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SOME ASPECTS OF QUEUES AND ITS 
ENGINEERING APPLICATIONS1 

0.1 Summary 

by 

B. D. TikkiwaJ 
University of Rajastha11 Jaipur 

This paper presents first some management problems capable 
of being solved, in part or whole, by queueing theory. Then, it 
gives some aspects of queueing theory and its use in statistical analy
sis of the management problems with special reference to the historic 
problem ofTelephony . 

. I. Introduction 

The scope of Operational Research is indicated from its follow
ing workable definition (cf. Ackoff, 1961; Beer, 1959). 

'Operational research is the attack of modem science on pro
blems of likelihood (accepting mischance) which arise in the manage
ment and control of men and machines, materials and money in their 
natural environment. Its special technique is to invent a strategy 
on control by measuring, comparing and predicting probable beha
viour through scientific model of a situation.' 

The theory of queues deals with the scientific models of the 
situations resulting in waiting lines of one kind or the other. It was 
first developed to solve the management problems in telephony. 
Following the pioneering work by Erlang of the Copenhagen Tele
phone Company in 1909, at the suggestion of F. Johansen, himself a 
pioneer contributor to the subject, fairly extensive research on the 
theory of queues has been done, specially after 1950. A systematic 
treatment of the theory from the point of view of stochastic processes 

This_ pa~er was presented before the special seminar conducted by the 
!nsututlon of Engineers oo some selected topics on statistical techniques 
'.n modern management io December, 1964 at Hyderabad. The author 
1s grateful to the organisers of the seminar, Mr. M . K. Rao and Prof 
S. K. Ekambaram for their kind invitation. ' 
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is due to Kendall (1951, 1954). This paper gives some rudiments of 
queueing theory along with some aspects of its applications. 

2. Some Management Problems 

Before presenting the queueing theory, we first enumerate below 
some management problems where queueing theory can be usefully 
applied. 

I. We find queues of patients requmng services at different 
doctors at out patient clinics. 

2. There are queues of persons requiring services at different 
shops in different markets. 

3. Articles passing a!ongwith conveyor belt in order to be 
packed in boxes. 

4. The machines stopping intermittently and requiring atten
tion of t_he mechanic before re-starting. 

5. The air-crafts waiting to land or to take off at the air-ports. 
6. The telephone calls requiring attention of the operators in 

a given area. 

We discuss problems 5 and 6 in detail. 

In the air-craft problem we assume that a particular air-port 
has several run-ways used for taking off and for landing. The air
ports are allowed to take off according to certain priority arrange
ments. Certain types of air crafts are allowed to take off in order of 
their arrivals whereas others such as Jets are given priority over the 
ordinary air crafts. The same is true about the priority arrange
ments, while allowing the air craft to land. 

The telephony problem is a historic problem referred earlier in 
Sections O and I. The figure I below gives a representative problem 
common to different telephony systems. 

Fig. I A,: 
B_ 

~ C e :1~ 
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This figure gives, for a particular area, a typical but sophistica
ted limited-availability telephonic system in which the line a is 
available to calls from the localities A and B only. The line b is 
available only to calls from C and D. The line c is available to calls 
from A and D. The line dis available to B and C. The line e is 
available to all localities. 

3. The three Specifications of Queueing Theory 

In all the above examples given in Section 2, we need to know 
(i) the arrival pattern (Input process) (ii) the queue-discipline (iii) the 
service-mechanism. A queue-system is completely specified by 
these three things. We shall refer these as three specifications of a 
queue-system. We discuss the three specifications in some detail, 
with reference to the historic problem of telephony, wherever possible 
without loss of generality. 

(i) The Arrival Pattern. 

The arrival pattern can be of many kinds. We discuss here 
only the Random (or Poissonian) pattern, which has found extensive 
use in telephony system. 
The Random Pattern : 

Let m calls be made in time t. Let m 6 t=t. Let oc. 6 t be 
the probability that a call is made in an interval 6 t an assumption 
due to Erlang. Let this event of the call being made in a particular 
interval be independent of the events of a call or no call in any other 
interval in (0, t). Let P(r} denot the probability of r calls being 
madein(O,t). Then, 

P (r)= m 1 ( oc. 6 t )' (l - oc. 6 ,t- r 
rl m - r l 

Therefore, 

(3.1) lim P(r) =---'!..!_~ e - oc. t 
m~oo rl 

a well-known Poissonian frequency function. We know, 

(3.2) E(r)=cx. t 

(3.3) Var (r)=oc. t. 
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00 r r 
(3.4) P(r~2)=}; .!:._ _ ~ e - rJ. t 

r=2 rl . 
rJ.2 ,2 

=( 1-rJ. t+r1.2 ,2 ... ) 21+ ... 

=0(t2) 

If t is small, Equati~n (3.4) will mean that the probability of 
getting two or more calls in a short time will also be small. Equation 
(3.2) means that, on an average, there are ex calls per unit time. 
Equations (3.2) and (3.3) together give the coefficient of variation 
=l00y (r1. t ). For r=O, Equation (3.1) gives the probability that the 
interval~. in which no call arrives, is less thari or equal tot. Thus, 

Therefore, 

-ext -ex(t+t:,t) 
e -e 

(3.5) f (t)=lim 
!::,t➔O 

_ ___ 61 _ _ _ 

=e- r1. 1 lim 
6t➔O 

It may be noted that 

(3.6) 
r E (t ) =__!_ and 

l_V(t)= ~z·ex 

l-e-r1.6t 

6 t 

Equation (3.6) means that, on an average, no calls come in 

1 /rJ. time, a result which is in accordance with the above result that, 
on an average, there are r1. calls per unit time. The coefficient of 
variation is 100 percent, the highest possible coefficient of variation. 

Equation (3.5) can be interpreted as the frequency function for 
the interval from a fixed time to the time one call is received. 
Similarly, the frequency [k (t) of the interval from a fixed time to the 
time k calls are received; is obtained as follows. From Equation 
(3.1), 
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k-lk-1 
(X t . 

p (r = k - 1) = (k- 1)1 e - rx t. 

Therefore, the probability; that the interval~ , in wh~ch (k - l) calls 
arrive, is less than or equal to t; is given by 

k-tk-l 
ex t 

(k-1)1 p ( 1; <; t) 

Thus, 
k - l k - l 

) /
• ex t -rxt 

(3.7)/ (t = ,m (k - 1)1 e 
f:::,t-rO 

- cx!::,t 
I - e 

We now present an alternative method. The laplace transform 
(Rainville, 1963) of Equation (3.5) is given by 

00 f O e-st rxe-rd dt. 

(X 
=--

cx+s 

The interval from ,a fixed time to the time k calls are received 
1s the sum of the k intervals, the i th interval being the interval from 
the time the (i - I) th call is received to the time the i th call is 
received for i = 1, 2, ...... , k; the time of zero call being referred as 
the fixed time. Since the k random intervals are statistically inde
pendent because of earlier assumption regarding the arrival of calls, 
the Laplace transform of fk (t) the frequency function of the interval 

·from the fixed time to the time k calls are received is given by 

Thus fk (t) is given by 

k-I -ext 
(3.8) f (t) = ~~~-- t ~ 0. 

k (k - 1) 1 ' 
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Fork= I, we get Equation (3.5) and for k=oo 

k-1 
lim (<1.t) 
k➔OO (k - 1)1 = O, <1. t <l 

<1.t 
being a term in the expansion of e . Therefore 

lim fk (t) = 0, <1. t < I. 
k---+OO 

Thus, for k=oo, (3.8) gives 

(3.9) Fk (t)= {O; t < 1/oc 
l, t )= 1/oc 

a result similar to that given by Kendall (1953). 

It is clear from this result that for k large, the frequency func
tion A (t) is concentrated at the point t= 1/oc, suggesting thereby 

that for k large, the random pattern behaves as the regular one in 
whieh calls are supposed to come at equally spaced intervals. Such 
an assumption of regular pattern does not normally hold good in 
telephony problems, but it is likely to hold good in problems like 
those of Conveyor-belt systems. In the regular pattern the coeffici
ent of variation is zero, the lowest possible coefficient of variation. 
As in Erlangian service-time model, to be discussed later, we would 
like to have a frequency function which is flexible in nature for 
applicational purpose and whose coefficient of variation lies between 
0 and 100. This suggests that we may have f(t) as given in Equa
tion (3.8) which includes the expression in Equation (3.5) as a 
special case. The coefficient of variation of this frequency function 
is (100/k). 

(ii) The queue discipline. 

It gives, in general, a procedure of selecting. for service, the 
customers (calls in case of telephony) waiting in queue. In telepho
ny, the calls are generally dealt with in a random manner with respect 
to the order of their arrivals. However, there are situations where the 
procedure of 'First come, first-severed' or of 'Last come, first-served' 
is followed. There are also situations where neither of the procedures 
given above is followed e.g., in the air-crafts problem, where certain 
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types of air-crafts are given priority over other types irrespec

tive of the manner of their arrivals. 

(iii) The service Mechanism. 

There are three aspects of service-mechanism: (1) Service
time (2) Servic-capacity and (3) service-availability. The service 
capacity depends upon the number of servers available for service and 
the service availability is said to be complete if one server or the 
other'is always available for service. In telephony, we normally 
have several operators for a given system and the service is continu
sly available. As regards service time, there are different service 
models. But we discuss here the random service model, a model 
which is most useful in telephony and which is similar to that in 
random pattern. In the discussions for random pattern; we know 
that f (t) in Equation (3.5) also denotes the frequency function 
for the interval in which one call is completed. Thus, we may take 
the frequency function of the service-time for a call as 

-(3t ....._ 0 0 (3.10) g(t)=(3e ; t ,:::, , (3 > . 

