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PREFACE

The purpose of this monograph is to give a collection of Fourier series. Its limited
scope made a number of compromises necessary. The question regarding the choice
and organization of the material to be included posed certain problems. In order
to preserve some consistency it seemed best to stay within the framework of what
one could call the “classical”’ Fourier series, i.e., those of the trigonometric and their
simplest generalization the Fourier-Bessel series. Thus results relating to Fourier
series of generalized functions* or such series arising from Sturm-Liouville eigen-
value or integral equation problems are not included here. It was felt that such
topics should be the subject of a separate treatment. An important question was
which should be placed first, the Fourier series or the sum it represents. After some
deliberation it was decided to opt for the first alternative. The material presented
here is subdivided into five sections:

I. Series with elementary coefficients representing elementary functions
II. Series with elementary coefficients representing higher functions
ITI. Series with higher function coefficients representing elementary functions
IV. Series with higher function coefficients representing higher functions

V. Exponential Fourier and Fourier-Bessel series

* A few examples are given in an appendix to L.
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viii Preface

This arrangement should be helpful in equally balancing the task of either
establishing the sum function of a given Fourier series or finding the Fourier ex-
pansion of a given function. It seems apparent that a sizable amount of attention
centers around results involving higher functions.

The author is not aware of the possible existence of a presentation of this subject
on a similar scale and it is hoped that the contribution here will meet the require-
ments so often needed in applied mathematics, physics, and engineering. Since
there is no lack of excellent texts concerning the subject of Fourier series no refer-
ences have been given. Most of the material displayed here is widely scattered over
the literature and a sizable number of results seem not to have been available
before.



LIST OF NOTATION

Special Symbols

(@)n=a(a+1)(a+2):-+(a+n—1), v =Euler’s constant
n=1,23, .- 7,.» =nth positive root of J,(z) =0
(a)o=1 k=modulus of the elliptic integrals,
e» = Neumann’s number, ¢, =1, €, =2, k= (1—k*)2
n=1,2,3, -

List of Functions*

am(z, k) Jacobian amplitude function of argument z and modulus & (see 2.1)
B, Bernoulli numbers .
(see 1.37)

B, (z) Bernoulli polynomials

C(z) = (2r)—12 f =12 cos t dt Fresnel’s integral
0

Ci(z) = — / t7'costdt  cosine integral

T

* The definitions are the same as in A. Erdélyi et al., “Higher Transcendental Functions,”
3 vols., McGraw-Hill, New York, 1953.
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x List of Notation

en(z, k) Jacobian elliptic function cosine amplitude of modulus & and argu-
ment 2z

Ca(2) Gegenbauer polynomials
dn(z, k) Jacobian elliptic function delta amplitude of argument z and modulus &
D,(2) parabolic cylinder function

E(k) complete elliptic integral of the second kind of modulus %
E, Euler numbers

Eu(x)  Bulerpolynomials ¢ 137)

Erf(z) =21r"”2f exp(—1?) dit=1—Erfc(z)

0
error integrals

Erfe(z) =27r_1/2f exp(—t) di=1—Erf(z)

x

E,(2) Weber’s function of order »
oFi(a, b; ¢; 2) hypergeometric function

T'(z2) Gamma function

H,W.®(z) Hankel functions of order »
H,(2) Struve’s function of order »

I,(2) modified Bessel function of order »
J.(2) Bessel function of order »

J,(2) Anger’s function of order »

K (k)

complete elliptic integral of the first kind of modulus &
K.(2) modified Hankel funetion of order »

¥ (2) Euler’s psi function

P,(z) Legendre’s polynomials

Pi(z) associated Legendre functions of the first kind of argument x with

—1<z<land z>1, respectively

associated Legendre function of the sccond kind of argument 2 with
—1<z<land z>1, respectively

Q5 (z)

S(z) = (2mr)7'2 / t7'%sintdt  Fresnel’s integral
0

Si(z) = f t~12sin t dt sine integral
0

sn(z, k) Jacobian clliptic function sine amplitude of argument z and modulus

Su.v(2) Lommel’s function



List of Notation «xi

T.(x) =cos(n arcos x) Chebyshev’s polynomials of the first kind

U.(z) = (1—2a?) "2 sin[ (n+1) arcos x] Chebyshev’s polynomials of the second
kind

3i(x) clliptic theta functions (=0, 1, 2, 3 (see 2.26-2.29)

Y.(2) Neumann function of order »

zn(z, k) Jacobi zeta function of argument z and modulus £ (see 2.25)

t(z,a)= 2 (nt+a)—= Hurwitz zcta function (sec 2.51, 2.52)
1



INTRODUCTION

1. The Fourier Series

Let f(x) be a function defined and bounded in the range a <z <b satisfying the
conditions

(a) f(z) has only a finite number of maxima and minima in (a, b), and

(b) f(x) has only a finite number of (finite) discontinuities in (a, b) and outside
this range f(z) is defined by the relation f[z+ (b—a) ]J=f(z), i.e., f(z) is a periodic
function of period b—a. If two sets of coefficients a, and b, (the Fourier coefficients)
are defined by

2 0 2mna
n= T — ) =0,1,2, ... 1
a b—a,/; f(2) cos(b_a> dz n=0 (1)

b,.= /f(x) s1n<2 )d:v, b.=1,2,3, ... (2)

+ ;i[a,. cos (i_ )+bn sin (in_rz)] (3)

1

then the series

[N




2 Introduction

is called the Fourier series of f(z). It converges at a point z, (a <zo<b) to the sum

L f(@o+0)+f(2—0)];  f(z=£0) = ljil(”lf(xo:i:h)
If b=l and a= —I, then
f(z) =3a+ ? {a. cos[nw(x/1) J4b, sin[nr (z/1) ]} (period 21) (4)
with

l
a4 = (1/1) f () cos[n (/)] de (5)

l
ba= (1/1) / f(z) sin[nr(z/1) ] dz (6)

If f(z) is an even function, then all b,=0 and

f(z) =3%a0t+ éan cos[nw(z/1)];  an=(2/1) flf(x) cos[nw(z/l) Jdx (7)

0

If f(z) is odd, then all a,=0 and

f(z)= ? busin[nw(z/1)];  b,=(2/1) / l f(z) sin[nwr(z/l)] dx (8)

0
The period in (7) and (8) is 2I.
Also in exponential form

f(z) = _E C» exp[i2rnz/(b—a)];  period b—a (9)
b
Cn= (b—a)‘lf f(z) exp[ —i27nz/(b—a) ] dx (10)
Again, if a= —l and b=1 (period 2l), then

flx)= f;cn explinr(z/1) ] (11)

l
=) [ f(2) exp[—inm(z/)] da (12)

—1

The case of an even or odd function () leads to formulas (7) and (8), respectively.



3. Fourier-Bessel Series 3
2. The Fourier Integral

The limiting case I—c in (11) and (12) leads to the representation of a function
f(z) by a Fourier integral

j@=/2m [~ ay [ 1) eslive—0a (13)

This is equivalent to the pair of inversion formulas (exponential Fourier transform)
9e(y) = f f(z)e=v dzx
e (14)
i@=0/2m [ gy

—o

Again, if f(z) is an even or an odd function, respectively, it follows from (14) that

)= [ (=) cos(ay) da; 1@ =(@/m) [ guy) cos(a) dy  (15)
0 0

0= [ 1@ siny) di @ =@/ [ o snEd (9)
0

Here g.(y) and g.(y) denote the Fourier cosine and sine transform, respectively.

3. Fourier—Bessel Series

The Fourier-Bessel series represent a generalization of the trigonometric Fourier
series. They are series involving Bessel functions as terms. Let J,(z) be the Bessel
function of the order » and the argument z and let »> —1. Then the zeros of J,(z)
are real and of equal absolute value. If 7, , denotes the nth positive root of J,(z) =0,

then a function f(z) defined in (0, a) and vanishing at =a admits under certain
conditions the expansion

f@) = % audiLrn(z/a)]; (17)
with

a,=2[aJ41(7,.0) 12 /a zf () [rv.n(z/a) ] dz (18)

0



4 Introduction

For the special values v=—% and v=3 one has
J(z) = (3mz)* cosz with the zeros 7,,,= (n—3%)m, (19)

n=1,2,3, ...
Ji(x) = (mz) Fsinz with the zeros 7,,, =nm, (20)

The substitution f(2) = (372)2F () ; an= (rv.n/a)d in (17) and (18) leads to

F@= . Arcosln=Pr(a/0)]  with 4.=(/a) | " Fl@) cos[(n—Y(z/a)]do
(21)

Fz)= iA,.sin[nw(x/a)] with An=(2/a) fo " F(2) sin[nr(z/0)]dz (22)

The periods of F(z) as represented in (21) and (22) are 4a and 2a, respectively.
Obviously the series (21) and (22) are of the form (7) and (8).

4. The Bessel Transform

The expression of an arbitrary function F(x) by means of a double integral
similar to (13) but involving Bessel functions is given by Hankel’s formula

F@)= [ [ Fad,yudu (23)
0 0
Equivalent to (23) is the pair of inversion formulas
ha(y) = fo @Y @) d; @)= [ " @) ) (a) dy (24)
(1}

WhiCh'fOI‘ the special cases »=1 lead to formulas (15) and (16). The property
hy(y) is called the Hankel transform of the order » of a function f(z). Also used is

H,(y) = f F(z)J.(ay) dv;  F(z) =2 fway(y)Jy(xy) dy  (25)
0

5. Generation of Fourier Series by Means of Integral Transforms

The int.:egr’als ff“‘ 9¢(y) and g.(y) in (15) and (16) taken over a finite interval
(a, b) of integration are called the finite cosine and sine Fourier transforms of f(x)

ge(y) = fo f(z) cos(zy) dz;  go(y) = faf(x) sin(zy) dy
0



5. Generation of Fourier Series 5

If f(z) is regarded as an even function of z, then by (7)

| f(z) |=(1/a) éengc[n(r/a)] cos[nw(z/a)], —a<z<a (26)
Similarly when f(z) is regarded as an odd function

sgnz () = (2/a) = g.n(n/a) Jsinlnn(a/0)],  —a<a<a  (27)

These formulas represent the Fourier expansion in —a<z<a of a function f(z)
when its finite Fourier transforms are known. Similar considerations can be applied
to Poisson’s summation formula

i =G (y+nd) = (1/d) i ge(zr";+z)exp[—i(21rm+x)y/d] (28)

N==—c m=—co

with

0o)= [ Guyentdu (29)
Here G'(u) is a given function and g,(¢) represents its exponential Fourier transform
(14); z, y, and d are real parameters.
If y=0, then

o0

> emGnd)=(1/d) > go[(2rm+z)/d] (30)

Nm=—c0 m=—c

If z=0, then

X Gy+nd)=(1/d) X ge[2r(m/d)]exp[ —i2rm(y/d) ] (31)
The left side of (31) represents a periodic function in y of period d while the right
side represents its Fourier expansion in exponential form (9). Suppose now that
the function G(u) occurring in the left side summation of (28) is such that its
exponential Fourier transform g.(¢) in (29) vanishes for a<t<b [i.e., ge(t) is
different from zero in a finite interval only]. The sum at the right side of (28)
reduces to a finite sum and

> G (y+nd) = (1/d) 5 gl (2wm-+2)/d] exp[—i(y/d) 2em+2)]  (32)

n=—o m=mji

The limits m; and m; are then defined by

m> (ad—zx) /2n; me= (bd—z) /2m (33)
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If b, a, d, and z are such that the equal sign holds then one half of the corresponding
value in the right side summation has to be taken.

The expressions (17) and (18) for the Fourier-Bessel expansion can also be
written as

z7Hf (z) =2 i T:i[hi‘(‘rvm)/J§+1(7'v.n) Wo(rm2), 0<z<1 (34)
1
with
1
@) = [ 1) @A) de (35)
0

This is the finite Hankel transform of f(z).

Finally the Jacobi-Anger relations from the theory of the Bessel functions are
used:

oo

cos(z cosz) = 3 e,(—1)"J2a(z) cos(2nz) (36)
0
sin(z cosz) =2 f} (—1)"J2a4a(2) cos[(2n+1)2] (37)
0

Upon multiplyi’ng these relations by a suitable function of z and integrating over
z from zero to infinity the results are

)

2 (—1)"e,H,, (1) cos(2nz) =g.(cosz) (38)

0

2 ? (=1)"Hynyy (1) cos[(2n+1)2]=gs(cosz) (39)

where ¢e, g5, and H, are defined in (15), (16), and (25).



