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[Received 20 Junuary 1961}

ON the basis of the theory of derived functors and satellites, as developed
in the preceding papert (cf” (4)), we shall study now the functors and
homomorphisms associated with varieties. The universal category € is,
as before, a complete category of (A,ZX)-groups, A being a near-ring
generated by the distributive semigroup X. To each variety B there
belongs a subfunctor ¥ and a quotient functor U of the identity functor}
of € (cf. I, § 1, and (3), § 2). After establishing in § 1 some general results
on functor sequences, the basic properties of L,V and L, U will be
derived in § 2.

Let T be an additive functor of €, which for the purposes of discussion
we asgsume to be covariant,§ and let B be a variety. Considering here
for simplicity’s sake only groups, rather than pairs, one obtains the
B-derived functors L3T(U(A)), in addition to the @-derived functors
L,T(A4), together with natural homomorphisms L, T(4)~>Lg T(U(4))
(reduction homomorphisms). These, and related functors and homo-
morphisms, will be investigated in §§ 3 and 4. .

The important varieties in this context are those which contain the
variety 9 of A’-modulus, A’ being the residue ring of A m.odulo its
commutator ideal. By replacing, if necessary, A by some qu.otlent near-
ring one can always place u given variety 3 into this situation. If tl?en
BSY, the strongest results are obtained when 7T is B-compatible, i.e.
when T'(4) = T(U(4)), for all A. In this case the functors and homo-
morphisms, associated with the change €—> B of variety, appear as the
terms and mappings of one infinite exact sequence. As will later !)ecome
clear, some of the results derived for particular situations have in fa:ct,
il}ll a different context, already made their appearance in the Abelian
theory.

In § 5 we consider the functor homomorphisms derived from the basic

mapping
wAM': AIO—)AIA’

t Throughout referred to as I. ;

1 The symbols V and U will be used in this connotation throughout. .

§ Throughout the paper we shall, in the discussion and in proofs, always restrict
ourselves to covariant functors.
Proc. London Math. Soc. (3) 13 (1962) 1-38
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A. FROHLICH

associated with each pair. For %-compatible functors we shall obtain a
complete description in terms of a single exact sequence.

Section 6 is concerned with the special topic of varieties derived from
ideals and semigroups in A. Replacing A by a quotient near-ring amounts
to a change of varicty. The general theory of a change in near-ring will,
however, not be dealt with here. ’

As an example we shall, for an arbitrary distributively generated near-
ring A, determine the values of L, V(4) and L, U(4) for all varieties B
and for all », when A is a quotient group of A (§6). In the two ‘basic’
special cases of our theory, namely when € is a category of modules
(cf. § 6), and when @ is the category of abstract groups (cf. § 2), we shall
also derive expressions for the functors L,V and L,U with arbitrary
argument in terms of known invariants.

In the module case a change of variety is the same as a transition
from A to the residue ring modulo some ideal n, and the values of L, V
and L,U can be expressed in terms of tensor products with A/n and
with n, and of their derived functors.

For abstract groups we obtain certain invariants associated with their
representations as quotients of free groups. Moreover, the induced homo-
morphisms L, V(fif’),L, U(f|f’), the connecting homomorphisms of the
homology sequences, and the various functor homomorphisms defined
in this context can all be seen to coincide with mappings induced in a
natural manner by thé structure of the representing free group.

As this discussion already indicates, there is here a considerable overlap
with Baer’s work (cf. (1)), as far as abstract groups are concerned. One
can, in fact, express the whole theory of Baer invariants in homological
terms and apply it to more general categories. This, however, will involve
a number of new concepts which lie outside the scope of the present paper.

Since the completion of this work, the author has found a whole range
of structures which give rise to non-Abelian categories, and to which
our homology theory and Baer’s theory apply (cf. (5)). An interesting
example is the category €, of algebras (not necessarily with identity)
over a fixed commutative ring A with identity. For A = Z one gets in
particular the category of rings. In gereral €, is isomorphic with the
category of supplemented algebras in the sense of (2); one only has to
associate with each supplemented algebra its augmentation ideal. €,
contains again the category of A-modules, viewed as algebras with trivial
multiplication. A pair 4|4’ is now an algebra A together with an ideal
A’ annihilated by A. )

We shall continue to formulate everything in terms of (A, Z)-groups.
It is left to the reader to convince himself that the theory applies in fact
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to Q-groups in the sense of Higgins, and in particular to categories €,.
A homological discussion of Baer-invariants in §,, which again applies
in principle to Q-groups in general, will be given elsewhere.

