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On finite Dickson near-flelis— s

Susan Dawcs /

A near-field K(+,0) is called a Dickson near-field if a third binary
“operation - can be defined on K, such that K(+,-) is a skew field and,

for each a € K*, ¢,: 2 — a~'- (@0 z) is an automorphism of K (-, 9,
where a-! denotes the inverse of a in the skew field K (+,.). (See
H. KarzeL [3].) .

Such near-fields were first constructed by L. E. DicksoN [1]. H. Zas-
SENHAUS [4] showed that, with seven exceptions, Dickson’s method
yields all finite near-fields. The results of E. ELLERS and H. KarzEL [2]
show that these correspond precisely to the finite Dickson near-fields,

A finite Dickson near-field has order ¢ and centre of order q. It ig
completely specified, up to isomorphism, by the positive integer in-
variants ¢, n. Furthermore, ¢ and n satisfy the following relations:

(1) ¢ = p* for some prime p;

(2) each prime divisor of n divides ¢ — 1;

(3) #f ¢ =3 mod 4, then n == 0 mod 4.

Such a pair of integers {g, n} is called a Dickson number pair and, for
each Dickson number pair, there exists a Dickson near-field with jy.
variants ¢, n.

The following results will be proved here.

Theorem. Let K be a finite Dickson near-field with invariants pt
For each A dividing In, K has a sub-near-field N of order p*, isomorphie
to the Dickson near-field with invariants p¥, A, where U = (11, 2) gnq
I is the solution of I = (p** — 1)/(p* — 1) mod n such that 0 < I < o,

Those sub-near-fields of K which contain the centre are of particular
interest. For these, the invariants are easier to describe.

Corollary. If A = Ut, for some integer t, then N conigins the centre of
K and I = l(nft, ).

It should be noted that K contains no sub-near-ficlds other than those
described in the theorem (see Bull. Austral. Math. Soc. 5 (1971), 275—
280).
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§ 1. The Dickson-Zassenhaus Construetion

A bl:ief outline of the Dickscn-Zassenhaus construction is needed. For
& detailed description see p. 190 of ZASSENHAUS [4].

Let {g, n} be a Dickson number pair. Then

b— o
4) !;TllaisOmodn for 0<p<n, gq_—llEOmodn.
Hence, the congruence équa.tion |
(6) =1+ pu(g—1)mod (g — 1)n

has a unique solution for all u, such that 0 < & < n.

Let £ (+,-) be the finite field with ¢ elements, w a generator of itg
multiplicative group K*(-) and let ¢ be the automorphism of K (+, 4
defined by o:z - 29. A mapping ¢: z — ¢,, from K* into the 3111‘:0-
morphism group of K (+, ), is defined by ¢, = g2 for = w*, where & is
the solution of (5). Define a multiplication o by
(6) fOf a,bEK, aob =.a'¢a(b): fO" a +0, and aob = 0, /0" 2=

K(+, o) is a near-field with ¢" elements and centre isomorphic tq the
finite field of order g. Furthermore, K (+, o) is clearly a Dickson neay.
field. Moreover, for a given Dickson number pair {g,n}, K(+, °) i

unique up to isomorphism. The image, I' = ¢(K*), of K* under ® i
the cyclic group of order n generated by g and is called the D-gmup of
K(+,0). -

§ 2. Number theoretic lemmas

Lemma 2.1. Let {g, n} be a Dickson number pasr. If k divides n_ then,
{@*, &} is a Dickson number pair. ’

This results is an immediate consequence of the observation thg (3
is equivalent to the following condition: )
(3') of 4 divides n, then 4 divides ¢ —1.

Lemma 2.2. Let {g, n} be a Dickson number pair. If ¢* =1+ pu(q __ 4
mod (g — 1)n, then (u, n) = (x, n).

Proof. Let (u,n) =¢ and (x,7) = 7. By Lemma 2.1, {g & ang

m

{g, n} are Dickson number pairs. Since (= — 1)/(¢ — 1) =p
(g» —1)/(g — 1) = 0 mod ¢. Hence, by (4), £|«. But &|n and hengg & I:,
l .

Ag&in: by (4)) since ﬂl“! (9“'—' 1)/(q— 1) = 0 mod n. Thlls o=
_mod », for some integer x. Hence n|u. But #|n, 50 7| Thus & __  * Qg
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Lemma 2.3. If {g, n} is & Dickson number pair and ¢ divides n, then
(g — 1)/(g* — 1) = n/t mod =.

