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1. Introduction

The theory of weak interactions has now come to a very definite point after the
brilliant success of the universal 4-¥ theory proposed by FEYNMAN, GELL-
MANN, MARSHAK, and SUDARSHAN [1](which we shall call the FGMS theory). We
shall base this discussion on the hypotheses of that theory. We shall not review
here the development of the FGMS theory, but we shall try to reproduce all
those steps that will be necessary to make our discussion essentially selfcontained,
so that no preliminary reading of papers on the subject will be required. We shall
mainly be concerned with those aspects of the theory of weak interactions which
still appear to be essentially unsettled or not yet at a definite stage. Thusin most
cases we shall present speculations which may very well turn out to be wrong
when more or better experimental data will be available.

2. General Description
2.1 Weak interacting currents and their classification

The older viewpoint for describing weak interactions consisted in grouping thF
particles into different pairs, (u»), (), (p1) etc., and assuming that each pair
Interacts with the other pairs. A different possibility is now suggested by the
AV theory. For couplings of such kind there is a possibility that the weak inter-
action Lagrangian takes the form of the coupling of a current with itself

JuJE + hee.

The currents J,,, of course, are not to be understood as currents in the usyal
sense. In J, both vector and axial contributions are present. One difference with
respect to the older description is, for instance, that now there are couplings ftlso
of a pair to itself, such as (pn) (pn). Moreover the new description is certainly
much more specific. According to which of the two descriptions we want to
assume we can either classify the different pairs into a few classes (lepton class,
£, and various strongion?), classes, S; S, S1), or, correspondingly, decom-
pose the current J, u into different components. For brevity we shall denote with

(1)

12 Ba:se’(’i.on a series of lectures given by the author at the ‘“‘Seminar iiber Hochenergie-
Physik’ in Oberwolfach, West Germany. September 1958. Part of the present paper over-
1ups the content of lectures given by the author in Varenna, August 1958.

2) We call strongion a particle which is either a baryon or a meson (with the exception of
the p.-meson which is a lepton).
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the same symbol of the class the corresponding current, so that .
Ju = Ly + Sou + Sap + Sip- (2)

Let us now explain in detail the classification:
£ lepton class (the corresponding current £, is the lepton current).
It consists of the pairs

(!_1‘*‘ 1_1) (e*, -‘l-/) (3)

For a pair (AB) the transfer of charge is 4Q = @ — @,. Note that the other
possible pairs such as

(we), (v9), (ui), (ee) (4)
are excluded from £. Their inclusion would lead to processes such as
ut—>et+t+ e+ e, pw+p—>€+p (5)

not observed. We note that the excluded pairs have AQ =2 or 4Q = 0.
Therefore it seems that one has to assume at this point that only pairs with
AQ = 4+ 1 are coupled. The reason for this choice is a mystery so far. We shall
come back later in more detail to this point. To be definite, without limitation
to our discussion, let us consider here only the pairs with 4Q = — 1. Thus the
lepton current is given by £, = (u* ¥)u + (€% ¥)p-

So: strongion class with 48 = 0 (the corresponding current is the strangeness-
conserving current). One finds a total of six possible baryon pairs which satisfy

the limitations AQ = — 1, 48 = 0, and of course also 4 N = 0 because they
must couple to the lepton pairs:
(p7), (Z*A), (Z+T0) (AZ), (X)), (EE). (6)

All such pairs can go into one another by strong interaction. (We shall call
such pairs “equivalent’”.) They are also equivalent to the w+. The w* will
dissociate through them. It will be convenient to add to these pairs possible
boson terms corresponding to vector interactions of the boson currents

./ Op* a
Z((p e . p* (E\) with the lepton fields. One finds two such terms
dx, 0z,

(%), (K+Ko), (7)

The presence of such terms is necessary if one accepts the hypothesis of non-
renormalizability for the vector part, as we shall see later.

S_;: strongion class with 4§ = — 1 (strangeness non-conserving current of the
first type). We find again a total of six pairs

(pA),  1pX0), nX), (AE-), (Z*Ee, (S6E)  (8)

They are equivalent to the K*, which will decay through virtual dissociation
into them. Two meson terms are possible, namely

(K*n?), (KOow*). 9)

Differently from the corresponding situation with S, there is nothing here for-
cing the assumption that (9) are coupled. The only observation that can be
made is that the simultaneous existence of both K — p - 7 +vand K — @ - v
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excludes the possibility that in S_; only the boson terms (9) are coupled —
some fermion pairs also have to be coupled. This can be shown readily by parity

considerations.

One can verify that by coupling to each other £, $, and $_; one has accounted
for all the observed weak processes. The requirement that the pairs carry a unit
charge (or equivalently, that the current J, ist singly charged) has eliminated

unwanted processes such as

pwr—>ett e +e, w+p—re+p KoutteFt+n, Kontv4v. (10)

The advantage of classifying the pairs into classes is mainly that of avoiding the
embarrassing question of which pairs in each class are originally coupled: for
instance only one pair in each class may be coupled, the other pairs will then
still be indirectly coupled through the strong interactions, or all pairs may be
coupled according to some particular unknown symmetry. It is quite relevant
to investigate the possibilities for such symmetries, and we shall touch upon
this question when speaking of the possible non-renormalization of the vector
part. ) =

The two strongion classes $, and $_; introduced so far can be characterized
by saying that S, contains all pairs equivalent to the n*, and $_, all pairs equi-
valent to the K*. Moreover for $_;, 48 = 4Q.

2.2 Limitations from the selection rule 48 = + 1 for strange particle decays

Let us now consider the class $,,.
Sy, strongion class with 48 = - 1 (strangeness non-conserving current of the

second kind). It contains

(Z+n), (E°Z) (11)

and a possible meson term
(R%r‘“). (12)
Pairs of this class would be equivalent to a positive meson with § = — 1. No
such meson exists in the Gell-Mann scheme. Pairs of this class are equivalent to
the system (K°7*) which behaves like a positive meson with § = — 1. Now

the point is that if we couple §,, to S, we find a possible reaction such as
E%— n + X~ + X~ which would lead to the sequence

E->E4 r-—>n+n0+n—>n-+n. (13)
Now E-— n 4 n~ has not been seen and instead E-—> A® - - has been seen in
all the cases reported (not so many however) thus suggesting the selection rule
A8 = 4 1 for strange particle decays [2]. This might be a motivation for ex-
cluding class $,;). What is important is that one can then obtain a number of
predictions which can be compared with experiment. Let us first see what
these predictions are. Then we shall look into the question of how to exclude

_’) Note .that all strong virtual steps in (13) involvethe stronger pion interactions and no K
interactions.

11+
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this class by theoretical arguments. By coupling §,; to £ one would have the
decay modes

St—>n 4+ 1r4v 0 Z-+ 1t 4y (14)

(where 1 means either e or ), and

KO —>m 4 1r v (15)
and its charge conjugate
KO —> mwt + 14 ¥. (15")

Such decay modes are forbidden if S, is not coupled. What does this mean in
terms of the physical particles K¢ and Ki? Recalling that [3]

Ko = 715 (Ko + K9 K2= _.'/1.2_ (Ko — Ko) (16)

one finds immediately the following relations between the decay amplitudes

(KY> 1) = (K8 > 1) = 1 (Ko 1 (17)

/

(K§ > 1) = — (K§—> ") = — 771,2,«'1'{0_,1—‘1 (17)
i ;

In (17), (17"), (KY—1*), for instance, is the matrix element for K!— I
+ 7+ . .

OkUN and PONTECORVO have pointed out that the presence or absence of
AS = 4 2 interactions is of great relevance in the problem of the KK mass
difference [4]. If S, is coupled, a term contributing to the mass difference would
already be present at the first order in the weak coupling constant, for instance,
trough the virtual scheme

KO > 3 4 1 4 7w — 20 | St KO (18)

The Pais-Piccioni oscillations [5] would then be very frequent (~ 107 per second)
as compared to the inverse lifetime (~ 10 sec™). If §, ist not coupled, a typical
mass difference contribution would come from

KO- p + 1 -} = > KO, (19)

with two weak steps, leading to a mass difference presumably of the same order
of the inverse lifetime. In this situation onc may observe the Pais-Piccioni
oscillations. '

The requirement 4.8 = 4@ excludes class S,;. A stronger requirement which
also leads to exclusion of class §,; ist that the strangeness-non-conserving
current transforms in isotopic spin space like the component of a spinor. One
sees immediately that there is no way of satisfying this requirement in the class
S, since there are no suitable linear combinations available, for instance of

a X and a nucleon. We shall later discuss again such questions.
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Finally, if one still wants to complicate the situation, one can think of currents
S for which 48 = 2. Again one meets the trouble of Z-— n -+ =~ by coupling

for instance a term (nE‘) to S,. Also decay modes such as E-—n 4 e +V
would be expected in that case.

2.3 Possible neutral currents

Let us now discuss the possibility of neutral currents (4Q = 0). We consider
two neutral lepton currents, £, containing (u*p-), (ete”) and (vv), and £’
containing (u*e”). £ is apparently not coupled at all. One finds out that it is
still consistent with present experiments to couple £ to a strangeness-con-
serving neutral current S{®. '

S§?: neutral strongion class with 48 = 0 (neutral strangeness-conserving
current). It may contain the baryon terms

(69), (nm), (A9, (3+5¥), (305, (R0} (%), (D5, (55

and the meson terms
(nt7), (non9), (K*K-), (KOKO). (21)

The coupling £©@ S does not lead to any inconsistency with present data.
There would be weak interactions such as g + n— @ -+ n which however will
be hard to detect because of the stronger electromagnetic effects, and processes
such as v 4 p—v + p also hard to detect. One also will have interactions
(e*e”) (vv) and (utu-) (vv) which can be rearranged to look as (ev) (e¥) and
(wV) (nV) again in the AV combination, and they would therefore interferc with
the corresponding terms arising directly from the charged currents. A similar
“conclusion also holds for terms (pp)(nn) which can be rearranged in the form
(PT) (pa).