The general conventions and notations of I will be taken over here,
without further reference. '
1. Exact fungtor sequences

Let, throughout this section,

0T, Ty—> Ty >0 (1.1)
be a sequence of additive functors of € with the property that the sequence
0->Ti(A)>Ty(A)>TH(A)>0 (1.2)
is exact whenever 4| A’ is €-projective for some A4’.
Assume T} (i = 1,2,3) to be covariant. Let 4| A’ be any pair in € and
let [A— A] be a C-resolution of 4| A’. We obtain an exact sequence
0> Ty (A)> Ty(A) > T3(A) >0 (1.3)
of complexes. As shown in I, § 4, we derive a sequence
i Ly TA| A) > Ly T(A| A') > Ly Ty(A ] 4)

(1.4)
L, T(A|A")~>... o> Ly TAA') >0

with connecting homomorphisms §,. Let f|f': A|A’—> B|B’ be a homo-
morphism of pairs, let [B-> B] be a €-resolution of B|B’ and F: A—>B
a homomorphism over f. Then the diagram

Ty(A) > Ty(A) > Ty(A)

¥ ¥ ¥
o T\(B) - Ty(B) — T3(B)

will commute, and hence so will the diagram )
L, Ty(A|A")>L,T(A|A4")
+

+
Lo To(BI B')>L, Ty(B| B).

This implies in the first place that the connecting homomorphisms 3, in
(1.4) are in fact independent of the choice of E-resolution and in the
second place that they give rise to functor homomorphisms.

By (I (4.6), (4.7)) we obtain:

L.1. THEOREM. With every sequence (1.1) which is exact on €-projective
paira there are, for all n 2 1, associated connecting homomorphisms of functors

L,Ty~L, ,T.
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The composition of any two consecutive homomorphisms in the sequence
v Ly Ty L, T, > L, Ty—>L, Ty—~..—~> Ly, T3>0

4

(a)
is null. The sequences
L, T,»L,T,~L,T,

LT, > Ly Ty~ Ly T3>0
are exact.

If T,, T,, Ty are weakly normal, the sequence (a) $8 exact.
Assume now that (1.1) is an exact sequence. By considering -
representations of length n > 0 rather than E-resolutions, we obtain
1.2. THEOREM. With every exnct sequence (1.1) there are, for all n2 1,
associated connecting homomorphisms of functors
S, Iy—->L, ,T,.
The composition of any two consecutive homomorphisms in the sequence

(b) 058,18, T,>8, T,~L, ,T,>..o Ly Ty>0
18 null.

The sequence
o ' 08, 7,->8,T,—8, T

If 1,75, T, are u;ealdy normal, the sequence (b) 1s8-ezact.

thgﬁ:ﬂ:‘sgng?:’ L, yTy>...~L,T,—0 of (b) coincides by (I, 7.1) with
& Part of the sequence (a) in (1.1). Moreover, we have

1.3 If (1.1) 48 an ezact sequence, then the diagram

- m*ﬁﬂ»hﬂ»hnenﬂﬂ*m
e he vm,-:;f; TszfT,-»Sffa—»L,_,"n ...
oo the diagram ppings L, T, S, T, being given by a,, (cf. I, 7.5).
oLy Ty Ly Ty L T
5 v v

commutes. -0, >1T T

From 1.3 we get j .
1% particular for all n> 1 a commutative diagram

0->8, T
18, T’"’SaTa"Ln—xmx—’Ln-lTa"Lu-xTa
v

¥ v v
0 -)S"_l 7'1 —)Sn—l 1;-—) Sﬂ—l 7;.

By I, 9.4: by 1.2 &nd 1.3 we no-w have
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1.4. Let the sequence (1.1) be exact. If the T; are weakly normal and Ty, T,
are covariant, weakly right exact, then the sequence

0->S,T,—>8,Ty—>S, Ty—>L,_, T,»8,,,T,>0
18 exact.

From the‘ definitions we verify easily
1.5. Homomorphisms of sequences (1.1) induce homomorphisms of
sequences (a), (b).
1.6. If B is a complete subcategory of €, then the diagram
PL,T,—~PL,, T,

L3PT,—~ L3, PT,
(and the analogous diagram with L, replaced by S,) of connecting homo-
morphisms and restriction homomorphisms commautes, for all n.

1.6, of course, presupposes that the conditions for the definition of
both horizontal mappings are satisfied. Thus for L, we should require
(1.1) to be exact on B-projective pairs. As the restriction homomorphisms
are absolute, it follows now that they induce homomorphisms of sequences

(a), (b).