1.1

1.2

1.3

1.4

1.5

1.6

FOURIER SERIES WITH ELEMENTARY COEFFICIENTS
REPRESENTING ELEMENTARY FUNCTIONS

!
sin?lz=272(20) 1 3" (— 1), cos(2nz)/[(I+n) 1(I—n) 1]
0
!
sin?tla=2"2(2141) I 3 (= 1)" sin[ (2n+1) 2 ]/[(I+1+n) 1(I—n) 1]
1
cos?e=272(21) 1 3" [e, cos(2na) 1/[(I4n) !(I—n) 1]
0

!
cos™ = 2"21(214-1) I ) cos[ (2n+1) 2+ /[ (I+ 14+n) 1(1—n) 1]
0

y . _ sin(3N2) . 1 [sin[%(2N+1)z]
}P cos(na) = sin(x) cos[(N+1)3z]= 5 {W —l}

N
2. sin(na) = [sin(3Nx)/sin(42) I sin[3 (N +1)z]
=3{cos(3x) — cos[$(2N+1)2]}/sin(3z)

7



1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

Elementary Coefficients Representing Elementary Functions

N
>~ cos[(2n+1)z]= {sin[(N+1)x]/sinx} cos[(N+1)z]
0

% sin[ (2n+1) z]= {sin[(N+1)z]/sinz} sin[(N+1)z]
0

N-1

[sin(Nz)/sinz = . {sin[(2n+1)z]/sinz}

0
=N+2(N—1) cos(2x)+2(N—2) cos(4x)+

N-1

2 sin(a+ny) =sin[z+3(N—1)y[sin(3Ny)/sin(3y) ]
0

N-1

on cos(z-+ny) = cos[z+3(N—1)y[sin(§Ny)/sin(3y) ]
i‘:: nt sin(nr) =dr—3z, 0<a<2r

% (=1 sin(ng) = —1o, —r<z<m

i:: n1 cos(nz) = —log | 2 sin(3x) |

2. (= 1) cos(na) = —log | 2 cos(3z) |
1

2, (2n+1)"sin[ (2n+ DNz]=1irsgnz, —nr<z<mw
0

-+++2cos[2(N—1)z]

2 (=D"(2n+1)"'sin[(2n+1)2]=13 log | [cos(32)+sin(3z)]/[cos(3x) —sin(3z)]|
0

2 (2nt+1)"t cos[(2n4-1)2]=1 log | cot(32) |
0



1.19

1.20

1.21

1.22

1.23

1.24

1.25

1.26

1.27

1.28

Elementary Coefficients Representing Elementary Functions 9

hnd 0<z<ir
—_— n -1 = 4
%( 1)7(2n+1)"! cos[(2n+1)z] {—%"r, Ir<o<in

3 (np) " sin(nz) = (4r—}z) cos(pz) —cos(pe) i 7~ sin(nz)

P
+sin(pz) {log[2 sin(3z) T+ 3 ntcos(nz)}, p=1,2,3,...; 0<z<2m
1

i (n+p)~! cos(nz)=—cos(pz) {log[2 sin(3z) ]+ i n~! cos(nz) }

P
+sin(pz) [3r—3z— >, nlsin(nr)], p=1,2,8,...; 0<z<2rm
1

3 (np) (= 1) sin(nz)= (— 1) cos(pz) (X (—1)n~" sin(nz)+3e]

+(—1)?sin(pz) {log[2cos(3z) J+ i(— 1)"ntecos(nz)}, p=1,2,8,...; —wr<z<w

5: (n+p)~H(=1)" cos(nz) = (— 1)"** cos(pz){log[2 cos(3z) H- Zp) (= 1) cos(nz)}

P
— (—=1)?sin(pz) 3r+ > (—1)"ntsin(nx)], »=1,2,8,...; —w<a<lmw
1

$A7™ B+ C+4A4 3 n2 cos(nz) — (4mA~+2B) > n! sin(nz)
1 1
= Aa2™4-Bx+-C, 0<z<2m, A, B,C=constants

oo

> n?sin(nz)=— / log[2 sin(3t)]dt, 0<z<2m
1 0

E(—l)"n‘zsin(n:c)=—/ log[2 cos(3t) ] dt, —w<z<mw
1 0

2 n? cos(nz) = (1/12) (32— 6mwa+2m2), 0<z<2r
1

i (=1)"n 2 cos(nz) = (1/12) (3x2—n?), —w<z<mw
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1.29

1.30

1.31

1.32

1.33

1.34

1.35

1.36

1.37

1 [ )
Y, (2n+1)2sin(nz)=— p f log | tan(3t) | dt, —w<a<w
0 0

3 (@nh1)=2 cos[(2nt 1)z l=b(r—2r | 2 |), —m<z<m
0

2 (=D)*(2n+1)2sin[(2n+1)z]=1ma, —ir<a<}
0

1 1 , 1
2 (=D™(2n+1)"2 cos[ (2n+1) z]= — 5 / log[tan(3t) Jdt, —inr<x<i
0 0

2(=1)"1(20) 1Y (2mn)~2 cos(2mnz) = Bu(z), 0<zx<1, 1=1,2,3, ...
1

2(=1)M 2+ 1) 1Y (2mm) 2t sin(2rnz) = Ba (2)
1
0<z<1, 1=1,2,3,...; 0<z<1, 1=0

4(=1)420)! i C(@n+1) w21 sin[(2n+ 1) 2 ]= En(x)
0

0<z<1, 1=1,2,3, ...; o<az<1, 1=0
4( 1) l+1(2H_ 1) !Z [(2n-|-1)1r:|_2l"2 cos[ (2n—+ 1 7a]= Eyyq ()
0
0<z<1, 1=0,1 9

The Bi(x) and Ey(x) are the Bernoulli and the Euler polynomials, respectively

Bu(x) = z()

B0y - - B2r+1=0, 7’=],2 3

5 Bpp=0, 1r=0,1,2, ...
(Bernoulli’s and Euler’s numbers)
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1.38 i {cos[(n+1)2]/n(n+1) } = (1—cosz) log[2 sin(3z) ]

— (37m—32) sinatcosy, 0<x<27r

1.39 i {sin[(n+1)z]/n(n+1)} = (37— 3z) (cosx—1)

—sinz log[2 sin(3x) H-sinz, 0<z<2r

1.40 f: {(—=1)" cos[(n+1)2]/n(n+1) }=— (14 cosz) log[2 cos(3z)]

43z sinet-cosy, —w<a<mw

1.41 i {(—=1D)"sin[(n+1)2]/n(n+1) } = —32(1+ cosz)

—sinz log[2 cos(4z) J+sinz, —wr<a<w

1.42 i [(— 1) sin(nz)/n(n+1) J= —sinz log[2 sin(3z) H (37r—312) (1—cosz), 0<z<2r

1.43 i [eos(na)/n(n+1) J=1— (1—cosz) log[2 sin(3z) J— (37— 1z) sinz, 0<a<2rm

144 37 [(—1)"sin(nz)/n(n+1) J= —Lx(1+cosr)+sinx log[2 cos(3z) ], —wr<z<w
1

1.45 3 [(—1)" cos(na)/n(n+1) ]=1— (14 cosx) log[2 cos(3z) ]— 3z sing, —r<z<w
1

1.46

(p—q) 2 [cos(nx)/ (n+p) (n+q) ]= cos(px) i 7! cos(nz)~+sin(pa) >, nt sin(ne)
—cos(qx) i n~! cos(nx) —sin(gx) Zq: n~! sin(nx) — 2 sin[32(p+q) ]
-sin[3z(p—q) Jlog[2 sin(3x) ]— (7—=z) cos[3z(p—+q) Isin[2x(p—q)]

0
0<z<2m, p,¢=0,1,2,...; if p,¢=0, > ()=0
1
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147 (p—9) Z [sin(nz)/ (n+p) (n+g) 1= cos(pz) ‘Z, n~! sin(nz) —sin(pz) Z ~1 cos(nz)
+sm(q:c) Z n~! cos(nx) — cos(gz) Z 7~ sin(nz) — 2 cos[3z(p+q) ]
-sin[3z(p— ¢) ] log(2 sin3z) + (r—z) sin[32(p+q) I sin[Zz(p—q) ]

0
0<z<L2m, p,¢=0,1,2; if p,¢=0, > ()=0
1

148 (p—¢) i [(—1)" cos(nz)/ (nt+p) (ntq) I=(—1)? i (=11 cos[z(p—n) ]
— (= l)"i (—1)n* cos[z(g—n) JH+3z[ (— 1) sin(pz) — (—1) ¢ sin(gz) ]
+1og(2 cosdz) [(—1)? cos(pz) — (— 1) cos(gz) ]

0
—r<z<m, p,¢=0,1,2,...; if p,g=0, > ()=0
1

149 (p—q) i [(—=1)"sin(nz)/ (nt+p) (ntq) J=— (—1)? i (=D sinfz(p—n) ]
+(=1)73 (— 1)~ sinfz(g—n) H-3e[ (= 1)7 cos(pz)— (— 1) cos(gz) ]
—log(2 cosiz) [(—1)? sin(pz) — (—1)2sin(qx) ]

0
"WS-’CS‘F, p, q=0: 1’2; if D, q=0; E( )=0
1

1.50 (T p)z (Z’:I)n {sin(m;)

1 (n—l—p) (n+q) (n+7-) cos(nx)} y D, q,T= 0, 1, 2, cee

—r = 1 1 49
e p) (ntq) (n ) [(nt+p) (ntq) I'—[(ntq) (nt+7) T and 1.46-1

( :E)_ lcosh[(vrb/al) (I—z)]
C\"UYT @ sinh(eb/a)

]
151 3 0<z< 2l
0

b‘-{- n’a?

Ls2 > (- 1)" cos( x)=1r_cosh[(1rb/al):v] i<a<l

o b 1/ ab sinh(wb/a) ’
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© g z w sinh[(wb/al) (I—z) ]
3 - )= — 0 < 2l
1.53 21: bt n2a? s (mr l) 2a? sinh(mb/a) » O<F
© (__ 1)"n ) ( x) T sinh[(wb/al)xj
il P e~ e/t B <!
1.54‘ Zl: b2+n2a2 sin | l 2a2 sinh (Tb/a) ’ l<x

1.55 i 6%+ (n+3)%aT cos [(n-{— 1) . f]_ o sinh[ (wb/al) (I—z) ]
0

z 0<z<2l

"~ 2ab cosh(wb/a) b=

i (n+3%) . [ 1 Z::I_ I_cosh[(wb/al) (I—2)]
1.56 ?b—_z—i— () sin (n+ 2)1r = oz cos(xb/a) , 0<z<2l

1.57 i -Lﬂn—— sin [(n

+

—I<xz<Ll

1) .:c_]_ L sinh[ (7b/al) 2]
bt (nt3)%e? 2/ 1"

2ab cosh(wb/a) ’

o b+ (nt3)%? "~ 2¢® cosh(wb/a)

1ss 3 et Dr(ntd) o [(n+ -12-) - ”—;]— 7 coshf(mb/ale]

o B S
1.61 i nza:l— T sin (mr El)= i; Sin[(;ir:/(:?/il)_ 2l , 0<z<2]
162 i;::: sin (n1r afl)= —~ %W—{Z)ﬁ , —l<a<l

i e 1\ =] Lsin[(vrb/al) (I—z)]
1.63 % [(n4)%a* =t cos [(n—i— 2)1r l]— 2ab cos(mb/a) ; 0s2<2l

= (nd) [( })
1.64 ‘?——(n+%)2a2—b281n n+2 T

]_ m cos[ (wb/al) (I—z)]
o2

, 0<z<2l
cos(mwb/a) °

> (= ( 1 g]_isin[(wb/al)xl _
165 ?(n—i—%)?a‘l—b?sm[ i 2)"1 T costrtfa) L
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® (—D*(n+3) [( 1) 9_3]_
1.66 2:'—_—_(12+%)2a2—b2 cos | [ n+ 5) ™71 5m

1.67

1.68

1.69

oM&

«_exp[(wb/al)z]
2a2 cosh(mb/a)

, —I<z<l

1.70

m exp[— (wb/al)z]
2a®>  cosh(wb/a)

2 € b x . T
Zo: T  cos | nm 5 +n sin n 5
® n b x :
%, bz-:nQaﬂ [(—1 cos (mr %)— n sin (mr 1;)]

, —Il<z<l

1.71

1.72

1.73

T exp[ (wb/al) (I—z) ] ]
22 cosh(mb/a) ) O<a<d

1.74

_ 7 exp[—(rb/al) (1=1)]
cosh(mb/a) ’

2a?

- cos[(mb/al)2]
cos(wb/a)

ien(_l)n[é (wrf)— in(n-n-:f)]_
et el acos n ) ns ) 1=
i Lo (e s (o) -
% i [a cos | nm ; +n sin | nr )=

e o[ (o4 373 2) o [ (v )3}

™
a?

13

a

, —Il<a<l

m expl(nb/al)a]
& smhr(5/a) ] , <a<l
T exp[— (wb/al).lf:]

a® sinh[w(b/a)] ’

—i<a<l

(period 41)

sasti el e Dl )

(period 41)

exp[(mb/al) (I—x) ]
sinh(wb/a) ’

0<a<2l

exp[— (wb/al) (I—x) ]
sinh(7b/a) ’

t

Eotoryer oot 3) e (o o (o)1

% [0*+ (n+3)%?]? {g cos [(n-l— %) T %il—( + é) sin [<n+ %) ™ ll]}

0<z<2l

o<a<?2!



