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Problems in the Theory of w·eak lnteractions 1
) 

R. GATTO 

l11stit1tto di Fisica e Scuola di Perfezionamento dell'Universita, Roma, Italy 

1. Introduction 

The theory of weak interactions has now come to a very definite point after the 
brilliant success of the universal A-V theory proposed by FEYNMAN, GELL­
MANN, MARSHAK, and Su DARSHAN [1] (which we shall call the FGMS theory). We 
shall base this discussion on the hypotheses of that theory. We shall not review 
here the development of the FGMS theory, but we shall try to reproduce all 
those steps that will be necessary to make our discussion essentially self contained, 
so that no preliminary reading of papers on the subject will be required. We shall 
mainly be concerned with those aspects of the theory of weak interactions which 
still appear to be essentially unsettled or not yet at a definite stage. Thus in most 
cases we shall present speculations which may very well turn out to be wrong 
when more or better experimental data will be available. . 

2. General Description 

2.1 Weak interacting currents and their classif-ication 

The _older viewpoint for describing weak interactions consisted in grouping t~e 
particles into different pairs, (µv), (ev), (pn) etc., and assuming that each pair 
rnteracts with the other pairs. A different possibility is now suggested b_y the 
AV_ theory. For couplings of such kind there is a possibility that the weak mter­
act.Jon Lagrangian takes the form of the coupling of a current with itself 

(1) 

The currents Jµ, of course, are not to be understood as currents in the usual 
sense. In Jµ both vector and axial contributions are present. One difference with 
respect to the older description is, for instance, that now there are couplings also 
of a pair to itself, such as (pn) (pri). Moreover the new description is certainly 
much more specific. According to which of the two descriptions we want to 
assume we can either classify the different pairs into a few classes (lepton class, 
£, and various strongion2), classes, So, S_1, S1), or, correspondingly, decom­
pose_ the current Jµ into different components. For brevity we shall denote with 
1l B~s~~-on a series of lectures given by the author at the "Seminar iiber Hochenergie-
1:hySik m Oberwolfach, West Germany. September 1958. Part of the present paper over­
!"Ps the content ?f lectures given by the author in Vnrenntt, August 1958. 
-) We call strong1on a particle which is either a baryon or a meson (with the exception of 
the µ-meson which is a lepton). 

11 Zcltschrif t ,.Fortschrltte drr Physlk" 



148 R. GATTO 

t.he same symbol of the class the corresponding current, so that 

Jµ =I:µ+ S0 µ + S_1µ + S11, · 

Let us now explain in detail the classification: 
£: lepton class (the corresponding current £ 1, is the lepton current) . 
It consists of the pairs 

(2) 

(µ+ i,) ( e+, -v) (3) 

For a pair (AB) the transfer of charge is LIQ= Q0 - QA. Note that the other 
possible pairs such as 

(µe ), (vv), (µµ), (ee) (4) 

are excluded from I:. Their inclusion would lead to processes such as 

(5) 

not observed. We note that the excluded pairs have LIQ= 2 or LIQ= 0. 
Therefore it seems that one has to assume at this point that only pairs with 
LIQ = ± 1 are coupled. The reason for this choice is a mystery so far. We shall 
come back later in more detail to this point. To be definite, without limitation 
to our discussion, let us consider here only the pairs with LIQ = - 1. Thus the 
lepton current is given by E,, = (µ+ i, )µ + ( e+ Y)µ-
S0: strongion class with L1 S = O (the corresponding current is the strangeness­
conserving current). One finds a total of six possible baryon pairs which satisfy 
the limitations L1 Q = -1, L1 S = 0, and of course also L1 N = O because they 
must couple to the lepton pairs : 

(pn) , (At-), (~o~-), (6) 

All such pairs can go into one another by strong interaction. (We shall call 
such _ pairs "equivalent".) They are also equivalent to the TI+. The TI+ will 
dissociate through them. It will be convenient to add to these pairs possible 
boson terms corresponding to vector interactions of the boson currents 

·( orp* *orp) 'h h filds O fi i <p - - cp -··- wit t e lepton e . ne nds two such terms 
' a xµ axµ 

(7} 

The presence of such t erms is necessary if one accepts the hypothesis of non­
renormalizabili ty for the vector part, as we shall see later. 
S_1 : strongion class with LIS = - 1 (strangeness non-conserving current of the 
first type) . We find again a total of six pairs 

lp.1\ 1, (8) 

They are equivalent to the K +, which will decay through virtual dissociation 
into t hem. Two meson terms are possible, namely 

(9) 

Differently from the corresponding situation with S0 , there is nothing here for­
cing t.he assumption that (9) are eoupled. The only observation that can be 
J11 ade is t.ha.t the s imultaneous existence of both K -+ µ + 1t + v and K-+ µ + v 
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excludes the possibility that in .S_1 only the boson terms (9) are coupled -
some fermion pairs also have to be coupled. This can be shown readily by parity 
considerations. 
One can verify that by coupling to each other £, S 0 and S_1 one has accountecl 
for all the observed weak processes. The requirement that the pairs carry a unit 
charge (or equivalently, that the current Jµ ist singly charged) has eliminated 
unwanted processes such as 

µ+-+e++e-+e+, µ-+p-+e-+p, K-+µ±+e=F+1r, K-+1r+v+v. (10) 

The advantage of classifying the pairs into classes is mainly that of avoiding the 
embarrassing question of which pairs in each class are originally coupled: for 
instance only one pair in each class may be coupled, the other pairs will then 
still be indirectly coupled through the strong interactions, or all pairs may be 
coupled according to some particular unknown symmetry. It is quite relevant 
to investigate the possibilities for such symmetries, and we shall touch upon 
this question when speaking of the possible non-renormalization of the vector 
part. 
The two strongion classes S0 and $_1 introduced so far can be characterized 
by saying that S0 contains all pairs equivalent to the 1r+, and $_1 all pairs equi­
valent to the K+. Moreover for $_1 , j S = L1 Q. 

2.2 Limitations from the selection rnle LIS = ± 1 for strange particle decays 

Let us now consider the class .S+I. 
S+1, strongion class with LIS = + 1 (strangeness non-conserving current of the 

second kind). It contains · 

(11) 

and a possible meson term 

(12) 

Pairs of this class would be equivalent to a positive meson with S = - 1. No 
such meson e~sts in the Gell-Mann scheme. Pairs of this class are equivalent to 
the system (I{-°7r+) which behaves like a positive meson with S = - 1. Now 
the point ~ that if we couple .S+I to .S_1 we find a possible reaction such as 
3° -+ n -1:. ~- + ~- which would lead to the sequence 

(13) 

Now E--+ n + 1r- has not been seen and instead E--+ A0 + 1r- has been seen in 
all the cases reported (not so many however) thus suggesting the selection rule 
LIS = ± 1 for strange particle decays [2]. This might be a motivation for ex­
cluding class .S+I 1). What is important is that one can then obtain a number of 
prediction~ ":'hich can be compared with experiment. Let us fast see what 
these predictions are. Then we shall look into the question of how to exclude 

'.) Note _that all strong virtual steps in (I 3) involvc·the stronger pion internctions and no K 
mteract1ons. 

11 • 
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this class by theoretical arguments. By coupling SH to £ one would have t.he 
decay modes ~+- n + l+ + V 

(where 1 means either c or µ), and 

so-~-+ l•+ V 

J(_O ->-it-+ l+ + V 

and its charge conjugate 

(14) 

(15) 

(15') 

Such decay modes are forbidden if S+1 is not coupled. ,vhat does this mean in 
terms of the physical particles K~ and K~? Recalling that [3] 

Ir,, 1 ,'ITO -I 
\.ij = ·-· . 1, .'\. - (0) J/2 . . (16) 

one finds immediately the following relations between the decay amplitudes 

(K'/- l +) = (K~ ->- ]' ) = 
1

. (KO -1+) 
1'2 

(17) 

(17') 

In (17), (17'), (K'/-+ l+), for instance, is the matrix element for K'/-+ I' 
+rt-+,,. . ~ 

OKUN and PoNTECORVO have pointed out that the presence or absence of 
LIS = ± 2 interactions is of great relevance in the problem of the K~ K~ mass 
difference [4]. If S+1 is coupled, a term contributing to the mass difference would 
already be present at the first order in the weak coupling constant, for instance, 
trough the virtual scheme 

(18) 

The Pais-Piccioni oscillations [5] would then be very frequent ( ~ 1017 per second) 
as compared to the inverse lifetime ( ~ 1010 sec-1). If s.

1 
ist not coupled, a typical 

mass difference contribution would come from 

Ko-+ P + n + ,.---➔ Ko. (HJ) 

with two weak steps, leading to a mass difference presumably of the same order 
of the inverse lifetime. In this situation one may observe the Pais-Piccioni 
oscillations. · 
The requirement ,1 S = ,1 Q excludes class S+i· A stronger requirement which 
also leads to exclusion of class S+1 ist that the strangeness-non-conserving 
current transforms in isotopic spin space like the component of a spinor. One 
sees immediately that there is no way of satisfying this requirement in the class 
S ,1 sincr therr are no suitable linear combinations avail1ible , for instance of 
n 1: and a nucleon. We shall later discuss again such quest.ions . 
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-Finally, if one still wants to complicate the situation, one can think of currents 
S±2 for which LIS = 2. Again one meets the trouble of E---+ n + it- by coupling 

for instance a term (n!f·) to S0• Also decay modes such as E---+ n + c-+ v 
would be expected in that case. 

2.3 Possible neutral currents 

Let us now discuss the possibility of neutral currents (LIQ= 0). We consider 
two neutral lepton currents, _£co>, containing(µ+µ-), (e+e-) and (vv), and _£CO>' 
containing (µ+e-) . .£<0>' is apparently not coupled at all. One finds out that it is 
still consistent with present experiments to couple .£<0> to a strangeness-con­
serving neutral current SJ0>. 
SJ0l: neutral strongion class with LIS= 0 (neutral strangeness-conserving 
current). It may contain the baryon terms 

and the meson terms 

(21) 

The coupling _£co> SJ0l does not lead to any inconsistency with present <lata. 
There would be weak interactions such as µ + n -► µ + n which however will 
be hard to detect because of the stronger electromagnetic effects, and processes 
such as v + p--+ v + p also hard to detect. One also will have interactions 
(e+e-) (vv) and(µ+µ-) (vv) which can be rearranged to look as (ev) (ev) and 
(µ v) (µ v) again in the AV combination, and they would therefore interfere with 
the corresponding terms arising directly from the charged currents. A similar 

·"conclusion also holds for terms (pp)(nn) which can be rearranged in the form 
(pn)(pfi). 
The reason which suggested that we look into the possibility of a neutral current 
it connected with an extension of the hypothesis of non-renormalization of the 
vector part of the strangeness-conserving S 0, which we shall discuss later. From 
such a point of view, in trying to build up the neutral current S.\0> one ist strongly 
tempted to require that its vector part be the 3 current, ti3>, of the isotopic spin, 
the axial part being then fixed by the requirement that the fermions occur in 

the...!__ ( 1 + y5) project-ion. This would lead automatically to the non-renormali-
2 

zation for the vector coupling constant in S~0l, and would produce a highly sym­
metric scheme. In such a case S,\"l would consist of 

