



81 11 A

SUSAN DANCS

A near-field $K(+, \circ)$ is called a *Dickson near-field* if a third binary operation \cdot can be defined on K, such that $K(+, \cdot)$ is a skew field and, for each $a \in K^*$, $\varphi_a: x \to a^{-1} \cdot (a \circ x)$ is an automorphism of $K(+, \cdot)$, where a^{-1} denotes the inverse of a in the skew field $K(+, \cdot)$. (See H. KARZEL [3].)

Such near-fields were first constructed by L. E. DICKSON [1]. H. ZAS-SENHAUS [4] showed that, with seven exceptions, Dickson's method yields all finite near-fields. The results of E. ELLERS and H. KARZEL [2] show that these correspond precisely to the finite Dickson near-fields.

A finite Dickson near-field has order q^n and centre of order q. It is completely specified, up to isomorphism, by the positive integer invariants q, n. Furthermore, q and n satisfy the following relations:

(1) $q = p^i$ for some prime p;

4

- (2) each prime divisor of n divides q-1;
- (3) if $q \equiv 3 \mod 4$, then $n \equiv 0 \mod 4$.

Such a pair of integers $\{q, n\}$ is called a Dickson number pair and, for each Dickson number pair, there exists a Dickson near-field with invariants q, n.

The following results will be proved here.

Theorem. Let K be a finite Dickson near-field with invariants p^i , n. For each λ dividing ln, K has a sub-near-field N of order p^{λ} , isomorphic to the Dickson near-field with invariants $p^{i'}$, λ/l' , where $l' = (lI, \lambda)$ and I is the solution of $I \equiv (p^{in} - 1)/(p^{\lambda} - 1) \mod n$ such that $0 < I \leq n$.

Those sub-near-fields of K which contain the centre are of particular interest. For these, the invariants are easier to describe.

Corollary. If $\lambda = lt$, for some integer t, then N contains the centre of K and l' = l(n/t, t).

It should be noted that K contains no sub-near-fields other than those described in the theorem (see Bull. Austral. Math. Soc. 5 (1971), 275—280).

§ 1. The Dickson-Zassenhaus Construction

A brief outline of the Dickson-Zassenhaus construction is needed. For a detailed description see p. 190 of ZASSENHAUS [4].

Let $\{q, n\}$ be a Dickson number pair. Then

(4)
$$\frac{q^{\beta}-1}{q-1} \equiv 0 \mod n \text{ for } 0 < \beta < n, \quad \frac{q^n-1}{q-1} \equiv 0 \mod n.$$

Hence, the congruence equation

10

(5)
$$q^{\alpha} \equiv 1 + \mu(q-1) \mod (q-1)n$$

has a unique solution for all μ , such that $0 < \alpha \le n$.

Let $K(+, \cdot)$ be the finite field with q^n elements, ω a generator of its multiplicative group $K^*(\cdot)$ and let ϱ be the automorphism of $K(+, \cdot)$ defined by $\varrho: x \to x^q$. A mapping $\varphi: x \to \varphi_x$, from K^* into the automorphism group of $K(+, \cdot)$, is defined by $\varphi_x = \varrho^\alpha$ for $x = \omega^\mu$, where α is the solution of (5). Define a multiplication \circ by

(6) for
$$a, b \in K$$
, $a \circ b = a \cdot \varphi_a(b)$, for $a \neq 0$, and $a \circ b = 0$, for $a = 0$

 $K(+, \circ)$ is a near-field with q^n elements and centre isomorphic to the finite field of order q. Furthermore, $K(+, \circ)$ is clearly a Dickson near-field. Moreover, for a given Dickson number pair $\{q, n\}, K(+, \circ)$ is unique up to isomorphism. The image, $\Gamma = \varphi(K^*)$, of K^* under φ is the cyclic group of order n generated by ϱ and is called the *D*-group of $K(+, \circ)$.

§ 2. Number theoretic lemmas

Lemma 2.1. Let $\{q, n\}$ be a Dickson number pair. If k divides n, then $\{q^{\mathbf{A}}, k\}$ is a Dickson number pair.

