STATISTICS

OF ADDED INTEREST...

LINEAR OPTIMIZATION

W. Allen Spivey and Robert M. Thrall, University of Michigan

AN INTRODUCTION TO PROBABILITY, DECISION, AND INFERENCE
Irving H. LaValle, Tulane University
APPLIED PROBABILITY
W. A. Thompson, Jr., University of Missouri

FUNDAMENTAL RESEARCH STATISTICS FOR THE BEHAVIORAL SCIENCES
John T. Roscoe, Kansas State University

A BASIC COURSE IN STATISTICS: WITH SOCIOLOGICAL APPLICATIONS
 Second Edition
 Theodore R. Anderson, University of Oregon, and Morris Zelditch, Jr., Stanford University

HOLT, RINEHART AND WINSTON, INC.
383 Madison Avenue, New York 10017

with chapters on probability, computer theory, and programmed instruction

RICHARD BELLMAN • JOHN C.HOGAN • ERNEST M.SCHEUER

INDIAN INSTITUTE OF ADVANCED STUDY LIBRARY SIMLA

PROGRAMMED
 STATISTICS

PROGRAMMED

 STATISTICS
With Chapters on Probability,

 Computer Theory, and Programmed InstructionRICHARD BELLMAN
University of Southern California
JOHN C. HOGAN
The RAND Corporation
ERNEST M. SCHEUER

Holt, Rinehart and Winston, Inc.
New York Chicago San Francisco Atlanta Dallas
Montreal Toronto London Sydney

Copyright © 1970 by Holt, Rinehart and Winston, Inc. All Rights Reserved SBN: 03-083568-2 Printed in the United States of America $\begin{array}{lllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$

Preface

The minimum amount of information about statistics and measurement as applied to education, including probability theory, electronic computers, and programmed instruction that every high school and elementary school teacher should know is presented in this book. No mathematics beyond the simplest arithmetic or algebra is used.

This is, in part, a programmed textbook, but not all of the chapters have been written in that format. Although the authors believe that statistics is a subject that lends itself especially well to presentation as programmed instructional materiak, the subjects of probability and the theory of computers and computational aids for educators can perhaps better be studied from conventionally written texts. Accordingly, the book has a variety of formats, each adapted to the particular subject matter being discussed. We feel that this contributes to the book's readability, and makes it appropriate as a supplement to the conventional textbook used in any of the general college level courses in education, learning psychology, or the social sciences where probability, statistics, or the use of computers for instructional purposes are taught.

The authors are aware that some readers of this book will be unfamiliar with the technical and scientific language normally used in discus-
sions of electronic computers and programmed instruction; accordingly, aglossary of common computer and programmed instruction terminology has been included at the end of the book. Additionally, a list of mathematical symbols is provided. There are also selected readings at the end of each chapter for those who wish to investigate further any. of the topics that are presented in the book.

Our aim has been to write an elementary textbook for classroom teachers and for persons who are preparing themselves to become teachers, to introduce them to the fundamentals of probability, statistics, computers, and progammed learning as these subjects are related to the field of education.

Many persons, too numerous to mention, have helped with the writing of this book by contributing valuable ideas and suggestions that have been incorporated in the text, and to them we wish to express our deep appreciation. Special acknowledgments, however, should be made to Mrs. Bernice Brown of the Mathematics Department, The RAND Corporation, who helped plan the chapter on statistics and then engineered its early development, and to Dr. Richard E. Beckwith, Professor of Statistics and Dean of the School of Business Administration, Georgia State University, whose perceptive reading of an early version of the manuscript resulted in numerous suggestions for improvements. Our thanks also go to Miss Shirley L. Marks, Mr. Malcolm R. Davis, and Mr. Joe Clayton of the Computer Sciences Department, The RAND Corporation, who read the chapter on new computational aids for educators. Mrs. Rebecca Karush, University of Southern California, ably prepared the final manuscript for publication. Chapter 7 draws upon ideas and issues presented at a 1970 Seminar conducted by Professor Lawrence E. Vredevoe, Graduate School of Education, U.C.L.A.

The faults that will be found in this book, however, are entirely ours; and the authors, following the useful precedent of Allendoerfer and Oakley, ${ }^{1}$ cheerfully blame each other for them.

[^0]
Contents

PREFACE

Chapter One / ELEMENTARY PROBABILITY THEORY
Introductory Remarks 1
Definition of Probability 2
Counting 4
Non-Mutually Exclusive Events 11
Conditional Probability and Independence 13
Summary and Generalizations 16
Expected Value 17
The Number of Successes in a Sample 19
Answers to Exercises 24
Chapter Two / PROGRAMMED STATISTICS
Instructions 29
Pre-Test 30
Progammed Material 33
Post-Test 57
Chapter Three / THE DIGITAL COMPUTER 61
Chapter Four / PROGRAMMED LEARNING 67
Examples of Programmed Instruction 71
Chapter Five / SELECTING AT RANDOM 73
Chapter Six / NEW COMPUTATIONAL AIDS FOR EDUCATORS 79
JOSS 79
The RAND Tablet 82
Chapter Seven / THE NEXT DECADE IN EDUCATION 87
Appendix A / TABLE OF SQUARES AND SQUARE ROOTS 92
Appendix B / NORMAL CURVE AREAS 102
Appendix C / GLOSSARY OF COMPUTER AND PROGRAMMED INSTRUCTION TERMS 106
Appendix D / LIST OF MATHEMATICAL SYMBOLS 110
INDEX 113

PROGRAMMED STATISTICS

-

$$
4
$$

Chapter One

ELEMENTARY PROBABILITY THEORY

INTRODUCTORY REMARKS

The purpose of this chapter is to discuss some elementary concepts of probability theory. No mathematics beyond the simplest arithmetic or algebra is used. However, the reader should have pencil and paper at hand and be prepared to work through the examples presented here, and in addition he should work all the exercises to test his understanding of the material.

The theory of probability is an approach to some kinds of uncertainty. It is a mathematical idenlization of certain aspects of reality in much the same way that geometry is an idealization, or model, of other aspects of reality. Such models are valid to the extent that they are useful, that is, to the extent that they help us solve certain types of problems we encounter. We know, for example, that there are no physical entities corresponding to the abstract geometric concept of "line" and that the earth is not truly spherical. Nevertheless, geometrical results are extremely useful in real life. The consequences of Euclidean geometry are, for many purposes, a satisfactory explanation of observed phenomena and enable us to build
bridges, construct freeways, and so on. Similarly, probability theory, although not an exact mirror of reality, adequately describes many real situations and is, accordingly, useful.

DEFINITION OF PROBABILITY

We begin with the idea of an experiment in which there are a finite number, N, of distinguishable, equally likely elementary outcomes. For example, if the experiment is to draw one card from a standard pack of cards, then the 52 different cards of the deck constitute $N=52$ distinguishable, equally likely elementary outcomes; if the experiment is to roll a die, then the six faces of the die constitute the $N=6$ distinguishable, equally likely elementary outcomes; if the experiment is to toss a coin, then the two sides, heads and tails, constitute the $N=2$ distinguishable, equally likely elementary outcomes; if a class of 100 students of unknown ability takes an arithmetic aptitude test, then we have $N=100$ equally likely right or wrong answers to any particular question.

Note that these examples are already models of reality in that we assume that the various elementary outcomes are equally likely. In any given situation the model may or may not conform to reality. A particular card may have some physical property (being slightly longer than the other cards, or somewhat sticky) that makes it more, or less, likely to be drawn than some other cards, so that the assumption of equally likely elementary outcomes is not precisely correct here. Or, a particular die or coin may be asymmetric and the respective outcomes not be equally likely. Or, a particular student may have superior or inferior arithmetical ability. One aspect of mathematical statistics (goodness of fit) deals with examining the validity of assumptions of this sort. This topic is, however, beyond the scope of the chapter on statistics found in this book.

A comment is in order on the use of the term elementary with regard to outcomes. One could, for example, be interested in the outcome of drawing, say, a facecard, such as a king, or a heart from a deck of cards. Such outcomes are called compound events, being composed of several elementary outcomes. "Drawing a king" is realized if any of four elementary outcomes (drawing the king of clubs, the king of
diamonds, the king of hearts, or the king of spades) occur; "drawing a heart" is realized if any of 13 elementary outcomes (drawing the $2,3,4,5,6,7,8,9,10, \mathrm{~J}, \mathrm{Q}, \mathrm{K}$, or A of hearts) occur. An elementary outcome is one that can be realized in precisely one way, not in more than one way as in the examples just cited.
We are now ready to define the probability of an event. An event, first of all, is the set of all elementary outcomes having a specified property. For example, we have already characterized the events of drawing a king or drawing a heart from a pack of cards. The event of rolling an even-numbered face on a die is composed of the equally likely elementary outcomes $\{2,4,6\} .{ }^{1}$

Let us denote the event of interest by E and the number of elementary outcomes comprising E by \#(E). We define the probability $\mathrm{P}(\mathrm{E})$ of an event E by

$$
\begin{equation*}
P(E)=\frac{\#(E)}{N} \tag{1}
\end{equation*}
$$

(Recall that N is the total number of distinguishable, equally likely elementary outcomes.)
The number of outcomes favorable to an event E clearly is an integer that cannot be less than zero and cannot exceed N; Therefore the probability of any event must be at least equal to zero and cannot exceed one. This statement can be expressed in symbols as:

$$
0 \leq P(E) \leq 1
$$

For example, a student cannot receive a negative grade on a test, or a mark of more than 100 percent.
If an event E is so specified that every elementary outcome is favorable for E, that is, $\#(E)=N$, then $P(E)=1$. In this case E is called a certain event or a sure event. If an event E is so specified that no elementary outcome is favorable for E, then $\#(E)=0$ and $P(E)=$ 0 . In this case E is called an impossible event.

In some instances it will turn out to be convenient to calculate the probability $P(E)$ of an event E by first obtaining the probability that E does not occur. Let us denote the event of the nonoccurrence
${ }^{1}$ One way of designating a set is, as here, to display its members between braces.
of E by $E^{\prime} .{ }^{2}$ Since every elementary outcome not favorable for E is favorable for E^{\prime}, then $\#\left(E^{\prime}\right)=N-\#(E)$, and

$$
\begin{equation*}
P\left(E^{\prime}\right)=\frac{\#\left(E^{\prime}\right)}{N}=\frac{N-\#(E)}{N}=1-\frac{\#(E)}{N}=1-P(E) \tag{2}
\end{equation*}
$$

This is an elementary, but important, result-namely that for any event E and its complement E^{\prime},

$$
\begin{equation*}
P(E)+P\left(E^{\prime}\right)=1 . \tag{3}
\end{equation*}
$$

In order to define probability we have spoken of the number of distinguishable elementary outcomes in an experiment and of the number of elementary outcomes favorable to an event. In some situations it is simple to get these numbers. In others it can be a complicated task. As in plane geometry, a particular problem may be hard to solve even though the fundamental ideas are straightforward. We next discuss some procedures for counting that will be an aid in probability calculations.

COUNTING

In this section we study some aspects of how the number of outcomes favorable to some complicated events can be obtained from the number of outcomes favorable to simpler, related events. This subject is very important and an entire branch of mathematics, called combinatorial theory, is devoted to it. Combinatorial theory rests on two basic principles. We state the first now and discuss some of its ramifications. The sccond principle and some of its consequences are discussed later.

First Basic Combinatorial Principle

Consider an event E that is specified by the joint occurrence of two conditions. If there are n_{1} elementary outcomes favorable for the

[^1]first condition and, having selected one of those outcomes, there are n_{2} elementary outcomes favorable for the second condition, then
\[

$$
\begin{equation*}
\#(E)=n_{1} n_{2} . \tag{4}
\end{equation*}
$$

\]

This first basic principle of combinatorial theory can be extended to counting the number of outcomes specified by the joint occurrence of more than two conditions in the obvious way. Let us consider some examples to illustrate the principle.
(1) Two coins are tossed. How many distinguishable outcomes are possible? We apply the first basic combinatorial principle. Here $n_{1}=2$ since there are two outcomes (heads, tails) possible for the first coin. Similarly, $n_{2}=2$. Therefore there are $n_{1} n_{2}=2 \times 2=4$ distinguishable outcomes possible.

This was rather a trivial example because it is easy to enumerate all the possible outcomes ${ }^{3}$: $\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$ and observe that they are four in number. Let us look at a more complicated example.
(2) Ten coins are tossed. How many distinguishable outcomes are possible? Using the obvious extension of the first basic principle with $n_{1}=n_{2}=\cdots=n_{10}=2$, we find the number of distinguishable possible. outcomes ${ }^{4}$ to be $2^{10}=1024$. While it is possible, in principle, to enumerate all of these possibilities, it is tedious and we should begin to see the power inherent in this basic principle.
(3) A poker hnnd of five cards is to be drawn (without replacement) from a standard pack of cards. How many different such hands are there? [We distinguish (artificially) here between hands containing the same cards but appearing in a different order.] We apply the extended first basic principle. The first card can be selected in any of 52 ways. Having
${ }^{\top}$ Note that we consider the outcomes HT and TH different here. They are different if one is concerned with what happened first and what second. They are not different if one merely counts the number of heads (for example). One's point of view governs here.
${ }^{4}$ Compare with footnote 3.
selected the first card, the second card can be selected in 51 ways (the card selected in the first draw is not available for selection at the second draw). Having selected the first two cards, the third card can be any one of the remaining 50 cards. Continuing in the same way, we find that the number of ordered poker hands is $52 \cdot 51 \cdot 50 \cdot 49 \cdot 48=$ $311,875,200$. This number is sufficiently large to eliminate enumeration of cases as a practical alternative to the use of the (extended) first basic combinatorial principle.
(4) The idea of the preceding example can be generalized to determine the number of distinct arrangements when r objects are selected without replacement from a set of n objects and order is important. Such ordered arrangements are called permutations. The number of distinct ordered arrangements of r objects selected without replacement from n objects, called the number of permutations of n things taken r at a time, and denoted $P(n, r)$, can be determined by reasoning identical to that of Example 3 to be:

$$
\begin{equation*}
P(n, r)=n(n-1)(n-2) \cdots(n-\tau+1) \tag{5}
\end{equation*}
$$

[There are r factors in the product defining $P(n, r)$.]
In particular, the number of arrangements of all n items is

$$
\begin{equation*}
P(n, n)=n(n-1)(n-2) \cdots 3 \times 2 \times 1 . \tag{6}
\end{equation*}
$$

This product of all the integers beginning with n and going down to 1 is denoted by a special symbol, $n!$, which is read n factorial. Observe that this notation allows us to write

$$
\begin{equation*}
P(n, r)=\frac{n!}{(n-r)!} \tag{7}
\end{equation*}
$$

In order that the preceding formula make sense for the case $r=n$, that is, agree with the result $P(n, n)=n!$ just derived, it is conventional to define the symbol 0 ! to equal one.

The numbers n ! grow very rapidly with n. You should verify the values in the following table.

$$
\begin{array}{rlrl}
1! & =1 & 6! & =720 \\
2! & =2 & 7! & =5040 \\
3! & =6 & 8! & =40,320 \\
4! & =24 & 9! & =362,880 \\
5! & =120 & 10! & =3,628,800
\end{array}
$$

Calculate 15 ! and 20 ! to further appreciate the rapid growth of $n!$ with n. It will save you some effort to realize that $n!=$ $n \times(n-1)$!, so that you need not do each calculation afresh, but can proceed recursively.
(5) If r objects are selected without replacement from n objects and order is not important, the result of the selection is called a combination. A combination differs from a permutation in that only the composition, but not the order of selection, is important.

How many combinations of n things taken r at a time are there? Having selected such a combination, we could make from it r ! distinct ordered arrangements, that is, permutations. Thus, denoting the number of combinations of n things taken r at a time by $\binom{n}{r},{ }^{5}$ we have $r!\binom{n}{r}=P(n, r)$
or

$$
\begin{equation*}
\binom{n}{r}=\frac{n!}{r!(n-r)!} \tag{8}
\end{equation*}
$$

A convenient way of calculating these quantities, called the binomial coefficients, is the "tree of Pascal":

[^2]
8 Elementary Probability Theory

Observe that each number, apart from the 1's, is obtained by adding the two immediately above. The ath entry in the b th row is $\binom{b-1}{a-1}$. The top of the tree is $\binom{0}{0}$; the first entry in the b th row is $\binom{b-1}{0}$.

EXERCISES

1. Calculate the next three rows.
2. Read off (a) $\binom{7}{3}$, (b) $\binom{6}{4}$, (c) $\binom{8}{3}$ from the tree and verify by using Equation (8).

Applying Equation (8) to determining the number of poker hands (eliminating the previous artificial restriction that the order in which the cards appeared mattered in terms of distinguishing hands) we find the number to be:

$$
\binom{52}{5}=\frac{52!}{5!47!}=2,598,960 .
$$

In what has preceded we dealt with selections made without replacement from a set of objects. Both ordered and unorderid configurations have been examined. In the following two examples we consider ordered and unordered selections made with replacement.
(6) California automobile license plates contain three letters followed by three digits. Ignoring the fact that certain letter combinations will never be used, how many distinct California license plates are there? Each of the three letters can be chosen in 26 ways and each of the three digits can be chosen in 10 ways. By the (extended) first basic combinatorial principle the number is $26 \times 26 \times 26 \times 10 \times 10 \times$ $10=17,576,000$. Note that each license plate is designated by an ordered drawing with replacement (from the 26 letters and the 10 digits).
(7) The idea used in the preceding example yields directly the number of ordered selections with replacement of r items selected from n items. Each of the r items can be selected in n ways. Therefore the number sought is:

$$
\begin{equation*}
\underbrace{n \times n \times \cdots \times n}_{r \text { factors }}=n^{r} . \tag{9}
\end{equation*}
$$

EXERCISES

1. For each unused combination of letters, how many license plate designations are lost?

2, How many four-letter "words" (pronounceability not considered) are there?
3. How many three-letter "words" are there whose first and third letters are consonants and whose middle letter is a vowel ($\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}, \mathrm{y}$)?
4. How many seven-digit telephone numbers are possible?
5. How many numbers could there be in the GRanite exchange?
(8) The reasoning leading to the number of unordered selections with replacement is too complicated to appear here, so we content ourselves with stating the result. If r objects are selected with replacement from n objects, the number of unordered selections is $\binom{n+r-1}{r}$.
To illustrate this, consider an urn with four balls numbered $1,2,3,4$ from which two balls are to be drawn. The first ball is to be returned before the second draw. Only the numbers on the balls, without regard for order, are to be considered. How many such distinct selections are there? Using the formula above with $n=4$ and $r=2$ we find the number to be $\binom{5}{2}=$ $\frac{5!}{2!3!}=\frac{5 \cdot 4}{2}=10$. This number might be verified by actually displaying all the unordered selections with replacement:

$$
(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(3,3),(3,4),(4,4),
$$ and noting that they are 10 in number. ${ }^{6}$

We are now ready to state and discuss the second basic combinatorial principle. To do this we first must define the concept of mutually exclusive events: Two events are mutually exclusive if the realization of either event precludes realization of the other. For example, if, in drawing one card from a standard pack, D is the event of drawing a diamond and C is the event of drawing a club, events D and C are mutually exclusive. However, if T is the event of drawing a 10 , events T and D (as well as events T and C) are not mutually exclusive.

Second Basic Combinatorial Principle

If an event E occurs if either of two mutually exclusive cvents, F and G, occurs, then

$$
\begin{equation*}
\#(E)=\#(F)+\#(G) . \tag{10}
\end{equation*}
$$

Upon dividing through by N in Equation (10), the total number of outcomes possible for the experiment, it follows that for mutually exclusive events F and G

$$
\begin{equation*}
P(F \text { or } G)=P(F)+P(G) . \tag{11}
\end{equation*}
$$

The following examples illustrate this second basic combinatorial principle.
(9) In drawing a pair of cards without replacement from a standard deck, how many pairs contain exactly one red card? The answer involves both basic combinatorial principles. First note that the event $E=$ "exactly one red card" occurs if the draw resulted in one of the following two mutually exclusive, ordered events: $F=$ "red card first, black card second" or $G=$ "black card first, red card second." Then
${ }^{6}$ We should make it clear, however, that we have displayed the selections here solely to verify the result given by the formula. Only if other methods of counting fail do we suggest this exhaustive (and sometimes exhausting) technique. Indeed, the whole purpose of this section is to show how to avoid enumeration.
note that $\#(F)=26^{2}=676$ (verify this) and similarly $\#(G)=676$, so that $\#(E)=676+676=1352$.
(10) In rolling two dice, what is the probability that a "seven" will be rolled? We must determine the total number of these outcomes favorable for "seven." By the first basic combinatorial principle we see that there are a total of $6 \times 6=36$ outcomes possible when rolling two dice. Of these, the following six combinations yield "seven": $(1,6),{ }^{7}(2,5),(3,4)$, $(4,3),(5,2),(6,1)$. (We have used here an extended version of the second basic combinatorial principle. Of course, we would have been able to count the outcomes favorable for seven even if we had never heard of the second basic combinatorial principle, but the present example gives some instances of mutually exclusive events.) Thus

$$
P(\text { seven })=\frac{6}{36}=\frac{1}{6} .
$$

EXERCISES

1. Verify for yourself that there are 36 possible outcomes, that there are no outcomes favorable for seven beyond those listed, and that these outcomes are mutually exclusive.
2. Two students each take an examination containing five questions. Assume that three is a passing grade. In how many ways can both students pass?