Results analogous, and dual to those stated in this section, hold for
contravariant functors.

2. Variety functors and quotient functors

We consider a variety B in € with associated variety functor V and

quotient functor U. Denoting by I the identity functor of €, we have
an exact sequence

0>V->I->U~0. 2.1)

V is"@" normal subfunctor of I (cf. (3), § 1) and is thus additive, covariant,
weakly normal, and preserves monomorphisms; by definition it preserves

epimorphisms. U is additive, covariant, right exact, and normal. By
1, 7.7, 9.4,

S,V=0, S, U=L,U (n>0),] (2.2)
LU =U. :
I being exact, we obtain by I, 7.8, and from 1.1, 1.4,
2.1. TREOREM. The sequences
0->L, UL, V->I->U—0,
0>L ULy V->V->0

are exact, and for n>1, .
L U=L,,V.
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In terms of the functor homomorphisms of 2.1, we get immediately

22 LUMIAY=0 if andonlyif, LV(A|4)=V(4).
V(d)=0 if,andonlyif, Ly,U(A|A"Y=L,V(A|4’).

For fixed A the last !somorphlsm is thus valid either for all pairs 4|4’
or for no such pair.

U being weakly normal and right exact we have, by I, 9.3, 9.4,

2.3. The connected sequence {L,,p,} of functors associates with every
cenlral sequence

0->C|C—>B|B'»>A|A'—>0
an exact sequence
L,,,U(4|4")»LiU(C)~L,U(B|B')>L,U(4|4’)~>...
...»LUA|A)Y->UCC)->U(B)->U(A)—>0.

For any complex A of groups in €, U(A) and so also H(U(A)) will be
a complex in B. Hence
" 2.4. The groups L, U(A| A’) lie in B. .

Assume now € to be the category of abstract groups. We represent
a given group B as a quotient group of a free group F with kernel R,
i.e. we identify -

B=F|R. ) (2.3)

If B’ is a central subgroup of B, let F’ be the inverse image of B’ in F.
Then (F,F’)< R and
F,F) R F
®RBRRR (F, F)
is a (C resolution of B|B’. In particular, for F’' = R we obtain a G-
resolution of B. The groups V(B), U(B), L,U(B|B'), L, V(B|B’) are,

with identification (2.3), givent by formmg quotients of normal sub-
groups of F. Thus

>0 — 3> B->0 (2.4)

V(F)+(F F') I B
V(R)+(F,F)
w _ [ROV(F)+(F, F')
U(B|B’) = 4
n_ U(F,F')n V(R)]+(R R)
L,UB|B .
WUBIB) = e BB
Let M,, N, (i = 1,2) be normal subgroups of F, with M,cM,, N,cN,,
Nic M, The mapping z+N,—>z+N,(zeM,) is a homomorphism
2,/ N, - M,|N,, which we say is snduced by F. We now have
t Recall that L, T’ = 0 for n> 2 (cf. I, 8.9).

L, V(B|B’) =

[ (2.5)
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2.5. The mappings of the sequences

0-L,U(B|B')~L, V(B| B')>B—U(B)-0,
! 0->L,U(B| B')~L, V(B| B')-> V(B) 0,
and the ifomorphiam
T L,U(B|B')~L, V(B|B),
as induced by the functor homomorphisms of 2.1, coincide with the homo-
morphisms induced by F.

A similar remark holds also for various other homomorphisms. Thus
if B, is another variety with associated variety functor ¥; and if ;(B) = ¢
then on replacing F above by' F[V(F) we get the derived functor;
LU, L3V, and again the restriction homomorphisms are induced by F,
Next let

0->C|C—-B|B'>A|A'>0

be a central sequence, and let G be the inverse image of C i ideri
: , ge of C in F, considerin
C as embedded in B. We identify )

z C=G|R, A=F|G, (2.6)

and again express L U(C ’ i
v the; : ét |C), L, U(AIA ) as quotients of normal sub-

2.8. The mappings of the sequence
O*L:U(BIB')—m.. ...>U(B)>U(4)~>0,

as derived from the connected L.
homomorphisms induced by F. sequence {L,,p,} of funclors, coincide with

z&:;::vgmclz:sider a3 a particular case the variety functor K and the
?{uB B or J associated with the variety of Abelian groups; thus
(B) —\(‘ +B). We then have from (2.4)