The reason which suggested that we look into the possibility of a neutral current
it connected with an extension of the hypothesis of non-renormalization of the
vector part of the strangeness-conserving S0, which we shall discuss later. From
such a point of view, in trying to build up the neutral current S one ist strongly
tempted to require that its vector part be the 3 current, ¢, of the isotopic spin,
the axial part being then fixed by the requirement that the fermions occur in

the% (1 + y5) projection. This would lead automatically to the non-renormali-

zation for the vector coupling constant in S, and would produce a highly sym-
metric scheme. In such a case S{" would consist of

(PD), (nm), (£+5+), (Z-3), (BOEY), (E-E-), (n*n-), (K*K-), (KOKo), (22)

One has further to look into the possibility of neutral strangeness-non-conser-
ving currents. One it here however immediately faced by a difficulty. In fact,
by coupli_ng a term lnA_\ with (vVv), (e*e”), and (u*p-), one would find processes
such as K® — e* 4 e~ and K9 — p*+ p- of which the first one would proceed at a
very low rate, but the second one could very well be observed. Even more, one
would find processes such-as K-—— =+ v +v and K-— 7~ -+ et - e, which
would favorably compete with K-— =% - e~ 4 v, which is a known reaction.
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2.4 The requirement AQ = 4 1 and the intermediate meson hypothesis

If one wants to keep only the charged currents, a rather suggestive hypothesis
is that weak interactions are mediated by an agent X (for instance a massive
boson) which carries unit charge. Each pair would interact with X, and indi-
rectly with all the other pairs coupled to X. The resulting interaction between
two pairs would then be slightly non-local. If X is a boson with mass M, it
must have spin 1 to obtain in the local limit the AV theory, and its propagator
would be in momentum space

1

j-oE 28

(800 + K“K')

)

The effective weak interaction would occur through the X meson, for instance
B~ decay would be given by a graph:

i

The non-locality contained in the 8., term is difficult to observe because of the
smallness of the momentum transfers K2 for most of the known processes

1 1
T~ g (24)
Even more difficult would be the observation of the K, X, term. This term
wpuld o:ontribute effective scalar and pseudoscalar contriblftions to the resulting
direct interaction between the currents. Since X is supposed to have only
eleqtromagnetic interactions (because it is charged) and ‘‘semiweak’” inter-
gctlons with the currents, its production cross-section would be very small (for
mstance: it could be produced by the reaction y — X+ |- X) so that no difficulty
concerning its apparent absence may occur. Its decay would occur at first order
in the semiweak interactions of X with the currents. Let us however see what
.dJ.fﬁCI‘lltieS one encounters by postulating the existence of X. First of all, there
ist ev;dence for some non-local effects in . — decay which were suggested [6] to
ex.plal_n the deviations of the p-value from 3/, (the best p-value deter-
mination so far is p = 0,68 + 0,02, due to CROWE). A deviation of this order
of magnitude could be accounted for by a value of the mass around 300—400 Mev.
However, as we shall discuss later in more detail, the sign of the deviation
cannot apparently be accounted for by & real meson. For a real meson the devi-
ations would always be such as to increase the o-value ahove 3/,. Of course,
before reaching a definitive conclusion one should try to estimate the radiative
corrections to the p-value for this more complicated model (in which a virtual
photon can also be emitted from the non-local vertex). The radiative corrections
which were subtracted to get the experimental figure of 0,68 4 0,02 arc those
calculated for a point direct interaction between the four fermions. A second
difficulty for the hypothesis of the intermediate X occurs in connection with the
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apparent non-existence of the decay mode p*— e*+ y. If an intermediate X
exists, the diagram for p-decay, u. — e + v -+ v, would look as

S

_]f" rom this diagram we can deduce the existence of an indirect term looking as
Uo(%) Koo (x — 2’) e,(2’) in the interaction Hamiltonian, where K is some form
factor. It comes from the graph

I

If the electromagnetie interactions are now turned on, the existence of the above
term would imply the existence of diagrams of the kind

; oo i
J S — - - +§e

which lead top. — e 4 v. If the kernel K is expanded in powers of the momentum
transfer and only the linear term is kept, then one can easily show that gauge
invariance requires a perfect compensation of all the three graphs above so that
no p. — e + v ocecurs at this order. This approximation is however not recom-
mended because of the smallness of the wavelength of the emitted yv. FEYNMAN
and GELL-MANN [?] and FEINBERG [8] have calculated the probability for
@ — e + v with the conventional highly divergent quantum electrodynamics
of a charged spin one meson X. The matrix element for u — e - vy is found to be

S

e fx -
gﬁ—n—z%mﬂN (we0ap Fap (1 — y5) uu) (26)

where [y is the semiweak coupling constant and N is a number depending on the
cout-off. The expression (26) is valid only for large values of M. With a cut-off
around the value M, N turns out to be essentially one, depending logarith-
mically on the cut-off. The probability for u — e 4 v 4V also contains the
factor fi/M?, which thus drops out in the expression for the branching ratio of
p—>e -4y tou—>e - v 4 v. One finds thus a value 10-4 for such a branching
ratio. The experimental value is due to LOKANATHAN and STEINBERGER who
report a figure of 2.10-% as an upper limit for the branching ratio. It is also
evident that since one has an effective vertex operator in (25) one then has
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also the possibility of obtainin.g processes such as p— e +4 ot + e, from the
graph .

e+
e
7
A e
and p~+ p — ¢+ p from
P i
7
M e-

Such processes would also occur at the same order in the weak coupling constant
as the ordinary decay p. — e 4 v - v or the ordinary absorption u- -+ p—>v+n.
They occur however at the second order in e?, whereas . — e 4y occured at first
order in e2. It is funny how, although all this business of the intermediate
charged X wasinvented to avoid processes suchas y—» e + e~ et or .~ + p —>
— e - p, such processes still occur at higher order in 2. However practically
the probabilities come out to be so small that no inconsistency with the present
data arises for the moment. What seems instead to give rise to a real inconsi-
stency is the absence of p. — e 4 y. It should however be emphasized that a
cut-off calculation like this may very well be wrong. No other theoretical scheme
is known however to calculate such things.

Now, why do not such difficulties occur in the local case. with a direct four
fermion interaction? One can easily convince himself that the neutrino loop (25)
is zero in the local case, because of symmetry considerations. Its expression is
however far from being unambiguous.

3. Possible Properties in Isotopic Spin Space
8.1 Isotopic spin changes in the decay of strange particles

It may at first sight seem rather uselessto start a discussion about the possible
properties of weak interactions in isotopic spin space, since isotopic spin is
certainly not-conserved in such interactions. To such a point of view one may
object, first, that in a similar situation where isotopic spin conservation is
violated, namely with electromagnetic interactions, it is indeed very useful to
analyse the amplitudes in terms of eigenstates of isotopic spin; second, that
there is in fact some experimental evidence for an apparently simple behaviour
of the decay amplitudes in isotopic spin space, and at least the rule 4S8 = & 1
for strange particle decay directly implies 4713 = - 1/2; third, some general
requirements to the strangeness-conserving terms, such as that of a definite
behaviour of the current [6] under charge conjugation times charge symmetry,
or that of nonrenormalization for the vector part, lead us to assume a behaviour
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like that of the component of a vector in isotopic spin space. An important point
to be noticed first is that, by requiring 41 = 1/2 to the strangeness non-conserving
current, oné obtains immediately 413 = + 1/2 for the decay of strange particles,
though in general both AT = 1/2 and AI = 3[2 will be present 1n the interaction.
That is one has a scheme conceptually simpler than the 41 =1 [2 rule for the
interaction which still gives A = 4 1/2- This result can be verified very
easily. As we said already, it may very well be that S, the strangeness-con-
serving current, behaves, like a component of a vector in isotopic spin space.
This follows if one postulates a definite behaviour of the current [6] with respect
to the product operation of charge conjugation and charge symmetry, or also
if one assumes the hypothesis of nonrenormalization of the vector part. We
shall discuss both these questions later. If one assumes that the strangeness
non-conserving current behaves like the component of an isotopic spinor, then,
by coupling it to a strangeness-conserving current behaving like a component of
an isotopic vector, one would have selectionrules A7 = 1/2 and A1 = 3/2 for
experimental situation is concerned everybody knows that A = 1/2 [9] can be
at most an approximate selection rule. The main argument for it being Oflly
apqroximate is that one cannot explain simultaneously the ratios of the lLife-
time of K to the lifetime of K+ and the ratio between the probability for
K® — n* 4+ 7= and the probability for K¢ — n® 4 70 with only 47 = 1/2. One
finds instead that one has to introduce both A7 = 3/2 and AI = 5/2 con-
tributions to account simultaneously for the above ratios. The estimated magni-
tude of such contributions, of the order of 10%, [10], is such as to make not very
plausible the suggestion that they come from electromagnetic corrections.
However A1 = 1/2 has the great merit of explaining, though not completely
of course, for the above mentioned difficulty, why the K+ has so much longer &
lifetime than the K. In fact, if A1 = 1/2 rigorously holds, K* cannot decay into

.two pions because, starting from I = 1/2, I, = 1/2 one can only obtain 1 ,=.1
for the final charged 2-meson state which should therefore be antisymmetric 10
space coordinates, in contrast with the value for the orbital angular momentum
which is 7 =0 if the K has spin zero. Moreover A = 1/2 also explains the ratio
of 2 of A~ p 4+ = to A®— n 4 w0, Observation of such a value for this ratio
does not however imply absence of 41 = 3/2 contributions. It must also be noti-
ced that 41 = 1/2 also explains the experimental ratio v’/r =~ 1/4. However suc_h
a value would also be obtained if a 47 = 3/2 component is present becau§e ‘lf
the 7 has spin zero the final state is expected to be predominantly symmetric in
the space coordinates and from group theory one then can show that the possible
values of the total isotopic spin of the three pions can only be I =1 and I = 3.
The latter, however, would not still be accessible even if 47 = 3/2 were present.
We have seen from our preceding discussion about a general description of weak
interactions that it is rather difficult theoretically to present a reasonable sqheme
leading to A1 = 1/2 always. The fact that 4 = 1/2 seems to predominate in the
decay of strange particles should then be explained in each case by means of a
particular mechanism suppressing 41 = 3/2 or by showing that the same ratios
are also obtained by more physically plausible combinations of A1 = 3/2 and
AI = 1/2. An example where such a situation may occur is A decay. Here one
finds that by calculating directly from the coupling (pA)(np), keeping only the
simplest diagram, one obtains, the branching ratio of 2 between the decay
modes A — p 4+ == and A — n + =% as with the 47 = 1/2 rule, though the
interaction now contains also a A1 = 3/2 term.
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3.2 Behaviour of the strangeness-conserving current under the product
of charge conjugation and charge symmetry :

In looking for more general symmetry requirements that one would ask from
the strongion currents, it may be conventent to recall that the strangeness-
conserving current S, contains all those pairs which are equivalent to a w*.
Now a =+ is transformed into itself by performing a charge conjugation and
then a charge symmetry. Therefore we can try toformulate the requirement that
S, has a definite behaviour under the product operation of charge conjugation
and charge symmetry, and investigate to what restriction it leads for S,. It is
unfortunate that a similar possibility does not exist for the strangeness-non
conserving currents. The current S_; is equivalent to a K+ and this would be
transformed into an K9 under the above product operation, so that it is impos-
sible to formulate the problem of a definite behaviour of .$_; under this operation.
A similar conclusion is also evident for S.,.