NON-MUTUALLY EXCLUSIVE EVENTS

It is possible to extend the second basic combinatorial principle to count the number of outcomes favorable for an event, E, where E occurs if either of two perhaps non-mutually exclusive events, F or G, occurs. Mathematicians use the word "or" in its nonexclusive sense. That is, the compound event " F or G " will occur if F occurs, or if G

The first number in the parentheses refers to the face showing on the first die; the second number refers to the second die.
occurs, or if both F and G occur. The last event is possible if F and G are not mutually exclusive. Let us consider that situation, and let us denote " F or G " by E. If, in counting the number of outcomes favorable for E, we add \#(F) and \#(G), we will have taken account twice of those outcomes favorable for both F and G. Thus, in general,

$$
\begin{equation*}
\#(E)=\#(F \text { or } G)=\#(F)+\#(G)-\#(F \text { and } G) . \tag{12}
\end{equation*}
$$

Upon dividing through in Equation (12) by N, the total number of outcomes possible for the experiment, it follows that in general

$$
\begin{equation*}
P(F \text { or } G)=P(F)+P(G)-P(F \text { and } G) \tag{13}
\end{equation*}
$$

Note that if F and G are mutually exclusive, then \#(F and $G)=0$ and we have agreement with the second basic combinatorial principle.

Two examples of the use of Equations (12) and (13) follow.
(11) In drawing one card from a standard deck, what is the probability of selecting a red card (R) or a face card (F) ? We observe: $\#(R)=26, \#(F)=12, \#(R$ and $F)=6, N=52$, so that

$$
\begin{aligned}
P(R \text { or } F) & =P(R)+P(F)-P(R \text { and } F) \\
& =\frac{\#(R)}{N}+\frac{\#(F)}{N}-\frac{\#(R \text { and } F)}{N} \\
& =\frac{26}{52}+\frac{12}{52}-\frac{6}{52}=\frac{32}{52}=\frac{8}{13} .
\end{aligned}
$$

(12) In drawing two cards with replacement from a standard deck, what is the probability of drawing at least one club? Let C_{1} denote the event of selecting a club on the first draw and C_{2} the event of selecting a club on the second draw. Clearly the event " C_{1} or C_{2} " is the symbolic way of designating the event "at least one club." We observe:

$$
\#\left(C_{1}\right)=\#\left(C_{2}^{\prime}\right)=13 \cdot 52, \#\left(C_{1} \text { and } C_{2}\right)=13^{2}
$$

$$
\begin{aligned}
& N=52^{2}, \text { so that } \\
& \qquad \begin{aligned}
P\left(C_{1} \text { or } C_{2}\right) & =\frac{\#\left(C_{1}\right)}{N}+\frac{\#\left(C_{2}\right)}{N}-\frac{\#\left(C_{1} \text { and } C_{2}\right)}{N} \\
& =\frac{13 \cdot 52}{52^{2}}+\frac{13 \cdot 52}{52^{2}}-\frac{13^{2}}{52^{2}} \\
& =\frac{1}{4}+\frac{1}{4}-\frac{1}{16}=\frac{7}{16} .
\end{aligned}
\end{aligned}
$$

CONDITIONAL PROBABILITY AND INDEPENDENCE

There are situations in which one wants to calculate the probability of an event, A, given the knowledge that another event, B, has occurred. The term used for this concept is the conditional probability of A given B, and it is denoted by $P(A \mid B)$. Applying the definition of probability, Equation (1), we find

$$
\begin{equation*}
P(A \mid B)=\frac{\#(A \text { and } B)}{\#(B)} \tag{14}
\end{equation*}
$$

The reasoning supporting Equation (14) goes like this. Since we know that B occurred, the number of possible outcomes is \#(B), not the total number of outcomes possible for the experiment, N. The number of outcomes favorable for A when we know B has occurred is \#(A and B).

Equation (14) usually appears in a different form, namely

$$
\begin{equation*}
P(A \mid B)=\frac{P(A \text { and } B)}{P(B)} \tag{15}
\end{equation*}
$$

Equation (15) is obtained from Equation (14) by dividing numerator and denominator by N, the total number of outcomes possible for the experiment, and then appealing to the definition of probability, Equation (1) - thus

$$
P(A \mid B)=\frac{\#(A \text { and } B)}{\#(B)}=\frac{\#(A \text { and } B) / N}{\#(B) / N}=\frac{P(A \text { and } B)}{P(B)} .
$$

This development of conditional probability involved one tacit assumption which must be made explicit: Since division by zero is
not defined, it is necessary to require that $\#(B) \neq 0$ or, equivalently, that $P(B) \neq 0$. (The symbol \neq is read "not equal to.")

It is often convenient to write Equation (15) in the following equivalent form:

$$
\begin{equation*}
P(A \text { and } B)=P(A \mid B) P(B) \tag{16}
\end{equation*}
$$

Some examples follow.
(13) What is the probability of drawing a king in a single draw from a standard deck if it is known that the card drawn will be a face card? Let K denote the event of drawing a king and F the event of drawing a face card. $\#(F)=12$, \#(K and $F)=$ $\#(K)=4$, so that $P(K \mid F)=\frac{4}{12}=\frac{1}{3}$. Note that the ordinary probability of drawing a king is $\frac{4}{52}=\frac{1}{13}$. Verify that for this example the event (K and F) is the same as the event K. Generally speaking, the event (A and B) is not the same as the event A.
(14) What is the probability of drawing a king in a single draw from a standard deck if it is known that the card drawn will be red? Let K denote the event of drawing a king and R the event of drawing a red card. $\#(R)=26, \#(K$ and $R)=2$, so that

$$
P(K \mid R)=\frac{2}{26}=\frac{1}{13}
$$

Example 14 is but one instance of a general concept involving two events; namely that of the independence of two events. A formal definition follows directly from the example.

Definition

Two events A and B (neither of them an impossible event) are independent if

$$
\begin{equation*}
P(A \mid B)=P(A) \tag{17}
\end{equation*}
$$

If we substitute Equation (15) on the left-hand side of Equation (17) we obtain

$$
\frac{P(A \text { and } B)}{P(B)}=P(A)
$$

or, equivalently, we find two events A and B are independent if

$$
\begin{equation*}
P(A \text { and } B)=P(A) P(B) . \tag{18}
\end{equation*}
$$

If two events are not independent they are called dependent.

EXERCISES

Verify the independence of the following pairs of events.

1. A coin is tossed twice. H_{1} is the event of a head on the first toss, H_{2} the event of a head on the second toss.
2. A card is drawn from a standard deck and a die is rolled. C is the event of drawing a three from the deck, D is the event of rolling a three with the die.
3. Two dice are rolled. A is the event of rolling a one-spot on the first die, B is the event of rolling a one-spot on the second die.
4. In Exercises 1-3, formulate some other events that can occur and investigate their independence.
5. Can you prove that if two events, A and B - neither of which is impossible - are mutually exclusive, then they cannot be independent?
6. An urn contains ten red and five white balls. Two balls are drawn without replacement. Let R_{1} denote the event that a red ball was selected on the first draw and R_{2} denote the event that a red ball was selected on the second draw. Are the events R_{1} and R_{2} independent?

Solution to Exercise 6: We will compare $P\left(R_{1}\right.$ and $\left.R_{2}\right)$ with $P\left(R_{1}\right) P\left(R_{2}\right)$. To calculate $P\left(R_{1}\right.$ and $\left.R_{2}\right)$ we use Equation (16):

$$
P\left(R_{1} \text { and } R_{2}\right)=P\left(R_{2} \mid R_{1}\right) P\left(R_{1}\right)=\frac{9}{14} \cdot \frac{10}{15}=\frac{3}{7} .
$$

To calculate $P\left(R_{2}\right)$ we make use of the fact that R_{2} occurs if one of two mutually exclusive events occur: either both balls drawn are red (denote this by F) or the first ball is white and the second ball is red (denote this by G). We calculate $P\left(R_{2}\right)$ as $P(F)+P(G)$ and use Equation (16) to obtain each of these terms. [We have already calculated $P(F)$.]

$$
\begin{aligned}
& P(F)=P\left(R_{1} \text { and } R_{2}\right)=\frac{3}{7} \\
& P(G)=P\left(R_{1}^{\prime} \text { and } R_{2}\right)=P\left(R_{2} \mid R_{1}^{\prime}\right) P\left(R_{1}^{\prime}\right)=\frac{10}{14} \cdot \frac{5}{15}=\frac{5}{21}, \\
& P\left(R_{2}\right)=P(F)+P(G)=\frac{3}{7}+\frac{5}{21}=\frac{14}{21}=\frac{2}{3} .
\end{aligned}
$$

Since $P\left(R_{1}\right)=2 / 3$, we have $P\left(R_{1}\right) P\left(R_{2}\right)=4 / 9$ while $P\left(R_{1}\right.$ and $\left.R_{2}\right)$ $=3 / 7$. Since $P\left(R_{1}\right.$ and $\left.R_{2}\right) \neq P\left(R_{1}\right) P\left(R_{2}\right)$, the events R_{1} and R_{2} are dependent.

Another way of investigating the independence of R_{1} and R_{2} is via Equation (16). We calculated above that $P\left(R_{2} \mid R_{1}\right)=9 / 14$ and that $P\left(R_{2}\right)=2 / 3$, so again we conclude R_{1} and R_{2} are dependent events.

SUMMARY AND GENERALIZATIONS

For ease of exposition the foregoing treatment of probatility has focused on experiments in which there are a finite number of distinguishable, equally likely elementary outcomes. It turns out, however, that the results we obtained are valid in far more general situations. We summarize our results and stress their validity for a very broad definition of events and their probability.
(1) For any event E, the probability of $E, P(E)$, is a nonnegative number not exceeding one.
(2) If E^{\prime} is the nonoccurrence of E, then

$$
P\left(E^{\prime}\right)=1-P(E)
$$

(3) Number of ways of selecting r items out of n :

Selecting with replacement	Selecting without replacement		
Ordered arrangements	n^{r}		
Order not considered	$\left(\frac{n+r-1}{r}\right)=\frac{(n+r-1)!}{(n-1)!r!}$		$\frac{n!}{(n-r)!}$
:---:			

(4) Two events E and F are mutually exclusive if $P(E$ and $F)=$ 0 . For mutually exclusive events, $P(E$ or $F)=P(E)+P(F)$.
(5) In general, for any pair of events E and $F, P(E$ or $F)$ $=P(E)+P(F)-P(E$ and $F)$.
(6) The conditional probability of an event E, given that an event F has occurred, is

$$
P(E \mid F)=\frac{P(E \text { and } F)}{P(F)}
$$

provided $P(F) \neq 0$.
(7) Two events E and F are independent if $P(E \mid F)=P(E)$ or, equivalently, $P(E$ and $F)=P(E) P(F)$.

EXPECTED VALUE

The great value of probability theory resides in the fact that it provides us with a rational approach to uncertainty, and, particularly, to decision making under uncertainty, by furnishing certain numerical measures of uncertainty. One way of doing this is by means of average or expected values.

If in some situation in which we can realize exactly one of two outcomes, the first with probability p_{1} and the second with probability p_{2}, and if the first yields a gain of v_{1} units and the second a gain of v_{2}
units, we can assess the situation in terms of an average gain of $p_{1} v_{1}+p_{2} v_{2}$. If there are N possible events (of which we can realize one) with respective probabilities of occurrence of $p_{1}, p_{2}, \ldots, p_{N}$ and associated gains of $v_{1}, v_{2}, \ldots, v_{N}$, we analogously assign an average gain of $p_{1} v_{1}+p_{2} v_{2}+\cdots+p_{N} v_{N}$.

On the other hand, we may not be satisfied with use of the average. Thus we may rank the gains say $v_{1} \leq v_{2} \leq \cdots \leq v_{n-1} \leq v_{N}$, and compute the probability on one realization of achieving a gain of more than some specified number \boldsymbol{v}. If

$$
v_{1} \leq v_{2} \leq \cdots \leq v_{k}<v \leq v_{k+1} \leq \cdots \leq v_{N}
$$

we see that the probability that actual gain exceeds v is given by $p_{k+1}+p_{k+2}+\cdots+p_{N}$.

The foregoing enables us to make a decision when the outcome is not completely known. If one decision leads to an expected gain of 100 , and another to an expected gain of 10 , we have a rational basis for choosing the first action.

Unfortunately, the foregoing plausible procedure does not completely dispose of the problem of decision making under uncertainty. In many situations, such as those faced by insurance companies or by instructors assigning grades in large sections of several hundred students, average values are meaningful. In other situations, for example, a class of 17 students, the average grade may provide little information. In general, the choice of criterion to employ in decision making - whether average value or probability of achieving a desired level or some other measure - is one of great difficulty, as is also the task of assigning values to the outcomes.

These problems are not mathematical per se, but operational and psychological, requiring a deep understanding of the actual process. Probability theory is used, for want of a better tool, in situations involving ignorance; recall our earlier statement concerning the assumption of equally likely events. In all real situations there is always additional information available to supplement the results obtained from probabilistic calculations. However, it may be too expensive or time-consuming to obtain this supplementary data, and we may be forced to use the less complete results.

We have briefly pointed out the difficulties involved in deciding
what measures of uncertainty to employ and the values to assign to outcomes. In some situations it is also difficult to make reasonable a priori estimates of the probabilities. To handle uncertainties of this type, we can conceive of nature as an opponent who is trying to choose the probabilities in such a way as to make it as difficult or as expensive as possible to discover the actual values. The problem of obtaining information, or of making appropriate decisions, can then be viewed as a game against nature. Many useful results can be obtained in this way, employing the Borel-von Neumann theory of games. ${ }^{a}$

In general, the game theory approach is too expensive to employ. It is not feasible to assume that everything is against us all the time, and the viewpoint is not one conducive to mental health. Different and more complex mathematical tools must be used, such as sequential analysis, dynamic programming, and adaptive control processes. References to some expository accounts will be found at the end of the chapter.

THE NUMBER OF SUCCESSES IN A SAMPLE

By a sample of size n we mean the realization of n independent outcomes of some given events. Thus a sample of size n may consist of the result of tossing n coins once, or of tossing one coin n times, or of drawing n cards from a deck (with or without replacement), or of the responses of a student to a multiple-choice exam with n questions, or the response of a class of n students to one question. The term success is used in the sense of an outcome of interest (to someone). For example, we may arbitrarily call the occurrence of a head in the toss of a coin a success, even though a person who has bet on a tail turning up may not consider it so. Similarly, success may be defined as an incorrect response to a question on a multiple-choice exam. The term is well established even though it may appear rather inappropriate
${ }^{\text {S See, for example, John von Neumann and Oskar Morgeastern, Theory of }}$ Games and Economic Behavior. (Princeton, N.J.: Princeton University Press, 1944), and Émile Borel, Le Jeu, la Chance et Les Théories Scientifiques Modernes. (Gallimard, 1941); other works are: Melvin Dresher, Games of Strategy: Theory and A pplications. (Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1961) and J. D. Williams, The Compleat Strategyst. (New York: McGraw-Hill, Inc., 1954 and 1966).
at times. Let us consider it as a technical term and not worry about its meaning in ordinary parlance.

We now want to consider the probability that a certain number of successes occur in a given number of trials. For example, suppose a multiple-choice exam is given, each question having five responses listed with only one correct response. There are 100 questions, and 70 questions must be answered correctly in order to get a passing grade. If a student merely guesses the answer to each question, with no knowledge at all about the subject what is the probability that he will get a passing grade? We can answer this question by a series of simple steps which we now detail. First, we must model the process by which guesses are made. We assume that for each question one of the five responses is selected at random, that is, each response has the same probability of being picked, namely $\frac{1}{5}$. Next, we define success as the event of having the correct response on a question. Our model specifies that P (success) $=\frac{1}{5}$ for each question. Since a passing grade requires at least 70 correct responses, the event of getting a passing grade is composed of the events 70 successes or 71 successes or 72 successes or . . . or 100 successes. Since these latter erents are mutually exclusive (verify this), the probability of getting a passing grade is the sum of the probability of these events (verify this also). We will obtain these probabilities by first considering the prototype of the calculations we must make here.

Consider n independent trials, each of which can result in only two outcomes, success (S) or failure (F). The probability of success on each trial is p. Consequently the probability of failure at each trial is $1-p$. (Verify this.) What is the probability of exactly k successes in these n trials? Note that for one particular order in which the k successes (and consequently $n-k$ fuilures) occur, the probability is $p^{k}(1-p)^{n-k}$. (Verify this, using the assumption that the n trials are independent.) Now, there are $\binom{n}{k}$ patterns of successes and failures with k successes in n trials and any two patterns are mutually exclusive. Therefore the probability of exactly k successes in n independent trials having probability of success equal to p at each trial, is given by $\binom{n}{k} p^{k}(1-p)^{n-k}$.

We return now to the example. Based on the foregoing paragraph, we have

$$
\begin{aligned}
& P\{\text { passing test }\}=P \text { \{at least } 70 \text { correct answers out of } 100\} \\
& \quad=P\{70 \text { correct out of } 100\}+P\{71 \text { correct out of } 100\}+\cdots+ \\
& \quad P\{100 \text { correct out of } 100\} \\
& \quad=\binom{100}{70}\left(\frac{1}{5}\right)^{70}\left(\frac{4}{5}\right)^{30}+\binom{100}{71}\left(\frac{1}{5}\right)^{71}\left(\frac{4}{5}\right)^{29}+\cdots+\binom{100}{100}\left(\frac{1}{5}\right)^{100} .
\end{aligned}
$$

There are tables available listing the individual probabilities and the sum appearing in the preceding equation. ${ }^{9}$ (They are called binomial probabilities and cumulative binomial probabilities, respectively.) The terms are exceedingly cumbersome to evaluate numerically, however. (Try, for example, to determine the first term,

$$
\binom{100}{70}\left(\frac{1}{5}\right)^{70}\left(\frac{4}{5}\right)^{30},
$$

to get an appreciation of this fact.) The task of obtaining $\binom{n}{k} p^{k}(1-p)^{n-k}$ becomes increasingly difficult as n increases. Fortunately, there is a good, easily obtainable approximation available for the binomial probabilities. Further, its validity increases as n and k increase in a fixed ratio. This is the normal approximation to the binomial. The normal distribution is the familiar bell-shaped curve pictured in Figure 1.1. It has the properties of being symmetric about its center line (at zero) and of having a unit area bounded between it and the horizontal axis. The fable in Appendix B gives the shaded

FIGURE 1.1

[^3]area of Figure 1.2; that is, $A(x)$ denotes the area bounded by the vertical line at zero, the vertical line at x, the curve, and the horizontal axis. By symmetry, the striped area bounded by the verticial line at

FIGURE 1.2
zero, the vertical line at $-x$, the curve, and the horizontal axis is also equal to $A(x)$. Using the symmetry and the fact that the entire area is one, it is easy to see that each of the dotted areas is equal to $\frac{1}{2}$ $A(x)$.

Let us accept the fact that the normal approximation to the binomial probability of at least k successes in n independent trials, where the probability of success at each trial is p, is given by the expression

$$
\begin{array}{ll}
\frac{1}{2} \pm A\left(\frac{k-\frac{1}{2}-n p}{\sqrt{n p(1-p)}}\right), & + \text { if } k-\frac{1}{2}-n p<0 \\
- \text { if } k-\frac{1}{2}-n p>0
\end{array}
$$

Let us evaluate this numerically for the foregoing examination example. Here $n=100, p=\frac{1}{5}, k=70$; thus

$$
\begin{gathered}
k-\frac{1}{2}-n p=70-\frac{1}{2}-20=49.5, \\
\sqrt{n p(1-p)}=\sqrt{16}=4, \\
\frac{k-\frac{1}{2}-n p}{\sqrt{n p(1-p)}}=\frac{49.5}{4}=12.4,
\end{gathered}
$$

and $A(12.4)$ is virtually .5 , so that the probability of passing the test by guessing is essentially zero - as we might have predicted. Let us consider another example.
Sixty fair coins are tossed (a fair coin is one for which probability of
heads equals probability of tails). What is the probability of at least 35 heads? The normal approximation yields

$$
\begin{aligned}
& \frac{1}{2}-A\left(\frac{35-\frac{1}{2}-30}{\sqrt{60\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)}}\right)=\frac{1}{2}-A\left(\frac{4.5}{\sqrt{15}}\right) \\
& \quad=\frac{1}{2}-A\left(\frac{4.5}{3.87}\right)=\frac{1}{2}-A(1.16)=\frac{1}{2}-.3770=.1230 .
\end{aligned}
$$

This approximate value compares favorably with the exact value of .12253 obtained from tables of the binomial distribution.

EXERCISES

1. A multiple-choice exam containing 25 questions with five possible responses on each question is administered to a class of 30 students.
(a) What is the probability that exactly four students miss question 1? State the assumptions you are making; that is specify the model you have set up to describe this situation.

What is the probability that no more than four students miss question 1 ?
(b) What is the probability that a particular student will get exactly 20 questions right? Again, state the assumptions you are making.

What is the probability that this student will get at least 20 questions right?
2. A chest contains one each of 10 different pennants. Pennants are selected and arranged on a flag pole.
(a) If each ordered arrangement constitutes a different pattern, how many patterns consisting of four pennants are there?
(b) If order plays no role, but only which pennants are displayed is important, how many patterns are there?
3. It has been observed that each year 10 percent of school vice-principals leave the post for one reason or another (reassignment, promotion, retirement, and so on). An ambi-
tious teacher hopes to be promoted to a vice-principal's position at his school.
(a) What is the probability that a vacancy will occur this year?
(b) For the first time next year?
(c) For the first time two years hence?
(d) Within the next two years? State your assumptions carefully.

