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CONTINUITY AND IRRATIONAL 

NU1\t1BERS 



CONTINUITY AND IRRATIONAL 
NUMBERS. 

My attention was first directed toward the consid-

erations which form the subject of this pam­

phlet in the autumn of 1858. As professor in the 

Polytechnic School in Zurich I found myself for the 

first time obliged to lecture upon the elements of the 

differential calculus and felt more keenly than ever 

before the lack of a really scientific foundation for 

arithmetic. In discussing the notion of the approach 

of. a variable magnitude to a fixed limiting value, and 

especially in proving the theorem that every magnitude 

which grows continually, but not beyond all limits, 

must certainly approach a limiting value, I had re­

course to geometric evidences. Even now such resort 

to geometric intuition in a first presentation of the 

differential calculus, I regard as exceedingly useful, 

from the didactic standpoint, and indeed indispens­

able, if one does not wish to lose too much time. But 

that this form of introduction into the differential cal­

culus can make no claim to being scientific, no one 

will deny. For myself this feeling of dissatisfaction 

wa::; so overpowering that I made the fixed resolve to 

keep meditating on the question till I should find a 
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purely arithmetic and perfectly rigorous foundation 

for the principles of infinitesimal analysis. The state­

ment is so frequently made that the differential cal­

culus deals with continuous magnitude, and yet an 

explanation of this continuity is nowhere given ; even 

the most rigorous expositions of the differential cal­

culus do not base their proofs upon continuity but, 

with more or less consciousness of the fact, they 

either appeal to geometric notions or those suggested 

by geometry, or depend upon theorems which are 

never established in a purely arithmetic manner. 

Among these, for example, belongs the above-men­

tioned theorem, and a more careful investigation con­

vinced me that this theorem, or any one equivalent to 

it, can be regarded in some way as a sufficient basis 

for infinitesimal analysis. It then only remained to 

discover its true origin in the elements of arithmetic 

and thus at the same time to secure a real definition 

of the essence of continuity. I succeeded Nov. 24, 

1858, and a few days afterward I communicated the 

results of my meditations to my dear friend Durege 

with whom I had a long and lively discussion. Later 

I explained these views of a scientific basis of arith­

metic to a few of my pupils, and here in Braun­

schweig read a paper upon the subject before the sci­

entific club of professors, but I could not make up 

my mind to its publication, because in the first place, 

the presentation did not seem altogether simple, and 

further, the theory• itself had little promise. Never-
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theless I had already half determined to select this 

theme as subject for this occasion, when a few days 

ago, March 14, by the kindness of the author, the 

paper Die Elemente der Funktionenlehre by E. Heine 

( Crelle's Journal, Vol. 74) came into my hands and 

confirmed me in my decision. In the main I fully 

agree with the substance of this memoir, and in­

deed I could hardly do otherwise, but I will frankly 

acknowledge that my own presentation seems to me 

to be simpler in form and to bring out the vital point 

more clearly. While writing this preface (March 20, 

1872), I am just in receipt of the interesting paper 

Ueber die A usdelznung eines Satzes aus der Theorie der 

tri'gonometrisclzen Reilzen, by G. Cantor (Math. Annalen, 

Vol. 5), for which I owe the ingenious author my 

hearty thanks. As I find on a hasty perusal, the ax­

iom given in Section II. of that paper, aside from the 

form of presentation, agrees with what I designate 

in Section Ill. as the essence of continuity. But what 

advantage will be gained by even a purely abstract 

definition of real numbers of a higher type, I am as 

yet unable to see, conceiving as I do of the domain 

of real numbers as complete in itself. 

I. 

PROPERTIES OF RATIONAL NUMBERS. 

The development of the arithmetic of rational 

numbers is here presupposed, but still I think it 

worth while to call attention to certain important 
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matters without discussion, so as to show at the out­

set the standpoint assumed in what follows. I regard 

the whole of arithmetic as a necessary, or at least nat­

ural, consequence of the simplest arithmetic act, that 

of counting, and counting itself as nothing else than 

the successive creation of the infinite series of positive 

integers in which each individual is defined by the 

one immediately preceding; the simplest act is the 

passing from an already-formed individual to the con­

secutive new one to be formed. The chain of these 

numbers forms in itself an exceedingly useful instru­

ment for the human mind; it presents an inexhaustible 

wealth of remarkable laws obtained by the introduc­

tion of the four fundamental operations of arithmetic. 