The convenience of classifying the different terms in §, according to their
properties under the product operation of charge conjugation and charge sym-
metry have been pointed out recently by WEINBERG [11]. The relevant operator
is G =Ce*'s, where C is the charge conjugation operator and ei*!: performs a
rotation of 180° around the second axis in isotopic spin space, which is one way
of realizing charge symmetry as a proper orthogonal transformation. For the
nucleon field Gy G-1 = i7,y° and for the pions GepG-! — —ep. This last relation
is responsible for the known rule which forbids an even number of pions to go
into an odd number of pions if G is conserved Moreover @ satisfies the relations
[@, N], =0, [G,8]. =0, G =(—)¥+5, [AI] =0, where N is the nucleon
number, S the strangeness and I the total isotopic spin operator. We next con-
sider thfa bilinear expression (pIi7,y) and we find @ @litp) G =
= —& (pliv.y); where §; = + 1fori =8, A, P and§; = — 1fori =V, T.
Now we say that all covariants @; which transform according to QG =
= — £;Q;, namely in the same way as the simple (p I';7;9) of the same tensor
character ¢, are of the first class; those which transform according to G@;G-*
= £,Q; are of the second class. Let us now go back to the strangeness non-
cgnserving current, and consider for instance its vector part. The first term
(pyut.+y) is of the first class, because of definition. When however, we want to
add a similar term for the X-particles we find that we can choose among all the
possible linear combinations of the form aX*y, %0 1 bZ—Oy#Z—. If, however, we
require that it behaves as a first class covariant vector, then we find that a = —b.

This means that we can write our term for the Z-particles as Xy, T. %, where T',
is the appropriate isotopic spin matrix. One finds in general that one is led to
the conclusion that the selection rules for a vector strangeness conserving
current consisting of the pairs (6) are those of the component of a vector in
isotopic spin space. This holds also for the total current including the axial
which can then be constructed from the requirement that fermions appear in
the projection (1/2) (1 + y;).

If one now assumes as a principle that in the strangeness-conserving current
there are only first class quantities, how can one verify such a principle experi-
mentally? In 3-decay there is generally not much hope, because a term such as
(p | ®pYnwn| n) where (p| and |n) are the physical states is always well approxi-
mated by a term of the form #,y,u, between free spinors, because of the low
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momentum transfer — and similarly for (p | ¥p¥u¥syn| n). One has to study
energetlc.al B-decay to discover such effects. In @~ + p — n 4 v the momentum
transfer islarger. A matrix element (p |9p¥un| n) will be expressible in general as

(P ¥p¥uyn | 1) = ay (K2) p + by (K?) Ky0u + 0y (K K (27)

where K, is the momentum transfer K, — K, , — Ky, ,and a, b, care invariant
form factors. Similarly

(P | Po¥uysyn | n) = ay (K2) 1yuys + ba (K2) Kuys + ica (K?) Ky 0y,75- (28)

One can immediately convince himself that in each of the above expressions
the first two terms behave as first class quantities. In fact, as we said before,
V and T take on the same &; and also 4 and P take on the same &;. The last
terms in each of the two expressions are instead of the second class. Inyu~+ p —
— 1 +v the term i¢, K, contributes an effective scalar interaction of magnitude
~ mycy(K?). A guess about ¢, (K2)would suggest thatitis~ (m,/my)a,.Observation
of this scalar term would indicate the presence of second class quantities. Further-
more since the nucleon contributions to the current are always of the first class
[they must always be of the form (% ;7,y)] observation of such a scalar term
would inform us about the hyperon contributions to the nuclear structure. The
term ic4 K, 0, .95 contributes in w + p — n+ v an effective derivative coupling
icy (K2) (K9 + K 0.2ys The observation of the first two terms in each of
the above expressions does not tell anything about second class quantities, but
it tells us of nucleon structure. The term by K,0,, introduces an effective deriva-
tive coupling in u~+ p 4 n + v, while the term b, K,y introduces an effective
pseudoscalar. GOLDBERGER and TREIMAN have used dispersion relation techni-
ques to estimate the effective pseudoscalar and they find that it is eight times
larger than the original axial part. We shall discuss later this result when spea-
king of the nuclear interaction of w particles.

In concluding this discussion about the behaviour in isotopic spin space we want
again to state the result that both 47 = 1/2 and 4TI = 3/2 contributions are
expected to be present in the decay of strange particles according to this theory.
There seems to be no way of avoiding this conclusion in the present formulation.
If one wants an overall 41 = 1/2 rule for the interaction, then one has necessa-
rily to introduce neutral currents into the picture. We have seen in 2.3 that a
strangeness conserving neutral current may wertainly be introduced, but its
coupling-with leptons seems to give rise to some inconsistencies.

4. The Hypothesis of Universality and the Hypothesis of Non-renormalization
for the Vector Strangeness-conserving Current

4.1 Form of the weak interaction Hamiltonian and calculation
of the weak coupling constant

Let us go back to the strangeness-conserving current. To discuss the question
of the non-renormalization of the vector part we have to review first the main
steps leading to the weak interaction Hamiltonian of the FGMS theory. The
main assumption is that the fields always appear in the interaction with the
projection (1/2) (1 + 4y;). (We are using here Feynman’s notations.) Let us call
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such a projection operator @ = (1/2) (1 -+ iy;) and let us also define the Hermitian
conjugate @ = (1/2) (1 — iy;). One easily verifies that a* = @, @da = 0. The most
general local non-derivative interaction Hamiltonian for 3-decay will then be of
the form

> g @y, ayy) @y, Liaye). (29)

Using ay = pa one can write (29) as
2 gi (wna Fiawp) ('(-P"_d I‘i L w‘) . (30)

Now al;a =0 for i =8, P, T and = I;a for i = 4, V so that (30) can be
written as
2 9 (yu Ly ayyp) (pliaye). (&1)
t=V,4
Furthermore one verifies easily that Ia = y.@ is also equal to I'ja@ = iy, y;@
so that (31) can be written as .

V8 G (Wyuap) (¥ yuae). (32)

This coupling is nothing else than 4-V in the usual notations. It has been suppo-
sed here that the nucleons rather than the antinucleons have the projection @
in front. Such an assignment is quite arbitrary of course and no theoretical
justification can be given for it. It can however be shown to be the right one
experimentally by the following argument. If antinucleons instead of nucleons
have the projection @ in front, the 8-decay Hamiltonian would be

V8 G (ppyuays) (Pryuaye). (33)

By using, the properties of the charge conjugation matrix ' and the relations
p¢ = CpT, © = C-1 7, one can rewrite the above Hamiltonian as

V8 G @nyuaypy) By yuaye). (34)

This is the 4 + V combination. Now, in the decay of polarized neutrons 4 — V
would give no asymmetry (neglecting the small deviations from the equality
of the axial and of the vector coupling constants which are due to renormali-
sation gffects), while 4 4 V would give maximum asymmetry (also in the same
approximation). The observed asymmetry is consistent with 4 — V, thus
suggesting the form (82) for § decay Hamiltonian and the assumption that
nucleons have the factor @ in front and, antinucleons the factor @. To build up

the current J, one adds the contributions from the pairs (pn), (ve), (vp), et
cetera

Ju = (pyuan) + (V yu@p) + O yuae) + ... (35)
It has been assumed here that " is a particle. The other choice would have led
to a p-decay Hamiltonian given by V8 G(v yu.ap) (v y,ae) which would lead to
a g, -value of zero in contradiction to experiment. That the electron spectrum
should go down to zero independent of the statistical weight at the maximum
electron energy if two neutrino or two antineutrons are emitted follows from

the Pauli prir}ciplc. In fact at the maximum electron energy the two neutrinos
would travel in the same direction, although in general with different momenta.
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The wavefunction of a two component neutrino does not however contain any
indication of the magnitude of its momentum except in the exponential factor
which contributes to the J-function expressing the total momentum conser-
vation, and since the decay amplitude has to vanish when the two momenta are
equal it will also vanish in the general case. So at maximum electron energy the
decay amplitude has to go to zero by virtue of the Pauli principle. From the

w-meson decay Hamiltonian }/8 G(y,av) (vy,ae), one finds for the w-meson
lifctime the expression T = 19223/G2m}, and noting that no appreciable effects are
expected here to renomalize the value of the coupling constants (the largest
radiative corrections arise from virtual photons) one can use this expression to
calculate @, the bare coupling constant of the weak interaction Hamiltonian.
Surprisingly one finds that the coupling constant so determined is identical, in
the limits of the small experimental errors, to the effective coupling constant for
the Fermi part of fB-decay, that one can measure from the lifetime of O.
Namely from the lifetime of 0! one finds G = (1,01 - 0,01) - 1073 (1/m¥) =
= (1,41 + 0,01) - 10-%° erg/cm?, and inserting such a value into the p-lifetime
formula one obtainst = (2,26 4- 0,04) - 10-8 sec, to be compared to the experimen-
tal lifetime 7 = (2,22 + 0,02) - 10-% sec. This agreement seems to suggest
strongly that the hypothesis of universality holds, namely that the formulation
with a current J, of the form (35) is perhaps right, and furthermore, it indicates
that, surprisingly, the renormalization effects due to strong interactions are
absent for the V part of 3-decay. As far as this latter circumstance is concerned,
one would think that, unless some unknown accident takes place, a symmetry
principle is operating at this place in a way similar to gauge invariance in
quantum electrodynamics which leads to the non-renormalization of the electric
charge ¢. Gauge invariance implies that in the zero energy limit the charge of
the proton is rigorously e and furthermore it insures that the result holds inde-
pendent of the structure of the nucleon. We may say that physically this happens
because when a proton emits a virtual =+ to become a neutron the virtual =*
must, because of gauge invariance, interact with the photon field and again
exhibit the charge e. It is only for smaller wavelengths, that are able to explore
the structure, that an effective charge different from e may be exhibited. From
this analogy it will not appear surprising that, in order to have non-renormali-
zation for the V coupling in f-decay, one has to introduce a direct interaction
of the pion field bilinearly with the lepton pairs. We shall later discuss fully the
formal problem that is involved here and the physical implications of the scheme.
We would like however to show first how the argument given above for the non-
renormalization of the vector part, namely from the equality of the coupling
constant from O to that from p-decay, would be invalidated if the present
cevidence for a g-value in y-decay definitively different from 3/4 would be con-
firmed. It is therefore very important at this point to have a very accurate
measurement of the p-value in u-decay.