1.75

1.76

1.77

1.79

1.80

1.81

1.82

1.83

1.84

1.85

1.86

Elementary Coefficients Representing Elementary Functions 15

>~ 2" sin(nx) =z sinz/ (1— 2z cosa+22), |z |<1
1

> 2" cos(nz) = (1—z cosx)/ (1—2z cosr+22), |z|<1
0

>~ n'2" sin(nz) = arctan[z sinz/(1—z cosz) ], |z|<1
1

-]

21: n~1 2" cos(nx) = — 3 log(1— 2z cosx+22), |[z|<1

};f, 2 sin[ (2n+1) 2]=z sinz (14+22) /[ (14 22)2— 422 cosZ], |z |<1

%‘, 2241 cos[(2n+1)2]=2 cosz(1—22) /[ (1+422)2— 422 cos], |z[<1

2:: (—1)m2 M sin[ (2n41) 2 )=z sinx(1—2%) /[ (1422 2*— 42% sin®x], |z[<1
5'03 (—1)"22%1 cos[ (2n+1)a =z cosz(1-+2)/[(1+2)?— 42 sin’x], |z]<1
% (2n4-1)"122"H sin[ (2n+ 1) 2]=1% arctan[2z sinz/(1—22) ], |z]|<1

>, (2n+1)7122H cos[(2n+1) 2]=1 log[ (1422 cosr+22)/ (1—2z cosa+2°) ], |2|<1
0

2 (=D (2n+ D)2 sin[(2n+1) 2 ]=1 log[ (1422 sina+2%)/ (1—2z sinz+2?) ],
0

|z]<1

2 (= 1D)™(2n41)71220H cos[(2n+1)a]=1 arctan[2z cosz/(1—2%) ], |2]<1
0
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1.87

1.88

1.89

1.90

1.91

1.92

1.93

1.94

1.95

1.96

1.97

1.98

1.99

i ¢t sin(nz) =1[sinz/ (cosht— cosz) ]

2. (—1)"e™t gin(nz) = — 3[sinz/ (cosht+cosz) ]
1

-]

Zo‘, €ne™ cos(nz) = sinht/ (coshti— cosz)

% (—1)"ene™* cos(nx) =sinht/ (cosht-+ cosz)

Z:? exp[— (2n+1)¢] sin[ (2n+1) z]=sinz cosht/[cosh(2t) — cos(2z) ]

% (=1)" exp[— (2n+1)¢] sin[(2n+1) 2 ]=sinz sinht/[cosh(2t)+ cos(2z) ]
% exp— (2n+1)] cos[(2n-+1)2]= cosz sinht/[cosh (2t) — cos(22)

% (=1)" exp[— (2n+ 1)t] cos[(2n+1) z]= cosz cosht/[cosh(2t)+ cos(2x) ]

—lo—nt o3 3
? noe ™" sin(nz) = aretan(sinz/ (e'— cosz) ]

L)

—1 o—n
? e cos(nz) =3t—1 log[2(coshi— cosz) ]

? (=1)rmtgme sin(nz) = — arctan[sinz/ e+ cosz) ]
? (=1D)rrtgmt cos(nz) =3t—1 log[2(cosht+ cosz) ]

% (2n+1)~ exp[— (2n41) t]sin[(2n+1)z]=1% arctan(sinz/sinht)
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1.100 i (2n+1)"! exp[— (2n+1)t] cos[ (2n+1) xz]=1% log[ (cosht+ cosz)/ (cosht— cosz) ]
0

1.101 i (—1)»(2n+1)"1 exp[— (2n+1)t] sin[(2n+1) 2]
0

=1 log[ (cosht+sinz)/ (cosht—sinz) ]

1.102 :\j (= 1)"(2n41)-1 exp[— (2n+1)£] cos (2n+1)z]=} arotan(cosz/sinht)
1.103 2:5 (27/n1) sin(na) = exp(z cosz) sin(z sinz)

1.104 i;: (2/n1) cos(nz) = exp(z cosz) cos(z sing)

1.105 }?, [+ (2n-+1) 1] sin[ (2n--1) 2 ]=sin(z sinz) cosh(z cosz)

1.106 i [/ (2n) 1] sin(2nz) = sin(z sinz) sinh(z cosz)

1.107 }Zj [/ (2n+1) 1] cos[(2n-+1)]= cos(z sinz) sinh(z cosz)

1.108 % L2/ (2n) 1] cos(2nz) = cos(z sina) cosh( cosz)

1109 505 (= 1)"[2/ (214 1) 1] sin[(2n+ 1)z = sinh(z sinz) cosh(z cosz)

1.110 é (—1)"(2%%/ (2n) 1] sin(2n) = — sinh (z sinz) sin(z cosz)

1.111 i (= 1)"[22"tY/ (2n4-1) 1] cos[(2n+1) 2]= cosh(z sinz) sin(z cosz)
0
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1.112 i (—1)"[2*"/ (2n) 'Jcos(2nz) = cosh(z sinz) cos(z cosz)
0

1.113 i 771 sin(nz) sin(ny) e =% log{[coshi— cos(z+y) ]/[cosht— cos(z—y) ]}
1

L.114 3 nlsin(nz) cos(ny)e™t
1

=1 arctan[(2e’ sinx cosy— 2 sinz cosx)/ (e2— 2¢*(cosx cosy+ cos2zx) ]

1.115 3" n cos(nz) cos(ny)e™t=21t—1 log{4[cosht— cos(z+y) JLcosht— cos(z—y) 1}
1

Appendix: Some Results Involving Generalized Functions

The unit step function U () and the “delta’ function &(¢) are defined by
U(t) =0, t<0
U(t) =1, t>0
s()=U"(t)

Some formerly listed results and some of their gencralizations can be expressed in
terms of the unit step function U(t). Also, some formal nonconvergent Fourier
series can be interpreted as an infinite number of rows of delta functions. With the
definition of two sets of four functions, gm(z), hn(z), m=1, 2, 3, 4:

n(x)= > U(z—2na+y) — i U(zx—2na—vy)
0 0

go(z)= > U(z—2na+y)+ X U(z—2na—y)
0 0

@ o

gs(z) = X (=1)"U(z—2na+y)— > (—D"U(xz—2na—y)

0 0

gs(z) = 2 (=1)"U(x—2na+y)+ i (—1)*U(x—2na—y)
0 0
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hi(z) = i §(z—2na+y) — > s(a—2na—y)
0 0

he(x) = i §(z—2na+y)+ > 6(x—2na—y)
0 0

hs(z) = > (—1)"(x—2na+y)— > (—1)*6(z—2na—y)
0 0

hi(x) = i (=) (z—2na+y)+ i (=1)ns(xz—2na—y)
0 0

[The gm(x) and hn(zx) are regarded as functions of >0 (this is no loss of generality
since the terms in the Fourier series involved are either even or odd functions of z)
with parameter y (—a<y<a).] One has the following formulas.

1.116 }jjn—l sin[mr(;r/a):]=—%w[1+(x/a)—2§: U(e—2n0) ]

1.117 i (=1)n! sin[nw(.v/a)]=—%w{(.r/a)—2§ Ula— (2n+1)a]}

1.118 };“, (2n+ 1)1 sin[(2n+1) (7/2a) = — 3n[3— Z:‘, (—1)*U(z—2na) ]

1.119 %} (—1)"(2n+1)7" cos[(2n+1) (wx/2a) J=3w{3— % (= 1)"Ulz— (2n+1)a]}
1.120 % -t sin[nr(y/a) ] cos[nr (x/a) J=3w[g(x) — (y/a) ]

1.121 2':‘, n~! cos[nmr(y/a) ] sin[nw(a/a) J=3n[g(2) — 1— (2/a) ]

1.122 3 (2n+1)~'sin[(2n+1) (wy/2a) ] cos[ (2n+1) (wx/2a) 1= 2mgs(x)
0

1.123 3 (2n+ 1) cos[(2n+1) (wy/2a) I sin[ (2n+1) (w2/2a) ]=3x[gs(2) — 1]
0
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1124 33 (— 1)~ sinlr(/a) ] coslm (/@) 1= 4nlor(a—a)— (/) ]

1.125 i (— 1) cos[nr(y/a) ] sin[nw(x/a) J=4m[g:(z—a)— (z/a) ]
1

1.126 i (= 1)"(2n+1)"1 sin[(2n+1) (7y/2a) I sin[ (2n+1) (7z/2a) ]= i7gs(z—a)
0

1.127 i (—1D)™(2n41)" cos[(2n+1) (7y/2a) ] cos[(2n+1) (7z/2a) J=i7[1—gi(z—a) ]
0

The formulas 1.116-1.119 are equivalent to 1.12, 1.13, 1.16, and 1.19. It should
be pointed out that the periodicity in z (equal to 2a) is preserved for both sides of
the formulas before. Nonconvergent Fourier series representing an infinite number

of rows of delta functions can be obtained by formally differentiating term by term
the results 1.116-1.127.

1128 5;*, e coslm(2/a) 1= 2a% 5(z—2na)

1129 % (= 1), cosCnm(z/a) = 2a :\; 8[z— (2n+1)a]

1.130 % cosC (2n-+1) (nz/20) ]= a:‘:_: (—1)"8(z— 2na)

1.131 % (=1)"sin[(2n+1) (rz/2a) ]= a;f_: (—1)"8[z— (2n+1)a]
1.132 é sin[nm(y/a) ] sin{nr (2/a) = — Lahy ()

1.133 i cos[nm(y/a) ] cos[nm(z/a) 1=1alhy(z) — a=']

1134 3 sin[(2n+1) (7y/2a) ] sinf (2n+1) (z/2a) 1= — Sahs(z)
0
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1.135 }?, cos[(2n+1) (wy/2a) ] cos[ (2n-+1) (m2/2a) T=dahe(z)

1.136 5;: (—1)" sin[nm(y/a) ] sin[nm(2/a) = — bk (z—a)

1.187 i (—1)" cos[nm (/) ] cosCrr(a/a) 1= alke(v—a) — 1]

1.138 >§ (—1)" sin[(2n-+1) (v/2a) ] cos[ (2n-+1) (r2/20) 1= 3ahy(c—a)

1.139 f (—1)" cos[(2n+1) (wy/2a) ] cos[ (2n+1) (wz/2a) ]= —Lahy(z—a)






FOURIER SERIES WITH ELEMENTARY COEFFICIENTS
REPRESENTING HIGHER FUNCTIONS

Formulas 2.1-2.25 involve the Jacobian elliptic functions am(z, k), sn(z, k),
en(z, k), dn(z, k), and zn(z, k). The parameter k is omitted in these formulas,
i.e., snz=sn(z, k), etc.

In 2.26-2.378,(z) =84(z, q) are the Jacobian theta functions defined in 2.26-2.29.
Finally K (k) and E (k) are the complete elliptic integrals of the first and second
kind of the modulus , respectively; k’2=1—k2. Also

g=exp(ir7), r=1(K'/K); Im7r>0; g=exp[—n(K'/K)]

Furthermore
Qo= ﬁ (I—g¢*),  logQo=— i [n7lg*/(1—¢™) ],
¢/ (1—¢*) = }{sinh[nx (K'/K) }};
¢"/(1+4¢*) = }{cosh[nn(K'/K) 1}, qv/(1—g¥*+) = }{sinh[(n+3)n(K'/K) ]} ;
Lg"*/(1+¢**) ]=4%{cosh[ (n+3) (xK'/K) ]}

Restrictions In formulas 2.1-2.4, 2.7, 2.9, 2.11, 2.14, 2.15, 2.17, 2.18, 2.20, 2.21,
2.23, 2.25, 2.30, 2.31

| Imz | < 47 Imr

23
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In 2.5, 2.6, 2.8, 2.10, 2.12, 2.13, 2.16, 2.22, 2.24, 2.32, 2.33

| Imz | <7 Im~
In 2.19

| Imz | <27 Im7

2.1 E [n'¢"/ (14 ¢**) I 8in(2nz) =% am[2K (z/7) ]— 2z
2.2 é [q™Y/ (1— ) T sin[ (2n— 1)2]= (kK/2r) sn(2Kz/r)
2.3 ij, Ce™ ¥ (14> 1) ] cos[ (2n—1) 2]= (kK/2m) cn(2Kz/m)

24 2[q7/ (g™ Jcos(2n) = (K/2r) dn(2Kz/m)—}

S [g2n1/ (] onet) 7 o K :
25 Z e 0= dm) Jonl(n1)s= fioms — (4 ina)
26 2 [(=1)"¢"Y (14+¢1) ] cos[ (2n—1) 2]= -ZIE'TI;(/)

1 T cn z/m
2.7 21: [(—1)”9”/(1+q2")] cos(2nz) = —k’K\ 1

2r dn(2Kz/T) 4

2.8 E [(=1)"¢"/ (14 ¢") T sin(2nz) = %%? }Itam
0 z/m

29 ZE( DY (14 ¢ Jsin (2n—1)2]= — "f’?’?@?;/?
T dn z/m

210 3 [/ (14¢") Isin(ens) = — S 2Ke/m)

1
—cot,
2r sn(2Kz/7) = 4 oo

2.11 21: [(=D""Y (1~ 1) ] cos[ (2n—1)2]=— ’%Z%

— (4 cosz)™!



2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

2.22

2.23

2.24
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K dn(2Kz/)

i [¢~/ (1+¢") Isin[(2n—1)2]=— 2mr sn(2Kz/m)

—~+ (4 sinz)!

