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OPERATIONAL PROPERTIES OF LEGENDRE
TRANSFORM AND ITS APPLICATIONS

by
G. K. GoyaL
(received on 15.10.1966 and in revised form on 15.4.1967)

ABSTRACT

Certain operational properties of Legendre transform are
obtained which are applied to evaluate a few integrals involving
Legendre polynomials and Bessel functions with argument other

than x,
INTRODUCTION

1. In the past\‘years Bushman (1) and Tranter (6) have studied
Legendre transform defined by Churchill (2) as

1
f(n)=T[Fx)] =f P, (x) F(x) dx, n=0,1,2, ...... (1.1)

In this note two operational relations are proved which are given as
lemmas in section 2. The proofs of lemmas have been omitted as
they are very simple In sections 3 and 4 integrals have been evaluated
by their applications which are general and yield known results as

particular cases.

2. Lemma 1.—If f(n) is the operational image of F(x) in the
Legendre’s transform (1.1) and —1<1<1, then

1 _ntl
X—t
/ e n (\/T\zﬁ) i
o [(n+k)
=3 ——— rfntk), (2.1
Koo In 1k t* f(n+k)

where the series on the R.H.S. of (2.1) is convergent.

This is easily proved if we use (4, p. 169, R.7)



1
2 x—t
a-zreey P ()

0o [(n+k) v p N
= — f x), ;
kio n |k n+k
Multipy both sides by F(x) and integrate w.r.t. x in (—1, 1). Now
interpreting the R.H.S. by (1.1) we obtain (2.1).

Lemma 2 :— If f (n) is the operational image of F (x) in the Legendre’s
transform (1.1) and —1 < ¢ < 1, then

J’l . : o« n
I VI F(x)dx= 3 —— f(n) .. (2.3)
—1 n=0 ln

provided that the series on the R.H S. of (2.3) is convergent.

Similarly this is readily obtained op using (4, p. 165, R. 5)
co .n
I, T = = L p ().
n=0 |7

3. We now obtain some integrals using lemma 1i.
M) Let Fe) = (1—»""" (14xPf 1
then (4, p. 276, R. 6)
—1 .
sy = 2P nap g P @t gt o, (—mnt Lo

Lat+pg; 1)
where R(x)>0, R(8)>0.

Now (2 1) gives

=
,L (A =2xt42)~ T+ D2 (g _pya—1 15, p—1

x—t
Pn ( Vv 1—2xt 412 ) dx

(o]
=2*FTB—lpapgin@+pyr 5 (&

sFe (=n—k, 1+n+k,a;1,a4+8;1) ... (3.1)
where R ()>0, R (8)>0, |1 | <1.

Particular case :—When t— 1, we obtain



« 3 )

1 _ ==
f (1—xr— 32 11 f=1p (\/'Tx) dx =
" papp pEp #TEHODR )
o ln-]—k

P
k=0|n|k
where R(a)>(n+ 1)/2, R(B)>0, the series on the R.H.S. of (3.2) is

convergent.

st (—n_k’ 1+n+k7 o, 1, “+B 5 l)

(i) Let Fix) = (@+b2—2abx) ™% S0 0 o

COS

then (4, p. 277, R. 11, 12)

SN
f(n) = '\75‘5‘ n+% ( Yn+% (b)s)

(b))

Whele a, b>0 or 0<a<b aCCOIdm. g as we take J .! (b)\) 0*‘
Y bh).

Now (2.1) yields .,
.’.l l—2xt+1%)~ n+1 __L cos (M@ TB*—abx)
(1—2xt+ V- 201r e ———
Va2+b2—2abx

7 |"+k Tntk+}
= g (a)) oy (3.3)
\/abk 0 fll lk n+k+% Y n+k+3

where [ # | <1, a, 5>>0 or 0<a<b according as we take
Jn+k+§(b)\) or Y +k+1}(b)‘)'
(i) Take F(x) = (=% P (x)
then (4. p. 278, R. 18)
fn)=2 Pm ) Qn (), m=0,1,2,....;m < n; t being in the cut
plane along the real axis from —1to +1.
Applying (2.1) we get
1 n+1 - x—t \P_®
f (I—2xt413)~ 2 P, (m) :" —dx
Sl L 2

t
k=0 ln ]k
where ]t| < 1 m and n are positive integers,

= 2 Pm (1) Qn+k @) ... (3.9
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Particular Case :—If n—>0, m—0, (3.5) yields (3, p. 154)

1 dx i
f =2 3 *o . (3.5)
| (t—x) o/ 1—2xt 412 k=0

—1
(v) Take F(x) = (1—=%)" P ()

then (4, p. 278, R. 17)

f(n) = 2* Pap(l4n—a- Fa (—mym—+lae; Lndatlo—n; 1)
N(l—e) (1+n+oa)

where R («)>0, m=0, 1, 2,......

applying (2.1) we obtain

] _ _ ; X—t
A L

2* pa Q [tk pdintk—a) g

TP = 0ln|k [ (14+n+k+a)
Fs(=m, m41, 0, a;1, 14+n+ktoa, a—n—k;1) ... (3.6)
= 2% Pa 'g (—m), (m+1), (2), (2), [ (| —at+n—r)
Nl-e) ,Zg @—m,(I—a+n), M(d+nta+tr)
oF, 41, l—a+tn—r; 14+n+a+r;t) .. (3.7)
where R(«)>>0, m and n are positive integers.

Particular Case :—If m—0, we get

1
a—I —(n+1)/2 __E—E
.[1 (l-x) (1—2xt+12) / P, (\/l__?“—_ﬁ2 dx

-

=2“ rla P(l+n—-a) zF'l (n+],l+n—a;|+”+“;t) ‘38)
P(1l—oa) P (1 +n+a)

where R(x)>0.
Further if 7—1, we have

I:(,_x)a-(n+3)/2 P, (\/T_;—_,‘> dx —

(=1 20 H DR pQa—n—D A=) (5
N(l—o) [(2e)

where R(o)>(n+1)/2.

4. Following a similar procedure and using the operational pairs of
F(x) and f(n) in lemma (2) exactly in the same order as used in section



« 5 )

(3), we obtain the following integrals :

: |
N =T e, v T d

at+B41 0 n —n, 1+n,
_2 rarp % " 5 -
Matp)  n=0 "~ | 1, atp

where R(«)>0, R(8)>0.

;11 4.1
| 4.1

Particular Case :—if a—1, we get

1
fl & 4! Jo (V1=3) dx = 273 WFr(=B;524850),

where R(8)>0.
I o sin AL — kv
(ii)f M (1 T=3) €08 ket ?abx)a’x
| v/ a*+b*—2abx
i 020 l_nJ(at\) J"‘f‘i‘ (&N 4.2
,\/E[; ) ,n n+% yn+% s e (4.
where a, 5>0 or a<b<0
di k :
according as we ta eJn_HZ (bA) or yn-i—% ()]

1 0o h
xt dx t
(iii) fle P, (x)J, (1v/1=%%) 2P, (l)n}:o ﬂl” Q, @),

t—x
v (4-3)
where m is a positive integer and the series on the R.H.S. of (4.6) is
convergent.

U oxt ] —
(iv) f & -x* P, x)J, (tv/1=x%) dx
-1

m (—m), (14+m), (a), (@)
Y . r r \*p &y
M 2 T rasatn na—n

Fi(l=a—r; 14atr;t) ... (44)

Particular Case ~—If m—0, we get
1 S o
fl e (1_x)a-—l 7y (tv/ 1=x7) dx =’2T Fr (Q—a; 1+as?),

where R(a)>0.
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INTEGRALS INVOLVING FOX H-FUNCTION

by
A.N. GoyAL and K.K. CHATURVEDI
Department of Mathematics,
University of Rajasthan,
Jaipur.

[Recd. on 2-12-66 : in revised form on 30-1-1967]

" ABSTRACT

Five Integrals involving Fox H-Function have been evaluated
in terms of H-Function. The first two are further generalised to

include a large number of integrals as particular cases.
1. Notations :—
( ap, ep ) represenfs the set of parameters
(ape1),( a5 € )ienininnnnnnnne. (a,e ).

PAxsr) = PA+e) MA—p)
A==p in H—-function = A4-#, A— &,

u )4 l q
a.n w, = 3 e— 3 e+ = f— I [
j=17 j=u+1J j=17) j=I+1"/
q p
0, = }p—q)+ 2 b.— I a,
j=17 j=1J

2. Known results required in the sequel.
Fox H—-function is denoted by Gupta® as
1! ]
u ‘ (ap ep) 1

|__| t e
i b » I'
2.4 ( g fq) 25i

l u
7 b.—f.s 5 l—a.+e.s
2 TG m Mg
t* ds
i q p
a7 DA =b.+fs) =z N(a,-e.s)
Jj=Il+1 J T =

e (201)



« 8 )
where an empty product is interpreted as 1,0 << 1< ¢,0 < u < p,

e’s and f s are positive; L is a suitable contour of Barnes -type such
that the poles of [ (bj-—];.s), j=12, ... /, lie on the r. h. s. of the

contour and those of (1 —aj+ejs), J=1,2 s u, lie on the 1, h. s,
Further the s-integral on the r.h.s. of (2.1) is absolutely convergent

in at least one of the following cases :—

(i) e,>o0, argZ| < f ez
- (i) o, >o0,]largZ < $o;7and R(e,+1)<o.
where o, and o, are given by (1.1).

Also (2)
If R(y £m—3)>0, then
o0
*y—1 PEyY+1)ry+m+3)
I Wm OF iy 0 dt = LEERICERED o
o -

If R(A4-p.49)>0, then

(00] s
frz)‘_lK 0K (t)dt:mm  Potuts) (23)
2, W25, e w2,

o

If R(Y)>0, R(a—Y+6)>0, and R(B—Y + ) >0, then

AL

J.ty -1 (1+1) - ofy (By;-1) dt =
o

T @Y +INB-Y+0)

T@EM@+p-Y+o)

If m is a positive integer (3)

1 m
- m :
Mmz)=@n)2 2 mymz-14 . ;71 N+ 'ml ). ..(2.5)
i=
If R(y)>0, then )
7 ' _ab
f” o Y=1 -3¢ al(y)e 2
J  (sin ¢) e ¢ = - : ...(2.6)
5 RELIEZER

3. Integral I
If R(y-tm -} - 2n6)>0 and in at least one of the following
cases (n is a positive integer)
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(i) ]>0”argz <%w1u, i
(i) w1>0,.arg21<%wl7andR(w2+1)<0
where o, and o, are given by (1.1) we have

j?tzy—l W, @)W t I
. k,m() —-k,m()l—‘l Zt
o b, q

I+4n,u
—eat e -V H o g an

(ap’ ep), {A(n,1+k+Y),6}
{A@Q2n2y+1),5}, {A(n,é:!:m-i-y),c}-(bq:fq)

@,

dt.
(bq» f q)

- 2nc

(2n)

Proof :—Write the value of H-function in .contour integration
by (2.1), change the order of integration, use (2.2), (2.5) and interpret
with the help of (2.1) we get the R.H.S.

Particular cases
(i) When ep= fq=c=1 we get a result in Meijer G- func-

(53

tion due to Verma (5)
(ii) When ep=fq=c=1, u=1, p=p+1, g=1 we get a result
in Mac-Robert E- Function due to Rathie (6)

Integral I1

If R (Ad+p+v—2nc)>0, and in at least one of the following
case ( » is a positive integer ),

(i) o>0,|largZ| L}oym

(ii) ©,>0,|arg Z| <}o,m and R (2, +1)<0,
where “’1 and o, are given by (1.1), we have

o0 2'\ . H L (ap, ep) .
J K WK,y (1) @.c) |
0 p p
:(_)g—n 2_"\—1 n2)t——

(ap, ep), {A(@2n, 2\)c}
{A(n, AL pv), o}, (bq fq) )

I—_ll+4n, u n_zm,z
p+2n, g+4n

Proof :—Write the value of H-function in contour integration
by ( 2.1), change the order of integration, use (2.3), (2.5) and
interpret with the help of (2.1), we get the R.H.S.



( 10 )

Particular cases
(i) When 5 = fq=o= 1 we, get a result in Meijer G-func-
tion due to Verma (5)
(ii) When ep=fq=c=l, p=p+1, u=1, g=I we get a result
in Mac-Robert E-function due to Rathie (6)

am

Integral III

If R(y4+22m)>0, R(a—y—+o)>2n RA—k), RB—y+0)>2n
R (A~ 1), and at least in one of the following cases ( # is a positive
integer).
(i) o>0,|argZ| <}oum
(i) ©,>0,)arg Z| <}uy7 and R(e,+1)<0.
where o, v, are given by (1.1), we have

o0

[ M 140 TOF, (aBi—1)
o

ol @ s€)
l_ll, u t27\n(1+t) 2y.n' (bp fp at.
Pq (6,1
t—n,_ —1% I, u+6n
W (?n) H p+6n, g+4n
[Z’ {6 @n1-1)A}, {A@n1—aty—0)u—2},
(bq’ fq); {A(zn,l —0'), ”’},
{A@n1—B+y—0), p=2}, (@) ep) ]
{A@2n1~-a-B+y-0),r-7}
Proof :—Write the value of H-function in contour integration

by (2.1), change the order of integration, use (2.4), (2.5) and inter-
pret with the help of (2.1) we get the R.H.S.

Particular cases

(i) When ep= fq=)\-.:#= 1 we get a result in Meijer G-func-
tion
(ii) When ep:fq:,\=#=1, p=p+1,u=1,q=1 we get a

corresponding result in Mac-Robert E-function.



Integral IV

If R(y - 2n0)>0 n is a positive integer and in at least one of the
following cases :

(i) o>0,|arg Z| <}oyn

(i) 0,20, | org Z | <}z and R(v,+1)<0
where o, and o, are given by (1.1) then we have

w (a s e )

. oy-1 -3¢ Lul o o=2mA, P P
[emar=tem L]t eno™ 2] * Olas
0 q 49

70
o N
_. 2 (_,,_) | |1+2n.u
n P+2n.q42n
Y+is+1 y-is+1
(ap, ep)’ lA(ns 2 ’ )\}9 {A(n, '_2 )’ A}

{A@n, ), A}, (bq, fq)

VA

Proof :—Write the value of H-function in contour integration
by ( 2.1), change the order of integration, use (2.5), (2.7) and inter-
pret with the help of (2.1), we get the R.H.S. -

Particular cases :
(i) when ep= fq=)\=1 we get a result in Meijer G-function.

(i) When ep:fq=:\=l, p=p+1,u=1, g=I. We get a corr-
esponding result in Mac-Robert E-function by Ragab (7).

Integral V.

If R(Y +2»n)>0, n is a positive integer, and in at least one of
the following cases :

(i) >0, argZ | <}oz

(ii) «,>0,|arg Z| <30,z and R(v, +1)<O0.
where o, and o, are given by (1.1) then we have

u L, u (a, e

. -1 - 3 D, D)
f (sin¢)Y "1 H (Sin ¢)2““z! d ¢.
0 ps q

| (bg, Jg)
:(g)%e_ﬂf‘l—ll’ u+2n [Z

{ A @1, 1-Y)A}, (a, ey
p+2n, g+2n (bg, /gy, { A("’l_—yzi_is )s %}]
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Proof :—Write the value of H-function in contour integration
by (2.1), change the order of integration, use (2.5),. (2.6) and interpret
with the help of (2.1) we get the R.H.S.

Particulars cases :-
(i) When ep= fq——— A=1, we get a result in Meiger G-function.
(ii) When ep=fq=,{=1, uw=1, p=p+1,g=I we get a result
in Mac— Robert E-function which by use of reduces to a result due
to Ragab (7).
4. Generalisation of integrals (1) & (2).