On the lines of discussion in case of random pattern, we can in fact 
take a more general frequency function 

g, (t) 
k- l 

(3 ( (3 t ) e - (3 t t :::,,o• 
(k - I) I ' 7 

' 

known as Erlangian service-time frequency function (3). If there is 
only one server, we would like that the service-time, on an average, 
should be less than or equal to the average-interval in which a new 
customer would arrive otherwise the queue will grow indefinitely long. 
Thus, for any desirable situation, we have (3 < <X. · This inequality is 
necessary for a system to be in statistical equilibrium, where the 
number of customers waiting in the queue oscillates in such a way 
that its mean and distribution remain constant over a long period. 
The traffic intensity I is, by definition, equal to (3/,x. Thus, for a 
system to be in statistical equilibrium we require I < I. 
4. Some aspects of Statistical Analysis of Waiting-lines (Congestion) 

We would like a situation where the customers do not wait 
long with minimum of efficient service. For this we need to know 
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( i ) The mean-arrival time of the customer. 

( ii) The mean-service time of the customer. 

( iii ) The mean-queue time the customer has to wait in the 
queue before he is served. 

( iv ) The average rate at which customers pass through a 
particular system. 

( v J The proportion of time a server is busy. Assuming that 
there is only one server, we can easily find above quanti
ties without using much of statistics as such. But if we 
are to find how the things will modify by addition of one 
server or more, the queueing theory comes to our rescue. 
If we assume (the assumption can be verified by actual 
collection of data) ·that for a given situation, the random 
model holds; then we know (i) and (ii) from theoretical 
discussions given in Section 3. · The mean-queueing time 
is given by 

known as Pollaczek's formula (Kendall, 1951 ), with Cs as the coeffi
cient of variation of servie-time. The average rate at which custo
mers pass through a particular system in statistical equilibrium is 
1/<X. For this system, the proportion of time the server is busy is 
equal to the traffic intensity. 
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REGRESSION METHODS OF ESTIMATION 1 

By 
B. D. Tikkiwal 

UNIVERSITY OF RAJASTHAN, 

JAIPUR, INDrA 

1. Summary and Introduction 

This paper includes the following topics under Regression 

Methods of estimation : 

( i ) The classical regression method of estimation; 

( ii) Double sampling estimation procedure; 

(iii) Successive Sampling. 

The ratio method of estimation is a special case of the classical 
regression method and has not been dealt here. The classical regres
sion method of estimation and double sampling estimation procedure 
are given in Sections 3 to 8 and successive sampling in Section 9. 
The lemmas, which are useful in deriving the theory of different 
methods of estimation, are given in Section 2 below. 

2. Lemmas 
Let X., X

2
, ••• , Xp be p variates with their first and second 

moments finite. Without any loss of generality, Jet E (Xi )=0 for 
i= I, 2, ... , p. A linear bond between X., X2, ••• , Xp is said to 
exist if~ C; X; =0, ~ C; 2 =f:: O· A system of r ( ~p) linear bonds 
between X,, X

2
, ••• , Xr is said to be complete, if all their bonds of the 

system are independent and any other bond of the system depends 
linearly on the r bonds. The rank r ( F) of the joint distribution 
F ( x., x

2
, ••• , xp) of X1, X2, ••• , Xp is then P - r by definition. When 

r ( F) =P, the distribution is said to be non-degenerate. We give 
below lemmas 2.1 and its corollary 2.1 based on results of 

Lukomski (1939). 

J. This paper is based on a course of five lectures delivered at the 
Summer School organised by the University of Kernla in 1965. The author is 
grateful to the organisers of the ~chool for their kind invitation. 
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Lemma 2.1. The rank r ( F) of distTibution F(xu X2, ·· , Xp J 
is equal to the rank of the covariance-matrix II µ; j II where 

µ;j=E( X; Xj) for i,j= 1, 2, ... , p. 

Proof; Let v=t
1
X

1 
+t

2
X

2
+ .. . , Ip Xp where ti, 12 , ••• , Ip are 

arbitrary real numbers not all equal to zero. Let 

q= E(v2
) = J J ... f ( ~: l t; x; )

2 
d F 

=~~t;tjP-ij 
l,J 

Since q :.?= o, it is minimum whenever ~t; X; = 0 and vice-versa. 

Thus all the linear bonds of the system are obtained by setting 
'oq/ot; = O for i = I, 2, ... , p and therefore by the equations 

p • 
"2.j = 

1 
P·ij tj = 0, i = 1, 2, ... , p. If rank of convanance-matnx, 

which is also the coefficient-matrix of the p equations 1111·ij ll = P - r, 

then there are p-(p-r )=r independent solutions for lu t2, •.. , tp 

and therefore r independent linear bonds between Xi, x 2 ••• , xp. 
This immediately gives the rank of the distribution as p-r, the same 
as that of the covariance-matrix. 

Corollary 2.1. The distribution Fis non-degenerate if and only if the 
covariance-matrix II µ; j II is positive definite. 

Proof : Let the distribution F may be non-degenerate, then 
the rank of II µii ll=r' for i, j= 1, 2, ... , r' and r'= 1, 2, ... , p. 

Therefore, I tL;il>O for i,j=l, 2, ... , r' and r'=l, 2, ... ,p. 

Hence, II µ.; j \\ is positive definite. The converse is obvious. 

The following lemma recalls the necessary and sufficient condi
tions of Patterson (1950) in rigorous form (see Tikkiwal, 1960). 

Lemma 2.2. Let there be a non-degenerate p - variate popu
lation with first and second moments finite. Let X; j denote the out
come at thej th draw forj=l, 2, ... n; , to get a sample of size n; 

for the i th variate for i= 1, 2, ... p. Let er,. be a linear unbiased 
estimator of /Lei. the population mean for the rx th variate based on 
i n; values at different draws. erJ. is the minimum variance linear 
unbiased estimator (best estimator) among the class of linear unbia
sed estimators, if and only if 
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Cov (X;j, eoc)=k;oc , j= I, 2, ~--, n; ; i= I, 2, ... p. 

Proof: Let 
p 11· 

eoc=!. l:. ' W;j Xu where the weight w;j 
l=l J=l 

depends upon the j th draw for the i th variate. Thus eoc is a linear 

estimator. Further 
p n; 

E (eoc)=~ µ; }; w;j_ 
i=l j=l 

If it is to be unbiased estimator of /L oc, 

Let 

W
• ·= {o , ; =I= rJ. 

}; lj 
I , i = oc 

rf,=E [f :s n; (wij Xu) - !-'·<X ]

2

- 2 :s k;<X }; n; W;j 

i=l j=l j=l 

If eoc is to be the best estimator, orJ,/aw; j=O 
for different (i j) and we must further verify whether 

I a2c/> 
M = I ---=--'---

1 aw;j ow;, r 

(j=l , 2, .. . , n;; j'=s l, 2, n; '; i, i' = l, 2, ... ,p) is positive definite. 

We note 

oq> = 2 Cov (X; ·, e()() - 2 k;.x 
oW;j J 

and 

__ -.:0_
2

</>'----- =2 Cov (X;j, X;, j•). 
aw;j aw;, j' 

Mis positive, definite if II Cov (Xij,Xi'j')!I is positive definite. By Corol
lary (2.1) this will be true if the Joint distribution of 4 n; draws is · 

non-degenerate. Since there is no linear bond between the draws 
for the same variate, the joint distribution of :S n; draws will 
be non--degenerate provided the joint distribution of p variates is 
non-degenerate, which is true by assumption. Therefore, M is 
positive-definite. Since ocf/owu= O for different i, j gives the condi
tions of the lemma, these conditions are necessary. Further when M 
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is positive definite, the conditions are also sufficient for cf, to be· 
minimum is clear from Mathematics of calculus. This completes the 

proof that eoc is the best estimator if and only if the conditions of 
the lemma are satisfied. 

Corollary 2.2. If the weights wi i are not to be estimated from 
the sample, 

Var (eoc )= KrJ.oc =Cov (xu.j, eoc) 

Proof. Var (eu. )=Cov [ (};};w; j X;j - µ.(/. ), eoc] 

=}; ~ w;j Cov (x;j, eoc) 

=~ kia. l; W;j 

by Lemma 2.2. By using conditions of unbiasedness 

Var ( eoc )= koc(I. = Cov (Xocj• e~ ) 

again by Lemma 2.2. The following lemma is due to Tikkiwal 
(1960). 

Lemma 2.3. Let x and y be the sample means for the variates X 
and Y based on observations for the two variates on the same n units 
selected at random without replacement from the population of size 
N. Then 

Cov ( x, y ) = Cov (x;, y) = Cov (y;, x) 
N-n 

=pSxSy--
Nn 

Where x; and Y; denote the observations on i th unit for the variates 

N 
X and Y and Sz 2=l; (z; - P.z) / ( N - I ), for z=x, y and 

i=l 
N 

p= I;~= I ( Xi- p.x) ( Y; - µy) / ( N - I) Sx Sy, µz being equal to 

N 
!.;= 1 zi /N for z=x, y. 

If the sample mean for the variate X is based on nx units and the 

sample mean for Yon ny different units, then each of the covariance 
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terms is given by the expression - pSx Sy IN. This expression also 

determines Cov (xi , Yj ) for i =/=-j. 

_ J [ n ] Proof. Cov (x; , y) =,i E (x; - flx ) j:_ 
1 

(J'j - I.Ly ) 

Similarly, 

=-¼[ E (x; - µx .) (Y; - I.Ly)+ 

n 
}; E (x; - fLx ) (Yj - fLy ) 

j=/=-i 

I [ I }f 2(n - I) 
=,:; Ni;, ti -µx ) (Y; - µy ) + N(N-::-f) 

N 
I }; (x; - flx ) (y • - µ >] 

i= l j>i 1 
y 

I [ I . (n - I) =,:; N }. (x; - µx) (Y; - fty) - N(N - I) 

I (x; - fLx ) (Y; - fLy ) ] 

N- n 
=nN (N - I)}; (x; - flx) (Y; - µy) 

N-n 
nN 

I ~ C ( - ) . since Cov ( x , y- ) =~ I ov X·, y , 
n i=l , 

Cov ( x, y) =Cov (x;, Y) = Cov (y;, x) 
N-11 

= -NnpSx Sy 

Further, for i =I= j, 
2 N N 

Cov (x; , Yj ) = N(N _ I) ;! I j 5,. i (x; - µx ) (Yj - µy ) 

=N(j{~l)};(x; -µx)(Y;-µy) 

-pSx Sy_ -v--



16 

Therefore, if the sample means x and i -are based on different units, 

Cov ( x , y ) = Cov (xi , y ) = Cov (Yi , x ) = Cov (xi , Yj ) 

= - pSx Sy /N. 