4.2 Incompatibility of the hypothesis of non-renormalization
of the V-part with the present experimental p-value

Let us write the p-decay Hamiltonian in the form

VS_G (2yuvi) (VLYpe) (36)



160 R. GATTO

where vi, = av is the lefthanded neutrino of the FGMS theory. The p-value
from such an interaction is exactly 3/4. To explain its deviations from the
measured value o = 0,68 - 0,02 (radiative corrections included, the value is
due to Crowe) we follow the LEE-YANG proposal [12] that the interaction has a
more complicated structure and does not occur at a single space-time point.
The above Hamiltonian will therefore be modified to

V86 (ep,uv(2) K(z — 2) (T e (') (37)

where a form factor K(x — 2’) has been introduced. Of course (37) will then
be generalized to the expression for the interaction of J, with itself, which will
look something like J,(2) K (x — «’) Jj(2’) -+ h. c. This form is not the most
general one, since one could still have something looking as J,(f(X® +
+ K, K,g(K?) J; + h. c.; however we expect (37) to be at least a good approxi-
mation because of the smallness of the electron mass. We do not assume here
that the form factor is due to the meson X. It may originate from any compli-
cated cause, or even reflect a true elementary non-locality. If K is exanded in a
series of derivatives of the §-function [12]

]
K(x—x’)=6‘(x—x')+123;»364(x—x')+... (38)
e

my; 0%, 0,
we find for the electron spectrum from polarized muons
dzNoc'xzdx dE{6 —d4x — 2 Re(n) (9 — 16z 4 522) +
+ [+ & Re@l)) (1 + 3 Re@m)] 12 — 4z — 2 Re() (6 — 122 + 522)]}
where £ = cos 0 is the angle between the muon spin and the electron momentum

and x is the ratio of the momentum of the electron to its maximum energy.
The energy spectrum turns out to be

AN < a?dz {3 — 2z — 1 Re(n) (9 — 16z + 5a?)} (39)

A p-value from this spectrum is obtained by a least square fit to a Michel’s
spectrum. The relation is [12]

4 Re (m) = — 1,8 F — Qexp)- (40)

One sees from (40) that e (n) turns out to be negative thus excluding an inter-
pretation of the non-locality as due to a virtual boson. The lifetime can also be
calculated and it comes out to be

Tt =707 (14§ Re(n)) (41)
and by substitution of (40) into (41)

=l =Tu_1 [1—1.8 (i— — Qexp)] (%)

Here 7, is the lifetime for the local Hamiltonian (yn = 0). To calculate the lifetime
(42) one still needs the value of the coupling constant, contained in To- This
value however can be taken from the g-decay of 0% if, per absurdum, we assume
that the non-renormalization principle holds. The coupling constant so deter-
mined is again the same that one would obtain neglecting the non-local effects
that were introduced in our universal weak interaction. This because the momen-
tum transfer in $-decay is very low and the non-locality is not yet felt. Taking
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the coupling constant from O and ¢ = 0,68 + 0,02, and computing errors, we
find the predicted lifetime for p-decay to be T = (2,60 + 0,13) - 10-° sec. ‘The
previous surprising agreement with the experimental value has now changed into
a disagreement of at least 109%,. ' )

There is one point in which the above argument may be slightly 1ncorrept.
Namely the experimental p-value used here has been obtained after subtracting
radiative corrections as calculated for point interaction. It is impossible to
estimate what the radiative corrections would become in the non-local theory,
unless one makes a very definite model of the non-locality (for instance inter-
mediate boson). In general, however, one does not expect great changes from
these effects and therefore we would conclude that it is certainly very important
at this point to have a very accurate determination of the p-value.

4.3 Experimental tests of Universal Fermi Interaction

The equality of the effective coupling constant for B-interaction as derived from
the lifetime of 04 to the true coupling constant derived from the p-meson
lifetime suggests first that there may be strict universality in the primary inter-
actions, meaning that the coupling constants may be all equal, and, second,
it suggests the absence of renormalization effects and a possible symmetry ex-
plaining such absence. It appears therefore to be important to have direct
separate tets of the hypothesis of universality, possibly independent of the
question of the non-renormalization of the constant by the strong interactions.
The most direct, test for universal interaction is provided by the ratio of t—e +v
to T — @+ v [13] The ratio can be calculated uniquely indepedent of assump-
tions on the strong interactions for any forms of the weak coupling, provided it
is assumed that the two leptons emerge from the same point. For S, ¥, T both
decays are forbidden, for PS the ratio r

p ooty (43)
w(m—u+v)

is 5.4, for 4 it is 13,6 - 10-5, To illustrate the argument let us consider the case
of A interaction. The decay is represented by the black box

e
S 4
- 4

The momenta of the two leptons are assumed to appear only in the combination
Py = g + ¥, corresponding to the assumption of locality. Moreover energy
momentum conservation implies pi — PL = 0, so that we can choose p’ as the
only independent four-vector allowed by kinematics. The matrix element will
therefore be of the form

M o< f(p2) (eys yuli VI X me f(P3) (L ysv) (44)

and the ratio r, is easily calculated

9

2 /m? — m2\2
pa, (”"’) (m’——m—") = 13,6+ 10-5. (45)

my/ \mi— m;

/
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The first factor (m./m,)? is the ratio of the two squared matrix clements, the
second factor is the ratio of the two phase spaces. For PS interaction the first
factor has to be replaced by 1, and the ratio rpg is identical to the ratio between
the two phase space volumes.

It may perhaps be instructive to understand a little more physically the appea-
rance of the factor m, in the matrix element for the case relevant here of A
interaction (44). Consider =~ decay. What is emitted is an 1- and an V. The 1-
is coupled in the FGMS theory as a lefthanded particle, while the v is coupled as
righthanded. Of course, it is equivalent here to talk of the FGMS theory or of
a pure 4 interaction, as far as the ratio (43) is concerned, but it is really more
instructive to discuss directly in the FGMS theory. Nothing destroys the handed-
ness of the v which has zero mass, and only the mass term will destroy the hand-
edness of the 1-, since it is known that the electromagnetic interaction preserves
the handedness. So in the limit of m; =0 a lefthanded and a righthanded par-
ticle would have to be emitted from a zero spin system, which is impossible
because of angular momentum conservation

Therefore the matrix element (44) has to go to zero for m; = 0, as it in fact does
according to (44).

What is important here is that radiative corrections (which a priori could not be
regarded as negligible as compared to such a small decay amplitude in the casec
in which I~ is e~) do not change this conclusion, as long as quantum electrodyna-
mics holds in its conventional formulation. If, however, quantum electro-
dynamics contained for instance a g,, coupling, which would destroy the hand-
edness, then the radiative corrections would not have any more to be proportional
to the lepton mass, and for the case of the electron, they could produce essential
changes in the calculated ratio (45). The delicate nature of the dependence of the
calculated value for 4 on the form of quantum electrodynamies was in fact
pointed out by different authors [14]. The main interest in the question, at the
time in which such discussion was made, came from the apparent strong dis-
agreement between the experimental value for » and its predicted value r4 in
the FGMS theory. Recent experiments have however reduced this discrepancy
and are quite consistent which the theoretical value [15]. Apparently this case
of the ratio of ®7—>e + v tonw—p + v (together with the corresponding case
of K—c¢ +vand K—p 4 v)is the only Zase in which a test of the hypothesis of
universality can be made directly without going into the various complications
due to the presence of strong couplings. There is still another case, which al-
though a little more complicated offers a similar possibility, namely the com-
parison of the K—e 4+ v 4 7 and K — 4 + v + 7 modes [16]. A decay mode

K — 1 -+ v + = can also be represented by a black box

1

b
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The structure of the black box is here a little more complicated because there
is one more prong coming out from the box. One finds that in the K rest system
one now needs two functions of the pion energy to describe the box. In fact
4-momentum conservation requires

Pk = v + PL (#6)

and, taking pk and P{ as independent, the most general matrix element will be
of the form

1y, Pra v) (47)

where P# is a linear unknown combination of p# and P{. Using the Dirac
equation ond can write (47) as

mX(1av)+i¥Y 1y, pkav) (48)

where X and Y are unknown functions of kpﬁ P4, a quantity which is essentially
the pion energy in the K rest system. The hypothesis of universality implies
that X and Y are the same functions of the pion energy independent of 1 being
a @ or an e. To see in a particular case how one does effectively find limitations
on the decay probabilities from the hypothesis of universality, consider the

particular configurations where the pion is emitted at rest

s
) i

74 e

The situation is exactly the same as for = — e + v and = —> ¢ + v and in fact
for such configurations the ratio

, K—se+ve+m

A=K Su+v+n
is uniquely determined
5y e T (M)z — 2610 (49)
y my \A§ — My,

where 4,=mg — m,. The only change with respect to the pion case has been the
appropriate modification of the phase space factor. ¥n the genex:al case one finds th‘e
following consequences from the hypothesis of pmversa,hty: if the pion energy is
measured the electron energy spectrum is uniquely determined and only two
possible muon spectra are allowed. For each of sgch two spectra the complete
muon polarization (longitudinal and along the pion direction) is uniquely pre-
dicted [16]. More stringent conditions follow if it is supposed that as a first
approximation the energy dependence in X and Y can be neglected.

