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WITH IDENTITIES ON CERTAIN FINITE GROUPS

JAMES R. CLAY and JOSEPH J. MALONE, JR.

In the theory of near-rings the near-rings with identities occupy a role
analogous to that in ring theory of rings with identities. Specifically,
every near-ring may be embedded in a near-ring with identity. This
result is given in [1]. (Although the proof given in [1] is erroneous, the
result is valid.) This paper investigates near-rings with identities,
demonstrating some implications of the existence of the identity element.

Throughout this paper the term ‘“near-ring” shall mean ‘“left-near-
ring”’.

THEOREM 1. Let (G, +) be a cyclic group. If (@, +,*) is a near-ring
with identity, then (G, +,+) is a commutative ring with identity.

Proor. Let the elements of @ be given as equivalence classes of
integers and let a be contained in a generator of (@, +). Choose the
notation so that 1’ designates (1-a)’ — the class containing a, 2’ desig-
nates (1-a)’+(1-a)’=(2-a)’, etc. Let e’ be the identity of (G, +,*) and
let 1’«1’=¢’. Then

e terms

e e,
1’ =1%e = I's(1'+...+1')
= (I'sl")+ ... 4(1's1")
= e (l's1l’') = e-¢c’ = (e+c) .

If G=1, the integers, a= + 1 and, hence, e= + 1. If @=1,, the integers
modulo n, e-¢c-a=1:a (modn) or n | (e:c—1)-a. Since a is contained in g
generator of (I, +), (n,a)=1and n | (e-c—1). But this implies (n,e)=1.,
Thus the class containing e is a generator of (I, +).

Whether G =1I or G =1,, the class containing e is a generator of (@, +)
and, in the notation, the generator containing @ may be replaced by the
generator containing e so that 1’ designates the class containing e, that
is; 1’ is the multiplicative identity. Then, for z’, ' in G,
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y terms
——— —
sy =a's(I'+...+1)
= (2'*l')+...+(z'+]")
—yd = @) =@y ==y =y

Thus the near-ring multiplication is commutative and it follows that the
right-distributive law holds. Therefore, (G, +,+) is & commutative ring
with identity.

CoroLLARY. Let (@, +) be a cyclic group. There is, to an 1somorphism,
a unique near-ring (ring) with identity whose additive group s (G, +).

Proor. Let R,=(G, +,*) and Ry= (@, +,*,) be near-rings whose iden-
tities contain, respectively, a and b. By the theorem, (1-a)’ and (1-b)
generate, respectively, the additive groups of R, and R,. Consider
n: R, - R, such that (1-a)'z=(1-b)'. Since z is known to be an iso-
morphism of (@, +), it need only be shown that = preserves multiplica-
tion. For w',z’ in R, the following equations establish this:

(w's,2')n = [(wea)x(z-a)ln = ((w-2)-a)n = ((w2)d),
wasg'n = (wa)mrg(z-a)n = (w-b) sy(x-b) = ((w-2)-b) .

TaEOREM 2. Let (@, +) be a simple (non-trivial) group of finite order.
If (@, +,%) i8 a near-ring with identity, then (G, +,+) 18 a field.

.- Proo¥: For an arbitrary near-ring (@, +,+), the maximal sub-C-ring
(G., +,*) consists of all ¢ in @ such that 0sc=0 and the maximal sub-Z-
ring (G,, +,*) consists of all z in G such that gsz=z for every g in G.
In addition, G may be expressed bi-uniquely (see p. 27 of [1]) as a sum
of these sub-near-rings. Note that (G, +) is a normal subgroup of
(@, +) since
0x(g+c—g) = 0xg—02g = 0,

g in @G, ¢ in G,.

If, as in the statement of the theorem, (@, + ) is simple, the note above
implies G=G, or G=G,, i.e. G is a C-ring or @ is a Z-ring. If (G, +,%)
has an identity e and is a Z-ring, then z=2z+e=e, for every z in G@. Thus,
in this case, G contains only one element.

In any near-ring, for a fixed g in @, (4,, +) is & normal subgroup of
(@, +) if A;={a |ae@, gea=0}. If (G,+) is simple and finite, each
row of the multiplication table must contain all 0’s or else only the 0
entry corresponding to the right-multiplication by 0. As a matter of
fact, in the latter case each row — except for the 0 entry — is a permu-
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?ation of the non-zero entries since gsa=gsb implies g«(a —b)=0 which,
In turn, implies a —b=0.

If (G, +) has prime order, =1 p» Theorem 1 provides all that is needed
except the multiplicative inverses. Since (G, +,+) has an identity, there
is a non-zero entry in each row (except the row corresponding to the left-
multiplications by 0) and the last remark of the previous paragraph assures
us that the identity occurs once, and only once, in each row of the multi-
Plication table (except the row of left-multiplications by 0). So the needed
multiplicative inverses exist and the theorem holds in this case.