Addition is the combination of any arbitrary repeti­

tions of the above-mentioned simplest act into a sin­

gle act; from it in a similar way arises multiplication. 

While the performance of these two operations is al­

ways possible, that of the inverse operations, subtrac­

tion and division, proves to be limited. Whatever the 

immediate occasion may have been, whatever com­

parisons or analogies with experience, or intuition, 

may have led thereto; it is certainly true that just 

this limitation in performing the indirect operations 

has in each case been the real motive for a new ,;rea­

tive act; thus negative and fractional numbers have 

been created by the human mind ; and in the system 

of all rational numbers there has been gained an in­

strument of infinitely greater perfection. This system, 
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which I shall denote by R, possesses first of all a com­

pleteness and self-containedness which I have desig­

nated in another place* as characteristic of a body o.f 

numbers [Zahlkorper] and which consists in this that 

the four fundamental operations are always perform­

able with any two individuals in R, i. e., the result is 

always an individual of R, the single case of division 

by the number zero being excepted. 

For our immediate purpose, however, another 

property of the system R is still more important; it 

may be expressed by saying that the system R forms 

a well-arranged domain of one dimension extending 

to infinity on two opposite sides. What is meant by 
this is sufficiently indicated by my use of expressions 

borrowed from geometric ideas ; but just for this rea­

son it will be necessary to bring out clearly the corre­

sponding purely arithmetic properties in order to 

avoid even the appearance as if arithmetic were in 

need of ideas foreign to it. 

To express that the symbols a and b represent one 

and the same rational number we put a=b as well as 

b =a. The fact that two rational numbers a, bare 
different appears in this that the difference a-b has 

either a positive or negative value. In the former 

case a is said to be greater than 6, /J less than a; this 

is also indicated by the symbols a> b, b < a. t As in 

the latter case b-a has a positive value it follows 

•Vo,,.usung-en uher Zahlentlieorie, by P. G. Lejeune Dirichlet. 2d ed. I 15g. 

t Hence in what follows the so-called .. algebraic" greater and les1 er• 
understood unless the word" absolute" is added. 



6 CONTINUITY AND 

that b > a, a< b. In regard to these two ways in 

which two numbers may differ the following laws will 

hold: 

r. If a> b, and b > c, then a> c. Whenever a, 

c are two different (or unequal) numbers, and b is 

greater than the one and Jess than the other, we shall, 

without hesitation because of the suggestion of geo­

metric ideas, express this briefly by saying: b lies be­

tween the two numbers a, c. 

11. If a, care two different numbers, there are in­

finitely many different numbers lying between a, c. 

111. If a is any definite number, then all numbers 

of the system R fall into tw,o classes, A1 and A2, each 

of which contains infinitely many individuals; the first 

class A1 comprises all numbers a1 that are < a, the 

second class A2 comprises all numbers a2 that are 

> a; the number a itself may be assigned at pleasure 

to the first or second class, being respectively the 

greatest number of the first class or the least of the 

second. In every case the separation of the system 

R into the two classes A 1, A 2 is such that every num­

ber of the first class A 1 is less than every number of 
the second class A 2• 

II. 

COMPARISON OF THE RATIONAL NUMBERS WITH 
THE POINTS OF A STRAIGHT LINE. 

The above-mentioned properties of rational num­

bers recall the corresponding relations of position of 
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the points of a straight line L. If the two opposite 

directions existing upon it are distinguished by 

•'right" and "left," and .P, q are two different points, 

then either p lies to the right of q, and at the same 

time q to the left of p, or conversely q lies to the right 

of p and at the same time p to the left of q. A third 

case is impossible, if p, q are actually different points. 

In regard to this difference in position the following 

laws hold: 

1. If p lies to the right of q, and q to the right of 

r, then p lies to the right of r; and we say that q lies 

between the points p and r. 

n. If p, r are two different points, then there al­

ways exist infinitely many points that lie between p 
and r. 

III. Ifp is a definite point in L, then all points in 

L fall into two classes, P 1 , P 2 , each of which contains 

infinitely many individuals; the first class P1 contains 

all the points p1, that lie to the left of p, and the sec­

ond class P 2 contains all the points P2 that lie to the 

right of p; the point p itself may be assigned at pleas­

ure to the first or second class. In every case the 

separation of the straight line L into the two classes 

or portions P1, P2, is of such a character that every 

point of the first class P 1 lies to the left of every point 

of the second class P 2. 