Finally, a few words about the B-decay of hyperons. If such decay modes were
much more frequent than they really are, one could think of proposing tests of
the universality hypothesis by comparing for instance A®—» p e 4+ v to
A% — p + p~ + V. The leptonic decay modes of hyperons are however surprising-
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ly absent or very rare. If one assumes that the coupling constants are not
renormalized (or at least only little renormalized asit appears in $-decay), then
one expects from a direct (pA°)(ev) interaction, A —> p + e~ 4+ v at a rate of
5.3 - 107 sec™1, corresponding to 1.6%, of the decays. Similarly from (Z n)(ev),
S--—>1n -+ e + v would occur at a rate of 3.5 - 108 sec™?, corresponding to 5.6%
of the cases. No evidence has been reported so far for such decay modes. We
want to make a few remarks here in this connection. First, we know that
leptonic decay modes of hyperons cannot be completely absent. In fact even if

there were no direct interaction of the sort (pA®) (ev) one still would have graphs
such as

p
e
K
l———I< (50)
P
A
and
/0 e
N T (50)
K
A 4

and we know that the four vertices in the above graphs do exist, correspond-
ing to the production experiments and to the K—>e +v, K—>n +e+v
decay§ (K — e + v must be inferred from K — . + v). Graphs of this sort will
occur in a dispersion theory treatment of the process. The intermediate states
are taken in the Heisenberg representation. It can be shown that (50) gives a
negligible pseudoscalar contribution (the K is assumed to be pseudoscalar),
whereas the contribution of (50') is qu te appreciable, but its evaluation is a
little uncertain. The second remark, that we want to make is that if, as we also
considered, in the strangeness-non conserving current also terms (K=z) are
present, there would be also contributions arising from A — p + K—op+e+
4+ v + w®— p + e + v and similar processes. However the axial contribution
(no interference A—V in the total rate if the electron mass can be neglected!)
is left unchanged. The restriction only to the (pA)(év) term is much more
stringent than the hypothesis of universality. Finally, numerical coefficients may
very well be present in front of the term (pA) in the current, depending on the
way in which universality has to be formulated. Such coefficients may have to
do with the question whether one really has to put the A-field operator into the
original formulation, which has to do with universality, or whether one has
instead to use particular linear combination of the different hyperon fields. It
is apparent that no answer to these questions will be possible unless the avai-
lable experimental information is greatly increased. Of course one can also
always invoke renormalization effects for the coupling constants to explain
deviations of the data from the theoretical predictions, but it would seem to us
that such justification would be a little dubious if one has to use if for all the
cases in which no leptonic decay modes are observed.
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4.4. The hypothesis of non-renormalization for the vector part of the
strangeness-conserving current

We can now formulate explicitly the hypothesis of non-renormalization for the
vector strangeness-conserving current, according to the Feynman — Gell-Mann
proposal. We shall also reproduce a recent suggestion by Gell-Mann for a
possible experimental test of the hypothesis [17]. Experimentally the 3-decay
Hamiltonian is found to be given by

V8@ (B yut (1 + ays)n)(ey.av) +h.c.

where G is the same (inside experimental errors of 2%,) as the p-decay coupling
constants appearing in the interaction term

V8@ (y.ap) @y.av) + h.c.

The constant « is found to be « + 1,20 (18). The sign + is determined from
the experiment on the decay of polarized neutrons, which gives very small
asymmetry, thus suggesting the 4—V form instead of the 4 + ¥V form. We
have already discussed in 4.1 how the ambiguity betweenthe 4 —V and 4 + V
combinations could not be solved from the theory alone but had to be decided
by experiment. As to the magnitude of « it can also be derived from the polari-
zed neutron experiment, but with a rather large error. Better determinations are
obtained from the B — X-diagram, and from the free neutron lifetime. In this
section we shall mainly discuss the problems arising from the result 1), namely
from the equality of the renormalized vector constant in 3-decay to the yalue
of the bare coupling constant as obtained from p-decay. The problems arising
from 2), namely, whyis the 4 renormalization so small and why is it such as to
increase the value of the coupling constant, will be discussed in the next sec-
tions.

The Feynman — Gell-Mann suggestion to explain the absence of renorma.zli-
zation effects in the V part of the B-decay interactions consists in postulating
that the strangeness-conserving vector current is divergenceless. The absence of
renormalization effects on the charge e in quantum electrodynamics is a conse-
quence of the divergenceless of the charge current, which for instance for a
system containing nucleons and pions is given by

(51)

(52)

i)+ i =1 (pyap) + @rata®) +i@* Ts0up — (B,¢)* Tyg). (53)

Ju = Jn -

Here the first term is divergenceless because it is the local nucleon number
current, while the last two terms are divergenceless because they add up to the
local current of the 3-component of isotopic spin. The decomposition corresponds
strictly to the decomposition of @ according to

Q=1 N+1, (54)
for a system with zero strangeness. The interaction with the electromagnetic
field is given by

— ejudy = —ejl A, — ejP 4, (55)

and the first term contributes to the Hamiltonian a term behaving like a scalar
in isotopic spin space, while the second term contributes a term behaving like

13 Zeitschrift ,,Fortschritte der Physik*
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the 3 component of a vector. Now one can by analogy postulate that in the
vector part of the weak strengeness-conserving interaction what is coupled is
the j( = j1) + 9§ component of the isotopic spin current

» . onm,
i® =4 iNTy N + eik,nkB?: ol (56)

More explicitly the V part of the B-decay interaction is given by

— @D U + hee. (57)

where
U+ =iY2(@Ey.ay). (58)

The lepton covariant I*) plays here a role entirely similar to the field 4,. The
term (56) is directly comparable with the term —ej{» 4, in (55). The matrix
elements are strictly proportional. For any y-transition due to the second term
in (565) there is a corresponding transition due to (57). The Hamiltonian densities
that contribute are, for the two transitions,

— @GP IGH) 4 h.c. (59)
and .

— i A, (59)

Let us stady in detail the analogy by making a multipole expansion for both
the isotopic vector part of the electromagnetic interaction and for our vector
weak coupling. The monopole terms are (limiting the discussion to e~ emission)

— BT 3 Ee) (60)
—el, 4, (60')

where ‘I is the total isotopic vector and the fields are taken at the nucleus.
Equations (60) and (60') may be used if one can neglect the energy release to the
lepton and to the photon fields. For instance one can compare

Tt > n0 et 4y (61)

with the {-decay mode of 0. They both are O — O-transitions, so only V is
involved. One has. to evaluate the matrix element of I, between =~ and ©°, and
between O'* and its daughter nucleus. This can be done by only isotopic spin
considerations and one actually finds that n+— =% + e* 4 v and O have the
same {‘t-vavlue. The phase space available in (61) is however so small to make any
experiment to determine its rate very difficult. In general in any O — O*
B-transition, which is allowed and only involves the V interaction, the matrix
element will be that of I, in the approximation in which (60) holds. This is
however not a strong prediction of the theory. It would automatically be satis-
fied in any nuclear model in which the nucleus is described as a system of dressed
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nucleons. For a possible verification of the theory Gell Mann examines a situation
like the following. Consider a scheme like this:

I,=+1 L=0 L7 J.4% I
(W) (c2) - (872)

/}+ ' ﬁ-
/cre)

The nuclei indicated in parentheses correspond to a particular example of the
situation. In such a particular example the excited state of C!2 is at 15.11 Mev.
The effective Hamiltonian for the y-decay, for instance from the J, = 0 level, is

J=0%1-0

2M (rotA) (62)
In fact the transition occurs through magnetic dipole, since A1 = 1 and there
is no parity change, so the matrix element will essentially be that of the pseudo-
vector H. In isotopic space A = 1 for the transition so that only the isotopic
vector part of the electromagnetic interaction Hamiltonian contributes to the
decay. Consider now the B~ transition. Here 4J =1 and there is no parity
change, so one has a Gamow-Teller matrix element, due to the axial, which is
given by

— (V26Ga) Mgr(eo.av) " (63)

always considering J, = 0. This matrix element will of course give the main
tontribution. One may however be able to measure higher order corrections.
There will be a matrix element contribut‘mg, which is completely analogous to
the electromagnetic matrix element (62), in the sense of the correspondence
given by (59) and (59'). This matrix element can be obtained directly from (62)
by the suitable substitutions, and it is

— 48 zot 3 aav)).. (64)
m

N

In (64) a factor ]/2_ has been introduced to account for the fact that the matrix

element of y("')ls]/ 2 times larger than that of j§», for the particular transitions.
Now it turns out that the term corresponding to (64) in the absence of the non-
renormalization hypothesis would be much smaller than (64). The reason is
that the transition magnetic moment y here contains also the contribution to
the magnetic monents from the meson clouds, since the pions are now also
coupled to the leptons. Thus, for the transition considered one has so far the
matrix element (63) and the matrix element (64). However since one is intro-
ducing with (63) “forbidden” contributions for the vector, one should for
consistency also look for ,,forbidden’ contributions from the axial at the same
order. It comes out that two more contributions have to be added. For the total
matrix element Gell-Mann gives the expression

— (V2 Gal Mgy [6f {0, — ia(K,a), — DK, ay;) av] (65)

13+
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where a = #(HV§mNaMGT‘)-1, and b is another unknown constant. For high
energy @-transition the term proportional to b can be neglected and one finds
that the spectrum will have the usual allowed shape apart from a correction
factor

1+ 3 Ea (66)

where E is the clectron energy. To calculate a one needs u and M gq. The latter
can approximately be calculated from the lifetime for the transition

(ft) < (e Mox)™. (67)

The transition magnetic moment u can be determined from the magnitude of
the y-decay rate, as can be calculated from (62)

2

Iy =oai- ;o . (68)
where o is the y ray energy. For the mentioned example of B12, C'2 and N*2 Gell-
Mann finds |a| = 2,3m5. Onc can cstimate in this way that by comparing the
spectra from B?? and N2 one finds an effect of the order of 20%,. The correction
factor will be 1 4 (8/3)aE for §-(B!%) emission and 1 — (8/3) a £ for B+ emission
(N12). The ratio of the two factors will be 1 + (16/3)a E,and 1 4 (16/3)a E at the
maximum energy just amounts to about 209,. Many similar possible tests of the
theory can be proposed for forbidden transitions, but wo think that the test
here reported will be sufficient to illustrate the kind of argument.

We shall next discuss the problem of the renormalization of the axial coupling
constant.