One has further to look into the possibility of neutral strangeness-non-conser­
ving currents. One it here however immediately faced by a difficulty. In fact, 
by coupling a term (nXl with (v -v) , (e+e-), and(µ+µ- ), one would find processes 
such as J(O--+ e+ + e- and K 0 --+ µ++µ- of which the first one would proceed at a 
very low rate, but the second one could very well be observed. Even more, one 
would find processes such-as K---+ ,c + v + v and K - --+ it- + e+ + c-, which 
would favorably compete with K - --+ n° + e- + v, which is a known react-ion. 
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2.4 The requirement LIQ = ± 1 and the intermediate meson hypothesis 

If one wants to keep only the charged currents, a rather suggestive hypothesis 
is that weak interactions are mediated by an agent X (for instance a massive 
boson) which carries unit charge. Each pair would interact with X, and incli­
rectly with all the other pairs coupled to X. The resulting interaction between 
two pairs would then be slightly non-local. If X is a boson with mass M, it 
must have spin 1 to obtain in the local limit the AV theory, and its propagator 
would be in momentum space 

1 (o KµK•) 
K2 + M2 µ• + M2 - . (23) 

The effective weak interaction would occur through the X meson, for instance 
~- decay would be given by a graph: 

P X 11 

n > II 11111 <,-
The non-locality contained in the Oµv term is difficult to observe because of the 
smallness of the momentum transfers K 2 for most of the known processes 

1 1 
x2 + M2= Mi' 

(24) 

Eve1i more difficult would be the observation of the K K, term. This term 
would contribute effective scalar and pseudoscalar contrib;tions to the resulting 
direct interac~io~ betwe~n the curren~s. _Since X is supposed to ha,;7e_ only 
ele~tromagnetic mteract10ns (because 1t 1s charged) and "semiweak mter­
act10ns with the currents, its production cross-section would be very small (for 
instanc~ it ~ould be produced by the reaction y---+ X+ + X) 80 that no difficulty 
concerning its apparent absence may occur. Its decay would occur at first order 
in the semiweak interactions of X with the currents. Let us however see what 
difficulties one encounters by postulating the existence of X. First of all, there 
ist ev!dence for some non-local effectsjn µ - decay which were suggested [6] to 
explam the deviations of the e-value from ¾ (the best e-value deter­
mination so far is e = 0,68 ± 0,02, due to CROWE} . A devia tion of this order 
of m agnitude could be accounted for by a value of the mass around 300-400Mev. 
However, as we shall cliscuss later in more detail, the sign of the deviation 
cannot apparently be accounted for by a real meson. For a real meson the devi­
ations would always be such as to increase the e-value above ¾- Of course, 
before reaching a definitive conclusion one should try to estimate the radiative 
corrections to the e-value for this more complicated model (in which a virtual 
photon can also be emitted from the non-local vertex). The radiative corrections 
which were subtracted to get the experimental figure of 0,68 ± 0,02 are those 
calculated for a point direct interaction between the four fermions. A ?econd 
diffi culty for the hypothesis of the intermediate X occurs in connection with the 
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apparent non-existence of the decay mode µ+- e+ + y. If an intermediate X 
exists, the diagram for µ-decay, µ - e + v + v, would look as 

From this diagram we can deduce the existence of an indirect term looking as 
µQ(x) KQu(x - x') eu(x') in the interaction Hamiltonian, where K is some form 
factor. It comes from the graph 

If the electromagnetic interactions are now turned on, the existence of the above 
term would imply the existence of diagrams of the kind 

e fl, • e 

which lead toµ - e + y. If the kernel K is expanded in powers of the momentum 
transfer and only the linear term is kept, then one can easily show that gauge 
invariance requires a perfect compensation of all the three graphs above so that 
no µ - e + y occurs at this order . This approximation is however not recom­
mended because of the smallness of the wa velength of the emitted y . FEYNMAN 
and GELL-MANN (7) and FEINBERG [8] have calculated the proba bility for 
µ - e + y with the conventional highly divergent quantum electrody namics 
of a charged spin one meson X. The matrix element forµ -► e + y is found to be 

(26) 

where fx is the semiweak coupling constant and N is a number depending on the 
cout-off. The expression (26) is valid only for large values of Jl,f . With a cut-off 
around the value M , N turns out to be essentially one, depending logarith­
mically on the cut-off. The probability for µ - e + v + v also contains the 
factor /i</M2 , which thus drops out in the expression for the branching ra tio of 
p. - e + y to 11· - e + v + v. One finds thus a va lue 10- 4 for such a branching 
ratio. The experimental value is due to LOKANATHAN and STEINBERGER who 
report a figure of 2 • 10-5 as a n upper limit for the branching ratio. It is also 
evident that since one has a n effective vertex operator in (25) one then has 
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also the possibility of obtaining processes such as µ -+ e + e+ + e-, from the 
graph 

e 

fl 

andµ-+ p-+ c- + p from 

p p 

/.-
Such processes would also occur at the same order in the weak coupling constant 
as the ordinary decayµ-+ e + v + v or the ordinary absorptioµ µ- + p-+v + n. 
They occur however at the second order in e2, whereas µ-+ e + y occured at ~rst 
order in e2• It is funny how, although all this business of the intermediate 
charged X was invented to a void processes such as µ -+ e + e- + e+ or µ- + P -+ 
-+ -e- + p, such processes still occur at higher order in ez. However practically 
the probabilities come out to be so small that no inconsistency with the present 
data arises for the moment. What seems instead to give rise to a real inconsi­
stency is the absence of µ-+ e + y. It should however be emphasized that a 
cut-off calculation like this may very well be wrong. No other theoretical scheme 
is known however to calculate such things. 
Now, why do not such difficulties occur in the local case. with a direct four 
fermion interaction1 One can easily convince himself that the neutrino loop (25) 
is zero in the local case, because of symmetry considerations. Its expression is 
however far from being unambiguous. 

3. Possible Properties in Isotopic Spin Space 

3.1 Isotopic spin changes in the decay of strange particles 

It may at first sight seem rather useless-to start a discussion about the possible 
properties of weak interactions in isotopic spin space, since isotopic spin is 
certainly not-conserved in such interactions. To such a point of view one may 
object, first, that in a similar situation where isotopic spin conservation is 
violated, namely with electromagnetic interactions, it is indeed very useful to 
analyse the amplitudes in terms of eigenstates of isotopic spin; second, ~hat 
there is in fact some experimental evidence for an apparently simple behav10ur 
of the decay amplitudes in isotopic spin space, and at least the rule LIS = ± 1 
for strange particle decay directly implies LI I 3 = ± 1 /2; third, some gene~al 
requirements to the strangeness-conserving t erms, such as that of a defimtc 
behaviour of the current [6] under charge conjugation times charge symme~ry, 
or that of nonrenorma.Jization for the vector part, lead us to assume a behaV1our 
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like that of the component of a vector in isotopic spin space. An important po_int 
to be noticed first is that, by requiring LI I = 1 /2 to the strangeness non-conse~vmg 
current, one obtains immediately LI la = + 1/2 for the decay of s~rang~ partic!es, 
though in general both ,1 J = 1 /2 and ,1 I = 3/2 will be present in the interaction. 
That is one has a scheme conceptually simpler than the ,1 I = 1/2 r~le for the 
interaction which still gives ,1 Ia = ± 1/2, This result can be verified very 
easily. As we said already, it may very well be that S0, the strangeness-con­
serving current, behaves, like a component of a vector in isotopic spin space. 
This follows if one postulates a definite behaviour of the current [6] with respect 
to the product operation of charge conjugation and charge symmetry, or also 
if one assumes the hypothesis of nonrenormalization of the vector part. ·we 
shall discuss both these questions later. If one assumes ·that the strangeness 
non-conserving current behaves like the component of an isotopic spinor, then, 
by coupling it to a strangeness-conserving current behaving like a component of 
an isotopic vector, one would have selection rules ,1 I = 1 /2 and ,1 I = 3 /2 for 
experimental situation is concerned everybody knows that ,1 I = 1/2 [.9] can be 
at most an approximate selection rule. The main argument for it being only 
apqroximate is that one cannot explain simultaneously the ratios of the life­
time of K.0 to the lifetime of I(+ and the ratio between the probability for 
K 0 - 1t+ + 7t- and the probability for K.0 - 1to + 1to with only ,1 J = 1 /2. One 
finds instead that one has to introduce both LI I = 3/2 and LI I = 5/2 con­
tributions to account simultaneously for the above ratios. The estimated magni­
tude of such contributions, of tho order of 10% [10], is such as to make not very 
plausible the suggestion that they come from electromagnetic corrections. 
However LI I = 1/2 has the great merit of explaining, though not completely 
of course, for the above mentioned difficulty, why the I(+ has so much longer a 
lifetime than the K.0 • In fact, if ,1 J = 1/2 rigorously holds, I(+ cannot decay into 

w two pions because, starting from I = 1/2, J3 = 1/2 one can only obtain I_=_ 1 
for the final charged 2-meson state which should therefore be antisymmetric m 
space coordinates, in contrast with the value for the orbital angular momentum 
which is l = 0 if the K has spin zero. Moreover LI I = 1/2 also explains the ratio 
of 2 of A0 - p + 1t- to A0 - n + 1t0 • Observation of such a value for this ratio 
does not however imply absence of LI I = 3/2 contributions. It must also be noti­
ced that LI I = 1/2 also explains the experimental ratio-,;' /-c = 1/4. However suc~i 
a value wou_ld also be obtained if a LI I = 3/2 component is present becau~e _if 
the -,; has spm zero the final state is expected to be predominantly symmetric m 
the space_coordinates and from group theory one then can show that the possible 
values of the total isotopic spin of the three pions can only be I = 1 and I = 3. 
The latter, however, would not still be accessible even if LI I = 3/2 were present. 
yve hav~ seen fro~ our preceding discussion about a general description of weak 
mteractions that 1t is rather difficult theoretically to present a reasonable scheme 
leading to ,1 J = 1/2 always. The fact that LI I= 1/2 seems to predominate in the 
decay of strange particles should then be explained in each case by means of a 
particular mechanism suppressing LI I = 3/2 or by showing that the same ratios 
are also obtained by more physically plausible combinations of ,1 J = 3/2 anrl 
LI I = 1/2. An example where such a situation may occur is A decay. Here one 
finds that by calculating directly from the coupling (pA) (iip), keeping only the 
simplest diagram, one obtains, the bra nching ra tio of 2 between the decay 
~odes ~- p + 1t- and A - n + 1t0 , as with the LI I = 1/2 rule, though tho 
mteract1on now contains also a LI I = 3/2 t e1·m. 
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3.2 Behaviour of the strangeness-conserving current under the product 
of charge conftigation and charge symmetry · 

In looking for more general symmetry requirements that one would ask from 
the strongion currents, it may be conventent to recall that the strangeness­
conserving current S0 contains all those pairs which are equivalent to a 1t+. 