3. The classical regression method of estimation when the 
regression coefficient is known 

In survey sampling we are often interested in estimating the 
mean value of the character Y of a particular population when the 
information on the auxiliary character X of the same population is 
already available or can be made available easily. The estimation 
procedure for the mean value of Y has been discussed by several 
authors for two different cases (1) When the population mean of the 
character Xis already known and we obtain the information on Y 
through a sample of ~ize n (2) When the population mean of the 
character Xis not known and it is estimated through a random 
sample of size n' containing the sample for Y (n'>n). 

The estimation procedures used in cases (I) and (2) are known 
in literature respectively as regression estimation and double samp
ling estimation procedures. We shall present in this section and the 
following sections 4, 6 and 8 the first method of estimation which we 
shall refer as classical regression method of estimation. In the 
present section we present the case when regression coefficient is 

known. Let the re~ression estimator Yr for this case be given by 

Yr = Yn + # (11.x - xn ) ............ (3.1) 

where xn and y11 are the sample means based on a sample of size 

n drawn by the procedure of simple random sampling without 
replacement from the finite population of size N. 
By Lemma 2.3, 

Cov(xi' Yr) = 0 f ·- / 2 N· or,_ , , ........ . , , 
"' N-n 

Cov (Y; ,Yr) = -Nn Sy2 (l - p2). 

By Lemma 2.2, when IPI< I so that the Bivariate finite~population 

is nondegenerate, Yr is the best estimator and by Corollary 2.2, 

Var (Yr) = Cov (Y;, Yr) 

N-n 
= Nn Sy2 (1 - p2) .......... .. (3.2) 
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To obtain an unbiased estimator of variance, we note that Yr 
is the sample mean of n observation of the form 

Y; + {j ( I\ -xi ) 

which when averaged over N different values of i, gives the popula
tion mean 11.y for the variate y. Applying the well known result of 
simple random sampling without replacement, the unbiased estimator 

V ( Yr ) of Var ( Yr) is given by 

... ,._ N - n I [ 
11 

{ - - }

2

] V (Yr)= Nn · l }; Y; - y -(3 (x. - x ) ... (3.3) 
n - i= l n I n 

In the following section we deal with the case when f3 is not 
known and so it is estimated from the sample. In this case, we assume 
that the sample of size n is drawn from a bivariate normal popula
tion with parameters P.x, µy, ax, cry and P where Ip I< I to ensure 
again the population to be non-degenerate. 

4. The variance of the regression estimator and its unbiased 
estimator under the normality assumption when {J is estimated from 

the sample. 

Let, b = [ }; ( X; - X11 ) (Y; - Yn ) ]/}; ( X; - xn )2 be the 

usual estimator of f3 from the sample. Let the regression estimator 

Yr be given by 

Yr= Yn+b (µx- Xn) •·····(4.1) 

The estimator Yr is no more linear in x's and y's. Further 

E ( Yr /b )=fJ.y 

Therefore, 
E( Yr )=µy 

Thus Yr is an unbiased estimator. 

Var ( Yr )=E [ E ( Yr -1'-y )2 I b] 

and by Lemma 2.3; noting that it gives various covariance terms 

under normality assumption by putting N=oo, Sx = CTx, 

Sy= cry; 

E [ ( Yr - fJ.y ) 2 I b ]= E[{ >'11 - /J.y - b ( X11 - /J.x WI b] 

ay2 • ax2 ax ay 
= -- --- + b----- - 2bp -- -- -

n n n 
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Therefore, 
2 2 

V(Y ) = 2-+ .:!.! __ E (b2) - 2 /3 p 
' 11 n 

Now, 
E (b2)= Var (b) + p2 

But, from Bi-variate normal theory 

Var (b) = <Iy 
2 (l -p2

) £[--;;( _;/_ ·xii]. 
Since under normality assumption 

}; ( Xi - Xn )2 
2 ~----~x n-1, 

ax 2 

cry 2 ( I ) Var (b) = -- (l -p2J E - . --· , 
ax 2 

· X"n-1 

n-3 

-x2 

e2 dx2 

n --I---- 2 - 2- r (" ; 3 ) 

2 
2 re-/) 

Therefore, 

and 

Var(b)= a/(l-p
2

) 

ax2 (n-3) 

<J / ( I - p 
2

) ( I ) Var (Y,) = - ___ ii_____ I+ 
11

_
3 

To find an unbiased estimator of Var (Y, ), let 

Q= ~;~I [Y; - Yn -b (x; - xn) r 
=~n (Y;- Yn)2-b22,n (x . -xn)2 

;=1 i=l I 

n 
=(J-r2) }; (y - - Yn )2 

i=l I 

...... (4.2) 

...... (4.3) 
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Sx · h I · f where r =b - is t e usua estimator o p. 
Sy . Thus 

n 
E(Q)=E!.. (Y· Yn)2 

I= I I 

-EE{b2 .(=l (x; - Xn )21 Xi, x2 , ••• x 11 } 

=(n- l)cr/- E };(X; n =-:c-'---=---c-:;c- +p2 [ 
_ ·x- )2 { cr Y 

2 
( I - p

2
) } ] 

}; (X; - X n )2 

= (n-2) er/ (l-p2
). 

Hence the unbias.ed estimator of Var (Yr) is 

Q 
n(n - 3) ... ········ ·(4.4) 

So far we have discussed under the restrictive assumptions the 
estimation procedure for the population mean of Y when the popu
lation mean of X is known. We shall relax these assumptions and 
obtain the results in Section 6, when the population is finite and 
the regression coefficient is estimated from the sample. For this we 
shall require the results for the case when the population mean of 
xis not known under the same restrictive assumptions. We discuss 
these results in the following section. 

5. Double sampling estimation procedure 

Let there be a random sample of size n, drawn without replace
ment out of N population units as in Section 3, on which the infor
mation on both X and Y is obtained. Let us draw further n' _ n 
units in the same way to have further information on X alone and 

consider the following linear estimator Yds of P.y known in the 

literature as Double Sampling Estimator 

Y ds = Yn + p ( Xn ' - Xn) 
······ · ··· .. (5.I) 

E(Yds) = µy 

and so Yds is a linear unbiased estimator. By Lemma 2.3, 

,._ N-n' 
Cov (x; , Yds) = -Nn' p Sx Sy, i = J, 2, ... , 11 , 
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and 

Cov (Y; • yds) N - n Sy + f:1 N 11' - N n pSx Sy 
N-11 

2 
(N-n' N-n) 

= S/[:-,,11.J_ r2( !, -! )J i = I, 2 ..... . n 

So, by Lemma 2.2, Yds is the best estimator and by Corollary 2.2, 

its variance is given by 

Var ( Yds) = Cov (Y; , Yds ) 

= S 2[~-=-!! +P2 (_!__ - _!_)] 
Y Nn n' n 

In general, f:1 is to be estimated from the sample 
Therefore, we consider the variance of the estimator 

y - -+b(. _ -) ds - Yn Xn' - Xn 

We assume that we are sampling from the bivariate 
tioo of Section 4. Then 

E(Yds) = EE (Yds Jb) 

= E(µ.y) = Py. 

Therefore, Yds is an unbiased estimator. Further 

... ·········<5.2) 

as in Section 4. 

........ . (5.3) 

normal popula-

Var (Yds) = EE [ ( Y - P.y) + b ( x , - x ) ]2/b 
n n n 

= E[ O"y 
2 

+ b2(_!__ +_!__ _ ~) Gx 
2 + 

n n' n n 

2bp er er (J_ -J...)J x Y n' n 

by Lemma 2.3 as in Section 4. Substituting the value of E (b2) from 
Section 4 and then simplifying · 

Var (Yds) = n' - ,n er z (I _: p2) (I+- ' - )+ cry/_ ............ (5.4) 
n n Y n-3 n 

II 

The quantity s 2= 4 (Y· _ ji )2 I 11 _ J is an unbiased estimater 
y j=.-: J I n 

of o- y 
2

• From Section 4, QJ(n _ 2) is an unbiased estimator of 

cry 
2 

(I - P
2
). Therefore, an unbiased estimator of Var (Yds) is 

( __!_ - _!_) _(l _ + ! ,,Y,2_ ....... .... . (5.5) 
n n' n - 3 

We shall return to the discussion of double sampling estimation 
procedure in Section 7. 
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6. The variance of the regression estimator Yr for a finite population 
and its unbiased estimator 

An approach to obtain the variance in this case is suggested 

from the following example giving the derivation of the well known 

variance covariance formulae for simple random sampling without 
replacement from a Bi-variate finite population. 

Let 11 be the size of the sample drawn, from the finite Bivariate 
population of size N, with simple random sampling without replace
ment in order to estimate P.x and µy the population means for the 
variates X and Y. 

Let xn and Yn, the sample means based on sample size n, be the 

estimators of P.x and P.y • Let the Bivariate finite population itself 

be treated as a sample drawn from the Bivariate normal population 
with parameters µ'x, µ'y , a'x , cr'y and p' 

then 

············C6.l) 
By definition, xn is said to be an unbiased estimater of µx in the ex-

tended sense. Similarly Yn is also an unbiased estimator of µYin the 

extended sense. Further, let V ( Xn ) the variance of Xn in the exten

ded sense be defined as 

V ( xn ) = E ( xn - P.x ) 2
/ I, 2, ... , N. 

Then 

EC v < xn) J = E [ xn - µx J2 
= E [Xn - p.'x -(µx - µ.'x) ] 2 

= cr'x
2 [++ 1- ! ] 

N-n 
=1v,; 

, 2 
Ox ... .. . ...... (6.2) 

An unbiased estimator of EV ( xn) based on the finite population 

is r~N-:11 
}; (x1 -xN)2 

/ N - l) ] the well known expression for the 

variance of the mean based on sample of size n drawn without re
placement from the population of size N. The well known unbiased 
estimator of the variance is an unbiased estimator of the variance 

. l. Of ... ,},- . 
···· ~ ~ --.. "•lt··s· ·, .... ·cl} , 

, ·'4& s-;t,j,l' 
./'.I 

•k•,~ - ..... ~- ... -· -' ~ 
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in the extended sense. We can similarly obtain the expression for 

the variance of Yn and covariance ofxn and ji,,. 