4.5 Impossibility of a non-renormalization hypothesis for the axial part of
the strangeness conserving current. Quantitative estimate of the
renormalization effects

As we said before the Gamow-Teller coupling constant in B-decay is by now de-
finitely different from the Fermi coupling constant and thus one should not
insist further in trying to make the axial :oupl'mg constant also non-renormali-
zable. Also, it might be difficult, mathematically, to make the axial current
divergenceless. — although this question is perhaps unrelated to the previous
one. One has anargument due to GOLDBERGER and TREIMAN which shows that
absence of divergences of the axial current would anyway be in conflict with
established experimental evidence in B-decay [19). Let us sketch here the argu-
ment. Write the axial §-decay matrix element in the form

(e yuar,) <p & n). (69)
-(4)

o % '
Now {p ' ju  np can be written as

o a(4) 5 .

P Ju ny = (up [a (K2) y,ys + 16(K?) K, y;5] un) (70)
where K, = Kf,m — K,(,") is the momentum transfer, a(K2) and b(K?) are
nucleon form factors. The form (70) follows from Lorentz invariance, time
reversal, and charge independence. In particular a possible term of the form
up0vys Kty does not appear because of the circumstance that n and p belong
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to the same charge multiplet. Using the Dirac equation for the leptons and
momentum conservation, one finds for the A-matrix element of 3-decay

a(K?) (%eYu @ Un) (%p YuVs un) + me b(K?) (ue@ uy) (Up Y5 Un) - (71)
The effective A coupling constant is g4 = @(0), because of the sm&.llness of the
momentum transfer, and moreover there is an effective PS coupling constant
gr = m, b(0). If now we postulate

(4)
%3 _ o (72)
GER
we find in momentum space
K. $pl 01> =0, 73

Substituting (70) in (73) we find (mp[a(K2)yuK.ys + 1b(K2) K2yslu,) = 0 and
using the Dirac equation for the nucleons, we finally find the relation

2my m, o
.‘]p—_-——sz‘fga (74)

between the PS and the 4 coupling constants. The ratio g,/g, turns out then to
be energy dependent, because of the K? dependence, and very large, ~ 1000 at
least. This is inconsistent with experiment. No such difficulties arise for the V
part. Here the matrix element analogous to the (70) contains only a y, term and
a term oy, K,. The term with K, alone disappears by invariance arguments. It
is then evident that the condition (73) can indeed be satisfied. There is perhaps a
more direct argument to show that the axial strangeness conserving current is
not divergenceless. In fact the decay modes @ — @ + v, © — e - v, could not
occur through such a divergenceless current. Since they both exist, the 4
current cannot be divergenceless.
Finally let us speculate about the quantitative aspect of the renormalization
problem for the axial coupling constant. If one accepts the Feynman-Gell-Mann
suggestion that the vector part is non-renormalizable, one is then left with the
comolusion that the renormalized axial coupling constant is « times larger than
the bare coupling constant (with « 4 1.20). The first question concerns the sign
of the renormalization effect. Why is the affective coupling constant larger than
the bare coupling constant? We first should point out that the situation here has
not very much to do with simple cases where essentially only one field is invol-
ved. One likes to imagine that an original bare charge polarizes the vacuum
and is then surrounded by charges of the opposite sign, so that the total effec-
tive charge is diminished. Here, however, the situation is certainly quite
different. More appropriately one can discuss the effect in the static source
theory. One can easily convince himself that the renormalization factor which
multiplies the bare coupling constant to give the renormalized coupling con-
stant is something like (1 4 (1/3)2?%)(1 + 3?), where a? is the probability of
finding in the cloud a pion of given charge. This factor is certainly less than
unity. So one is led to the conclusion that, if the renormalization effects are such
as to increase the value of tho coupling constant, a more sophisticated descrip-
tion of the nucleon is necessary to evaluate them — in particular nucleon-anti-
nucleon pairs will presumably play an important role. Perhaps the best f W i
PFroa Ve OF ﬁDV?//( a

»

=

¥

N VY,

| it 0 | 07 DT Mt et f



170 R. GaTTO

for a discussion of the problem is offered by the dispersion relation approach. In
particular we refer to the GOLDBERGER TREIMAN work on the form factors for
weak interactions [19]. We shall discuss this approach later in more detail, and
make here only a few comments concerning the question of the renormalization
of the axial coupling constant.

It ist clear that if one wants to calculate with dispersion relations the renomrali-
zation of the axial coupling constant, one is not allowed to make any subtrac-
tion in the relations. Such a subtraction would essentially mean the intro-

duction of the renormalized coupling constants itself in the expressions. One has
then to assume that a dispersion relation

L[ ., Ima(—¢&) 1 , Im ¢(— &)
a — C = — T Iy e
© —o@) = [ag Z22E8 2 fap oo
with ‘“no subtraction” holds for the difference between the form factor a(K?) of
equation (70) and the analogous form factor ¢(K?2) for the vector coupling. There is
certainly no definite theoretical reason why (75) shoud be valid. Unfortunately the
question of knowing when and where one has to make subtractions in dispersion
relations to have convergent expresgions is still quite unsettled. GOLDBERGER
has expressed the »ieeling” that there is a close connection between subtraction
and bare couplings in the original Lagrangian [20]. So for instance in the GOLD-
BERGER-.TREIMAN work on the formfactors in B-decay [19] the dispersion relation
for a(£) is used in a subtracted form corresponding to the existence of the bare
coupling for axial 8-decay n —» P + e~ 4 9. Another subtraction is made for the
vector form factor G(E)_ However’ in calculating T—>e +v, which goes through
a loop and for which there is no primary interaction postulated, no subtraction
has to be made. So in principle with two numbers, namely two subtraction
constants g, and gy, and all the required informations about strong interaction
amphtu(?es, one shoud have a complete description. This possibility does not
appear in the usual perturbation theory approach to renormalization. Re-
normalization here is intended for a theory in which weak interactions are
tgkgn only up to first order [22]. Thus in a theory where pion and electromagne-
tic interactions are taken at any order, and one then adds a bare 4, V coup-
ling between n, p, e and v, one finds that apart from the renormalized 4 and
V coupling constants one still has two possible renormalization counterterms so
that a total of four constants, apart from all the necessary knowledge about
strong interaction amplitudes, is now required to have a complete description.
If one adopts the non-renormalization hypothesis, one finds that apart from the
renormalized 4 and ¥ coupling const ants(the latter coincident, of course, with
the ba,'re coupling constant) one still has to add a renormalization counter term for
the axial. More specifically, in the first case (no hypothesis of non-renormalization
for the vector part) if the original weak couplings are

(¥p Vuyn) (Yeyuayy) + h.c. (76)
and
Wo¥sVuyn) (Weysyuayy) + h.c. (76")
one finds three more terms that may occur as counter terms, namely
@0 (0,p) (@ yuav) + h. c. (77)

(Ouy) @ (e yuav) + h. c. (77')
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and 3
(0up) (e ysyuav) + h. c. (777)

Here 0, is 9/0x, — te A, in the presence of electromagnetic interactions., From
charge independence considerations it follows however that (7'?) ar.ld (77’) have
to occur in a definite combination, so that only one renormalization constant
has to be introduced for the two counter-terms (77) and (77’). The counter
terms (77) and (77’) would correspond to processes

T—a>n4+e+v (+7v)

while the counter term (77/) corresponds to
t—>e+v (+7v).

If the non-renormalization hypothesis for the vector part is assured, then the
coupling constants of (76), (77) and (77’) are related in a definite way from the
requirement that the total interaction is of the form j(")(gy, @ v) + h. c. ¢
being the corrent for the *“plus’ component of isotopic spin. In this case one
needs three constants only, for a complete description. In both cases, however,
T — e + v corresponds in lowest order to a primitive divergent diagram and a
specific counter term has to be introduced for it, in contrast to the dispersion
relation approach where one does not make any subtraction in the relation for
the relevant form factor. From this discussion one sees that one is here con-
fronted with two quite different possibilities. The dispersion relation techniques
make it possible to give unambiguous answers for questions which could not be
consistantly formulated in perturbation theory, unless by recourse to arbitrary
‘cut-off procedures. Their correct formulation in perturbation theory would
imply the introduction of renormalization counter terms. The mechanism by
which such difficulties are avoided in the dispersion relation technique is
through the automatic appearance of relevant cutoffs in the expressions. The
convergence of the dispersion relations with the minimum number of subtrac-
tions has however to be postulated. An example which illustrates very sharply
these differences is provided by a recent formulation by Cini, FERRARI and
GATTO [23] of the problem of the neutron-proton mass difference. In perturba-
tion theory the physical masses would a,]re.ady be introduced through suitable
counter terms. With the dispersion relation technique the problem can be
formulated unambiguously, provided the convergence of the dispersion relation
is assumed. In particular in the lowest, and certainly inadequate, approxima-
tion in which only the intermediate state of a physical nucleon is considered, the
formula that one obtains is similar to that obtained by FEvNMAN and SPEIS-
MANN with a cut-off perturbation theory [24]. In the dispersion relation approach
the natural cut-offis provided by the Stanford form factorsfor the nucleon. Let
us thus point out that there are at least two possible attitudes as far as the
question of subtractions in dispersion relations is concerned. There is an opti-
Mistic attitude: one has to make a subtraction every time there is a correspon-
ding bare doupling or a renormalization counter term in the Lagrangian. The
attitude expressed by (23) is more optimistic than what we called the optimistic
attitude. There ist however a chance that such a super-optimistic attitude may
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be correct. At zero momentum transfer (75) becomes a (0) — ¢ (0) = (renormalized
axial coupling constant)— (vector coupling constant) =

L fgp Toai—d) 1 ., Dus—§)
_nfdf & —ie n/dgT—_ie_' ey

Equation (75) has been suggested to us by Symanzik, who thinks that it may be
conjectured to be correct by an argument similar to one developed by KALLEN
[25] in quantum electrodynamics. Unfortunately the evaluation of the integrals
in (78) is certainly a big task. The first contribution comes from the 2= state,

but it does not seem to be able to give the correct sign and magnitude of the
renormalization effect.