3 (= 1)"@/ (1— @) T cos[ (20— 1)z]=— %g—ﬁj—’g (4 cosz)t

K cn(2Kz/7) dn(2Kz/7)

i Lg”/ (1+¢") I sin(2n2) = — 2r sn(2Kz/r)

1
— cot.
-i-4 2

i {g/[1+ (—1)"g"]} sin(2nz) = K sn(2Kz/7) dn(2Kz/m) _ 1

ta
2 on(2Kz/7) 4 o

i [ (1—g2) ] sin[ (2n—1) 2] = K sn(Kz/7) en(Kz/x)

4 dn(Kz/7)
B -y 1
> (=170 0ok (=177} sin(ens) = — - Sn(’;K“/(f)Kdﬁ D sty
X g/ (1= ) Jsin (2n—1)2]= e TR ) :

47 sn(Kz/7) en(Kz/x) " 4sine

2- [n7g"/ (1+4¢") ] cos(2nz) =1 log sn(2Kz/m) — % log(2¢t% 1 sinz)
1

L

2 {n7'¢"/[1+ (— )]} cos(2nz) =1 log en(2Kz/m) — 1 log[2¢t (k'/k)? cosz]

1

> [(2n— 1)7'¢=Y/ (1— ¢#*2) ] cos[ (4n—2) 2]= — § logk’+] log dn(2Kz/)

L

2- [ng/ (1— @) J cos(2nz) = (K% 2n?) dn?(2Kz/7)— (KE/2n?)

1

N o/ (y— on _ K? ., K(E=E)
21 [ng*"/ (1—¢*") ] cos(2nz) = o s 3K/ + (8 sin%) 1 + — o
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2.25

2.26

2.27

2.28

2.29

2.30

2.31

2.32

2.33

2.34

2.35

2.36

X [/ (1= ") sin(2na) = (K/2) anC (2K /)]

% (=1 os(2ne) =00(/r)

% enq™ c08(2n2) =34(2/x)

3 (=179 in (20 1)21= 40u(o/)

R A

Z.:‘, [n7'q"/ (1= ¢**) ] cos(2nz) =1 logQo— 2 logdo(2/)

i [n7q"(—= 1)/ (1~ ") ] cos(2nz) =1 logQo— % logds(z/m)

? {77/ (1= ¢*) ] cos(2n2) =4 log(2Q0) + 3 logg ~+3 log sinz— 1 logd (2/)

; (=D rntg?/ (1— ) ] co~(2nz) =1 log(2Qo)+ % logg+3 log cosz— 3 logd.(z/)

2= [n7'g*/ (1—¢?) I sin( 2nz,) sin(2nz,) = L lo {0——0[(21_'_32)/”]}
1

Sl (21— 22)/7]
| Imz; |4+ Imz, |<ir Imr

2 (=17 (1~ ") Tsin(2n2) sin(2nz) = ! log (0—3[(z1+z2)/w3)

1 33 (21— 2) /7]
[ Imz; [4+| Imz, | <17 It

i [n'¢*/ (1— ") ] sin(2 ) = 1 01[(z1+zz)/w])_ 1 sin(z+22)
1 sin(2na) sin(2nz) 4 log (01[(zl—z2)/1r:| 4 lo (sin(zl—z:a))
[ Imz; [+ Imz, |<w Imr



2.37

2.38

2.39

2.40

2.41

2.42

2.43

2.44

>
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—1 nn—l 2n
(_)O_Q‘ sin(2nz;) sin(2nz»)
1—qg™

| Imz; [+ Imzs |[<7 Im7

(02[(114-22)/ w])_ 1 o (cos(zr!-zz))

1
p log S (21— 2)/m]] 4 cos(z1—2z)

i {[(2n) 17/ (n D)4} 27 sin[(2n+3) a)=7"'K (siniz), O0<a<m
0

i [(2n) 1(2n+1) 1/ ()3 (n+1) 11274 sin[(2n+3) 2]

0

= (2/7)[2E(sin}x) — K(sinx)], 0<a<mw

i {[(2n) 1]/ (n )4} 274" cos[(2n+3) x]=7""K(cosda), 0<a<m

i C(2n) 1(2n+1) 1/ (n))3(n+1) 17272 cos[ (2n+3) 2]
0

sin(n+1)x+ [(n+1)/(2n+3)Isin(n+3) a+

cos(n+1)r+

>

= (2/m)[K(cosyz) —2E(coszr) ], 0<a<w

1-3-5 (n+1) (n+2) (n+3)

1-3(n+1) (n+2)
21(2n+3) (2n+5)

sin(n+5)x

3! (2n43) (2n+5) (2n+T7)

=w(2n+1) (n!)727272P, (cosx

cos(n+3)r+

n+1
2n+3

1:3-5(n+1) (n+2) (n+3)
31(2n+3) (2n+5) (2n+T7)

o<a<m; n=0,1,2, ...

(2r42n) 1(IHr+n) 1(I414+n) !
n!(r+n) 1(214242n) !

0<a<lm; 11=0,1,2,...

sin(n+7) x4 -
), 0<a<m; n=0,1,2,...

1-:3(n+1) (n+2)
21(2n+3) (2n+5)

cos(n+5)zx

cos(n+7) a4+ = (2n4-1) 127207 (n1)2Q, (cosx)

sin[ (2n+1+r+1) 2]=m2"3"2(sinz) P/ (cosz)



28 II Elementary Coefficients Representing Higher Functions

® (2r+2n) (IHr+n) 1(IH14+n) !
245 ? nl(r4n) (2H-2+2n) !

0<z<m; 7,1=0,1,2,...

cos[ (2n+I+r+1)z]=2"2"""2!(sinz) ~"Q:" (cosx)

246 3 [GHu)n(1trtim)n/n(mk2) ] sinf (2nt b ut-1)2]
0

=mZ#T(§+)/T (m+pt- 1) U(sinz) #P,(cosz), 0<z<r

247 2:4 LG+ n(1+tp)n/n ! (3+2) n] cos[ (2n+rt+pt1) 2]

=742 (§+»)/T(mp+1) Y(sing) #@(cosz), 0<a<m

2.48 3. logln/(n+1)Isin(2n+1) 2= sinwy (z/x) + 37 cosz+ (y+log2m) sinz, 0<z<w
1

249 2 n7 logn sin(nz) = logT (z/2r)+ 3 log(sindz)
1

— (1= (z/27) Jlogn—4n[1— (c/m) J(y+log2), 0<z<2m

2.50 '%“, en{b*+[n(n/a) 1) sin{a{b?+ [n(r/a) PP} cos[n(rz/a) 1= aJo[b(a?— 2)4],

—a<lz<a

2.51 cos(3mz) ? n*1 sin(2mna) 4 sin(4z) i n= cos(2mne)
1

= k?‘ 77! sin(2rna+1rz) =1@m) T (1—2)T%(z,@), Rex<1, 0<a<l

252 cos(}m2) X (21— 1) inf (20— 1)ar H-sin(bz) 5 (20— 1)~ cos[ (2n—1)er]
=, (2n—1)* ! sin[(2n— Dam+1nz]
1

=2 T (1=2) I8 (2, 3a) ~ £ (2, 3+-3a) ], Ree<l, 0<a<l
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2.53 i €n cos(nz) [b*+ (nd) 2T sin{a[b*+ (nd)*]}} = (n/d) E Jo(b{a®—[(2rm—+z)/dJ}?)
1] m]

my=TF[(ad=xz)/2m]

2

If (ad=4=z)/2m is an integer, then one half of the corresponding term in the sum is taken.






3.1

3.2

3.3

3.4

3.5

FOURIER SERIES WITH HIGHER FUNCTION COEFFICIENTS

REPRESENTING ELEMENTARY FUNCTIONS

i {(—=1)"n cos(2nz)/[T (1+»+2) T (14v—n) ]} = [22/T (1+2v) ] sinz
0

Rev>—1, 0<z<w

i {(=1)"sin[(2n+1)z]/[T(v+3+n) T (r+3—n) ]} = (22 YT (1+2) ] sin®x
0

Rev>—3, 0<a<w

2 len cos(2nz)/[T (14v+n) T (14+v—n) J} = [22/T (142) ] cos®z
0

Rev>—1% —ir<a<in

%‘, {cos[(2n+1)2]/[T(»+3+2n) T (r+3—n) ]} = [22YT (1+2v) ] cos?x

Rev>—3, —inr<a<in
0

2= (— 1) "ead2n(2) cos(2nz) = cos(z cosz)

31
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3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

3.16

i (=1)"J2p41(2) cos[(2n+1)z]=1 sin(z cosz)
0

i enJ2n(2) cos(2nz) = cos(z sinz)
0

i Jan41(2) sin[(2n+1)z]=1 sin(z sinz)
0

2 enJ2a(2) cos(2nt) cos(2nz) = cos(z sing cost) cos(z cosz cost)
0

2 Jana(2) sin[(2n+1)¢] cos[(2n+1)z]=4% cos(z sinz cost) sin(z cosz sint)
0

2 (—=1)"enJ2n(2) cos(2nt) cos(2nz) = cos(z cosz cost) cos(z sinx sint)
0

%: (=1)"T3n41(2) sin[(2n+1)¢] sin[(2n+1)z]=1% cos(z cosz cost) sin(z sinz sint)

20_‘, enln(2) cos(nz) = exp(z cosz)

o0

% (=1 nenIa(2) cos(nz) =exp(—z cosr)

? €n eXpLinm(m/2) Wom(2) cos(nz)=m"" f: exp{iz cos[ (2mr+z)/m]}

r=7]1

m=0,1,2,...; n=F[(mrtz)/2r]
2

%: énlnm(2) cos(nz) =m-1 rzzj exp{z cos[ (2rr+z)/m]}

r1

m=0,1,2, ... ; r12==F[(m1rix)/2"r:|
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If (mmr=z)/2r is an integer or zero, one half of the corresponding term at the
right side finite sum of 3.15 and 3.16 has to be taken. Formulas 3.5-3.16 hold also
for arbitrary complex values of z, x.

3.17

3.18

3.19

3.20

3.21

3.22

3.23

3.24

E Jo(nx) cos(nxt) = —-,2-+ Z [:132— (21rl+t:c)2]‘*+ l(]. 52)—§+ Z [172— (21I’l— &)2]_§

le=1

EJo(nx) sin(nzt) = (2‘"')_1[2 m— Zl—l:H' E {[(2ml+tz)?—22]~4— (21) 1}

l=1 le=] l==mt-1

- Z {[(2ml—tz)?— 2T (2n]) 7Y}

lm=k+1

Z Yo(nz) cos(nat)=—n" ‘[’Y‘i‘log(w/47f)]+(21r)’l[2 4 Z ]

=1 le=]

- z {[(@rtttz)?—22] 73— (2nl) ) — E {[(2ml—tz)?—22]7— (2ml) Y}

lm=m+1 I=k+1

Y k
> Jo(nz) cos(nat) =—3+ > [2*— (2rl—tz)?]}

l==m-+1

Z Jo(nzx) sin(nzt) = E [(2nl—tz)2—22] 3+ (21r)"12 -

le=]

+¥ {[(2mi+tz) = 2] — (2n]) 7} — Z {L(2ml—ta)*—2*]7}— (2m1) 71}

le=] Imkt1

E Yo(nz) cos(nxt) = — 7 '[y+log(z/4m) J— Z [(2nl—tz)?—22]
+(21r)—12l"l Z {[(2rltx)?— 22T 1—( 27rl)“}—2 {[(2ml—tz)?— 22T~ (2ml) ™}

lma] l==1 l=)

m

© k
> (—1)"Jo(nz) cos(nat) = —3+ 2 [2*— Clr—mt-tx)?TH 3 (22— (2r—n—tx)2 T

=1 l=1

Z (=D Jo(nz) sin(nat) = (21r)“[§: - E ]

la=] =]

-+ E {[ (2lr—m+tz)2— 22T d— (2m) 1} — i {[(2lr— m—tz)2— 22T} — (2m) Y}

l=m-+1 le=ft1
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© m k
3.25 3 (—1)"Yo(nat) cos(nat) = — 7w [y+log(a/4m) H-(2m) 7[> I+ X 1]

l=1 l=]

— i {{@lr—m+itx)2— 22T — (2x]) 1} — i {[(2l1r—1r—t:c)2—x2]"5—(21rl)_‘}

l=m+1 lek+1

3.26 i (=1)"Jo(nz) cos(nat) =—3i+ i (22— (2lr—7—tr)? ]}

l=m+1

3.27 i (—1)"Jo(nz) sin(nat) = (2r)~1 ﬁ I i [(2lr—m— tz)?—22]}

l=1 l=1

+5 ([(2r— et t2)P— 22— (20D} — 3 {[(2lm—m—t2)*— 21— (2n1) )

=1 l=k+1

3.28 3 (—1)"Yo(nz) cos(nal)

= —m'[y+log(z/ 4m) H-(2m)~ i I1— i [(2lr—m—tz)?*— 2]

w l=1 l==1uo
_;2 {L@r—mtta)*— 224 (2el) 1) — 3 {[(2lr—7—tz)*— 22— (270)1}
=1 l=k+1

3.29 ? Ko(nz) cos(nat) =3[y+log(a/4m) H (n/2z) (142)7

©

+im 2 ([ (2l — tz) 25— () Y+ 1o i {[2*+ (2lr+tz)213— (21r) -1}

=1 1=1

3.30 21: (—1)"Ko(nz) cos(nat) =3[y+log(z/4m)]
H37 2 (Do (2r—m— 12?1 ()13 3 [ (2r— o) (2

=1 l=1

In3.11-3.19:  0<i<1, >0, m k=0,1,2 ...