Now a 1t+ is transformed into itself by performing a charge conjugation and 
then a charge symmetry. Therefore we can try to formulate the requirement that 
S0 has a definite behaviour under the product operation of charge conjugation 
and charge symmetry, and investigate to what restriction it leads for S0 • It is 
unfortunate that a similar possibility does not exist for the strangeness-non 
conserving currents. The current $_1 is equivalent to a I(+ and this would be 
transformed into an K.0 under the above product operation, so that it is impos­
sible to formulate the problem of a definite behaviour of S_1 under this operation. 
A similar conclusion is also evident for S➔ i· 
The convenience of classifying the different terms in S0 according to their 
properties under the product operation of charge conjugation and charge sym­
metry have been pointed out recently by WEINBERG [11] . The relevant operator 
is G = Ce"'1 •, where C is the charge conjugation operator and einl • performs a 
rotation of 180° around the second axis in isotopic spin space, which is one way 
of realizing charge symmetry as a proper orthogonal transformation. For the 
nucleon field G'f/JG- 1 = i-r2 '1/Jc and for the pions GcpG-1 = -cp. This last relation 
is responsible for the known rule which forbids an even number of pions to go 
into an odd number of pions if G is conserved Moreover G satisfies the relations 
[G, N]+ = 0, [G, SJ+ = 0, G2 = (- )N + 8 , [GI] = O, where N is the nucleon 
number, S the strangeness and I the total isotopic spin operator. We next con­
sider t~e bilinear expression (°ij!I';i+ 'f/J) and we find G (tpI';i+ 'f/J) G-1 = 
= -;i ('f/JI';i+'lj)); where;, = + 1 for i = S, A, P and;;= - 1 for i = V, T . 
Now we say that all covariants Q; which transform according to GQ;G-1 = 
= - ;;Q;, namely in the same way as the simple (VJ r,•;'f/J) of the same tensor 
character i, are of the first class; those which transform according to GQ;G-1 

= ;;Q; are of the second class. Let us now go back to the strangeness non­
conserving current, and consider for instance its vector part. The first term 
(ipyµi+'f/J) is of the first class, because of definition . When however, we want to 
add a similar t erm for the ~-particles we find that we can choose among all the 
possible linear combinations of the form a~+yµ~o + b:!;oy 1;-. If, however, we 
require that it behaves as a first class covariant vector, then ~e find that a= - b. 
This m eans that we can write our term for the 1:-particlcs as ty T + ~, where T + 

is the appropriate isotopic spin matrix. One finds in general that one is led to 
the conclusion that the selection rules for a vector strangeness conserving 
current consisting of the pairs (6) are those of the component of a vector in 
isotopic spin space. This holds also for the total current including the axial 
which can then be constructed from the requirement that fermions appear in 
the projection (1 /2) (1 + y5). 

If one now assumes as a principle that in the strangeness-conserving current 
there are only first class quantities, how can one verify such a principle experi­
m entally ? In ~-decay t here is generally not much hope, because a term such as 
(p I v1pyµ'f/Jn I 11 / where (p l and In ) are the physical stat~s is always well approxi­
ma ted by a t erm of the form u pyµun between free spmors, because of the low 
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momentum transfer - and similarly for (p I 1PPYPYsV'nl n). One has to study 
energeti~al ~-decay to discover such effects. Inµ.-+ p--+ n + v the momentum 
transforis larger. A matrix element (p 11PP?'P1Pnl n) will be expressible in general as 

(p I "ifip?'µ1/1n In) = av (K2) yµ + bv (K2) Kv<lµv + ic,, (K2) Kµ (27) 

where K,, is the momentum transfer Kµ = Kp, µ - Kn,µ and a, b, care invariant 
form factors. Similarly . 

(p I 1PPYµYs'l/1n I n) = a.;1 (K2 ) iyµy 5 + b,1 (K2 ) Kµy 5 + ic,1 (K2 ) K.a.µy 5 • (28) 

One can immediately convince himself that in each of the above expressions 
the first two terms behave as first class quantities. In fact, as we said before, 
V and T take on the same~; and also A and P take on the same ~;- The last 
terms in each of the two expressions are instead of the second class. Inµ.- + p --+ 
--+ n + v the term ic,,Kµ contributes an effective scalar interaction of magnitude 
~ mµcv(IQ). A guess about Cv (K2)wouldsuggestthatitis~ (mµ/mN) av.Observation 
of this scalar term would indicate the presence of second class quantities. Further­
more since the nucleon contributions to the current are always of the first class 
[they must always be of the form (VJI';T+V'l] observation of such a scalar term 
woul~ inform us about the hyperon contributions to the nuclear structure. The 
term ic,4.Kvavµy 5 contributes inµ.-+ p--+ n +van effective derivative coupling 
ic'.4 (K2) (Klµ) + Ri•l) <1µ;.y5 • The observation of the first two terms in each of 
the above expressions does not tell anything about second class quantities, but 
it tells us of nucleon structure. The term bvK,a,µ introduces an effective deriva­
tive coupling inµ.-+ p + n + v, while the term b,4.Kµy5 introduces an effective 
pseudoscalar. GOLDBERGER and TREIMAN have used dispersion relation techni­
ques to estimate the effective pseudoscalar and they find that it is eight times 

~ larger than the original axial part. We shall discuss later this result when spea­
king of the nuclear interaction of µ. particles. 
In concluding this discussion about the behaviour in isotopic spin space we want 
again to state the result that both LI I = 1/2 and LI I = 3/2 contributions are 
expected to be present in the decay of strange particles according to this theory. 
There seems to be no way of avoiding this conclusion in the present formulation. 
If one wants an overall LI I = 1/2 rule for the interaction, then one has necessa­
rily to introduce neutral currents into the picture. We have seen in 2.3 that a 
strangeness conserving neutral current may wertainly be introduced , but its 
coupling--with leptons seems to give rise to some inconsistencies. 

4. The Hypothesis of Universality and the Hypothesis of Non-renormalization 
for the Vector Strangeness-conserving Current 

4.1 Form of the weak interaction Hamiltonian and calcitlation 
of the weak coupling constant 

Let us go back to the strangeness-conserving current. To discuss the question 
of the non-renormalization of the vector part we luwe to review first the main 
steps leading to the weak interaction Hamiltonian of the FGM:S theory. The 
main assumption is that the fields always appear in the interaction wit h the 
projection. (1/2) (1 + iy5). (We are using here F eynman's notations.) Let us call 
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such a projection operator a= (1/2) (1 + iy5) and let us also de~ne the Hermitian 
conjugate a= (1/2) (1 - iy

5
). One easily veri~es t?at a 2 = a, a a=. 0. The moSt 

general local non-derivative interaction Hamiltoruan for (3-decay will then be of 
the form 

J; g, (a'I/J~I'ia'I/Jp) (a'l/'vI',a'I/Jc). 
i 

Using U1jl = 'l/la one can write (29) as 

J; ff; (1jj11aI';U'I/Jp) (ipv a I'; a. 1/Je) • 
i 

(29) 

(30) 

Now a I'; a = O for i = S, P , T and = I';a for i = A, V so that (30) can be 
written as 

Z Yi (°ipu I'; ll'I/Jp) (°ipvI'i ll'I/Je) · (31) 
i=V,A 

Furthermore one verifies easily that I'va = yµa is also equal to I'A a = iyµ y5 a 
so that (31) can be written as 

(32) 

This coupling is nothing else than A-Vin the usual notations. It has been suppo­
sed here that the nucleons rather than the antinucleons have the projection a 
in front. Such an assignment is quite arbitrary of course and no theoretical 
justification can be given for it. It can however be shown to be the right one 
experimentally by the following argument. If antinueleons instead of nucleons 
have the projection a in front, the (3-decay Hamiltonian would be 

(33) 

By using the properties of the charge conjugation matrix C and the relations 
1/Je,• = 0tpr, ;;pc = C- 1 "ip 1', one can rewrite the above Hamiltonian as 

(34) 

This is the A + V combination. Now, in the decay of polarized neutrons A - V 
would give no asymmetry (neglecting the small deviations from the equality 
of the axial and of the vector coupling constants which are due to renormali­
sation ~ffect_s), while A + V would give maxi~um asymmetry (also in the same 
approx1mat10n). The observed asymmetry 1s consistent with A - V, thus 
suggesting the form (32) for f3 decay Hamiltonian and the assumption that 
nucleons have the factor a in front and..antinucleons the factor a. To build up 
the current Jµ one adds the contributions from the pairs (pn), (ve), (vµ), et 
cetera 

(35) 

It has been assumed here thatµ- is a particle. The other choice would have led 
to a µ-decay Hamiltonian given by YB G(v yµaµ) (v yµae) which would lead to 
a (2+ -value of zero in contradiction to experiment. Tha.t the electron spectrum 
should go down to zero independent of the statistical weight at the maximum 
electron energy if two neut1·ino or two antineutrons are emitted follows from 
the Pauli principle. In fact at the maximum electron energy the two neutrinos 
would trav el in the same direction, although in general with different momenta. 
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The wavefunction of a two component neutrino does not however contain any 
indication of the magnitude of its momentum except in the exponential factor 
which contributes to the a-function expressing the total momentum conser­
vation, and since the decay amplitude has to vanish when the two momenta are 
equal it will also vanish in the general ·case. So at maximum electron energy the 
decay amplitude has to go to zero by virtue of the Pauli principle. From the 

µ-meson decay Hamiltonian fs G(i]:yµav) (vy1,ae), one finds for the µ-meson 
lifetime the expression -r = 192n3 /G2 mi and noting that no appreciable effects arc 
expected here to renomalize the value of the coupling constants (the largest 
radiative corrections arise from virtual photons) one can use this expression to 
calculate G, the bare coupling constant of the weak interaction Hamiltonian. 
Surprisingly one finds that the coupling constant so determined is identical, in 
the limits of the small experimental errors, to the effective coupling constant for 
the Fermi part of [)-decay, that one can measure from the lifetime of 0 14. 

Namely from the lifetime of 0 14 one finds G = (1,01 ± 0,01) • 10-5 (1/m:v) = 
= (1,41 ± 0,01) • 10- 49 erg/cm3 , and inserting such a value into the µ-lifetime 
formula one obtains -r = (2,26 ± 0,04) • 10-6 sec, to be compared to the experimen­
tal lifetime -r = (2,22 ± 0,02) • 10-0 sec. This agreement seems to suggest 
strongly that the hypothesis of universality holds, namely that the formulation 
with a current Jµ of the form (35) is perhaps right, and furthermore, it indicates 
that, surprisingly, the renormalization effects due to strong interactions are 
absent for the V part of [)-decay. As far as this latter circumstance is concerned, 
one would think that, unless some unknown accident takes place, a symmetry 
principle is operating at this place in a way similar to gauge invariance in 

· quantum electrodynamics which leads to the non-renormalization of the electric 
charge e. Gauge invariance implies that in the zero energy limit the charge of 
the proton is rigorously e and furthermore it insures that the result holds inde­
pendent of the structure of the nucleon. We may say that physically this happens 

,,, because when a proton emits a virtual it+ to become a neutron the virtual 7t+ 

must, because of gauge invariance, interact with the photon field and again 
exhibit the charge e. It is only for smaller wavelengths, that are able to explore 
the structure, that an effective charge different from e may be exhibited. From 
this analogy it will not appear surprising that, in order to have non-renormali­
zation for the V coupling in f,-decay, one has to introduce a direct interaction 
of the pion field bilinearly with the lepton pairs. We shall later discuss fully the 
formal problem that is involved here and the physical implications of the scheme'. 
\,Ve would like however to show first how the argument given above for the non­
renormalization of the vector part, namely from the equality of the coupling 
constant from 0 14 to that from µ-decay, would be im,alidated if the present 
evidence ~or a (_)-value in µ-decay definit.ively different from 3/4 would be con­
firmed. It is therefore very important at this point to have a very accurate 
measurement of the (_)-value in µ-decay. 