This analogy between rational numbers and the 

points of a straight line, as is well known, becomes a 

real correspondence when we select upon the straight 
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line a definite origin or zero-point o and a definite unit 

of length for the measurement of segments. With 

the aid of the latter to every rational number a a cor­

responding length can be constructed and if we lay 

this off upon the straight line to the right or left of o 

according as a is positive or negative, we obtain a 

definite end-point p, which may be regarded as the 

point corresponding to the number a; to the rational 

number zero corresponds the point o. In this way to 

every rational number a, i. e., to every individual in 

R, corresponds one and only one point p, i. e., an in­

dividual in L. To the two numbers a, b respectively 

correspond the two points p, q, and if a> b, then p 
lies to the right of q. To the laws 1, 11, 111 of the pre­

vious Section correspond completely the laws 1, II, m 
of the present. 

III. 

CONTINUITY OF THE STRAIGHT LINE. 

Of the greatest importance, however, is the fact 
that in the straight line L there are infinitely many 

points which correspond to no rational number. If 

the point P corresponds to the rational number a, 

then, as is well known, the length op is commensur­

able with the invariable unit of measure used in the 

construction, i. e., there exists a third length, a so­

called common measure, of which these two lengths 

are integral multiples. But the ancient Greeks already 
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knew and had demonstrated that there are lengths in­

commensurable with a given unit of length, e. g., the 

diagonal of the square whose side is the unit of length. 

If we lay off such a length from the point o upon t.he 

line we obtain an end-point which corresponds to no 

rational number. Since further it can be easily shown 

that there are infinitely many lengths which are in­

commensurable with the unit of length, we may affirm: 

The straight line L is infinitely richer in point-indi­

viduals than the domain R of rational numbers in 

number-individuals. 

If now, as is our desire, we try to follow up arith­

metically all phenomena in the straight line, the do­

main of rational numbers is insufficient and it becomes 

absolutely necessary that the instrument R constructed 

by the creation of the rational numbers be essentially 

improved by the creation of new numbers such that 

the domain of numbers shall gain the same complete­

ness, or as we may say at once, the same continuity, 

as the straight line. 

The previous considerations are so familiar and 

well known to all that many will regard their repeti­

tion quite superfluous. Still I regarded this recapitu­

lation as necessary to prepare properly for the main 

question. For, the way in which the irrational num­

bers are usually introduced is based directly upon the 

conception of extensive magnitudes-which itself is 

nowhere carefully defined-and explains number as 

the result of measuring such a magnitude by another 
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of the same kind.* Instead of this I demand that 

arithmetic shall be developed out of itself. 

That such comparisons with non-arithmetic no­

tions have furnished the immediate occasion for the ex­

tension of the number-concept may, in a general way, 

be granted (though this was certainly not the case in 

the introduction of complex numbers); but this surely 

is no sufficient ground for introducing these foreign 

notions into arithmetic, the science of numbers. Just 

as negative and fractional rational numbers are formed 

by a new creation, and as the Jaws of operating with 

these numbers must and can be reduced to the laws 

of operating with positive integers, so we must en­

deavor completely to define irrational numbers by 

means of the rational numbers alone. The question 

only remains how to do this. 

The above comparison of the domain R of rational 

numbers with a straight line has led to the recognition 

of the existence of gaps, of a certain incompleteness 

or discontinuity of the former, while we ascribe to the 

straight line completeness, absence of gaps, or con­

tinuity. In what then does this continuity consist? 

Everything must depend on the answer to this ques­

tion, and only through it shall we obtain a scientific 

basis for the investigation of all continuous domains. 

By vague remarks upon the unbroken connection in 

d . •The apparent advantage of the generality of this definition of number 
isappears as . • . 

h soon as we consider complex nun,bers. According to my view, 
on t e other I d 1 . . k' d Ian , t 1e notion of the ratio between two n11111bers of the same 

b
111 can be clearly developed only after the introduction of irrational num• ers. 
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the smallest parts obviously nothing is gained ; the 

problem is to indicate a precise characteristic of con­

tinuity that can serve as the basis for valid deductions. 