2rm<z(1=1) <2(m+1)r;  2kr<z(14+t) <2(k+1)r

In3.20-3.22:  t>1, >0, k=012, ...

ma<z(t—1)<2(m+1)r; 2kr<z(t+1)<2(k+1)7

In 3.23-3.25: 0<t<1, x>0, m,k=1,2,3, ...

@Cm—Dr<z(l—t) < Cm+1)r; (2k—1)w<z(1+t) < (2k+1)w
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In 3.26-3.28: t>1, >0, m k=1,23, ...

3.31

3.32

3.33

3.34

3.35

3.36

3.37

3.38

@em—-1)r<z(t—1)<(2m+41)r; Ck-1r<z(1+t) < (2k+1)7

i enn*J,(nm) cosfam(z/a) J=[27/T (5+v) Jrta'=> (a*— 2*)
0

—a<z<a, Rev>—1

for =1, Fourier series of a circle of radius a

i en(— 1)"n*J,(nm) cos[2nm(x/a) J=[2/T (3+») Ir—ta2(ax—a2)
0

Rev>—1, —a<z<a

i (= D(@2n+ 1) L(n+$) 7] sinl (2n+1) (2/a) J= [a*2/ 2T (3+») I (az—2?)

Rev>—3, 0<z<a

5 s () sinCm(x/a) J= [a~2/20 (3+») 1) e (e a2)

Rey>—3, 0<z<a

3 (— 1) "ol Balb (20 1)2(x¥/a?) P} sin[(2n+ 1) m(2/a) ]
0

= (a/2x) (ax—a?)~} cos[b(az—a2)¥], 0<z<a

i (=) mendo(3a{b™[2n(n/a) TP}}) cos[2nmr(x/a) ]

= (a/7) (ax—2a?)~} cos[b(az—a2)?], —a<a<a

2 (=D "J{dal (2n+1)2(xYa2) — b2} sin[(2n+1)w(x/a) ]

0

= (a/2m) (ar—2?)~} cosh[b(az—22)}], 0<z2<a

5 (= D renloCal (2n(n/a) = B}3) cos[2nn(1/a) ]

= (a/) (ax—22)~* cosh[b(ax—12)}], —a<z<a
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3.39

3.40

3.41

3.42

3.43

3.44

3.45

3.46

i e, (3nm) Iy (3n7) cos[nr(z/a)]
0

=7"2%(2a)}(a®x—23) "} cos[(2+3) arccos(z/a)], 0<z<a

«©

2 My (Gnm)J_,(3nrr) sin[nr(z/a) ]

1
=37%(2a)}(a2z—2®)~} cos[(2v+32) arccos(z/a)], 0<z<a
i nH,(nw) sin[nr(z/a) ]=[2"/T 3+v) Jar2nt(a?—22) "}
0

Rey>—1, 0<z<a

for y=1, Fourier series of circle of radius a

? &n(nd)™"J, (and) cos(nz) = [m2"~a"/dT (3+»)] g {a?— [ (2rm—+zx)/d )

Rev>—1, Rev>1 if z=oad

40‘_‘_, én c0s(zand) (nd)~J,(3and) cos(nz)
= [m¥a™/dl (3+) ] E | (2em~+z)/d |""*[a—| (2rm—+2)/d | ]}

Rev>—3, Rev>31 if z==ad, or z=0

2 ewofalb+- (1)} cos(nz) = (2/d) 3, (@ [(2mt-2)/d P

scos(b{a’—[(2rm+2)/dP}}), wxs£ad

@

2 endofal(nd)?— b2} cos(nz) = (2/d) >"':’ {a*—[(2rm~+z)/d P}

0

-cosh(b{a®~[(2rm+2)/d}}), zs=+tad

i €n cos(zand)Jo{3a[b+ (nd)?]}} cos(nzx)=d—} g | (2rm~+2z)/d |}
0

m}

‘[a—| (2rm+2)/d | T cos{b| (2rm+1)/d [*[a—| (2rm~+=)/d ']}, «70, £ad
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) m2
3.47 X ex(nd)¥,(3and)J_,—y(3and) cos(nz)=2(3mnd)F 3 | 2rm—+z |}
0

m1

{a?—[(2rm+=z)/dJ*} 7 cos{ (2v+3) arc cos[(2mrm+z)/ad]}, x40, +ad

3.48 i e[ Jo(a+nd)+J_,(a+nd) ] cos(nz) = 4d™* cos(mv) ):5 {a*—[(2rm+z)/d T}

my

-cos{y arc cos[ (2rm+=1)/ad]}, z7“zad

3.49 i €n[ Jana/x(2)+ J—ana/x(2) ] cos(nz) = — 2w (ad) ! }":“: sin{z sin[ (n/ad) (2rm—+z) ]}
0 my

3.50 i en[cos(and) T [ Joandse (2)+ J—2anasx (2) ] cos(nz)
0

=2m(ad)! g cos{z cos[ (m/2ad) (2rm+z) 1}

mi

3.51 Zoj €én[cos(and) T Ezand/x (2) 4 E—sanajx(2) ] cos(nz)

=—2n(ad)! E sin{z cos[ (m/2ad) (2rm~+z) 1}

my

3.52 i €n[ Eana/x (2) + E_gnajx(2) ] cos(nz) = — 2w (ad) ™! %’: sin{z sin[ (7/ad) (2am+z) ]}
0

my

In Formulas 3.42-3.52 my= —[ (ad+z)/2r]; me=[(ad—z)/2x]. If (ad=+z)/27

is an integer or zero, one half of the corresponding term in the right side sum has
to be taken.

3.53 i (3n2)~"H,(nz) sin(nz) =0, <2<z
=[mY/20(3Hv) [1— (22 Y, 2<e<lw

3.54 3 P.(cos?) sin[(n+1)z]=0, z<d
0
=—2"}(cos¥—cosz)}, 0<I<z<w
<<
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3.55 i P, (cos?) cos[ (n+3)z]=2"*(cosz— cost#) — << <
’ =0, <2< 2m— 9
=—27%cosz—cos?) ™}, 2r—I<z<2r+¢
=0, ot 9< < dr— 9
=27%(cosz—cos?) ™},  dr—d9<z<dn+d
0<I<m

3.56 i enPn3(cos?) cos(nz) = 2}(cosz—cos?)}, —I<z<I<T
’ =0, I< < 2 — &
=24(cosz—cosd)}, 2r—I<z<2mtd
0<d<m

3.57 2. (—1)"Pn_y(—cosd) cos(nz) =0, 0<z<d
0

=2¥(cosd—cosz) ™}, d<az<w

3.58 3 Pn(cosd) sin(nz)= —sin(37) (2 cosz—2 cos?) ™}, z<d
0

=—cos(37) (2 cosd—2 cosz) ™}, x>0

3.59 2 P.(cos®) cos(nz) = cos(iz) (2 cosz— 2 cos?)H, <l
0

= —sin(}z) (2 cos¥—2 cosz) ™}, >

3.60 20: énP_yinr/a(c0s9) cos(nz)= 0, (1/a)9< 2< 2r— (/) &

=2tla{cos[ (a/m)z]—cos?) ™}, — (/)<< (1/a)d

3.61 ? (=1)"Qn(2) sin[(n+1)2]= (2042 cosz)~ arctan{[(1— cosz)/(z+cosz) J}}, 2>1
3.62 %: @n(2) cos[(n+3)z]= (22— 2 cosz)~} arctan{[ (14 cosz)/ (z—cosz) !}, 2>1

L]

3.63 2 €nQny(cos?) cos(nz) =7 (2 cosd—2 cosz)~t, x>9
0

=0, <
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L]

3.64 Y €nQ_143n(2) cos(nz)=[2/(z— cos2z) }(Fm+arctan{[2/ (2— cos2z) I} cosz}), 2>1
0

3.65 i (—1)"€xQ_343(2) cos(nz) =[2/ (z—cos2z) F(Fm— arctan{[2/ (z— cos2z) J* cosz})

z>1

0

3.66 D en(—1)"Qny(2) cos(nz)=m(z+tcosz)™}, z>1
0

3.67 E‘, P~ s in(x/9)(cosd) cos[nm(z/a)]= (Fm) [T (3—p) I (sind)+
0

«{cos[(#/a)x]—cos?} ™}, Reu<}, 0<d<m, —a<z<a

3.68 i €nPY s 1 nirs0y (coshd) cos[nm(x/a) J= (3m) [T (3—u) T (sinhd)#
0

{cos[(¥/a)x]—cos?} ™}, Reu<}, 9>0, —a<z<a

3.69 i &nP” 41 n(cos?) cos(nz)=[(2m) YT (3—pu) I(sind)*(cosz— cos?) ™+, 0<z<d
0

=0, I<z<mw
0<¥<m, Reu<i

3.70 2 en(— 1)"Ph_4(— cos?) cos(nx)

0
=[(2m)¥/T(3—u) I(sind)*(cosz— cos?) ™+, d<a<w
=0, 0<a<d
0<d<m, Reu<i

L2

3.71 > P.*(cosd?) cos[(n+3)x]=[(3m) ¥/ T (5—u)](sind)#(cosa— cosd)*} 0<z<d
0

=0, <a<lmr
0<d<T, Reu<s:

3.72 X en{T[v+ (a/m)nd T [v— (a/m) nd]} cos(nz)

=2%"2r[adl (2v— 1) T' > {cos[(m/2ad) (2rm+ =) ]} 22

mi

Rev>3, Rev>1 if z=oad
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3.73 i enP" 4 1na(cosa) cos(nz)=[(2r)Y/dT (3—u) ](sina)*
0

m2

« > {cos[(2rm+-2)/d]—cosa}* 0<a<w, Reu<i, Reu<—% if z=ad

m1

3.74 i €nP”31ina(cosha) cos(nz) =[(2r)Y/dI'(3—p) I(sinha)*

m2
+ 2_ {cosha—cosh[(2rm+z)/d]}=#}, Reu<3, Reu<—% if z=cad
my
3.75 2 eaQh4(2) cos(nz)= exp(imy) (AT (34-u) (22— 1)¥(z—cosz) ™}, 2>1, Reu>—%
0

3.76 % €nQ"1+am(2) c0s(nz) = exp(smu) (2r) T (3+p) (22— 1)
* (m/m) i {z—cos[(2mr+z)/m]}——4

Reu>—3, m=1,2,3,..., n=—[(rmt+z)/2r], r=[(zm—z)/2r], 2>1

] If (m:l:x) /27 i8 an integer or zero, one half of the corresponding term at the
right side has to be taken.

~ In 372374, mui=—[(ad+z)/2r], my=[(ad—z)/2r]). If (ad=z)/2r is an
integer or zero, one half of the corresponding term at the right side has to be taken.

3.1 % (= 1)”&.P(H-2n+ l)P,."'z"(y) cos(nzr)= I"(1+V) [y (1—9?) 0032‘5]_*'_*

-cos{ (v+1) arctan[(y—?—1)# cosz]}, 0<y<1, Rer>—1

3.78 Zo: (- 1)"1‘(""‘27‘4“2)1’?2"‘1(3/) cos[ (2n+1)z]= 31T (»4+1) [p*+ (1—32) costeT ¥

-Sin{ (H- 1) al‘cta.n[(y-z— 1)} cosx} R 0< y< 1, Rep) —1

3.79 %‘, (—Dren@n3(2) [T (Fntu)T(E— n+p) I cos(2nz)

=[EMYTG+r) I(2—1) exp(imy) (14+2—2 cos’z)# 3, 2>1

3.80 2 [en(—19)"/ (n+m)11P(cos®) cos(nz)= (I1)~1(cosd+i sind cosz)?, 1=1,2,3, ...
0



3.81

3.82

3.83

3.84

3.85
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i Cen(— 7)Y/ T (r+n+1) P, (cosd) = [T (»+1) T (cost+-¢ sind? cosz)”, Rev>—1

0
i Len/T (++n+1) JP,"(coshz) cos(nz)= [T (»+1) I7}(coshz+sinhz cosz)”, Rey>—1
0

> Cp*(cos?) sin(nz) = —sin(vz) (2 cosz—2 cosd) ™, <
0
= —sin[y(z+) 1(2 cos¥—2 cosz)™, >
0<d<w, Rer<1

>~ Cur(cost) cos(nz) =cos(vzr) (2 cosz—2 cos?) ™, <&
0
= cos[v(z+m) (2 cos¥—2 cosz)™*, z>¢
0<z<¥, Rer<l1