This results is an immediate consequence of the observation that (3) is equivalent to the following condition:

(3') if 4 divides n, then 4 divides q - 1.

Lemma 2.2. Let $\{q, n\}$ be a Dickson number pair. If $q^{\alpha} \equiv 1 + \mu(q - 1) \mod (q - 1)n$, then $(\mu, n) = (\alpha, n)$.

Proof. Let $(\mu, n) = \xi$ and $(\alpha, n) = \eta$. By Lemma 2.1, $\{q, \xi\}$ and $\{q, \eta\}$ are Dickson number pairs. Since $(q^{\alpha} - 1)/(q - 1) \equiv \mu \mod n$, $(q^{\alpha} - 1)/(q - 1) \equiv 0 \mod \xi$. Hence, by (4), $\xi \mid \alpha$. But $\xi \mid n$ and hence $\xi \mid \eta$.

Again, by (4), since $\eta | \alpha$, $(q^{\alpha} - 1)/(q - 1) \equiv 0 \mod \eta$. Thus $\mu \equiv \varkappa \eta$ mod *n*, for some integer \varkappa . Hence $\eta | \mu$. But $\eta | n$, so $\eta | \xi$, Thus $\xi \equiv \varkappa \eta$ Lemma 2.3. If $\{q, n\}$ is a Dickson number pair and t divides n, then $(q^n - 1)/(q^t - 1) \equiv n/t \mod n$.

Proof. Let $n/t = s = s_1 s_2 \dots s_r$, where s_i is prime for $i = 1, 2, \dots, r$. The proof is obtained by induction on r.

Let r = 1. Then n/t = s, where s is prime. By Lemma 2.1, $\{q, t\}$ is a Dickson number pair. Hence $q^t \equiv 1 \mod (q-1)t$. But s is prime and s|n, thus, by (2), s|q-1. Hence $q^t \equiv 1 \mod n$, since n = st. But

$$(q^n - 1)/(q^t - 1) = (q^{st} - 1)/(q^t - 1) = q^{t(s-1)} + q^{t(s-2)} + \cdots + q^t + 1.$$

Thus $(q^n - 1)/(q^t - 1) \equiv s \mod n$, as required.

Let r > 1. Then $n = st = s_1s't$, where s_1 is prime. By above, $(q^{s_1s't} - 1)/(q^{s't} - 1) \equiv s_1 \mod n$. Further, since $\{q, s't\}$ is a Dickson number pair, $(q^{s't} - 1)/(q^t - 1) \equiv s' \mod s't$, by the inductive hypothesis. The result follows.

The proofs of the following two lemmas require only routine calculations and are omitted.

Lemma 2.4. If (b, c) = (d, c), then (ab, c) = (ad, c). Lemma 2.5. If $a \neq 0$ and (b, ca) = (d, ca), then (b, c) = (d, c).

§ 3. Proof of the theorem

Lemma 3.1. Let K be a finite Dickson near-field with invariants p^i , n. Then K contains a Dickson near-field of order p^{λ} , for each λ dividing ln.

Proof. Let $N(+, \cdot)$ be the (unique) sub-field of $K(+, \cdot)$ of order p^{λ} , where $\lambda | ln$. Let $a, b \in N^*$. Then $a \circ b = a \cdot \varphi_a(b) = a \cdot b^{q^a}$, for some α , so $a \circ b \in N^*$. Thus, since K^* is finite, $N^*(\circ)$ is a subgroup of $K^*(\circ)$ and $N(+, \circ)$ is a sub-near-field of $K(+, \circ)$. Since N admits φ_a , the restriction, $\varphi_a|_N$, of φ_a to N is an automorphism of $N(+, \cdot)$. Hence $N(+, \circ)$ is a Dickson near-field.

Lemma 3.2. If $\bar{\omega}$ is a generator of $K^*(\cdot)$, then $\varphi_{\bar{\omega}}$ is a generator of Γ , the D-group of $K(+, \circ)$.

