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In the theory of near-rings the near-rings with identities occupy a. role 
analogous to that in ring theory of rings with identities. Specifically, 
every near-ring may be embedded in a near-ring with identity. This 
result is given in [l]. (Although the proof given in [I] is erroneous, the 
result is valid.) This paper investigates near-rings with identities, 
demonstrating some implications of the existence of the identity element. 

Throughout this paper the term "near-ring" shall mean "left-near­
ring". 

THEOREM 1. Let (G, +) be a cyclic group. If (G, +, •) is a near-ring 
with identity, then (G, +, •) is a commuta_yve ring wi,th identity. 

PROOF. Let the elements of G be given as equivalence classes of 
integers and let a be contained in a generator of (G, + ). Choose the 
notation so that l' designates (l ·a)' - the class containing a, 2' desig­
nates (l·a)'+(l·a}'=(2·a)', etc. Let e' be the identity of (G,+,•} and 
let l'•l' =c'. Then 

l' = l'•e = l'•(l' + ... +I') 

= (l'•l')+ ... +(l'•l'} 
= e·(l'•l'} = e·c' = (e·c)'. 

If G=l, the integers, a=± 1 and, hence, e= ± 1. If G=l11 , the integers 
modulo n, e·c·a= l ·a (modn} or n I (e ·c- l}·a. Since a is contained in a 
generator of (J

11
, + }, (n,a)= 1 and n I (e·c-1). But this implies (n,e}= I. 

Thus the class containing e is a generator of (I 11 , + ). 
Whether G = I or G =In• the class containing e is a generator of (G, +} 

and, in the notation, the generator containing a may be replaced by the 
genera.tor containing e so that l' designa~s the class containing e, that 
is; I' is the multiplicative identity. Then, for x', y' in G, 
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11terma --x'•y' = x'•(l' + ... + l') 

= (x' •I') + ... + (x' • 1 ') 

= y·x' = (y·x)' = (x·y)' = x _·y' = y'•x'. 

Thus the near-ring multiplication is commutative a.nd it follows tha.t the 
right-distributive law holds. Therefore, (G, +, •) is a commutative ring 
with identity. 

CoROLLABY. Let (G, +) be a cyclic grO'Up. There is, to an isomorphi8m, 
a unique mar-ring (ring) with identity whose additive group is (G, + ). 

PRoo:r. Let R1 = (G, +, •1) a.nd R1 = (G, +, •1) be near-rings whose iden­
tities contain, respectively, a a.nd b. ~y the theorem. (l·a)' a.nd (l·b)' 
generate, respectively, the additive groups of R1 a.nd R1• Consider 
n: R

1 
-+ R

1 
such tha.t ( l •a)' n = ( 1 · b )'. Since n is known to be a.n iso­

morphism of (G, + ), it need only be shown that n preserves multiplica­
tion. For w',x' in R1 the following equations establish this: 

(w'•1x'),r: = [(w·a)'•1(x•a)']n = ((w·f)·a)'n = ((w·x)•b)', 

w'n•.z'n = (w•a)'n•1(x·a)'n = (w·b)'•1(x·b)' = ((w·x)·b)'. 

THEOREM 2. Let (G, +) be a simple (non-trivial) grO'Up of finitt: order. 
If (G, +,•) is a near-ring with identity, then (G, +,•) is afield. 

· · PRooF; For a.n arbitrary near-ring (G, +, •), the maximal sub-C-ring 
( G c• + , •) consists of a.ll c in G such that O•c = 0 and the maximal sub-Z­
ring ( G •• + , •) consists of all z in G such that g•z = z for every g in G. 
In addition, G may be expressed bi-uniquely (see p. 27 of [l ]) as a sum 
of these sub-near-rings. Note that (Ge,+) is a normal subgroup of 
(G, +) since 

g in G, C in Ge. 
If, as in the statement of the theorem, (G, +) is simple, the note above 

implies G=Gc or G=G., i.e. G is a C-ring or G is a. Z-ring. If (G, +,•) 
has an identity e and is a Z-ring, then z = z•e = e, for every z in G. Thus, 
in this case, G contains only one element. 

In any near-ring, for a. fixed g in G, (Ag, "I-) is a. normal subgroup of 
(G, +) if Ag= {a I aeG, g•a==O}. If (G, +) is simple and finite, ea.ch 
row of the multiplication table must contain all O's or else only the o 
entry corresponding to . the right-multiplication by O. As a matter of 
fa.ct, in the latter case each row - except for the O entry - j.s a permu-
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ta.tion of the non-zero entries since g•a = g•b implies g•(a - b) = O which, 
in turn, implies a - b = 0. 

If (G, +) has prime order, G =IP' Theorem 1 provides all that is needed 
except the multiplicative inverses. Since (G, +,•)has an identity, there 
is a non-zero entry in each row (except the row corresponding to the left­
multiplications by 0) and the la.st remark of the previous paragraph assures 
us that the identity occurs once, and only once, in ea.ch row of the multi­
plication table (except the row of left-multiplications by 0). So the needed 
multiplicative inverses exist and the theorem holds in this case. 