E enAn cOs(na:) = (1— 2z COS$+ zz)—r
0

An= (2%/n) [T (n+»)/T () LF1(v, ntv;nt1;2), |2]<1






IV

4.1

4.2

4.3

4.4

FOURIER SERIES WITH HIGHER FUNCTION COEFFICIENTS
REPRESENTING HIGHER FUNCTIONS

o0

2- &[T (3+3n)/T(3+3n) I cos(nz) =4K (cosjz), —m<z<m

0

oo

2 en(—1)P[T(34+31n)/T(3+44n) P cos(na) =4K (sindz), 0<z<2r

0

o

2 en(—1)"[T(343n)T(2—3n)/T(3+3n)T(3—3%n) ] cos(nz) = 4K(cosiz), 0<z<m

0
©

2 &[T (3+3n)T(3—3n)/T(3+3n)T(2—3n) ] cos(nz) =4K (sinkz), 0<z<2m
0

i (—1)*n[sin(nws) Ci(nws)— cos(nms) si(nws) ] sin(nz)

=—3¥+ist (2/2m) J—ylit+is— (a/2r) ]}, —w<a<m, >0

43
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4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

3 (= 1)"{cos[(n-+3)s] GI (n+-3)woT-+sinl (n-+3)msT il (n+4) s} sinl (n-+3)z]
" B ot (a/4m) -9t s (o/4m) 1= 9L+ Aot (2/4m) ]

HYLHio— (/4m)]), 0, —r<a<r
i (=1 {sin[(n+3)ws] Ci[ (n+3)ms]— cos[ (n+3) ws] si[ (n+%)ws]} cos[ (n+3)z]
" Y (o/4m) T do— (/4m) T-¥ T+ ot (o/4m) ]
—y+Hds— (/4m) ]}, —r<z<m, 50

[ 1
> endn(2) cos(nz) = cos(z sinz)-+z cosz / cos(z sinz)Jo(2t) dt
0 0
@ 1
2. Jx(2) sin(nz) =% sin(2 sinx) — 1z cosz / sin(¢z sinz)Jo(z2t) dt
1 0

i (— D) "J2niy(2) cos[(2n+3)x]=27[cos(z cosz)C(2z cos?iz)-+sin(z cosz) S(2z cos%z)]
0

@

22 (= 1)*J2a44(2) cos[(2n+3)2]=2¥[sin(z cosz) C(22 cos?hz)— cos(z cosz) S(2z cos?z)]
0

) 1
2 I.(2) sin(nz) =3zsinz / exp(—zt cosx) Io(2t) dt
1 0

2 e #(3nm) cos[nmr(z/a) 1= 472K’ (z/a), 0<z<a
0

L]

2 &, (3nm)J_, (Anr) cos[nr(a/a) ]1=2r"P,y[2(z%a?) — 1], —a<az<a
0

L

2 ea{b™[n(n/a) Py J,(a{ b4 [n(n/a) 7}}) cos[nm(z/a) ]

0
= (2/ma)}(ab)**(a?—22)¥4J, ,[b(a>—2?)}], Re>—3%, —a<a<a

i end Gl [0+ (7% @?) Bt n(n/ )})J, Ga{[b*+n(n%/ a) P—n(n/a)}) cos[nm(z/a)]
0
=2ar7(a?—2%) Wy [b(a2—2%)}], Re>—3, —a<z<a

2y
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4.17 i (— 1) "end, Ga{ [0+ 4n? (1% a®) P+2n(n/a)})
0
-JGa{[b%+4n?(nY/ a?) P—2n(n/a)}) cos[2nm(z/a) ]
‘=ar(az—22) W [b(a?— )], Rev>—3, —a<z<a
418 3 (— 1), Gal (B (20 DY) T+ (2n+1) (n/0) )
0
-Jy(Ga{ [0+ (2n+1)%(x¥/ a?) — (2n+1) (n/a) }) sin[ (2n+1) 7 (/) ]

=1ar(az—22)Wo[b(a>—12)], Rev>—1%, 0<z<a

4.19 i a3 (2) cos(nz) = exp(z cos2z) {14-Erf[(2z)? cosz]}
’ = exp(z cos2z) {2— Erfc[(22)? cosz]}

420 X (- 1)"enl3n(2) cos(nz) = exp(z cos2z) Erfel(22)} cosz]
0 = exp(z cos2z) {1— Erf[ (22)? cosz]}

421 2:; Loy (2) cos[(2n+1)z]=} exp(e cos2z) Exi[(22)? cosz]

422 )Zj (= 1)y (2) sin[(2n+1)2 1= exp(—z cos2z) Bri((22)} sins]
4.23 % (= 1)"Ipyy(2) cos[(2n+1)z]=— i exp(—z cos2z) Eri[i(22)} cosz]
.24 ﬁ:: Lnss(2) sin[(2n-+1)2]= — i exp(z cos2e) Eri[i(22)} sinz]

4.25 3 enJn_3(2)Jnpy(2) cos(2nz)
0

= 2(2mz sinz) [ cos (22 sinx) C(2z sinx)+-sin(2z sinz) S(2z sinx) ]

4.26 i (= 1) e n_y(2) Jns3(2) cos(2nz)

=2(2mz cosz) *[cos(2z cosz) C(2z cosz) +-sin(2z cosz) S(2z cosz) ]
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4.27 i (— 1) I ny3(2) Tt (2) cos[(2n+1)a]
0

= (2mz cosz) 3[sin(2z cosz) C'(2z cosz) — cos(2z cosz) S(2z cosz) ]

4.28 i Jns1(2)Iny3(2) sin[(2n+1)z]
0

= (2mz sinz) [sin(2z sinx) C (22 sinx) — cos(2z sinz) S(2z sinz) ]

4.29 3 ends%(2) cos(nx) =Jo(22 sinkz)
0

4.30 3 €uJa(2) Yau(2) cos(nz) = Yo(2z | sinkz |)
0

4.31 3" en(—1)"[1a(2) I cos(na) = Io(2z sinkz)
0

4.32 i(;‘,enl,.(z) K.(2) cos(nz) =‘K0(2z | sindz |)

4.33 %Jn(z)J,H.l(z) sin[ (2n+1) 2 ]=1J,(2z sinx)

4.34 f:_‘, (=D (2)Jna(2) cos[(2n+1)x]=1J,(22 cosz)
4.35 % (= 1)"[Jass(2) I cos[ ( 2n+1) 1= 1H(22 cosr)

4.36 }:j [Vnia(2) P sin[ (20 1) 2]= — LH,(2z sinz)

4.37 % (= D™ a43(2) Vayy(2) cos[(2n+1)x]=1Jo( 22 cosz)
1.38

22 Jn13(2) Yoy (2) sin[ (2n+ 1)a]=—1J0(22 sinx)
0



4.39

4.40

4.41

4.42

4.43

4.44

4.45

4.46

Inthelast four formulasm=1, 2, 3, .

Higher Function Coefficients Representing Higher Functions

3 endn(21)Jn(22) cos(nz) =Jo[ (2142~ 22120 cosz)¥]

0
> endn(21) Yn(22) cos(na) = Y[ (23+22"— 22122 cosz)¥], 2>z

0
> (—1)"enln(21) In(22) cos(nx)=Io[(21*+2"— 2212, cosz) ]

0
3 enln(21) Kn(22) cos(nz) = Kol (21242"— 22120 cosz)¥], 2>z

0

= T2
S (= 1) " nm(21) Inm(22) cos(na) =m™ 3 Io({21*+ 20>~ 22120 cos[ (2mrt-x)/m )
0 r1
S €ndnm (21)Jam(22) cos(nx) =m 3 Jo({2*+ 22> — 22122 cos[ (2mrt-2)/m}})

0 "

i endnm(21) Yam(22) cos(nz) =m13 Yo({2 2> — 22123 cos[ (2mrt-2)/m]}})
0 r1

i enlnm(21) Knm(22) cos(na)=m! Z Ko({21*+2:*— 22120 cos[ (2mr+2)/m]}})
0

1

47

con=—[(mr+2a)/2x], re=[(mr—2) /27 ].

If (mw=x)/2r is an integer or zcro, onc half of the corresponding term in the sum
at the right side has to be taken.

4.47

© ta
2 In3(@2) Jngy(b2) cos[(nt3)x]=7"" f [*— (a*+b>—2ab cosr) T ¥ sin(tz2) dt
0 t

t= (a>4+b2—2ab cosx)}, tr=a+b

4.48 3 (= 1)1, ,1(az) Vopy(b2) cos[(n+3)x]
0

ty
=71 f [ (a?4-b*+2ab cosr) — 2] cos(tz) dt
131

h=b—a, ty=(a*+b*+2abcosx)}; b>a
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4.49

4.50

4.51

4.52

4.53

4.54

4.55

4.56

4.57

);f) (— 1) "end2n(2) Kan(2) cos(2nz) =2{Ko[2(2¢ cosz)  H Ko[z(— 2 cosz)}]}

% (= 1) an11(2) Kanya (2) cos[ (2n+1) 2= il Kol (28 cos2)¥]— Ko[2(— 2i cosz) 4]
% ent2n(2) Kan(2) cos(2nz) =1 { Ko[2(2i sinz) 4 Ko[2(— 2i sinz)?])

3 s (2)Kavia) sinl (ot 1 1= i Kol (2 sine) - Ko~ 24 sin)¥)

% (= D"y (2) Knyy(2) cos[(2n+1)z]= 2w [Io(22 cosz) — Lo(2z cosz) ]

i:; Iny3(2) Kniy(2) sin[(2n+1) z]=1n[Io(22 sinz) — Lo(22 sinz) ]

Zl: Jn(2)Jny2m(2) cos[2z(n+m) J=1(—1)"Jom(22 sinz) — 1 (—1)™

m

* 2 (=DM (2) Tmii(2) cos(2kz), m=0,1,2, ...
k=0

o0

Zl: (= 1) (2) Jnpam(2) cos[2z(n+m) ]

=3J2m (22 cosz) —1 3 6 mi(2) Iy (2) cos(2kz), m=0,1,2, ...
k=0

? (= D" a(2) I nyomir (2) cos[z(2n+2m+1)]

m—1

=32ms1(22 cosz) — > Tk (2)Tmr1(2) cos[(2k+1)z]

k=0

m—1

m=0,1,2,...; 3 ()=0 if m=0
=0
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4.58 D Jn(2)Jnyoms1(2) sin[z(2n+2m+-1)]
0 m—1

=1(—1)"omp1 (22 sinz) — (—1)™ 3 (— 1) 8 mse(2)Jmntr1(2) sin[(2k+1)z]
Lm0

m—1
m=0,1,2,...; > ()=0 if m=0
k=0

4.59 }5 (— 1) enJn—(2)Jn1(2) cos(2nx) =2 cos(mv) I[J2»(22 cosz)+ J_2(2z cosz) ]
° =[2 sin(mv) T'[E2 (22 cosz) — E_p,(22 cosz) ]

-]

4.60 X (—1)"Jnpa4s(2) 4 (2) cos[(2nt+1)z]
o [4 sin(mv) T [J2 (22 cosz) — J_2,(22 cosz) ]
= —[4 cos(wv) T'[E2 (22 cosz)+ E_s,(2z cosz) ]

0

4.61 E (— 1)"%[Jn+§v(2) Yn—}v(z)—l"t]n—jr(z) Yn v(z)] cos(2nx)
° = 2 sin(3mv)J, (22 cosz)+2 cos(3m) ¥, (2z cosz), Rev>—1

4.62 i (— 1)"+1EJﬂ+HV(3) Yﬂ+HV(z)+Jn+§—§V(z) Yﬂ+‘H—iV(z) ] cos[(2n+ 1)z]
0

= cos(3mv)J, (22 cosr) —sin(3mv) ¥,(2z cosz), Rev>—1

4.63 % (= 1) menTvon(2)Trgn(2) co5(2n2) = (22 | sinz[), Rev>—}

464 i enTvn(2)Tupn(2) cOS(20) =2, (22 cosz), Rev>—}

465 i (= D)oy (2) Ty (2) SINL(20+1)2T= 30 (22 | sinz |), Rev>—3
4.66 %Jy_,._;(z)JH_,,H(z) cos[(2n+1)a]=13J5,(22 cosz), Rey>—1

4.67 2 (—1D)"enl,_n(2) I,4n(2) cos(2nz)=1I5(22|sinz|), Rev>—1
0
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4.68 i enlo—n(2) Lyn(2) cos(2nz) =1,,(2z cosz), Rev>—3
0

4.69 i(—D"I»—n-;(z)ImH(z) sin[(2n+1)z]=3I5(22 sinz), Rey>—1}
0

4.70 ')%,Iv-n-;(z)lwm(z) cos[(2n+1)z]=3I5,(22 cosz), Rer>—3
0

0

471 3 (—1)"enln3,(2) Knya,(2) cos(2nz)

= — [/sin(av) 1[5 J-(2iz cosz)+ 3 J_.(— 2iz cosz)— cos(3mv) I_,(2z cosz) ], Rev<1