Proof. Let nft = s = 8,8,...8,, where 5, is prime fors = 1,2,.. . o
The proof is obtained by induction on r.

Let r = 1. Then nft = s, where 8 is prime. By Lemma 2.1, {g, #} is
a Dickson number pair. Hence ¢* = 1 mod (¢ — 1)¢. But & is prime and
&|n, thus, by (2),-8|¢ — 1. Hence ¢ = 1 mod n, since n = st. But

@—0/(g¢—1)=(@"—D/(¢—1) =gV +gV+... gt 41,
Thus (¢ — 1)/(¢* — 1) = s mod n, as required.

Let r> 1. Then n = st=s,6't, where 8, is prime. By above,
(gnt—1)/(g¥* — 1) = 8, mod n. Further, since {g, &'t} is a Dickson
number pair, (¢**—1)/(¢* — 1) = & mod §'t, by the inductive hypo-
thesis. The result follows.

The proofs of the following two lemmas require only routine calcula.-
tions and are omitted.

Lemma 2.4. If (b, c) = (d, c), then (abd, c) = (ad, c).
Lemma 2.5. If a =0 and (b, ca) = (d, ca), then (b, ¢) = (d, c).

§ 3. Proof of the theorem

Lemma 3.1. Let K be a finite Dickson near-field with invariants pt,
Then K contains a Dickson near-field of order p*, for each A dim’ding In.

Proof. Let N(+,) be the (unique) sub-field of K(+,-) of order A,
where A|ln. Let a, b€ N*. Then aob=6-g.(0) = a- b%, for some &,
80 @ o b € N*. Thus, since K* is finite, N*(o) is a subgroup of K* (o) gnq
N(+, o) is & sub-near-field of K(+,0). Since N admits g,, the restric.
tion, @|n, of ¢s to N is an automorphism of N(+,-). Hence N(4, 0)
is a Dickson near-field.

Lemma 3.2. If @ is a generator of K*(-), then @5 18 a generator of I
the D-group of K(+, o)

Proof. Since & generates K*(.), & = «* where (4, ¢" — 1) = 1, By
(4), n|g* — 1. Thus (@, n) = 1. Henoe, by Lemma 2.2, (&, n) = 1, whe
o® = ¢, and g5 generates I

Let N be the sub-near field of K of order p* given by Lemma 3.1 an
let its invariants be p¥,n’, where #/ = A/l'. To prove the theorem ;
maci the requived properties.
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Since N*(-) is a cyclic subgroup of K*(-) of order p* — 1, if  generates
K*(-), then & = w* generates N*(-), where ¢ = (p'» — 1)/(p* — 1). Let
I be the solution of the congruence equation I = {mod n, such that
o<I<n.

Also, since N is a Dickson near-field, there exists a mapping y from
N* into the automorphism group of N(+,:) and a generator @ of
N*(), such that g = y,:2—>2?". Then the D-group, IT = y(N*),
of N(+4, o) is generated by g and has order »n’. Furthermore, for aJ]
aelN, doa = &-y;(a). But doa = d-¢;(a) and hence y; = ¢_|.
By (8), ¢ = o=, where g: =z — 2* and « satisfies ¢g= =1 +i(g—1)
mod (g — 1)n. Hence w: z—> 2 for all zeN. By Lemma 3.2,
5 generates IT and thus has order »’. Since N*(.) is cyclic of order
p*— 1,7 is the least positive integer such that lan’ is a multiple of 3.
Thus A/(la, ) =n' = A/} and V' = (I«, 4).

Let A = I, where ! = (I, 4). Thus (}/l, %) = 1 and %|n, since Alln.
Let I = gl. Then I = l(sa, 7). By Lemma 2.2 and the definition of I,
(®,n) = (3,n) = (I,n). By Lemma 2.5, (x,7)=(I,7%), since 7|n,
Hence, by Lemma 2.4, ' =1I(sI,n) = (I1,4) and the proof of the
theorem is complete.

Now let A = It. It follows immediately from the sub-field structure
of K(+,-) that N contains the centre of K (4, o). Further, by Lemmg
2.3, I=nftmodn and I' = (Inft, It) = l(nft,t). Hence the corollary
follows.
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