Proof. Since $\bar{\omega}$ generates $K^*(\cdot)$, $\bar{\omega} = \omega^{\bar{\mu}}$ where $(\bar{\mu}, q^n - 1) = 1$. By (4), $n | q^n - 1$. Thus $(\bar{\mu}, n) = 1$. Hence, by Lemma 2.2, $(\bar{\alpha}, n) = 1$, where $\rho^{\bar{\alpha}} = \varphi_{\bar{\alpha}}$, and $\varphi_{\bar{\alpha}}$ generates Γ .

Let N be the sub-near field of K of order p^{λ} given by Lemma 3.1 and let its invariants be $p^{l'}$, n', where $n' = \lambda/l'$. To prove the theorem, p' Since $N^*(\cdot)$ is a cyclic subgroup of $K^*(\cdot)$ of order $p^{\lambda} - 1$, if ω generates $K^*(\cdot)$, then $\bar{\omega} = \omega^i$ generates $N^*(\cdot)$, where $i = (p^{\ln} - 1)/(p^{\lambda} - 1)$. Let I be the solution of the congruence equation $I \equiv i \mod n$, such that $0 < I \leq n$.

Also, since N is a Dickson near-field, there exists a mapping ψ from N^* into the automorphism group of $N(+, \cdot)$ and a generator $\bar{\omega}^{\sigma}$ of $N^*(\cdot)$, such that $\bar{\varrho} = \psi_{\overline{\omega}^{\sigma}} : x \to x^{p'}$. Then the D-group, $\Pi = \psi(N^*)$, of $N(+, \circ)$ is generated by $\bar{\varrho}$ and has order n'. Furthermore, for all $a \in N$, $\bar{\omega} \circ a = \bar{\omega} \cdot \psi_{\overline{\omega}}(a)$. But $\bar{\omega} \circ a = \bar{\omega} \cdot \varphi_{\overline{\omega}}(a)$ and hence $\psi_{\overline{\omega}} = \varphi_{\overline{\omega}}|_N$. By (5), $\varphi_{\overline{\omega}} = \varrho^{\alpha}$, where $\varrho: x \to x^{p^i}$ and α satisfies $q^{\alpha} \equiv 1 + i(q - 1) \mod (q - 1)n$. Hence $\psi_{\overline{\omega}} : x \to x^{p^{i\alpha}}$ for all $x \in N$. By Lemma 3.2, $\psi_{\overline{\omega}}$ generates Π and thus has order n'. Since $N^*(\cdot)$ is cyclic of order $p^2 - 1$, n' is the least positive integer such that $l\alpha n'$ is a multiple of λ . Thus $\lambda/(l\alpha, \lambda) = n' = \lambda/l'$ and $l' = (l\alpha, \lambda)$.

Let $\lambda = l\overline{n}$, where $l = (l, \lambda)$. Thus $(l/l, \overline{n}) = 1$ and $\overline{n} | n$, since $\lambda | ln$. Let l = sl. Then $l' = l(s\alpha, \overline{n})$. By Lemma 2.2 and the definition of I, $(\alpha, n) = (i, n) = (I, n)$. By Lemma 2.5, $(\alpha, \overline{n}) = (I, \overline{n})$, since $\overline{n} | n$. Hence, by Lemma 2.4, $l' = l(sI, n) = (lI, \lambda)$ and the proof of the theorem is complete.

Now let $\lambda = lt$. It follows immediately from the sub-field structure of $K(+, \cdot)$ that N contains the centre of $K(+, \circ)$. Further, by Lemma 2.3, $I \equiv n/t \mod n$ and l' = (ln/t, lt) = l(n/t, t). Hence the corollary follows.

References

- L. E. DICKSON, On finite algebras. Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl. II (1905) 358-393.
- [2] E. ELLERS und H. KARZEL, Endliche Inzidenzgruppen. Abh. Math. Sem. Univ. Hamburg 27 (1964) 250-264.
- [3] H. KARZEL, Unendliche Dicksonsche Fastkörper. Arch. Math. (Besel) 16 (1965) 247-256.
- [4] H. ZASSENHAUS, Über endliche Fastkörper. Abh. Math. Sem. Univ. Hamburg 11 (1936) 187-220.