We shall use the above approach, using the concept of super
population, to obtain the variance of the regression estimator in the 
case under study with obvious extensions of the terms unbiased in 
the extended sense and the variance in the extended sense to first and 
second moments of the estimators. 

For the case under study, let the finite population of size N be 
regarded, for the study of X and y as a random sample from the 
Bi-variate normal population described in this section. Under this 
postulation, the expectation of Yr of Section 4 is given by 

E (Yr) = E [ Yn + b ( µx- xn )/b] 
= E ( µ'y) = µ.'y = E (P.y). . ..•••.•.••• (6.3) 

Thus Yr is an unbiased estimator, in the extended sense, of .uy 

the finite population mean. Further, 

E [V(Yr ) ] = E (Yr - µy )2 

= E [ Yn + b (µx - Xn) - µy ]2 

= E [ {yn + b ( µ.x - Xn ) - µ'y} - (P.y - µ'y) p 

= E [Yn +b ( l'x - Xn) - µ.'y J + a~' 
2 

- 2 Cov ( Yn ' f'y) - 2 E [ b (/J.x - Xn) ( P.y - l''y) ] 

= E [Yn + b (/J.x - .x11 ) - µ.'y ]2 - 2 Eb (f'x - X11) 

(µy - µ.'y) - ay '
2/N. 

The first term on the right hand side is obtained by putting,,, -=N 
in Equation (5.4). The second term 

2 E [ bE { ( P.x - xn) ( µY _ µ'y }/b } ] 
= 2 E( b 0) = O . 

Therefore, 

· N- n 
E V(Yr ) = - Nn · a'/ (I _ p' 2) 

N-n 
= Nn a'/ ( I - p'2 ) 

( 
J ) ; 2 

I+ ··- - · +~ n - 3 , N 

( I+ _ !.__) 
n-3 

' 2 

-~ 
N 

... ..... ... . (6.4) 
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An unbiased estimator of V (Y;) in the extended sense is 

N-n Q 
Nn n-3 

... ··· ······(6.5) 

where Q is the expression as given in Section 4. The expression in 
(6.5) reduces to the expression given in Equation (4.4) for N =OO. 

We have seen above that the regression estimator Yr, for the fi,nite 
population, has the property of unbiasedness in the extended sense. 
Though it is desirable to have this property, one would like to know 
whether this estimator is, in fact, an unbised estimator of fl-y , the 

mean of the finite population. That, it is not so bas been discussed 
by Cochran (1963) and others. It is shown by these authors that the 
bias in the estimator Yr tends to zero for large n under specified 

assumptions. How large n we may take, that this bias becomes 
negligible can be worked out by using the unbiased regression estima
tor due to Micky (1959, Equation 3.14, p. 599). To describe this 
estimater, let b'j be the value of the regression coefficient if the jth 

sample element is omitted, i.e., 

b'· J 

n 
l: (x; - Xn) (Y; - Yn ) - _n_ (X· - Xn) (Y· - }'n ) 

i= I n - l J J 

n - n -
.l; (x; - Xn ) 2 - - - - (x• - Xn )2 

i= 1 n - 1 J 

Let ii= ( .l; b'j )/n, then Micky's unbiased regression estimator of 
the population mean 1-'y is 

y+b ( µx - Xn ) - B . . .. . . (6.6) 

Where 

B=[ (N-n)/Nn ][ ):I xj b'j -n xii]. 
For those large values of n, for which B is negligible and for which 
lj ~ b, Yr will be approximately unbiased. 

7. The variance of the double sampling estimator Yds for a 

finite population and its unbiased estimator. 

We derive the various results in this section with the same 
postulation as in Section 6 . 

E(Yds) = E [ E ( Ydsfb)] 

= £ ( 1-"y ) = µ'y = E (µy) 
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Thus Yds is an unbiased estimator of µYin the extended sense. 

Further the variance of Yds in the extended sense is given by 

V ( yds) = E ( y ds - µy )2/l, 2, ... N 

Therefore, 

E[V( yds>J=E(Yds-µy)2 

=E[ yds-µ'y -(µy-µy')Ji 

=Var (Yas>+V (µy) - 2E (Yn - µ'y) (µy - µ\) 

-2£ f b ( µ - µ' ) (x ' - xn)] 
y Y n 

a'y2 
= Var (Yds) - 11 

n' - n I a'y2 a'y2 
=~•y2 (1 - p' 2) (I+ ,i-:-f)+ n'- -~ 

For N =oo, the expression on the right hand side reduces to the 
expression in the Equation (5.4). An unbiased estimator of the above 
expression and therefore of v ( yds) in the extended sense is 

n' - n Q N-n' 
-,,;;, ii"=T +sy 

2 
Nn' 

which reduces to the expression in Equation (5.5) for N=oo. 

8. Stratified Regression and Double Sampling estimators 

When regression coefficients in different strata are different and 
when sample sizes in different strata are fairly large, in each stratum 
we can take suitable regression or double sampling estimator, dis
cussed in the various earlier sections, and then after assigning suitable 
weights we can get the estimator of the stratified population. 

For example, let us see how the results ·or Section 3 generalise 
for stratified population. 

Let the population consist of k strata. Let x . . and y . . denote 
I J IJ 

the values of the unit, for x and y drawn at the i th draw in the j th 
stratum. Then, with obvious n~tations, we take the estimator 

k (N. ) 
Yr (st) of~= 1 NJ µyj as given by 

y; ( ) }; k r-. + _ ] Nj r st = . Yn . {3j ( µxj - xn,· ) -N 
J= l J 

... ... (8.1) 
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k (N' ) E ( Yr(st) )=\=I ,NJ µyj ,and 

Var ( Yr (st) )=N\ '2,~ [ N/ ~- - _nj S2yj ( I - p.2 ) J ... (8.2) 
1=1 J~ J 

An unbiased estimator of Var Yr (st) . is 

- }; k N/!_j- nj__ __ l_ 
NZ j = J j Nj nj nrl 

[!_i21 {Y;j -yni -Pi(xfi-xn/r] .......... .. (8 .3) 

When the sample sizes in different strata are small and when 
the situation suggests that /Jj = P for all j, a combined regression 
estimator or a combined • double sampling estimator will be better 
than the type of estimator considered above. This is seen from the 
discussion below regarding the combined regression estimator. Let 

• k (N· ) the combined regression estimator Yrc of\= 
1 

J,, µyj be 

· k Nj{- - } Yrc = '2.. -N Ynr+ p (µxj-xn) 
J=l J 

... ... . ..... (8.4) 

· k (N· ) E (Yrc)= °1= I -} µYi • 

Therefore, Yrc is an unbiased estimator of the mean of the stratified 
population. Further 

,k [ ,Nj2 Nj - nj __ I _ _ 
Var (Yrc) = ~ N2 -Nj nj Nj -1 

J=I 

N · 12

] ./ {Yij +/J (µxj - X;j) - µyj 
l=J 

noting that":>\ + p (/\j - Xnj ) 

..... ... .... (8.5) 

can be regarded as the mean of nj observations randomly drawn 

from a finite population consisting of Nj observations 

Yij +/J ( µxj - X;j) 

The value of {3, where Var (Yrc> is minimum, is given by 

o V ar(Yrc> 
- -----··- - 0, 

n/3 
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or by, 

Therefore, 

k r N• 2 Nj - nj N· l 
13[~:. ~ J2 1 ~ J (X· · - /t ·)2 r ] 

Nj nj 
. - --- - I J XJ 

J=l L N Nj - 1 i= l j 

k r N • 2 Nj - nj Nj 
=}; I J }; (Y;j - {J-yj) 

j=I L N2 Nj nj Nj - 1 i=l 

(xij - {J-xj) } , 

or, 

k N• z Nj - nj 
}; 

J 

j=I N2 Nj n· Sxyj 
J ..... . .... . . (8.6) (J = k N• z Nj - nj 

}; 
J 

J,/2 Nj 
s2 . 

j=I nj XJ 

when Sxyj and S 2xj are defined in a way similar to the quantities 

defined in Lemma 2.3. If nj = nNj /N, as in Proportional sampling, 

k 
~ Nj Sxyj 

f3 = J;; I ....... . .. .. (8.7) 

~ Nj S2xj 
J= I 

Further if NJ• === N- - I then J , 

k N• · 
}; }; J (x• . - µ, ·) (Y·. - µ, ·) 
j = I i=l IJ Xj IJ YJ 

(1 = -- . --le- - N.--- - -- - - --

I }; J (x• . - µ, ·)2 
j = I i = I IJ XJ 

... . .. . ..... (8 .8) 

From the theory of simple random sampling without replacement, an 

estimator of Var ( Y,c ) for a given f3 is 
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A A 

An asymptotically unbiased estimator of E [V(Y2)] and therefore of 
A A 
V (Y2) in the extended sense is 

A 

S2
2 r~- -1-J ...... (9.3) n2" N 

where 

sa2 = ~:J (Y2 j -J·2n2 r / (n2 - 1), 

y2n2 being the mean of n2 units on the second occasion. 
We shall prove the theorem in part up to Equation (9.1). The 

remaining part can be proved on an approach similar to one adopted 
A 

in Section 6 after first obtaining the variance of Y2 under normality 
assumption. 