Consider a function (m; + n; ny+m,)

(1) 1 L M (any+s) [ (Brg—s) S
¢ (1)=~— 1 2 = .
21 P Emits) T (g =) ¢t ds. ... “41)
c—i00 ;

which is in fact, the sums of n, generalised hypergeometric series of

the type m,+n, p my+n, -1 , then by Mellin
inversion formula
Dont) D) _ [
n (8m1+s) n (Y]mz—s) ) ¢ (t) t dt...............(4.2).
0
Therefore the generalised integral to be evaluated is
2 L ou (a, e
- MLl zi Mo (b”’f") dr.
0 P4 4, 7q)

Write the value of the H-function by (2.1), change the order
of integration, simplify, use (2.5) and interpret with the hglp of
(2.1) to obtain '

/ u
7 Nb.-f.s) 5 NA-a+e.s)
.,l__, j=1 J J j=1 J J
2:71'.[ q P e
L = PA-b+f.5) = N(a,—e.s)

M (xny 42y - 2nos) (1 (Bng — 2y+2nas) ¢

M (8m,+ 2y — 2nos) [ (ymg — 2y 4 2n0s) 2 5
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& -n) (ny+ng-my-m,) ny ) my
=25 + '3 -3 (3)
@) (2n)ril(ar) r=1 Ui r=1
my -3 (n,+ng —my — ny)
- El(ﬂr)+2Y (n,=ny+m, —my) x (2n)
r=

I+2nn1, u+2nnz [(2'!)2}15(}12 -ny+my;— mz) z |l

2nny,+ p+2nm, , 2nn,+q+2nm,
{AQ@2n, 1- Bny,+2v),0}, (ap’ ep), {A(Q2n, sm,+2y),6}
{A(Z"l, an1+2Y)’G}a (bq, fq) {A(zn, 1 _nm2 1'2.’{)’6}
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ON SELF RECIPROCAL FUNCTION
‘ by
M. A. PATHAN
(Recd. on 15-7-67)

Fox [1., p. 408] has shown that a function H(x) defined by

q, D {l-a ,e }{a —e ,e}
(x)___:H [x i pp p PP

s C 11_b'— )
2p, 24 q q}{ q cq cq}

q p
7 l-(b +c¢ s) 5 T@ -e s)
_ l_"mr-l S | non =S s
20i)  q, r ? g ¥
L 5 o +C = S) 7 (a -e +eys)
m=1 ™M n=1 " n "

is a symmetrical Fourier kernel, then it can be shown easily that
. n n-1 {l—a,e }Lia -e e}
I O s

b e }{1-b —c
{q q}{ q9 49 q}
(1)
is also a symmetric Fourier kernel.

Ifi f(x) satisfies the equation
o0
0 = [ K o) dy. @
Yo

then f{(x) is said to be self reciprocal for the kernel K(x) and shall be
denoted by

ﬁzm[ e}{%-p H]
{h , c }, —cq, cq}

Since the kernel K(x) given by (1) is a kernel of very general
form, it can be reduced to another kernels as follows :—
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(i) If we take e’ and ot equal to unity, we get a new kernel
n n-1

K(x)——n( )2x 2

5 1-a,---1-a ,a;,-1,...a -1
@q p [(mx)n 1 p 1 ap ]
n Ib,,...bq, -—bl,...—bq e

2p,2q

A function which is a self reciprocal for this kernel K,(x) shall
be denoted by

Sm (l —ap) ’ (ap- 1)
_ n (bq) » (=b )
(i) On replacing L % by 1- ée 5 J;cq and taking

s
m=4, n=1, ¢ and ¢** equal to unity in (1), we get a kernel

N K(x)= 7 qg,p 2 Qyy oo ap,%—a,, ...%—-ap
m 20,2 4 by o b ks B0
P, q 1 q, 1 q (4)

given by Roop Narain [4., p. 298]

(iii)  Again on taking n=2, m=1, ¢=2, p=1 all e, &’ equal

to unity and replacing a,,"b, and b, by ; e m—k, — 2 and

—2 +2m, we get

K3(~")E-V%+DZ—Z,X ’('xz) = .\j

v,k,m 4

2,1 _xz‘k—m 2—%,—2+m—k+§
G Flo v v v

2,4 2,?+2m,——2-,—7—2m

with this kernel integral equation (2) is transformed to

1
_ L T by
)= f "y, (F2) 10 . (5
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Transform (5) is the generalisation of Hankel transform given
by Roop Narain [3., p. 270] and a function self reciprocal for this
kernel K;(x) shall be denoted by Rv (k,m).

The object of this paper is to obtain certain theorems which
are the generalisation of the theorem recently obtained by S. P. Singh
and Roop Narain. These theorems help us in finding out certain
new kernels. Later on a number of kernels have been deduced from

these as particular cases.

s

We shall need the following lemma obtained by the author [2]
which we shall require in proving the theorems.

Leema :
If |
e T 89 k) gy ke x
x) dx = L\ dy, k =
() [ rax=["" s = Dy, K6 [ K as.

(i), €,>0,j=1,.4,¢,>0,j=1, p  and

iii) Re (b)>—-}%c,, j=1,...
(iii) 9(])> ’zcj J q
Re (a,.)>%e,.,j=l,--p-

(iv) E (3 —s) is an even function of s.

and
(v) Q@) E(s) € L, (3 —ico, }+i)
then
] 1 }+ico
f)= 1 f %-iooQ(s)' E(s) x~* ds. .. (6)
where

s q
m\- ~ s 1 1
- 2 7 r[b. (“‘ --—-A—)
=A(7{1“)“»“MZT’I_ (.l+c_/ n +2 2n



Theorem I :
(- aye ) a e e
I ) is ,Qn {q’ cq} {1-b —cq, cq} nd
q
2 L ()
Py =5 A=l S
S G r[h-k+kj<_1_+L 5)]
j=1 2 2n n
q
: boye (L_1 s ]
j=”1 r[1+1(2 2n ")
q
a,_e qe (1 _1 s
iz T Gones) ]
o(s) e** dx, x>0
=0 3 x<Lo ... (1.1)

and o(s) satisfies the functional equation e(s)=w(1 -5),
then

g(x) =;_ fz P [log (g) ] fO) dy .. (1.2)
Qm f (U=h, ke b, (h, =k, k) ]
n {dq, Iq}, {1 —dq— /q, lq}
Proof :

{l—a,e} {a —e , e}
' °p p
Since- 1) s [ [ ephAl=b—c, }]
q

we have by above lemma
1 phtioo

p
S rla.-e e (s _I__L)]
iZ1 [J f+f(n T2

s
v 1 [T p Tie(3) Jarh 1 () P

${—-ioo



s q
m\y-_ 1T 1 1 s
i () ? 121 Lo au3)]

mn=—ff.
fi aj—e +e 2 2n-|—

0o
E(s). x5 dsJ. =14 payy du.
0o .

Now using inversion formula for Laplace transform, we get

from (1.1)
fI%*?G*ﬁ‘QJ
I:h k T (2+21n ;)]
o lyrea-ae)]
e e il

1 1 . s
s T
R [j e+e (2 2n+n)]

J=1

o0
f e ™Y p(u) du=
o

” S~} ” =':"°

‘u

On writing 1 - s for s

1 1 s
r P .
1 [dj+ (2 T )]

q
00 &
f (s~ Du P(u)du=21=
0o P

since (1 — §)=o(s).



Therefore,

}ico ;2
8(x) = o~
lelf%—im lf_ r[a —_e +e (.l__l-{-i)J
i j j\2 2n n

;o e

( , N 1 s—)]m(s) E(s) x
2"2n n

=—z;lvif%+m( )——- 2 r[dﬂ(’i_z" >]¢(s) xS ds,

f-ico F[h.—k. k.(—— l—+"‘—):|
j=1 LJ _]+_] 2 2n' n

i ra—e+e
J 7

J=

Where
s
d(s) = —
{7’ r a.—e.—l—e.(1 —-1—+§—>]
j=1 LJ J 2n"n
1,1 =
be(3+33)]
1,1 s
¢ ok (2 *2n 7)]
and ¢(s) satisfies the relation ¢(s)=¢(1 - s), then from the lemma g(x)

is
I s K gl k ’ k
{ : P} { p P P} ,

m
’Q P
n[{daa }’{l_dq;‘aq’ aq}

q 4q

N

L

nr
e

7
Jj=1

w(s) E(s)

~{ Iy e

I



COROLLARY 1
If we take e’s, c’s, o and k° equal to unity in the above theo-

rem we get a corollary
mf(l-a ), (@ -1)
Iff(_\‘)isg[(b),(pb)] and
n

1 S s
d. 2. 2
%—{-zoo _| l: _'—2+2n n]J -711" b+2 2n+n

1
Px) = 5§
214 J‘%—-IOO "i [h+ ____ ] [ 1 s—]
—1 2n = 1 i 2 2n+n

X w(s) ™ ds , x>0.
=0, x<0 R

and o(s) satisfies the functional equation o(s)=w(l - )
then

2 = 5 [o F[ e ] @

is “
Sm[ 1- hp)’ (hp - 1)] .
A @ )
COROLLARY 11

On takix"xgm—l n=2, q=2, p=1 and replacing a,, b,, b,, h,, d,
3
and d, by = +  vm-k, 2 2+2m, 2+-~+n 1, ‘2‘ and P+ n
in the above corollary, we get the theorem given by S. P. Singh
[5., p. 338).

THEOREM Il
{1 a,e} {a —e,e}
; p
If fix) is [Q [{b , ¢} {l-—b -c,c }Jand
n q 49 q9 49 q
o)
g(x) = f P(xy) f(») dy (2.1)
o
(=h kY th =k, k
& I—Q [{d ;} (1-d 7_ d p}]
. i qa 4’1 g ‘o aq}
Fx g h"_x [q '.’). bk .
«"?:'0 \
)6
)™=




then
7 1 1 s)]
Px) 2—7.’.% s —
o - 100 s
2 r[”j"kﬁkj(‘i -5+3)]
9 1 1 s)]
J§1r[771+”j('2' "2 (31)-5
ool
2 LT\ T
o(s). x " ds, x>0
=0 , x<0 . (22
where  o(s) = o(1-3). - (23)
PROOF—

)
Multiplying (2.1) by x° ~ - integrating between the limits
zero and infinity, we get

(0] - . [00) _ co

[ e = [T5 ax [ 1o P ay.
0 0 0

Changing the order of integration

0 51 0o 0 s-1 d
fo 4 g(x)dxzfo f?y)dyfo 71 pxy) .

= fooy"sf(y) dy foous'l P@) du ... (2.4)
0

{'1 : e }’ {a = € }

p P p

Now since f(x) is [ _ J
{bq, cq}, {l bq B q}

then from the lemma, we have

s 9
m\—- - 1 1 §
%+too( ) Zi_'_;lr”j“j(”z“z#?)]
f)= 2 » ' - B E(s). x—ds.
pedea a F e.+e.(1 —'1»-+i)]
j=1 JJ\2 2n'n

where E(s) satisfies E(s) = E(1 - s).
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Applying Mellin inversion formula, we have

( ) TaT [”“(2 2 %)]Em'

j=l1

m —
[y ay = =
0 :
jllr aj—e e (7_271
Writing 1 - s for s, we obtain
1 ¢g
m\o. —_ 1 1 =
0 _g (7 it ”ﬁ?(’f*iﬁ‘n)
J. x T f(x)dx = E{(s)
2 ¢ (1 1 s)
a a-e+e\———
j=1 2 2n n

bk Y th ko, k3

{1
n [{dq’ “gh U=dgmog g} |

Similarly, if g(x) is

we get with the help of lemma

where ¢(s) satisfiies ¢(s) = #(1 —s)

Therefore form (2.4), we get

o - .
J £V g S L I S
1 1 K

~.



: E(s)
b c + i)]
+ 2n n
and o(s) satisfies w(s)=w(1 -9).
' Then by Mellin inversion formula, we get (22).

COROLLARY I

On taking e”, ¢, k™, o’ equal to unity in the above theorem,
we get

mf (1-a),(a —-1)
. 7 p
If f(x) is Sn ((bq)’ (_bq) ]and
o0
g)= [ PCo) [0y
o

m((l1-h ), (h -1)
y S ( p)(p
n L0, (=)

then
54 1 1, s
. m w [ d4+—= ——~4+=
P(x)——-l— %+IOO(;) j=1 J 2 2n'n
2 , P
“ Y 4-ioo 1_1.s
A i T
7 1 1,s
a U b+ -~ +=
e 2 2n ' n _
j=1 4 —— a(s) x Sds, x>0.
; INa 1- L
jzl J 2 2n
=0, x<0

Where «(s) satisfies w(s) = o(1 - s).
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COROLLARY I

In above corollary, if we take m=p=1, n=q=2 and replace
. 3
a, by, by, h,d, and d; by %+/;—+m—k, —‘2’— —+2m 5t +

n—1, - and - +2n, we get the theorem by S. P. Singh [4., p. 342]

Converse of this corollary was given by Roop Narain
[3., p. 287]. '

THEOREM III

m({l-a ,e} {ap—ep p}

If £ (x) is Q b ¢ },{l—b e ey |md
rq 9 7 q

n

1 o '
gm=xjoﬂnkwn@ S N H))

is .
m({1-h ,k } {h -k ,k}

Q P’ p PP
d,e}, {l-d —a,
{q q}{ quqaq}

n

1f%+'°°% [+< T%)]

> 3-ix 1 1 s
2 r["j"‘j*"j(‘z‘*ﬁ'“)]

then

NI

P ()=

= Lomore (-3
xx " ¢ds, x>0
=0, x<0 (3.2)
where o(s)= o(1 - 5)
The proof follows from the above theorem II.
COROLLARY I
With the similar substitutions as in corollary Il of theorem II,

we get result due to S. P. Singh [ 5., p. 344 ] and converse of this
corollary was given by Roop Narain [ 3., p. 289 ].



EXAMPLE
If we take
I !
7 I—(1--y--z-}—z.s) 7 r(l—y —z.s)
o(s) =
r ( r
7 +z.-zs5) @ r(y.-i—z.s)
j=1+1 ¥ J ) i=I+1 \'J J

which satisfies a(s)=o(1 —5), then with the help of the theorem II,
P(x) is given by

| h o~k +k (L ) kp
I+29,1 % yr’zr, p p p\2 "2/, n|,
—x

" e
r+2p,r+2q 1_1)% (.1 _l)_q}
{dq’“q(Z 2nf, n}, liq+cq 2 "2n)n|,
-0
ap—e +e 2 " 2n/, n
}1 g Mt z }
(4.1) is a kernel which transforms

Qm”{l veyh {a,—e, et
{, cq},{l—bq- ¢}

ng 9 ’

@.0)

n to h ,k I/ k ,k
1-h , 5 —k 7
m({ o Kb, =k k)

dpogh (1=d —ay, )}

nL

-
and vice versa in accordance with the equation (2.1).

Particular cases : Giving suitable values to the parameters in (4.1) we
can deduce a number of kernels.

(i)
1+4,1 )_’i+,,_1 3
S R ™
4 ® 1 1
Y+2, y+4 +4 b v2n +4,2+4,
3 Fm—ket g 4

.. (4.2)
2-+2m—|- 4,( Viss
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which changes R (k, m) in to RH (7, n) in accordance with the
v .
equations (2.1)

(jiz),—"lr (%A )a|< (%x)% |<b_ (%x)il 4.3)

c

1 1
Snl —-a 21] ,a+—2—,;'
1 1 1 1 1 1
4 R T PRl o PR TR R
11
—atbty - o
1 1 1
_ PR T T
n to S 1 1 1
n|a+b oty T 5 + 5,
1 1
—a_b+ 2'——_2’1" _a—C+2 - ‘2‘”—

is a kernel transforming
1 1

S'" 4 on *on ”
" L 1o, 1 11 1 1

byt st 3 g b

1
ml| —aT gy 4ty

mlt°811111 1
n

2n T2 2n 2 2n° 2n
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SERIES OF MEIJER G-FUNCTION OF TWO

VARIABLES (PART )
By
A.N. GoYyAL AND MRs. S. SHARMA
(Recd. on 10th June, 1967)

Abstract :(—The sum of finite series involving Meijer’s G-function of
two variables defined by Agarwal (1) have been given in
Meijer’s G-function of two variables.