4.6 About possible extensions to other currents

Let us summarize what we have seen about the strangeness-conserving current
S4. The vector part may very well be non-renormalizable. There is a difficulty
with the p-value, but here one has to wait for better experiments. The axial part
has almost no chance of being non-renormalizable. Now what about the diver-
gences of the strangeness non-conserving currents? If we say that the K is
pseudoscalar then the 4 part of the strangeness non-conserving current S* is
certainly not free of divergences because of the existence of K — p. + v, which
oceurs throug!l the 4 part and implies a divergence. For the V part one can hope
to have experimental information from the K — ¢ + v + = spectra. Such decay
mpdes in fact occur entirely through V and the condition on the current to be
divergenceless imposes restrictions on the form factors for such decay. This has
been discussed by, GOL DBERGER and TREIMAN [19] and also by WEINBERG et al
[?6]. The last authors however do not use explicitly the hypothesis of universa-
lity and thus they obtain less stringent requirements. The matrix element for
K — e + v 4 7 equation (4) is written in the form

(Lyuav) (| V| KD (79)
where é{)ﬁ | ¥ | K > =c (K) P, + d(K?) K., P, = piK) + P, and
Ky = P’ — pf». The hypothesis of non-renormalization would imply

Ku< )ﬁ l V“«,l K5 =0, thus giving a relation between d and ¢, namely K2d =
= (mk — Mz) c. Therefore in (79) only one formfactor isunknown. It can beshown
that the decay ratefor K—e -y +-7 has then necessarily to be larger than that of
K — g + V4. This conclusion is not inconsistent with experiment. More
stringent tests along the lines of reference (16) are still possible however but one
will have t0 Wait for better data. We should like, however, to point out that it
may in fact be difficult to formulate theoretically a conservation law for the
vector part of the strangeness non-conserving current. For the strangeness
conserving cuIrent we employed conservation of isotopic spin. However the
strangeness NION conserving current will behave in general like a superposition
of T = 1/2 and T = 3/2, and no similar possibility can be thought of in thiscase.
A fina] remark concerns the possibility of including in the scheme for the
strangeness cONServing terms beside the 7', and 7'- currents of isotopic spin, also
the neutral 7' current, which could be coupled to neutral lepton class £©
according to the scheme proposed in 2.3. The only motivation for such a scheme
so far would be its greater symmetry. Furthermore one would perhaps have
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some new possibility open for the relevant question of defining in a los:al way
rotations in isotopic spin space — a question that was explored some time ago

by YANG and MiLLs [27].

4.7 Further discussion on the role of sirong interactions
tn weak processes

Comparison belween absorption and decay

We shall here discuss a little further the problem of the role of strong inter-
actions, and in particular the question of the comparison of p-absorption, = +p
->n + v, with B-decay n—p + e~ + V.

The reason why a problem like this is perhaps easier to reduce to a quantitative
analysis than for instance the problem of the leptonic decay of hyperons, can
be readily understood. In comparing p-absorption to B-decay, one is only
studying structure functions of the kind

<"|J#|P>

where J,, can be either wu 1y, vy, or pny,yp, at different momentum transfers. In-
stead, to compare for instance A°— p e~ 4-v ton—>p + e~ + v one would have to
compare two different structures, namely, (A% | J. | p> to (n|Ju|Pp .
One also notices how such a comparison cannot be done if one has to make sub-
tractions in the dispersion relations. In fact the subtracted effective coupling
constants for the two structures would be unrelated, so that no definite com-
parison, for instance between the decay rates, would be possible. When com-
paring instead .-absorption and B-decay, one is studying the same structure
functions for different momentum transfers, and the subtraction constants can
be identified with the effective coupling constants in 8-decay. The process of u
absorption can then be compared explicitly with f-decay, provided one is
able to evaluate the absorptive parts of the structure functions with sufficient
accuracy. A similar situation ocours in the comparison of K — g+ m+vto
K - e+ & + v, studied by CABIBBO and GATTO [28]. Here again the same struc-
ture, namely

CK|JE|m)
is studied at different momentum transfers. Nobody knows whether a bare
coupling has to be postulated for K —m + 1+ v (see our remarks in 2.1), as
it was postulated for m —m + 1 4 v.
In order to get a first qualitative insight into the problem of p-absorption let
us first make a few simple-minded remarks. It is easy to see that if the inter-
actionis 4 — V and if one completely neglects any strong interaction effect, the
absorption only occurs from the singlet state of the u~ — p system. In fact the
coefficient of the non spin-flip term in such a case is opposite to that for the
spin-flip term, in a non-relativistic approximation, so that no absorption can
oceur from the triplet state. Now for singlet absorption from the lowest s-state
there is apparently no asymmetry in the distribution of neutrons with respect to
the p-spin, and the neutron longitudinal polarization will be maximum (the
neutron will be left-handed)

n N ) (\/ -

v
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Of course one expects modifications from this oversimplified picture, when pion
effects and relativistic effects are taken into account. Virtual pion effects in
u-capture have been considered by WOLFENSTEIN [29] and by GOLDBERGER and
TREIMAN [2]1]. WOLFENSTEIN uses ordinary perturbation thecry, while
GOLDBERGER and TREIMAN apply the dispersion relation techniques. The results
are essentially the same. WOLFENSTEIN considers the diagrams

z/ i e/ 4
f : -/V Lo »
/
"\ 7 174 _..O</L
N \_,u V(4 - 2
4 N N

[1] [2] [ 31
which express pion radiative corrections to the original diagram

v

V% AL
(2]

The diagram [1] contributes a renormalization of the coupling constants of [0].

Diag_ram [2] can .be studied in more detail. Instead of [2] it is convenient to
consider all the diagrams of the kind

/v"‘-x~‘.<v
[2] ~

where the black 'box represents not only the pair state of diagram [2] but also
includes all possible contributions with hyperons, et cetera. If the pion in [2]
were on the energy shell the calculation of [2'] would only require the renormali-
zed = — N coupling constant and the 7 —> it -+ v decay matrix. Since the pion
is off the energy shell for about 2m,, such an approximate evaluation may
introduce erTors ~my /M. The contribution of [27] will consist in the addition
of a PS coupling to [0] and the magnitude of the coupling constant can be
calculated in the above approximation as

= 5 Ma+ 4 .
19P|—9.105M2(m (80)

where ¢ is the four-momentum transfer and g2 =~ (1/2) m;. The sign here is left
undetermined because the pion lifetime does not determine the phase of the
transition matrix. Comparing with the known value of the vector coupling
constant one finds gp =~ +9 (vector coupling constant). Moreover gp can be
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related to the axial coupling constant if one introduces into [2’] the contribution
of the simplest diagram

N
T

N M

for 7 decay, instead of the black box. In this way one finds that gp has the same
sign of the axial coupling constant. The GOLDBERGER-TREIMAN treatment leads
to the same conclusion. Finally let us consider diagram [3]. This diagram contri-
butes a vector and a scalar term as can be seen from the following argument.
Take P# = p# 4 p# and Q* = p# — p# as independent momenta to describe
the two pions with momenta p# and p#. The intermediate two pion state must have
isotopic spin one, as is evident from charge independence. Therefore it must be
odd in @¥ in order to be totally even. One can construct three matrix elements
for the # 4+ 7 — w + v process, namely '

Q- Pav), (my.@Qav), (Zy.Q*y,. P¥av). (81)

By use of the Dirac equation one finds however that the last term in (81) reduces to
the second (P* is also pf,, + pl\)). So one has a scalar contribution (nQ - Pav)
and a vector contribution (Ly,.@#av). The scalar contribution is however expec-
ted to be small since it is proportional to £, which is small for this process. The
vector contribution can be considered as a further renormalization of the original
voctor part of [0]. Keeping only [0] with the renormalized constants and (2]
WOLFENSTEIN calculates, assuming that the two renormalized constants
satisfy g, = — ¢4, Lhat the asymmetry parameter from polarized muons changes
from 0 to — 0.22 by the inclusion of [0’], while the longitudinal polarization of
the neutron is reduced from 1 to 0.93, and the hyperfine splitting effect

(1/4)(2,— A) [}., of which we shall talk later in more detail, changes from — 1 to
—0.93. Such values are furthermore essentially not changed by the inclusion of
relativistic effects. .

A confirmation of the validity of the above picture comes from the work of
GOLDBERGER and TREIMAN on form factorsin 8 decay and w-capture [217]. Their
calculations are based on dispersion relation techniques of the same kind as
used for the study of the electromagnetic structure of the nucleon. The § matrix
is expresséd in terms of nucleon form factors, which are assumed to satisfy
dispersion relations. They can thus be expressed, roughly speaking, as integrals
over their imaginary parts. The imaginary parts are then estimated by intro-
ducing a set of intermediate HEISENBERG states and kecping only those states
that are supposed to contribute mostly (this in theory; in practice one keeps only
those states for which one is able to say something reliable). The weak inter-

action Lagrangian is supposed to be of the form
(p 72 (&v + €a¥5) ¥n) (We ya@y,). (82)

It is irrelevant to make assumptions about ¢y and ¢, since they are bare coupling
constants and the subtracted dispersion relations will only contain the renor-
malized coupling constants. The only assuption is that ¢y, ¢4 are the same, inde-
Pendent of 1 being a w. or an e. No direct @ — 7 -+ ¢ 4 v interaction is assumed
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to exist in the Lagrangian. The S matrix element for e(orp~) +~p—n -+ v '
(K capture or w capture) can be written as

8 =i@m) 6" (n + p— p — 1) [(@iyeys ) (n [4,(0)] p) +
+ (@vy, 1) (n|V,(0)|p)] (83)

wlvhere, 7, Py, p and p, are the four momenta of n, v, p and 1 respectively. 4,(0) =

= 4 (PaiYe¥sPy) and V,(0) = cy(Pnyeyp)- One then uses invariance arguments
to express the nucleon matrix element in terms of suitable form factors

(14O p> = () (G la (K iye — b(KD Kl yep) (89
Ve p> = (2::;110) i (. [c(K?) yp — id(K?) 0p: K] P) (85)

where @ and b are functions of the invariant momentum transfer K2 = (n — p)2.
It is important here to note that in deriving (84) and (85) one has to make
explicit use of charge symmetry, otherwise additional terms would appear.
What limits the structure functions to the simple form (82) and (85) is the fact
that (82) behaves as a first class quantity under the operation @, and the
strong interaction.s are invariant under @. This has already been discussed in
section 3.2. Substituting (84) and (85) into (83) one finds

o

S=i@2ayén+p—p—m (;n%) /,[a(K2) (@viyeys D) (Miveysp) +
0 %o,

+ m b(K?) (@9 5 1) (@y5p) + ¢(K?) (@vy, 1) (y, p) +
+ td(K?) (@Y Yo (Pe — i) 1) (0, p)] (86)