L,K(B|B') = (F,F)/(F,F"), ]
)2 , (27)

wnd taing 1 g, "/ B1BY = BOEPUE.F
LJ(B) = Rn(F,F)/(F,R)-} &2

Thus in the ca

e byterg;))rgszf abs-tract groups L, J(B) is the Schur multiplicator,

group, and L, K(p 1o 24ions of groups as quotient groups of & fres

ions (cf. (1)), LlJ(;s fmothex: well-known invariant of such representa-

group of B. We sha.ll) 18 thus isomorphic to the second integral homology
The functor 7, 7 la'ter obtain a generalization of this result.

functors are new. Provides simple examples to show firstly that derived

additive, and secondly that for a central sequence
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0—C - B-> A0 of groups the sequenoeLlJ(C)—>L,J(b’)—>p1J(A) need
not be exact. In fact, let B be the direct sum of two cyclic groups A
and C of equal order n>1. Then L, J(4) = L, J(C) =0, &fld L,J(B) is
cyclic of order n, which shows that the above sequence is not exact,
and that L, J is not additive.

We noi:'1 recall that if B is of finite order m, then nL,J(B) = 0.
Comparing (2.7), (2.8), we also find nL,J(B|B’) = 0.

Let now € be again an arbitrary complete category of (A, Z)-groups,
A not necessarily the ring of integers, and let €5 be the category of
abstract groups. Let L,J denote the derived functor of J in € and L¥J
the derived functor of J in . Let 0—A4,->A,—>A4->0 be a G-repre-
Sentation of 4| A4’. We obtain a commutative diagram

LEJ(A]|A")>J(A,) > (4)
1l Il
0L, J(A|A’) > J(A4,)>J(4c)

with exact rows, and so an epimorphism LZJ(A|A')>L,J(4|A4’). Let
TOW 4 be of finite order n. Then we conclude that some factor m of n
annihilates L, J(AtA’). .

Consider next a C-resolution, or C-representation

A -2 45> 450,

of 14" and write Ima, < At, 0o thay A3 (4, Ag) = LJ(A] A7), For
Tlf/e; o we have ": ", n(z+y)e 42, and n(z+y)—ny —nze (A, 4,).
The atter element t “lleSIHAl‘n(Ao,Ao) and 80 mn(z +y) = mnz + mny,
; us t«he n}applng Po: x-»mnx is an endomorphism of Ao- Triviauy,
;;xo-»;:nx is an 'endomorphism of 4, and as A, is commutative for
s Po: T—>mnx is 2 i i
dingee ;‘ z an endomorphism of A, We obtain a commutative
A > A4,4
VP tPe dp
"'-)A'_)...%Ao_’A' i

It follows that for D
DT(y) in the mapping ¥ ~¢ (¢20), and for any covariant functor T,

and 50 mnz = 0 for ze pypy ", Of DT(A| 4') into iteelf. But p is null,
Variant functors (proviq (4]14°). The same argument applies to contra-
ed that they take only Abelian values). We

2.7. THEOREM. Le;
and for every additive ff b of finite order n. Then Jor every pair 4|4,
Wwith argument A| A’ hape o 1* qlldt_ia; derived functors and satllites of 7
2 a"e’". iding ns, ‘
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3. The reduction homomorphism
Throlighout this section B is a fixed variety in € with associated
variety!functor V and quotient functor U. = is the epimorphism I-U.
As al y mentioned in I, § 3, we associate with U a functor U? of
pairs in \C, given by the values

UA|A') = U(A)|[4’+ V(4)]]V(A). (3.1)

U? is additive and covariant. With the usual identification 4|0 = 4
we have U3(4) = U(4). The homomorphisms 4|4’ U¥A|A’) give rise
to a functor homomorphism =%: I*-> U3, I® being the identity functor of
pairs in €. Yo

The right composition by U? (cf. I, 2.2) is a functor of functors. With
each functor W of pairs in @ there is associated the composite functor
WU, and with each homomorphism ¥: W, - W, of such functors there is
associated the homomorphism

YU W, Ur>W, U8,

given by YU 00 = Youaran
If, in particular, W(A|A') = W(A),
then WU = WU.

As U(A| A’) is always a pair in B, the functor WU? coincides essentially
with the functor (PW)U3, P being the restriction to 8. If now T is an
additive covariant functor of € then,t taking W = L, T, we may identify
(L,T)U* with (PL,T)U*. The restriction homomorphism (cf. I, §8)
PL,T->L2PT gives then rise to absolute functor homomorphisms
(PL,T)U*-» (L2 PT)U*. Without danger of confusion we may omit the
restriction symbol P in both expressions, as was already done in I.