INTRODUCTION

Meijer’s G-function of two variables defined by Agarwal (1) is
ny, Ny, Ny, My, my [ X ) } {( ) ( )}
. d . . .
C;p,, 15 P2 49> [y! l (apx)’( P/ ) bql ‘\“q. /]
l (eqz);(fqz) } ]

1 —+icQ +ioo
= ( ; ) J. b+ (s, 1) xsytdsdr (1.0
2zi ] J oo ¥ —icx

q (l—a +s4¢

(1.1)
T(a —s—) 7 F(d +s+l)
J=1+n, Jj=
my
7 r(e—v) 7 (
j=1 J X
q2 q1 ) D
. a r(l—é’—{—s) i r(l “b.‘*S)
J=14m, J J=1+n, J
my ny
7 I"( .—t) 7 r’(z‘.+1)

92 q1 o '
i r(l—f.+~l) 7 r(l-—c.—-r)
J=1+4niy J J—=14ny J

where & (s+1) =

:: = H'zx K

¢(S,f)f=

(1.2)
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0<Cm, < gy, 0<Km, < gy, 0K <Gy, 0Ky, 0K <p,  (1.3)

(ap):al, g, ....otp and (am’p)=ocm 1 1,...onp (1.4
020, [arg x | < 5 (a—}o) (1.5)
020, arg y | < 7 (0, —40)

w=p1+ql+pz+q2,E=m1+nz+n,, 51=m,+n3+n, (1.6)

Also the sequence of parameters ( 2 ), (fm2 )s (bnz)' ( e )
and ( a, ) are such that none of the poles of the integrand coincide.
1

The paths of integration are indented, if necessary, in such a manner
that all the poles of | (ej—s),j=l,2, ...... my and ['(f, —1), k=12,

... ..my lie to the right and those of ['( bj+S ), j=12,......n,, and
P(ep+t), k=132, ....nyand [ (1 —a;+s+1 ), j=12,.... n, lie to
the left of the imaginary axis.

The following well known results will also be required in the
proof of the sequel

2F, (a, b; ¢; 1) = IQE?_S )f9ﬁ?(‘c’—}f)’-; , Rc—n—b)>0 (L7

-1
P(l—ap+n+S) [r‘(l—ap+3):l
-1
= (=1p e - 5] L
(1) P(ap 5) [P(ap §-—n) (1.8)
Also, if the parameters are given as in the l.h.s. of (1.0), we shall

abbreviate it as G (x,y) and in case any one of them is different, only
the defferent one is mentioned e.g.

ny, ng, ng, my, my [ X ' . _ )
C;pp 1 P12 [y‘ { (@, @) } ’ ; by () } '
erer 0 01000 )]

will be written as G [i i } : { } :

{ € +r, (ez’qz);fl—i-r,, (fz’ q.) } ]

here after.



( 31)

Theorem I
If the following set of conditions are satisfied

(i) o<2o,|argx|< 7 (v—}0)

(i) o<2op,|argy| < 7 (a,—10)

(iii) R (bq +n)>0, R (cq +m)>0
1 1

(iv) m and n are positive integers

then
(- 1)m+n+r+r1n m

m ¢ ¢
ron

Z 2 T F, AN T we, )

G[;l{ H }:{"1+"(ez,qz);fﬁ’"('fz,q)H
[ ey, +m)] S

r\(e +b +n)

{(bql—l)”’q,*’“(“ql—l)’”qﬁ’"}:{ H

(1.9)

where o, @;,  are given by (1.2)

Proof :—1In the L.h.s. of (1.9), write down the value of G (x, )
in contour form by (1.0), change the order of integration and summa-
tion, which is justified under condition (iii) of the theorem, simplify,
use (1.7) along with (1.8), interpret with the help of (1.0), the r.h.s.
of (1.9) follows.

Theorem II :
If the following set of conditions are satisfied
(i) o<20,largx|<z(o—}o)
(ii) o<2a0,largy | <z (v,—}o)
(iii) R(bql+e,)<n+l,R(cql+f‘)<m+1

(iv) m and n are positive integers
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then

n m .
Z Z m+n+r+r, "
r=: =

G[

r

| bt
[t (o bt ]

F(b +91) P(C +f1)
(b +el+n) P(C +f1+m) G[ I

(opebtari{ oo ]

(2.0)

where o, o, o,, are given by (1.2).

Proof :—Begin with (2.0) and follow a similar scheme as for the
proof of theorem I.

Theorem IIT
If the following set of conditions are satisfied

(i) o< 20,/argx| < 7 (0—}o)

(ii) “‘<2‘"1s|arg)’f<ﬂ("\’1_§‘”)

(iii) R(b +e )< n+l, R +f )< m+1
4 4 0 q

(iv) m and n are positive integers

m
n m X
c. ¢ 5 i
W e @[2 ; (bql_]),bql r,(cql_l),

cq."‘} : {(qu—l)’ ‘o (fqa—l)’fq,“ll]

P(l—bq ~e, FAN U=, ~f +m)

o (l~eq:_bqj) r (l—fq,-clql) : (;[ ; | { , : {(bq,—1>’
b= (<) )] 1]

(2.1)

where v, @, v, are given by (1.2).
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Proof :—Begin with Lh.s. of (2.1) and follow a similar routine

ds for the proof of theorem I to arrive at the r.h.s. of (2.1).

Theorem 1V :
If the following set of conditions are satisfied
(i) o<2o|argx|< 7 (0o—}o)
(ii) "’<251]arg.}’1<ﬂ(“’1_%“’)
(iii) R(e +n) >0, R(f +m) >0
) 92 9z
(iv) m and n are positive integers
then

(_l)m+n+r+r1 m

n m c . ¢
r I‘l

2 X JTre F0T @+ f )

r=0r, - (;[ H } {b . (qu) c1+rl,( ,q,)} { }]

=[ r @ite, +n R(cl+fqz+m)]
G[; f { } ;: } ; K eqz—l)’ 1" (fq2—1>’fq2+m”
2.2)

Proof :—Begin with the lL.h.s of (2.2) and follow a process
similar to the proof of theorem I to arrive at the r.h.s. of (2.2).

Particular cases :

We give here interesting particular cases for theorem I. Follo-
wing the same scheme, similar particular cases for the remaining
theorems can be easily jolted out.

(i) When m=n=1, we have the recurrence relation

( e +b, ) (f1+cql) @[;] + @[;
Lt (en g, Jinen (0 )]
=G Tl () ”ql“;(cql—l)’ ] 3 ]
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RERRICAREIC )
REREEEICEY ]

(2.3)
(ii) m=n=1, m=n=ny=m=nm;=P1= P»=¢,=q; = 1, then
8 (6+1)F, (A n,u;0; — x,—y) —y (6+1) F, (1+7\ r,o+1;14+6;

—X,—y) — x (0+1) F, A+x; p+1, 55 14+68,-x,—y) — L (A pt+1,

o+1; 0; —x,—y) + x y F, @+% p+ 1, 241, 24+6; —x,+)=0
(2.4)

where A=1 —a;+e,+ﬁ;-n=b1+e,; v=c,+f, and 9 =d,+e,+f;.

(iii) When m=n=1, n1=n1=m1=mz=1?1==fh="s=1s P2=0.
q;=2, then we have
ab F,(A; 1, v; a, by —x, —y) —ary F(A+1; #, v+1;8,b+1; —x, =)
—bAx Fy(14+2; p+1, 5 144, b; —x, —) +A(A+1) xy Fy(2+2; 4 +1,
v +1; 1+4a, 14b; —x, —y) = ab F(\; #+1, 0+ 1;a, b; - x, —Y)
(2.5)

where a=1+e,—e,; b=1+f,—f.

(ivy When m=n=1, ny=p,;=0, m=ng=q,=2, mg=my=p,
=¢q,=1, then
Fy(r, v, 4, €5 25 —x, —p) —#(+1) x Fy(r+1, 9, 9+1, & 45 —x, —))
Co0t 1)y Fy(t oLy B+ 1 A —x, —3) hoxy B+ 1o+ 1,
Y+ 1L E+130+2; —x, —p) = AQ+1) Fa(w, 0,0+ LE+130; —x —y)

where V=b,4-e,, E=ca+f1 (2.6)

(v) When m=n=l,. nm=p=q,=2, ny=ny=¢;=p,;=0,
my=m,=1, then
(e fi—Dab Fi (A, m;8,b; x, —y) —earny Fy 14\ 1405 a, b+1;
—x, =y) +bfianx F (144, 140, 144, b; —x, —y) +xy\n (14))
I+ X F2+2, 24m; 14a, 1+b; —x, —y) =

where n=1-a;+e;+f;. 2.7

(vi) When m=0=n,=n;=q,=p,, my=1, e,=b,, b =1—a
91 P

and if we take the limit as y tends to zero, we get a result in Meijers
G-funciion due to Bhise (2) by the property (Agarwal 1)



dt gnl’o’oaml’l
y—0 Pl,O,O,Qz

(P1<.42)

Agarwal R.P. (1965)

Bhise V.M. (1963)

(e ) (0)

( 35 )
) gmu"; ( aPl) )
pl,q2 eqz)
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A GENERALIZED FUNCTION OF TWO
VARIABLES—I

by
G. K. GoyAL
(Recd. on 26-10-1967)

This paper deals with a generalization of the Fox’s H-function
in two variables. The generalized function yields as special cases
the generalized G-function defined by Agarwal (1), S-function defined
by Sharma (5), A-function defined by Goyal (4) and the Kampe de
Feriet’s function of higher orders.

1. INTRODUCTION
C. Fox (3) has defined H-function as

] | mn | (‘31, -5 I— , (@, ep)}
M | 1 by ) on b
i Pq '(lrfl)’ ’(q7 fq)

m n
m N(b—f,s) 7 N(l—a-+e;s)
_ 1. i=1 i=1 x* ds,
251 q P
L 5 Nl—=b,+f;5) @ Ma,—e;s)
i::n1+1 '=n+l

where an empty product is interpreted as 1, 0S<m<q, 0<np; €’s
and f’s are all positive; L is a suitable Contour of Barne’s type such
that the poles of [ (bi "fi s) ,i=1,2,3, .........m lie on the R.H.S.
of the Contour and those of [ (1-a; + ¢; 5),i=1, 2,..... n lie on
the L. H. S. of the Contour. Also the parameters are so restricted

that the integral on the right of (1) is convergent.

The aim of this paper is to define a generalized H-function of
two variables which includes G-function of two variables, hypergeo-
metric functions of higher orders etc.

The following notations are used throughout this paper :

(i) (a),=F(a+m)/T(a)
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(ii) The symbol {a, e, e’ : p} denotes the sequence (a;, ¢,, e; )
(ay, e3, e; | TR S—— T I e; ).
Also that { @, 1, 1 : p } is represented by { a,} which
denotes the sequence @;, dg,.c--ecveere--0.p.

(iii) The symbol A (a, :,p) stands for A(a,), A(@1), -eevvvenves

A (ap) and the symbol A(a,,,.e:p) stands for
A(am_H, e), Aa,, .z €), . cevaeerers N(@ps e).

5. The Hml, Ny; My, N3 My, Ny [ X ] function
) Pis 9 P2s G5 Par s LY

Consider the double Contour integral

@ =g [ [[# (st ) 600 2y ds d,
L.

1 ~2

where
n

1 i my ¥ ’
@ P(l—a..+e'.s+e,.z)',-,- Na,—f,s—f; 1)
¢ (s+1) = =1 i=1 -

Py i 'R ' '
7 M(a,—e;s—e;t) 7 P(l—a,+fis+f,t)
i:nl+1 I=m1+l
ny m, s
a P(l_b. fgi S) u P(b.‘—k;s)
i=1 i=1
S =" @ o
7 No,—g,s) = P(A—=b,+k,s)
i=ny+1 i=my+1
ng T mg i
7 N(=c+r,t) & Mb,—n,t)
i=1 i=1
v = —P3 UE '
" N(e,—r;t) @ N(l—c,+ht)
i=ng+1 i=my+1

and where

(a) L, and L, are two suitable Contours such that
(i) L, is in the s-plane extending from —iooto +-ico, with loops, if
necessary to ensure that the poles of 1 (b:—k‘ §), i=1,2,0cc0ccnn. o My
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and [ (a:. —f; s—-f‘.’ £) i==1525eeusunnes ,m; lie to the 1ight and those

of [ (1—b,+8, 5)» i=12,.ervc. o, my and ['(1—a,+e, s+¢,0), i=1.2,

<very 1y lie to the left of the Contour;

(ii) - L, is in the t-plane extending from —ico to +ico such that
the poles of [ (c; b, ), i=1,2,....m3 and [ (a,—f.s ft), i=1,2,.
m, lie to the right and those of [ (1—c,4r;t), i=1,2,...... ,hg and

n (l—a,+e¢s+e:.t) i=1,2,...,n, lie to the left of the Contour.

(b) The positive indices p;,q;,m,n; (i=1,2,3) satisfy the inequ-
lities '

q,>1, p,>n,20; ¢,>m>0;

ep1+8pa< f41+kqs; epi+rps< fa1+hg,

(¢) The values x=0 and y=0 are excluded.

(d) Alle’s, f’s,g’s, k’s, r’s and h’s are real and positive.

(e) The investigations into the convergence of the double
integral on the right of (2) show that it is absolutely convergent if

S+, 80 ke ete’  [4f
22

(i) largx[<{—'“171+ 4 @i+ 9 2
_ 8 _kmy|
272 H/\
and (e+ €')p, + (f+/f )91+ 2(gpPa+kgz) < 2(a+e")n +2(f+1")m, + 4gn,
+4km,

h ' '
@ (orgy1 < (oot as e M Y,

rig llms:

2 2
and (e+e) py+(f+S")a,+ 2(rpy+hgs) <2(e +e")ny + 2( f4-f 'Y, + 4rny
+4hmy,

where e=max.(e,), e'-——max.(e:.) and so on. |
The R.H.S. of (2) will be henceforth represented symbolically as
mx,nl;ma.na;ms,na[ x’ {a,e, ¢ :p} i {b,g:pa}: {c,r: py}

3) ,
P1:91;P3,92:P3:95 {@.ff ca} : (b2 g}t {c')h s qy)
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| {a,e,e :p,}:{b,g:p:} i {c, r:ps}
(@, f,1 :qi}: {b'k : qa} i {7 2 g5}

X
or
HL
or simply

my, Ry; Mg, Ny; Mg, Ng [ X ] [ X ]
or
@ [ e ]

pls qls pe, qb p33 q3
in the absence of any ambiguity of indices and parameters.

x
3. Certain Properties of H [ 3 ]

In this section some simple properties of l.__l [ :I are stated;
the proofs being very simple, are omitted.

s L ma,m[ X @ B, {aee:p} : {bgip)

P1+1,41+ 15 pa,qa; Pa,gsl ¥ | @, £, 1" 41}, (@uBoY,)  {b3k < gy} :
{e,rips} 7 :
wnan ] = HL1

‘ {a_'ce"Pe,’ e, el :pl} : {b+6g’g:p2} :

{a'—of —of ", f.f "1 q,} : {b' + ok k : g5} :

{C+Pra r: p3}
{c's+ph.h: g5}

(6) xoyPH [ ; ]=H[ ;

=2 1y, 5 Ha,Myg; NgMg [0 X a, e, e’ :p}:
() — [ ] = e e [ {0~ 72 i)

y 91 P13G2s P2; 9, Ps LY | {1—a',f.f" 1 q.}:
{1—b,g:p} : {1—c, r: py}
U—bk g} : {(1—c'h: gy}

(8) Ife,f, g, k, r and h are positive integers, then
v @ e e} (b, g} (e, )
[y dh S S} B K 2 e )
9 92 q3
i1 @) 26 2 -p
S k h

o lfﬂﬁ - Ps
@) X e-n 3 -b
= 1 i=1

e g r
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| my f, ne; mok, n,g; mgh, ngr
| Pie, 41f; Pags 4eks Pars gsh

| A@-R,e:m), Ala, i (FRe:p), AbytR g my),
Ab +R,g: pa),A(cl R, r:ng), Ae, o +Rrips)
ny+1 ng+1

Lx
2+
A(a'l'_Raf: ’nl), A(a"n +R f. ql); A(b'l_'R’ k: ’"2)’

1
My A(bmz_*_1+R,k:q:,),Alr1 Rlz my), A(c +1+R,h:q3)
where
rAxnn =5, 1 EL A L0125 1and

LeefP1 802 p Sy Ky Py Py S e

@ oxl M ]

l' 1‘[ iszff{hq}l}(b{lb' kf:;’(fifi";:) {”pa}] Gl "' []

where p;>1. A smular result can be obtained for r, y >
X

-]

=_'__I x| {aee’ :p}: (b~ 1,81):(b2,82: Pa) : {c,r : pg}

1 y Ha o fof iaqa) {0k aq) s {c',h: qq}
L 1| xj{aee :p}:{bg:pa}:{cr:py
kl
where p,>1, ¢;>1.

