s, o e LD
- 6 6 ’/ : 'o'-lk‘v{k)‘\\\
T sam 5’ 4-11 S

« _ T
GERERALIZED RINGS 1” SitA P
R

ROSS A. BEAUMONT 6

1. Introduction. If a set R is closed with respect to tw9 9peratio.ns,
addition (+) and multiplication (-) and if R is an ad_dltlve abelian
group with respect to addition, then it is an exercise 1n ele.menta.ry
algebra to show that the distributive laws o.f multiplication with
respect to addition imply the general distributive law
(l) 204)-(21:;) - 2 arb;

-1 =1

i1
for all positive integers m, n, and that
(2) 60=0a=0 for all 6 € R,

We investigate here the implications connecting (1), (2) and the
* ordinary distributive laws. For this purpose it is convenient to make
the following definition. -

DEFINITION 1. An additive abelian group R, closed with respect to
multiplication, is called an (m, n)-distributive ring if identity (1) is
satisfied for fixed integers m 22, n 22 and for all a,, b;E'R.

By a ring, we mean a not necessarily associative ring. Thus a
ring is (m, n)-distributive for every m, n. The following simple exam-
ple shows that an (m, n)-distributive ring is not necessarily a ring.

ExamrLE 1. Let {4} be an additive cyclic group of order 3, and

~define the product of every pair of elements to be . Then (a:+a,)
“(b+by) =u, and 61-by+a,-by+as-by+6s-by=4u=u, so that {u} is
(2, 2)-distributive. Since 0-0 =u0, {1} is not a ring.

~. 2, Algebraic identities. We list some immediate consequences of
",Definition 1. The element 0-0 in an (m, n)-distributive ring will be
denoted by s.
If R is an (m, n)-distributive ring, then we have:
I. (mn—1)s=0; in particular s has finite additive order.
Proor, '

m summands 7 summands
$=00=(0+0+4+-:-40)-(0+0+ -+ 40) =mn0-0 = mns.
0} (n=1)a-0=(n—1)s and (tn—l)o'-a-(m-l): for all aER.
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Proor.

a0=(a+0+ " c40)-(0+0+ -7+ 40) =na0+ (m— Dns
=7860—(n—1)s+ (mn—1)s=1na0— (n—1)s.
The other identity is obtained similarly.

It follows from I and II that if a-050 or 0-a 0 for some aER,
then the additive group of R is not torsion-free.

L. (a+bd)-c=a-c+b-c—0-c, and a-(b+¢c)=a-b+a-c—a-0 for
all @, b, cER.

PROOF. Since m =2 and n22, we can write
(6+b)c=@+b+0+:---+0)(c+0+---0)
=ac+bc+ (n—1)a-0+ (n— 16-0+4 (m — 2)0-¢
+ (m — 2)(n — 1)s.
By II, n—1)a-0=(n—1)z, (n—1)b-0=(n—1)z, and (:#—2)0-¢
+0-c=(m—1)0-c=(m—1)s. Therefore
(64 bd)c=0ac+bc *
+n—-14n—14+m—14+mn—m—2n+2)s— 0-¢
=ac+bc—0c+(mn—1)z=ac+bc—0cbyl
The other identity is obtained similarly.
IV. (—a)-b=—(a-d) +2 0:b; a-(—b) = — (a-b) +2 a-0; and
(—a)-(—bd)=a-b—2a-0—20-b+4s=.
These identities are obtained from the quasi-distributive laws 111
by the routine arguments used above.

As a consequence of the above identitics, we obtain the following

relations between (1), (2), and the ordinary distributive laws. From
II1 we obtain

THEOREM 1. An (m, n)-distributive ring R is a ring if and only if
a-0=0-a=0 for all aER.

As a consequence of the remark {ollowmg I1, and Theorem 1, we
obtain »

THEOREM 2. If the additive group of an (m, n)-distributive ring R is
torsion-free, them R is a ring.

THEOREM 3. There exist positive integers m, n, s, t such that

(1) R is an (m, n)-distributive ring,

(ii) R is an (s, t)-distributive ring,

(iii) (mn—1, g—1)=1, (in—1, s—1)=1, and (n—1, t—1)=1, if
and only if R is a ring.
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Proor. If there exist integers satis{ying the given conditions, then
by I, 2=0, and by I ¢-0=0-2=0 for all aER. By Theorem 1, R is
a ring,

There exist positive integers m, n, s, ¢ greater than 1 which satisfy
(iii), e.g. m=n=s5=2,¢=3. If Ris a ring, R is (m, n)-distributive for
all m, n so that (i) and (ii) are satisfied.