4.2 lncornpatibility of the hypothesis of non-renormalization 
of the V-part with the present experimental e-value 

Let, us write the µ-decay Hamiltonian in the form 

(36) 



160 R. GATTO· 

where vL = av is the lefthanded· neutrino of the FGMS theory. The e-value 
from such an interaction is exactly 3/4. To explain its deviations from the 
measured value e = 0,68 ± 0,02 (radiative corrections included, the value is 
due to Crowe) we follow the LEE-YANG proposal [ 12] that the interaction has a 
more complicated structure and does not occur at a single space-time point. 
The above Hamiltonian will therefore be modified to 

J/8 G(eyµv1,(x)) K(x - x') (vL yµµ.(x')) (37) 

where a form factor K(x - x') has been introduced. Of course (37) will then 
be generalized to the expression for the interaction of J,, with itself, which will 
look something like J,,( x ) K(x - x') J!(x') + h. c. This form is not the most 
general one, since one could still have something looking as Jµ(/(K2 + 
+ KµK,g(K2 )) J: + h. c.; however we expect (37) to be at least a good approxi­
mation because of the smallness of the electron mass. We do not assume here 
that the form factor is due to the meson X. It may originate from any compli­
cated cause, or even reflect a true elementary non-locality. If K is exanded in a 
series of derivatives of the o-function [12] 

K(x - x') - .1: 4 (x - x' ) + .!L J!_ -~ .1:4( . ') + 
- u • • mi 8 Xe 8 Xe u X - X ... (38) 

we find for the electron spectrum from polarized muons 

d2 Noc x2 dxdt {6 - 4x - } ffie(17) (9 - 16x + 5x2 ) + 
+ [(1 + ~ ffie(17))/ (1 + { ffie(17))] t [2 - 4x - } ffie(17) (6 - 12x + 5x2)]} 

where; = cos 0 is the angle between the muon spin and the electron momentum 
and x is the ratio of the momentum of the electron to its maximum energy. 
The energy spectrum turns out to be 

dN ex x2dx {3 - 2x - J ffie(17) (9 - 16x + 5x2)} (39) 

A e-value from this spectrum is obtained by a least square fit to a Michel's 
spectrum. The relation is [12] 

¾ ffie(17) = - 1,8 (¾ - eexp)- (40) 

One sees from (40) that ffie (17) turns out to be negative thus excluding an inter­
pretation of the non-locality as due to a virtual boson. The lifetime can also be 
calculated and it comes out to be 

.--1 = •0-1 (1 + -~ ffie(17)) 

and by substitution of (40) into (41) 

. - 1 = r;;- 1 [1 - 1,8 (} - eexp)] 

(41) 

(42) 

H ere •o is the lifetime for the local Hamiltonian (17 = 0) . To calculate the lifetime 
(42) one still needs the value of the coupling constant, contained in •o· This 
value however can be taken from the ~-decay of 0 14 if, per absurdum, we assume 
that the non-renormalization principle holds. The coupling constant so deter­
mined is again the same that one would obtain neglecting the non-local effects 
that were introduced in our universal weak interaction. This because the momen­
tum transfer in (3-decay is very low a nd the non-locality is not yet felt. Taking 
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the coupling constant from 0 14 and(! = 0,68 ± 0,02, and computing errors, we 
find the predicted lifetime for µ-decay to be -r = (2,60 ± 0,13) · 10-s sec. The 
previous surprising agreement with the experimental value has now changed into 
a disagreement of at least 10%. 
There is one point in which the above argument may be slightly incorrect. 
Namely the experimental e-value used here h~s been obtained after subtracting 
radiative corrections as calculated for point interaction. It is impossible to 
estimate what the radiative corrections would become in the non-local theory, 
unless one makes a very definite model of the non-locality (for instance inter­
mediate boson). In general, however, one does not expect great changes from 
these effects and therefore we would conclude that it is ccrt,tinly very important 
at this point to have a very accurate determination of thee-value. 

4.3 Experimental tests of Universal Fermi Interaction 

The equality of the effective coupling constant for ~-interaction as derived from 
the lifetime of 0 14 to the true coupling constant derived from the µ-meson 
lifetime suggests first that there may be strict universality in the primary inter­
actions, meaning that the coupling constants may be all equal, and, second, 
it suggests the absence of renormalization effects and a possible symmetry ex­
plaining such absence. It appears therefore to be important to have direct 
separate tets of the hypothesis of universality, possibly independent of the 
question of the non-renormalization of the constant by the strong interactions. 
The most direct, test for universal interaction is provided by the ratio ofn---+e + v 
to 7t--+ µ + v [13] The ratio can be calculated uniquely indepedent of assump­
tions on the strong interactions for any forms of the weak coupling, provided it 
is assumed that the two leptons emerge from the same point. For S, V, T both 
decays are forbidden, for PS the ratio r 

w(n---+ e + v) 
r - --'----;--;-

- w(n---+ µ + v) 
(43) 

is 5.4, for A it is 13,6. 10-s. To illustrate the argument let us consider the ca:;:e 
of A interaction. The decay is represented by the black box 

The momenta of the two leptons are assumed to appear only in the combination 
Pt = P~ + p~, corresponding to the assumption of locality. Moreover energy 
momentum conservation implies p~ - Pt = 0, so that we can choose p~ as the 
only independent four-vector allowed by kinematics. The matrix element will 
therefore be of the form 

M 0C f(p!) (ey5yµp~v lc< me f(p'f.) (µy5v) 

and the ratio r A is easily calculated 

(m. )2 (m'' ~ m")2 r A = <- ~ ~ = 13,6 • 10- 5 • 
n,.11 1n; - 111 ,i 

(44) 

(45) 
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The first factor (me/m1,)
2 is th~ ratio of the two · squared matrix elements, the 

second factor is the ratio of the two phase spaces. For PS interaction the first, 
factor has to be replaced by 1, and the ratio rps is identical to the ratio between 
the two phase space volumes. 
It may perhaps be instructive to understand a little more physically the appea­
rance of the, factor me in the matrix element for the case relevant here of A 
interaction (44). Consider 1c decay. What is emitted is an 1- and an v. The 1-
is coupled in the FGMS theory as a left.handed particle, while the vis coupled as 
riahthanded. Of course, it is equiv·alent here to talk of the FGMS theory or of 
a 'pure A interaction, as far as the ratio (43) is concerned, but it is really more 
instructive to discuss directly in the FGMS theory. Nothing destroys the handed­
ness of the v which has zero mass, and only the mass term will destroy the hand­
edness of the 1-, since it is known that the electromagnetic interaction preserves 
the handedness. So in the limit of m1 = 0 a leftbanded and a righthanded par­
ticle would have to be emitted from a zero spin system, which is impossible 
because of angular momentum conservation 

-•--e----:()--i-.. et--8 ji 

Therefore the matrix element (44) has to go to zero for m1 = 0, as it in fact does 
according to (44). 
What is important here is that radiative corrections (which a priori could not be 
regarded as negligible as compared to such a small decay amplitude in the case 
in which 1- is e-) do not change this conclusion, as long as quantum electrodyna­
mics holds in its conventional formulation. If, however, quantum electro­
dynamics contained for instance a aµv coupling, which would destroy the hand­
edness, t hen the radiative corrections would not have any more to be proportional 
to the lepton mass, and for the case of the electron, they could produce essential 
changes in the calculated ratio (45) . The delicate nature of the dependence of the 
calculated value for r _.. on the form of quantum electrodynamics was in fact 
pointed out by different authors [14]. The main interest in the question , at the 
time in which s uch discussion was made, came from the apparent strong dis­
agreement between the experimental value for r and its predicted value 1',i in 
the FGM8 theory . Recent expcl'iments have however reduced this discrepancy 
and arc q':11te consist ent which the theoretical value [15]. Apparently this case 
of the rat10 of n-+ e + v ton-► 11. + ,1 (together with the corresponding case 
of. K-+ e + 'I and K-+ µ + v) is the only case in which a test of the hypothesis of 
universality can be made directly without going_ into the various complications 
clue to the presence of strong couplings. There is still another case, which al­
though a little more complicated offers a similar possibility, namely the com­
parison of the K-+ e + v + n and K-+ [.l. + v + 7t modes [16]. A decay mode 
K -+ 1 + v + n can also be represented by a black box 

/( 
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The structure of the black box is here a little more complicated because there 
is one more prong coming out from the box. One finds that in the K rest system 
one now needs two functions of the pion energy to describe the box. In fact 
4-momentum conservation requires 

(46) 

and, taking p~ and Pt as independent, the most general matrix element will be 
of the form 

(I y1, PP av) (47) 

where pµ is a linear unknown combination of Pk and P't.,. Using the Dirac 
equation ond can write (47) as 

(48) 

where X and Y are unknown functions of (Pk p~), a quantity which is essentially 
the pion energy in the K rest system. The hypothesis of universality implies 
that X and Y are the same functions of the pion energy independent of 1 being 
a µ or an e. To see in a particular case how one does effectively find limitations 
on the decay probabilities from the hypothesis of universality, consider the 
particular configurations where the pion is emitted at rest 

V K 
... 

e 

The situation is exactly the same as for 7t-+ e + v and;;;-+µ + v and in fact 
for such configurations the ratio 

is uniquely determined 

K-+e+v+1t 
K-+µ+v+1t 

r:i_ = rn~ (Ll5 - m~)2 = 2,6 . 10-6. 
m~ LIJ - mµ 

. (49) 

where L1 0 = mK - m". The only change with respect to the pion case has been the 
appropriate modification of the phase space factor. In the general case one finds the 
following consequences from the hypothesis of universality: if the pion energy is 
measured the electron energy spectrum is uniquely determined and only two 
possible muon spectra are allowed. For each of such two spectra the complete 
muon polarization (longitudinal and along the pion direction) is uniquely pre­
dicted [16]. More stringent conditions follow if it is supposed that as a first 
al?proximation the energy dependence in X and Y can be neglected. 
Fmally, a few words about the (3-decay of hyperons. If such decay modPs were• 
much more frequent than they really are, one could think of proposing t est.s of 
the universn.Jity hypothesis by comparing for insta nce A0 -+ p + e- + ·,7 to 
AO -+ p + µ- + v. The leptonic decay modes of hyperons arp howe;-ver surprising-
12 Zeitschrirt,, Fort schrittc dcr Physik" 
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ly absent or very rare. If one assumes th~t the ?oupling c?nstants are not 
renormalized ( or at least only little renormalized as 1 t appears rn (3-decay), then 
one expects from a direct (pA0 ) (ev) interaction, A- P + e- +vat a_ rate of 
5.3 . 10' sec-1 , corresponding to 1.6% of the decays. Similarly from (~ n) (ev), 
~- - n + e- + ,1 would occur at a rate of 3.5 · 108 sec-1, corresponding to 5.6% 
of the cases. No evidence has been reported so far for such decay modes. We 
want to make a few remarks here in this connection. First, we know that 
leptonic decay modes of hyperons cannot b~ com_pletely absent. In fact even if 
there were no direct interaction of the sort (pA0 ) (ev) one still would have graphs 
such as 

p 
e 

(50) 