:ql} : (b; + l’kn),(bz'hka H qi) : {C',l : qs}

| X
A similar result for{l — L = i } - [y ]can also be easily deduced.

r

(11) If e,=¢ and f=f  only, then

{‘“"‘ A0

€

_, [ X (a,— 1,917 1): (“zsez"‘; 1 Pg) {b7ga 1P} {C,I' N
P @i )y @ fur S35 05 (B K2 @i} 2 (b g}

R [ X l(“n"n"x) (ag,eneq:py) i 4b, g py} - {eripy}

Al

Vl(al+l S1:11)s (ag, JoSg: ) {bk: 92} i {c"\h: g4}
where p,>1, ¢,>1.
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(12) 1f e,=e1 and p,, p,, p; >1, then

1—b,  1—¢ 1_.,,1} '__:[x]
{ &1 + ry el' ; y

= [x {as e, e’ :Pl} : (bl_l 1g1)’ (bli 8t {C, ! ol [)3} T
vi{a,f,f iq}: {b, k g} i {c higg} K

1
+ 'r; | i[ g

{a,e.e’ : pi} : {b,g: ps} : (cr = 1,1, (€72 P3) ]
{a',f, f":q:}: {b',k:q.}:{c, h: gy}

‘ [ (al‘l’el’ l)’ (az,ee:ez 3 Pl) % {b!g 'p2} ® {c,r : Ps} i
yii{a £, f": ql} A, kigp} i {c, higy}

Similarly the result for { ,’zl + , -4 }

*’1 [ ]can be deduced if
fi=f1and q,, q,, g, >1.

The above recurrence relations are only a few specimen of a
large no. of results which can be derived.

It is clear from the fact
that the function

rx
—| [y ] contains many parameters.

' x
4. Derivatives of ll_—“ [y ]
Lemma : ’

'\2 '“a
Iff(x,y)= 5 3 Ax

U=\, 1=,
negative integers, then

i b . e ‘ l < é\:’ 5 (~1)m™n 4
— —1\m+n XU=m yv-n
ax"' " S5 yB U=\, v=4, g

y¥ where A, 25, &, 4, are non-

’ o my, Hy; nig+1, ng; my+1, ng

Py 4y Pa+1, 2+ 15 ps+1, g+ 1

[xo" | {a, e, e :p}: {bag:Pﬂ}’("ua a): {c,r:pa},(—v, B)

yﬁ l {a,f, gy} : (mu-m ), bk : qa} : (== n,B), {c',h : qy) ]
u>0, v>0.
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[ l ) 1
14) — - s
a9 2 /e | |
Ay )
— E X (_1)m+n A xu-m yv—n |
U=»x 1=y,
where
i , x ] i my, ny; My, Ny+ 15 mg, ng+-1
! [ l Py 4y P+ 1, a1 P+, g3 +1
{a,ee’ : p}: (1+u-m—x), {b,g: pa} : (1 +2-n,=P), {c,r : s}
yB {a, f,f" @} : {0k 2 i}, A Hu,—a): {c"h: g5}, (1+0,- )
u<0, v<0.

Corollary 1.

a"ﬂ-n

(15) ox™ o

Corollary 2,

am+n

ox™ gy

5.

Lemma :

If f(x,y)=x" y°, u>0, v>>0, then

|

.
{ xup®
L

If f(x,y)=x"
r \

Qg |-
L i

Evaluation of

Ax)
y

e

}:(_l)mh» xu—=m ye—n

gy
% u<0, v<0, then
= & 1
XBW >=(__l)m+n xu—m yo»n
Ly ))

_'1

-,

.
()"

If f(\x) is a function which can be expanded and if it has all
derivatives and the expansion is differentiable term by term any
number of times, then by Taylor’s theorem, we have

7 flax) =

(18) F(uy) =

Y
-

L3

n

% = L)

d @)
dn
" FO)
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Now if we use the results obtained in section 4, we easily establish that

—&x Aoo' -
(19) 271 H am ] 20“"‘)

y n= =
} | (x—gl {a, e, e :p}:(by—n, g), (b2, 8 ps) : {c, 1 :pa}]
N y e fif a0 ka}:{e, h:gg)
e\ O @-ne
0) A% —l [ S 1=
(,\g) n=0
' | [ X ‘ {a,e,e" :p}:{b,g:p}:(c,=n, 1)), (€1 ra: Ps)]
I G N A RTA N SOR SIS

. B k, R
@1 5~ b B l:(z\x) ] _ O; Q l— 2)
| l y n=0 —_—

6 {a, e, e :p}: {b, g :pa}:{c, r:ps}
. y @il it k), by ka0 e b g5}

. X fo'e) "
o™ n=0 —

| i x |{a, e, e :p,}:{b,g:pg}:{c, r:ps}
| RGN R CAEN R CR VN CHURE S

Likewise many more results can be derived

x
6. Particular cases of i, [ ]

y
lonml,vl,mz,vz A,{Gp {1~ -Y:}:{1l- Y;}
(23 T' psit gt q [ *{1—8} {B,}: {8y} ]

_ my, my, n, vy, U

P, 4,5, t [y]=<;[;]
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-~

where (7

variables given by Agarwal, R. P. (I).

[ :I is an extension of Meijer G-function in two
J,'

0, my; ng, Mz; Ng, N3

[x I {apl} ; {cpz} : {epa}

24) .—‘ D111,y Po—1Mg, Q2—Ha; P3—Ms3, qs—Ns| ¥ 1 {b ‘h} . {dqz 3 fqa}
’ [ :il—,n(t)l, 0 ] (V=53 5110 } |
S| (Ft ) [ch5t4 o] S en
L ( :::7’:» qs—n3 ) l { “ps }s {qu } j

where S (x,y) is another generalized Meijer G-function in two
variables studied by Sharma, B. L. (5).

(25)

|

—

0, my; ny, NMig; N3, My
P1—1Mys @5 Pa—Mg, Gp—Hy; Ng—IN3, G313

L

x Aaps ap}ilcps vptilep, 4p
V| {bgyr Bg} gy 8g}: Uy ug)

—
[ P 0 ]l (b ‘l
Py, 4, {ap,» ap,}iibq,s By}
_ My, Ny . e -
B A ( Pa—Mg, Ga—ng >i {sz’ qu} 2 {d%’ 8(71} 1’ Fe I "A ;)
ms, ng b |
‘( P3—Mg3, q3—1; ) {el’3’ '\Pz} ' {qu’ H‘Is} _J

where A4 '(x, ¥) is a generalized S-function given by Goyal, A. N. (4).

!

0,0 ; mg,ig 5 mg,ng

0,0; P2, 92 5 P3, g5

If mp=my==1, ny=ny=0=py=p;, gy=gz==2, by=c1=0, k;=h=1

Mgy Ng
P2 49:

E

[-\' — 2 {b, g :pa}:{c. Y ps}
yl—:{t,k,q.}: {c'h:qq)
[{b, g : P} Mg My {e.v2:0,)

Irimals

{b'.k : g3} P3 43 {c¢hhigy I

>

by= -, ky=p, c;= - A, h3=3§, then
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27 | 100;1,0;1,01 x P— :|
D 00102:02 Ly, 1 (0 1) : (=ow) : OD) £ (=1)

=S Jyo.

where \_J*: (x) is Maitland’s Bessel function.

28) Li |l 0,0 ;0,0 ; n1g,m, [x‘ R
(28) Limy, .0 || 0,0;0,0;p, a5 L - : {ch : gy}
_ I 7’m3’73[x'{¢', r: ps}
T I ps g [{c', h: g5}
(29) [J 0,1 ; my,n, 51,0 [x" (1,1,1) : {b, g : pa}:(1,1) : (0,1)]
. | ‘ 130 ;Pa+1a41 ;0’1 y/-\’( ey g {bl,k ’ qi} :
_ _-_l I"z nz [ 1 l {b, g :pz}
T P Lxtyl{bk:ig} ]
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A NOTE ON GENERALISED KONTOROVITCH-
LEBDEV TRANSFORM

by
Asha Pendse
(Recd. on 1-5-67: in revised form 17-2-1968)

1. Introduction :

Jet Wimp has given the generalisation of Kontorovitch Lebdev
transform pair [ (3); p. 173], in various forms, in his paper,
‘A Class of Integral Transform’, [ (4); p. 37 ; (4.9) and (4.10) ]. In
this paper we have discussed one of these integral transform pairs, in
which, the kernel is a Whittaker function, written below, slightly in a
different form, viz :

1, 00
1) = (n—,c) [ W i @) 8(0) d, (L.1)
(o]

and

(o]
-3
g(x) = )7[51/., x sinh 2zx) (3 —k+ix) f(at) /2 Wk ’,t(at)f(t)dt.
2 o b

(1.2)

In this paper we have obtained a theorem which gives a relation
between (1.1) and the well known Laplace transform :

o0
H(p) = fe‘*"f(t) dt. (1.3)

.0

In the integral transform (1.1), integration is performed with
respect to the parameters, involved in the kernel, where as in the
inversion formula (1.2), it is performed with respect to the argument.
Known special cases of the results are Kontorovitch-Lebdev transform
pair, namely :
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oo
1) = f K, () gWd , (1.4)
(o]
and
o0
g(x) = % x sinh (7x) f 1 Ki.\' ) f(t) dr (1.5)
()

which is obtained when we put k<=0 and a=2, in (1.1) and (1.2)
respectively, by virtue of the identity :

) x\t ([ x)
Wo,m ) = (;) Am<_2’) (1-8)
We shall denote (1.1), (1.4) and (1.3) in symbolic expressions as :
w
Jx) =~ e(), (1.7)
K
Jx) = —z &) (1.8)
and
#(p) = f(0). - (1.9)
Moreover, throughout this paper, we will write
C;m,n s Gy -oes By ) ; " .
ha || by, 5, m’quand " (a+0b) " (a—b)
as -

m,n | ' {ah}
/ o
1,9 l {bq}

J and [ (a+b) respectively. (1.10)

Section 2 contains the main result and its derivation. Section
3, contains the three corollaries of the main result. Two examples
are given in the Section 4 to illustrate the theorem.

2. The main result :

If
$ () =1 (),
and
&P ! ) _;; g(1),
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then .
@ p(=k+1) et T o)

i ix+1+%’ ix—k+%‘
‘”J‘ NLix+3) (m) 2F1( I—k+1 3

P+a—2,
p+a+a/)g(x) dx (2.1)

provided R(I+3)>0, R(p+a+°%2)>0, R(e)>0, R(p—A)>0 and
g (x) € L (0,00) where f(f) = 0(t¢?) for small values of 7 and

f(t)=0(t0__1 eAt) for large values of ¢.

Proof :
By definition (1.1)

%00
¥ fo=(5) [ @ s 2.2)
o

w

Substituting the value of f(¢) from (2.2) in (1.3), we have
% (0] ! (0]
—pt —at I—t
¢(P)=(%) J'e Pt o=t f W, i (at) g(x) dx dt. (2.3)
o o

Changing the order of integration and evaluating the inner
integral with the help of [(2); p. 216; (16)], viz :

. pt}
R [ (vt pti). a
@)~ [ (o—k+ 1)(pofy)’ THTH

rtotd, p—k+} p-—-“/l)
a (TN ) e
where R(v£1)>—4% and R(p+9/5) >0, we have :
(o0] 4
b Pdtix+d) a*
¢(p)=(1) £(x) .
a [! P (—k+1)(p+atay)*HTE
ix+1+%, tx—k+} P+ A
<o (T Erar) & @9

and the result (2.1) follows from (2.5), after re-adjusting the terms.
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The above proof involves the change of order of integration.
To justify the same, we observe that since by [ (1); p. 264; (5) ] and

[ (1);p.183; (1) 1.
Wk,,-x (o) = e—at/z (at)k Fy (Q—kiix 5 — ;7)

e @y S P(%_kii”")-( LY g

LE ! P G—kEm\ ar,

If we use [ (1); p. 47; (6) ], viz.

|y 1 00 \ P (x=£iy) \ =zt & P15 o g vesl @7
wc have : 1

e Lim —atfy , k ~ai] ]

x—>ooWk,ix (ar) = oo e 2 (at) . e

Therefore, Wk,ix (ar) is bounded for large values of x and for finite
a and ¢.

Hence, the x integral in the equation (2.3), is absolutely convergent
if g(x) € L (0, 00) as Wk (at) shall be bounded for large values of

x; and the integrand in the ¢ —integral in the same equation (2.3), for

large values of ¢ is comparable with | e—(p ottt t I+k—§] and

for small values of ¢, it is comparable with {tl_1 (at)%i_'x , since :
(i) W (t) oo de —# tk ; for large values of ¢,
(ii) W NOLS arktmy P ; for small values of .

Therefore the t—integral in (2.3) is absolutely convergent when
R(p+a+2/5)>0 and R(/+3)>0. Also the resulting integral on the
—(p—A)t

left of (2.1), is comparable with | e = | for large values of

t, and it is comparable withlte'_l] for small values of ¢, since

fiy=0t°" l) for small values of ¢ and f(t)=0(ta_1 eAt) for large
values of £. Hence, it will be convergent if R(¢)>>0 and R(p—A)>.
3. Corollaries :

(i) When we put k=0 and «@=2, in the main result it
becomes : :
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If

¢ () =/ (), | (3.1)
and

ot ) = g0, \ (3.2)
then

@Y pa+y e+e- 0T 4

ix

Froserolrt) (L el o

(3.3)
provided R(I4+3)>0, R(p+a«+1)>0, R(p)>0, R(p-A4)>0 and

g(x)e L(0,00) where f(t)=0(tp B 1) for small values of ¢ and f(f)=
09 ~ 1 eAt) for large values of .

(ii) When we put «=1 and /=1/2, in the main result, it takes
the form :

If
$ (D=1, | 3.4
and '
w
e? fio) 7 &), } (3.5)
then

@@=k @+1+9) 6 ()
ix (ix-{-.g. ix—k+4%

o0
=f MG 4ix) <p+1a+"/z) 1
(<]

p+1-2, ) .
2k s P+ [ o],/ 8X)dx
3.6)
provided R (p+1+°/3)>0, R (e)>0, R (p—A)>0 and g(x) € L (0,00)
where f(t)=o( te_l) for small values of ¢ and f (t)=o0 (t""1 eA’) for
large values of ¢. :

(iii) If we put =9/, , in the main result, it can be written in
the form :
If

% (P)=1(1) (3.7)
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and .
& @) Fay (3.8)
then
@ pe—ktny o+ TE e

o a ix (ix+l+;~,ix—k+% p)
=J'r' (I%=ix+-3) (m) oF7 I-k+1 ;p+a)gx)dx

° 3.9

provided R (I4+3) >0, R (p+a) >0, R (e)>0, R (p—A)>o0 and g(x)
¢ L (0,00) where f(t)=o ( ,e-1) for small values of #, and (f)=0

o1 eAt) for large values of 7.