If (G, +) has composite order, then the result of [3] implies that 
(G, +) has even composite order. Since the prime 2 divides the order 
of G, the Sylow theory assures us that G contains an element of order 2. 
If :i:: is the element of order 2 and e is the identity, we see that e is also of 
order 2 since 

0 = x+x = e•(x+x) = e•x+e•z = z•e+x•e = z•(e+e). 

Then, for g in G, g =t= 0, 

g = e•g = -(e•(-g)) = -((-g)•e) = (-g)•(-e) = (-g)•e = -g. 

Thus every non-zero element of G is of order 2' a.nd (G, +) must be com­
mutative. The subgroup c,f (G, +) generated by xis then a proper nor­
mal subgroup. This contradiction completes the proof of the theorem 
and yields the following 

CoROLLAB.Y. A simple group of composite order cannot be t'he additive 
group of a near-ring with identity. 

I.J™MA. LtJ (G, +) be a finite group. If• i8 a 'left diatributive binary 
operation on (G, +) there exiata a fundion f: G-+ Hom(G,G) 811,M that 
f(x)=fz and fz(Y)=x•y for each ye G. 

This lemma is contained in theorem I. I of [2]. 

THEOREM 3. LtJ (G, +) be a finite group. Suppose • is a 'left distributive 
binary operation defined on (G, + ). If e e G is an identity with respect 
to •• and if x e G, then the order of x, O(x), divides the order of e, O(e). 

PB.ool!'. For the identity e, x=x•e=fz(e) for ea.ch x e G. Consequently 
0-x•0=fz(0)=fz(O(e)•e)=O(e)·fz(e)=O(e)·x. Hence O(z) I O(e). 

CoROLLABY. Lei ( G, + ) be a non-cyclic group whoae order ia a product 
of diatind primes. Then (G, +) cannot be tM adclitive group of a near-ring 
with identity. 
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PROOF. Assume ( G, + , •) is & near-ring with &n identity e. Since the 
order of G is a product of distinct primes p1, Pa, ... , Pn and since there are 
elements in G of order p, for each i, l ~ i ~ n, it follows that p1p1 ••• 

Pn I O(e), and consequently O(e) = p1p1 ••• p,.. But {G, +) is not cyclic. 

LEMMA A. Let x,y be integers ~ 2. Then xy~x+y. 

LEMMA B. Le,t a(n) denote the 8Um of the primes ~ n, n an integer e-; 3. 

Then s(n) > n. 

PROOF. Note that a(3)=5, 8(4)=5, and 8(5)=10. We &SSume that 
s(k) > k for 3 ~ k < n and show that 8(n) > n. 

CASE I. Let n be even and ~ 6. Then 3 ~ in< n, where in is an inte­
ger. By Bertrand's postulate (Theorem 8.3 of [5}) there exists a prime p 
such that in < p ~ n. Hence, · 

8(n) i1:; p+8(in) > in+ in = n. 

CASE II. Let n be odd and > 6. Then n- l is even and i1:; 6. There 
exists a prime p such that i( n - l) < p ~ n - 1. Hence, 

8(n) i1:; 8(n- l) i1:; p+a{l(n-1)) > p+ ½(n-1) 

i1:; l+i(n-l)+½(n-1) = n. 

Tm:oREM 4. Let (S,., +) be the permutation group on n aymbola. There 
exists no near-ring with identity whose additive grO'Up is (S,., +) n e-; 3. 

PRooF. S,. has elements of order t for l ~ t ~ n. By Theorem 3, if 
(S,., +) is the additive group of a near-ring with identity e, then 
t I O(e), l~t~n. Then D(n) I O(e), where D(n)=lcm[2,3, ... ,n]. Note 
that D(n)=p1°1p1°1 ••• pk0

1t, when, the p, are the primes ~n and a, is 
the maximum power of p, such that p/' ~ n. 

Let x e S,. and write x as a product of disjoint cycles. The lengths of 
the cycles give a partition of n, say n=r1 +r1 + ... +rm. By Theorem 
5.1.2 of [4], 

O(x) = lcm[r1,r1, ••. ,r,,J. 

We show that O(x) <D(n). Consequently, there exists no ye S,. such 
that D{n) I O(y). Hence the assumption that there is an identity will 
lead to a contradiction. 

Let N = {P I Pis a .partition on n}. If P=,{r1,r1 , ••. ,rm}, let 1cm P 
denote 1cm [r1,r1 , ••• ,r,J. If L(n) is the maximum lcmP for PeN, 
it is sufficient to show that L(n) < D(n). For r, e P, let p

1
°up

1
°-' ... P1c0M 

be the prime factorization of r ,. Then 
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1cm [r1,r1, ••• ,rm] = p/1p.-6• ... p/", 
b1 = max{a11,a12, •• • ,a1m}. 

Thus L(n) ~ D(n). 
Suppose there is an n such that L(n) = D(n). Then there exists a 

partition of n, P= {r1,r2 , ••• ,rm} such that 1cm P=D(n). Consider 

(by Lemma B) 

~ p1°1 +p2°1 + ... +pk0
" (since ea.ch a,~ 1) 

~ I,p1ot1+ Ip,ot•+ ... + Ip,°i"' (by the hypothesis. Only 

the terms for which al' =t= 0 are included in the suµi) 

~ r1 +r2 + ... +rm= n (by Lemma A). 

Thus we have the contra.diction n < n. 
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