4.72 i (— 1) " Inp10(2) Knyy30(2) cos[(2n+1)x]=[m/2 sin(mwv) J[31],(2iz cosz)
° —31J,(— 21z cosz) +sin(3mv) I,(2z cosz) ], Rev>—1
4.13 25 (=D "Iy (2) Koy (2) 4+ Inoy(2) Knpw(2) ] cos(2n2) = 2 cos(mv) Ko, (22 cosz)
0
Rev>—13
4.14 Zo: (= 1)"[Lni3-s(2) Knyz(2) = Ingass(2) Kngson(2) J cos[ (2n+1) 2]
=2sin(mr) Ko(22 cosz), Rev>—1
4.75 onén(nd)""sz(nda) cos(nz)
=L(=1D Ga)~(20) 1/dT (2H4-2) 1T {a>— [(2rm+2) /d R} —4Co[ (2rmAt-2) /ad]
1=0,1,2,...; Re>—1; Re>% if r==ad
4.76 % &l Jo(5and) T cos(na) = (4/mad) ")5 K'T| (2rm—+2)/ad |]
4.77

Zo‘,enJy(%and)J_v(%and) cos(nz) = (2/ad) "\2: Poo[(2/a2d) (2rm+2)?—1]

my
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-

4.78 3 en[b*+ (nd)2T ¥/, {a[b+ (nd)*}} cos(nzx)

0

= (27bY/d) (ab)~* § {a2—[(2mm—+2) /d PP, (b @— [ (2rm~+z) /dT*})

m]

Rev>—1; Rev>% if r==+ad

4.79 i enTor{nd/[b*+ (nd)*P}T2a{a[b*+ (nd)* T} cos(nr)

= (—1)4(2/d) X {a*—[(2rm+2)/dP} 7} cos(bfa®~[(2rm+-2) /dT*}?)

m

«To[(2rm+2)/ad], 1=0,1,2,...; xad

4.80 i enTar{b[b*+ (nd) 2T} Ja{a[b*4 (nd)*]}} cos(nx)

=(—1)42/d) E {a>— [ (2mm~+2) /dP} 7} cos(b{a®— [ (2rm+x) /dT}P)

my

cTo({1—[(2rm+2) /ad ), 1=0,1,2,...; r5ad

4.81 i €nTorp1 | [V (nd) 2T} o L a6+ (nd)* ]} cos(nx)
0

=(—1)42/d) g {a®—[(2mmn+2) /dP} 7 sinb{a’— [ (2rm+2) /dT}Y)

my

s Torpn({1—[(2rm~+2) /ad?}Y), 1=0,1,2, ...

oo

4.82 X &[0+ (nd)2 ] Uni{nd[6*+ (nd)* T Jor {a[b™ (nd)* P} cos(nz)

0
mo

= (—=1)4(2abd)' 3 sin(b{a®— [(2rm~+2) /d PP Ua[(2rm—+2) /ad], 1=0,1,2, ...

my

4.83 i exd, Ga{[b2+ (nd) 2P+ nd} ), Ga{ b+ (nd) 21— nd}) cos(nr)
0

=(2/d) X {a®—[(2xm+2) /d P} 0{a®— [ (2mm+-2) /d})

my

Rev>—3%; Rev>—3% if r==+ad
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184 3 e cos(hand),Gal [B+ (nd)?P-nd) M, Gal [+ (nd)*P—nd}) cos(nz)
0

4.85

4.86

4.87

4.88

4.89

4.90

=g % | 2em-+z[3a—| (2rm+2) /d| T2 (b (2rm+2) /d[Pla— | (2rm+-2) /d [}]}

Rev>—3%; Rev>1 if z=0 or z=-ad

i &nd s (andjm) (Y)J ot (anasm (y) cos(nz) =m(ad)™ E Jo{ 2y cos[ (w/2ad) (2rm+2) 1}
0

m1

Rev>—1; Rev>0 if z=+ad

Z €n cos(%and) Jv—(und/h) (y) J»+(and/21r) (:lj) cos('na:)
0
=w(ad)™ 3 J2{2y sin[ (n/ad) (2rm~+=z) 7}

Rev>—3; Rev>0 if z=0 or z=ad

% enls—(anaim) (Y) Lt anajny (y) cos(nz) = (ad)™ % In{2y cos[(w/2ad) (2rm—+) ]}

m1

Rev>—3; Rev>0 if g=o-ad

XO: n €08(3010) I (anae) () It (anajey (y) cos(nz)

ma
=m(ad)™ 3 I,{2y sin[ (r/ad) (2rm+2) ]}, Rev>—1%; Rev>0 if z=0 or =ad
my

-]

% en(nd)™H, (and) cos(nzx)

=2(2m/a)*7 3 { a2~ [ (2rm-tz) JdPWHRP2TI (2rmt-2) /ad | ]

Rev>—3, Re>—1 if g—ogg

Zo: € (nd) ™15, ,(and) cos(nx)

=2 (/) (ut-1)2— AT (34 ptv) T3 (3+p—v)]

m2

» 2 {@=[(2rm+o) /aP)erp#odr| (2rm-+2) /ad |]

my

Rep>—%; Rep>—1 if g=+qd



4.91

4.92

4.93

4.94

1.95

4.96
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2 enPyondlm (y) Pymendi* (y) cos(n)
0

= (w/ad) E P,{1—2(1—?) cos’[(m/2ad) (2rm~+2)]}, 0<y<l, zs%=tad

my

3 €. P,omdI7(2) P,mondI7(2) cos(na)
1]

= (w/ad) g P,{142(2*—1) cos’[(w/2ad) (2mm—~+-2)]}, 2>1, z5%ztad

mi

> €n €05(yn) Q4 (and/x) (2) @—3—anasm (2) cos(nz)
0

— (x%/ad) 3 {y—sin®[(r/2ad) (2rm-+2) 1)

ml

- K (cos[ (/2ad) (2rm—~+z) J{y*—sin’[ (2r®m~+-7z) /2ad]}?), 2>1

i €[ P_t13ina(cosha) 2 cos(nx)= (4/md sinha) % K’ ( S.mh[@?m:i_ z)/d] ), a>0
0 m sinha

> €nP% y41ima(cosha) P} 4 yina(cosha) cos(nz)
0

2 m sinh(2rm+z/d) \*
=—2 _>P., [2 (’—(——/—))~1] a>0, rstad
d sinha " sinha

o0
2= €Dy 2and/my (¥) Do andm (¥) cos(nx)
0

— 2+ (2 exp(dy?) (ad)~ 5 {cos[ (m/2ad) (2mm-tz) ==

m1

-exp{— v? sec[ (r/2ad) (2rm~+ 1) 1} Do (y{ 1+-sec[ (/2ad) (2rm+ ) 1}})

In 4.75-4.96, mi= —[(ad+=z)/27]; me=[(ad—2x)/2x]. If (ad+x)/2r is an
integer or zero, one half of the corresponding term in the right side sum has to be
taken.

4.97 2 (— 1) (3+2n) D_on_s[(3ia2)¥ID_z0-3[ (— Lia2)}] cos(2n2)
0

= (cosz) ~*{cos?(a?/4 cosx) [3— S(a?/4 cosz) J—sin(a?/4 cosx) [— C(a?/4 coszr) ]}
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4.98 i (=1)"T'(5+2n) D_on-3[ (390*)¥]D_2n3[ (—F70*)*] cos[ (2n+1) 2]
0

=3 (cosz) *{cos(a?/4 cosz) [3— C(a?/4 cosx) H-sin(a?/4 cosz) [3— S(a?/4 cosz) ]}

4.99 }“j (= 1) "end2n{2[ (a®+1)1—a ) Kon{2[ (a>41)#+-a]}} cos(2nz)
0

=3Ko[2(a+1 cosz) P H-1K[2(a—1 cosz)}]

4.100 ? (= D) onf2l (@24 1) = a ) Konya {2[ (> 1)Ha P} cos[(2n+1)z]
=11Ko[2(a+1 cosz) ]—L1iKo[2(a—i cosz)}]
4101 2 (= 1% LPe-y(3) T cos(2ne) = (2/r) (19K Teose(1=1) 4], cose< (1=}

=0, cosz> (1—y*)}
0<y<1

4.102 % (=1)"[Pn(y) P cos[(2n+1)z]=7""(1—32) K[ (1—3?)F cosz], cosz< (1—y?)}
= (r cosz)'K[(1—1?)Fsecz],  cosz> (1—)}
0<y<1

4.103 § (=1)"ea[T(n—p+3) /T (n4 p+3) ITP:— () T cos(2na)
= (2/) (1~ 1) =Q_,_,{1— [2 cos’z/ (1—3?) ], 0< cosz< (1—z2)}
= (2/7) (1= 1) 7 sin () Qg {[2 cosie/ (1—y9) =1}, (1) <cosz<1
0<y<1

4.104 % (—1)"e,,P‘,‘._;(y)P,Tf§(y) cos(2nx)

=(1=9)74P,,([2 coslr/(1—y?) ]—1}, 0<cosz< (1—y?)*

4.105 203 (= D"e[T (3= ptn) /T (- n) IP4_, (2) @iy (2) cos(2nz)

= (2= 1)ZemQ_, (142 costa/ (2—1) ], 2>1

4.106 %: (= 1) "enPr_y(2) Quy (2) cos(2nz) = (22— sin%) AK[ (22— 1)}(Z—sin%) 7], 2>1
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@

4107 3 (—1)"ex[Qn-s(2) J? cos(2nx) =m(2*— sin%r) FK [cosz (2*—sin%r) 3], z>1
0

4.108 > (—1)"Pa(2) Qa(2) cos[(2n+1)a2]=1(2—sin%c) 2K [cosr(2—sinZr) 3], 2>1

1.109 i P (1) P, (y) cosCnm(a/a) J=P,{1—2(1—1?) cos’[m(z/a)]}, 0<y<l
0

1.110 i & P,"(2) P, (2) cos[nmw(a/a) J=P,{142(22—1) cos?[w(x/a)]}, 2>1
0

4.111 i (—1)"€xQ_14n(2) Q—y—n(2) cos[nm(x/a)]
0

= 7[2>—sin?(wx/2a) 73K {cos(mx/2a) [*—sin*(mx/2a) TF}, 2>1

4.112 i (= D"[T(n—p+1)/T(ntp+1) JP#(y) I cos[(2n+1)z]

=1(1—¢?)FP_4{1—[2 cos’x/(1—1*) ]}, cosz< (1—g?)}
=771(1— 1) Q3 {[2 cos’x/ (1—y*) J—1} cos(mn), cosx> (1—y?)}
Reu<1

2118 5 (= D) nealT (k) /T (b 1) Q4 (2) T cos(2n)
0

=172(22— 1)~} sec(mu) P_u—y{ 1+ [2 cos’t/(*—1) ]} exp(i2mu), 2>1

4.114 i (— 1) "exP,"(cost) P, (cosdz) cos(nx)
= i en[ T (v—n+1) /T (r+n+1) JP,*(cost) P,*(cosds) cos(nx)
0

= P,(cos?}; cosdy+sind,; sind cosz), 0<h<w, h+d<rw
2

4.115 i (— 1), P,~"(cost) @, (cosd:) cos(nz)
0
= > &[T (v—n+1) /T (v+n+1) IP,*(costh) @, (cos;) cos(nz)
0

= @, (cost cosPotsind sinds cosx), 0<IH<ir, 0O<Hh<w, O<H+&h<w
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4.116 i (=D P, (21) P,*(2) [T (v—n+1) /T (v+n+1) ] cos(nz)
= i (—1)e,P,*(21) Py (2) cos(nx)
0

P,[2iza— (22— 1)} (2*>— 1)} cosz], Rez>0, |arg(zi—1) |[<m
2 2

4.117 f‘, (— 1)@, (21) P, (22) cos(nz)
- % (—1)"e[T (= n41) /T (b nt 1) 1Q,(22) Py () cos(nz)

=Q[zaz— (a’—1)}(z2—1)} cosz], 2 real, 1<2<z, r#*—1,—2 —3,...
2
4.118 3 P,rH(2) P, 3(2) cos[(2n+1)2]=1P,[2+ (22—1) cos(22)], 2>1
0
4.119 3 PR (y) P, (y) cos[(2n4+1)z]=2P,[y2— (1—3?) cos(22)], 0<y<1
0

4.120 i [T (14v— n‘m)/r(l—f-y—i-nm) JLP,"™(y) I cos(nz)
0

=m0 Pyt (1—42) cos[(2mrt1)/m]}, 0<y<1

4.121 ? (=)™ e[ T (14+v—nm) /T (14 +nm) I[P, (2) T? cos(nx)

=m13 P,{z*— (22—1) cos[ (2rr4-z)/m]}, 2z>1

4.122 3. (—1)"e[T (1+v—nm) /T (14+nm) 1P,"™(2) Q"™ (2) cos(nz)
0

=m~ 32 QP (#—1) cos[(2rr+2) /m]}, 2>1

71

In the last three formulasm=1,2,3, ..., = —[(mr+zx) /27], ro=[(mx —z) /27].

If (mm==x) /27 is an integer or zero, one half of the corresponding term in the sum
at the right side has to be taken.