3. The structure of (m, n)-distributive rings. An ideal I in an
(m, n)-distributive ring R is a subgroup of the additive group of R
such that ra€I and arE1 for all rER, a&I. A principal ideal (a) is
the intersection of all ideals in R containing a. The ideal (0) need not
consist of the element O alone, and it is possible that (0) =R, as is
the case in Examgle 1. Since an ideal 7 is an additive group, 72(0)
for all ideals in R. It is immediate that (0) =(a-0)=(0-b) =(2) for
all @, bER.

THEOREM 4. Let I be an ideal in R, and writer=s mod I if r—s& 1.
The relation = is a congruence relation on R.

Proor. The equivalence classes of the relation = are the cosets of
I'in R, where I and R are regarded as additive groups, so that = has
the substitution property for addition. Let r'=r mod I and s’
=5 mod /. Then r’' =r+41,;, s’ =s+is, where 71, 12 1. Using 111, we
have

rs=@F+i)(+i)=FC+i)s+(@+n)ia—(+14)0
=¢5s+5-5s—0-s4+rig+ i1-ia— 0-ia — (r + 4,)-0.

Since I is an ideal in Rand 0E1, r’-s’=r-s mod I. Hence = has the
substitution property for multiplication.

It follows from Theorem 4, that the cosets of I in R form an
(m, n)-distributive ring R—I with operations defined by (r+41I)
+(s+D)=(+s)+I and (r+I)-(s+I)=r-s+I, and that R—Tis a
homomorphic image of R. If S is a set with two operations which is
a homomorphic image of an (m, n)-distributive ring R, then S is an
(m, n)-distributive ring; the image of an ideal 7C R is an ideal in S,
and the complete inverse image of an ideal JC.S is an ideal in R. If
¢ is a homomorphism of R into S, then ¢(0) is the zero of S but the
complete inverse image of ¢(0) is not necessarily an ideal in R. This
leads to the following definition.

DEFINITION 2. The kernel of a homomorpliism ¢: R—sS is the com-
plete inverse image of the ideal (¢(0)).

If I is the kernel of ¢: R—S and ¢ is onto, then R—I is isomorphic
to S--(¢#(0)) under the correspondence r+I—¢(r) +(¢(0)).
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Th_e direct sum R®S={(r, 5)|rER, s€ES}, with componentwise
definitions for the operations, is an (m, n)-distributive ring if R and
S are (m, n)-distributive rings.

V. The subset {(0, 5)| s€ES} of R@®Sis an ideal isomorphic to S in
R®S if and only if R is a ring.

Proor. If R is a ring, (r, 51)-(0, 53) =(r-0, 51-53) =(0, s,-53) and
0, s3):(r, 51)=(0, s2-51) so that {(0, s)|sES} is an ideal in RS
which is isomorphic to S. Conversely, if {(0, s)|s€S} is an ideal,
(r-0, s1-55) and (07, s2-5;) are in {(0, s)|sES}, so that r-0=0.r

=0&R for every rER. By Theorem 1, R is a ring.

THEOREM S. Let I be an ideal in R. Then R—1I is a ring.

Proor. Using IlI, we obtain (r+s) r=r-t4+s-t mod I since
0-t<I. Similarly r-(s+8)=r-s+r-t mod I.

By Theorem 1, if the ideal (0) vonsists of the element 0 alone, then
R is a ring. This leads to the following definition.

DEFINITION 3. R is called awproper (m, n)-distributive ring if the
ideal (0) does not consist of the element 0 alone. The ring R—(0) is
called the associated ring of R.

The question arises as to whether every ring is the associated ring
of some proper (m, n)-distributive ring. This is answered by the
following theorem.

THEOREM 6. The mapping R—R—(0) is a mapping of the set of all
proper (m, n)-distributive rings onto the set of all rings.

ProoF. By Theorem 5, R—(0) is a ring for every (m, n)-distribu-
tive ring R. Let ® be a ring. There exists an (m, n)-distributive ring
S such that S=(0). Let S+= {0, g, 22, - - -, (mn—2)z} be the cyclic
group of order (mn—1), and define multiplication by a-b=z2 for all
a, b&S+. Then for

e, b; €S, Za;)-(zb;) = 3; 2 6;-b; = mns,
=1 o1  d el

But mnz=g, so that S is an (m, n)-distributive ring. Further S=(2)
=(0). By V, {(0, s)| s€S} is anideal in ®® S which can be identified
with S. It is clearly the zero ideal of ®® S. Hence we have

[R®S]—(0) =[a®S] —S=a.