Proof. If Yij is an observation on one of the n/ units, then by 
Lemma 2.3, 

Cov ( )'1 j, Y2 )=( I - ¢2) [ P S1 S2 

(
N - n1 _ N - n/ )] _ cf,

2 N n1 Nn 2 

=pS1S2 [1 ~:-2 
- ~] ...... (9.4) 

When y1j is an observation on one of the n/ units, then 

A [ p S1 S2 + S2 (N -n1 1 ) · ] Cov [ Yij, Y2 ]=(I - r/,2) - N p~ Nn l - N S12 

- cf,2 P Si;2 

[ 
I -cf,2 1 ·J = P S1 Sa ri;"° - 71 ··· ···<9.5) 

when y2 j is an observation on one of the nz' units, then 

A [ N ~ n2' S2 (N - n 
Cov (y9 j, Y2)=( I - ,f,2) S22 -w,,,-+ Py -N 1 

-
2 I n 1 

..... . (9.6) 
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...... (9.7) 

A 

The equations (9.4) and (9.5) show that Cov ( Yi j• Y2 ) is indepen-

dence ofj for allj= I, 2, ... , n1• The equations (9.6) and (9.7) show 
A 

that Cov ( Y2 j, Y2 ) is independent of j for all j= 1, 2, ... , n2. 

A 
Therefore, by Lemma 2.2, Y2 is the best estimator of P.2• Further, 

A 

that the variance of Y2 is given by Equation (9.1) is seen either 
from Equation (9.6) or from Equation (9,7) in view of the Corol
lary 2.2. 

1. Cochran, W. G. 

2. Lukomsky, J. 

3. Micky, M. R. 

4. Patterson, H. D. 
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SOME ASPECTS OF SAMPLING WITH VARYING 
PROBABILITIES FROM A FINITE 

POPULATION 

By 

B. D. Tikkiwal 
University of Rajasthan 

O. INTRODUCTION AND SUMMARY 

Hansen and Hurwitz ( 1943) suggested a stratified two-stage 
sampling design, for estimating the population mean or total, in 
which the primary units within a given stratum are selected with 
probability proportional to their ,sizes and with replacement. The 
second stage units within a selected primary unit are selected with 
simple random sampling without replacement so as to make the 
design self-weighting in each of the strata or over all strata taken 
together. Later, these authors ( 1949 ); while determining the 
optimum probabilities of selection in the above two-stage design for 
a given stratum, where primary units are selected with varying 
probabilities and with replacement; mentioned the need of developing 
the theory further when primary units are selected with varying 
probabilities and without replacement. 

Narain ( 1951 ) on one hand and Horvitz and Thompson (1952) 
on the other, apparently working independently, developed the theory 
further for sampling with varying probabilities and without replace
ment. Narain obtained the variance of the two,stage sampling 
estimator with the same number of two-stage sampling units in each 
of the selected primary units and also examined the c~nditions 
necessary to make this estimator unbiased. Though, the main esti
mator and its variance, given by Horvitz and Thompson in their 
equations (6) and (9), can be obtained with slight modification in the 
estimator and its variance given by Narain, the two authors together 
presented the theory in a way suggestive of further extension. They 
noted that there can be a number of classes of linear estimators and 
mentioned three such estimators by way of illustration. 
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Koop ( 1961) and Prabhu Ajgaonkar and Tikkiwal ( 1961) 
independently examined all the · possible classes of linear estimators. 
Prabhu Ajgaonkar and Tikkiwal pointed out that their are only seven 
classes of linear estimators where as the classes of linear estimators 
considered by Koop are in effect only six. 

The main est.imator, for sampling with varying probabilities 
and without replacement, considered by Horvitz and Thompson lies 
in their T2 -class where the weight assigned to a particular draw 
depends upon the out-come at the draw, i.e., if the i th unit comes at 
a particular draw, then a weight /J; is associated with that draw for 

i= l,2, ... N, N being the number of sampling units in the population. 

Horvitz and Thompson's estimator can be used, with some 
modification, where there is sampling with varying probabilities and 
with replacement. With this modification, Prabhu Ajgaonkar and 
Tikkiwal ( 1961) gave a unified theo~y for sampling with varying 
probabilities and with or without replacement. 

Horvitz and Thompson also gave the estimator of the variance 
of their estimator. This estimator was shown to assume negative 
values by Yates and Grundy ( 1953) who gave, in turn, another 
estimator which was also shown to have negative values by Durbin 
( l953 ). Simultaneously with Yates and Grundy (1953), Sen (1953) 
gave the same estimator of variance and showed that this estimator 
is always positive under some sampling schemes. Hartley and Rao 
( l962) also examined the positive character of this estimator. From 
these studies, it seems that Sen, Yates and Grundy's estimator 
assumes negative values much less frequently than the estimator 
given by Horvitz and Thompson, making the latter less desirable 
~ban the former. Therefore, Seh (1953) suggested some modification 
m Horvitz and Thompson's estimator, making it sometimes more 
desirable than Sen, Yates and Grundy's estimator. Apart from the 
difficulty of getting over some times negative estimator of the 
variance, there is also difficulty, when the sample size is greater than 
two, in computation of probabilities of inclusion of population units 
in singles or in pairs. Such probabilities occur in the estimator of 
the population total and also in the estimator of the variance of the 
estimator. Several authors have tried to resolve this difficulty but 
not with much success. Therefore, Rao, Hartley and Cochran (1962) 
has suggested a slightly modified estimator, based on different 
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sampling scheme, which is claimed to be only slightly less efficient 
than Horvitz and Thompson's estimator with a well known classical 
sampling scheme considered by Hartley and Rao ( 1962 ) .. The 
modified estimator has an always positive estimator of its variance. 

From what is said in the beginning of this section, it is clear 
that sampling with varying probabilities and with replacement was 
first considered by Hansen and Hurwitz ( 1943) in ' a restricted 
manner for a two-stage design. The authors did not give specifically 
the estiination procedure for estimating the variances of their various 
estimators, even while considering an actual sampling problem in 
section 7 of their paper. The estimation procedure for sampling 
with replacement seems to have been given first, for a two-stage 
design by Sukhatme and Narain (1952) and for any multi-stage 
design by Durbin (1953) who, in fact, discussed the general theory 
of multi-stage sampling with varying·probabilities and with or without 
replacement. The estimation procedure for two-stage sampling with 
varying probabilities and without replacement was first discussed by 
Horvitz and Thompson (1952). 

The paper gives in Section I a unified general discussion, of 
T2-class estimators for sampling with varying probabilities and with 
or without replacement, due to Prabhu Ajgaonkar and Tikkiwal. 
Horvitz and Thompson's estimator in T2-class and its variance for 
sampling without replacement is obtained as a special case in Section 
2. Then, Section 3 gives three estimators of the variance and a 
discussion of their relative merits. In Section 4, certain probabilities 
of inclusion; of the population units in singles and pairs, required in 
the estimator and in its variance as well as in the estimator of the 
variance for sampling without replacement; are calculated. Section 5 
gives the results, for sampling without replacement, due to Rao, 
Hartley and Cochran ( 1962) to overcome the difficulty in calculation 
of the probabilities in general for n>2. Section 6 gives the estimator 
and its variance together with the estimator of the variance for 
sampling with replacement. The relative efficiency of the two 
sampling systems with. and without replacements is discussed in 
Section 7. Section 8 gives the ge~eral theo_ry of multi-stage sampling 
with varying probabilities and with or without replacement. It is 
shown by the author that the various estimators due to Sukhatme 
and Narain, Durbin and Ecimovic belong to Trclass. 
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1. A General Discussion of T2-Class Estimators. 

The problem frequently faced in surveys is one that of estima
tion of totals ( or of population means) for different characteristics 
of the population at a given time or at different times. The estima
tors generally adopted are linear functions of the observations on the 
units in the sample drawn from the population. Such linear functions 
can be obtained by associating with a particular unit a weight 
dependent either (i) on the draw, at which the particular unit occurs, 
or (ii) on the unit itself or (iii) on the sample or (iv) on any combina
tion of these three. The estimators, which are linear functions of 

. above types are said to belong to T-class and in particular of type 
(ii) to T2-class. In what follows, we confine ourselves to the 
problem of estimation of T, the total for a particular characteristic 
of the population. 

When a sample of size n is drawn from the population with 
varying probabilities and with or without replacement in order to 

A 
estimate the total T, an estimator T of T in T-class is given by 

A r= 
n 
i 

T=l 

where Xr denotes the random out-come at the rth draw and nsn 
l'ro 

denote the weight to be associated with Xr for a given sample sn. 

An estimator in T2-class is obtained by taking P:~ = (3; if X, = X;, 

for any Sn ' X; denoting the value of the i th unit in the population 

for i= l ,2, .. N. Let P. denote the probability of i th unit of the ,r 

population occuring at the r th draw. For an estimator in T2-class, 

A n N · 
E(T) = l: ( }; x, f31 

T=l i= I 

N [ n 
= 4 XI fl; ( 4 

1= I T= I 
N 

= 4 X· f3· k · 
i=l I I i ' 



where 

k. = 
I 

n 
~ 

r=I 
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A 

In order that T be an unbiased estimator; we must have /1; = 1/k; , 

a unique value for /1;, for all i= l, 2, ... , N. Thus, there is only one 

unbiased estimator in T2-class and therefore it is also the minimum
variance-linear unbiased estimator. Let this minimum-variance

linear-unbiased estimator in T2-class be denoted by 

A n 
( I.I) T2 = }; f3ro Xr • 

r=l 

where f3ro= 1/k; , when Xr = X; • Also, 

N x~ 
.... -'-+ 

;; I k; 

n 
~ 

r-:j=s 

N 
}; 

i= 1 

N 
}; 

j=I 

X· X· 
I J p (" •) -k--:-k~ zr,Js 
I J 

where P Ur, js) denotes the probobility of selecting x; and xj units 

A 

at rth and sth draws respectively. The variance of T2 can now be 

calculated easily, when there is sampling with or without replacement. 
We present results for sampling without replacement in Sections 
2 to s, and for sampling with replacement in Sections 6 and 7. 

2. Sampling with Varying ProbabiJltles and without Replacement. 

For sampling without replacement, let P;r = P· and k- __ 
If I -"i. 

It may be noted that ii; is the probability of including ith unit in the 

sample for the present case. Since P (Ir, js) = 0 for i = j, from 

equation ( 1.2) 

" 
2 

N x~ N x; xj 
E (T2) = ,.. - 1

- + · l 4 - - i1;; 
i=l i1; i-=/=.j "i "j , 

where iiij is the probability of i th and j th units being included in the 

A 

sample. Hence, if Th, denotes the estimator for sampling without 
A 

replacement; its variance V (Th,) is given by. 