Applying the same argument in the other cases, we obtain abeolute
functor homomorphisms

(L, T)U* >(LRT)U?,
(S, T)U* »(S2T) U3,

(R3T)U*~> (R*T) U,

(S3T)UP > (S°T) U’,] T contravariant.

T ocvariant,

(3.2)

On the other hand, the homomorphism #*: I*— U? gives rise to absolute

TA.linI,weomitthe category index in the notation for derived functors and
lat?lhtu when the underlying category is €. Thus L, T is the §-derived functor,
while LB PT is the 8-derived functor of the restriction to 8.
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functor homomorphisms
72
LT ~(LT)T '} T covariant,
S, T (S, T)U%
(3.3)
(R"TU%—»> R"T,
S~TUut-> ST,
Composing the homomorphisms (3.2) and (3.3), we get absolute functor
homomorphisms
‘L3 2
LT ~@LyDU T covariant,
S, T —(S3T)U3,
(RaT)U*> RT,
Sz T)Ut> S°T,
called the reduction homomorphisms,t and denoted by
r = r(€/B) = r(DT,E|B)
for D=L,,S,, or D= R",S". We have then

3.1. If B, is a subvariety of B, then i
r(€/B,) = r(B|B,) or(€/B).

Explicitly, r is calculated as follows, taking as example derived functors.
For any pair A|4’ in € let [A—>A] be a E-resolution of 4|4’, and
[A*>U(A)] be a B-resolution of U?(A4|A4’). Choose any homomorphism
F:A->A* over m,: A>U(A). Then H,T(F) is the required homo-
morphism.

4 Let

} T contravariant.

(3.4)

] T contravariant, | ~

0>4,>A4,>A4->0 (3.5)

be a ¢-representation of A|A’ of length 1. We may consider 4, as a
subgroup} of 4,, and obtain a commutative diagram -

0 0 ()}

0~ Am¢V(A.,) »V%A,)—:-V%A)—»O

0-> j, - ﬁo-_. fa -0 (3.6)
0 »AI/Alb V(d,)—> U(:Ao)-» U{A)—»o

0 0 0

- 1 Note that the reduction homomorphism coincides with the restriction homo-
morphism (cf. I, §8) whenever the latter is defined, i.e. whenever 4 € 8. Our theory
thus applies in particular to the restriction homomorphism.

$ A similar convention will apply in various places in the sequel.
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~th contra) tows and exact columns. Denote by A the inverse image
of A in Ay By 1,39, UNd,|dp) is B-projective, and so the bottom
T 03\{3. } is & D-representation of U3 A|A’). We shall write
Al = A,nV(4,).
The left-hand column cf (3.8) is a central sequence in A. The restric-
ticn of any additive functor 7' of € to U is wenkly normal on UA. If T is,

ssy, covariant, we thus obtain from the sequence {L},p,} in ¥ (cf. I, § 9)
an exact sequence

o> LB, T(A,/AT)-5 LAT(A?) > L2 T(4,) ] 37)

-+ L3T(AJAY) > ... -»L3T(A,/A})>0
Assume now that 82U. By I (8.2) we have
LIT(A,) = L., T(A|4), 58)
L3T(4,/A?) = L8,, T(UYA|4"),)
_and we verify that the mappings
L, T(A|A4')> L3, T(UXA| "),
given by (3.7) with identifications (3.8), are those induced by the reduc-
tion homomorphism. As B82%, we also have V(4,) = 0, and 80

AY =Ker[U(4,)>U(4y)] = S, U(414").
By (2.2)

At = L U(4]4). (3.9)
From (3.7) we thus derive mappings

L2, T(UHA| 4)) > LET(L,U(A] ), -
LET(L,U(A| A") > L,,, T(4] 4"). '
Homc\)}norphisms of @-representations (3.5) induce homomorphisms of
diagrams (3.6) and so of sequences (3.7). It follows that the mappings
(3.10) are independent of the choice of the §-representation (3.5) and
moreover that they give rise to functor homomorphisms. Homo-

morphisms of functors again induce homomorphisms of sequences (3.7).
We thus have, including now also the contravariant case:

3.2. TuroREM. Let B2U. The homomorphisms of (3.7) (or of its dual)
give rise to absolute funclor homomorphismst

(L3 Ty U) > Ly iy T
or BT > (R T) (L4 U)
for n20.

+ L, U has Abelian values by I, 7:3..lnd (L¥ T) (L, U) is the composite functor
with values L® T(L, U(4 | 4")), and similarly in the other case.

(LR T U (LR T)(L, V)
(RYT)(L, U)~> (Rg™ T) U*
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