Since ®R®S is a proper (m, n)-distributive ring, this completes the
proof.

THEOREM 7. Let R be an associative (m, n)-distributive ring such that
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s=0 and 0 is in the center of R. Then R is isomorphic to the direct sum
of R—(0) and (0).

Proor. For rER, let ¢: R—»[R—(0)]®(0) be defined by ¢(r)
= (r+(0), r-0). Then with ¢(s) =(s+ (0), s-0), ¢(r+s) =(r+s+(0),
(r+s5)-0)=(r+(0), r-0)+(s+ (0}, s5:0), since (r+s)-0=r-0+4s-0
—0:0=r-04s-0 by IIl and by hypothesis. Further,

#(r-s) = (r-s + (0), (r-5)-0) = (r + (0), 7-0)-(s + (0), s-0),
since
(r-5)0=(r-s)-(0:0) = [(r-5)-0]-0 = [r-(s-0)]-0 = [r-(0-5)]-0
= [(r€)-5].0 = (r-0)-(5-0),
maoking use of each hypothesis.
Thus ¢ is a homomorphism of R into [R— (0)]@(0) If ¢(r) =(s),
then r+(())=s+(0) and r-0=s5-0. Again using each hypothesis,

{1-0|tERY} is an ideal in R, so that {¢-0|tER} =(0). Hence r—s
=¢.0 for some tER and

(r—95-0=({0)0=1¢(0-0)=¢t0=r—s.
But since r-0=s-0,
0=r0—50=r0+ (—s)0=(r— )0,
by I1l and IV with 2=0. Hence r —s=0, and ¢ is an lsomorphlsm
Sinceg(r —r-0+¢-0) = (r+(0),¢-0), it follows from (0) = it-0|tER}
that ¢ is a mapping onto [R—(0)]®(0), which completes the proof
of the theorem.

EXAMPLE 2. Let R+={0, ¢, 2¢, 3t} be a cyclic group of order 4 and
define multiplication by

0 ¢ 2t 3t
0 0 2 0 2t
. ¢ 2t 0 2t 0

2t 0 2t 0 2t

3t 2t 0 2 0

Then R is commutative but not associative, since (2¢-¢)-t=2¢-t=2¢,
but 2¢-(¢-£) =2¢-0=0. R is not distributive since ¢-07%0. Moreover, R
is not (2, 2)-distributive since (04+0)(¢40)=0-¢=2¢, but 0-£40- -0
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+0-¢4+0-0=2(4+0+2¢+0=0. By direct computation it can be
checked that R is (3, 3)-distributive.

This example shows that the hypothesis of associativity in Theo-
rem 7 is necessary, since R cannot be isomorphic to [R—(0)]®(0).
Since (0) = {0, 2¢}, the additive group of [R—(0)]®(0) is the four
group while R¥ is the cyclic group of order 4.

EXAMPLE 3. Again let R*= {0, ¢, 2¢, 3t} be a cyclic group of order
4, and define multiplication by xy=24 Then R is associative and
commutative and is an (m, n)-distributive ring if m and n are both
odd. Here (0) = {0, 2}, so that as in Example 1, the additive group
of [R—(0)]®(0) is the four group. Hence R cannot be isomorphic to
[R—(0)]@®(0), and this example shows that the hypothesis 0-0=0
is necessary in Theorem 7.
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ON TOTALLY BOUNDED SUBSETS OF SEQUENCE SPACES
CHARLES W. McARTHUR

1. Introduction. Let X denote a Banach space with a denumerable
biorthogonal basis {x(i)} {f:}. Cohen and Dunford [2, Theorem 2]
show that a set SCX s conditionally compact (or, equivalently, totally
bounded) in X if and only if S is bounded and lim, Y o, fi(x)x(5) =x
uniformly for x€S. The purpose of this paper is to show that a modi-
fied form of the above condition, one which retains a uniform con-
vergence and boundedness requirement, characterizes the totally
bounded sets of a class of Banach spaces which includes the class of
those Banach spaces having a basis as a proper subclass.

The author acknowledges helpful comments by B. J. Pettis re-
garding the main theorem of this paper.

2. Definition of A-spaces and preliminaries. Throughout the paper
X will stand for a real Banach space (B-space). Its zero will be written
as 0. The set of positive integers we denote by N. A sequence in X
will be represented usually by a single letter s and its value at each
$E N by s(s). A sequence s in X will be called finstely nonsero if and
only if s(¢) 0 holds for at most a finite number of {€ N. Occasionally
when the norm symbol appears-in the same expression in different
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