A N 
(2.1) V(Th1) = }; 

i=I 
N 

+ }; 
i=f=j 

( 36 ) 

a result, in the present form, due to Horvitz and Thompson (1952, 
equ. 9, p. 670). 

A 

3. The Three Unbiased Estimators of the Variaoee of Th, and their 
Relative Merits. 

A 

The unbiased estimator, of the variance of Thi, due to Horvitz 
and Thompson is 

A 

(3.1) rt, - ( an unbiased estimator of T 2 
) 

A~ n n 
= r;;, }; X/· Pro - l Xrr' 

r=l r=/=r' 
where Xrr' = X; xj / 11ij if x; and xi units occur at the rth and r'th 

draws respectively. 

In order to obtain the alternate unbiased estimator of the · 
A 

variance of Th, due to Sen (1953) and Yates and Grundy (1953), we 

first present the results due to Horvitz and Thompson (1952) in the 
form of following lemma. 

Proof 

Lema 3.1. 
N 

( i ) }; 
i=I 
N 

( ii ) }; 

( i ) 

j(=f=i) 

N 
}; 

i=1 
n 

= I 
r=1 
N 

noting that }; 
i=l 

N n 
}; }; 

i= 1 r= 1 
N 
.l. P;r = n 

i = I 

Pir 

Pir = 1 for any given r. 
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(ii) Let p (j,s li,r) denote the conditional probability of jth unit 
occuring at sth draw given that ith unit has occured at the rth draw. 
Then 

N 
}; "ij 

j(-:/=i) 
N n n 
}; }; Pir }; 

j(-:pi) r=l s(-:/=r) 
Pu, s 1 ;, , > 

n n N 
}; P;, }; }; 

r=l s(-:/=r) j(-7'=i) 
Pu. s Ii,,) 

n 
}; P;, (n-1) 

r=l 
= (n-1) ii• ,, ,. 

Corollary 3.1. 
}; ( ;; •• -· ;;. ;;J. ) 

j( =j:.f) IJ I 

= ( n-1 ) ;;i - ii; ( n-;;i ) 

- _2 - -- "i "i • 

Using the corollary in (2.1) 
,,. N x~ N 

V(T) - I -'- I 
fu _2 1"(~1·) i=l "i .,.... 

( ;;ij - iii ;;j ) 

1 1 (- xi_ 
i=l j>i Tl; 

X· '2 

- Tl; ) 

( ii; 1ii - ;;ij ). 

Therefore, the alternate unbiased estimator due to Sen, Yates and 
Grundy is 

n 
3.2) }; 

r=l 
where 

n 
}; c,s 

s>r 

Crs = ( u; ;;j - Tlij) / Tlij • 

( X; / ;;1 - xi I ;;i )9. 
If, i th and j th units occur at r th and s th draws in respective order. 
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Yates and Grundy (1953) in their psuedo empirical study 
(Table 3, p . 258) and also in the study of Horvitz and Thompson's 

population of 20 city blocks noted that Horvitz and Thompson's 

estimator gives negative values where as their estimator does not. 
Durbin (1953, p. 264), showed that Sen, Yates and Grundy's estima
tor can also assume negative values. Sen (1953, Theorems I and 2) 
showed that this estimator of variance is always positive, when 
sampling is done according to Midzuno's scheme for any n described 
by Horvitz and Thompson as sampling scheme I and also according 
to Horvitz and Thompson's scheme 2 given for 11=2 (1952, pp. 678-
679). Hartley and Rao (1962, p. 364) proved the result for Horvitz 
and Thopson's scheme 2 under restrictive conditions perhaps being 
·unaware of the result due to Sen. These studies indicate that Sen, 
Yates and Grundy's estimator is likely to assume negative values 
much less often than Horvitz and Thompson's estimator. 

A 

Sen ( 1953) suggested a third estimator Vs; which is essentially 
A 

the same as Horvitz and Thompson's estimator Vht when it assumes 

positive values with the difference that for negative values of the 
latter estimator, it takes the value zero. Thus, 

Further 
A A 

E(V5) = E(Vh1) + k 

A A 
where k :;;, 0. Thus Vs is a positively biased estimator of V(Th,>· 

Further 

E [ ~ht - V(T1u) J = . E [ vs - V(Th,)r + c 

where c is some non-negative quantity. Therefore, 
A A 

(3.3) V(V1,1 ) = V(Vs) + k 2 + c. 

A A 

Thus, the second moment of Vs about V ( Th,) is always Jess than or 
A 

equal to the varience of V1,t. 
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If this second moment is also. less than the variance of the 
estimator of the variance due to Sen, Yates and Grundy_ one may 
prefer to use Sen's modified estimator even when it is biased. On 
this criterion, one would use Sen's modified estimator to estimate the 
variance of the population total in table II of Sen ( 1954, p. 125) given 
by him to compare the ,relative efficiencies of the three estimators. 

4. CaJcuJatioo of Probabilities of Inclusion. 

Let ii· (n) and ;; .. (n) denote the probabilites of inclusion of 
I ij . 

i th unit and (i,j) th units in the sample of size n. Then for Midzuno's 
scheme of sampling; where the probability of i th unit (i= l,2, ... ,N) 
being drawn at the first draw is P; and at a subsequent draw is 

1/(N-l) given that some other units have occured at the previous 

draws; 

p;
1 

P; and for r > I, 

P;, 
r-l 

(1-p;) II 
s=2 

(l-p;)_ 
N-1 ' 

( 
N-s .) I 

N-s+l . N~--,-+--1-

Therefore, we get 
n n-l 

(4.1) ii; (n) = I P;, = P; + )-/-l ( I - P; ). 
r=l 

Also, 

(4.2) ii .. (n) = (Prob. of ith unit or jth unit occuring at the first draw 
I/ 

and the remaining unit occuring at a sub.sequent draw) + (Prob. of 
ith andjth units occuring after the first draw) 

n- l (n- l) (n-2) 
= ( P; + Pj) N~l + ( I-P; - Pj ) (N-1) (N-2)' 

since ii; (n) = n/N and iiij (n) = n ( n- l ) / N ( N- l ) for simple 

random sampling without replacemet. It may be noted that 
Midzuno's scheme of sampling gives to a given sample the probability 
proportional to the total size of the sample provided P; is proportional 

to the size of the i th unit. 

For Horvitz and Thompson's sampling scheme where n= 2 and 

wherep (j, 2/i, I)= Pi I ( l-P;) for all i,j; 
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(4.3) iii (2) = pi ( I + S - 1!~; ) 
where s 

N 
. ~ [ Pi / ( I - Pi ) ] ; and 

]=1 

ii1-- (2) = P; P1· ( / + / ) . . " . -p; -pi 

The experession in (4.1), (4.2) and (4.3) are due to Horvitz and 
Thompson (1952). 

For n;):2, the recurrence relations are given by Singh ( 1954, 
equations on pp. 49-50) for a generalised sampling scheme which is 

· the same as Horvitz and Thompson's scheme for n=2. But the 
expressions are complicated and therefore the computations for n>2 
and for moderately large N are difficult for such a sampling scheme. 

Hartley and Rao (1962), while considering an alternate scheme 
of sampling to resolve the above difficulty, has commented on the 
work of Des Raj (1956) that his assumption, xi = ex + PY;, Y; being 

an auxiliary variate, in finding those values of ii .. which minimise the 
IJ 

A 

variance of Th, in (2.1); nullify the utility of his results, because, in 

that case the regression estimator is the best estimator. The argument 
is not enought to justify the comment. For, from the works of 
Tikkiwal (1960) and Prabhu Ajgaonkar (1962), the regression estima
tor can be shown to be the best estimator in Ti-class where as the 
estimator considered by Des Raj is the best estimator in T2~class. 
Therefore, a direct comparison of the variances of the two estimators 
is necessary in order to examine the relative efficiency of the two 
estimators. · 

' 
5. Unequal Probability Sampling without Replacement due to Rao, 

Hartley and Cochran. 

When the clusters are randomly formed; it is shown (Sukhatme, 
sec. 6a. 2, p. 242) that for estimating population mean (or total), 
cluster sampling is as efficient as simple random sampling without 
replacement. That, the result is true also for simple random 
sampling with replacement, is easily seen. Similarly, if the popula
tion is divided into k strata at random and if there is proportional 
sampling within each stratum, then it is easy to see that stratified 
sampling has the same efficiency as simple random sampling with or 
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without replacement. However, if the sample sizes in different strata 
are chosen arbitrarily, then, the relative efficiency either way will 
depend upon the sizes of the strata and the sample sizes in them. 

In the light of above analysis, we consider the sampling proce
dure with varying probabilities and without replacement due to Rao, 
Hartley and Cochran (1962). In order to draw a sample of size n 
according to this sampling procedure, the population under study is 
divided at random into n strata, the i th stratum being of size 

n 
N; for i= 1,2, ... ,n so that }; N; = N, the size of the population. 

i=l 
Let x;., for j= l,'1., ... ,N; , denote the value of 9th unit falling in the 

J 
i th stratum. One unit from each stratum is selected so as to have the 
ultimate sample of size n. Let the conditional probability of 
ii th unit being selected from the i th stratum be P;. / ;;;, where 

J 

N; n 
"iii = I · Pi. and I ;; . = I. 

j=l J i=l I 

Then, from (I. I) the minimum-variance-linear-unbiased estimator of 

T;, the total of i th stratum is 

i i i "f Xi X n X where tJ = ;;./P-· 1 = i. • 
t-'10 1 t-'10 I I] l J 

Therefore, an unbiased estimator of Tis given by 

(5.1) 
n 
}; 

i=l 

i 
P,o 

Further, 2 

A [ n 
V ( Trhc) = E I 

i=l 
( i Xi - T.)] 

t' 10 1 I 

n i x' - T )2 = E1 }; E2 ( plO 1 i 
i=I 

where £
2 

is the conditional expectation for a given set of n strata and 
£

1 
is the expectation when strata are rand0mly formed. Therefore, 

n N · ( X;. ;; . )2 P · A 1 1 1 T I. 