1J 

A 
and 

] e 
7C <. I( 

(50') 

and we know that the four vertices in the above graphs do exist, correspond­
ing to the production experiments and to the K - e + v, K - 7t + e + v 
decays (K - e + v must be inferred from K- µ + v). Graphs of this sort will 
occur in a dispersion theory treatment of the process. The intermediate states 
are taken in the Heisenberg representation. It can be shown that (50) gives a 
negligible pseudoscalar contribution (the K is assumed to be pseudoscalar), 
whereas the contribution of (50') is qu te appreciable, but its evaluation is a 
little uncertain. The second remark, that we want to make is that if, as we also 
considered, in the strangeness-non conserving current also terms (Kn) are 
present, there would be also contributions arising from A- p + R-p+e-+ 
+ v + 1t

0 
- p + e- + v and similar processes. However the axial contribution 

(no interference A- V in the total rate if the electron mass can be neglected!) 
is left unchanged. The restriction only_to the (pA)(ev) term is much more 
stringent than the hypothesis of universality. Finally, numerical coefficients may 
very well be present in front of the term (pA) in the current, depending on the 
way in which universality has to be formulated. Such coefficients may have to 
do with the question whether one really has to put the A-field operator into the 
original formulation , which has to do with universality, or whether one has 
instead to use particular linear combination of the different hyperon fields. It 
is apparent that no answer to these quest.ions will be possible unless the avai­
lable experimental information is greatly increased. Of course one can also 
always invoke renormalization effects for the coupling constants to explain 
deviations of the data from the theoretical predictions, but it would seem to us 
that such justification would be a little dubious if one has to use if for all the 
cases in which no leptoni c decay modes are observed. 
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4.4. The hypothesis of non-renormalization for the vector part of the 
strangeness-conserving current 

We can now formulate explicitly the hypothesis of non-renormalization for the 
vector strangeness-conserving current, according to the Feynman - Gell-Mann 
proposal. We shall also reproduce a recent" suggestion by Gell-Mann for a 
possible experimental test of the hypothesis [17]. Experimentally the ~-decay 
Hamiltonian is found to be given by 

YBG (p y1, 1 (1 + ay6 ) n)(ey,,av) + h.c. (51) 

where G is the same (inside experimental errors of 2%) as the µ-decay coupling 
constants appearing in the interaction term 

(52) 

The constant a is found to be fQ + 1,20 (18). The sign + is determined from 
the experiment on the decay of polarized neutrons, which gives very small 
asymmetry, thus suggesting the A- V form instead of the A + V form. We 
have already discussed in 4.1 how the ambiguit,y between the A- V and A + V 
combination_s could not be solved from the theory alone but had to be decided 
by experiment. As to the magnitude of a it can also be derived from the polari­
zed neutron experiment, but with a rather large error. Better determinations are 
obtained from the B - X-cliagram, and from the free neutron lifetime. In this 
section we shall mainly discuss the problems arising from the result 1), namely 
from the equality of the renormalized vector constant in ~-decay to the value 
of the bare coupling constant as obtained from µ-decay. The problems arising 
from 2), namely, why is the A renormalization so small and why is it such as to 
increase the value of the couplino- constant,, will be discussed in the next sec-
tions. 

0 

The Feynman - Gell-Mann suo-o-estion to explain the absence of renormali­
zation effects in the V part of th: ~-decay interactions consists in postulating 
that the strangeness-conserving vector current is divergenceless. The absence of 
renormalization effects on the charge e in quantum electrodynamics is a conse­
quence of t.110 divergenceless of the charge current, which for instance for a 
system containing nucleons and pions is given by 

j,, = t: + jj,3 ) = ~ (tpyµ'lj)) + CipyµT31j)) + i(cp*T38µ<p- (8µrp)* T39'). (53) 

Here the first term is divcrgenceless because it is the local nucleon number 
current, while the last two terms are divergenceless because they add up to the 
local current of the 3-component of isotopic spin. The decomposition corresponds 
strictly to the decomposition of Q according to 

Q = -~ N + 13 (54) 

for a system with zero strangeness. The interaction with the electromagnetic 
field is given by 

. A -(N)A · (3) - e71, ,, = -eJ,, ,, - eJ" A,, (5,5) 

'.1.n~ tho ~rst ~erm contrib1:1tes to the Hamiltonian a. krm behaving Like a scali1r 
111 JSotop1c spm space, while the second term contributes a term behaving like 
13 Zcitschrirt ,.Forlschrittc dcr Physlk" 
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the 3 component of a vector. Now one can by analogy postulate that in the 
vector part of the weak strengeness-conserving interaction what is coupled is 
the j~±) = j\?> ± ijf;> component of the isotopic spin current 

·<· . . N 8:rc, 
Ji)= l iNr;yµ + 8;k1:r&1,;a· - + · · • 

µ - Xµ 

More explicitly the V part of the ~-decay interaction is given by 

- Gj~+> lf,+> + h.c. 

where 

(56) 

(57) 

(58) 

The lepton covariant l~ +) pla,ys here a role entirely similar to the field Aµ- The 
term (56) is directly comparable with the term - ej~3) Aµ in (55). The matrix 
elements are strictly proportional. For any y-transition due to the second term 
in (55) there is a corresponding transition due to (57). The Hamiltonian densities 
that contribute are, for the two transitions, 

- Gji+> l\,+> + h. c. (59) 

and 

(59') 

Let _us stu_dy in detail the analogy by making a multipole expansion for both 
the 1sotop1~ vector part of the electromagnetic interaction and for our -ye?tor 
weak coupling. The monopole terms are (limiting the discussion to e- em1ss10n) 

(60) 

(60') 

where I is the total isotopic vector and the fields are taken at the nuclem,. 
Equations (60) and (60') may be used if one can neglect the energy release to tho 
lepton and to the photon fields. For instance one can compare 

7t± - r.;O +· e± + V (61) 

with the ~-decay mode of 0 14• They both are O - O-transitions, so only Vis 
involved. One has to evaluate the matrix element of/ between TC and r.:0, and 
between 0 14 and its daughter nucleus. Tb.is can be d;ne by only isotopic spin 
considerations and one actually finds that 1t± - 7to + e± + v and 0 14 have the 
same ft-value. The phase space available in (61) is however so small to make any 
experiment to determine its rate very difficult. In general in any O+ - O• 
~-transition, which is allowed and only involves the V interaction, the matrix 
element will be that of I + in the approximation in which (60) holds. This is 
however not a strong prediction of the theory. It would automatically be satis­
fi ed in any nuclear model in which the nucleus is described as a system of dressed 
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nucleons. For a possible verification of the theory Gell Mann examines a situation 
like the following. Consider a scheme like this: 

I 2 =+1 I 2 =0 Iz=-1 

(N•~ t') /(B") 

~~ 
The nuclei indicated in parentheses correspond to a particular example of the 
situation. In such a particular example the excited state of c12 is at 15.11 Mev. 
The effective H _amiltonian for they-decay, for instance from the Jz = O level, is 

µe 
- z.M (rotA),. (62) 

In fact the transition occurs through maanetic dipole, since Lil = 1 and there 
is no parity change, so the matrix element°will essentially be that of the pseudo­
vector H. In isotopic space Lil = 1 for the transition so that only the isotopic 
vector part of the electromagnetic interaction Hamiltonian contributes to the 
decay. Consider now the r,- transition. Here LJJ = 1 and there is no parity 
change, so one has a Gamow-Teller matrix element, due to the axial, which is 
given by 

- (Y2Ga) 111aT(eO':av) . (63) 

always considering Jz = 0. This matrix element will of course give the main 
contribution. One may however be able to measure higher order corrections. 
There will be a matrix element contributing, which is completely analogous to 
the electromagnetic matrix element (62), in the sense of the correspondence 
given by (59) and (59'). This matrix element can be obtained directly from (62) 
by the suitable substitutions, and it is 

_µG(rot(ef3a.av)),. (64) 
mN 

In (64) a fl_!ctor Y2has been introduced to account for the fact that the matrix 
element of j£ +) is J/2 times larger than that of ii3

), for the particular transitions. 
Now it turns out that the term corresponding to (64) in the absence of the non­
renormalization hypothesis would be much smaller than (64). The reason is 
that the transit.ion magnetic moment µ here contains also the contribution to 
the magnetic monents from the meson clouds, since the pions are now also 
coupled to the leptons. Thus, for the transition considered one has so far the 
matrix element (63) and the matrix element (64). However since one is intro­
ducing with (63) "forbidden" contributions for the vector, one should for 
consistency also look for ,,forbidden" contributions from the axial at the same 
order. It comes out that two more contributions have to be added. For the total 
matrix el ement Gell-Mann gives the expression 

- l'Jl!i'Gal .111aT [e/3 {a: - ia(l(,a.)z - bK,ay6} av] (65) 

13 • 
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where a= µ (V2mN~MaT:i-1 , and b is another unknown constant. For high 
energy ~-transition the term proportional to b can be neglected and one fi~ds 
that the spectrum will have the usual allowed shape apart from a correct10n 
factor 

1 + JEa (66) 

where E is the electron energy. To calculate a one needs fl and M GT· The latter 
can approximately be calculated from the lifetime for the transition 

(67) 

The transition magnetic moment µ can be determined from the magnitude of 
they-decay rate, as can be calculated from (62) 

I'y = ~ 3µ2_, (1)3 
mr, 

(68) 

where w is they ray energy. For the mentioned example of Bl2, C12 andN12 Gell-
1\fann finds I al = 2,3mN1

. One can estimate in this way that by comparing the 
spectra from B12 and N 12 one finds an effect of the order of 20%. The correction 
factor will be 1 + (8/3)aE for ~-(B12) emission and 1 - (8/3) aE for W emission 
(N12 ). The ratio of the two factors will be 1 + (16/3) aE, and 1 + (16/3)aE at the 
m axi.mum energy just amounts to about 20%. Many similar possible tests of the 
theory can be proposed for forbidden trans itions, but wo think that the test 
her e reported will be sufficient to illustrate the kind of argument. 
,ve shall next discuss the problem of the renormalization of the axial coupling 
constant. 