(

4. Applications :
(i) Let us start from [ (2); p. 144; 3) ]:
f(t)=tl-"_1 e-th

=@ @E+p " =4 fa.)

where R(#)>o0 and R(p) >— R(B), therefore we have from (1.1), (1.2)
and the result [ (2); p. 216; (16) ]:

P gl ppyae® It B
_%_ﬂ 2, x sinh (27%) P (3—kix). EF_“(:_’—_IE_ik;—ﬂ
“ ix+p—1—3%, ix—k+t g_a—af
X a. oFy ~ 7 s p—« “2)
B—a+9/3) ix+p—I—% ( fslendt PP s
200 ) “4.2)
where :

R>R(I+}) and R(B—a9/)>o0.
Substituting the values of ¢ (p) and g(x) from (4.1) and (4.2), in the
result (2.1), we get :
o
J' x sinh (2ax) [ (I2zix+3) [ (3 - kLix) [ (w - I=ix - 3)

[=]

a® ¢ ]ix
(p+a+2/2) (B—a+°/s)
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lx+1+%’lx"k+% p+-¢7.—'“/5)
251 I-k+1 ;ptat,

. (ix+ﬂ—l—}, ix—k+% B—«—“/z) dx

y.—l—k s B—a'l'a/z
=7 1 @) PU=k+1) [ @El—k) patep) T
G-t Y Gep™ T @3)

where :
R(p)>—R(B), R(®)>R(/+3)>0, R{(p+a+2/,)>0 and
R(B—a+9/3)>o0.
By virtue of the result [ (1); p. 105; (2) ], we also have :
+00

[ xsinh (2ax) P (kix+d) 0 (h—kakix) P (e—ltiv—1)

—00

[(P+oc+“/z)(ﬁ °‘+°/=):|
ix41+%, ix—k+}  pyo—a
XaFl( I—k+1 ’ P+‘l+“/:)
. (,»x+,z_1_§, ix—k+3 | p—a—%)dx
2l p—l—k T B—a+9

=27 (@) PU—k+1) [e—I—k) (ptatefy) TE
G-ate)* T ey 4

where :
R(P)>—R(B), R(MD>RU+1)>0, R(p+a+2/3)>0, R(B—a+,)>0.
(ii) Let us start with [ (2); p. 222; (34) ] :

0 G | )

s—1 —m,n+1

(£ 8, {a,}
b1, g \PILBGT

where h4-q < 2 (m+n), |arg B | < (m+n—}h—39)m, R(e)>0
and R () < R (bj+1);j=l, 2 wesiecy My

)=¢(p), .5)
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and therefore we have from (l.1), (1.2) and using the results [ (1); p.
216; ; (8)] and [ (3) ; p. 422; (14)], after replacing « by ¢/,

p 1 o/, } ] e

G = — s
&l =1 fpy=e”lr pE Gh (Bp

n

{a,}
o))

q

=8 - -
7 /a as+l %x sinh (27x)

~ =

m+1, n+2 s+I+itix, {a,}

1 i CAp—y b,) )
=g(x) (4.6)

with the conditions :

h+9<2(m+n), | arg B| <(m+n—4 h—1% @)z, R(@)>o,

R(k—8—1+aj— D<o, j=1,...,n; and R(s}—8—1+bi )>o,i=1,...,m.

Substituting the value of ¢ (p) and g(x) from (4.5) and (4.6), in the
result (2.1), we get:

(0] ix
f x sinh (27x) [ (I=ix+3%) (b—i-a)
o

ix+1+3%, ix—k+3% a)
X afy ( l—k+1 =< p+a

m+1,n+42 s+Itdtix, {a,}

s+1—k, {8} ) 2

(o0
h+2, q+1

=t 2V nkt1y pra)’tE PP

m, n+1( ' s,{ah}
Bir | ) @7
h+1, g {bq }
where R(p) >0, R(@)>o0, h+ q<2(m+n),—3<R()<3,
|arg B <(m+n—ih—iq)n,R(s)<R(bj)+l, J=1leacee, m;

and R(k—8—1+ak—l)<o,k=1, ...... , N,
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And by virtue of the result [ (1); p. 105; (2) ], we get:

+0o .
f xsinh (2n%) [OLix+d) (__a_) ”
S p+a
ix+1+%, ix—k+3%  p )
af ( I—k+1 ; p+a
Gm+l,n+2< 8+I+%:|:ix’{ah})
X
a —k
=2n2.2’}—8—1 p—k+1) (P+a)l+% 178_1
C\7771,7141([3 ’Sy{ah}) (98)
h+1, ¢q g {bq}

where :
R(p)>0! R(a)>o, h+q<2(m+n)’ "%<R(I)<%’
|arg B <(m+n—4h=1q)a, ROKRG)+1, j=1, -y 71

and R(k—-s—l+ak~ <o, k=1,...... , .
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FORM-FUNCTION OF A 'PARTIALLY INHIBITED

CYLINDRICAL CHARGE WITH THE DISTRI-
BUTION OF HOLES OVER n RINGS IN THE
4-FOLD AXIS OF SYMMETRY

By

G. C. Patni, Girraj Prasad and T. C. Jain
( Department of Mathematics, University of Rajasthan, Jaipur).

Summary :

In this paper the form-function of a cylindrical charge with
holes distributed over n rings in the 4-fold axis of symmetry has been
studied. The rings are similar and similarly situated squares and the
holes have been distributed along their sides in such a manner that
at the end of the first stage of combustion, every hole touches all its
neighbouring holes. That part of the cross-section of the charge
which lies outside the outermost ring at the end of the first stage of
combustion has been inhibited.

Introduction :

It has been proved in an earlier paper ( Patni, Girraj Prasad
and Jain, 1966) that symmetrical distribution of points in the
2-dimensional space is possible about 1-fold, 2-fold, 3~fold, 4-fold
and 6-fold axes of symmetry. Consequently, the centres of the
holes in a cylindrical charge fulfilling the conditions of symmetrical
distribution are also to be arranged accordingly. The cases of 1-fold
and 2-fold axes of symmetry are trivial, and hence the only axes
about which distribution of holes may be considered are 3-fold,
4-fold and 6-fold. The form-function of a partially inhibited cylin-
drical charge in which the holes are distributed about a 3-fold axis
of symmetry has also been studied in the paper referred to above.

In the present paper, we have studied and discussed the
form-function of a partially inhibited cylindrical charge with its holes
distributed along n rings about the 4-fold axis of symmetry. The



( 28 )

rings are similar and similarly situated squares and the holes lie along
their sides. Further, the centres of these holes are situated on the
vertices of exactly alike squares. The portion of the charge which
lies outside the outer most ring at the end of the first phase of
.combustion has been inhibited and this inhibition reduces the stages

of burning to two.

Notations :
D =The exterior diameter of the charge.

d = The diameter of the holes of the charge.

L = The length of the charge.

= The web size, i.e., the distance between any two adjacent
holes or between any exterior hole and the curved surface
of the grain. ‘

m =The ratio of the diameter of the charge to the diameter of

D
a hole—H

p = The ratio of the length of the charge to its diameter=]15«.

V,=The initial volume of the charge.

V =The volume of the charge at any instant 7.
S, =The initia] surface of the charge. -

S = The surface of the charge at any instant 7.

It can be seen that the number of holes on a side of the
innermost square can be 2 or 3 as shown in the figure 1.

7 —9
&

N
L

/R

OO O
G-

Fig. 1



Fig. 2—Showing the section of the charge at the beginning of the
combustion, for n=3 and r=1.

These arrangements (fig. 1) will be called category I and II respecti-
vely. Inthe case of the category II, there will be an extra hole at
the centre of the innermost square.

The number of holes on a side of 'the nth ring

=(2n+r—1)=ur+l 1)
where = 2n+4r-2 2
and r=1, 2 for the two categories,

so that the total number of holes in the charge is given by
Nr=(2n+r—l)’=(.“r+l)‘. 3)

Let 2a be the side of the innermost square (i.e. the Ist ring) and 2b
the side of the outermost square (i.e. the nth ring). Then

b=—a “4)
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2V§(F‘r+\/2')“
Now D= . - —d=md
rv2 (m+1)d
_V2 uihd -
4 (#r+\/2)
: [VIm=—1)-2 ]
Al LY .. il 6
ST Y v B
Clearly m > (\/'z"ﬂ-r—l-l) .. (6A)

OO0000O0O
OO00000O
000000

-~

Fig. 3. Showing the section of the charge during the first phase of
combustion, for n=3 and r=1.



Fig. 4. Showing the section of the charge at the end of the first
phase of combustion for n=3 and r=1. The portion
inhibited has been shaded.

At the end of the first phase of combustion, every hole touches
all the holes adjacent to it and the charge consists of

(i) ui exactly alike prisms whose bases are curvilinear

squares like EFGH;

(ii) four exactly alike prisms having their bases Curvilinear
figures like A,4,...... Aynyy X, and lying outside the nth
ring.

At this instant the diameter of the charge

= 2b sec =~ +2_a
4 r
2 ’
= ,a(\/ 2 #r+1)=D,(say) @)



and the diameter of a hole

2a

—=L=d', (say) - (8)
- 2a\* 7d?
so that the area of the curvilinear base EFGH = =5 ) -4
and the area of the bases of the-four outer prisms
_p'2 _ g2
=i__“2 Area EFGH—N . *“ d
4 r r 4
g (m+1)% A
= @ (9)
4(ur+ V72 )2
where A =(7—2) #_+(v'2 —Da. - (10)

Inhibiting these four outer prisms, we have

_p? 4 r (m+l)2A
V°=[T_NrT 4(p,+V 2 ]L
emd? . 3
= 4(#r+,\/~2-—)2 ﬁ("l'—Nr) (pcr-f—'\/z )2—(m—+1)* k, ‘/Ar] (11)
and .
_ D er(1=1)|2 d er.(l—f),2
# (m+1)2A
T g |x[L—er(1—
4 +v2) ] [ Fil=d]
43

=dr+yael® ¢t V2) (m* =N )—# (m+1)T A
—dn (1 +4/7) {VZ (m—1)=2u} (m+N )
(1=f)=7 (V'3 (m=D=2} V=D (A=1¥ ]

(v 2 m—D=2u} 1=
[ 2(,+v?2) ]

(12)
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where f is the fraction of the web. size remaining at any instant ?.

_ Vs—Vs 14
T v T,
=(1-f) (4-Bf-Cf?) 13)

where

A=V 2 (m=1)=2# } [ 25 (n,+v'T) {4p,+V 2 (N +3)} mip
+27 (s + VT ) {N (20 +3v2) + 28 +v2)}me
(2 A+ VIP=2N) e A} (n 17 ]8mp (B, + v/ 2)
[ (mz—Nr) (.U-r—}—\/"z_)z—(m-f-1)'z ,llr A r] (14)

B=2; {/ T(m—1)—2 P[(* +v 2)(N —Dmp—(28 + VI N,
+v 2)(m+ D] 8mp (v v/ 2) [a(m—N) (* + V2 ) —
(m+17 A Y (15)

7 (Nr_ N { »\/7("1——1)—2I‘*r P
C= Bme (k43 2) [n (N ) (b 4y D=t D i A ] (16)

Now L=pD=pmd

2(,+V'2)me
CVIm—D-2u

er. )

In order that all-burnt position of the charge may not occur before
or coincide with the rupture of the grain, we must have

L>e (18)

V2 (m—1 )—2ur

= > 2(# 4V 2)m =pmin ; say (19)
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Now (14) can be written as

A, (m, N
A=A, (m, N )+ —‘—(% ) (20)

where
4, (m,Nr)‘—- {V'z'(nf—l)—2ei';} 2a(r + Vv'2) {4l*r+ V2N +3)}m
+27 (4 + /2){N @20 + 3W2)+(@2e +v2) ]+
8 (# +v 2) [z (m*—N) (v +V 2P —(m+1)?p A ]

(21)
and
{vVZ (m—1)—20 }[{(21 ++/2)*—2N }a-4r A J(m+1)
Al(m,N )= __ r r r rer
r § (4 +V2) lam*—=N ) (r +v 2)=(m+1)*n A Jm
22)
Hence for a given value of Nr’ we have
g A,(m,N
Amax =A, (m,N )+ i _ )
r pmin
=1, a value independent of m and Nr' (23)

Also for given values of m and Nr’ A is minimum when

p= 400, hence from (19)

A min =4, (m, Nr). (24)
Furtherif ~ m=Y 212" 4 (m Nr)=0
V2o
and if m = 00, Aq (m, Nr)

al2v Z'u’_+Nr+ 3]
BE SOV N
S dz dz

Now =7 (71? )le (25)
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which with the help of (13) gives

b‘ 2
=28~/ (26)

where
s AR
~ A—B—=C
=(m+1) [45 (e, +1/2) (2#r+v’7 N,.+\/7) mo+25 (212 — 3Nr
—1) m+27 (642+2v 7 u N +6v2 # +N +3) —du A
(m+1)] =+ 4[pr+v 2 )2 ( 2m?p+2mer+m'-’ — Nr ) — v, Ar
(m+1)?] 27)
p2B=C)
~A—B—-C
=25 [v 2 (m—l)—2#r] [2(#r-. V2 )(Nr~1)mp—(4#r+3\/7Nr+
VI)m—(6k VTN =20 N 43y 3)] + 4lale ++v/ 2) @mt
+2mer+n1-—Nr)-—lLr/_\ r(m+1)~] (28)

47(N —1) {+/Z (m—1)—2u }*
B N r - e = r S . (29)
TR 20 @t 2meN AmP—N )—i A (m+1)?]

S and f for the first phase

Equation (26) gives a relation between s

of combustion. Putting f=0, we get

(=] =

which is the ratio of the surface at the end of the first phase of com-
bustion to the initial surface.
From (26), we have

d* [ S
and Vdif?( ) = —=2Y (€1}
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2

d ‘S).
—] 18
d/Q(So

It is clear from (29) that v is always positive, hence — -

. S .
always negative. Thus s can have only a maximum value for some
o

value of f. Now, for a maximum
d/S\™
?(So) = —pB—2Yf=0, so that
- B (32)

Since 1>f
~-£ <1 33)

and

~B s (34)

From (28) and (29), we get

— B~ U6u, AV TN —2u N 43y T) + @6 43 TN v TIm
=2k, TN, — el 3NV~ Dy T(m—1)—~2u ]
. (35)
so that (33) gives

[(60,+VIN =2 N +3v D)+ +3VIN, +/ 2)m—

2(m+Nr)
or p = ‘('N"":W=Pn (say). (36)

Again (34) gives
[(6r +v N, —24N +3v2 )+ (4, +3vV 2N 44/ 2) m—
2(r +V2)(N —1)ymp] +[3 N,—D{v20n—1)—r3}< 0
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(6 ++4/ 2N =28 N +34/2)+(4r +3¢/ 2N _+4/2)m
orp<___r r rro "7 r r s
> 2k +VTIN —Dm ®
(say). (37)

(36) and (37) give the least and the greatest value of p for a maximum

value of T;,g— If p=p,, the maximum of _,si occurs at the beginning
o 0

of the combustion and if p=p,, it occurs at the end of the first phase.
In order that this happens during the first phase, ¢ should lie between
p; and p;.

Using (19), (35), (36) and (37) in

__B
f= 2y
we have S f=1-2T0 _ 7P (38)
®min min

which gives the value of f for a maximum of < *

(XN o

With the help of (28), (29) and (36), we get from (30)

[;If(éi )]f=l = TR

4k +V 2{V 2(m—1) =28 JN —ym(e,—p)
=4[!-'(Mr+ V2 @mie+2meN +m*—N J—p A (m+1)]
39

and (30) gives with the help of (28) and (37)

[57(_:_ >]f=0 =¥

a0 4+ 2 T(m—1) =20 YV, ~ ym(py—e)
=4[r.(P~r+ Vv 2)22m?%+ 2mer-{—m2 — Nr) —n rA r(m +1)?]
(40)

Hence in general, for any given value of N » if

d/S)\. - .
i —(——) is al t ht fi the begin-
(i) o . <e<en df( S, ) ways positive right from the begin

ning and the charge is throughout degressive.
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(i) e<e<ps, ;17( SS ) is negative in the beginning and then posi-

tive. Hence the charge is first progressive and then degressive.

d{({ S
(iil) o> Tf( =

progressive.