V(Trhc) = E1 I _i ~ - ; · - 1 

; = I J === I 1
1 ;; ; 

n [ N 1 N1 x f N; ] 
- £ }; i i - 1 P; ., - }; X • X· 
--:- i i=l j=l j'{-#j) P;i J j-.:/=j' 'i 'i' . 
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When the strata are randomly formed, the probability that ;j th and 

ij1 th units are included in the i th stratum of size N; is N; ( N; -1)/N 

( N -1 ). Therefore 

(5.2) V(Trhc)= i !!__; (N; -=_2_ [ 1 !/ ( 1-p• )- ~ xj xj' 
i=l N (N - l) j=l Pj 

1 f=;t=j' 
n 
L, 

i=l 
N -2 -N 

' ( N x/ ------ L, -- -

N(N-1) j=l Pj 

a result due to Rao et al ( 1962, equ. 5, p. 484). The variance of 
A 

Trhc is minimum when all N;' s are equal, giving N;=N/n for i= l, 
A 

2, .. . ,n. Thus, N must be a multiple of n for variance of Trhc to be 

minimum. When N is not a multiple of_ n, let N=nR+k, where 
O<k<n and R is a positive integer. Then we may choose N; = R+ I, 

i= I, 2, ... , k and N; = R, i>k, for random stratification. The 
I\ 

variance of Trhc , so obtained, is shown by Rao et al to be close to 

the minimum value fork= I, n- l. In order to obtain an unbiased 
I\ 

estimator of the variance of Trhc , we note 

E ( ; ( P10 X/ )2 / ;;; - T/hc) 
i= l 

n N 1 " 2 = k E1 ~ ( xJ. / Pi· ) - V ( Tr/Jc ) - T 
i= l j= l 'J 'J 

( 
N xf 2 ) • 
'2 - - - T 

j=l Pj 

( 
N(N-1) 
'2N;2-N 

N 2 
- "'i:,N;2 " 

"'i:,N;2 - N V (Trhc). 

i\ 

Therefore, an unbiased estimator of the variance of Trhc is 

'}',N .2 - N [ n . i\ ] 

(5.3) N 2 
1

_ '2N;2 i~l ( f310 X~ )2 
/ ;;; - Tr\c 
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an expression similar to that given by Rao, Hartley and Cochran 
(1962), equ. 15, p. 485). When N; 's are all equal, s~lection of one 

unit from each random stratum amounts to proportional allocation 
of n units to n strata. If the analogy with simple random sampling 

" is to hold good, in this case, the estimator Trhc should be as efficient 

as random sampling with varying probabilities and with or without 
replacement. It is not so for sampling with varying probabilities and 
with replacement is seen by noting, in view of equation (6.2), that 
when N;'s are all equal, 

(5.4) " N-n " 
V (Tr1ic) = N _ l V (T2) w 

the same as equation (9) of Rao et al. The analogy is not true even 
in case of sarnpiing with varying probabilities and without replace
ment in the light of the work of Gupta (1964) showing that the 
estimator in this case is sometimes Jess and some -times more efficient 
than the estimator due to Rao et al depending upon the population. 

6. Sampling with Varying Probabilities and with Replacement. 

Then, 

For sampling with replacement, let P;r = Pir 

n 
~ P ( ir, js) = ,/; 'ii/ -

r=/;s 

n 
~ P

1

ir P
1

jr 
r=I 

" 

and k; ' =u i. 

Therefore, from equation ( 1.2), if T2w denotes the estimator for 

sampling with replacement, 

,. N x -2 N N 
V ( T2w) = ~ - ~- + ~ }; 

i=l ;; i i=l j=l 
(6.1) 

n 
~ P';r Pjr 

r=l, , ) _ T2 
Tiii7j 

N x/ , , 2 • ~ . X; x1-
~ , 8 ( Ti i - P ir ) -

i=} iii l=f:.J ;;'; ;,'j 

( i p';r Pjr ) 
r=l 

as given by Prabhu Ajgaonkar and Tikkiwal (1961). 
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In many practical situations, p'tr = p'; for r = 1,2, ... ,n and 
therefore;;'; = np;'. 

Substituting these values in ( 6. I) 

(6.2) V (T2 w) = __!_( f X;,

2 

- T2 
)· 

n i=I P; 
A 

In order to obtain an unbiased estimator of the variance of T2w, we 
note 

A2 

£ ( i n2 X 2 - T 2 w_ ) 
I' ro r n 

r=l 

N x.2 J [ A ] 
}; -'-, - - Var ( T2w) - T 2 

i=I np; n 
A 

Var ( T2w ). = ( n:-1 ) 
A 

Therefore, an unbiased estimator of the variance of T2w is 

(6.3) n~I ( n r!t (3:0 x: - T:w ) . 

7. The Relative Efficiency of the two Sampling Systems with and 
without Replacements. 

We compare the efficiency of the two sampling systems under 
the assumption that ii-=,/.. Then, from equations (2.1) and (6.1), 

I I 

A A N x.2 n 
(7.1) V (Th,) - V (T2 w) = - l: - ' l: p';r p';s + 

i= 1 ii/ r=;i=s 

; X; xj ( - i p' ir PJs + ii•· ) ; 
i-:j=j ii; ;;j r-::j:.s - ,, 

a quadratic form which is negative definite when there are equal 
probabilities of selection in the two sampling systems and when, in 
the population, x/s are not all equal. This shows that sampling 

with replacement cannot be more efficient than sampling without 
replacement for equal probabilities of selection, a well known classi
cal result. When there is varying probabilities of selection, no 
general statement can be made except that we note that the quadra
tic form cannot be positive definite. According to Durbin (1953, 
sec. 4, p. 266), the quadratic expression in (7.1) is usually negative, 
but it is easy to invent cases in which it is positive. This statement 

needs further examination. 
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8. Multi-stage sampling with Varying Probabilities and with or 
without Replacement. 

We first discuss the theory of two-stage sampling in detail and 
then indicate its generalisation to multi-stage sampling. 

Let xij denote the value of j th second-stage unit in the i th 

first-stage unit for i=l,2, ... ,N andj=l,2, ... ,M;. Let us estimate the 
N M 

population total T = ~ ~ Xij- For this, let us draw n first-
i= 1 j=I 

stage units and m; second~stage units from the M; second-stage units 

of the i th first-stage unit, if it is selected at a particular first-stage 
draw, for i= 1,2, ... ,N. Thus, in sampling with replacement; where a 
given first-stage unit, say i rh, may occur more than once, say t times, 
in the sample; t independent samples of size m; second-stage units 

will be drawn out of M1 second-stage units in the i th first-stage unit. 

Let Xrs denote the variate value of the unit drawn at the s th second
stage draw after the r th first-stage draw for r= 1,2, ... n ands= 1,2,, .. , 

m; if i th fast-stage unit occurs at the r th draw. Let PJ; denote the 

probability of i th first-stage unit occuring at the r th first-stage draw 
and then j th second-stage unit, in the i th first-stage unit, occuring at 
the s th second-stage draw. Let Pir denote the probability of i th first

stage unit occuring at the r th first-stage draw. Let p (js I ir) denote 
the conditional probability of j th second-stage unit, in the ; th first
stage unit, occuring at the s th second-stage draw having occured i th 

A 

first-stage unit at the r th first-stage draw. Let Ta, an estimator in 
T2-class, of population total T, be given by 

A 

(8.1) Ta, ms= k k 13;0 Xrs• 

where {:J;
0 

= tJ} if i th first-stage unit is selected at the r th first-stage 

draw and then j th second-stage unit, in the i th first-staee unit, is 
selected at the s th second-stage draw. Now, 

A N M; i 
E ( Tzms ) = k ~ ( Xij {3j ) 

i=I j=l 
n m; ) 

( 
l: i pj; 

r= I s=l 
N M; ; . 
i l: Xij /Jj ii~ , 

i=l j=l 1 



46 ) 

. n m; . 
where ,/= }; }; p'.' 

. 1 r=l s=l Js. 

If this is to be unbiased estimator of the population total T, 

; l 
~j=-y 

"j 

a unique value for pj . Thus, there is only one unbiased estimator 

in T2-class and therefore it is minimum-variance-linear-unbiased 
estimator. The variance and its estimator, for the minimum-variance• 
linear-unbiased estimator in (8.1) for sampling with or without 
replacement or both at the two stages of sampling, can be obtained 
as in Section I. 

In order to discuss the various results obtained by Durbin 
(1953) and others on multi-stage sampling, let p (jsjir) be independent 
of r. This assumption would mean that the sampling system adopted 
at the second-stage is same for all first-stage draws. It is 1easonable 
to adopt a uniform system of sampling at the second-stage. There 
does not seem to be any two-stage sampling system in use which 
does not satisfy the above assumption. This assumption is in fact 
true for any known multi-stage sampling system. Therefore, this 
assumption is a practical assumption. 

Under the above practical assumption, 
n m; 

,l = :r L P ir P ( js I ir ) 1 r=l s=l 
m; = ;; i }; p (js jir ). 

s=l 
Therefore, the estimator in (8.l) is equivalent to 

A 

(8.2) T2,ms = 
where ~ro = lf n;, il; being the proba.bility of first-stage unit being 

A 

included in the sample and where X, = T; the estimator of the total of 

ith first-stage unit; when i th first-stage unit occurs at the r th first-stage 
draw. If there are more than two stages, that the estimator can be 
put in the form in (8.2) is now obvious. In this form the result was 
given for the first-time by Durbin (1953). Thus under the above 
practical assumption, Durbin 's estimator lies in T2-class. 
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The estimator given by Sukhatme and Narain ( 1952 ); for 
sampling with replacement in their case (ii) where m; second-stage 

units are selected each time, with simple random sampling without 
replacement, from the total M; second-stage units in the i th first-stage 

unit, whenever it is selected in n first-stage draws; is a special case of 
Durbin's form and therefore it also belongs to T2 -class. As regards 
the other estimator given by these authors for their case (i) where, 
if a given first-stage unit, say i th, is selected t times inn draws, then, 
a sample of tm; second-stage units is drawn out of M; second-stage 

units with simple random samling without replacement; 
that this estimator also belongs to T2-class by noting 

}
!!!!!__ 

M; 

= np; =~ ; 
l 

it is seen 

since, by the authors assumption P;r =P; for all r for sampling with 

replacement at the first-stage. 