ANSWERS TO EXERCISES

p. 8: 1 .
2. (a) $\binom{7}{3}$ is the fourth entry in the eighth row, 35 .

$$
\binom{7}{3}=\frac{7!}{3!4!}=\frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1}=35 .
$$

(b) $\binom{6}{4}$ is the fifth entry in the seventh row, 15.

$$
\binom{6}{4}=\frac{6!}{4!2!}=\frac{6 \cdot 5}{2 \cdot 1}=15 .
$$

(c) $\binom{8}{3}$ is the fourth entry in the ninth row, 50.

$$
\binom{8}{3}=\frac{8!}{3!5!}=\frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1}=56 .
$$

p. 9: 1. $10^{3}=1000$
2. $26^{4}=456,976$
3. $20 \times 6 \times 20=2400$
4. $10^{7}=10,000,000$
5. $10^{5}=100,000$
p. 11:
2. Each student can pass if he answers at least three questions
correctly, that is if he answers three questions correctly or four questions correctly or all five questions correctly. These outcomes are mutually exclusive and can occur respectively in $\binom{5}{3}$, $\binom{5}{4}$, and $\binom{5}{5}$ ways. Thus each student can pass in $\binom{5}{3}+$ $\binom{5}{4}+\binom{5}{5}$ ways, or $10+5+1=16$ ways. Thus both students can pass in (16) ${ }^{2}=256$ ways.
p. 15: 1. $P\left(H_{2} \mid H_{1}\right)=\frac{P\left(H_{1} \text { and } H_{2}\right)}{P\left(H_{1}\right)}=\frac{\frac{1}{4}}{\frac{1}{2}}=\frac{1}{2}$

$$
P\left(H_{2}\right)=\frac{1}{2} .
$$

2. $P(C$ and $D)=\frac{\#(C \text { and } D)}{N}=\frac{4}{52 \cdot 6}=\frac{1}{78}$

$$
P(C) P(D)=\frac{4}{52} \cdot \frac{1}{6}=\frac{1}{78} .
$$

3. $\quad P(A$ and $B)=\frac{1}{36}$

$$
P(A) P(B)=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36} .
$$

5. A and B are mutually exclusive, so $P(A$ and $B)=0$. But neither A nor B is the impossible event, so $P(A) \neq 0$ and $P(B) \neq 0$ and, consequently, $P(A) P(B) \neq 0$. If A and B were independent, $P(A$ and B) would equal $P(A) P(B)$, which cannot be in this instance.
p. 23:
6. (a) Assumptions: (i) Students answer at random, that is, the probability of a correct answer to any question is $\frac{1}{5}$ so that the probability of an incorrect answer is $\frac{4}{5}$. (ii) Responses of any group of students are independent. P (exactly four students out of 30 students miss question 1) $=\binom{30}{4}\binom{4}{5}^{4}\binom{1}{5}^{26}$.
P (no more than four students miss question 1)
$=P$ (zero or one or two or three or four students miss question 1)
$=P($ zero students miss question 1$)$
$+P$ (one student misses question 1)
$+P$ (two students miss question 1)
$+P($ three students miss question 1)
$+P($ four students miss question 1)

$$
\begin{aligned}
& =\binom{30}{0}\left(\frac{4}{5}\right)^{0}\left(\frac{1}{5}\right)^{20}+\binom{30}{1}\left(\frac{4}{5}\right)^{1}\left(\frac{1}{5}\right)^{29}+\binom{30}{2}\left(\frac{4}{5}\right)^{2}\left(\frac{1}{5}\right)^{28} \\
& =\binom{30}{3}\left(\frac{4}{5}\right)^{3}\left(\frac{1}{5}\right)^{27}+\binom{30}{4}\left(\frac{4}{5}\right)^{4}\left(\frac{1}{5}\right)^{26} .
\end{aligned}
$$

(Note where the concept of mutual exclusivity was used.)
(b) Assumptions: (i) The student answers at random, that is, his probability of a correct answer to any question is $\frac{1}{5}$; (ii) his response to one question is independent of his response to any other question.
$P($ exactly 20 correct answers $)=\binom{25}{20}\left(\frac{1}{5}\right)^{20}\left(\frac{4}{5}\right)^{5}$
$P($ at least 20 correct answers $)=\binom{25}{20}\left(\frac{1}{5}\right)^{20}\left(\frac{4}{5}\right)^{6}$

$$
\begin{aligned}
+\binom{25}{21}\left(\frac{1}{5}\right)^{21}\left(\frac{4}{5}\right)^{4} & +\binom{25}{22}\left(\frac{1}{5}\right)^{22}\left(\frac{4}{5}\right)^{3}+\binom{25}{23}\left(\frac{1}{5}\right)^{23}\left(\frac{4}{5}\right)^{2} \\
& +\binom{25}{24}\left(\frac{1}{5}\right)^{24}\left(\frac{4}{5}\right)^{1}+\binom{25}{25}\left(\frac{1}{5}\right)^{25}\left(\frac{4}{5}\right)^{0} .
\end{aligned}
$$

2. (a) $P(10,4)=\frac{10!}{6!}=10 \cdot 9 \cdot 8 \cdot 7=5040$.
(b) $\binom{10}{4}=\frac{10!}{6!4!}=\frac{5040}{4 \cdot 3 \cdot 2 \cdot 1}=210$.
3. (a) P (vacancy this year) $=.10$.
(b) P (vacancy for first time next year)
$=P$ (no vacancy this year and a vacancy next year)
$=(.9)(.1)=.09$.
(c) P (vacancy for the first time two years hence)
P (no vacancy this year and no vacancy next year and a vacancy two years hence)
$=(.9)(.9)(.1)=.081$.
(d) P (vacancy within the next two years)
$=P$ (vacancy this year or vacancy for the first time next year or vacancy for the first time two years hence)
$=P($ vacancy this year $)+P($ vacancy for the first time next year) $+P$ (vacancy for the first time two years hence)

$$
=.10+.09+.081=.271
$$

(Note that this could also have been calculated as:
P (vacancy within the next two years)
$=1-P$ (no vacancy within the next two years)
$=1-P$ (no vacancy this year or next year or two years hence)
$=1-P$ (no vacancy this year) P (no vacancy next year)
P (no vacancy two years hence)
$=1-(.9)^{3}=1-.729=.271$.
Assumption: Vacancies in different years are independent events.

REFERENCES

*Chernoff, H., and Moses, L. E., Elementary Decision Theory. (New York: John Wiley \& Sons, Inc., 1959).
*Goldberg, Samuel, Probability: An Introduction. (Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1960).
*Weaver, Warren, Lady Luck. (Garden City: Doubleday Anchor, 1963).

[^4]Programming. (Princeton, N.J.: Princeton University Press, 1962).
**Bellman, Richard E., Adaptive Control Processes: A Guided Tour. (Princeton, N.J.: Princeton University Press, 1961).
**Wald, A., Sequential Analysis. (New York: John Wiley \& Sons, Inc., 1947).
*Elementary.
**Advanced.

Chapter Two

PROGRAMMED STATISTICS

INSTRUCTIONS

Read these Instructions carefully

Your success in mastering the contents of this chapter will depend on how carefully you follow these instructions.

On the following pages is a Pre-Test. Take this test before you read the chnpter. Do not be concerned if you miss some of the questions on the Pre-Test. This is expected.
At the end of the chapter is a Post-Test. Take this test after you have read the chapter. Do not look at the Post-Test until you have finished studying the chapter.

Turn to the next page of the text and cover the right-hand column of the page with a slip of paper. Read the statement at the top of the page. Select the best answer to each of the multiple-choice questions that appear on the page. Then check your answer with the correct answer which appears in the righthand column of the page. Continue this procedure as you read through the chapter.

PRE-TEST

1. If the teacher returns a paper marked with a raw score of 26 and says nothing further about the other grades on the examination, this means:
(a) you failed the examination
(b) you are in the 26 th percentile
(c) the raw score is not meaningful without more information
2. The measures of central tendency listed below are:
(a) the raw score
(b) the mean
(c) the median
(d) standard deviation
(b), (c)
3. The middle point in a set of scores is called the
\qquad -

Median

4. Scores that differ greatly from the measure of central tendency are called:
(a) raw scores
(b) the best scores
(c) extreme scores
(d) Z-scores
(c)
5. The \qquad is sensitive to extreme scores, while the \qquad is not.

Mean Median
6. Arithmetical average signifies:
(a) the mean
(b) the median
(c) neither of these
7. The effect that extreme scores have on the mean is to pull it in their direction.
() True
() False
True
8. The elimination of all low extreme scores from a set has the effect of:
(a) lowering the mean
(b) raising the mean
(c) no effect on the mean
9. If all the scores on examination cluster around the mean, the dispersion is said to be:
(a) small
(b) large
(c) normal
10. One measure of dispersion is called: \qquad

11 If the dispersion is small, the standard deviation is:
(a) large
(b) small
(c) zero
12. A \qquad score is more useful than a raw score because it gives information about how the score relates to other scores.
13. A percentile gives the percentage of all scores that are located \qquad it.
14. Extreme scores have more effect on the mean than on the median.
() True
() False
15. The mean is calculated by adding all scores in the set and dividing by the number of scores using what formula?

$$
M=\frac{\Sigma X}{N}
$$

32 Programmed Statistics

16. A correlation coefficient can range from
\qquad -1 to +1

This is the end of the Pre-Test. Continue on the next page and read the text of the chapter, using the same procedure for checking your answers to the multiple-choice questions.

PROGRAMMED MATERIAL

2.1 A score on an examination is more meaningful if you know how it compares with all the other scores on the same examination.

If a teacher returns your paper marked with the raw score 26 and says nothing about the other grades on the examination, this means:
(a) you failed the examination
(b) you are in the 26th quartile
(c) the raw score is not meaningful without more information
2.2 The raw score on an examination is the number obtained by applying the scoring key to the test paper. It alone does not tell very much about how you did on the test. The raw score is usually the count of the number of correct answers.

On a test containing 100 questions, suppose that the professor says you got 60 percent of the answers correct. Your raw score on this testowould be:
(a) 60
(b) 40
(c) 30
(d) none of these
2.3 But sometimes on true-false tests the test will be scored by subtracting the number of wrong answers from the number of correct answers to obtain the raw score. In that case the raw score for the test in the previous example would be:
(a) 60
(b) 40
(c) 20
(d) none of these
2.4 For a raw score on an examination to be meaningful, you must know its relation with the other scores on the same examination. You may want to compare your score with some measure of the central tendency of the group. The measurement of central tendency is sometimes the average of all the scores on the examination.

Thus, if the average score for the examination is 30 , a mensure of central tendency would be:
(a) 26
(b) 30
(c) neither of these
2.5 The arithmetic average (or the mean) of a sample or set of scores is not the only measure of central tendency. The median is also sometimes used for this purpose.

The mean of an examination is 69 , the median is 68 , and the standard deviation is 2 . The measures of central tendency for this examination are:
(a) .26
(b) 69
(c) 68
(d) 2
(b), (c)
2.6 Two measures of central tendency for a set of examination scores are the median and the mean.
() True
() False
True
2.7 The word median signifies the middle point in a set of ordered scores. The median is obtained by arranging all the scores in order from the highest to the lowest, and then counting down the list half way.

What is the median for this set of scores:
2.8 Where there is an odd number of scores in the list, the middle point or median will be an actual score, as in the previous example. But where there is an even number of scores in the list, the median is taken to be the point half way between the two scores located in the middle of the list.

What is the median for this set of scores:

$$
\begin{equation*}
90,88,70,60,55,44 \tag{65}
\end{equation*}
$$

2.9 The word mean signifies the arithmetical average of the set of scores. It is obtained by adding all the scores together and then dividing by the number of scores added up.

Calculate the mean for the following set of scores:

$$
100,80,70,40,20 \quad \frac{310}{5}=62
$$

2.10 What is the median in the previous example?

$$
\frac{\Sigma X}{N}=M
$$

The formula given above is used for calculating the sample mean. It signifies:

$$
\frac{\text { Sum of the scores }}{\text { Number of scores }}=\text { Mean. }
$$

Apply the formula to the following set of scores and calculate the mean:

$$
80,40,35,30,20
$$

$$
\frac{205}{5}=41
$$

2.12 For the set of scores in the previous example, identify the median, mean, and mode.

$$
\text { Median }=35
$$

$$
\mathrm{Mean}=41
$$

No mode
2.13 The median is the middle point in \mathfrak{n} set of ordered scores, and the mean is the arithmetical average of the set of scores. These two measures of central tendency do not always coincide. Nor is the mean necessarily equal to one of the observations. Identify the median and the mean for the following set of scores:

$$
\begin{aligned}
100,80,60,10,10 & =60 \text { Median } \\
& =52 \text { Mean }
\end{aligned}
$$

2.14 Scores that differ greatly from the mean or the median are known as extreme scores. These are the very high scores at the top of the list and the very low scores at the bottom of the list.

Identify the extreme scores in the following list:

$$
100,40=\text { mean, } 30=\text { median, } 20,10 \quad 100,10
$$

2.15 The mean is sensitive to extreme scores, while the median is not. That is to say, changing a few scores by making them larger or smaller may have a noticeable effect on the mean or arithmetical average of all the scores, but this need not affect the median or middle point of the set of scores.

The measure of central tendency that is most sensitive to extreme scores is:
(a) the mean
(b) the median
(c) both of these
2.16 The effect that extreme scores have on the mean is to pull it in their direction. Thus a few extreme scores at the top of the set will raise the mean. Likewise, a few extreme scores at the bottom of the set will lower the mean.

Calculate the median and the mean for the three sets of scores shown below.
(a) $100,60,50,30,10$
(b) $100,60,50,40,30$
(c) $70,60,50,40,10$

	Median	Mean
(a)	50	50
(b)	50	56
(c)	50	46

2.17 The elimination of extreme scores at the bottom of the set has the effect of:
(a) lowering the mean
(b) raising the mean
(c) no effect
(b)
2.18 The elimination of extreme scores at the top of the set has the effect of:
(a) lowering the mean
(b) raising the mean
(c) no effect
2.19 Extreme scores will have the following effect on the median of an examination:
(a) they may tend to raise it
(b) they may tend to lower it
(c) they may have no effect on it
2.20 The mode is defined as the item in a set of scores that occurs most often. It is the point of greatest frequency or density. A mode exists if there are two or more papers with the same score.

Which score is the mode in the following set?

$$
\begin{equation*}
16,15,14,12,12,11 \tag{12}
\end{equation*}
$$

2.21 Sometimes there is more than one mode in a set of scores. Any score for which there are two or more papers will constitute a mode.

Identify the modes in the following set of scores:

$$
16,16,15,14,12,12,10,9,2 \quad 12 \text { and } 16
$$

2.22 Extreme scores on an examination have the following effect on the mode:
(a) they tend to raise it
(b) they tend to lower it
(c) they have no effect on it
2.23 The most sensitive measure of central tendency, because it is influenced by every score in the set, is:
(a) the mode
(b) the mean
(c) the median
2.24 Which of the following statements is/are always true?
(a) The mean has an effect on extreme scores.
(b) The median has an effect on extreme scores.
(c) Extreme scores have an effect on the mean.
(d) Extreme scores have an effect on the median.
2.25 Suppose you have a set of examination papers that contains many scores below 50 and only a few scores above 50. The preferred measure of central tendency in this case would be:
(a) the mean
(b) the median
(c) need more information to tell
2.26 Which of the following statements is true?
(a) Some sets of scores have a median, others have a mean, but no set has both of these.
(b) The median is always the same as the mean.
(c) The median is never the same as the mean.
(d) For a score to be meaningful, you must know something more than the median or the mean.
2.27 In this set of scores ($40,30,29,29,20,10$), the frequency of score 29 is:
(a) 1
(b) 2
(c) 3
(d) 4
(b)
2.28 When we say that a score has a frequency of 16 , we mean how many students got this score?
(a) 160 percent of the students
(b) 16 students
(c) 10 students
(d) .016 percent of the students
2.29 The frequency of a score in a set of scores is the same as the number of students who got that score.
() True
() False
True
2.30 Each score in a set of scores may be represented graphically by a small rectangle, as in Figure 2.1.

FIGURE 2.1

At the bottom are shown the scores the students could make, while the squares above the numbers represent the _ (or number) of students who Fremade that score.
2.31 In Figure 2.1, the frequency of the score 20 is:
(a) 5
(b) 3
(c) 2
(d) 7
2.32 When there are many scores, the range of possible scores is often subdivided into equal intervals and the frequency of scores in each interval shown by the height of the graph above that interval. This graph is called a histogram. (See Figure 2.2.)

FIGURE 2.2 Histogram of Scores
2.33 Another way of representing these data is via a frequency polygon. It is formed by joining adjacent centers of the tops of the line in the histogram by straight line segments. The process of constructing a frequency polygon and the result are shown in Figures 2.3 and 2.4.

FIGURE 2.3 Frequency Polygon Superimposed on Histogram

FIGURE 2.4 Frequency Polygon
2.34 In the frequency distribution of Frame 2.32, which interval of scores has the largest frequency?
2.35 Suppose that your raw score on an examination was 55, and the professor tells you that the mean for the examination was 40 , you will still need more information about the examination scores in order for your score to really be meaningful to you. You should ask about the dispersion or variability of the scores on the examination.

In order for you to interpret your score on an examination, you must know:
(a) the measure of central tendency
(b) the measure of dispersion or variability
(c) the raw score
(d) all of these
2.36 A measure of dispersion gives information about how the scores on an examination spread out; it tells whether all the scores cluster around the measure of central tendency (mean or median) or whether there is a small or large spread of the scores away from it. The dispersion is said to be small if the scores cluster around the mean; it is large if they spread out from the mean.

How would you describe the dispersion of this set of scores?

$$
99,98,97 \text { (Mean), 96, } 95 \quad \text { Small }
$$

2.37 How would you describe the dispersion of this set of scores:

$$
100,80,75,30,13,2
$$

2.38 If many of the scores on the examination cluster around
the mean:
(a) the dispersion is small
(b) the dispersion is large
(c) need more information to tell
2.40 If there are many extreme scores on an examination, the dispersion is:
(a) large
(b) small
(c) normal
(a)
2.41 One measure of dispersion in a sample is called the sample standard deviation and is denoted by s. It is defined by the formula:

$$
s=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-M\right)^{2}},
$$

where: n is the number of examination scores (or other measurements)
$x_{1}, x_{2}, \ldots, x_{n}$ are the n examination scores (or other measurements)
M is the arithmetic mean of x_{1}, \ldots, x_{n} defined in Frame 2.11
and $\sqrt{ }$ denotes the square root.

For purposes of computation, the following formula is often more convenient than the foregoing definition.

$$
s=\sqrt{\frac{1}{n-1}\left[\sum_{i=1}^{n} x_{i}{ }^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)^{2}\right]}
$$

2.42 An examination raw score can be converted to a new measure in which the unit is the standard deviation, and the origin (that is, zero point) of the scale is the mean of the raw scores. If a measurement in the new scale is denoted Y and the corresponding raw score by X, their relation is $Y=\frac{X-\bar{x}}{s}$. Negative values of Y correspond to raw scores below the mean, positive values to raw scores above the mean. The numerical value of Y mea-
sures the distance the score is from the mean in units of the standard deviation. Generally speaking, Y values as large as +3 (small as -3) indicate raw scores considerably above (below) the mean.
2.43 Calculate the standard deviation for the following set of scores, indicating the mean:

$$
100,20,90,30,80,40,70,50,60
$$

Using the formula in Frame 2.41, one has:

$$
\begin{aligned}
s^{2}= & \frac{1}{8}\left[\left(100^{2}+20^{2}+90^{2}+30^{2}+80^{2}+40^{2}+70^{2}+50^{2}+60^{2}\right)\right. \\
& \left.-\frac{1}{9}(100+20+90+30+80+40+70+50+60)^{2}\right] \\
= & \frac{100}{8}[(100+4+81+9+64+16+49+25+36) \\
& \left.-\frac{1}{9}(10+2+9+3+8+4+7+5+6)^{2}\right] \\
= & \frac{100}{8}\left[384-\frac{1}{9}(54)^{2}\right] \\
= & \frac{100}{8}[384-324] \\
= & \frac{100}{8}[60]=\frac{6000}{8}=750 ; s=27.4 .
\end{aligned}
$$

The mean is calculated to be $M=540 / 9=60$.
2.44 How would you describe the dispersion for the set of scores given in the previous example?
2.45 The scores of students on an examination are influenced by many factors, e.g., knowledge of the subject, loss of sleep, misunderstanding of an examination question, breaking a pencil point during an examination, the kind of examination, and so on. If the outcome of a set of events such as the scores on an examination is determined by many factors, a frequency distribution representing the events often has a \qquad appearance.
2.46 This is called:
(a) a bell-shaped frequency distribution
(b) an abnormal curve
(c) none of these
2.47 Figure 2.5 shows the spread of grades that can be expected in a normal distribution. The curve is bell-shaped. Z-scores, T-scores, ETS (Educational Testing Service)scores, the WISC (Wechsler Intelligence Scale for Children), IQ, and percentiles are also shown on the chart. Study this chart, and then answer the questions that appear below.

$$
\begin{array}{ll}
\text { A normal distribution can be illustrated by a } & \begin{array}{r}
\text { Bell- } \\
\text { shaped }
\end{array} \\
\hline
\end{array}
$$

2.48

FIGURE 2.5 Normal Probability Distribution
2.49 There are many factors that determine how many times the number seven will come up if two dice are rolled, for example, the manner in which the dice are held in the hand before the roll, how hard they are tossed, the size of the dice, and so on.

If the sum of the faces of a pair of dice is recorded in a frequency distribution, a \qquad curve would be the expected result.
2.50 With more tosses of the dice, the curve of the frequency distribution representing the number of each toss would become:
(a) more irregular
(b) more smooth and regular
(c) flat and straight
(d) none of these
2.51 If the dice were rolled many times, this would lead to an almost perfect bell-shaped frequency distribution similar to a curve mathematicians call a normal curve.
() True
() False
2.52 Earlier we spoke of the mean and standard deviation of a sample (or set) of examination scores. These values are estimates of corresponding quantities in the (perhaps idealized) population of all examination scores. Often the distribution of examination scores in the population is adequately described by the normal distribution with a particular mean and standard deviation. To distinguish the mean and standard deviation of the population from the mean and standard deviation of the sample, the former are often denoted μ and σ, respectively. (Recall that the sample mean is denoted by M and the sample standard deviation by s.) The parameters μ and σ are not defined in terms of finite sums as in Frames 2.11 and 2.41, respectively, but through the process of integration, a concept from calculus which is outside the scope of this book.