\%

EXPONENTIAL FOURIER AND FOURIER-BESSEL SERIES

In formulas 5.1-5.33 the properties m,, m,, and H (m) on the right-hand sides are
m=—[(ad+z)/2r], me=[(ad—z)/2x];  H(m)=exp[—iy(2rm+z)/d]
If (ad=%=x) /27 is an integer or zero, one half of the corresponding term in the sum

has to be taken.
5.1 2 exp(inz) [b*+ (y+nd)?]? sin{a[b>+ (y+nd) 2]}

= (x/d) 3 H(m)Jo®|a— [(2rm+-a)/dT})

m]

5.2 i exp(inz) cos[2a(y+nd) YT [v+ (ay/2r)~+ (and/2r) TT[v— (ay/2r)— (and/2m) ]}
=222 adl'(2v—1) J! % H(m) | sin[(r/ad) (2rm~+z) ] |22

Rev>3%; Rev>1 if z=zad or z=0

o7
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5.3 i exp(inz) {T [+ (a/m) y+ (a/m) ndJT[v— (a/m) y— (a/m) nd]}
=2 2x[adl (2v—1) I %2: H(m) {cos[ (7/2ad) (2rm-+=) J}#—2
Rev>%; Rev>1 if z=ad

-]
5.4 2 exp(inz) PLyy . na(cosa)

=[(2m)}/dT' (3— 1) I(sina)* %2: H(m) {cos[(2rm~+zx)/d]— cosa} =+

0<a<w, Reu<3}; Reu<—1 if az=oad

%]}
(2]

Z €xp ( an) P—H—iu+1'nd ( COSha)

—00

=[(2m)¥/dT (3—p) ](Sinha)“g H (m) {cosha— cosh[ (2rm—+=z) /d]}—+*

my

Reu<}; Reu<—1 if z=4ad

5.6 3 exp(inz)P,2utndi(p) P,olrtndin(p)

—00

= (/ad) 3° H(m)P,{1—2(1—b?) cos?[ (r/2ad) (2rm~+z)]}, 0<b<1, z3<ad

5.7 3 exp(inx) P,ewtndin(p) p—atwtnd)ix (b)

—00

= (v/ad) 3 H(m)P,{14-2(p2— 1) cos?[ (w/2ad) (2rm~+=x)]}, b>1, z7“tad

2 exp(inz) cos(an)Q_ Hatrnd) x (D) Q- 1 agyandy/n (D)

—oc

= (% ad) 3 H(m) {b>—sin?[ (x/2ad) (2rm-+2) I}~

my

* K (cos[(n/2ad) (2rm—+z) J{b>— sin?[ (2x?m—+m2) /2ad]}™H), b>1

5.9 Y exp(inz) PY 4 4iyyma(cosha) PZ{ 1iyyina(cosha)

—00

= (2/d sinha) %2, H(m)P,_, (2 sinh?[(2rm+2)/d]

1), x#0, x d
nb’a rFE v#Z+a
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5.10 > exp(inx) (y+nd)~*J,[a(y+nd) ]

= [w¥2a~/dT (3+v) ] % H(m){a*—[(2rm+2)/d}?

my

Rev>—3%; Rev>3% if x=zad

5.11 3 exp(ina) (y+nd)~Jmala(y+nd)]

—00

=[(—1)(3a)~T(v) (21) }/aT(214-2v) ] 12"5 H(m){a*=[(2mm+2) /d P}

my

-Cor[(2rm4-2)/ad], 1=0,1,2,...; Rev>—3%; Rev>1 if az=4ad

5.2 3 exp(ing) cos[ha(y+nd) V.lhaly+nd) Wytna)~

—00

- [,,aa—»/dr(_;—p,,)]‘mi H(m) | (2rm~+2x)/d | 3a—| (2rm+z)/d |17

my

Rev>—1; Rev>1 if =0 and z==ad

5.13 i exp (1nz)J,[3a(y+nd) W_.[3a(y+nd) ]

=2(ad)™! E H(m)P,_4[2(ad)(2rm+2)?—1]

my

5.14 i exp(inx) (y+nd) W, [a(y+nd) W-y[3a(y+nd) ]

=2(ind)? %2; H(m) | 2rm+x [ a2— [(2rm+z) /djg}_!

my

-cos{ (2v+3%) arccos[ (2mm+x)/ad]}, 20, =ad

wn
[
()
Ms

exp(ina) cos[}a(y+nd) Wolzal (y+nd)*+b* ]

o0

ma
=413 H(m) | 2rm~+a |7 a—| (2rm—+2)/d |17}

-cos{b[(2mm~+x)/dP[a—]| (2rm+2)/d P}, 270, Lad

5.16 i exp(inz)Jo{al (y+nd)*+ b1

=(2/d) %2: H(m) {a*—[(2rm+2)/d P} cos(b{a®— [ (2mm+2) /d ), a#=tad

my



60 V Exponential Fourier and Fourier-Bessel Series

517 3 exp(ine)Jolal (y-+nd)’— 21}

00

= (2/d) %2; H(m){a®*—[(2rm+z)/d?}? cosh(b{a®— [ (2rm—+=2) /dJ*}}), z7“tad

m1

5.18 i exp(inz) [0+ (y+nd) 2T/, {a[b> (y+nd) 2}
=[(27b)}/d](ab)~ % H(m) {a>— [(2rm+-z) /d P}, y (bla?— [(2rm+2) /dT})

Rev>—3%; Rev>1 if z=-ad

5.19 _Z exp(inz) Tarf (y+nd) /[62+ (y+nd) 2B} Jar{ a[b+ (y+nd) 2]}
= (=DU2/d) 3 H(m) {@— [ (2mmt-2) /aT)}

-cos(b{a®—[(2rm+z) /d W) Tul (2rm—+-2) /ad], 1=0,1,2, ..., x=<ad

5.20 3 exp(ine) Tu{bLbF (y-+-nd) 714 Junl al B+ (- nd) )
=(=1)(2/d) § H(m) {a®—[(2rm+z)/d})? cos(b{a?— [ (2rm~+z) /dT}H)

‘Tu({1—[(2rm+z) /adP}}), 1=0,1,2, ..., zad

5.21 E exp(inz) Tara {B[6 (y+nd) 214} Jar {a[b+ (y+nd) 2]}
= (=1 2/d) T H(m) {@— [ (2r+) /d )~ sin(b|a>— [ (2rm+2)/d]}?)

‘Tan({1—[(2rm+z) /ad P}, 1=0,1,2, ...

5.22 2 exp(in2) [0+ (y+nd) 1 Un{ (y+nd) /(6% (y+ nd) 2 ¥} Jorea { a[b% (y+nd) * T
=(—1)2(abd) § H(m) sin(b{a®— [ (2rm+=z)/d}}})

. ng[(21rm+a:)/ad], 1=0,1,2, ...



V Exponential Fourier and Fourier-Bessel Series 61

0

5.23 3 exp(inz)J,Gaf (b (y+nd) TH-y+nd} ), Ga{ [0+ (y+nd)* P—y—nd})

—a0

— (2/d) 5 H(m) {@— [(2rm-+2) /d T} bl [ (2mm+-z) /dT})

my

Rev>—1%; Rev>3 if z=xad

5.24 3 exp(inz) cos[ha(y-+nd) MGal 6+ (s+nd) g+ nd) )
J,Ga{[b*+ (y+nd)2P—y—nd})

— a3 H(m) | 2mm+-3 [Ha—| (2emt-z)/d |1

my
-Jufb]| (2rm4-z)/d |{[a—| (2rm+z)/d |}
Rev>—3%; Rev>3 if z=0 or =ad

5.25 Y exp(inx)Juawindy/el (D)t tatvinarer (b)

—c0

— (n/ad) 3 H(m)Ju{2b cos[(n/2ad) (2rm-+2) 7}, Rev>—3; Rey>0 if z=ckad

ml

5.26 > exp(inz) cos[3a(y+nd) Wi (aarnd)ize) (D)t taptnay/n (B)

—o0

= (mw/ad) g H (m)J5,{2b sin[ (r/ad) (2rm~+z) ]}

mi

Rev>—3; Rev>0 if z=0 or oad

5.27 2 exp(inz) L tayind) /w1 (D) I taqrinar /e (D)

—00

= (w/ad) ;:H(m)lg,{% cos[(m/2ad)(2rm~+2x)]}, Rev>—1; Rev>0 if z==ad

m

5.28 2 exp(inz) cos[Fa(y+nd) I andr2n (B) Inptaeinay/on (B)

—o0

= (w/ad) § H (m) I,{2b sin[ (v/ad) (2rm+z) ]}

mi1

Rev>—%; Rev>0 if 2z=0 or Zad



62 V Exponential Fourier and Fourier-Bessel Series

5.29 i exp(tnz) { J.La(y+nd) T+ J-.[a(y+nd) ]}
=(4/d) cos(3mv) § H(m) {a®— [(2rm~+z)/d]}} cos{v arccos[ (2rm—z) /ad]}
r#tad ™
5.30 _Z exp (1) [Jawnay r () + J- auanay/=(9) ]

= (27/ad) %2) H(m) cos{b sin[ (w/ad) (2rm~+=z) ]}

mi

5.31 2 exp(inz) [Bagrndy/r (b)+ E-atprnay=(b) ]

= (—2r/ad) § H(m) sin{b sin[(7r/ad) (2rm~+z) ]}

my

_Z exp(inz) [cos(ay+and) 1 Toapnar/= (0)+ J-2acptnay/x (0) ]

= (27/ad) g H(m) cos{b cos[ (m/2ad) (2mm~z) ]}

mi

-E exp (inz) [cos(ay+ and) T [ Esacindyir (B) + E-2acunayx () ]

= (—2n/ad) § H(m) sin{b cos[ (7/2ad) (2rm~+z) ]}

m1

5.32 _E exp(inz) (y+nd)~*—H,[a(y+nd) ]

= (2/d) (2n/a)? g H(m) {a?—[(2rm—+2)/d¥ P27 (2rmt-2) /ad |]

my

Rev>—3; Rev>—1 if a==+ad

5.33 _2: exp(inzx) (?/+nd)_"_ls,,,.,[a(y+nd)]
= (2¥#1}/add) T[3 (u-t-ot-3) T3 (u—v+3) JL(ut-1)2— 027
- 22 H(m) {a?— [(21rm+x)/d]2}5“HP,__“;%[| (2rm+2z) /ad |]

Reu>—3%; Reu>—1 if z=-+ad
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5.38 3 Jun(@)nin(a) exp(ine) = expli(u—1) 3o (2a coshe)

—00

—r<z<w, Re(rt+pu)>0

5.35 30 Jun(2)Jn(2) exp(ing) = exp(ivhe)Jy(22 cosia)

—00

5.36 i exp(in2)Jn (@) Jupn (b) = [(b—ae™) / (b— ae™) I, [ (a*+b*— 2ab cosz)*]

—

5.37 i (—1)"Ia(a) Iyn () exp(ina)=[(b—ae™*)/(b— ae') P*I,[ (a*b*— 2ab cosz)}]

—o0

5.38 i exp(inz) Yign (b)Jn(a) = [(b—ae*) / (b—ae’) Y, [ (a®4b2— 2ab cosz)?]

—x0

5.39 i 1.(a) Kuyn(b) exp(inz) = [(b—ae~) /(b— ae'*) K, [ (a>+ b2— 2ab cosz)}]

—00

-

5.40 X " n(@) b7 () exp(ing) = exp[i(u—v)32][2 coshr/ (aPedio- b ) Pt

—o0

«Juin{[2 costz(a?ed=+b%e =) P}, —m<a<m, Re(rtp)>0

5.41 Z ETV,RJP-I—I(TV.ﬂ) ]—1.],(7',,_,,1‘) = "1727", OS'L< 1
1

5.42 3 [ro.nd1(70.n) I7%0(X70.n)Jo(T0.07) = — 3 logX, 0<2<X<1
1

5.43 i 70 47 W1(70.n) T w1 (T0.0) Jo(70.n2) = [27#7/ T (14-p) J(1—a2)#

1
0<z<1l, Reu>-—1

5.44 i T;:—IEJ%I("'v.n) IV un (Tv.n)JV(TV.nl’) =[2 YT (1+p) Jer(1—a?)»

0<z<1, Rev>—1



64 V Exponential Fourier and Fourier-Bessel Series

5.45 i "'v-n("'f-n_ é)—lEJv("'-.nz)/Jr-l—l("'vm) 1= %[J,(:cz) /x(2)], 0<z2<1
1

5.46 i (Tﬁm_ zz)—l‘r;_.rll[Jv(fv.nx)/J»+l(7'v.n) ]=%Z_2{ [J,(a:z) /J,(Z) ]— x'} ) Os <1
1

5.47 i Ton( Ty t2) U (13,02) Mot (1) 1=3[1,(22) /1,(2) ], 0<2<1
1

5.48 ;i (zz_' ch.n)_ll:Jr-{-l(Tv.n) ]_sz(Tv.nX)Jv(Tv.nx)

= [, (22) /4J,(2) J[J.(z) ¥, (X2) —J,(X2) Y,(2) ]

= il (22) /47,(2) 1> (2) H,® (Xz) — J,(X2) H,?(2) ]
5.49 % (zz—i—rf,,.) EJ3+1(TP.1|) Tsz(Tv,nX)Jv( TP.ﬂz)

= [1(22) /21,(2) )1, (2) K,(X2) — K, (2) I,(X2) ]

In the last two formulas 0<z<X <1. If 0<X <z<1, interchange z and X at
the right sides.
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