) is always negative and the charge is throughout

<A

These results can be summarised as follows :

*min<p<p, Pr<<P<P2 p>ps
Decreasing Increasing function Increasing function
function of of / in the beginning of f throughout.

S f and the and then decreasing The charge is

S. charge is function. The charge always progressive.
throughout is first progressive
degressive. and then degressive.

Formfunction for the second phase of combustion.

A

o) c

Fig. 5. Showing the burning of the section of a sliver during the
second phase of combustion.

At the begining of the second phase of combustion, the charge don-

2
sists of u,_ exactly alike prisms having curvilinear squares like EFGH
as bases and the length of the charge at this instant
[2(Il-r~|- v 2)mp—{/ 2 (m— 1)—2Mr}]d

=l — =

) AV et
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while the radius of the arc like EH=—;1—— 42)

The side of a square like ABCD= -2-’a~ (43)

Let R be the circum-radius of a square like ABCD and R’ the radius
of the arc of a curvilinear square like LMNP, to which the curvilinear
square EFGH shrinks in time ¢ during the second phase of combus-
tion. If the bounding radii of the arc Lp make angle o each with
the sides DA and DC of the square ABCD, we have

R cos -’4-=R’ cos o=
g .
s R=V r2 2 and R':—‘:— sec o, (44)

For the complete combustion of the prisms, R=R’ so that from (44),
we get (XY

(45)

This being independent of r, the complete combustion of both the
categories takes place when o= Z . Now, at any time ¢ during the

second stage of buring, when the curvilinear square EFGH shrinks to
LMNP, the length of the grain is given by

Baif ¢ ()
r r

_ . A/ 2(m+1) m]
—[(nm—l) 20 +v/7) sec d (46)

This should remain positive when complete combustion takes place,

i. e. when o =

LR
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VI T

Hence (mp+1)— 2 v 2)
-
(m+1) ]
or —1|— =
b mr44/2 —
where 93:[ (n1+1) l] (47)
p.r+»\/ 2 m

Now the area of curvilinear square LMNP

= Area of the square ABCD—8 A DLE—4 sector DLP
a?

= = 4—4tan 44)—(;7—403)56(:2 w]
7

Hence area of all the curvilinear squares

# (m+1) a: v, *(m+1)2d2
— —tan o —4o)sec? ————’——— w) (48
= 8 +\/_)2{4(1 tan o) — (7 —4w)sec® o } B v 2 Fo) (48)
where F(0)=4(1 —tan v)—(7 - 40) sec?w. (49)

Denoting the volume of a prism having a base LMNP at any instant
during the second phase of combustion by V(LMNP), the volume of
the charge at this instant

2
=p, V(LMNP)

”W+W” Vamtl) -
- o 1~ @
8(#+ e )F()[( p+1) - 515 J

#2(m 2 3
m +1)

= G( 50
10(@,4—«/‘2)’ ) (50)

where G(u)=[2(ur+-\/ 2)(mp+1) -4/ 2 (m+1) sec «]F(w).  (51)



w. V(LMNP)
2. ::1 - _r—.

v

o

B (m+1)°G()

G, T = N, /3 = G, B

(52-)
Initially o=0,
Flo)=4-5 (53)
and G(o)=[2(s, ++/ T)(mp+1) =+/ 7 (m+ D)4~ ). (54)

So that with the help of (54), (52) gives the value of z at the begin-
ning of the second phase of combustion as

B0+ 14 - )2+ T)0mp+1) =/ T(m+ 1)
4G+ D0 - N, + v/ 2 - (D A Tme

=vV2 (m-1)-24}]25 (v, +v2) {4 + v (N_ + 3)} m® +
2n(p-r+ \/T){Nr(Z#rJrS\/ T)+(2.u,+\/ 2)ymp + (m4-1)32 {(2p-r+
V2)P-2N))m -4k A J)-8mp(k ++/ 2 a(m? =N Y, ++/2)% -
(m+1)2></*,4\,]

=4 (55)

which is the value of z at the end of the first phase of combustion.
At the time of complete combustion of the grain

o= —ZA, G(»)=0,
so that z=1, a value which z should attain at the instant of complete
combustion.

Let f be defined as the ratio of the distance receded (from the begi 1
ning of the second phase of combustion up to the instant considered)
to the initial thickness.
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(-1

Then f= PE—
,
__V2m+l) ( 1- _l_) (56)
vV2(m-1)- Z#r cos o

Initially =0 and f=0.

7 . vV 2(m+1) . .
w:~l—, =Y [ 1-4/72). 57
For 1 [ f]w= 2 " VIm-D —2“,-( y ) (1))

4
Using (51) and (56) in (52), we get

# (m+ 1220+ 2)me - (V 2m =/ 7 = 2p )(1 = f)]F(v)

4Lz(m® =N )k +~/ 202 = (170 A Nk, v/ 2 )me
(58)

z=1 -

We shall now find out g - for the second phase of combustion in

o

terms of » and Nr'
dz _ /o
ar~ dff 4,
=1 (m+ (v Z(m = 1) - 26 J[4(4o - )1+ / T)mp+1) sec o -
W 2 (m+1) {(120 - 35) sec? o+4(l —tan 0)}] = 44/ Tk AVD)

[a(m* =N ) (8 +/ 2= (m+ 171 A Imp (59)
and
dz ]
22 =-(4-B-C)
%],

4/ 27(m-1)- 2f‘r}["rAr(m+ * - ar, + VZ2)

(2m'3p+2mer+m'-’ - Nr)]

8mp(uuvrz:\?_f')[n(m2 =7I~_Irﬁ)(rur /TR
(m+1)% A ]

(60)



Hence

s %y

S, (d
« (%),
p (m+ D40 = )(i,++/ T)(mo+1) 560 @ = o/ T(m+ 1) H(o)]
2V 2[R, A - a(k, -V 2)*@me+2mpN +m?~N))]
61

where H(0)=(120 - 3;7) sec’s+4(1 - tan o). (62)

Initially for 0=0, H(v)= - 3;44.

and
s et DBa( VD)o + 1)+ T(m+ 14 - 3]
5. 2y Zla(k, +/ 2 @me+2meN, +mi—N )~ (m+1m A1’
N (63)

At the instant of complete combustion v = %, H (0) = 0, so that
from (63)

S

5, ~ 0
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ON A GENERALIZED LAPLACE TRANSFORM
OF TWO VARIABLES

by
P.C. GOLAS*
(Recd. on 26-3-1969)

1. 1ntroduction
The Laplace transform in its classical form is :

oo
J' e ’sro(t) dt.

o

(1.1) f(s) =

Verma [3] has given a generalization of (1.1) in the form :
0
~3st e
ay o= [T enewma
0 ’

which reduces to (1.1) when k+m=4. It can also be represented in
the form

-

(ee]

sy fw=[e" 02" ¥ (h—k+m, 2m1;51) 6 (1) dt
0

where ¢ denotes Tricomi’s Confluent Hypergeometric function given
by the relation

sy  w, @ = FTyqkim omi1; o),

k,m

Ditkin and Prudnikov [1] have defined Laplace transform of two
variables as

oo 0o
(1.5) F(p.9) =J' ‘fe_px_qyf(X, ¥) dx dy.
00

*Present address : Government College, Ajmer.
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We now define a generalized Laplace transform of two variables
in the form

o o0
W) Foa=] [PV @axn) ya—ktm2amt 1;p%)
00

X YG—k+m, 2m+1; qy) f (x, y) dx dy

where ¢ is Tricomi’s Hypergeometric function [2, p. 257].

The object of this note is to obtain a convergence theorem and
some rules and results in operational calculus for (1.6).

2. The Generalization

Let f(x,y) be a complex function of two variables defined on
the region R (0 < x < 00, 0 < y < 00) and integrable in the sense
of Lebesgue over an arbitrary rectangle Ra b 0 x<a, 0y b).

Let us consider, the integral
ab

(2.1)  F(p.g;a,b) =ffe7p ey (pqu)zm b (3 —k+m,2m+-1;px)
00

X ¥ (3—k +m2m+1;qy) f (x,y) dx dy

where p=g-+i# and g=v+ iv are complex parameters determining a
a point (p,g) in the plane of two complex dimensions. Let S be the
class of functions such that the following conditions are satisfied for
at least one point (p,9)-

A. The integral (2.1) is bounded at the point (p,q) which respect
to the variables a and b, i.e.

|F(p,g;a,b)I<M(p,q)

in all >0, b>0 where M (p, q) is a constant depending upon p, q
but independent of a and b.

B. At the point (p, q)
Lim.
oo F(p, 48, b) = F (p,q)



¢ 76 )

exists. We denote this limit by
occo

@) Fea) = [P gy sg—k+m, m+ 1)

00 '
X Y(E—k+m,2m +1;yq) f(x,y) dx dy.

If the conditions A and B are satisfied simultaneously, we say
that the integral (2.2) converges for at least one point (p, g). The
integral (2.2) can be called a generalised two dimensional Laplace
transform. The function f(x,y) is known as original and F(p,q) as
image.

To save space we denote

@3) P " § G—k+m, 2m+1; px) = G(px)
where no ambiguity arises.
3. Convergence Theorem

THEOREM : If the integral (2.2) converges boundedly at the
point (po, qo), then it converges at all points (p, g) provided that

Re (p) > Re (p ), Re (9) > Re (g ) and

( i ) *_k:tm #* 0, —ls _2’ :
or
(ii) $—k+m = 0, Re(m)>0.

Proof : Using the.notation (2.3) we can write (2.1) as :

Fipgiab) = [ [ 6on) 6@ fop) ax dy
0o 0

b

=[Gy ax &g"yy)) 2 f Gg ) foxsn) d
o

Integrating by parts

a G(qb) d G(q ’3)
- f G(px) oW fG(qom)f(xm) dn—f ”5( G, ,y))
o o ?

Yy
[ 6@ msexm dﬂ
(]
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a b b
= f GG(;pfc)) %f Bl Rk [Gc(f,qb,f) f G(g,n) fEn) dy
[

b ¥
d(_G(gy)
- of zy-( 5 )dy 5l' Gla,m) f(Em) dn],

a b
— _G(pa) G(gb)

X b
d ( G(px) G(gb)
- J' % ( o) )dxéf Gp ) dt [G(qo D) ! G(g ) fEm) dn

Yy
- [4(825)o a0 e a).

Let
4
3.1 (x,y) = fG(pOE) dEJ Gg,m) dn.
o o

Therefore

b

o _ _G(pa) G(gb) G(pa) G(
(-2) Fp.giab) = Wa(a’m G, a) o dy( G(qqyy)) )

a

a
G(gb) [ 4( G(px) d ( G(px)
6(a,y) dy —G(qob) dx(G(P ox)) Slakjdrs f dk(G(pox))dx
\ 0 )

(9y)
f dy(G(q y)) 6(x.y) dy;

Since (2.2) converges at the point (po, qo), therefore

(3.3) [0 | < M(ppa) = M



Now
k—
G ek R (o ek
e "o Y(3—k+m2m+1;s R)
| —R6=5,) (R s00) = o(1), (R->00);
since [2, p. 278] : @
3.5)  yE—ktm2mtlz) o XM 6 oo).

Again let us set
Q0 = y(3—k+m2m+1;x)
then by [2, p. 262] :
(i) If }—k<4m 5~ 0 or a negative o integer and x—0, then

F(—2m) F'(2m) —2"’
38 2 g krm Y TA—k+m

or

(ii) If 3—k-+m £ 0 or a negative integer, m = 0 or.a positive
integer and x tends to zero, then

(— 1)2m—i—1
(1) Qo mTRE +m)[logx+¢(%—k+m>—¢(2m+1)

@2m+1)! —2m
—0 |t

or
(iii) If }—k==m £ 0 or a negative integer, 2m is a negative
integer and x tends to zero, then
(—1)~2m—1 —2m_
I Ry (= == [log x-+yG—k+-m)—
—2m—1) !
=2m+ D40 |+ s
or

(iv) If }—k+m s~ 0, m>0 and x tends to zero, then
3.9) 0 o™ x—2m'

Using the results (3.6), (3.7), (3.8) and (3.9), we have

lim € y@G—k+m,2m1ist)

120 75! (3 —k+m.2m+ Lisot)

= (SIso)_zm =1
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also
R R
d G(px)) & d G(px))
fd (G(px) ¢y x| M J.E Glp_x))
o 0 o
G(px)
G(p x) x=0
Therefore
lim.

a - oo — 00 G(p. G(9y)
b : o0 F(p,q;a,b) = g — U‘-.fdx(G(p:;))) _fdy( G(q y)) 6(x,y) dy,

from which it follows that the condition B is satisfied and the theorem
is proved.

4., Some Rules :

Now we give some rules in operational calculus for (2.2). We,
however, consider the following more general form

o0 OO
@) Foa=ra] [P 00" @) ™ s —k-+m2mt1;px)
o o0

X(F—k'+m'2m" +1;9y) f(x,y) dx dy
which we denote symbolically as
m,k
F(p.9) __ f (..
m' k'

We further use the notation

m,k
F(p) —=f()
to denote the generalized Laplace transform

o0
@2) Fpy=p [ e P o™ vk—F+m2m+1:p9) £ ) dy.
[v]

Rules : 1t is plain that if
Fxy) = fi(x) £3(»)



and if
m,k
Fy(p) — £100)
. m',k’
Fy(q) ——12(»)
then -

F(p,q) = F,(p) Fy(9).

Similarly, it is easily seen that if
m,k
Fy(p.g) _ 2 fi(x.)
ml,kl
m,k
Fy(p,q) —_ falxs)

m' k'

....................................

then
n mk n
—_—
> Fpa) 23 > [
r=1 mk' r=1
If in (4.1) we replace p by p/a and g by g/b where a and b are
constants, we get the so called ‘Similarity Rule’, i.e.
mk
(4.3) F(pla,q[b)-_ " f(ax,by).
m'k’'

On differentiating the relation (4.3) with respect to a and b
partially and then putting a and b both equal to unity, we obtain
m, k
o F = a m F(pg) —_ . x ~f (x,9)
ml kt
m, Ic

F(p,q) _ B~
m’ k'

2 £ (x9).

aq 37
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'If after dividing (4.3) by a and b respectively and integrate
between (0,00), we get

69 mk ©oC
J'a-l F(a,g)da __, _]‘a_lf (a,y) da
0 m'.,q' o
o0 mk 00
fb F(p,b) db _f bl F(x,8) db
m k' o
and
: o0 0 mk 00 00
f J'(ab) KF(a,b) da db : f j(ab)‘l f(a,b) da db
o o mk'o o '

provided that the integrals involved exist.
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STUDY OF MEIJER G-FUNCTION OF
TWO VARIABLES (PART II)
by
A.N. GoyaL and MRs. S. SHARMA*
[ Recd. on 20-11-1969 and Revised on 29-9-1969 ]

ABSTRACT

The sum of infinite series involving Meijer’s G-function of two
variables defined by Agarwal (1) have been given in Meijer’s

G-function of two variables.