In the remainder of this chapter the terms "mean" and "standard deviation" refer to the population mean and population standard deviation. When you encounter these terms elsewhere, however, be sure to ascertain how they
are used - as descriptors of the sample or of the population. Careful authors will observe the distinction.
2.53 Suppose that the standard deviation of a normal distribution is taken as a unit of dispersion. The horizontal axis is then measured off in these standard score units. The mean of the distribution is taken as a starting point, and measurements go in both directions. If the mean corresponds to a standard score of zero, then a point 3 standard deviations to the right of the mean has a standard score of +3 , while a point 2 standard deviations to the left of the mean has a standard score of:
(a) +2
(b) -3
(c) -2
(d) +3
(c)
2.54 A point 1.5 standard deviations to the left of the mean would have a standard score of:
(a) -1.5
(b) +1.5
(c) -3.5
(d) +2.5
2.55 A point 3 standard deviations to the right of the mean would have a standard score of:
(a) +3
(b) +2
(c) -3
(d) -1
2.56 Of the scores in any normal distribution, almost \qquad percent of them are within 3 standard deviations from the mean of the distribution?
(a) 50 percent
(b) 80 percent.
(c) 100 percent
(d) none of these
2.57 About \qquad percent of all the scores in a normal distribution are within 3 standard deviations to the right of the mean?
(a) 90 percent
(b) 80 percent
(c) 50 percent
(d) 20 percent
2.58 Almost 50 percent of all the scores in a normal distribution lie between a standard score of zero and -3 .
() True
() False
2.59 A normal distribution is symmetrical. The percentages of scores in terms of standard score units is the same to the left of the mean as to the right of the mean.
() True
() False
2.60 The percentage of all the scores in a normal distribution included between a standard score of zero and -2 is:
(a) 2 percent
(b) 14 percent
(c) 34 percent
(d) 48 percent
(d)
2.61 Between a standard score of -1 and +1 the percentage of all the scores in a normal distribution is:
(a) 34 percent
(b) 17 percent
(c) 68 percent
(d) none of these
2.62 In a normal distribution the percentage of grades that can be expected to fall between -1 and +2 standard deviations from the mean is:
(a) 14 percent
(b) 34 percent
(c) 82 percent
(d) 84 percent
(c)
2.63 A person whose ETS-score (Educational Testing Service) is 700 is how many standard deviations above or below the mean, given that the mean is 500 and the standard deviation is 100 ?
(a) +1
(b) -2
(c) +3
(d) +2
2.64 A person whose ETS-score is 650 is ___ standard deviations from the mean.
2.65 A derived score differs from a raw score in that a raw score gives no information about what the score means and says nothing about the relation between the raw score and the other scores in the distribution, while a derived score does give such information and is therefore meaningful.
() True
() False
2.66 A standard score gives some information about the relative standing of the student with respect to other students in the population.
() True
() False
True
2.67 T-scores are shown in Figure 2.5 on the second line below the Normal Probability Distribution graph. The T-score is also a derived score. To convert a standard score, sometimes also called Z-score, to a corresponding T-score, multiply the Z-score by 10 and add 50 .

If the Z-score is +3 , what is the corresponding T-score?
2.68 . If the Z-score is 0 , what is the corresponding T-score?
2.69 If the Z-score is -3 , what is the corresponding T-score?
2.70 In Frame 2.69, the -3 is multiplied by 10 to get -30, after which 50 is added to -30 making a T-score of 20 . If the Z-score is -1 , what is the corresponding T-score?
2.71 A Z-score that contains a decimal is likewise changed to a T-score by multiplying the Z-score by 10 and adding 50 .

If the Z-score is 2.5 , what is the corresponding T-score?
2.72 Percentiles are shown on the Normal Probability Distribution graph in Figure 2.5. Percentiles represent the percentage of scores in the distribution that are located to the left of the number shown.

Would a score that falls at the 40th percentile on the Normal Probability Distribution graph be to the left or to the right of the figure 50 percent?

> 2.73 The population median is located at the 50 th percentile, which means that half of the scores are to the left of it and half to the right of it.

What percentage of the scores in a distribution are to
50 the right of the 50 th percentile?
percent
2.74 What percentages of the scores in a distribution are 48
located between the 50 th and 98 th percentiles?
2.75 What percentage of the scores in a distribution are located 16 to the left of the 16 th percentile?
2.76 A distribution may be skewed either to the right or to the left. If the large bulk of scores in the distribution are low scores, with fewer and fewer scores to the right of the
central tendency, the distribution is skewed to the right (the longer tail of the distribution extends toward the right). But if the large bulk of the scores are high scores and there are fewer scores toward the left of the central tendency, the distribution is skewed to the left (the longer tail of the distribution extends towards the left).

FIGURE 2.6

The distribution shown in Figure 2.6 (b) is skewed to the Right

The distribution shown in Figure 2.6 (a) is skewed to the
2.78 When a distribution is skewed to the left, we say that it is negatively skewed, and when a distribution is skewed to the right, we say it is positively skewed.
2.79 The distribution shown in Figure $2.6(a)$ is:
(a) negatively skewed
(b) positively skewed
2.80 The distribution shown in Figure 2.6 (b) is:
(a) negatively skewed
(b) positively skewed
2.81 The difficulty of a test question is measured by the proportion of students who get the question right. This proportion is inversely related to the difficulty of the question.

That is to say, the more students that get the question right, the less difficult (or the easier) the question is said to be.

The difficully factor, $D=R / n$, is determined simply by dividing the number of students who got the question right (R) by the total number of students (n) who answered the question.

If 10 students answered the question and 8 answered it correctly, what is the difficulty factor for this question?
2.82 We sometimes say that the average score received on a test indicates how difficult the test is. Likewise, the notion of a difficulty factor for determining the difficulty of a question on a test is analogous to this - it is the average score on the question.

The proportion or percentage of students that answer a question correctly is \qquad related to the difficulty of that question.
2.83 A difficulty factor of .8 would signify:
(a) the question is difficult
(b) the question is not difficult
(c) more than half the students answered the question wrong
(d) more information is needed
2.84 A difficulty factor of .5 would signify:
(a) the question is difficult
(b) the question is not difficult
(c) half of the students answered the question right
(d) more information is needed
2.85 A difficulty factor of 2 signifies that many students could not answer the question correctly and the question is therefore presumed to be difficult.
() True
() False
2.86 All the questions on an examination might involve about .5 difficulty, or there might be a rather wide range with some questions being significantly more difficult, but with the average of all items being about . 5 .

If you want to motivate the poorest students and to challenge the best students, what difficulty factor would you use for your test questions?
(a) .5 on all questions
(b) .2 on all questions
(c) .8 on all questions
(d) wide range of difficulty values
2.87 Correlation coefficient is a decimal, signifying the amount of association between two variables. Each variable must actually vary or change in order for the pair to be correlated.

If one item is fixed and unchangenble and the other item varies, can you measure their correlation?
() Yes
() No
No
2.88 When two variables tend to vary together - that is, when the high scores in one variable are associated with the high scores in the other variable and when the low scores in one are likewise associated with the low scores in the other - these variables are said to be positively corrclated.

Variables that tend to vary together directly result in a —___ correlation.
2.89 But if the high scores in one of the variables tend to go with the low scores in the other variable, or vice versa, then these variables are said to be negatively correlated.

Variables whose high and low scores vary inversely to one another result in a \qquad correlation. Negative
2.90 If the variables are totally unrelated, so that a high score in one is equally likely to be associated with a high score or a low score (or even a medium score) in the other, then these variables are said to be uncorrelated.

If the figure +1 signifies a perfect positive correlation and the figure -1 signifies a perfect negative correlation, then the figure 0 signifies:
(a) a perfect correlation
(b) uncorrelated variables
(c) not significant
2.91 Correlation is a decimal, not a percentage. It is measured on a scale, as shown in Figure 2.7, which extends from -1 through zero to +1 .

FIGURE 27

There is no such thing as a correlation greater than +1 or less than -1 .
() True
() False
True
2.92 A perfect correlation is signified by:
(a) 0
(b) +1
(c) -1
(d) +2
(b)
or
(c)
2.93 Suppose that the correlation between age and mistakes on an automobile driving test is -.3 .

This statement means:
(a) as the age of the driver increases, the number of questions he misses on the test tends also to increase
(b) as the age of the driver increases, the number of questions he misses on the test tends to decrease
(c) a perfect negative correlation exists, so there is no relation between age and the test questions missed
2.94 A measure of associntion between two variables is called correlation. Since height and weight tend to be closely related, that is, short people generally weigh less than tall people, we can say height and weight are positively correlated variables.
() True
() False
2.95 Variables are said to be correlated if information concerning one of them gives information concerning another variable.

If we find that the average number of science books read by a student affects his grade in nonscience courses, we can say that there is a correlation between reading books on science and the grade received in nonscience courses.
() True
() False
2.96 If a history professor tells his class: "All those who got 100 on the history test got 20 on the mathematics test, and all those that got 100 on the mathematics test got 20 on the history test," he is saying that the correlation between the history test and the mathematics is:
(a) negative
(b) positive
(c) uncorrelated variables
2.97 Although correlation does not necessarily imply causation, a correlation coefficient is useful in making predictions. Thus, if the scores of students on one test are correlated with their scores on another test, a student's score on one test can be used to predict his score on the other test.

If two events are perfectly correlated, this means that the one event is the cause of the other event.
() True
() False
One way two events can be highly correlated is for both to be produced by a third event.
2.98 The reliability of a test signifies dependability of the results obtained from using that test.

The same test is given three times to a student. The three resulting scores differ widely. The test is probably not reliable.
() True
() False
2.99 A test is said to be valid if it measures whatever it was designed to measure.

Which statement is false?
(a) A test can be valid without being reliable, but it cannot be reliable unless it is valid.
(b) A test can be reliable without being valid, but it cannot be valid unless it is reliable.
2.100 You have now completed this chapter and are ready to take the Post-Test, which appears on the following pages.

Go now to the Post-Test and answer the questions. Check your answers against the correct ones, which appear in the right-hand column of the page.

POST-TEST

1. If the professor returns your paper marked with a raw score of 26 and tells you that the mean for the examination was 20 , what information do you still need in order for your score to be meaningful?
(a) the median for the examination
(b) the dispersion of the scores
(c) the difficulty factor
(d) none of these
2. Name two measures of central tendency.

Median,
Mean
3. The measure of central tendency most sensitive to extreme scores is the median.
() True
() False
4. Which of these difficulty factors signifies an easy question:
(a) .3
(b) .5
(c) .7
(d) .9
5. If the scores on an examination spread out far from the mean, the dispersion is:
(a) large
(b) small
(c) normal
6. In a normal distribution, what percentage of the grades can be expected to fall between -2 and +2 standard deviations from the mean?
7. How many standard deviations above or below the mean is a person whose ETS-score is 700 ?
(a) +3
(b) +2
(c) -2
(d) -3
8. A normal distribution is represented by a Bell-
\qquad curve. shaped
9. A person with an ETS-score of 600 would be presumed to have an IQ of:
(a) 100
(b) 115
(c) 130
10. A very few large scores (or small scores) will have an effect upon the mean.
() True
() False
True
11. The middle point in a set of scores is called:
(a) the mode
(b) the mean
(c) the median
(c)
12. The last step in calculating standard deviation involves finding \qquad
13. Scores that differ greatly from the measure of central tendency are called:
(a) raw scores
(b) extreme scores
(c) Z-scores
14. The \qquad is a point or score that separates the bottom half of the set from the top half.
15. The ___ is not pulled away from the bulk of scores by a few scores that are extreme.
16. Dispersion (or variability) for a set of scores signifies how spread out the scores are.
() True
() False True
17. \qquad scores are expressed in decimals and negative numbers.
18. On a graph, the \qquad of an interval of scores is represented by the height of a curve above that interval on the horizontal axis.
19. A frequency distribution with many average scores and fewer extreme scores is often \qquad Bell-shaped
20. We say that a test is \qquad if the same or similar results are obtained every time it is used.

Reliable
21. We say that a test is \qquad if it measures whatever it is supposed to measure.

Valid
22. If a test is not a reliable or dependable measuring instrument, we say it has low \qquad -.

Reliability

REFERENCES

Clark, Virginia A., and Tarter, Michael E., Preparation for Basic Statistics: A Program for Self-Instruction. (New York: McGraw-Hill, Inc., 1968).

Dixon, W. J., and Massey, F. J., Introduction to Statistical Analysis, 3d ed. (New York: McGraw-Hill, Inc., 1969).

Gourevitch, Vivian, Statistical Methods: A Problem-Solving Approach. (Boston: Allyn and Bacon, Inc., 1965).

Hays, William L., Statistics for Psychologists. (New York: Holt, Rinehart and Winston, Inc., 1965).

Hoel, P. G., Elementary Statistics, 2d ed. (New York: John Wiley \& Sons, Inc., 1966).

Lindgren, B. W., and McElrath, G. W., Introduction to Probability and Statistics, 3d ed. (New York: The Macmillan Company, 1969).

McCollough, Celeste, and Van Atta, Loche, Introduction to Descriptive Statistics and Correlation: A Program for Self-Instruction. (New York: McGraw-Hill, Inc., 1965).

McCollough, Celeste, and Van Atta, Loche, Statistical Concepts: A Program for Self-Insiruction. (New York: McGraw-Hill, Inc., 1963).

Mosteller, F., Rourke, R. E. K., and Thomas, G. B., Jr., Probability and Statistics. (Reading, Mass.: Addison-Wesley Publishing Company, Inc., 1961). (The text for the "Continental Classroom" TV course on probability and statistics.)

Popham, W. James, Educational Statistics: Use and Interpretation. (New York: Harper \& Row, 1967).

Chapter Three

THE DIGITAL COMPUTER

Let us now present a brief and elementary discussion of one of the major scientific developments of the twentieth century, the digital computer. This is important for three reasons. In the first place, it is essential to understand why the existence of the digital computer makes it easy to apply simple statistical ideas in a number of significant ways. Second, the material is needed as a background to our subsequent discussion of "programmed instruction." Third, the computer has become an integral part of our culture, which means that every educated person must comprehend certain of its fundamental aspects.

There are three principle types of computer: digital, analog, and hybrid. A digital computer is a machine for doing arithmetic: addition, subtraction, multiplication, and division. The greater part of contemporary computers operate according to electronic principles. An analog computer is a device for obtaining numerical answers to certain types of problems by converting the original problem into that of observing the behavior of a specific physical system. For example, we can solve systems of linear algebraic equations by the use of electrical or mechanical networks. A hybrid computer combines both digital and analog aspects.

A digital computer does arithmetic in the scale of two, a "yes-no" system. The binary scale corresponds to the sequence of "heads" and "tails" discussed in Chapter 1. Zeros and ones, like heads and tails are essentially on and off symbols. (See Figure 3.1.) This is why we can use vacuum tube circuits, transistor circuits, solid state devices, and so forth, in computers.

Decimal	Binary								
	1	9	1001	17	10001	25	11001	33	100001
	10	10	1010	18	10010	26	11010	34	100010
	11	11	1011	19	10011	27	11011	35	100011
	100	12	1100	20	10100	28	11100	36	100100
	101	13	1101	21	10101	29	11101	37	100101
	110	14	1110	22	10110	30	11110	38	100110
	111	15	1111	23	10111	31	11111	39	100111
	1000	16	10000	24	11000	32	100000	40	101000

FIGURE 3.1 The Binary Number System

Since multiplication can be carried out in terms of addition, and division in terms of multiplication and addition, all of the fundamental operations in the digital computer are done in terms of addition. Currently, commercially available computers require about one microsecond to add two 10 -digit numbers and about 10 times as long to multiply two 10 -digit numbers. In other words, in one second the computer can perform 100,000 multiplications of this formidable nature. This fantastic ability to do rapid arithmetic, and by simple extension, rapid symbol manipulation, is what has revolutionized science and society.

A computer contains devices for five main functions as pictured in Figure 3.2. Input signifies the process by which information enters the computer, while Output is the process whereby the results are taken out of the computer. Arithmetic indicates the part of the computer that performs the basic arithmetic operations on the data held in Storage. Control signifies parts of the computer that dictate the functions to be performed by all the other parts.

The information as to the operations to be carried out by the computer is contained in a computer program, which may be written in any of a number of special computer languages, such as FORTRAN, BASIC, COBOL, ALGOL, or PL1. The logical organization of the sequence of operations is contained in a flow chart. To illustrate the

FIGURE 3.2 The Logical Elements of a Computer
basic idea, consider a flow chart for getting a reluctant student to school in the morning (Figure 3.3).

The successful application of statistical techniques to most problems of importance requires extensive amounts of data handling: storage and retrieval of data and arithmetic processing of this data. There are a number of major obstacles: space, time, accuracy, and display. The huge mass of data required often overwhelms even the largest of contemporary storage capacities; the time required to carry out the calculations is often prohibitively long; the input data are often of limited accuracy, which means that large numbers of arithmetical operations, and consequent round-off, produce unacceptable errors; the final results are so extensive that it is difficult to communicate them to the user in any feasible fashion. The general principle to to be emphasized is that the use of a computer to extract information from data is seldom routine.

Many major problems in the physical and social sciences can be translated into complex mathematical equations. With the use of

FIGURE 3.3 A Sample Flow Chart (Reprinted with permission from: Vincent S. Darnowski, Computers - Theary and Uses. National Science Teachers Assaclation, Washington, D.C., 1964, p. 45)
sophisticated mathematical techniques these equations can be solved numerically by means of long sequences of arithmetic operations. As mentioned above, other types of problems involving logical operations can also be transformed into arithmetic manipulation and resolved by the digital computer.
Most problems of importance in our society, however, cannot be formulated totally in terms that permit a solution by digitial computer. They contain various imponderables susceptible only to that elusive quality called human judgment.

Nonetheless, the computer can be profitably used for decisionmaking purposes in carefully selected components of significant problems. This utilization of the computer is part of the new field of artificial intelligence. One aspect of this activity is learning; that is, teaching the computer, where statistical ideas play a prominent role, to perform certain simple but extremely useful tasks.
Significant improvements in the ability of the computer to carry out its many functions are constantly being made. Two of particular importance are miniaturization and parallelization. By miniaturization we mean the production of smaller, cheaper components that increase both the availability and the speed of the computer. By parallelization we mean the ability of the computer to perform different operations simultaneously.

It is now generally recognized that the most efficient utilization of a digital computer to solve complex problems requires a man-machine partnership, with each member of the team contributing particular talents and with man occupying the principal role.

REFERENCES

Darnowski, Vincent S., Computers - Theory and Uses: A Unit for High School Classes. (Washington, D. C.: National Science Teachers Association, 1964).

Gerard, R. W., Computers and Education. (New York: McGraw-Hill, Inc., 1967).

Gorn, Saul and Manheimer, Wallace, The Electronic Brain and What It Can Do. (Chicago: Science Research Associates, 1956).

Gruenberger, Fred J., and McCracken, Daniel D., Introduction to Electronic Compulers. (New York: John Wiley \& Sons, Inc., 1963).
$-$

Chapter Four

PROGRAMMED LEARNING

One of the interesting ways in which the flexibility of the digital computer may be seen is in its use for training purposes. Many operations of our society, as mentioned in Chapter 3, cannot be expressed in arithmetic terms. They can, however, be broken down into sequences of simple operations, often requiring choices at various stages. Consider, for example, the use of a digital computer as a teaching aid, a teaching machine.

Suppose that we wish to drill a student in a language, say Latin. One function of the teacher is to describe the general structural features of the language, and to explain certain basic concepts. Others are far more complex, involving subtle combinations of psychological methods and assessment of the abilities of the student. Drilling, on the whole, however, is a low-level activity that can be safely left to animate or inanimate assistants. Let us see how we might employ a digital computer for this purpose.

The basic point is that all possible questions and answers that we allow are enumerated ahead of time and labeled with numbers. Hence the instruction to display a specific question is an instruction to display a number. Suppose that the first question is the following:

What is the first person singular of "to loveq"

Let us suppose that we want to use a multiple-choice format and display four possible answers for the student:

1

2

3
none of these
4

If the student chooses the right answer, amo, which is to say if he pushes the second button, or types in " 2, " the computer displays a second question and choice of answers; for example:

What is the infinitive of "to love?"

1

2

3

4

The process continues in this fashion.
There are a number of possibilities that we can explore if the student chooses the wrong answer:
(1) The computer can flash whong; choose another answer.
(2) An explanation of the mistake can be provided, or a number of possible explanations.
(3) The student can be referred to the appropriate place in the text where the correct answer is given.

With the aid of a digital computer programmed in the foregoing fashion, on the basis of cooperation between an experienced teacher in the particular subject and a programmer, we readily can provide drill in any part of the subject when both the questions and the answers can be simply stated. We cannot expect a teaching machine to be of any use in providing fundamental concepts, nor in any genuinely complex aren reguiring subtlety. It is designed to supplement,
but not replace, the teacher. Note that this book is designed in part as a teaching machine. ${ }^{1}$

If we do not approve of multiple-choice questions, we can ask the student to type in his answer in certain standard format. In the near future we can expect to use two-way verbal communication with the computer as long as the questions and answers are both of simple form and prescribed ahead of time. The idea is again a simple one. The sound impulses are transformed into electrical impulses and proceed as before. We cannot expect anything like ordinary conversation. Once again, this is where the teacher plays a paramount role.