For a long time I pondered over this in vain, but 

finally I found what I was seeking. This discovery 

will, perhaps, be differently estimated by different 

people; the majority may find its substance very com­

monplace. It consists of the following. In the pre­

ceding section attention was called to the fact that 

every point p of the straight line produces a separa­

tion of the same into two portions such that every 

point of one portion lies to the left of every point of 

the other. I find the essence of continuity in the con­

verse, i. e., in the following principle: 

"If all points of the straight line fall into two 

classes such that every point of the first class lies to 

the left of every point of the second class, then there 

exists one and only one point which produces this di­

vision of all points into two classes, this severing of 

the straight line into two portions." 
As already said I think I shall not err in assuming 

that every one will at once grant the truth of this 

statement; the majority of my readers will be very 

much disappointed in learning that by this common­

place remark the secret of continuity is to be revealed. 

To this I may say that I am glad if every one finds 

the above principle so obvious and so in harmony 

with his own ideas of a line; for I am utterly unable 

to adduce any proof of its correctness, nor has any 
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one the power. The assumption of this property of 

the line is nothing else than an axiom by which we 

attribute to the line its continuity, by which we find 

continuity in the line. If space has at all a real ex­

i1.tence it is not necessary for it to be continuous; 

many of its properties would remain the same even 

were it discontinuous. And if we knew for certain 

that space was discontinuous there would be nothing 

to prevent us, in case we so desired, from filling up 

its gaps, in thought, and thus making it continuous; 

this filling up would consist in a creation of new point­

individuals and would have to be effected in accord­

ance with the above principle. 

IV. 

CREATION OF IRRATIONAL NUMBERS. 

From the last remarks it is sufficiently obvious 

how the discontinuous domain R of rational numbers 

may be rendered complete so as to form a continuous 

domain. In Section I it was pointed out that every 

rational number a effects a separation of the system R 

into two classes such that every number a1 of the first 

class A1 is less than every number a2 of the second 

class A2; the number a is either the greatest number 

of the class A1 or the least number of the class A2, If 

now any separation of the system R into two classes 

Ai, A2, is given which possesses only this characteris­

tic property that every number a1 in A1 is less than 

every number a2 in A2, then for brevity we shall call 
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such a separation a cut [Schnitt] and designate it by 

(A1, A 2). We can then say that every rational num­

ber a produces one cut or, strictly speaking, two cuts, 

which, however, we shall not look upon as essentially 

different; this cut possesses, besides, the property that 

either among the numbers of the first class there ex­

ists a greatest or among the numbers of the second 

class a least number. And conversely, if a cut pos­

sesses this property, then it is produced by this great­

est or least rational number. 

But it is easy to show that there exist infinitely 

many cuts not produced by rational numbers. The 

following example suggests itself most readily. 

Let D be a positive integer but not the square of 

an integer, then there exists a positive integer A such 

that 

If we assign to the second class A 2, every positive 

rational number a2 whose square is > D, to the first 

class A 1 all other rational numbers a 1, this separation 

forms a cut (A 1, A 2), i. e., every number a 1 is less 

than every number a2 . For if a1 = 0, or is negative, 

then on that ground a1 is less than any number a2, 

because, by definition, this last is positive; if a1 is 

positive, then is its square '5,.D, and hence a1 is less 

than any positive number a2 whose square is > D. 

But this cut is produced by no rational number. 

To demonstrate this it must be shown first of all that 

there exists no rational number whose square = D. 
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Although this is known from the first elements of the 

theory of numbers, still the following indirect proof 

may find place here. If there exist a rational number 

whose square =D, then there exist two positive in­
tegers t, u, that satisfy the equation 

/J-Du2 =0, 

and we may assume that u is the least positive integer 

possessing the property that its square, by multipli­

cation by D, may be converted into the square of an 

integer t. Since evidently 

'A.u <t <('A.+ l)u, 

the number u'=t-'A.u is a positive integer certainly 

less than u. If further we put 

t'=Du-')..t, 

t' is likewise a positive integer, and we have 

( 1 -Du'"=('>..2 -D) (t2-Du2)=0, 

which is contrary to the assumption respecting u. 

Hence the square of every rational number x is 

either <Dor >D. From this it easily follows that 

there is neither in the class A1 a greatest, nor in the 

class A1 a least number. For if we put 

_x(x2 +3D) 
Y- 3x2 +D ' 

we have 

and 
"-D- (x2-D)1 

)' - (3x2 + D)2' 
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If in this we assume x to be a positive number 

from the class A1, then x 2 <D, and hence y>x and 

y2 <D. Therefore y likewise belongs to the class A1. 