INTRODUCTION

In the first part we had given a few finite series (2). Meijer’s

G-function of two variables defined by Agarwal (1) is

G:I?:sz';:mz [;I ‘ @,); dpz)'} : { (b )(cg) ] : { €V } ]

+i00 400
=f f b (s+0) ¥ (s,0) x°y' ds dt «.(1.0)
—ico —ioco
! 21
where $(s+1) = 7 ['(1=a,+s+1) 2 M(a,—s—1)
Jj=1 J j=1+n 7
P2 -1
(1.1
jgll“<d,-+S+')] (1.1)
ml nl m,
.ﬂlr‘(e-‘“-’)_n l"(b.-H) _77 l"(f.—t)
Wst) =2 a
n M(1—e+s) n M(—b,—s) 77 n(—f+1)
Jj=14m, Jj=1+n, J j=1+my J
ng
7 I"(C +1)
=1 7 a2

q1
o N(l—c,—1)
J=1+4nyg
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O < Ga, 0K MGy, 0SNGy, 0K MGy, OSMK Py - (1.3)
(fp) = oy, 0z, O3, ocp 3 (am’p) s ¢m+1, m+2, ap ;
(“pl)+Y+Y1=(a1+'Y+'Y1)s(aa+Y+Y1),(03+Y+Y1)’ . +Y+Y1)

- (1.4)
o< 20farg x| < 7 (0—}o); 0 < 20y, |argy | < z (0—36) - (A)
© =p1+q,4-0, +qz.3'= my+n,+n,, v, = my+ng+n, ...(1.6)

Also the sequence of parameters (eml), ( fm2)’ (bng)’ (c"s) and

(a'h) are such that none'of the poles of the integrand coincide. , Th'e
paths of integration are indented. if necessary, in such a way that all
the poles of (ej—s),j=l,2,.. ;my, and (S, —1), k=1,2,...,my lie
to the right and those of (bj+s)’ J=1.2,....0 T Ck-H),'k _ 1,2
..»ngand [ (1 —aj+s+t) J=1,2, ,n lie to the left of the imaginary

axis. Also if the parameters are given as in the Lh.s. of (1.0), we

(XN

shall abbreviate it as G(x,y) or G [ ] and in case any one of them,

is different, only the different one will be mentioned e.g.

@;Z::m[ {(a, )id, ):b, )ie, )}{el+v'(e=, )f1+*1'
(for )}]

will be written as

G0 01 ot eny) shitr G} |
here after

Further the following known results will be required in the
proof of the sequel

%58, P ()] (c—a—b)

zFl( . l) = Te—a) =5 R(c—a—b)>o0 .7
a,i.*.]’ B, Y, 8

oFi (o * 1)

7!“—34‘1 a—y+1, a—§+1
_ D=8+ (@—y+ )@=+ (x—B—v—5+1)
P+ (e—B—Y+D)M(e—y—8+DM («—F—5+1)
R (x—B-y—38) > —1 (1.8)
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%5 +1, B
F( vy +L By .1)=P(“_B+1)F(“—Y+l)
af's %, a—ﬁ+l,a_Y+1~ Mt (@—B—y+1)’

R@—28—2y) > -2 ..(1.9)

—2b,~2s

g y~ (61 +9) . (2.0)

1Fy (by+s; — ; t/x) = (x2—xt

O R D) '
d—s7 ~ FEF(I—sF7) -

o 0\=2s (-
G T =rmra- s)[”" : (1 s) C°s”]

o< 7, R(l—23)>a ..(2.2)

g (——S) (s)
(Sin 8)! 7% = oo Y)

a Sin (ﬁy+l)0, o< AL 7,
r'(—)r(z s)Y—O - Ty '

R1—=25)>0 ...(2.3)

Theorem I : If conditions (A) and R(¢)>0, R(b)>0, then
b——b c—
S by €0
YYI_O‘Y!Y1"-'(1+b1—b +‘Y) P(H—cl—c +Y1)

C;[y (b2,q,—1), b; 1471, (¢2,g,—1), } : { }]

M (by—b+ 1)lp (ci—c+ 1‘) @[ ;] ‘ . (2.4)

Proof :—In the L.h.s. of (2.4), write the value of G(x,y) in the
contour form by (1.0), change ‘the order of integration and summation
which is justified under the conditions R(c)>0, R(b)>0, simplify, use
(1.7) and interpret again with the help of (1.0), the r.h.s. follows~

Theoyem II : If conditions (A) and | 2| < 1, | Ay | < 1, then

©  (— Y+Yl hY h, Y1
2 Gl o, _pe,+rie,_p.

et 03]

— =k Py ™D @[T—f—h 1%,,—1] w(2:5)
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Proof :—Identical as for theorem I.

Theorem III : If conditions (A) and R(e l+k)<1’ R( fq _ 1‘+'k1)
1 .
<1, then
o Ty PO (€, ) (K) WD)
p) £z

x
Y =0 ('5)yp(7‘_eq, 1

+I+Y)I"(A k+1+'Y)|-'(/\1“f L)

POt U )
X

P —kat L) 717, ! (*‘)

/\ (C _1)9 l} {'\+Y' (ezs 2)- eqz__1+k,

Y 7‘l-*"'YI’ (.fziq:__z)sfqz_ 1 +kl9_Yl}]

‘ ' —1
=[ra—e_ —ktvrOr, kD]

(XN

q ___l)a A ;(qu_l): '\1} : {As (ezqu_ 1): k 5 7\1'

oy _hla} = 26)

Proof :—Identical with theorem I. Use result (1.8) to sum the
inner series.

Theorem 1V : If conditions (A) and R(),+2e ) < 2, R(,\1+2f )< 2,
then

(o0 /\/\1(—+1) ( +l) (e - (f "‘M)(‘-—I)Y—PY] i
z Y "4z

e T.=0(2 )Y (7)Y1 yly !l (2"“"q,+1+7)

P+ I (K1+Y1) ;
X

M@n fq1+ I4+v,)
G [; ] {} : {} . {27\+Y- (e"q,——l)’ A=Y 2/\1+Y1a (fa,ql__ l)akl_Y]}]

X
=G[y ‘{ } H { } . {2)\; (eZan) s 2A.1) (fg,q’)}] ._.(2’7)
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Proof :—Identical with theorem I. Use (1.9) to sum the inner
series.

Theorem V : If conditions (A), | arg (x—1) | < z (0—3o), | arg (y—1) |

<alo—g) ] < LIty < 1

then :
C;) x201‘2+Y tY y202_2+'Y: ’lY1x
Ys Y1=0 H L Y1!

{(a )+Y+Yl’(°‘ ) =Y Yl} {bli(bﬂ ) Y,Cp(cz, ) Yl}

G[ —2
(e, )43 U] )+n}]
=(x2-xr)"b1 (yz——ytl)'_c’G[(xz—.xt)— , (2 —ty) 1] ..(2.8)

Proof :—Almost identical to theorem I. Use (2.0), replace s
by s+r and ¢t by t+r;.
*Theorem VI : If conditiens (A) and 00 < 5, 0< o<z R(1—2b,)>0,
R(1—2¢,)>0.

thenG[" (35 (0,0 by (e} s by ()5 U )]
cos vy @
+2Yil o (@, D13 )1} butbe )~ b= 2x;

€ =t s |+ (S 0050, 00
(Ch et 1]

(0] ;
2 208 Yy [x . s e, ’
+ sz= L yh (; y'{(ap,)+*n,(dpz) 1} {(qu)’c‘ (c,ql)

¢—2v,}: {(e ): el'—i“"‘Yn;(fqz)‘f'Yl}]
Ty (sm —2b, C;[x/sxn2 0/2 ]+ o (sm ) —2c,

G[ y[sin® ¢/2 ] (2.9)
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Proof :—Identical with theorem V. Use (2.1) and (2.2) to
obtain the inner sum.

*Theorem VII : If conditions (A) and 0< 8 <z, 0< d<a, R(2—25,)>0
R(1—2¢)>0

>

then
K 1 G x|{(a Y+y;(@ Y—v}:{by (bss )—7y, by—1—2v -
YiOx [ynv py Yy YO0 Org )7 Oy =12y
1]
0o 5 .
i ; d - : b > ) ) Y1
+ 37 Gl 06,1 )i e ey,

a—1-2y;}:{(e ); —c1+-%+n, f )+n}] sin (2y;+1) ¢
qq g2

\
in? o) [
(i 0)1_—2b1 -\/2,7 G[;/sm [} :l+(sin ¢)l 2¢cy

‘—/2'5’ G[;/smw] .(3.0)

Proof :—Identical with theorem VI. Use (2.1) and (2.3) to
obtain the inner sum.

Particular cases ;

We give only for theorem I in the sums, for other theorems by
following the same scheme a large number of particular cases can be
easily arrived at.

(1) If ny=p,=ps=0, then we have

—b -
oy ® QI)Y (e cql)Yl

3 — —
Y., =0 Yy ! D (1445, bql)P(l+Y1+C1 qu)

X

(;mla"l [ l_bl_Y:l _(bz, gy— 1): (l -b)
X X
(e ) ]
qnqi q?
— Mg, Ng l_cl—Yn l—(cl!ql'—l): l—c
y
41,92 (fql)
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)

o]

- —1
= [r(bl—b+1) mcl—c+1)]
q,) q15 92

> [+
(2) Result (3.1) will yield a very large number of very

interest in partlcular cases by giving various values to the para-
meters in G and using H.T.F. Vol. I.

my,n, mg, Ng

(c)
LN SR |
(f) el

q1,92

() If m=m=ny=m,=m;=p,=p,=q,=q,=1 then

ro0 (b= bl) (0—1'1) (PJ (V)Yl : .
”fzoyvy,! P(l-{-y) F(1+Y1) Fy (% gy, vy 6;-%,—Y)

=D Gi=b+1) M (e—cF D F, (5 8, v; 65—%,—3)  -.(3:2)

where A=1—a,+é,+f;; i=b,+e}, v=c,+f;, §=d,+&,+/;/
(iv) If ny=ny=m,=m;=p,=q,=nz=1, p,--O g,=2 then
oo (b— bl) (C—C,) (i‘) ()Yl
o TR T () T (T [ 5 v ABimx—)
= [P (Bi—b+1) P(c,—c+1)] 1 F (vaB x,—ry)
where A=1—e,+e,, B=1—f,+f;

(v) If n,=p,=0, n,—na_q,—2 m,=my=p,=-g,=1 then
oo (b, +e1) (cx+f1) - b,) (c—cg) Ve '
o] TPy Fbm 2)P(1+n+c1—c2) - |
Fy (B+Y, V411, byt €y, €a+f1; 0;~X,—))

=[M(b—b+1) M(e—c+1) ] _
F (#’ v:b+e15 c2+f;,s oa x, y) . (3'4)

(vi) Ifnz:_—n3=q1=p,=0, my=1, e;=b, b =1—a_ and if
' T4 V21

we take the limit as y tends to 0, we get results of Bhise (3) and Jain
(4) by the property Agarwal (1). X

[

(a)

]

dt ny,0,0,m;, 1, ml,n1

(e ),0] -

y—0 71,0,0,4,
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. GENERALISED STUDY OF THE
FORM-FUNCTION OF A PARTIALLY MODIFIED
MULTITUBULAR CHARGE WITH HOLES
DISTRIBUTED IN A 2-DIMENSIONAL SPACE
G. C. PaTN1, GIRRAJ PrRASAD & T. C. JAIN
Department of Mathematics, University of Rajasthan, Jaipur.

Sommary :

This paper consists of two sections; in section A the general
theory of symmetrical distribution of points about various axes of
symmetry in a 2-dimensional space has been discussed. In section B
the formfunction of a cylindrical charge having its holes distributed
along n rings in a 3-fold axis of symmetry has been studied. The
cases of 4-fold and 6-fold axes of symmetry have been discussed in

subsequent papers.

Introduction :

To obtain as progressive a charge as possible, the formfunctions
of different shapes of multitubular powders have been studied by
various authors, e.g. bi-tubular powders by Kothari (1963), tri-tubular
powders by Jain (1962), quatretubular powders by Patni and Jain
(1963), pentatubular powders by Jain (1964), heptatubular powders
by Tavernier (1956 a, b), Gupta (1959 a, b), Kapur and Jain (1961)
and nineteentubular by Kothari (1964). Jain (1964, 65) has studied
the formfunction of more general types of multitubular powders having
2n, 2n+1, 3n and 3n+ 1 holes, In all these cases the centres of the
holes are symmetrically situated on the circumference of a circle or on
two circles termed as rings, and all holes having their centres on a ring
touch their respective adjacent holes at the end of the first phase of
combustion. There is, however, no contact between the holes of the
first ring and those of the second ring at the end of the first phase.
Thereafter the unburnt space is consumed in various stages.

The aim of the present paper is to study the possibilities of dis-
tributing the holes along any number of rings in such a manner that
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their centres are symmetrically distributed over the entire area enclo-
sed by the outermost ring. This would result in every hole touching
all the holes adjacent to it at the end of the first phase of burning.
If the space now lying outside the outermost ring be inhibited, the
slivers between the holes, which are exactly identical, will burn up,in
one stage so that the number of stages of combustion will be reduced
to two. As will be clear from the following discussion, such an
arrangement of holes is possible only along the sides of similar and
similarly situated regular polygons and not along concentric circles.
Further, the choice of such polygons too is severely restricted. We
shall first discuss the theory of symmetrical distribution of points.

SECTION A
Theory of symmetrical distribution of points in 2-dimensional space

As already stated, this section deals with the symmetrical distri-
bution of points with particular reference to a 2-dimensional space.

For clarity, it is desirable first to define certain basic terms used in
the following discussion.

1. Translation : A figure is said to be translated when every
point of it is moved through the same distance in the same direction.
Such a motion is called franslation and can be represented in magni-
tude and direction (but not in position) by a directed line segment.

2. Rotation : A figure is said to be rotated about a straight line
(called the axis of rotation) when every point of it moves as if rigidly
connected with the straight line (which is completely fixed in space).
The angle between the initial and final positions of any plane parallel

to the axis and rigidly connected with the figure is called the angle of
rotation.

3. Congruence : Two figures are said to be congruent to one
another when each can be brought to coincide with the other by the
movement of its parts without altering their relative positions. A
figure can be brought into concidence with any congruent figure
by a translation followed by rotation or vice versa.

4. Operation : A translation, rotation or combination of these
is called an operation. An operation may be represented by means
of symbols. Thus, a rotation about an axis through an angle « may

be represented by 4 (#) or 4, and a translation through a distance ?
by T.
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If two or more operations are written one after another, it will
mean that they are applied to the figure from left to right. Thus
A B means that first the operation A acts and then the operation B.

5. Repetition and Symmetry :

(@) Rej etition : In a collection of like figures, the entire set
can be produced from any one member by repetition, i.e. by the
successive applications of the same operation. Any kind of opera-
tion—translation, rotation or a combination of both—may be used to

generate a periodic repetition.

In such a case one figure is regarded as the progeniter of
the others. The rest of the neighbours are produced by the
application of the operations (say) 4, A% ; A%, ... etc. The operation
which produces the first figure from itself is called the identity opera-
tion and is denoted by 1. Thus the complete set of operation A4, 42,...
produces the complete set of figures and has one to one correspon-
dence with them. Such a set is called a group.

(
(b) Symmetry operations and symmetry elements : Any opera-

tion which produces symmetrically arranged objects in space seperated
by equal intervals is called a symmetry operation. Thus translation,
rotation or a combination of both are all symmetry operations.

The geometrical locus about which a group of symmetry opera-
tions acts is called a symmetry element. Thus a point about which
an operation of translation 7T, T2, ... acts or the line normal to the
page about which the rotation A4,4% .. all act, are symmetry

elements.
It is clear that for rotational symmetry the permissible angular

repetition interval « is gnE’ where 7 is the number of repetitions of the
angular interval to complete a circle. The symmetry element corres-
ponding to this « is called n-fold axis, because it is associated with an

n-fold duplication of any figure.

Limitations of o set by translation periodicity
In order that a 2-dimensional space may be filled up symmetri-
cally with points, as required in the present case, there will be simul-
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taneous occurence of repetition by rotation and translation. This
imposes severe restrictions on the value of «.

Q x. Q

>— '
t

Let the starting point P undergo the symmetry operation T. 4.
consisting of a translation ¢ and rotation « resulting in the points
P"and Q such that PP'=t, / P'PQ=o and PQ=t. Similarly the
symmetry operation about P’ produces Q' such that P'Q’=t and
/L PP'Q'=q. Now QQ' has the same direction as PP’ and in order
that it may be consistent with translational symmetry, it should be an
integral multiple of the original translation PP’. Henceif QQ'=x,
we have

x=mt, where m is a positive integer.
but x=t—2t cos «, from the figure
2 cos a=1—m.
Since m is an integer, 1—m is also an integer, say N.
2cos a=N

_N
or cos a= 5
Thus the value of cos o is restricted to one-half of an integer.