Programmed instruction materials can be used as self-instruction if carefully prepared on the basis of extensive experience. The point is that a student can go into a booth and a computer acting like a teacher can instruct and test various subjects using different techniques. Programmed learning at a slightly more sophisticated level is also possible with the computer. Thus:

Computer assisted instruction (CAI) can take many forms. At the most rudimentary level the trainec-machine interaction is minimal. The computer presents instructional material via a display such as a teleprinter or cathode-ray tube (CRT); the trainee scans the presentation and indicates when he is ready to go on by means of a switch or pushbutton. The computer then may give further information, or it may present questions whose answers are to be recorded in a notebook or programmed textbook. Again the trainee notifies the computer when he is ready to procced . . . and so on to the end of the lesson.

Here the level of interaction is limited to a relatively primitive sequence without evaluation, interpretation or variation on the part of the computer. As refinement increases, the computer is brought into play with growing subtlety and flexibility.

First the relationship between trainee and machine is solidified by doing away with the text or notebook. The computer then presents all instructional material and records the trainee's responses. At a later
${ }^{1} \mathrm{~A}$ medicval teaching machine used to train knights was known as a "quintain," which consisted of an object (usually a shield) attached to a movable crossbar mounted on a post and used as a target in the sport of tilting. The appropriate response was for the knight to strike the shield directly in the center with his lance; if struck off center, the device would deliver feedback by striking the horseman a blow as he rode by. A "quintain" is pictured in The Random House Dictionary of the English Language. (New York: Random House, Inc., 1966), p. 1181.
stage the computer actively scores the trainee and presents the results to him; by this time the displays could include pictorial matter that changes to show evolving relationships. Ultimately, as CAI approaches its full development, the computer continuously evaluates the trainee's responses and leads him through remedial material if he fails to demonstrate understanding of key points in the main presentation. At this level displays can be as simple or as complex as the course material demands; and, if necessary, trainee responses can be in graphic form, conveyed to the computer by 'drawing' on the face of the scope with a light pen. ${ }^{2}$

The main point is self-instruction, whether it is provided by a programmed textbook that the student holds in his hand or by an elaborate computer-assisted cducational system; these devices can be used in classroom situations involving both slow and fast learners. When there is a small body of knowledge to be learned by rote, such as the multiplication tables, a programmed book leads the student in small steps through a small amount of information until he has mastered the task. Computers will free classroom teachers from these low level activities and will give them more time for instruction. Teachers will have time to evaluate each student's work and to determine what is the right match between the use of programmed learning materials and individual instruction. A teacher may find it desirable to assign several students to work that involves programmed instructional materials while she concentrates the greater part of her efforts on one or two other children in another subject. Once again emphasis is upon a man-machine mixture, in which machines do what they can do very well (which is low-level rote work) while people do what they can do best (which is imaginative and creative thinking).

The following idea has often been suggested. A small box is located in a small room with a television screen in front of a desk where there is a typewriter. Programmed learning instruction materials are fed by a technician into a computer, a student pulls or pushes a knob; a report is sent electronically to the computer, where it is recorded on tape; and the whole operation during the period of instruction takes place without a teacher in the room. It is a mistake to think that the educational process will someday become completely automated;

[^5]instead of taking away from the teacher's function, the computer will actually enhance it. For the first time she will actually be able to handle classes with large numbers of students. The versatility of programmed instruction when assisted by computers should be emphasized: not only will it benefit slow learners and fast learners; it will be a way of keeping every student gainfully employed in the classroom.

It may be true that we are about to see a revolution in our teaching methods, and that 20 years from now much of our education will be presented by automated computers and teaching machines; but whatever the cost of these devices, it must be included in the current costs of public and private school operations. The most affluent schools and districts will, naturally, be the first to adopt the new technologies.

EXAMPLES OF PROGRAMMED INSTRUCTION

The Linear Program

A linear program follows a sequential development of the material, with each student proceeding in the same order regardless of his response. (See Figure 4.1.) Despite any errors, the student proceeds

FIGURE 4.1
from item to item, each of which is normally short, and proceeds through a gradual development. He is informed of the correctness or incorrectness of his replies.

The Branching Program

A branching program, through interaction with the student, presents instructions based on his previous responses. (See Figure 4.2.) Item 1 presents information, followed by a test question on the material. A correct response refers the student to Item 5, the next unit of information; while an incorrect response refers him to either Item 9 or 13 for additional information before taking the test question again. It continues this way at Item 5 and through all subsequent items in the program.

FIGURE 4.2

REFERENCES

Coulson, John E., ed., Programmed Learning and Computer-Based Instruction. (New York: John Wiley \& Sons, Inc., 1962).

Cram, David, Explaining "Teaching Machines" and Programming. (San Francisco: Fearon Publishers, Inc., 1961).

Kay, H. "Programmed Instruction." In E. A. Lunzer and J. F. Morris, eds., Development of Human Learning. (New York: American Elsevier Publishing Company, Inc., 1968), Chap. 12, pp. 386-414.

Lysought, Jerome P., and Williams, Clarence M., A Guide to Programmed Instruction. (New York: John Wiley \& Sons, Inc., 1963).

Markle, Susan Meyer, Good Frames and Bad: A Grammar of Frame Writing. (New York: John Wiley \& Sons, Inc., 1964).

Pipe, Peter, Practical Programming. (New York: Holt, Rinehart and Winston, Inc., 1966).

Taber, Julian I., Glaser, IRobert, and Schaefer, Halmuth S., Learning and Programmed Instruction. (Reading, Mass: AddisonWesley Publishing Company, Inc., 1965).

Chapter Five

SELECTING AT RANDOM

By selecting an element at random from a collection of elements we mean simply that every element of the collection has the same probability of being selected. Specifically, if one item is to be drawn at random from a collection containing a finite number, n, of items, the probability of drawing any specified element is $1 / n$.

Similarly, if k items are to be drawn at random from a collection of n elements, each possible subset of size k must have the same probability of selection. (Just what this probability is, in terms of n and k, depends on whether the drawings are made with or without replacement and whether the order in which the elements appear is important. Once the mode of sampling has been determined, the appropriate probabilities can be found in Chapter 1.)

How can random selection be achieved? The items comprising the collection can be numbered, these numbers written down on slips of paper or counters of some sort, these slips or counters put into a container and thoroughly mixed, and then drawings can be made from the container. The number chosen determines the item to be selected from the collection. Whether this results in random selection depends on the physical process of mixing and drawing.

There is available a ten-sided die - actually a cylindrically shaped object whose cross section is a regular decagon - whose faces are labeled $0-9$. A roll of this device produces a random decimal digit; two rolls yield two random decimal digits that can be taken to be one of the 100 numbers $0-99$; three rolls provide a random one of the 1000 numbers $0-999$, and so on.

Another procedure for selecting at random is to use specially prepared tables of random numbers. Such a table is an array of numbers produced in such a way that each digit 0 through 9 appears with frequency $1 / 10$, every pair of digits 00 through 99 appears with frequency $1 / 100$, and so on. Perhaps the most famous table of random numbers is the set produced by the RAND Corporation. ${ }^{1}$ An excerpt from this table appears at the end of this chapter.

To illustrate the process of random selection, consider drawing 11 items at random without replacement from a collection of 73 items. Only the composition of the sample, not the order in which it is drawn, is of importance.

For the first method discussed one would put slips of paper numbered from 1 to 73 into a container, stir, and draw 11 slips.

Using the 10 -sided die, one would make a series of pairs of rolls (or, equivalently, make a series of rolls of two such dice) and select the first 11 distinct numbers between 1 and 73 . The repetition of a number already rolled, the occurrence of a number larger than 73 or of 00 is ignored and another pair of rolls is made.

To use a table of random numbers, one selects a page and some starting point on the page ${ }^{2}$ and reads off pairs of numbers from left to right beginning at the starting point. Suppose that one had selected p. 103 of the RAND Corporation tables (the reproduced extract) and the upper-left-hand corner of the page as the starting point. (Note that the first column of five digits merely number the rows of the table and are not random digits.) Reading off pairs of numbers, one obtains $12,65,16,46,11,76,97,51,09,86,99,69,76,69,25$, $75,73,25,35, \ldots$ Notice that 20 pairs of numbers had to be read off

[^6]before 11 suitable numbers (that is, between 1 and 73) were found. One had to ignore repetitions $(16,69,25)$ and numbers larger than 73 ($76,97,86,99,76,75$) in the selection process.

The ideas inherent in the preceding discussion should be sufficiently clear to let the reader construct procedures for sampling with replacement as well as for obtaining ordered samples.

Table of Random Digits

05100	12651	61646	11769	75109	86996	97669	25757	32535	07122	76763
05101	81769	74436	02630	72310	45049	18029	07469	42341	98173	79260
05102	36737	98863	77240	76251	00654	64688	09343	70278	67331	98729
05103	82861	54371	76610	94034	72748	44124	05610	53750	95938	01485
05104	21325	15732	24127	37431	09723	63529	73977	95218	96074	42138
05105	74146	47887	62463	23045	41490	07954	22597	60012	98866	90959
05106	90759	64410	54179	66075	61051	75385	51378	08360	95946	95547
05107	55683	98078	02238	91540	21219	17720	87817	41705	95785	12563
05108	79686	17969	76061	83748	55920	83612	41540	86492	06447	60568
05109	70333	00201	86201	69716	78185	62154	77930	67663	29529	75116
05110	14042	53536	07779	04157	41172	36473	42123	43929	50533	33437
05111	59911	08256	06596	48416	69770	68797	56080	14223	59199	30162
05112	62368	62623	62742	14891	39247	52242	98832	69533	91174	57979
05113	57529	97751	54976	48957	74599	08759	78494	52785	68526	64618
05114	15469	90574	78033	66885	13936	42117	71831	22961	94225	31816
05115	18625	23674	53850	32827	81647	80820	00420	63555	74489	80141
05116	74626	68394	88562	70745	23701	45630	65891	58220	35442	60414
05117	1119	16519	27384	90199	79210	76965	99546	30323	31664	22845
05118	4101	17336	48951	53674	17880	45260	08575	49321	36191	17095
05119	32123	91576	84221	78902	82010	30847	62329	63898	23268	74283
05120	26091	68409	69704	82267	14751	13151	93115	01437	56945	89661
05121	67680	79790	48462	59278	44185	29616	76531	19589	83139	28454
05122	15184	19260	14073	07026	25264	08388	27182	22557	61501	67481
05123	58010	45039	57181	10238	36874	28546	37444	80894	63981	39942
05124	56425	53996	86245	32623	78858	08143	60377	42925	42815	11159

05125	82630	84066	13592	60642	17904	99718	63432	88642	37858	25431
05126	14927	40909	23900	48761	44860	92467	31742	87142	03607	32059
05127	23740	22505	07489	85986	74420	21744	97711	36648	35620	97949
05128	32990	97446	03711	63824	07953	85965	87089	11687	92414	67257
05129	05310	24058	91946	78437	34365	82469	12430	84754	19354	72745
05130	21839	39937	27534	88913	49055	19218	47712	67677	51889	70926
05131	08833	42549	93981	94051	28382	83725	72643	64233	97252	17133
05132	58336	11139	47479	00931	91560	95372	97642	33856	54825	55680
05133	62032	91144	75478	47431	52737	30289	42411	91886	51818	78292
05134	45171	30557	53116	04118	58301	24375	65609	85810	18620	49198
05135	91611	62656	60128	35609	63698	78356	50682	22505	01692	36291
05136	55472	63819	86314	49174	93582	73604	78614	78849	23096	72825
05137	18573	09729	74091	53994	10970	86557	65661	41854	26037	53296
05138	60866	02955	90288	82136	83644	94455	06560	78029	98768	71296
05139	45043	55608	82767	60890	74646	79485	13619	98868	40857	19415
05140	17831	09737	79473	75945	28394	79334	70577	38048	03607	06932
05141	40137	03981	07585	18128	11178	32601	27994	05641	22600	86064
05142	77776	31343	14576	97706	16039	47517	43300	59080	80392	63189
05143	69605	44104	40103	95635	05635	81673	68657	09559	23510	95875
05144	19916	52934	26499	09821	87331	80993	61299	36979	73599	35055
05145	02606	58552	07678	56619	65325	30705	99582	53390	46357	13244
05146	65183	73160	87131	35530	47946	09854	18080	02321	05809	04898
05147	10740	98914	44916	11322	89717	88189	30143	52687	19420	60061
05148	98642	89822	71691	51573	83666	61642	46683	33761	47542	23551
05149	60139	25601	93663	25547	02654	94829	48672	28736	84994	13071

Reprinted with permission from: The RAND Corporation, A Million Random Digits With 100,000 Normal Deviates. (Glencoe, Illinois: J The Free Press, 1955), p. 103.

Chapter Six

NEW COMPUTATIONAL AIDS FOR EDUCATORS

JOSS ${ }^{1}$

JOSS is a personalized computing service developed at The RAND Corporation that allows the user - student, teacher, or researcher to interact directly with a central high-speed computer by means of a typewriter console. (See Figure 6.1.) Unlike most other systems designed for computer specialists, no technical "language" or programming techniques need be learned to operate JOSS. The student communicates with JOSS in simple imperative English language sentences that follow the standard rules for spelling, capitalization, punctuation, spacing, and so on. (See Figure 6.2.) Because of the ease with which JOSS can be learned, elementary and high-school students can use it to solve problems in basic arithmetic, algebra, trigonometry, and logic. Professional mathematicians, engineers, and others also use it in their research work to solve more sophisticated numerical problems.
${ }^{1}$ JOSS is the trademark and service mark of The RAND Corporation for its computer program and services using that program.

A unique feature is the dialogue that is possible between the student and JOSS; whenever a user of the console violates a mathematical convention or a standard rule of English grammar, JOSS will type for him an "error message" - an instruction that helps him decide what he did wrong so that he can correct his error and continue. ${ }^{2}$

FIGURE 6.1 The JOSS Console, Consisting of a Modified IBM Selectric Typewriter and a Control Box

JOSS is ideally suited for solving numerical problems; the student is able to approach his console with only a partially formed idea of his problem and yet come away in a few minutes or hours with the correct answer. He must be able to specify "all data relevant to describing his problem and the algorithm for its solution, but need only provide a minimum of detail regarding how his problem is to be
${ }^{2}$ There is also a users' manual of operation entitled The JOSS Primer, coauthored by S. L. Marks and G. W. Armerding (RAND Memorandum RM-5220-PR) which the student can consult for assistance when he is in trouble at the console.
solved. . . ${ }^{n 3}$ The JOSS service is estimated to be about ten times faster than the usual approach used in solving problems by a computer. The result has been that many problems that formerly were not worth the effort are being solved with ease by the use of JOSS.

The JOSS service is time-shared; that is, it provides simultaneous

```
Type 2+2.
    \(2+2=4\)
Tyu" "ok" il 500. 3'6. 1000.
ok
typu: 212
Eh?
Set \(x=3\).
Typex.
                    \(x=3\)
Type \(x+2, x-2, x-2, x / 2, x \cdot 2\).
\(x+2=5\)
\(x-2=1\)
\(x \cdot 2=6\)
\(x / 2=1.5\)
\(x * 2=9\)
```

Type $[(|x-5| \cdot 3+4) \cdot 2-15] \cdot 3+10$.
$[(|x-5| \cdot 3+4) \cdot 2-15] \cdot 3+10=25$
$x=7$
Type (x-7|-3+4)-2 -
Type $((|x-5| \cdot 3+4) \cdot 2-15 \mid \cdot 3+10$.
$[(|x-5| \cdot 3+4) \cdot 2-15] \cdot 3+10=25$
Type sqrt (3), , sqrt (4)
sqrt (3) $=\quad 1.73205081$
sqrt $(4)=2$
Type sqrt (-1).
I have a negative argument for sqrt.
Type $\sin (.5), \cos (.5)$.
$\sin (.5)=\quad .479425539$
$\cos (.5)=.877582562$
Type \exp (0), $\exp (1), \exp (20)$.
$\exp (0)=1$
$\exp (1)=2.71828183$
$\exp (20)=\quad 4.85165195 \cdot 10^{\prime} 8$
$y=-1.23456 \cdot 10 \cdot 2$
Type v.ip(y), fp(y). Jp(y), xp(y).

y	$=$
$i p(y)$	$=$
$f p(y)$	$=$
$d p(y)$	$=$
$x p(y)=$	-123.456
	-1.236456

$\mathrm{N}=100$
Type sum [$\left.i=1(1) \mathrm{N}: \mathrm{i}^{\circ} 2\right]$.
sum [$\left.\mathrm{i}=111) \mathrm{N}: \mathrm{i}^{*} 2\right]=338350$
Type prod $[\mathrm{N}, \mathrm{N}+1,2 \cdot \mathrm{~N}+1] / 6$.
$\operatorname{prod}\{N, N+1,2 \cdot N+1] / 6=338350$

FIGURE 6.2 An Example of JOSS, Showing the Actual Typewriter Output
${ }^{\top}$ G. E. Bryan, JOSS: Introduction to the System Implementation (RAND Paper P-3486, November 1966), p. 1.
service to a number of different users at the same time, each at their own individual typewriter consoles, which are connected by telephone lines to a central computer.

The name JOSS stands for "JOHNNIAC Open Shop System." Work was first started on JOSS in 1960. The system was originally. implemented on the JOHNNIAC computer (which is now displayed at the Los Angeles County Museum and was named in honor of John Von Neumann) by J. C. Shaw of RAND, to whom goes the bulk of the credit for the design.

THE RAND TABLET ${ }^{4}$

The RAND Tablet is a graphical input device that enables the student, using a special stylus, to input graphic information into a digital computer, and when accompanied by an appropriate computer

FIGURE 6.3
${ }^{4}$ T. O. Ellis and M. R. Davis, "Digital Computer and Graphic Input System." (United States Patent No. 3,399,401, issued August 27, 1968).
program, it can be used to solve mathematical and other problems in a natural way. (See Figure 6.3.)

The Tablet, invented by T. O. Ellis and M. R. Davis at The RAND Corporation, consists of a $10 \mathrm{in} . \times 10 \mathrm{in}$. horizontal surface on which the student writes or sketches with a stylus ("electronic pen"). His manipulations of the stylus - handwritten text (mathematical equations, formulas, and so on) or hand drawings (curves, sketches, and so on) - serve as inputs to the computer and also to a cathode-ray tube (CRT) display. The computer through appropriate programming (GRAIL, ${ }^{5}$ and so on) interprets the manipulations of the stylus in such a way that as the student,
... draws, moves, erases, and connects the various graphic symbols, the system responds with a variety of feedback. The primary response when the physical stylus is pressed lightly against the Tablet (closing a microswitch in the tip) is the appearance of display 'ink.' The ink follows the virtual stylus movement until the stylus is raised and the switch opens. The ink track is processed to determine whether the symbol and its position are appropriate. If everything checks, the track is replaced by a stylized symbol. Otherwise, the ink merely disappears. ${ }^{\circ}$

The fact that the student is "on-line" with the computer makes it possible to express himself directly and naturally, and he has the ability to control the activities of the computer and the information it presents to him.

The RAND Tablet has potential in such applications as digitizing map information and as a working tool for mathematicians or engineers in those areas where graphical languages are applied to manmachine interactions. For example, one of its uses has been in the area of building design. ... A scaled floor plan of a school building is drawn on the writing surface of the Tablet and then viewed on the CRT display during study and analysis; the data thus generated can then be transmitted to the digital computer for comparison of optimum floor space allowances, classroom positioning, student flow patterns, and so on. This technique is useful in the design of optimum patterns for school or college libraries.

[^7]Other educational applications of the RAND Tablet exist in the areas of mathematical models, psychological testing, automated teaching, and situations involving the use of teacher-student questionnaires.

REFERENCES

JOSS
Baker, C. L., JOSS: Introduction to a Helpful Assistant. (RAND Memorandum RM-5058-PR, July 1966).

This is a description of the capability of the JOSS system, presented through a step-by-step demonstration of the process, with illustrative material taken from the actual JOSS output.

Bryan, G. E., JOSS: Introduction to the System Implementation. (RAND Paper P-3486, November 1966).

This paper provides an overview of the JOSS system, its history, a deseription of the hardware, and the JOSS language.

Bryan, G. E., and Smith, J. W., JOSS Language. (RAND Memorandum RM-5377-PR, August 1967).

This memorandum is designed to serve as an introduction to JOSS for people with some programming experience. It presents summaries of the actions that can be requested of JOSS and of the language for requesting these actions.

Gimble, E. P., JOSS: Problem Solving for Engineers. (RAND Memorandum RM-5322-PR, May 1967).

This memorandum, written from the engineer's point of view, introduces the basic principle of JOSS operation, in a sequence designed to enable the engineer to solve successively more involved scientific prob-

- lems. It contains an overview of the JOSS system, including descriptions of the console and the language.

Marks, S. L., and Armerding, G. W., The JOSS Primer. (RAND Memorandum RM-5220-PR, August 1967).

This is the users' manual of operation. It is designed to introduce JOSS to the beginning user by means of examples that can be followed by a reader without any programming experience.

THE RAND TABLET

Davis, M. R., and Ellis, T. O., The RAND Tablet: A Man-Machine Graphical Communication Device. (RAND Memorandum RM-4122ARPA, August 1964).

This is the original report describing the RAND Tablet which is believed to be the first such man-machine graphical communication device that is digital.

Ellis, T. O., and Sibley, W. L., On the Problem of Directness in Computer Graphics. (RAND Paper P-3697, March 1968).

This report describes on-going work in the field of "Computer Graphics" and also discusses the history of the RAND Tablet.