4.J Impossibility of a non-renormalization hypothesis for the axial part of 
the strangeness conserving current. Quantitative estimate of the 

renormalization efjects 

As_we sai~ before the Gamow-Teller coupling constant in ~-decay is by now d e­
~ni_t ely differ~nt fr~m the F ermi coupling constant and thus one should n~t 
m ,nst furthe~ m t_ryrng to make the axial coupling constant a lso non-_renormah­
z~ble. Also, it might be difficult, mathematically, to make the axial cur~ent 
d1vergenceless. - although this question is perhaps unrelated to the prev10us 
one. One has an argument due to GOLDBERGER and TREIMAN which shows tha t 
absen~e of diver?ences of the axial curr~nt would anyway be in conflict with 
cstahlishe~ expenm_ental evidence in ~-decay [19]. Let us sketch here the argu­
m ent. ,vrite the axial ~-decay matrix element in the form 

(- ) < ' J.(A ), l1 '-.._ Uc)l1,U1lv P ,, / · (69) 

, .(A)' ' , 
~ow < p · J1, : n) can be wrttten as 

( p . j\:1> n) = (up [a (K2 ) yµ y5 + ib(K2 ) K,,Ys] lln) (70) 

wher e K,, = K}/'l - K}:•) i s the momentum transfer, a (K2 ) an<l b ( K 2
) a.re 

nucleon form factors. The form (70) follows from Lorentz invariance, time 
reversal, and charge indcpemlc ncc. ln pa rt icular n, possible tc>rm of the form 
up r,

1
,..y 5 K,.u'D does not appear because of the circumstance tha t n and p belong 
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to the same charge multiplet. Using the Dirac equation for the leptons and
momentum conservation, one finds for the A-matrix element of [,-decay 

a (K2)(uc yµ a Un) (up yµ Ys Un) + me b (K2) (uea Uv) (up Ys Un). (71) 

The effective A coupling constant is gA = a(Q), because of the sma_llness of the
momentum transfer, and moreover there is an effective PS coupling constant
gp = me b(o). If now we postulate 

wc find in momentum space 

a -(A) ....JJ:___ = 0 (72) 
ax

µ 

< I -(A), > Kµ p , Jµ I n = 0. (73) 

Substituting (70) in (73) we find (up [a(K2)yµKµy5 + ib(K2)K76
)u0 ) = 0 and 

using the Dirac equation for the nucleons, we finally find the relation 

2mNme
g p = - � g A (74) 

between the PS and the A coupling constants. The ratio gpfgA turns out then to 
be energy dependent, because of the K2 dependence, and very large, ~ 1000 at 
least. This is inconsistent with experiment. No such difficulties arise for the V

part. Here the matrix element analogous to the (70) contains only a yµ term and 
a term aµ ,K,. The term with Kµ alone disappears by invariance arguments. It 
is then evident that the condition (73) can indeed be satisfied. There is perh.aps a 
more direct argument to show that the axial strangeness conserving current is 
uot divergenceless. In fact the decay modes 7t-+ µ + v, 1t-+ e + v, could not 
occur through such a divergenceless current. Since they both exist, the A 
current cannot be divergenceless. 
Finally let us speculate about the quantitative aspect of the renormalization 
problem for the axial coupling constnnt, If one accepts the Feynman-Gell-Mann 
suggestion that the vector part is non-renormalizable, one is then left with the 
comolusion that the renormalized axial coupling constant is a times larger than 
the bare coupling constant (with a ± 1.20). The first question concerns the sign 
of the renormalization effect. Why is the affective coupling constant larger than 
the bare coupling constant? We first should point out that the situation here has 
not very much to do with simple cases where essentially only one field is invol­
ved. One likes to imagine that an original bare charge polarizes the vacuum 
and is then surrounded by charges of the opposite sign, so that the total effec­
tive charge is diminished. Here, however, the situation is certainly quite 
different. More appropriately one can discuss the effect in the static source 
theory. One can easily convince himself that the renormalization factor which 
multiplies the bare coupling constant to give the renormalized coupling con­
stant is something like (1 + (1/3)x2) (1 + 3 x2), where x2 is the probability of 
finding in the cloud a pion of given charge. This factor is certainly less than 
unity. So one is led to the conclusion that, if the renormalization effects are such 
as to increase the value of tho coupling constant, a more sophisticated descrip­
tion of the nuclnon is necessary to evaluate tbnm - in particular nucleon-anti-
nucleon pairs will presumably play an important role. Perhaps the best fra1�---­
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for a discussion of the problem is offered by the dispersion relation approach. In 
particular we refer to the GOLDBERGER TREIMAN work on the form factors for 
weak interactions [19]. We shall discuss this approach later in more detail, and 
make here only a few comments concerning the question of the renormalization 
of the axial coupling constant. 
It ist clear that if one wants to calculate with dispersion relations the renomrali­
zation of the axial coupling constant, one is not allowed to make any subtrac­
tion in the relations. Such a subtraction would essentially mean the intro­
duction of the renormalized coupling constants itself in the expressions. One has 
then to assume that a dispersion relation 

a(g) - c(;) = _..!._J"df Im a(-fJ - _!__rd;' ~-m c(- ;_') 
n ;' + ; - ie n ;' + ; - i e 

with "no subtraction" holds for the difference between the form factor a(K2) of 
equation (70) and the analogous form factor c(K2) for the vector coupling. There is 
certainly no definite theoretical reason why (75) shoud be valid. Unfortunatelythe 
question of_ knowing when and where one has to make subtractions in dispersion 
relations to have convergent expresfiions is still quite unsettled. GOLDBERGER 
has expressed the ,,feeling" that there is a close connection between subtraction 
and bare couplings in the original Lagrangian [20]. So for instance in the G0LD­
BERGER~TREIM~N work on the form factors in [,-decay [19] the_dispersion relation 
for a~;) is used_in a subtracted form corresponding to the ex_1ste~ce of the bare 
coupling for axial [,-decay n-+ p + e- + v. Another subtract10n 1s made for the 
vector form facto~ c(;). However, in calculating 7t'-+ e + v, which goes thro~gh 
a loop and for which there is no primary interaction postulated, no subtract~on 
has to be made. So in principle with two numbers, namely two subtraction 
const_ants YA. and Yv, and all the required informations about strong interaction 
amplitu~~s, one shoud have a complete description. This possibility does not 
appear . m _the usual perturbation theory approach to renormalizati~m. Re­
normalizat10n here is intended for a theory in which weak interact10ns are 
t~k~n only 1;1-P to first order [22]. Thus in a theory where pion and electromagne­
tic mteract10ns are taken at any order and one then adds a bare A, V coup­
ling be~ween n, p, e and v, one finds that apart from the renormalized A and 
V coupling constants one still has two possible renormalization counterterms so 
that a ~otal of_ four constants, apart from all the necessary knowledge _ab_out 
strong mteraction amplitudes, is now required to have a complete descnpt1on. 
If one ad?pts the non-renormalization hypothesis, one finds that apart from the 
renormalized -".4- and V coupling const ants{the latter coincident, of course, with 
the bare coupling constant) one still has to add a renormalization counter term for 
the axial. More specifically, in the first case (no hypothesis of non-renormalization 
for the vector part) if the original weak couplings are 

and 

(vipy5yµtpn} (VJ~YsYµll'I/Jv) + h. C. 

one finds three more terms that may occur as counter terms, namely 

'Po (aµtp)(e y,.av) + h. c. 

(aµ'Po) <p (e yµav) + h. c. 

(76) 

(76') 

(77) 

(77') 
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and 
(77") 

Here 8 is 8/8x - ieA in the presence of electromagnetic interactions. From 
charg/indepe;dence c;nsiderations it follows however that (7'.) a1:d (77') have 
to occur in a definite combination, so that only one renorma.lizat10n constant 
has to be introduced for the two counter-terms (77) and (77'). The counter 
terms (77) and (77') would correspond to processes 

7t - 7t + e + V ( +y) 

while the counter term (77") corresponds to 

7t - e + V ( +y). 

If the non-renormalization hypothesis for the vector part is assured, then the 
coupling constants of (76), (77) and (77') are related in a definite way from the 
requirement that the total interaction is of the form i';>(eyµ av) + h. c. i';> 
being the corrent for the "plus" component of isotopic spin. In this case one 
needs three constants only, for a complete description. In both cases, however, 
7t -► e + v coi•responds in lowest order to a primitive divergent diagram and a 
specific counter term has to be introduced for it, in contrast to the dispersion 
relation approach where one does not make any subtraction in the relation for 
the relevant form factor. From this discussion one sees that one is here con­
fronted with two quite different possibilities. The dispersion relation techniques 
make it possible to give unambiguous answers for questions which could not be 
consistantly formulated in perturbation theory, unless by recourse to arbitrary 
cut-off procedures. Their correct formulation in perturbation theory would 
imply the introduction of renormalization counter terms. The mechanism by 
which such difficulties are avoided in the dispersion relation technique is 
through the automatic appearance of relevant cutoffs in the expressions. The 
convercrence of the dispersion relations with the minimum number of subtrac­
tions h~s however to be postulated. An example which illustrates very sharply 
these differences is provided by a recent formulation by CINI, FERRARI and 
GATTO [23] of the problem of the neutron-proton mass difference. In perturba­
tion theory the physical ma~ses "".ould alr~ady be in~roduced through suitable 
counter terms. With the dispers10n relat10n techruque the problem can be 
formulated unambiguously, provided the convergence of the dispersion relation 
is assumed. In particular in the lowest, and certainly inadequate, approxima­
tion in which only the intermediate state of a physical nucleon is considered, the 
formula that one obtains is simila.r to that obtained by FEYNMAN and SPEIS­
MANN with a cut-off perturbation theory [24]. In the dispersion relation approach 
the natural cut-off is provided by the Stanford form factors for the nucleon. Let 
us thus point out t~at t~ere_ are ~t least t_wo ~ossible attitudes as far as the 
question of subtract10ns m dispers10n relations 1s concerned. There is an opti­
mistic attitude: one has to make a subtraction every time there is a correspon­
din~ bare doupling or a r~normalizat!01~ c?m1ter term in the Lagrangian. The 
att~t.ude express~d by (23) 1s more optim1st1c than what we called the optimistic 
attitude. There rnt however a chance that such a super-optimistic attitude may 
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be correct.At zero momentum transfer (75) becomes a(O) - c(O) = (renormalize<l 
axial coupling constant)- (vector coupling constant) = 

=_!_fdt Ima(-_ f) _ ..!-__Jdt Imc(--:-e). (7S) 
:n; f - -ie :n: f - ie 

Equation (75) has been suggested to us by Symanzik, who thinks that it may be 
conjectured to be correct by an argument similar to one developed by KALLEN 
[25] in quantum electrodynamics. Unfortunately the evaluation of the integrals 
in (78) is certainly a big task. The first contribution comes from the 21t state, 
but it does not seem to be able to give the correct sign and magnitude of the 
renormalization effect. 