But, as shown in the following table, there are only a few such values
as give possible values of cos a.

N cos o 3 n=—-2: x=t—2f cos «
-2 —1 7 2 3t
-1 —1% 23” 3 2t

0 0 3 4 t

1 3 - 6 0

N
—
N
N
—
I
-
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It is therefore clear that symmetries of rotations combined with
those of translation which can be applied to points to fill a two-
dimensional space are about 1-fold, 2-fold, 3-fold, 4-fold and 6-fold
axes. The symmetries about 1 and 2-fold axes are trivial, and thus
those about 3, 4 and 6-fold axes are the only symmetries which would
meet our requirements. Consequently, the czntres of the holes will
be distributed about these axes only. In the following pages, the
case of 3-fold axis of symmetry has been discussed. The cases of
4-fold and 6-fold axes have been studied in subsequent papers.

SECTION B

' Formfunction of a Partially Inhibited Cylindrical Change with the
Distribution of Holes Over » Rings in 3-Fold Axis of Symmetry
Notations :
D = The diameter of the charge grain.
d = The diameter of holes in the charge.
LR The distance between any two holes or between any hole and
" the curved surface of the grain.

L = The length of the charge.

m = The ratio of the diameter of the charge grain to the diameter of

any hole. -

p = The ratio of the length of the charge grain to the diameter of
the charge grain.

S, = The initial surface of the-charge.

§ = The surface of the charge at any instant .

8 = The density of the charge grain.
n = The number of rings. '
N = Number of holes.
It is clear that in the case of three-fold axis of symmetry, the
centres of the holes will be situated on the vertices of exactly alike

equilateral triangles. Moreover, these holes wlll be distributed along
the sides of similar and similarly situated equilateral triangles. We
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shall call these triangles as rings.. The number of holes on a side of
the innermost triangle may be 2, 3, or 4 as shown in the figures

OO
00O
S 0000 =
OO0 00O
[»]

O O G® OO
OO0HPHOOOO0
O O O OO O &

We shall designate these arrangements as category I, I1 and 111

respectively. In the case of category III, there will be an extra hole
at the centre of the innermost triangle.

Now the number of holes on a side of the ath ring
=3n—2+4r =1 +1, r=1,.23. «.(D
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and the number of holes in the charge is given by

N = }(3n+r=2) Bn+r—1)
=4+ 4D, r=123 ()

where ®o= 3n+-r—3 ...(3)

Let 2a be the side of theinnermost triangle (i.e. the 1st ring)
and 2b that of the outermost triangle (i.e. the nth ring).
Then
I

sz"a ...(4)
Now
D=40[3("—1)’+ i )
r43
. . _TrV3m+1)d
"a_h4(”r+v3) .. (5)

Charge at any time ¢
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Also
_ 1

B =g (2a—rd), r= 12,3

[v3(m=1) =2 ]d
=T 2 V) ~elf)

Clearly we should have

Charge at the end of first phase of combustion

Af the end of the first phase of combution, when all the circles
in the rings touch each other, the charge grain consists of

(1) p2 curvilinear triangular prisms having the same cross-
section;

(ii ) three curvilinear prisms in the outermost region of the
charge having equal and similar cross-sections.



( 9% )

The diameter of the charge at this instant

i a
= 2 (bsec —6-+T)

2a ,
= 5 @k +V3) = D' (say) -(7)
and the diameter of any hole at this instant
= —2’1 = d’ (say) - (8)

The area of the bases of the three outer curvilinear prisms
- D2 2
= "% — AABC—6 sector BPQ—3(k —1) '_'g—
2
- u{f_m:B_A! az
= 320 VI
where A = (8a=5v/3)p, + B V3 -9z - (10)

Now when these outer curvilinear prisms are inhibited from
burning,
r

_ [#D® 5 d? '"',.(m‘f‘l)zA
Vo= [T'“Nr R VY RV TE "2] ok

...(9)

d® '
= 37(75;":»—\/3‘)"*’ [8”('"2‘”) V3 —m )t e, Ar] -4

and.
p SU=DP . (4 =N wm+1PA,
V=[”»{7-_’2'“ —aNga T ‘3@?«/’3}“’2

x [L—er (l—f)]

- 3'”2@%:’{737[8”(’7“/3)2 (=N )—(mt 128, A,
~8alu, + V3V 3(m - D—28 }x(m+N )11
~20(y/3(m=1)=20, PN, ~ DA =1 | x
[pm—ws(m— =2 30 —f)]
2(k, +4/3)
. (12)
2= - = (—f) (4-Br-CPY) - (13)
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where

4 ={v3m—D=2¢} [4a(r +v3) {dp +V3I(N +3)} mp
F4a(e, + VI N (28 +3v3)+2p +v/3)}mp
H(@r 4+ VI =3N)2a—p A} (m+1)7] =

[2me(u, +4/3) [8a(m*—N ) (u + V3P —(m+ D p A, ] - (14)

B={y3m—1)=2s ¥ [da(s +v) N —)me
~45Q2u +V3 N +4/3) (m+1)] +

[ 2ol +3/3) (Ba(mi—N ) (& +x/3f—(m+ 11 A }](19)

27 {V3(m—1)—2p ¥ (N —1)

€= gmole ¥V 8 (N ) (i F v/~ & A1 (1O
Now
L=pD=pmd
2( #r+ 43 )Ymp
TVam=1 =201 °F S

In order that all burnt position of the charge may not occur
before or coincide with the rupture of the grain, we must have

L>e
r
L V3m=1)—2,
or P~ m— = o min (18)
) V3Iim—1)—-2 "
(14) can be written as
Al ( m, Nl')
A=A (m, N) + =7 ee(20)
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where
{V3m—D)=21 }
Ao(m’ N )= 2 2 P
r2(p +3) { 8a(m*—N ) } (u +v/3)*—4 A _(m+ 1)°}
r r r rr
[4,—,(ur+v 3){4p,+V3WN +3)} m+dz (1 +v/3)
(N, @r A3+ ar+vD)] ] -(21)
and ;
W 3m—1)—28 Y2+ 3 =3N 2a—p A 1(m41)?
A= o V) B =N ) G TV B, (e T T
. - (22)
Hence for a given value of Nr’ we have
Ay (m, Nr)
A max = A, (m, Nr) + o
= 1, a value independent of m and Nr .. (23)

Also for given values of m and Nr’ A is minimum when p=+coO, s0

that from (20)

4 min = 4, (m, N ) ..(24)
',/3-}-2,4&’
Further if m =—73— , A, (m, Nr)=0
. . 27 [4v/38 +3N +9]
and im0, AN FV kS,

Taking the minimum values or Nr for r=1, 2,3 and n=1, we have

m=1, N=3 A,=30.02
pa==2, N;=6, A ,=44.76
pa=3, N;=10, A3=59.51

2;;(44/3+18
sothat A4, (m, N;) = —&_‘—(4{1‘(2\—\/,'3_}_: 3)0‘.02 =&
_ 2a(8/3+27)
A, (m, N,) = 87(7+44/3)—89.52 98
Ao m, Ny) = o TSVt TN = 97

87(12464/3) —178.53
Also for lvr=oo, B =00 and A4, (m, Nr)=0.
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Using (13) in the relation

—_ = — .-.(25)

So (4lgf)f=1 (
we get é.s; = a—Bf—yf? ...(26)
where

A+ B
« = Gopoc= [ (D Balt, +v3) QG+ VI, D} me + 22

{fxu’?— 9u, =3ym+2a(1210 2+ 12¢/3p +4v/3p N +
— ‘ -; i 2
3Nr+9) p.rAr(m-}—l)]J = [ 8,4(Mr+ Vv 3)

(2m®p+2mp Nr+m2—Nr)— koA (1) ] -(27)

g = jf;fé:zws(m-n—zur] [ +v/3) (N —1)em — 25

{4e,+v3 (3N +1)ym—2z {+/3 (N + 3)-2&,
(Nr—3) } ]+[8,7(y.’_—}-\/3)2 (2m2p+ 2mp Nr+m2—Nr)

—p, A, (m+1)] (28)
- 3¢
1= "4"B-T
6a(N —1) [v3(m—1)—2~ F
 Balr, ++/3)* @m® o2m g N +mi=N)—p A (m+1y]
. .. (29)
From (26), we get
da(s
7 (s )=—p-21s . (30),
d 4 (S
an ai(w) ==2v . (1)
It is clear from (29) that v is always positive, hence —d‘%— ( —bli ) is

egative. - ;
always neg Thus s, can have only a maximum value for

some value of f. Now for a maximum,

d (S
& (s) =—B~2Y/=0, so that
e B

2y
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Since 1 > f> 0, we have

_B 2

<1 (3

and —F >0 . (33)
2y

From (28) and (29,, we get

B _ - — —
—_ZY—_[{ V3N +3)—20 (N =3) }+{4 4 +v3BN +1)}m
2p, +v/3) (N —Dem ] =+ 3(N =) [v3 (m=1)—2p ]
...(34)
*. (32) gives
[{V3 (N, +3)=20 (N =3)} + {44 +v3 (3N +1)}m
—2(r AV WV —Dem] + 3 (N —1){v3(m—1)—2 }<1

2(m+ Nr)
or (N Om = p, (say) ...(35)

Again (33) gives

[{V3(N,+3) =26 (N,=3) } + {4 ++/3 (3N +1) } m—
20, +v3) (N~ em] + 3(N —1){ V3(m—1) =24 } >0

(‘/3+3‘/3Nr+4“ i+ 4/3(N_+3)—21 (N —3)
r r ror _
23 +a) (D) m e ()
...(36)

orp <

(35, and (36) give the two values 6f p between which the value of p

should lie for the maximum value of —S'?— to occur between the begin-

o

ning of the combustion and the rupture of the grains. If p=p,, the

maximum of g occurs at the beginning of the combustion and if

p=p, this maximum occurs at the rupture of the grains.
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Using (22), (34), (35) and (36) in

= B
f= 2y
F= a0  PuTE ..(37)

pmin  p min
. S
which gives the value of f for a maximum of —S;— .

From (30), (28), (29) and (35), we have

[71‘;('5_)]#1 —=E-a

Balp, Hv W3Am-D -2 m (N -D(e-p)
- [Ba(w, +v3)* @m* o+2me N +m?-N ) -4 A (m+1)°]
.(38)

and from (30), (28)' and (36),

[57 (Si)] f=0

8, +/3) {V3(m—1) =263 m (N _=1) (53 -p)

= 8a, TV @ ¥ 2 N e =N )= A (mF 7]
.(39)

Hence, in general, for any given value of N +

d ; .
(i) if pmin < p < p,, ar (SS—') is always positive right from the
o

beginning and the charge is throughout degressive;

'S
(ii) if o2 <P P25 df ( ) is negative in the beginning and then

positive, SO that the charge is first progressive and then
degressive;

S .
(iii) if p > 03 » ar ( )15 always negative and the cha?rge is

throughout progressive.
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The above results can be summarised as below :

pmin< p < py <P <o P> P

Decreasing function Increasing function Increasing function
of z throughout and of z in the beginning of z throughout.
S the  charge is and then decreasing The charge is
degressive. function. The charge progressive :
is progressive at throughout.
first and then
degressive.

[

Formfunction for the second phase of combustion.

A'

At the beginning of the second phase of combustion, the number of
curvilinear triangular prisms .
=[3(n-1)+rP=n2 .‘ ...(40)

The length of the charge at this instant
2m p [#r+\/3] -4/ 3(m- 1)+2#r

The radius of an arc like NL = % .(42)
The side of a triangle like ABC — 2:’ ..(43)

Let R be the circum radius of a triangle like ABC and R’ be the
radius of an arc like DE of a curvilinear triangle at any instant during
the second phase of combustion.
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From A® BDL and OBL,

R cos 30°=R’ cos o = _‘ri ...(44)

: = 4 el ...145
. R \/3 and R’ = rsecm 45)

For the complete combustion of the curvilinear triangular prisms,
R'=R and (45) gives

— V3 _ k4
cos o= "5 cos —&
VI »162- (46)

which is independent of r. Hence for all the three categories, the
complete combustion of the charge always takes place when

0= .g-. At any instant during the second phase of combustion,

when the base of the curvilinear triangular prism, i.e. LMN becomes
DEF, the common length is given by

L'=L-e -2 ( R'_f’_)
r \ r

= [(em+1)- 322

2(” TV3) secw]d ...(47)

\

For L' to remain positive up to the complete combustion of thegrain,

i.e. when o=-2 we should have

6
V3(m+1) 2
*m+ 172G, + v 3) v3=0
or P> s
(m+1) i 1
where oy = [ by o ] 2 .. (48)

Now area DEF=AABC -6 A BDL -3 sector BDF

2
=%['\/3—3mnm—32- (g_ w>msm]

Area of the bases of all the curvilinear triangular prisms at any
instant during the second phase of combustion

3, % (m+1)d?
= —F&TW?)E [‘/3"3"’"“’“ 3( 3‘2“’)“’“"’]
r
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3u, 2 (m+1)%de

where F(w)=\/_3—31anm—;—(—’;’—— w)seczw ... (50)
Denoting the volume of a prism having a base DEF at any instant
during the second phase of combustion by V (DEF), the volume of
the charge at this instant

= n, 2V ( DEF)
3p,* (m+1)d V3 (m+1)
=16 (», + V3)F ["’P+1 “2(, +V3) S ] F(o) .. (51)

L y.rz V(DEF) s
Sz = —5 ... (52)
which on using (51) reduces to
_V3(m+1) w] "
30,2 (a1 [ 200+ TRErvA M R

Pl e (8 (W= N,) (B, ¥ V3 - mF 1V i, A,
3(m+1)2n.2G (v)
=1 e85 - N, (5 AV - F 1wy B, 1 Gy +7/3)
_ . (59
where G (o) =[2(#, +4/3) (mp+1) - +/3 (m+1) sec o ] F (o) (55)

Initially ©=0, F()= vs—i;— ... (56)
and G (v) = [2 (me+1) (1 +v3)- /3 <m+1)] [vs—-z}]
.. (57)
and z = [1/3(m—1)-2ﬂr][477(51-,,4"\/3)2 {411«,.‘*"\/3(N,+3)}
m* o +457 (v +v3){N, Qu +3v3)+2 b+V3)}
mo+{(2p,+v3F-3N,)2 -1 A J(mt1) ]
+ 2m ok 4y 38 (m* - N) (b +/3 - (m+ Dt A ]

= A, ... (58)
which is the value of z at the end of the first phase of combustion.
Defining f now as the ratio of the distance receded (from the
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begil.ming of the second phase of combusticn up to the instant
considered ) to the initial thickness € > We get

2(%‘”) V3 (m41) (1-sec )
f= == m-1,-2, - 69
r r
and
dz _ “lao
af —dfl ,,
=\/3l*,2(m+1){\/3(m—1)—2!*,} [{2(mp+1) (g +v3)
—y3(mt1)seco} (6w-7)secov-q/3 (m+1) F (o) ]
+[(u,+\/‘5)m p[8z(m*-N) (b +v/3) = (m+1)? u,Ar]]
... (60)
s dz/df

ST @y g
=-2vFp 2 (m+D)[2(me+1) (+ +v/3) (60-7) sec o~
V3(m+1) H (0) ]+ [85 (#r+\/§)2 @2m2e+2mp N +m?-N)
r
—#,Ar(m+l)’] '

.. (61)
where H(v) = (60 ~ 7) sec 2o+ F (v) ...(62)
Initially o = 0, H(v) = ¥ 2-4/37) (63)

2
and
s _\/3#’_2(m+l) {4 me+1) (B +v/3)7-3 (V37-2) (m+1)}
Sc~ 87 (1 +4/3)2 -
[87 (-, +V3P (2 p+2mo N +m* =N ~(m+1)7 n A ]

..(64)

At the end of complete combustion of the charge grain

_ @
u)_»6»—, G((D)zo, H("’)=0,

so that z=1 and - = 0
s,
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