Chapter Seven

THE NEXT DECADE IN EDUCATION

In this book, wo have addressed oursolves to the latest developments in education in the fiekly of programmed learning texta, com-puter-assisted instruction, new computational aids for learning, and so on. A word should now be added about how these developments will apply to schools and colleges in the future.

Our country has entered the 1970 s in a state of dramatic social change which is affecting all of our institutions, especially education. This occurs at a time when student enrollments in colleges and in elementary and secondary schools, both public and private, have increased steadily and sharply since the 1950 s; in 1969 it has been estimated that there were about 60 million students in public and private schools in grades $\mathrm{K}-12$ and another 7 million attending colleges and universities. If our extrapolations of the trend are borne out, we can expect to see in the next few decades an eventual total school and college enrollment of over 100 million students. ${ }^{1}$ (See Figure 7.1.)

1These extrapolations were made using a linear least-squares fit to available data from 1950 in the case of public schools (K-12), from 1940 in the case of nonpublic schools (K-12), and from 1950 for higher cducation. As with all extrapolations, the present ones must be cautiously interpreted. Their accuracy is subject to many uniknowable contingencies, such as worldwide and national economic, social, and political developments, trends in family planning (the "pill"), and so on.

FIGURE 7.1 School and College Enrollments from 1870-2000
SOURCES: Historical Statistics of the United States, Colonial Times to 1957, Supplement 1962
Statistical Abstract of the United States, 1969
Digest of Educational Statistics, 1968
Projections of Educational Statistics to 1975-1976

The sheer number of students will make use in the classroom of educational television, computer-assisted instruction, programmed learning devices, and so on, very attractive. Indeed, these innovations are already now in limited use.

It is becoming generally recognized that accountability in our public schools and colleges is overdue; far too long we have been "wasteful" in education in the United States. Classroom space is going unused at certain hours and days of the week; teachers are not
always performing at their capacities (due in part to some weaknesses in the tenure system); grading, testing, and evaluation methods used in our schools and colleges are in need of much study and improvement, and so on. The rising costs of teachers' salaries, mounting student enrollments, increased costs of new building construction, faculty and student unrest, all these are factors which point to accountability as a key word in education in the 1970s and beyond. As a result, parents, taxpayers, legislators, and the general public will be seeking educational reforms in such areas as teacher tenure, faculty promotion practices, obsolete staffing procedures, credential and $\mathrm{Ph} . \mathrm{D}$. requirements to teach, and so on. Even the "compulsory attendance" law, which requires attendance at school until either a certain age or the receipt of a diploma, must be considered for possible change. (In some districts today, this law is not rigidly enforced because of insufficient truant officers, on the one hand, and because some school administrators realize that their overall discipline problems are eased by the absence of certain students, on the other.)

Public education in the past has been a monopoly; now this is changing and on the horizon is competition, not just competition from nonpublic (private) schools but from business itself. The manufacturers of the new educational devices, the "outsiders" who have stood by and seen their materials and machines unused or misused, can be expected in the next decade to move into the teaching field themselves. This has, for some time, been the "case with post-secondary trade schools. Certain computer manufacturing firms (for example, Control Data Corporation) and other private companies, are now offering commercial courses of study in computer programming and in computer maintenance. Already, some school districts have contracted out to private firms some of the functions which traditionally were the domains of the public school, (e.g., the San Diego City Schools recently talked with two private companies which will "guarantee" reading improvement of minority-group students or face a financial penalty. The two firms are Educational Development Laboratories of New York, a subsidiary of the MeGraw-Hill Publishing Company, and Science Research Associates of Chicago, a subsidiary of IBM). When the results of these, and other, experimental programs become known, state legislatures will surely be making certain changes in the education law. Program budgeting, cost analysis, and statistical techniques (many of which are fiur more sophisticated than those described
in the second chapter of this book) ${ }^{2}$ are a necessary part of the evaluation of the affectiveness (and effectiveness) of these new programs.

There is much evidence, therefore, that needed educational reforms will occur, at all levels, in our public schools and colleges during the next decade and that some of the ideas described in this book will play an important role in these reforms.
${ }^{2}$ A fact which suggests that one should pursuc his study of statistics beyond the present book.

APPENDIXES

A. TABLE OF SQUARES AND SQUARE ROOTS
B. NORMAL CURVE AREAS
C. GLOSSARY OF COMPUTER AND PROGRAMMED INSTRUCTION TERMS
D. LIST OF MATHEMATICAL SYMBOLS

TABLE OF SQUARES AND SQUARE ROOTS

\boldsymbol{N}	N^{2}	\sqrt{N}	$\sqrt{10 N}$
1	1	1.00000	3.16228
2	4	1.41421	4.47214
3	9	1.73205	5.47723
4	16	2.00000	6.32456
5	25	2.23607	7.07107
6	36	2.44949	7.74597
7	49	2.64575	8.36660
8	64	2.82843	8.94427
9	81	3.00000	9.48683
10	100	3.16228	10.0000
11	121	3.31662	10.4881
12	144	3.46410	10.9545
13	169	3.60555	11.4018
14	196	3.74166	11.8322
15	225	3.87298	12.2474
18	256	4.00000	12.6491
17	289	4.12311	13.0384
18	324	4.24264	13.4164
19	361	4.35890	13.7840
20	400	4.47214	14.1421
21	441	4.58258	14.4914
22	484	4.69042	14.8324
23	529	4.79583	15.1658
24	576	4.89898	15.4919
25	625	5.00000	15.8114
28	676	5.09902	16.1245
27	729	5.19615	16.4317
28	784	5.29150	16.7332
29	841	5.38516	17.0294
30	900	5.47723	17.3205
31	961	5.56776	17.6068
32	1024	5.65685	17.8885
33	1089	5.74456	18.1659
34	1156	5.83095	18.4391
35	1225	5.91608	18.7083
36	1296	6.00000	18.9737
37	1369	6.08276	19.2354
38	1444	6.16441	19.4936
39	1521	6.24500	19.7484
40	1600	6.32456	20.0000
41	1681	6.40312	20.2485
42	1764	6.48074	20.4939
43	1849	6.55744	20.7364
44	1936	6.63325	20.9762
45	2025	6.70820	21.2132
48	2116	6.78233	21.4476
47	2209	6.85565	21.6795
48	2304	6.92820	21.9089
49	2401	7.00000	22.1359
50	2500	7.07107	22.3607
N	N^{2}	\sqrt{N}	$\sqrt{10 N}$

N	N	\sqrt{N}	$\sqrt{10 N}$
50	2500	7.07107	22.3607
51	2601	7.14143	22.58 \% 32
52	2704	7.21110	22.8035
63	2809	7.28011	23.0217
54	2916	7.34847	23.2379
65	3025	7.41620	23.4521
56	3136	7.48331	23.6643
57	3249	7.54983	23.8747
58	3364	7.61577	24.0832
59	3481	7.68115	24.2899
60	3600	7.74597	24.4949
61	3721	7.81025	24.6982
62	3844	7.87401	24.8998
63	3969	7.93725	25.0998
64	4096	8.00000	25.2982
65	4225	8.06226	25.4951
66	4356	8.12404	25.6905
67	4489	8.18535	25.8844
68	4624	8.24621	26.0768
69	4761	8.30662	26.2679
70	4900	8.36660	26.4575
71	5041	8.42615	26.6458
72	5184	8.48528	26.8328
73	5329	8.54400	27.0185
74	5476	8.60233	27.2029
75	5625	8.66025	27.3861
78	5776	8.71780	27.5681
77	5929	8.77496	27.7489
78	6084	8.83176	27.9285
79	6241	8.88819	28.1069
80	6400	8.94427	28.2843
81	6561	9.00000	28.4605
82	6724	9.05539	28.6356
83	6889	9.11043	28.8097
84	7056	9.16515	28.9828
85	7225	9.21954	29.1548
86	7396	9.27362	29.3258
87	7569	9.32738	29.4958
88	7744	9.38083	29.6648
89	7921	9.43398	29.8.3 29
90	8100	9.48683	30.0000
91	8281	9.53939	30.1662
92	8464	9.59166	30.3315
93	8649	9.64365	30.4959
94	8836	9.69536	30.6594
95	9025	9.74679	30.8221
86	9216	9.79796	30.9839
97	9409	9.84886	31.1448
98	9604	9.89949	31.3050
99	9801	9.94987	31.4643
100	10000	10.00000	31.6228
\boldsymbol{N}	N^{2}	\sqrt{N}	$\sqrt{10 N}$

N	N^{2}	\sqrt{N}	$\sqrt{10 N}$
100	10000	10.0000	31.6228
101	10201	10.0499	31.7805
102	10404	10.0995	31.9374
103	10609	10.1489	32.0936
104	10816	10.1980	32.2490
105	11025	10.2470	32.4037
108	11236	10.2956	32.5576
107	11449	10.3441	32.7109
108	11664	10.3923	32.8634
109	11881	10.4403	33.0151
110	12100	10.4881	33.1662
111	12321	10.5367	33.3167
112	12544	10.5830	33.4664
113	12769	10.6301	33.6155
114	12996	10.6771	33.7639
115	13225	10.7238	33.9116
116	13456	10.7703	34.0588
117	13689	10.8167	34.2053
118	13924	10.8628	34.3511
119	14161	10.9087	34.4964
120	14400	10.9545	34.6410
121	14641	11.0000	34.7851
122	14884	11.0454	34.9285
123	15129	11.0905	35.0714
124	15376	11.1355	35.2136
125	15625	11.1803	35.3553
128	15876	11.2250	35.4965
127	16129	11.2694	35.6371
128	16384	11.3137	35.7771
129	16641	11.3578	35.9166
130	16900	11.4018	36.0555
131	17161	11.4455	36.1939
132	17424	11.4891	36.3318
133	17689	11.5326	36.4692
134	17956	11.5758	36.6060
135	18225	11.6190	36.7423
138	18496	11.6619	36.8782
137	18769	11.7047	37.0135
138	19044	11.7473	37.1484
139	19321	11.7898	37.2827
140	19600	11.8322	37.4166
141	19881	11.8743	37.5500
142	20164	11.9164	37.6829
143	20449	11.9583	37.8153
144	20736	12.0000	37.9473
145	21025	12.0416	38.0789
146	21316	12.0830	38.2099
147	21609	12.1244	38.3406
148	21904	12.1655	38.4708
149	22201	12.2066	38.6005
150	22600	12.2474	38.7298
N	N^{1}	\sqrt{N}	$\sqrt{10 N}$

N	N^{2}	\sqrt{N}	$\sqrt{10 N}$
150	22500	12.2474	38.7298
151	22801	12.2882	38.8587
152	23104	12.3288	38.9872
153	23409	12.3693	39.1152
154	23716	12.4097	39.2428
155	24025	.12.44 99	39.3700
156	24336	12.4900	39.4968
157	24649	12.5300	39.6232
158	24964	12.5698	39.7492
159	25281	12.6095	39.8748
160	25600	12.6491	40.0000
181	25921	12.6886	40.12 4B
162	26244	12.7279	40.2492
163	26569	12.7671	40.3733
164	26896	12.8062	40.4969
165	27225	12.8452	40.6202
188	27556	12.8841	40.7431
167	27889	12.9228	40.8656
168	28224	12.9615	40.9878
169	28561	13.0000	41.1096
170	28900	13.0384	41.2311
171	29241	13.0767	41.3521
172	29584	13.1149	41.4729
173	29929	13.1629	41.5933
174	30276	13.1909	41.7133
175	30625	13.2288	41.8330
176	30976	13.2665	41.9524
177	31329	13.3041	42.0714
178	31684	13.3417	42.1900
179	32041	13.3791	42.3084
180	32400	13.4164	42.4264
181	32761	13.4536	42.5441
182	33124	13.4907	42.6615
183	33489	13.5277	42.7785
184	33856	13.5647	42.8952
185	34225	13.6015	43.0116
186	34596	13.6382	43.1277
187	34969	13.6748	43.2435
188	35344	13.7113	45.3590
189	35721	13.7477	43.4741
190	36100	13.7840	43.5890
101	36481	13.8203	43.7035
192	36864	13.8564	43.8178
193	37249	13.8924	43.9318
194	37636	13.9284	44.0454
195	38025	13.9642	44.1588
108	38416	14.0000	44.2719
197	38809	14.0357	44.3847
198	39204	14.0712	44.4972
199	39601	14.1067	44.6094
200	40000	14.1421	44.7214
N	\boldsymbol{N}^{2}	\sqrt{N}	$\sqrt{10 N}$

\boldsymbol{N}	N^{2}	\sqrt{N}	$\sqrt{10 N}$
200	40000	14.1421	44.7214
201	40401	14.1774	44.8330
202	40804	14.2127	44.9444
203	41209	14.2478	45.0555
204	41616	14.2829	45.1664
205	42025	14.3178	45.2769
208	42436	14.3527	45.3872
207	42849	14.3875	45.4973
208	43264	14.4222	45.6070
209	43681	14.4568	45.7165
210	44100	14.4914	45.8258
211	44521	14.5258	45.9347
212	44944	14.5602	46.0435
213	45369	14.5945	46.1519
214	45796	14.6287	46.2601
215	46225	14.6629	46.3681
216	46656	14.6969	46.4758
217	47089	14.7309	46.5833
218	47524	14.7648	46.6905
219	47961	14.7986	46.7974
220	48400	14.8324	46.9042
221	48841	14.8661	47.0106
222	49284	14.8997	47.1169
223	49729	14.9332	47.2229
224	50176	14.9666	47.3286
225	50625	15.0000	47.4342
228	51076	15.0333	47.5395
227	51529	15.0665	47.6445
228	51984	15.0997	47.7493
229	52441	15.1327	47.8539
230	52900	15.1658	47.9583
231	53361	15.1987	48.0625
232	53824	15.2315	48.1664
233	54289	15.2643	48.2701
234	54756	15.2971	48.3735
235	55225	15.3297	48.4768
236	55696	15.3623	48.6798
237	66169	15.3948	48.6826
238	56644	15.4272	48.7852
239	67121	15.4596	48.8876
240	57600	15.4919	48.9898
241	58081	15.5242	49.0918
242	58564	15.5563	49.1935
243	59049	15.6885	49.2960
244	59636	15.6205	49.3964
246	60025	15.6525	49.4975
246	60616	15.6844	49.6984
247	61009	15.7162	49.6991
248	61504	15.7480	49.7996
249	62001	15.7797	49.8999
260	62600	15.8114	50.0000
N	N^{2}	\sqrt{N}	$\sqrt{10 N}$

N	N^{2}	\sqrt{N}	$\sqrt{10 \mathrm{~N}}$
260	62500	15.8114	50.0000
251	63001	15.8430	50.0999
252	63504	16.8745	50.1996
253	64009	15.9060	50.2991
254	64516	15.9374	50.3984
255	65025	15.9687	50.4975
258	65536	16.0000	50.5964
257	66049	16.0312	50.6952
258	66564	16.0624	50.7937
259	67081	16.0935	50.8920
260	67600	16.1245	50.9902
281	68121	16.1555	51.0882
262	68644	16.1864	51.1859
263	69169	16.2173	51.2835
264	69696	16.2481	51.3809
265	70225	16.2788	51.4782
286	70756	16.3095	51.5752
267	71289	16.3401	51.6720
268	71824	16.3707	51.7687
269	72361	16.4012	51.8652
270	72900	16.4317	51.9615
271	73441	16.4621	52.0577
272	73984	16.4924	52.1536
273	74529	16.5227	52.2494
274	75076	16.5529	52.3450
275	75625	16.5831	52.4404
276	76176	16.6132	52.5367
277	76729	16.6433	52.6308
278	77284	16.6733	52.7257
279	77841	16.7033	52.8205
280	78400	16.7332	52.9150
281	78961	157631	53.0094
282	79524	10.1929	53.1037
283	80089	16.8226	53.1977
284	80656	16.8523	53.2917
285	81225	16.8819	53.3854
289	81796	16.9115	53.4790
287	82369	16.9411	53.5724
288	82944	16.9706	53.6556
289	83521	17.0000	53.7587
290	84100	17.0294	53.8516
291	84681	17.0587	53.9444
292	85264	17.0880	54.0370
293	85849	17.1172	54.1296
294	86436	17.1464	54.2218
295	87025	17.1756	54.3139
298	B7 616	17.2047	54.4069
297	88209	17.2337	54.4977
298	88804	17.2627	54.5894
299	89401	17.2916	54.6809
300	90000	17.3205	54.7723
N	N^{2}	\sqrt{N}	$\sqrt{10 \mathrm{~N}}$

\boldsymbol{N}	N^{1}	\sqrt{N}	$\sqrt{10 \mathrm{~N}}$
300	90000	17.3205	54.7723
301	90601	17.3494	54.8635
302	91204	17.3781	54.9545
303	91809	17.4069	55.0454
304	92416	17.4356	55.1362
305	93025	17.4642	55.2268
306	93636	17.4929	55.3173
307	94249	17.5214	55.4076
308	94864	17.5499	55.4977
309	95481	17.5784	55.6878
310	96100	17.6068	55.6776
311	96721	17.6352	55.7674
312	97344	17.6635	55.8570
313	97969	17.6918	55.9464
314	98596	17.7200	56.0357
315	99225	17.7482	56.1249
316	99856	17.7764	56.2139
317	100489	17.8045	56.3028
318	101124	17.8326	56.3915
319	101761	17.8606	56.4801
320	102400	17.8885	56.5685
321	103041	17.9165	56.6569
322	103684	17.9444	56.7450
323	104329	17.9722	56.8331
324	104976	18.0000	56.9210
325	105625	18.0278	67.0088
328	106276	18.0555	57.0964
327	106929	18.0831	57.1839
328	107584	18.1108	57.2713
329	108241	18.1384	57.3585
330	108900	18.1659	57.4456
331	109561	18.1934	57.5326
332	110224	18.2209	57.6194
333	110889	18.2483	57.7062
334	111556	18.2757	57.7927
335	112225	18.3030	57.8792
338	112896	18.3303	57.9655
337	113669	18.3576	58.0517
338	114244	18.3848	58.1378
339	114921	18.4120	58.2237
340	115600	184391	58.3095
341	116281	18.4662	58.3952
342	116964	18.4932	58.4808
343	117649	18.5203	58.5662
344	118336	18.5472	58.6515
345	119025	18.6742	58.7367
348	119716	18.60 IL	58.8218
347	120409	18.6279	58.9067
348	121104	18.6548	58.9915
349	121801	18.6815	59.0762
360	122500	18.7083	59.1608
N	\boldsymbol{N}	\sqrt{N}	$\sqrt{10 \mathrm{~N}}$

\boldsymbol{N}	N^{2}	\sqrt{N}	$\sqrt{10 N}$
350	122500	18.7083	59.1608
35	123201	18.7350	59.2453
352	123904	18.7617	59.3296
353	124609	18.7883	59.4138
354	125316	18.8149	59.4979
355	126025	18.8414	59.5819
356	126736	18.8680	59.6657
357	127449	18.8944	59.7495
358	128164	18.9209	59.8331
359	128881	18.9473	59.9166
360	129600	18.9737	60.0000
361	130321	19.0000	60.0833
362	131044	19.0263	60.1664
363	131769	19.0526	60.2495
364	132496	19.0788	60.3324
365	133225	19.1050	60.4152
368	133956	19.1311	60.4979
367	134689	19.1572	60.5805
368	135424	19.1833	60.6630
369	136161	19.2094	60.7454
370	136900	19.2354	60.8276
371	137641	19.2614	60.9098
37	138384	19.2873	60.9918
373	139129	19.3132	61.0737
37	139876	19.3391	61.1555
375	140625	19.3649	61.2372
378	141376	19.3907	61.3188
377	142129	19.4165	61.4003
378	142884	19.4422	61.4817
379	143641	19.4679	61.5630
380	144400	19.4936	61.6441
381	145161	19.5192	61.7252
382	145924	19.5448	61.8061
383	146689	19.5704	61.8870
384	147456	19.5969	61.9677
385	148225	19.6214	62.0484
386	148996	19.6469	62.1289
387	149769	19.6723	62.2093
38	150544	19.6977	62.2896
389	151321	19.7231	62.3699
390	152100	19.7484	62.4500
391	152881	19.7737	62.5300
39	153664	19.7990	62.6099
393	154449	19.8242	62.6897
394	155236	19.8494	62.7694
395	156025	19.8746	62.8490
988	156816	19.8997	62.9285
397	157609	19.9249	63.0079
398	158404	19.9499	63.0872
399	159201	19.9750	63.1664
400	160000	20.0000	63.2456
\boldsymbol{N}	N	\sqrt{N}	$\sqrt{10 \mathrm{~N}}$

\boldsymbol{N}	\boldsymbol{N}^{2}	\sqrt{N}	$\sqrt{10 N}$
400	160000	20.0000	63.2456
401	160801	20.0250	63.3246
402	161604	20.0499	63.4035
403	162409	20.0749	63.4823
404	163216	20.0998	63.5610
405	164025	20.1246	63.6396
406	164836	20.1494	63.7181
407	165649	20.1742	63.7966
408	166464	20.1990	63.8749
409	167281	20.2237	63.9531
410	168100	20.2485	64.0312
411	168921	20.2731	64.1093
. 412	169744	20.2978	64.1872
413	170569	20.3224	64.2651
414	171396	20.3470	64.3428
415	172225	20.3715	64.4205
416	173056	20.3961	64.4981
417	173889	20.4206	64.5755
418	174724	20.4450	64.6529
419	175561	20.4695	64.7302
420	176400	20.4939	64.8074
421	177241	20.5183	64.8845
422	178084	20.5426	64.9615
423	178929	20.6670	65.0385
424	179776	20.5913	65.1153
. 425	180625	20.6155	65.1920
428	181476	20.6398	65.2687
427	182329	20.6640	65.3452
428	183184	20.6882	65.4217
429	184041	20.7123	65.4981
430	184900	20.7364	65.5744
481	185761	20.7605	65.6506
432	186624	20.7846	65.7267
433	187489	20.8087	65.8027
434	188356	20.8327	65.8787
435	189225	20.8567	65.9545
438	190096	20.8806	66.0303
437	190969	20.9045	66.1060
438	191844	20.9284	66.1816
439	192721	20.9523	66.2571
440	193600	20.9762	66.3325
441	194481	21.0000	66.4078
442	195364	21.0238	66.4831
443	196249	21.0476	66.5582
444	197136	21.0713	66.6333
445	198025	21.0950	66.7083
448	198916	21.1187	66.7832
447	199809	21.1424	66.8581
448	200704	21.1660	66.9328
449	201601	21.1896	67.0075
450	202500	21.2132	67.0820
\boldsymbol{N}	N^{2}	\sqrt{N}	$\sqrt{10 \mathrm{~N}}$