4.6 About possible extensions to other currents 

Let us summarize what we have seen about the strangeness-conserving current 
S~. The vector part may very well be non-renormalizable . There is a difficulty 
with thee-value, but here one has to wait for better experiments. The axial part 
has almost no chance of being non-renormalizable. Now what about the diver­
gences of the strangeness non-conserving currents1 If we say that the K is 
pseu~oscalar then the A part of the strangeness non-conserving current S~\ is 
certainly not free of divergences because of the existence of K-+ µ + v, which 
occurs through the A part and implies a divergence. For the V part one can hope 
to have experimental information from the K -+ e + v + 7t spectra. Such decay 
~odes in fact ~ccur entirely through V and the condition on the current _to be 
divergenceless unposes restrictions on the form factors for such decay. This has 
been discussed by. GOLDBERGER and TREIMAN [19] and also by WEINBERG et al 
[26]. The last authors however do not use explicitly the hypothesis of universa­
lity and thus they obtain less stringent requirements. The matrix element for 
K _. e + v + 7t equation (4) is written in the form 

(lyµav)(1t\ Vµ\K) (79) 

where < 7t I Vµ I K ) = c (K2) p + d (K2) Kµ, Pµ = p~K) + Pl"), . and 
Kµ = p~k) - Pf.">. The hypothesis of non-renormalization would llllply 
Kµ <.;'I Vµ J K ) = 0, thus giving a relation between d and c, namely K 2 d = 
= (mk- m;.) c. Therefore in (79)only one formfactor is unknown. It can be shown 
that the decay ratefor K-+e + v +1t has then necessarily to be larger than that of 
K _. µ. + v + 1t . This conclusion is not inconsistent with experiment. More 
stringent tests along the lines of reference (16) are still possible however but one 
will have to wait for better data. We should like, however, to point out that it 
may in fact be difficult to formulate theoretically a conservation law for the 
vector part of the strangeness non-conserving current. For the strangeness 
conserving current we employed conservation of isotopic spin. However the 
strangeness non conserving current will behave in general like a superposition 
of T = 1/2 and T = 3/2, and no similar possibility can be thought of in this case. 
A final remark concerns the possibility of including in the scheme for the 
strangeness conserving terms beside the T + and T _ currents of isotopic spin, also 
the neutral T3 current, which could be coupled to neutral lepton class £<01 

according to the scheme proposed in 2.3. The only motivation for such a scheme 
so far would be its greater symmetry. Furthermore one would perhaps have 
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some new possibility open for the relevan~ question of defining in a lo?al w~y 
rotations in isotopic spin space - a quest10n that was explored some time aoo 
by YANG and MILLS [27]. 

4. 7 Further discussion on the role of strong interactions 
in weak processes 

Comparison between absorption and decay 

We shall here discuss a little further the problem of the role of strong inter­
actions, and in particular the question of the comparison of µ-absorption,µ- +P 
•➔ n + v, with (3-decay n-+ p + e- + v. . . 
The reason why a problem like this is perhaps easier to reduce to a quantitative 
analysis than for instance the problem of the leptonic decay of hyperons, can 
be readily u11derstood. In comparing (.L-absorption to (3-decay, one is only 
studying structure functions of the kind 

<nlJµIP) 

where Jµ can be either VJn iyµYs'I/Jp or ifinYµ'I/Jp at different momentum transfers. In­
stead, tocompareforinstanceA0➔ p + e-+ v to n➔ p + e-+v one would have to 
compare two different structures, namely, < A 0 / J; / p) to < n / Jµ / p ). 
Ono also notices how such a comparison cannot be done if one has to make sub­
tractions in the d,ispersion relations. In fact the subtracted effective coupling 
constants for the two structures would be unrelated, so that no definite com­
parison, for instance between the decay rates, would be possible. When com­
paring instead µ-absorption and (3-decay, one is studying the same structure 
functions for different momentum transfers, and the subtraction constants can 
be identified with the effective coupling constants in (3-decay. The process of µ 
absorption can then be coI?-pared explicitly with (3-decay, provided one is 
able to evaluate the absorptive parts of the structure functions with sufficient 
accuracv. A similar situation ocours in the comparison of K-+ µ + 7t + v to 
K-+ e + r. + v, studied by CABIBBO and GATTO [28]. Here again the same struc­
ture, namely 

is studied at different momentum transfers. Nobody knows whether a bare 
coupling has to be postulated for K-► 1t + l + v (see our remarks in 2.1), as 
it was postulated for 7t ➔ 7t + 1 + v. 
In order to- get a first qualitative insight into the problem of µ-absorption let 
us first make a few simple-minded remarks. It is easy to see that if the inter­
action is A _ V and if one completely neglects any strong interaction effect, the 
absorption only occurs from the singlet state of theµ- - p system. In fact the 
coefficient of the non spin-flip term in such a case is opposite to that for the 
spin-flip term, in a non-relativistic approximation, so that no absorption can 
occur from the triplet state. Now for singlet absorption from the lowest s-state 
there is apparently no asymmetry in the distribution of neutrons with respect to 
the µ-spin, and the neutron longitudinal polarization will be maximum (the 
neutron will be left-handed) 

--n-_,A--..•---8'--°),'---
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Of course one expects modifications from this oversimplified picture, when pion 
effects and relativistic effects are taken into account. Virtual pion effects in 
µ-capture have been considered by W OLFENSTEIN [29] and by GOLDBERGER and 
TREIMAN [21]. WOLFENSTEIN uses ordinary perturbation thecry, while 
GOLDBERGER and TREIMAN apply the dispersion relation techniques. The results 
are essentially the same. WOLFENSTEIN considers the diagrams 

~-"'D<" 
r7C- ~ 

N 
[3] 

which express pion radiative corrections to the original diagram 

[o] 

The diagram [1] contributes a renormalization of the coupling constants of (0). 
Diagram [21 can be studied in more detail. Insknd of [2] it is convcniC'nt t.o 
consider all the diagrams of the kind · 

where the black _box represents not only the pair state of diagram [2) but also 
includes all possible contributions with hyperons, et cetera. If the pion in [2') 
were on the ener~y shell the calculation of [2'] would only require the renormali­
zed 7t - N coupling constant and the rr: -.+ µ + v decay matrix. Since the pion 
is off the energy shell for about 2m,., such an approximate evaluation may 
introduce err0 : 8 ~ m,./M. The contribution of [2'] will consist in the addition 
of a PS couplmg to [O] and the magnitude of the coupling constant can be 
calculated in the above approximation as 

I gp I = 9 · 10-5 m~ + qg 
Af2(m; + q2) . 

(80) 

where q is the four-momentu~ transfer and q~ = ( 1 /2) m~. The sign here is left 
undetermined because the pion lifetime does not determine the phase of the 
transition matrix. Comparing with the known value of the vector coupling 
constant one finds gp = ± 9 (vector coupling constant). Moreover gp can be 
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related to the axial coupling constant if one introduces into [2'] the contribution 
of the simplest diagram 

ii 

~-0(_" 
N '),I, 

for 1t decay, instead of the black box. In this way one finds that gp has the same 
sign of the axial coupling constant. The G0LDBERGER-TREIMAN treatment lea~s 
to the same conclusion. Finally let us consider diagram [3]. This diagram contri­
butes a vector and a scalar term as can be seen from the following argument. 
Take pµ = P't + p~ and Qµ = P't - p,; as independent momenta to describe 
the two pions with momenta pf and p,;. The intermediate two pion state must have 
isotopic spin one, as is evident from charge independence. Therefore it must be 
odd in Qµ in order to be totally even. One can construct three matrix elements 
for the TC + 1t - µ. + v process, namely 

(81) 

By use of the Dirac equation one finds however that the last term in (81) reduces to 
the second (pµ is ?'!so _Pti,) _::I- Piv)l, So one has a scalar contribution (µQ • Pav) 
and a vector contribution (µ.yµQµav). The scalar contribution is however expec­
ted to be small since it is proportional to Pl' which is small for this process. The 
vector cont.ribution can be considered as a fort.her renormalization of the original 
vector part of [O]. Keeping only [O] wi t h tho renormalized com1t!1nts and (2'] 
WOLFENSTEIN culcula.tes, assuming that the two renormalized constant,s 
satisfy Uv = - g ,., ihat the asymmetry parametOl· from polarized muons changes 
1rom O to - 0.22 by the inclusion of [O'J, while tho longitudinal polarizi;ition of 
the neutron is reduced from 1 to 0.93, and the hyperfine splitting effect 
(1/4)(?.+-1)/1, of which we shall talk later_in more detail, changes from -1 to 
- 0.93. Such values are furthermore essentially not changed by the inclusion of 
relativistic effects. 
A confirmation of the validity of the above picture comes from the work of 
GOLDBERGER and TREIMAN on form factors in /3 decay and µ-capture [2.1] . Their 
calculations are based on dispersion relation techniques of the same kind as 
used for the study of the electromagnetic structure of the nucleon. The S matrix 
is expressed in terms of nucleon form factors , which are assumed to satisfy 
dispersion relations. They can th~s be _expressed, roughly speaking, as integrals 
over their imaginary parts. The rmagmary parts are then estimated by intro­
ducing a set of intermediate HEISENBE~G _states and_keeping only those states 
that are supposed to contrib~te mostly (this m the?ry; myractico one keep~ only 
those states for which one 1s able to say somethmg reliable). The weak mter­
action Lagrangian is supposed to be of the form 

(VJp YA (Cv + C..4. Yo) 'l/ln) (V,c YA a 'l/lv). (82) 

It is irrelevant to make assumptions about Cv and C,1 since they are bare coupling 
constants and the subtracted dispersion relations will only contain the renor­
malized coupling constants. The only assuption is that cv, c,1 are the same, inde­
pendent of l being aµ or an e. No direct 1T-+ 1T + e + v interaction is assumed 



176 R. GATTO 

to exist in the Lagrangian. The S matrix element for e-(or µ-) + p ~ n + v 
(K capture orµ capture) can be written as 

S = i(2:n)4 o4 (n + p.- p - Pi) [(aviy0 y51) (n JAQ(0)J p) + 
+ (avyQ l) (n JVe(0) Jp)] (83) 

~here, n, Pv, p and p1 are the four momenta of n, v, p and l respectively. Ae (0) = 
= cA (vin iYeYs'lf\,) and V Q (0) = cv (VJu YQ'lf'p)- One then uses invariance arguments 
to express the nucleon matrix element in terms of suitable form factors 

(n I Ae (0) Ip) = ( m;J )'!, (ii [a (K2 ) iyQ - b (K2 ) Ke] y
5 

p) 
Po no 

(n I VQ(O) Ip)= ( m'f, )'·• (ii [c(K2) Ye - id(K2 ) aQTKT] p) 
Po no 

(84) 

(85) 

where a and bare functions of the invariant momentum transfer K 2 = (n - p)2• 

It is important here to note that in deriving (84) and (85) one has to make 
explicit use of charge symmetry, otherwise additional terms would appear. 
What limits the structure functions to the simple form (82) and (85) is the fact 
that (82) behaves as a first class quantity under the operation G, and the 
strong interactions are invariant under G. This has already been discussed in 
section 3.2. Substituting (84) and (85) into (83) one finds 

S = i (2:n:)4 o(n + Pv- P - Pi) mN °[a(K2 ) (aviyey5 l) (iiiyey5p) + 
( 

0 )'' 

Pono 

+ me b(K2
) (av y5 l) (ny5 p) + c(K2) (avye l) (nye p) + 

(86) 

Looking at the structure of this S matrix element one finds that one has again 
an A (with coupling constant a(K2)), a V (with coupling constant c(K2)), 

and moreover a Ps (with coupling constant m1 b(K2) = gi,) and a derivative 
term (with coupling constant d(K2). Calling (n _ p)2 =gone then writes down 
dispersion relations for the form factors a, b, c, d: 