The above two estimators for two different types of sampling 
have been discussed in detail by the first author, Sukhatme (1953, 
sec. 8.2, p. 358 and sec. 8.9, p. 379). 

The various unbiased estimators considered by Ecimovic (1956) 
are obtained by him from the unbiased estimator, of the total given 
in his equation (I), when there is simple random sampling without 
replacement at all the three stages. Since this unbiased estimator is 
also special case of Durbin's form, the various estimators due to 
Ecimovic belong to T2- class. 

Hansen and Hurvitz (1943, p. 341) and later Horvitz and 
Thompson (1952, pp 673-675) have considered a self-weighting 
design where m; second-stage units are so chosen that the weight 

associated to the unit x -- is constant for all i,j. There estimators 
lj 

for such a design are easily obtained by taking ;;1 = t, a constant 

quantity. Thus the estimators considered by these authors also 
belong to Ta- class. 

Theoretically, it is possible to have sampling systems where p 
(jsjir ) is not independent of r. In such a case, the estimators in 
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(8.1) and (8.2) are not identical. In order to choose between the two 

estimators, one has to compare the efficiencies of the two estimators 

for the sampling system adopted. Since such sampling systems are 

not in use, we confine our attention to the case where p ( jslir ) is 
independent of r and therefore the estinators in (8. l) and (8.2) are 

I\ 

identical. We proceed to find the variance of T2,ms in (8.2) and an 

estimator of its variance, when there is sampling with or without 
replacement. Let 

E [ T2,ms Ir= 1,2, ... ,n] = 1'2,ms 

an estimator of T when there is only one stage of sampling. Then, 

for sampling with or without replacement; 

(8.3) 

V ( T2,ms) = E [ 1'2,ms ~ T'2,ms + T'2,ms - TT 
=V(T'2,ms)+E [ V(T2,mslr=l,2, ... ,n)] 

I\ 

I\ N . V ( T I ")) = V(T' ) + ~ ( i l 2,ms _ 
i=l "i 

The estimation of the variance, in more than one stage of 
sampling, for sampling with or without replacement does not present 

any new problem other than already considered in Sections 3 and 6. 
I\ . 

In order to see this, let V wo denote some unbiased estimator of 

the variance in case of sampling without replacement, such as one of 
I\ 

those given in Section 3. Let V w denote some unbiased estimator of 

the variance, in case of sampling wifh replacement, such as one given 
I\ 

in Section 6. Let s} be an unbiased estimator of V ( T; / i) /;, .2• 
I 

I\ I\ I\ 

Let x; == T; in V wo and V w and let s, = ;; i s~ whenever i th first-stage 

unit occurs at the r th first-stage draw. Then, 

(8.4) E [ Vwo + i s,] = Var ( 1'2,ms) 
i=l 

and 
I\ I\ 

(8.5) E ( V w ) = V ( T2,ms ) 

is easily noted. Thus the expressions within brackets on ihe left in 
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(8.4) and (8.5) give unbiased estimators of the variances for samp
ling without and with replacements. 

Yates (1949, sec. 7.17, pp 226-227) has given a rule for estima
tion of the variance in multi-stage sampling when there is simple 
random sampling without replacement at least at the first-stage. The 
following generalised rule, due to Durbin ( 1953, p. 264), for samp
ling with varying probabilities and without replacement at least at 
the first-stage; is obvious from (8.4) : 

"The estimate of variance in multi-stage sampling is the sum of 
two-parts. The first part is equal to the estimate of variance calcu
lated on the assumption that the first-stage values have been measu
red without error. The second part is calculated as if the first-stage 
units selected were fixed strata, the contribution from each first-stage 
units being multiplied by the probability of that unit's inclusion in 
the sample." 

Yates's rule follows as a special case of Durbin's rule if we 

take ii;= n1N for i=l, 2, ... ,N. 
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OSKAR RYSZARD LANGE: 1904-1965 

Prof. Oskar Lange one of the eminet economists and statisticians 
of the contemporary world, Vice-President of the Council of State 
of Poland, Chairman of Indo-Polish Friendship Society is no 
more. He died on 2nd Oct., 65. In bis death the world in general 
and India and Poland in particular have suffered a great loss. Prof. 
Lange was a personal friend of our late Prime Minister fawahar Lal 
Nehru. He had left an ever lasting and sincere imprint on the plan
ners of our country with whom be had worked in 1956 for six months 
in the drafting of the Second Five Year Plan. 

Oskar Ryszard Lange was born on July 27, 1904 in Tomoszow 
Mozowiechi, Poland. At a very early age, he became interested in 
the application of Mathematics to Economics and Social Sciences 
and at the age of ninteen he read a paper "An Essay in the Theory 
of the Limits of Production" at Jagellonian University. From this 
original attempt to apply mathematics to problems of prodution 
under capitalism and socialism stemmed the broad stream of Oskar 
Lange's economic studies in the decades to come. His study 'Statis
tical Investigation of Business Cycles' at Jagellonian University, 
Cracow, Poland ( 1931 ) qualified him for the post of lecturer in 
Statistics. 

Lange in U.S.A. and U.S.S.R. and then back to Poland 

Through out the interwar period Oskar Lange had close con
tacts with the socialistic youth movement. These political activities 
together with the tem_per of ~is ~riting were a great handicap to his 
remaining at Jagelloman University. A fellowship from Rockfeller 
Foundation gave him the opportunity to spend two years in the 
U.S.A. and in England. There his two essays on the economic theory 
of socialist economy made him internationally known and secured 
his place in the history of the political economy of socialism. 

Oskar Lange was appointed assistant professor of economics 
and statistics at the University of Chicago in 1939 and he remained 
there till 1945 becoming associate professor and then full professor. 
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At intervals he also lectured at Columbia and Stanford Universities 
In U.S.A. Prof. Lange published a number of theoretical papers. 
His most important publications of this period were published in 
1944 as a book titled 'Price Flexibility and Employment'. 

At the invitation of the Union of Polish Patriots in the U.S.S.R. 
he travelled to the Soviet Union in the Spring of 1944. There he 
conferred about the future of Poland with Joseph Stalin, Premier of 

11 U.S.S.R. 

A Leading Political Figure 

In the summer of 1945 Lange returned to Poland; shortly after
wards the government appointed him ambassador to the U.S A. and 
delegate to the United Nations. In the United Nations he asked the 
members of U.N. Forum to break diplomatic relations with the 
Government of General Franco. He also urged co-existence, general 
disarmament, banning of atomic weapons and broad economic 
collaborations between all countries. In particular be criticized the 
use of economic aid as a means of pressure and intervention in the 
internal affairs of other countries. He was soon recognized as a lead
ing political figure. 

At the National Congress of Polish Socialist Party in 1947 
Lange was elected to the Central Executive Committee. In 1957 he 
became Deputy Chairman to the Council of State. 

In the international field be had been one of the most active 
advocates of peaceful coexistence and of international economic co
operation. Jn 1957-59 he was Chairman of the U.N. Economic Com
mission for Europe. InJ961 ·62 he sat on the U.N. Committee of 
experts for the study of the economic and social consequences of 
disarmament. 

Lange's Contribution to Economics and Statistics 

In l 956, Lange received the chair of Political Economy at the 
University of Warsaw. There, almost each year he started a new 
course of lectures on a different subject and out of them had come 
four books. His Lectures on Econometrics (1956-57) were published 
under the title "Introduction to Econometrics". Besides Polish, the 
book is available in English, Serbo-Croation, Italian, Japanese and 
Russian also. In Polish and in English this book bas run into two 
editions. His book on programming viz. Optimum Decision-making" 
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appeared in 1964. 'Theory of Reproduction and Accumulation' 
which was published in 1961 gives a mathematical treatment of the 
Marxist theory of reproduction and accumulation. A Russian transla
tion of this book appeared in 1963. In recent years Prof. Lange had 
been lecturing on Cybernetics and its application to Economics. 'A 
general theory of System Behaviour' ( I 963) (published both in English 
and in Polish) and the recent book 'Introduction to Economic 
Cybernetics' are valuable contributions in this field. About this time 
(1957) bis book on 'Political Economy' in three volumes was also 
written. We have already referred to Prof. Lange's 'Statistical 
Investigation of Business Cycles'. His doctoral thesis was on Business 
Cycles in Poland' (1924-27) Prof. Lange and contributed papers in 

disciplines like Sociology and History of Law. 

However, even this was not whole of Prof. Lange's scientific 
output. Among other publications, he had produced over a dozen 
importand shorter papers, a two-part mimeographed course in the 
theory of economic growth and a number of public lectures delivered 
abroad. Besides all these, Prof. Lange contributed a new shape of 
socialism, his advocacy of socialist democratization being closely 
geared with his aspiration to put the planning and management of 

the socialist economy on scientific grounds. 

An important sector of his interest was the problem of the 
countries of the so-called Third World. At the invitation of the 
Governments of India and Ceylon he participated in the drafting of 
economic plans for these countries. "Essays on Economic Panning" 
was the outcome of his visit to India. For the same end he was also 
invited later by the Planning Commission of the United Arab 
Republic and of Iraq. In addition to his practical consulations Prof. 
Lange also worked on a theoretical generalization of the problem of 

economic unnderdevelopment. 

Prof. Oskar Lange was a member of the Polish Academy of 
Sciences, since 1952. • He was also Fellow of the Econometric 
Society, since J 959, Fellow of· the Institute of Social Studies in the 
~ague, since 1962, Honorary Member of the Royal Statistic Society 
smce 1964, Member of the International Statistical Institute. sine~ 
1955 and Doctor Honoris Causa of the University of DiJ'on in Fr 
· l9 ance 
m 62. On May 9, J964 he was made doctor honoris causa of his 
almamater Jagellonian University. 
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