event that supplies the material for the input. 

ROUTINE The set of coded instruction necessary for performing an 
operation in a digital computer. 

SEQL'ENCING Arranging the frames of a program in an order that 
provides the most efficient situation for learning. 

SIMULATION The representation of physical systems and phenomena 
by computers, in which the processing done by the computer 
represents the process itself. 



Glossary 109 

socRATIC METHOD A method of instruction that consists of a con
versational quiz in which a tutor asks questions, the student 
replies, and the tutor confirms or denies the student by a series of 
questions to the correct response. 

STEP The increment in subject matter level to be learned with each 
succeeding item or frame in the program. 

STICK, HICKORY A primitive teaching machine. 

STORAGE A part of the computer that holds material received for 
future use. 
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N 

P(E) 

#(E) 

E' 

n! 

P(n,r) 

(~) 

P(AIB) 

APPENDIX D 

LIST OF MATHEMATICAL SYMBOLS 

The number of distinguishable, equally likely 
outcomes of an experiment; also used to denote 
the number of scores (or other measures) in a set. 
(n is also used for this.) 

The probability of the event E. 

The number of elementary outcomes compris
ing E. 

The complementary event to E; the event E' 
occurs if the event E does not occur. 

Number of outcomes favorable for a first and 
second condition, respectively. (Used in the 
statement of the First Basic Combinatorial 
Principle.) 

Read "n factorial." Defined for positive integers 
n by: n! = n(n- l)(n- 2) · · ·3·2·1. By con
vention O! = 1. 

The number of permutations of n things taken r 
at a time. P(n,r) = n(n - I) · · · (n - r + 1). 

n! . 
Alternatively, P(n,r) = (n _ r)!. 

Read "n binomial r." A binomial coefficient. The 

number of combinations of n things taken rat a 
time. 

(n) n! 
r =r!(n-r)! 

The conditional probability of A given B. 
P(A I B) = P(A and B)/ P(B) provided P(B) ~ 0. 

Probabilities of various events. 
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Gains realized if certain events occur. 

Less than. 

Less than or equal to. 

Greater than. 

Greater than or equal to. 

The area under the standard normal curve en
closed by vertical lines at zero and at x, and the 
horizontal axis. 

Square root symbol. 

A score or other measurement. 

Greek capital letter sigma. Used to denote 
summation. 

The mean or arithmetic average of a sample. 
llf = T-X/N. 

The sample standard deviation, 

Alternatively
1 

SeeN. 

A score converted from 11 raw score. 

The population mean. 

The population standard deviation. 





Index 

Accountability, 89 
Adaptive control processes, 19 
Analog computer, 61, 102 
Arithmetic average (See Mean) 
Armerding, G. W., 80-81 
Artificial intelligence, 65 
Average score, 34, 152 

"Bell-shaped" curve, 21, 44-46 
Binary number system, 62, 102 
Binomial coefficients, 7 
Binomial probability distribution, 21 
Borel, Emile, 19 
Branching program, 68, 72, 102 

C. A. I. (Computer-Assisted Instruc-
tion, 61-65, 69-70 

Calculus, 46 
Cause and effect, 56 
Central tendency (See Mean, Median, 

Mode) 
Combinations, 7 
Combinatorial theory, 4 

first basic combinatorial principle, 
4 

second basic combinatorial princi
ple, 10 

Compulsory school attendance law, 
89 

Computer program, 62, 68, 104 
Conditional probability, 13 
Control Data Corporation, 89 
Correlation coefficient, 53-56 
Cost analysis, 89 

Davis, M. R., 82-83 
Decision making under uncertainty, 

17, 18 
Derived score, 49 
Dice, 2-3, 11, 15, 73-74 (ten-sided), 

45-46 
Difficulty fact<Jr, 51-53 
Digital computers, 61-65, 67-72 
Dispersion, 41-42, 44, 47 
Dresher, Melvin, 19 
Dynamic programming, 19 

113 
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Educational Development Labora-
tories, 89 

Elementary outcome, 2 
Ellis, T. 0., 82-83 
Enrollments, 87-88 

higher educo.tion, Figure 7.1, 88 
nonpublic schools (K-12), Figure 

7.1, 88 
public schools (K-12) Figure 7.1, 

88 
ETS (Educo.tiono.l Testing Service) 

scores, 45, 49 
Events, certain (or sure) events, 3 

compound events, 2 
dependent events, 15 
elementary events, 2 
impossible events, 3 
independent events, 14 
mutually exclusive events, 10 

Expected value, 17 
Extreme scores, 36-38, 43 

Factorial, 6 
Flow chart, 62, 64, 103 
Formulas binomial coefficients, 7 

conditional probability, 13, 17 
difficulty factor, 52 
expected vo.lue, 18 
factorial, 6 
mean, 35 
normal approximation to binomial, 

22 
number of combinations, 7 
number of permuto.tions, 6 
number of ways of selecting r items 

out of n, 17 
probability of an event, 3 
probability of r successes inn trials, 

20 .• 
standard devio.lion: 43 

Goodness-of-fit, 2 
GRAIL, 83 
Graphical languages, 83 

Histogram, 40-41 

Hybrid, computer, 61, 103 

Integration, 46 
IQ, 45, 58 

Johnnio.c Open Shop System, 82 
JOSS, 79-82 

Lo.nguages (computer), 62, 79, 104 
ALGOL, 62 
BASIC, 62 
COBOL, 62 
FORTRAN, 62, 103 
JOSS, 79-80 
PL1, 62 

Latin, 67-78 
Leo.rners (fast slow), 7D-71 
Linear progrnm, 68, 71 
Logical elements of a computer, 63 

"Man-mo.chine mixture," 65, 70 
Marks, S. M., 80-81 
Meo.n, 34-39, 43 
Median, 34-39 
Million Random Digits, 73-77 
Mode, 35, 37-78 
Model, 2, 20 
Multiplication tables, 62, 70 

Normal approximation to the 
binomial, 21, 22 ·, 

Normal curve (See "Bell-shaped" 
curve) 

Normal curve nren, 98-101 
Normal distribution, 21, 45--48 

Ordered arrangements, 6 
Outcome, 2 

Percentiles, 45, 50 
Permutations, 6 
Poker hands, 5, 8 
Population, 46 
Post-test, 57-59 
Prediction, 56 
Pre-test, 3Q-32 



Probability of an event, 3 
Program budgeting, 89 
Programmed book, 70 
Programmed instruction, 61-69, 7i 
Programmed learning, 67-72 
Programming (defined), 104 

Quinto.in, 69 (footnote 1) 

RAND tablet, 82-85 
Random numbers, 74, 76, 77 
Randomness, 20, 73 
Raw score, 33, 41, 43, 49 
Real time (defined), 104 
Reliability, 56 
Remedial, 70 
Research, 79--81, 83-84 
Rote learning, 67-68, 70 

Sample, 19 
Science Research Associates, 89 
Self-instruction, 70 
Sequential analysis, 19 
Shaw, J. C., 82 
Skewed, 50--51 
Socratic method, 105 
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