00 

a(;) = gA - §__ f dg' Im a(-;') 
n g'W + g - ie) 

(87) 

0 

00 

b (g) = 2- I dg' Im b( - n 
n. g' + ~ - ie 

(87') 

0 

00 

c($)=gv-ifdt Imc(-~') 
;n;. ~, W + ~ - ie) 

(87") 

0 

,/($)=.!Id;' ~md(-e'! . 
n. e + e - ie 

(87"') 

0 
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One has made subtractions for a and c, and called [/A = a (0) and [Iv = c (0). 
These are the form factors at zero momentum transfer: they are the renormalized 
coupling constants. From n - p = Pt - Pv we find ~2 = - l2 - 2 [(P1P,,) -
- (pf p~)] = - l2 + 2 ZE. and from Ev ~ l; ~2 = Z2• Therefore for K capture the 
momentum transfer in ~2 = m~ and one can approximately identify gA and gv 
with the coupling constants for A and V in-~-decay, namely with a(m~) and 
c(m~) respectively. For µ.-capture one has to deal with a(mf.), b(m~) et cetera, 
which may be appreciably different from their values at zero momentum 
transfer. One has next to evaluate the imaginary parts of the form factors in 
the equations (87) . By use of the reduction formula one can show that the ab­
sorptive parts of (84) and (85) are given respectively by: 

A~= n(m)';~n < 0 I AQ Is) < s ! F(0) Ip) G(p, + n - JJ) 
no ., 

(88) 

(m)''• V~ = :n: no ~ n ( 0 ! Va I s ) ( s I F(O) I p ) b(p, + n _ p) (89) 

where 

F(x) = [y,,-aa + 111] 'IJ'(X) x,, (90) 

an·d one has inse~ted a complete set of _Physical states c5. Graphically one can 
represent cxpress10ns (88) and (89) by diagrams of the kinds 

pt e -----~ 
n V 

where the dotted line represents the intermediate state~. The states that can 
occur in (88)are 11t, 3 1t, 51t , NN et cetera. So one has the decomposition 

= + + +--+ +-·· 
Pkv pKv Pk· v~ P7t' 7,~ p.,- v 

n en en en enN e 
- (91) 

The states that ca.n occur in (89) are 2n, 4n, NN et cetera, graphically 

pKV=p+c,, +Pp<•:,i-ll+p~Jt: +~·/#-<-: ... 
e . e e N e 

n en n n 11 

(92) 

ln (9l) and (92) the first, terms correpsond t.o the subtTa,cted n•normalized 
coupling constants. The second term in (91) gives only a PS contribution whieh 
can be calculated by inserting the 7t-+ e + 'I dec-u.y ma trix at the second v<>rh' x. 
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According to GOLDBERGER and T~EIMAN this term should be in µ-capture the 
most important correction due to strong interactions, apart from the renormali­
zation of the coupling constants. In ~-decay the only essential correction is the 
renormalization of the coupling constants. The actual calculation of the var~ous 
terms in (91) and (92) is performed by inserting suitable analytical continuat1_ons 
of the various matrix elements at the different vertices which in the physical 
regions would correspond to observable physical processes. Of course this proce­
dure can only be done for the simplest terms of the expansions (91) and (92) 
and even in an approximate way. It is however a conclusion of both the pertur­
bation calculations about which we have already reported, and of this dispersion 
relation approach, that the effective Hamiltonian for µ-absorption should be 
well approximated by the effective AV [3-tlccay Hamiltonian, with tho atlilition 
of a pseudoscalar term with a coupling constant about eight times larger than 
the axial coupling constant. This conclusion is valid if one starts from a bare A V 
Hamiltonian. If, according to the non-renormalization hypothesis, also a direct 
pion lepton interaction exists, one may use the methods discussed in 2.4 for a 
phenomenological derivation fo the terms contributed from the vector part. 

It is unfortunate that experiments of µ-absorption by protons are difficult 
because of the very low rate as compared to the µ-decay rate, and also because 
of formations of molecular ions and effects due to small deuterium impurities. 
BERNSTEIN, LEE, YANG and PRIMAK0FF have recently pointed out an inter­
estin~ possibility to get information on the effective Hamiltonian for µ-~b­
sorpt10n [31]. They have pointed out that there is a difference in the absorption 
rate of captured muons from the two hyperfine states, and this effect can be 
measured and give informations on the absorption interaction. When a µ- is 
captured in the K-orbit around a nucleus of spin I, the spin of the total system 
can beF =I+ 1/2 or F = I -1/2. Absorption from the states withF =I+ 1/2 
occurs at .a rate different than for absorption from the states with F = I - 1/2. 
In fact when the µ- is absorbed by a proton the ratio is different according as to 
wether the sy~tem is in a triplet or singlet state. However, the spin orientation 
of_ the pr?ton 1s correlated to the direction of the spin I of the nucleus, so the rate 
will be differen! for the different spin correlations of the µ-spin with I. The above 
authors also give an intuitive explanation for the difference between the ab­
sorption rate A+ from the state with F = I -1- 1/2 and the rate }._ from the states 
with F = 1- 1/2. If the emitted neutrino has a long wavelength it will carry 
out only 1/2 unity of angular momentum. Therefore the final nucleons have a 
total angular momentum ]' = F _ 1/2 or F + 1/2 and, if F =I+ 1/2 then 
I'= I or I + 1; if F = I - 1/2, J' = J ~ 1 or I. So there are different final 
states !!_lat contribute in the two cases. The quantity of interest is (A+ - A_)/I::apt 
where Acapt is the average capture rate. Its estimated value is < 20% for nuclei 
around Z = 10, where absorption and decay are about equally probable. How 
to observe sue~ an effect1 Since the total decay rates of the µ-p system are 
different accordmg as to F = I + 1 /2 or F ~ J _ 1 /2, one has two lifetimes and 
one may be able to observe a two-exponential decay curve into the mode 
µ--+ e- -1- v -1- v. Such a possibility is discussed in detail by BERNSTEIN, LEE, 
YANG and PRIMAKOFF. 

As already discussed the asymmetry in the neutron distribution with respect 
to the muon spin direction is exactly zero for an A - V interaction, neglecting 
pion effects. Furthermore the muon is appreciably depolarized in some cases 
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when cascading through the various atomic orbits to reach the lowest _S-st3:te. 
It is noteworthy that, for the same A - V interaction, always n~glectm? pion 
effects, the neutron longitudinal polarization inµ-+ p - n + v IS ~ax1mu~. 
For the practical case of absorption from a_ complex nu?leus the resultmg_polan­
zation has been recently calculated usmg a Fernn model to describe the 
primary absorption process in the nucleus and an optical model to estimate the 
rescattering corrections [32]. For neutrons in the upper end of the spectrum tho 
above estimates show that a polarization of at least 50% is to be expected. 
Measurements of such polarizations will however be rather difficult. Many other 
important suggestions have been made to obtain information on the µ-absorption 
process, this rather inaccessible corner of the universal Fermi interaction. 
Unfortunately the interpretation of the experiments necessarily depends on 
particular nuclear models. 

5. Conclusions 

It appears from our discussions that, although an enormous advance has been 
made in the last two years in our understanding of weak interactions, there still 
remain many points as yet obscure and many more experiments are needed at 
present. Even if the formulation of weak interactions in terms of a current inter­
acting with itself will turn out to be correct, the explicit definition of the 
charged current Jµ is still to be for~ulated. If the no~-renormalization principle 
for the vector strangeness-_conservmg part ho!ds, the strangeness-conserving 
current is uniquely determ_med ~rom. the reqmrement that its vector part is 
the plus component of the 1s?toprn sp1~ c~rent and that its axial part is such 
that fermions always appear m the proJect10n ( 1 2) ( 1 + y6). No similar rules are, 
unfortunately, available for the ~trangeness non-conserving current, but we hope 
that some general symmetry ~vill soon~r. or later manifest itself to provide u~ 
with an unambiguous theoretical defimt10n o~ the strangeness non-conserving 
current. For the moment one should also cons1~er the possibility of the contri­
bution of (K1t) terms to such a ~urrent. ~ ~onside~able simplification is due to 
the LIS = ± 1 rule. Its most evident em~mcal ba~is is the apparent absence of 
3-- n + ,.-, but we lack so far a precise expenmental upper limit for this 
reaction. It is theoretically import~nt t~ Imo"'. wheth~r a neutral strangeness­
conserving current is a~so p~esent. 'I here IS a qu~te ~efimte theoretical possibility 
that such a current exists, if the non-renormalization hypothesis for the vector 
part is valid. In such a case the suggestion is that such a neutral current may be 
the 3 component of the isotopic s:pin current and m_ay also be coupled to leptons, 
with the exclusion of the (µe) pall'. Such a scheme would perhaps offer some new 
possibilities for the question of d_efining in a local way isotopic spin rotations. 
The important question of knowing whether a charged boson can be taken as 
responsible for the charge transfer be~wee_n the weak interacting pairs rests 
now experimentally on a b~tt_er determ111at10n of the 1:pper liniit of µ - e + y, 
though the present upper lllillt already leaves rather little hope. The most im­
portant experimental question i~ here connected with a very precise determi­
nation of the electron spectrum m µ-decay. The question of the old LJ I = 1/2 
rule has not made great advances so far. If such a rule (for the interactions and 
not for the st.rangeness non-conserving current) has to be encompassed in the 
scheme then one needs a more elaborate formulation . However, the coupling 
of a neutral strangeness non-conserving current to leptons may produce incon-
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sistencies with experiment. The necessity of independent and accurate experi­
mental tests of the non-renormalization hypothesis for the vector strangeness 
conserving current is hardly to be emphasized. Also the comparison between 
the µ and the 0 14 lifetime has to be performed with greater theoretical accuracy. 
It is important here to note the incompatibility at present between such a hypo­
thesis and the present experimental (! value of µ-decay . The question of the 
apparent absence of ~-decay of hyperons is certainly relevant to the problem of 
defining the strangeness non-conserving current. The possibilities of a large 
renormalization of the constants and of contributions from a possible direct 
(K1t)-lepton interaction and K-lepton interaction may of course be invoked. 
The sign and the smallness of the renormalization of axial ~-decay couplings 
opens many theoretical problems. They are unfortunately connected with the 
dubious validity of forms of non-subtracted dispersion relations, and also, again 
unfortunately, connected to our very poor knowledge of the deepest parts of 
the nucleon structure. The great merit of the dispersion relation approach is that 
of offering a definite possibility (not yet proved to be correct) of surpassing tho 
limitations of the renormalization theory which required with the specification 
of the counter terms more theoretical input to obtain a complete description of 
t.he weak processes. A less ambitious program to understand in part the role of 
strong interactions in the weak processes consists in comparing reactions in 
which the same structure a,.ppears, such as µ- + p --+ n + " to e- + p--+ n + " 
or K--+ 7t + e + v and K--+ 7t + µ + v. For such cases a subtraction in the 
<lispersion relations (either to remove theoretical criticism or only to obtaio 
a better convergence) is still tolerable. However theµ- absorption process is still 
a dark corner of the universal Fermi interactions and much more experimental 
light is certainly necessary to contemplate its details. 
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