Looking E.l.t the structure of this § matrix element one finds that one has again
an A (with coupling constant a(K?)), a V (with coupling constant c¢(K2)),
and moreover a Pg (with coupling constant m b(K?) = g5) and a derivative

term (with coupling constant d(K2). Calling (n — p)? = & one then writes down
dispersion relations for the form factors a, b, ¢, d:

& 3 Im a(— &)
& =g, —= S A AL A
aE) =94 nof“f FE TE— i) D
_ ! [ Im b(—&)
b(§)y = /d ekt il B ;
nb 55’—}-5——%'8 7l
8y — g, _ & J , imc(—é') i

1 Tmd(—g) re
r/(5)=~/d§'—,—~—.ﬂ. (877)
. &+ & —ie
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One has made subtractions for @ and ¢, and called g, = a(0) and gy = c(0).
These are the form factors at zero momentum transfer: they are the renormalized
coupling constants. From n — p=p — p, we find £ = — 2 — 2 [(; D) —
— (p{p")] = —I# 4+ 21E, and from E, = I; & == I2. Therefore for K capture the
momentum transfer in £2 = m; and one can approximately identify g, and gy
with the coupling constants for 4 and V in-B-decay, namely with a(m3) and
¢(m}) respectively. For y-capture one has to deal with a(m2), b(m?2) et cetera,
which may be appreciably different from their values at zero momentum
transfer. One has next to evaluate the imaginary parts of the form factors in
the equations (87). By use of the reduction formula one can show that the ab-
sorptive parts of (84) and (85) are given respectively by:

Ag=ﬂ<nﬁ>l/vn<0[44|s>\le ) 2>G(® + n — p) (88)
0.
/2
v, =n<nﬁo> 2n 0V, s>s| FO)|p>d(p, + n — p) (89)
where
0
F(z) = {yﬂ -+ m]'xp(m) (90)

and one has inserted a complete set of physical states §. Graphically one can
represent expressions (88) and (89) by diagrams of the kinds

P .<e
. ) »

where the dotted line 1epresenbs the intermediate states. The states that can
occur in (88) are 17,3, 57, NN et cetera. So one has the decomposition

AR e

(91)
The states that can occur in (89) arve 27, 47, NN et cetera, graphically
P G » 7
= +
e
n e n
(92)

In (91) and (92) the first terms correpsond to the subtracted renormalized
coupling constants. The second term in (91) gives only a PS contribution which
can be calculated by inserting the @ — e 4 v decay matrix at the sccond vertex.
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According to GOLDBERGER and TREIMAN this term should be in p-capture the
most important correction due to strong interactions, apart from the renormali-
zation of the coupling constants, In B-decay the only essential correction is the
renormalization of the coupling constants. The actual calculation of the various
terms in (91) and (92) is performed by inserting suitable analytical continuations
of the various matrix elements at the different vertices which in the physical
regions would correspond to observable physical processes. Of course this proce-
dure can only be done for the simplest terms of the expansions (91) and (92)
and even in an approximate way. It is however a conclusion of both the pertur-
bation calculations about which we have already reported, and of this dispersion
relation approach, that the effective Hamiltonian for w-absorption should be
well approximated by the effective 4 V @-decay Hamiltonian, with the addition
of a pseudoscalar term with a coupling constant about eight times larger than
the axial coupling constant. This conclusion is valid if one starts from a bare 4 V
Hamiltonian. If, according to the non-renormalization hypothesis, also a direct
pion lepton interaction exists, one may use the methods discussed in 2.4 for a
phenomenological derivation fo the terms contributed from the vector part.

It is unfortunate that experiments of u-absorption by protons are difficult
because of the very low rate as compared to the p-decay rate, and also because
of formations of molecular ions and effects due to small deuterium impurities.
BE.RNSTEIN, LEE, YANG and PRIMAKOFF have recently pointed out an inter-
esting possibility to get information on the effective Hamiltonian for p-ab-
sorption [31]. They have pointed out that there is a difference in the absorption
rate of captured muons from the two hyperfine states, and this effect can be
measured and give informations on the absorption interaction. When a p~ is
captured in the K-orbit around a nucleus of spin I, the spin of the total system
canbeF =14 120rF — J — 1/2. Absorption from the states with F# = I 4- 1/2
occurs at a rate different than for absorption from the states with F = I — 1/2.
In fact when the u- is absorbed by a proton the ratio is different according as to
wether the system is in a triplet or singlet state. However, the spin orientation
of. the prpton is correlated to the direction of the spin I of the nucleus, so the rate
will be different for the different spin correlations of the y-spin with 1. The above
authqrs also give an intuitive explanation for the difference between the ab-
sorption rate A, from the state with #— I -+ 1/2 and the rate A_ from the states
with B =&~ 1/2. T¥ the emitisd nettrine has & long wavelength it will carry
out only 1/2 unity of angular momentum. Therefore the final nucleons have a
total angular momentum J’ — g _ 1/20r F + 1/2 and, if F =1 + 1/2 then
I'=forl+1;ifF=7_ 1/2, I' =1 ~ 1 or I. So there are different final

states that contribute in the two cases. The quantity of interest is (1, — l_)//_l;,,pt

where Acapt is the average capture rate. Its estimated value is <209, for nuclei
around Z =~ 10, where absorption and decay are about equally probable. How
to observe such an effect? Since the total decay rates of the pu-p system are
different according as to F =J 4 1/2 or F = I — 1/2, one hastwo lifetimes and
one may be able to observe a two-exponential decay curve into the mode
w —> e -+ v 4 v. Such a possibility is discussed in detail by BERNSTEIN, LEE,
YANG and PRIMAKOFF.

As already discussed the asymmetry in the neutron distribution with respect
to the muon spin direction is exactly zero foran 4 — V interaction, neglecting
pion effects. Furthermore the muon is appreciably depolarized in some cases
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when cascading through the various atomic orbits to reach the lowest S-state.
It is noteworthy that, for the same 4 — ¥ interaction, always neglecting pion
effects, the neutron longitudinal polarization ing~ + p—n + v is maximum.
For the practical case of absorption from a complex nucleus the resulting polari-
zation has been recently calculated using a Fermi model to describe the
primary absorption process in the nucleus and an optical model to estimate the
rescattering corrections [32]. For neutrons in the upper end of the spectrum the
above estimates show that a polarization of at least 509, is to be expected.
Measurements of such polarizations will however be rather difficult. Many other
important suggestions have been made to obtain information on the u-absorption
process, this rather inaccessible corner of the universal Fermi interaction.
Unfortunately the interpretation of the experiments necessarily depends on
particular nuclear models.

5. Conclusions

It appears from our discussions that, although an enormous advance has been
made in the last two years in our understanding of weak interactiohs, there still
remain many points as yet obscure and many more experiments are needed at
present. Even if the formulation of weak interactions in terms of a current inter-
acting with itself will turn out to be correct, the explicit definition of the
charged current J,, is still to be formulated. If the non-renormalization principle
for the vector strangeness-conserving part holds, the strangeness-conserving
current is uniquely determined from the requirement that its vector part is
the plus component of the isotopic spin current and that its axial part is such
that fermions always appear in the projection (1 2) (1 + ;). No similar rules are
unfortunately, available for the strangeness non-conserving current, but we hopé
that some general symmetry will sooner or later manifest itself to provide us
With an unambiguous theoretical definition of the strangeness non-conserving
current. For the moment one should also consider the possibility of the contri-
bution of (Kr) terms to such a current. A considerable simplification is due to
the 48 = + 1 rule. Its most evident empirical basis is the apparent absence of
Z-— n + 7, but we lack so far a precise experimental upper limit for this
reaction. It is theoretically important to know whether a neutral strangeness-
conserving current is also present. There is a quite definite theoretical possibility
that such a current exists, if the non-renormalization hypothesis for the vector
part is valid. In such a case the suggestionis that such a neutral current may be
the 3 component of the isotopic spin current and may also be coupled to leptons,
with the exclusion of the (p.e) pair. Such a scheme would perhaps offer some new
possibilities for the question of defining in a local way isotopic spin rotations.
The important question of knowing whether a charged boson can be taken as
responsible for the charge transfer between the weak interacting pairs rests
now experimentally on a better determination of the upper limit of p. — e +- Y,
though the present upper limit already leaves rather little hope. The most im-
portant experimental question is here connected with a very precise determi-
nation of the electron spectrum in y-decay. The question of the old Al =1)2
rule has not made great advances so far. If such a rule (for the interactions and
not for the strangeness non-conserving current) has to be encompassed in the
scheme then one needs a more elaborate formulation. However, the coupling
of a neutral strangeness non-conserving current to leptons may produce incon-
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sistencies with experiment. The necessity of independent and accurate experi-
mental tests of the non-renormalization hypothesis for the vector strangeness
conserving current is hardly to be emphasized. Also the comparison between
the . and the 0 lifetime has to be performed with greater theoretical accuracy.
It is important here to note the incompatibility at present between such a hypo-
thesis and the present experimental ¢ value of p-decay. The question of the
apparent absence of -decay of hyperons is certainly relevant to the problem of
defining the strangeness non-conserving current. The possibilities of a large
renormalization of the constants and of contributions from a possible direct
(Km)-lepton interaction and K-lepton interaction may of course be invoked.
The sign and the smallness of the renormalization of axial B-decay couplings
opens many theoretical problems. They are unfortunately connected with the
dubious validity of forms of non-subtracted dispersion relations, and also, again
unfortunately, connected to our very poor knowledge of the deepest parts of
the nucleon structure. The great merit of the dispersion relation approach is that
of offering a definite possibility (not yet proved to be correct) of surpassing the
limitations of the renormalization theory which required with the specification
of the counter terms more theoretical input to obtain a complete description of
the weak processes. A less ambitious program to understand in part the role of
strong interactions in the weak processes consists in comparing reactions in
which the same structure appears, such as y"4+ p—->n4vtoe --p—>n-+v
or K—>7x 4+ e+vand K— 7 4+ p + v. For such cases a subtraction in the
dispersion relations (either to remove theoretical criticism or only to obtain
a better convergence) is still tolerable. However the y~ absorption process is still
a dark corner of the universal Fermi interactions and much more experimental
light is certainly necessary to contemplate its details.
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