If (@, +) has composite order, then the result of [3] implies that
(@, +) has even composite order. Since the prime 2 divides the order

of @, the Sylow theory assures us that @ contains an element of order 2.

If z is the element of order 2 and e is the identity, we see that e is also of
order 2 since :

0=z+z = ex(z+2) = esx+esx = Tre+2xee = zo(e+e).
Then, for g in G, g+0,

g =esg = —(es(—9g)) = —((—g)%e) = (—g)*(—¢€) = (—g)se = —g.
Thus every non-zero element of @ is of order 2 and (@, +) must be com-

mutative. The subgroup of (@, +) generated by z is then a proper nor-

mal subgroup. This contradiction completes the proof of the theorem
and yields the following

ComoLLARY. A simple group of composite order cannot be the additive
group of a near-ring with identity.

LemMA. Let (G, +) be a finite group. If « is a left distributive binary
operation on (G, +) there exists a function f: G -~ Hom(Q,Q) such that
f(@)=f, and f,(y)=2z+y for each y € G.

This lemma is contained in theorem 1.1 of [2].

THEOREM 3. Let (G, +) be a finite group. Suppose » is a left distributive
binary operation defined on (G,+). If ec @ 18 an identity with respect
to », and if z € G, then the order of z, O(z), divides the order of e, O(e).

Proor. For the identity e, z=z+e=f,(e) for each z € G. Consequently
0=2+0=£,(0)=1,(O(e)- e)=0(e) f;(¢e)=0(e)-z. Hence O(z) | O(e).

CorOLLARY. Let (@, +) be a non-cyclic group whose order is a product

of distinet primes. Then (G, + ) cannot be the additive group of a near-ring
with identity.
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PrOOF. Assume (@, +,%) is a near-ring with an identity e. Since the
order of @ is a product of distinct primes p,,p,,. . ., p, and since there are
elements in G of order p; for each ¢, 1<i<n, it follows that p;p,...
P, | O(e), and consequently O(e)=p,p,...p,. But (@ +) is not cyclic.

Lemma A. Let z,y be integers =2. Then xy2z+y.

Lemma B. Let 8(n) denote the sum of the primes <n, n an integer 3.
Then s(n) >n.

Proor. Note that §(3)=5, s(4)=5, and §(5)=10. We assume that
8(k)>k for 3<k<n and show that s(n)>n.

Case I. Let n be even and =6. Then 3 < }n <n, where }n is an inte-
ger. By Bertrand’s postulate (Theorem 8.3 of [5]) there exists a prime p
such that in <p<n. Hence, '

8(n) = p+s(in) > n+in =n.

Casge I1. Let n be odd and >6. Then n—1 is even and =6. There
exists a prime p such that }(n—1)<p=n—1. Hence,

a(n) 2 s(n—1) 2 p+s(}(n—1)) > p+in-1)
2 1l+in-1D+in—-1)=n.

THEOREM 4. Let (S,, +) be the permutation group on n symbols. There
exists no near-ring with identity whose additive group is (S,, +) n=3.

Proor. 8, has elements of order ¢ for 1<t<n. By Theorem 3, if
(Sp, +) is the additive group of a near-ring with identity e, then
t|O(e), 1=t<n. Then D(n) | O(e), where D(n)=1cm[2,3,...,n]. Note
that D(n)=p,"'ps™. .. p,*, where the p; are the primes <= and a; is
the maximum power of p, such that p*<n.

Let z € §,, and write x as a product of disjoint cycles. The lengths of
the cycles give a partition of n, say n=r,+7r,+... +r,. By Theorem
5.1.2 of [4],

O(z) = lem(ry,ry,...,1,]).

We show that O(z) < D(n). Consequently, there exists no y € S, such
that D(n)|O(y). Hence the assumption that there is an identity will
lead to a contradiction.

Let N={P | P is a partition on n}. If P={r,r,...,7,}, let lcm P
denote lem [ry,r,,...,r,]. If L(n) is the maximum lcm P for Pe N,
it is sufficient to show that L(n)< D(n). Forr;e P, let p,*¥p,* . . p ok
be the prime factorization of r,. Then
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lem [fl,f,,. L ’rm] = plblpib’ s pkbk ’

b; = max{a;,ay,. .., 0} .
Thus L(n) £ D(n).
Suppose there is an n such that L(n)=D(n). Then there exists a
partition of n, P={ry,7,,...,r,} such that lecm P=D(n). Consider

n < Pp+pet...+o (by Lemma B)
S P+ P2+ ...+ (since each a;2 1)
< IpM+2p M+ ...+3pf™  (by the hypothesis. Only
the terms for which a;;+0 are included in the sum)
Sntrnt...+r,=n (by Lemma A) .

Thus we have the contradiction n < n.
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