N	N^{2}	\sqrt{N}	$\sqrt{10 N}$
450	202500	21.2132	67.0820
451	203401	21.2368	67.1565
452	204304	21.2603	67.2309
453	205209	21.2838	67.3053
454	206116	21.3073	67.3795
455	207025	21.3307	67.4537
458	207936	21.3542	67.5278
457	208849	21.3776	67.6018
458	209764	21.4009	67.6757
459	210681	21.4243	67.7495
460	211600	21.4476	67.8233
461	212521	21.4709	67.8970
462	213444	21.4942	67.9706
463	214369	21.5174	68.0441
464	215296	21.5407	68.1175
465	216225	21.5639	68.1909
468	217156	21.5870	68.2642
467	218089	21.6102	68.3374
468	219024	21.6333	68.4105
469	219961	21.6564	68.4836
470	220900	21.6795	68.5565
471	221841	21.7025	68.6294
472	222784	21.7256	68.7023
473	223729	21.7486	68.7750
474	224676	21.7715	68.8477
475	225625	21.7945	68.9202
476	226576	21.8174	68.9928
477	227529	21.8403	69.0652
478	228484	21.8632	69.1375
479	229441	21.8861	69.2098
480	230400	21.9089	69.2820
481	231361	21.9317	69.3542
482	232324	21.9545	69.4262
483	233289	21.9773	69.4982
484	234256	22.0000	69.6701
485	235225	22.0227	69.6419
488	236196	22.0454	69.7137
487	237169	22.0681	69.7854
488	238144	22.0907	69.8570
489	239121	22.1133	69.9285
490	240100	22.1359	70.0000
481	241081	22.1585	70.0714
492	242064	22.1811	70.1427
493	243049	22.2036	70.2140
494	244036	22.2261	70.2851
495	245025	22.2486	70.3562
498	246016	22.2711	70.4273
497	247009	22.2935	70.4982
498	248004	22.3159	70.5691
499	249001	22.3383	70.6399
500	250000	22.3607	70.7107
\boldsymbol{N}	N^{2}	\sqrt{N}	$\sqrt{10 N}$

\boldsymbol{N}	N^{2}	\sqrt{N}	$\sqrt{10 \mathrm{~N}}$
600	250000	22.3607	70.7107
501	251001	22.3830	70.7814
502	252004	22.4054	70.8520
503	253009	22.4277	70.9225
504	254016	22.4499	70.9930
505	255025	22.4722	71.0634
508	256036	22.4944	71.1337
507	257049	22.5167	71.2039
508	258064	22.5389	71.2741
509	259081	22.5610	71.3442
510	260100	22.5832	71.4143
611	261121	22.6053	71.4843
512	262144	22.6274	71.5542
513	263169	22.6495	71.6240
514	264196	22.6716	71.6938
515	265225	22.6936	71.7635
516	266256	22.7156	71.8331
517	267289	22.7376	71.9027
518	268324	22.7596	71.9722
519	269361	22.7816	72.0417
520	270400	22.8035	72.1110
521	271441	22.8254	72.1803
522	272484	22.8473	72.2496
523	273529	22.8692	72.3187
524	274576	22.8910	72.3878
525	275625	22.9129	72.4569
526	276676	22.9347	72.5259
527	277729	22.9565	72.5948
528	278784	22.9783	72.6636
529	279841	23.0000	72.7324
530	280900	23.0217	72.8011
531	281961	23.0434	72.8697
532	283024	23.0651	72.9383
533	284089	23.0868	73.0068
534	285156	23.1084	73.0753
535	286225	23.1301	73.1437
536	287296	23.1517	73.2120
537	288369	23.1733	73.2803
538	289444	23.1948	73.3485
539	290521	23.2164	73.4166
540	291600	23.2379	73.4847
541	292681	23.2594	73.5527
542	293764	23.2809	73.6206
543	294849	23.3024	73.6885
544	295936	23.3238	73.7564
545	297025	23.3452	73.8241
546	298116	23.3666	73.8918
547	299209	23.3880	73.9594
548	300304	23.4094	74.0270
549	301401	23.4307	74.0945
650	302600	23.4521	74.1620
N	N^{2}	\sqrt{N}	$\sqrt{10 N}$

N	N^{2}	\sqrt{N}	$\sqrt{10 N}$
550	302500	23.4521	74.1620
551	303601	23.4734	74.2294
552	304704	23.4947	74.2967
553	305809	23.5160	74.3640
554	306916	23.5372	74.4312
555	308025	23.5584	74.4983
656	309136	23.5797	74.5654
557	310249	23.6008	74.6324
558	311364	23.6220	74.6994
559	312481	23.6432	74.7663
560	313600	23.6643	74.8331
581	314721	23.6854	74.89 99
562	315844	23.7065	74.9667
563	316969	23.7276	75.0333
564	318096	23.7487	75.0999
565	319225	23.7697	75.1665
588	320356	23.7908	75.2330
567	321489	23.8118	75.2994
568	322624	23.8328	75.3658
569	323761	23.8537	75.4321
570	324900	23.8747	75.4983
571	326041	23.8956	75.5645
572	327184	23.9165	75.6307
573	328329	23.9374	75.6968
574	329476	23.9583	75.7628
575	330625	23.9792	75.8288
578	331776	24.0000	75.8947
577	332929	24.0208	75.9605
578	334084	24.0416	76.0263
579	335241	24.0624	76.0920
580	336400	24.0832	76.1577
581	337561	24.1039	76.2234
582	338724	24.1247	76.2889
583	339889	24.1454	76.3544
584	341056	24.1661	76.4199
585	342225	24.1868	76.4853
688	343396	24.2074	76.5506
587	344569	24.2281	76.6159
588	345744	24.2487	76.6812
589	346921	24.2693	76.7463
590	348100	24.2899	76.8115
591	349281	24.3105	76.8765
592	350464	24.3311	76.9415
593	351649	24.3516	77.0065
594	352836	24.3721	77.0714
595	354025	24.3926	77.1362
598	355216	24.4131	77.2010
597	356409	24.4336	77.2658
598	357604	24.4540	77.3305
599	358801	24.4745	77.3951
600	360000	24.4949	77.4597
\boldsymbol{N}	\boldsymbol{N}	\sqrt{N}	$\sqrt{1 / \overline{0 N}}$

N	N^{\prime}	$\sqrt{ }$	$\sqrt{10 N}$
600	360000	24.4949	77.4597
601	361201	24.6153	77.5242
602	362404	24.6367	77.5887
603	363609	24.6561	77.6531
604	364816	24.5764	77.7174
605	366025	24.5967	77.7817
808	367236	24.6171	77.8460
607	368449	24.6374	77.9102
608	369664	24.6577	77.9744
609	370881	24.6779	78.0385
610	372100	24.6982	78.1025
8	373321	24.7184	78.1665
61	374544	24.7386	78.2304
613	375769	24.7588	78.2943
614	376996	24.7: 90	78.3582
615	378225	24.7992	78.4219
81	375456	24.8193	78.4857
617	380689	24.8395	78.5493
618	381924	24.8596	78.6130
619	383161	24.8797	78.6766
620	384400	24.8998	78.7401
621	385641	24.9199	78.8036
622	386884	24.9399	78.8670
623	388129	24.9600	78.9303
624	389376	24.9800	78.9937
625	390625	25.0000	79.0569
628	391876	25.0200	79.1202
627	393129	25.0400	79.1833
628	394384	25.0599	79.2465
629	395641	25.0799	79.3095
630	396900	25.0998	79.3725
631	398161	25.1197	79.4355
632	399424	25.1396	79.4984
633	400689	25.1595	79.5613
634	401956	25.1794	79.6241
635	403225	25.1992	79.6869
638	404496	25.2190	79.7496
637	406769	25.2389	79.8123
638	407044	25.2587	79.8749
639	408321	25.2784	79.9375
640	409600	25.2982	80.0000
641	410881	25.3180	80.0625
642	412164	25.3377	80.1249
643	413449	25.3574	80.1873
644	414736	25.3772	80.2496
646	416025	25.3969	80.3119
1846	417316	25.4165	80.3741
647	418609	25.4362	80.4363
648	419904	25.45 5B	B0.49 84
649	421201	25.4755	80.5605
650	422500	25.4951	80.6226
N	N^{2}	\sqrt{N}	$\sqrt{10 \mathrm{~N}}$

\boldsymbol{N}	N^{2}		$\sqrt{10 N}$
65	422500	$25.49{ }^{\circ} 51$	80.6226
65	423801	25.5147	80.6846
652	425104	25.5343	80.7465
65	426409	25.5539	80.8084
654	427716	25.5734	80.8703
655	429025	25.5930	80.9321
658	430336	25.6125	80.9938
657	431649	25.6320	81.0555
658	432964	25.6515	81.1172
659	434281	25.6710	81.1788
660	435600	25.6905	81.2404
681	436921	25.7099	81.3019
662	438244	25.7294	81.3634
663	439569	25.7488	81.4248
664	440896	25.7682	81.4862
665	442225	25.7876	81.5475
886	443556	25.8070	81.6088
667	444889	25.8263	81.6701
668	446224	25.8457	81.7313
669	447561	25.8650	81.7924
670	448900	25.8844	81.8535
67	450241	25.9037	81.9146
672	451584	25.9230	81.9756
673	452929	25.9422	82.0366
674	454276	25.9615	82.0975
675	455625	25.9808	82.1584
676	456976	26.0000	82.2192
6	458329	26.0192	82.2800
678	459684	26.0384	82.3408
679	461041	26.0576	82.4015
680	462400	26.0768	82.4621
88	463761	26.0960	82.5227
68	465124	26.1151.	82.5833
683	466489	26.1343	82.6438
684	467856	26.1534	82.7043
685	469225	26.1725	82.7647
888	470596	26.1916	82.8251
	471969	26.2107	82.8856
688	473344	26.2298	82.9458
689	474721	26.2488	83.0060
690	476100	26.2679	83.0662
801	477481	26.2869	83.1264
692	478864	26.3059	83.1865
693	480249	26.3249	83.2466
694	481636	26.3439	83.3067
695	483025	26.3629	83.3667
898	484416	26.3818	83.4266
697	485809	26.4008	83.4865
698	487204	26.4197	83.5464
699	488601	26.4386	83.6062
700	490000	26.4575	83.6660
N	\boldsymbol{N}	\sqrt{N}	$\sqrt{10 N}$

N	N^{2}	\sqrt{N}	$\sqrt{10 N}$
700	490000	26.4575	83.6660
701	491401	26.4764	83.7257
702	492804	26.4953	83.7854
703	494209	26.5141	83.8451
704	495616	26.5330	83.9047
705	497025	26.5518	83.9643
708	498436	26.5707	84.0238
707	499849	26.5895	84.0833
708	501264	26.6083	84.1427
709	502681	26.6271	84.2021
710	504100	26.6458	84.2615
711	505521	26.6646	84.3208
712	506944	26.6833	84.3801
713	508369	26.7021	84.4393
714	509796	26.7208	84.4985
715	511225	26.7395	84.5577
716	512656	26.7582	84.6168
717	514089	26.7769	84.6759
718	515524	26.7955	84.7349
719	516961	26.8142	84.7939
720	518400	26.8328	84.8528
721	519841	26.8514	84.9117
722	521284	26.8701	84.9706
723	522729	26.8887	85.0294
724	524176	26.9072	85.0882
725	525625	26.9258	85.1469
728	527076	26.9444	85.2056
727	528529	26.9629	85.2643
728	529984	26.9815	85.3229
729	531441	27.0000	85.3815
730	532900	27.0185	85.4400
731	534361	27.0370	85.4985
732	535824	27.0555	85.5570
733	537289	27.0740	85.6154
734	538756	27.0924	85.6738
735	540225	27.1109	85.7321
738	541696	27.1293	85.7904
737	543169	27.1177	85.8487
738	544644	27.1662	85.9069
739	546121	27.1846	85.9651
740	547600	27.2029	86.0233
741	549081	27.2213	86.0814
742	550564	27.2397	86.1394
743	552049	27.2580	86.1974
744	553536	27.2764	86.2554
745	555025	27.2947	86.3134
748	556516	27.3130	86.3713
747	558009	27.3313	86.4292
748	559504	27.3496	86.4870
749	561001	27.3679	86.5448
750	562500	27.3861	86.6025
N	N^{2}	\sqrt{N}	$\sqrt{10 N}$

N	N	\sqrt{N}	$\sqrt{10 N}$
750	562500	27.3861	86.6025
751	564001	27.4044	86.6603
752	565504	27.4226	86.7179
753	567009	27.4408	86.7756
754	568516	27.4591	86.8332
755	570025	27.4773	86.8907
756	571536	27.4955	86.9483
757	573049	27.5136	87.0057
758	574564	27.5318	87.0632
759	576081	27.5500	87.1206
760	577600	27.5681	87.1780
761	579121	27.5862	87.2353
762	580644	27.6043	87.2926
763	582169	27.6225	87.3499
764	583696	27.6405	87.4071
765	585225	27.6586	87.4643
788	586756	27.6767	87.5214
767	588289	27.6948	87.5785
768	589824	27.7128	87.6356
769	591361	27.7308	87.6926
770	592900	27.7489	87.7496
771	- 594441	27.7669	87.8066
772	595984	27.7849	87.8635
773	597529	27.8029	87.9204
774	599076	27.8209	87.9773
775	600625	27.8388	88.0341
778	602176	27.8568	88.0909
777	603729	27.8747	88.1476
778	605284	27.8927	88.2043
779	606841	27.9106	88.2610
780	608400	27.9285	88.3176
781	609961	27.9464	88.3742
782	611524	27.9643	88.4308
783	613089	27.9821	88.4873
784	614656	28.0000	88.5438
785	616225	28.0179	88.6002
783	617796	28.0357	88.6566
787	619369	28.0635	88.7130
788	620944	28.0713	88.7694
789	622621	28.0891	88.8257
790	624100	28.1069	88.8819
791	625681	28.1247	88.9382
792	627264	28.1425	88.9944
793	628849	28.1603	89.0505
794	630436	28.1780	89.1067
795	632025	28.1957	89.1628
788	633616	28.2135	89.2188
797	635209	28.2312	89.2749
798	636804	28.2489	89.3308
799	638401	28.2666	89.3868
800	640000	28.2843	89.4427
N	N	\sqrt{N}	$\sqrt{10 N}$

\boldsymbol{N}	N^{2}	\sqrt{N}	$\sqrt{10 \mathrm{~N}}$
8006	640000	28.2843	89.4427
801	641601	28.3019	89.4986
8026	643204	28.3196	89.5545
8036	644809	28.3373	89.6103
8046	646416	28.3549	89.6660
8056	648025	28.3725	89.7218
8066	649636	28.3901	89.7775
8076	651249	28.4077	89.8332
808	652864	28.4253	89.8888
809	654481	28.4429	89.9444
810	656100	28.4605	90.0000
18116	657721	28.4781	90.0555
¢12 6	659344	28.4956	90.1110
8136	660969	28.5132	90.1665
8146	662596	28.5307	90.2219
8156	664225	28.5482	90.2774
8166	665856	28.5667	90.3327
8176	667489	28.5832	90.3881
818	669124	28.6007	90.4434
819	670761	28.6182	90.4986
820	672400	28.6356	90.5539
821	674041	28.6531	90.6091
822	675684	28.6705	90.6642
823	677329	28.6880	90.7193
824	678976	28.7054	90.7744
825	680625	28.7228	90.8295
828	682276	28.7402	90.8845
827	683929	28.7576	90.9395
828	685584	28.7750	90.9945
829	687241	28.7924	91.0494
830	688900	28.8097	91.1043
831	690561	28.8271	91.1592
832	692224	28.8444	91.2140
833	693889	28.8617	91.2688
834	695556	28.8791	91.3236
835	697225	28.8964	91.3783
838	698896	28.9137	91.4330
837	700569	28.9310	91.4877
838	702244	28.9482	91.5423
839	703921	28.9655	91.5969
840	705600	28.9828	91.6515
841	707281	29.0000	91.7061
842	708964	29.0172	91.7606
843	710649	29.0345	91.8160
844	712336	29.0517	91.8695
845	714025	29.0689	91.9239
846	3. 715716	29.0861	91.9783
847	717409	29.1033	92.0326
848	719104	29.1204	92.0869
849	720801	29.1376	92.1412
850	722500	29.1548	92.1954
\boldsymbol{N}	N^{2}	\sqrt{N}	$\sqrt{10 N}$

N	N^{2}	\sqrt{N}	$\sqrt{10 N}$
850	722500	29.1548	92.1954
851	724201	29.1719	92.2497
852	725904	29.1890	92.3038
853	727609	29.2062	92.3580
854	729316	29.2233	92.4121
855	731025	29.2404	92.4662
858	732736	29.2575	92.5203
857	734449	29.2746	92.5743
858	736164	29.2916	92.6283
859	737881	29.3087	92.6823
860	739600	29.3258	92.7362
881	741321	29.3428	92.7901
862	743044	29.3598	92.8440
863	744769	29.3769	92.8978
864	746496	29.3939	92.9516
865	748225	29.4109	93.0054
886	749956	29.4279	93.0591
867	751689	29.4449	93.1128
868	753424	29.4618	93.1665
869	755161	29.4788	93.2202
870	756900	29.4958	93.2738
871	758641	29.5127	93.3274
872	760384	29.5296	93.3809
873	762129	29.5466	93.4345
874	763876	29.5635	93.4880 93.5414
875	765625	29.5804	93.5414
878	767376	29.5973	93.5949
877	769129	29.6142	93.6483
878	770884	29.6311	93.7017
879	772641	29.6479	93.7550
880	774400	29.6648	93.8083
881	776161	29.6816	93.8616
882	777924	29.6985	93.9149
883	779689	29.7153	93.5681
884	781456	29.7321	94.0213
885	783225	29.7489	94.0744
886	784996	29.7658	94.1276
887	786769	29.7825	94.1807
888	788544	29.7993	94.2338
889	790321	29.8161	94.2868
890	792100	29.8329	94.3398
881	793881	29.8496	94.3928
892	795664	29.8664	94.4458
893	797449	29.8831	94.4987
894	799236	29.8998	94.5516
895	801025	29.9166	94.6044
898	802816	29.9333	94.6573
897	804609	29.9500	94.7101
898	806404	29.9666	94.7629
899	808201	29.9833	94.8156
900	810000	30.0000	94.8683
N	N^{2}	\sqrt{N}	$\sqrt{10 N}$

N	N^{2}	\sqrt{N}	$\sqrt{10 N}$
900	810000	30.0000	94.8683
901	811801	30.0167	94.9210
902	813604	30.0333	94.9737
903	815409	30.0500	95.0263
904	817216	30.0666	95.0789
905	819025	30.0832	95.1315
908	820836	30.0998	95.1840
907	822649	30.1164	95.2365
908	824464	30.1330	95.2890
909	826281	30.1496	95.3415
910	828100	30.1662	95.3939
911	829921	30.1828	95.4463
912	831744	30.1993	95.4987
913	833569	30.2159	95.5510
914	835396	30.2324	95.6033
915	837225	30.2490	95.6556
016	839056	30.2655	95.7079
917	840889	30.2820	95.7601
918	842724	30.2985	95.8123
919	844561	30.3150	95.8645
920	846400	30.3315	95.9166
021	848241	30.3480	95.9687
922	850084	30.3645	96.0208
923	851929	30.3809	96.0729
924	853776	30.3974	96.1249
925	855625	30.4138	96.1769
928	857476	30.4302	96.2289
927	859329	30.4467	96.2808
928	861184	30.4631	96.3328
929	863041	30.4795	96.3846
930	864900	30.4959	96.4365
931	866761	30.5123	96.4883
932	868624	30.5287	96.5401
933	870489	30.5450	96.5919
934	872356	30.5614	96.6437
935	874225	30.5778	96.6954
038	876096	30.5941	96.7471
937	877969	30.6105	96.7988
938	879844	30.6268	96.8504
939	881721	30.6431	96.9020
940	883600	30.6594	96.9536
041	885481	30.6757	97.0052
942	887364	30.6920	97.0567
943	889249	30.7083	97.1082
944	891136	30.7246	97.1597
945	893025	30.7409	97.2111
946	894916	30.7571	97.2625
947	896809	30.7734	97:31 39
948	898704	30.7896	97.3653
949	900601	30.8058	97.4166
950	902500	30.8221	97.4679
N	N^{1}	\sqrt{N}	$\sqrt{10 N}$

\boldsymbol{N}	\boldsymbol{N}^{2}	\sqrt{N}	$\sqrt{10 N}$
950	902500	30.8221	97.4679
951	904401	30.8383	97.5192
952	906304	30.8545	97.5705
953	908209	30.8707	97.6217
954	910116	30.8869	97.6729
955	912025	30.9031	97.7241
958	913936	30.9192	97.7753
957	915849	30.9354	97.8264
958	917764	30.9516	97.8775
959	919681	30.9677	97.9285
960	921600	30.9839	97.9796
$\boldsymbol{\theta 8 1}$	923521	31.0000	98.0306
962	925444	31.0161	98.0816
963	927369	31.0322	98.1326
964	929296	31.0483	98.1835
965	931225	31.0644	98.2344
986	933156	31.0805	98.2853
967	935089	31.0966	98.3362
968	937024	31.1127	98.3870
969	938961	31.1288	98.4378
970	940900	31.1448	98.4886
071	942841	31.1609	98.5393
972	944784	31.1769	98.5901
973	946729	31.1929	98.64 08
974	948676	31.2090	98.6914
975	950625	31.2250	98.7421
976	952576	-. 2410	98.7927
977	954529	31.2570	98.8433
978	956484	31.2730	98.8939
979	958441	31.2890	98.9444
980	960400	31.3050	98.9949
981	962361	31.3209	99.0454
982	964324	31.3569	99.0959
983	966289	31.3528	99.1464
984	968256	31.3688	99.1968
985	970225	31.3847	99.2472
988	972196	31.4006	99.2975
987	974169	31.4166	99.3479
988	976144	31.4325	99.3982
989	978121	31.4484	99.4485
990	980100	31.4643	99.4987
981	982081	31.4802	99.5490
992	984064	31.4960	99.5992
993	986049	31.5119	99.6494
994	988036	31.5278	99.6995
995	990025	31.5436	99.7497
098	992016	31.5595	99.7998
997	994009	31.5753	99.8499
998	996004	31.5911	99.8999
999	998001	31.6070	99.9500
1000	1000000	31.6228	100.0000
N	N^{2}	\sqrt{N}	$\sqrt{10 N}$

APPENDIX B

NORMAL CURVE AREAS

. 50	. 1915	. 75	. 2734	1.00	. 3413	1.25	. 3944	1.50	. 4332
. 51	. 1950	. 76	. 2764	1.01	. 3438	1.26	. 3962	1.51	. 4345
. 52	. 1985	. 77	. 2794	1.02	. 3461	1.27	. 3980	1.52	. 4357
. 53	. 2019	. 78	. 2823	1.03	. 3485	1.28	. 3997	1.53	. 4370
. 54	. 2054	. 79	. 2852	1.04	. 3508	1.29	. 4015	1.54	. 4382
. 55	. 2088	. 80	. 2881	1.05	. 3531	1.30	. 4032	1.55	. 4394
. 56	. 2123	. 81	. 2910	1.06	. 3554	1.31	. 4049	1.56	. 4406
. 57	. 2157	. 82	. 2939	1.07	. 3577	1.32	. 4066	1.57	. 4418
. 58	. 2190	. 83	. 2967	1.08	. 3599	1.33	. 4082	1.58	. 4430
. 59	. 2224	. 84	. 2996	1.09	. 3621	1.34	. 4099	1.59	. 4441
. 60	. 2258	. 85	. 3023	1.10	. 3643	1.35	. 4115	1.60	. 4452
. 61	. 2291	. 86	. 3051	1.11	. 3665	1.36	. 4131	1.61	. 4463
. 62	. 2324	. 87	. 3079	1.12	. 3686	1.37	. 4147	1.62	. 4474
. 63	. 2357	. 88	. 3106	1.13	. 3708	1.38	. 4162	1.63	. 4485
. 64	. 2389	. 89	. 3133	1.14	. 3729	1.39	. 4177	1.64	. 4495
. 65	. 2422	. 90	. 3159	1.15	. 3749	1.40	. 4192	1.65	. 4505
. 66	. 2454	. 91	. 3186	1.16	. 3770	1.41	. 4207	1.66	. 4515
. 67	. 2486	. 92	. 3212	1.17	. 3790	1.42	. 4222	1.67	. 4525
. 68	. 2518	. 93	. 3238	1.18	. 3810	1.43	. 4236	1.68	. 4535
. 69		. 94	. 3264	1.19	. 3830	1.44	. 4251	1.69	. 4545
	. 2549								
. 70	. 2580	. 95	. 3289	1.20	. 3849	1.45	. 4265	1.70	. 4554
. 71	. 2612	. 96	. 3315	1.21	. 3869	1.46	. 4279	1.71	. 4564
. 72	. 2642	. 97	. 3340	1.22	. 3888	1.47	. 4292	1.72	. 4573
. 73	. 2673	. 98	. 3365	1.23	. 3907	1.48	. 4306	1.73	. 4582
. 74	. 2704	. 99	. 3389	1.24	. 3925	1.49	. 4319	1.74	. 4591

Normal Curve Arcas (continued)

x	$A(x)$	x	$A(x)$	x	A(1)	x	$A(x)$	x	$A(x)$
1.75	. 4599	1.95	. 4744	2.15	. 4842	2.35	. 4906	2.55	. 4946
1.76	. 4608	1.96	. 4750	2.16	. 4846	2.36	. 4909	2.56	. 4948
1.77	. 4616	1.97	. 4756	2.17	. 4850	2.37	. 4911	2.57	. 4949
1.78	. 4625	1.98	. 4762	2.18	. 4854	2.38	. 4913	2.58	. 4951
1.79	. 4633	1.99	. 4767	2.19	. 4857	2.39	. 4916	2.59	. 4952
1.80	. 4641	2.00	. 4773	2.20	. 4861	2.40	. 4918	2.60	. 4953
1.81	. 4649	2.01	. 4778	2.21	. 4865	2.41	. 4920	2.61	. 4955
1.82	. 4656	2.02	. 4783	2.22	. 4868	2.42	. 4922	2.62	. 4956
1.83	. 4664	2.03	. 4788	2.23	. 4871	2.43	. 4925	2.63	. 4957
1.84	. 4671	2.04	. 4793	2.24	. 4875	2.44	. 4927	2.64	. 4959
1.85	. 4678	2.05	. 4798	2.25	. 4878	2.45	. 4929	2.65	. 4960
1.86	. 4686	2.06	. 4803	2.26	. 4881	2.46	. 4931	2.66	. 4961
1.87	. 4693	2.07	. 4808	2.27	. 4884	2.47	. 4932	2.67	. 4962
1.88	. 4700	2.08	. 4812	2.28	. 4887	2.48	. 4934	2.68	. 4963
1.89	. 4706	2.09	. 4817	2.29	. 4890	2.49	. 4936	2.69	. 4964
1.90	. 4713	2.10	. 4821	2.30	. 4893	2.50	. 4938	2.70	. 4965
1.91	. 4719	2.11	. 4826	2.31	. 4896	2.51	. 4940	2.71	. 4966
1.92	. 4726	2.12	. 4830	2.32	. 4898	2.52	. 4941	2.72	. 4967
1.93	. 4732	2.13	. 834	2.33	. 4901	2.53	. 4943	2.73	. 4968
1.94	. 4738	2.14	. 4838	2.34	. 4904	2.54	. 4945	2.74	. 4969

2.75	. 4970	3.00	. 4987	3.25	. 4994	3.50	. 4998	3.75	. 4999
2.76	. 4971	3.01	. 4987	3.26	. 4994	3.51	. 4998	3.76	. 4999
2.77	. 4972	3.02	. 4987	3.27	. 4995	3.52	. 4998	3.77	. 4999
2.78	. 4973	3.03	. 4988	3.28	. 4995	3.53	. 4998	3.78	. 4999
2.79	. 4974	3.04	. 4988	3.29	. 4995	3.54	. 4998	3.79	. 4999
2.80	. 4974	3.05	. 4989	3.30	. 4995	3.55	. 4998	3.80	. 4999
2.81	. 4975	3.06	. 4989	3.31	. 4995	3.56	. 4998	3.81	. 4999
2.82	. 4976	3.07	. 4989	3.32	. 4996	3.57	. 4998	3.82	. 4999
2.83	. 4977	3.08	. 4990	3.33	. 4996	3.58	. 4998	3.83	. 4999
2.84	. 4777	3.09	. 4990	3.34	. 4996	3.59	. 4998	3.84	. 4999
2.85	. 4978	3.10	. 4990	3.35	. 4996	3.60	. 4998	3.85	. 4999
2.86	. 4979	3.11	. 4991	3.36	. 4996	3.61	. 4999	3.86	. 4999
2.87	. 4980	3.12	. 4991	3.37	. 4996	3.62	. 4999	3.87	. 5000
2.88	. 4980	3.13	. 4991	3.38	. 4996	3.63	. 4999	3.88	. 5000
2.89	. 4981	3.14	. 4992	3.39	. 4997	3.64	. 4999	3.89	. 5000
2.90	. 4981	3.15	. 4992	3.40	. 4997	3.65	. 4999	3.90	. 5000
2.91	. 4982	3.16	. 4992	3.41	. 4997	3.66	. 4999	3.91	. 5000
2.92	. 4983	3.17	. 4992	3.42	. 4997	3.67	. 4999	3.92	. 5000
2.93	. 4983	3.18	. 4993	3.43	. 4997	3.68	. 4999	3.93	. 5000
2.94	. 4984	3.19	. 4993	3.44	. 4997	3.69	. 4999	3.94	. 5000
2.95	. 4984	3.20	. 4993	3.45	. 4997	3.70	. 4999	3.95	. 5000
2.96	. 4985	3.21	. 4993	3.46	. 4997	3.71	. 4999	3.96	. 5000
2.97	. 4985	3.22	. 4994	3.47	. 4997	3.72	. 4999	3.97	. 5000
2.98	. 4986	3.23	. 4994	3.48	. 4998	3.73	. 4999	3.98	. 5000
2.99	. 4986	3.24	. 4994	3.49	. 4998	3.74	. 4999	3.99	. 5000

APPENDIX C

GLOSSARY OF COMPUTER AND PROGRAMMED INSTRUCTION TERMS

access time The time required to transfer information from storage to where it is going to be used.
adaptive teaching machines Teaching machines that automatically alter the instructional presentation sequence as a function of the pupil's performance. Example: The machine may shift to a smaller step size if the pupil is making more than four incorrect responses out of every ten frames.
adAptivity The capacity of the teaching machine and its associated program to adjust in one or more ways, on the basis of the learner's responses, to his specific needs.
address A label, usually a number, identifying a place in storage where a piece of information may be stored.

ALGORITHM A step-by-step routine for computation.
analog computer A computer that represents numbers by actual physical changes; contrasting with digital.
binary arithmetic A number system based on only tyo choices, 0 and 1.
branching A style of programming in which selection of the next frame to be presented depends on the response given in the current frame.
coding The processing of representing rules for handling the processing of information in a synthetic or computer language.
collator Component of a teaching machine that measures and records the learning process by collecting and recording data such as the number of errors, the type of error, time intervals required for response, and so on, in such a way that each item is collated with the part of the program to which it pertains.
comparator Component of a teaching machine that judges the correctness of the pupil's response. This evaluation is then transmitted, depending on the mode of operation, to the pupil, the reinforcement dispenser, the collator, and/or the sequence control unit.

COMpiler A special set of instructions contained in a computer to translate a source program into machine language.
control Part of the computer that effects an orderly sequence of operation of the other parts of the computer.
display mechanism The unit of a teaching machine that presents the content material in a series of frames.
feedback The function of a teaching machine that consists of providing the pupil with knowledge of results.
flow chart A diagram or graphic representation of a plan for the sequence of operations in solving a problem on a computer.
fortran Formula Translation, a scientific code usable in many computers for computer operations.
frame A unit of a program: the segment displayed at each step in the sequence. Usually the unit that requires a response.
hardware The mechanical, eléctrical, and magnetic devices and materials from which an automatic computer system is constructed.
hybrid computer A machine having different functions and representing a cross between two types of computers, as the analog and digital.

InPUT Information that is transferred from the outside to the inside of a computer for the purpose of processing; also refers to machinery used to bring information into the computer.

ITEm Any single unit of a test or experiment; that is a single question on a test or a single nonsense syllable in a list of syllables.
logical operation An operation dealing with the validity of thought in an arithmetic computation, or other activities such as comparing or selecting information.
machine language The coded operations that control information and addresses in a digital computer.
machine word A set of characters occupying one storage location and treated as a unit. May be of fixed or variable length.
microsecond One millionth part of a second (. 000001 sec).
millisecond One thousandth part of a second (. 001 sec).
nanosecond One billionth part of a second (. 000000001 sec).
output Information transferred out of any part of a computer as a result of data processing.
program A plan of detailed instructions for solving the machine problem in a digital computer.
programmer One who prepares the sets of instructions.
programming The process of arranging the material to be learned into a series of sequential steps; usually moves the student from a familiar background into a complex and new set of concepts, principles, and understandings; also refers to preparation of instructions for a computer.
prompt Programming techniques designed to insure the desired response to a frame.
punched cards Cards containing information expressed by means of specially coded holes.
real time Computer operation simultaneous with the occurrence of the event that supplies the material for the input.
routine The set of coded instruction necessary for performing an operation in a digital computer.

Sequencing Arranging the frames of a program in an order that provides the most efficient situation for learning.
simulation The representation of physical systems and phenomena by computers, in which the processing done by the computer represents the process itself.
socratic method A method of instruction that consists of a conversational quiz in which a tutor asks questions, the student replies, and the tutor confirms or denies the student by a series of questions to the correct response.
step The increment in subject matter level to be learned with each succeeding item or frame in the program.
stick, ніскогy A primitive teaching machine.
storage A part of the computer that holds material received for future use.

APPENDIX D

LIST OF MATHEMATICAL SYMBOLS

N	The number of distinguishable, equally likely outcomes of an experiment; also used to denote the number of scores (or other measures) in a set. (n is also used for this.)
$P(E)$	The probability of the event E.
\#(E)	The number of elementary outcomes comprising E.
E^{\prime}	The complementary event to E; the event E^{\prime} occurs if the event E does not occur.
n_{1}, n_{2}	Number of outcomes favorable for a first and second condition, respectively. (Used in the statement of the First Basic Combinatorial Principle.)
$n!$	Read " n factorial." Defined for positive integers n by: $n!=n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1$. By convention $0!=1$.
$P(n, r)$	The number of permutations of n things taken r at a time. $P(n, r)=n(n-1) \cdots(n-r+1)$. Alternatively, $P(n, r)=\frac{n!}{(n-r)!}$.
$\binom{n}{r}$	Read " n binomial r." A binomial coefficient. The number of combinations of n things taken r at a time.

$$
\binom{n}{r}=\frac{n!}{r!(n-r)!}
$$

$P(A \mid B) \quad$ The conditional probability of A given B. $P(A \mid B)=P(A$ and $B) / P(B)$ provided $P(B) \neq 0$.
p_{1}, p_{2}, and so on \quad Probabilities of various events.

v_{1}, v_{2}, and so on	Gains realized if certain events occur.
$<$	Less than.
\leq	Less than or equal to.
$>$	Greater than.
\geq	Greater than or equal to.
A(x)	The area under the standard normal curve enclosed by vertical lines at zero and at x, and the horizontal axis.
$\sqrt{ }$	Square root symbol.
X	A score or other measurement.
\sum	Greek capital letter sigma. Used to denote summation.
M	The mean or arithmetic average of a sample. $M=\Sigma X / N$.
s	The sample standard deviation,
	$s=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{1}-M\right)^{2}}$
	Alternatively ${ }_{\text {d }}$
	$s=\sqrt{\frac{1}{n-1}\left[\sum_{i=1}^{n} X_{i}{ }^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} X_{i}\right)^{2}\right]}$
n	See N.
Y	A score converted from a raw score.
μ	The population mean.
σ	The population standard deviation.

Index

Accountability, 89
Adsptive control processes, 19
Analog computer, 61, 102
Arithmetic average (See Mean)
Armerding, G. W., 80-81
Artificial intelligence, 65
Average score, 34, 152
"Bell-shaped" curve, 21, 44-46
Binary number system, 62, 102
Binomial coefficients, 7
Binomial probability distribution, 21
Borel, Émile, 19
Branching program, 68, 72, 102
C. A. I. (Computer-Assisted Instruction, 61-65, 69-70
Calculus, 46
Cause and effect, 56
Central tendency (See Mean, Medinn, Mode)
Combinations, 7
Combinatorial theory, 4
first basic combinatorial principle, 4
second basic combinatorial principle, 10
Compulsory school attendance law, 89
Computer program, 62, 68, 104
Conditional probability, 13
Control Data Corporation, 89
Correlation coefficient, 53-56
Cost analysis, 89
Davis, M. R., 82-83
Decision making under uncertainty, 17, 18
Derived score, 49
Dice, 2-3, 11, 15, 73-74 (ten-sided), 45-46
Difficulty factor, 51-53
Digital computers, 61-65, 67-72
Dispersion, 41-42, 44, 47
Dresher, Melvin, 19
Dynamic programming, 19

Educational Development Laboratories, 89
Elementary outcome, 2
Ellis, T. O., 82-83
Enrollments, 87-88
higher education, Figure 7.1, 88
nonpublic schools (K-12), Figure 7.1, 88
public schools (K-12) Figure 7.1, 88
ETS (Educational Testing Service) scores, 45,49
Events, certain (or sure) events, 3
compound events, 2
dependent events, 15
elementary events, 2
impossible events, 3
independent events, 14
mutually exclusive events, 10
Expected value, 17
Extreme scores, 36-38, 43
Factorial, 6
Flow chart, 62, 64, 103
Formulas binomial coefficients, 7
conditional probability, 13, 17
difficulty factor, 52
expected value, 18
factorial, 6
mean, 35
normal approximation to binomial, 22
number of combinations, 7
number of permutations, 6
number of ways of selecting r items out of $n, 17$
probability of an event, 3
probability of r successes in n trials, 20
standard deviation, 43
Goodness-of-fit, 2
GRAIL, 83
Graphical languages, 83
Histogram, 40-41

Hybrid, computer, 61, 103
Integration, 46
IQ, 45, 58
Johnniac Open Shop System, 82
JOSS, 79-82
Languages (computer), 62, 79, 104
ALGOL, 62
BASIC, 62
COBOL, 62
FORTRAN, 62, 103
JOSS, 79-80
PL1, 62
Latin, 67-78
Learners (fast slow), 70-71
Linear program, 68, 71
Logical elements of a computer, 63
"Man-machine mixture," 65, 70
Marks, S. M., 80-81
Mean, 34-39, 43
Median, 34-39
Million Randorn Digits, 73-77
Mode, 35, 37-78
Model, 2, 20
Multiplication tables, 62, 70
Normalapproximation to the binomial, 21, 22
Normal curve (See "Bell-shaped" curve)
Normal curve area, 98-101
Normal distribution, 21, 45-48
Ordered arrangements, 6
Outcome, 2
Percentiles, 45, 50
Permutations, 6
Poker hands, 5, 8
Population, 46
Post-test, 57-59
Prediction, 56
Pre-test, 30-32

Probability of an event, 3
Program budgeting, 89
Programmed book, 70
Programmed instruction, 61-69, 71
Programmed learning, 67-72
Programming (defined), 104

Quintain, 69 (footnote 1)
R.AND tablet, 82-85

Random numbers, 74, 76, 77
Randomness, 20, 73
Raw score, 33, 41, 43, 49
Real time (defined), 104
Reliability, 56
Remedial, 70
Research, 79-81, 83-84
Rote learning, 67-68, 70
Sample, 19
Science Research Associntes, 89
Self-instruction, 70
Sequential analysis, 19
Shaw, J. C., 82
Skewed, 50-51
Socratic method, 105

Square root tables, 88-97
Standard devintion, 43-44, 47, 49
Standard score, 47-49
Success, 19
Symbols (mathematical), 106
T-scores, 45, 49-50
Teaching machines, 67-69, 71
Tenure, 89
Theory of Games, 19
Time shared, 81
Trec of Pascal, 7
Unordered arrangement, 7
Validity, 56
Variability (See Dispersion)
Variables (See Correlation coefficient)
Von Neumann, John, 19, 82
Williams, J. D., 19
WISC (Wechsler Intelligence Scale for Children), 45
Z-scores, 45, 49-50
Zero point, 43

[^0]: Santa Monica, California
 January 1970

 RICHARD BELLMAN
JOHN C. HOGAN
ERNEST M. SCHEUER

 ${ }^{1}$ C. B. Allendoerfer and C. O. Oakley, Principles of Mathematics. New York: McGraw-Hill Book Company, 1955.

[^1]: ${ }^{3}$ The event $E^{\prime} \mathrm{c}$ is alled the complement of E or the complementary event to E. Clearly $\left(E^{\prime}\right)^{\prime}=E$.

[^2]: ${ }^{-5}$ This symbol is read " n binomial r." (It is not a fraction. Do not put in a fraction line when you write it.)

[^3]: ${ }^{9}$ For example, National Bureau of Standards, Tables of the Binomial Probability Distribution, Applied Math Series 6. U.S. Government Printing Office, 1950.

[^4]: **Riordan, John, An Introduction to Combinatorial Analysis. (New York: John Wiley \& Sons, Inc., 1958).
 **Bellman, Richard E., and Dreyfus, Stuart E., Applied Dynamic

[^5]: ${ }^{2}$ "Command/Control \& CAI," SDC Magazine, Volume 10, Number 2, February 1967, pp. 4-5.

[^6]: ${ }^{1}$ The RAND Corporation, A Million Random Digits with 100,000 Normal Deviates. (Glencoe, Illinois: The Free Press, 1955).
 ${ }^{2}$ The introduction to the RAND Corporation tables suggests that these be randomly selected also and that one take steps to assure that on different occusions, different portions of the tables be used.

[^7]: ${ }^{5}$ GRAIL-Graphic Input Language, which is under development at The RAND Corporation.
 ${ }^{\circ}$ T. O. Ellis and W. L. Sibley, On the Problem of Direciness in Computer Graphice. (RAND Paper P-3697, March 1968), p. 12.