But if we assume x to be a number from the class A2, 

then x 2 > D, and hence y < x, y > 0, and y2 > D. 

Therefore y likewise belongs to the class A2. This 

cut is therefore produced by no rational number. 

In this property that not all cuts are produced by 

rational numbers consists the incompleteness or dis­

continuity of the domain R of all rational numbers 

Whenever, then, we have to do with a cut (A1, A2) 

produced by no rational number, we create a new, an 

£r1·atio11al number a, which we regard as completely 

defined by this cut (A1, A2); we shall say that the 

number a corresponds to this cut, or that it produces 

this cut. From now on, therefore, to every definite 

cut there corresponds a definite rational or irrational 

number, and we regard two numbers as different or 

unequal always and only when they correspond to es­

sentially different cuts. 

In order to obtain a basis for the orderly arrange­

ment of all real, i. e., of all rational and irrational 

numbers we must investigate the relation between 

any two cuts (A1, A 2 ) and (B1, B 2) produced by any 

two numbers a and /3. Obviously a cut (A1, A2) is 

given completely when one of the two classes, e.g., 

the first A1 is known, because the second A2 consists 

of all rational numbers not contained in A1, and the 

characteristic property of such a first class lies in this 
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that if the number a1 is contained in it, it also con­

tains all numbers less than a 1. If now we compare 

two such first classes A 1, B 1 with each other, it may 

happen 

1. That they are perfectly identical, i. e., that every 

number contained in A 1 is also contained in B1, and 

that every number contained in B 1 is also contained 

in A1. In this case A'J is necessarily identical with 

B2, and the two cuts are perfectly identical, which we 

denote in symbols by a=/3 or f3=a. 

But if the two classes A1, B 1 are not identical, 

then there exists in the one, e. g., in A 1, a number 

a'1 =b'2 not contained in the other B 1 and conse­

quently found in B 2 ; hence all nnm bers b1 contained 

in B1 are certainly less than this number a'1 =b'2 and 

therefore all numbers b1 are contained in A 1. 

2. If now this number a'1 is the only one in A 1 that 

is not contained in B1, then is every other number a1 

contained in A1 also contained in B 1 and is conse­

quently <a'1, i. e., a'1 is the greatest among all the 

numbers a1, hence the cut (A1, A2) is produced by 

the rational number a= a'1 = b'2 . Concerning the 

other cut (B1, B 2) we know already that all numbers 

b1 in B1 are also contained in A 1 and are less than 

the number a'1=b'2 which is contained in B 2 ; every 

other number b2 contained in B 2 must, however, be 

greater than b'2, for otherwise it would be less than 

a'1, therefore contained in A 1 and hence in B 1 ; hence 

b'2 is the least among all numbers contained in B,, 
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and consequently the cut (B1, B 2) is produced by the 

same rational number f3=b' 2=a'1=a. The two cuts 

are then only unessentially different. 

3. If, however, there exist in A1 at least two differ­

ent numbers a'1=b'2 and a"1=b"2, which are not con­

tained in B 1, then there exist infinitely many of them, 

because all the infinitely many numbers lying between 

a'1 and a"1 are obviously contained in A 1 (Section I, 

II) but not in B 1. In this case we say that the num­

bers a and f3 corresponding to these two essentially 

different cuts (A1, A 2) and (B1, B2) are different, and 

further that a is greater than /3, that /3 is less than a, 

which we express in symbols by a> f3 as well as /3 < a. 

It is to be noticed that this definition coincides com­

pletely with the one given earlier, when a, f3 are ra­

tional. 

The remaining possible cases are these: 

4. If there exists in B 1 one and only one number 

b'1=a'2, that is not contained in A 1 then the two cuts 

(A1, A 2) and (B1, B2) are only unessentially different 

and they are produced by one and the same rational 

number a=a'2=b'1=f3. 

5. But if there are in B1 at least two numbers 

which are not contained in A 1, then /3 > a, a< /3. 
As this exhausts the possible cases, it follows that 

of two different numbers one is necessarily the greater, 

the other the less, which gives two possibilities. A 

third case is impossible. This was indeed involved 

in the use of the comparative (greater, less) to desig-



18 CONTINUITY AND 

nate the relation between a, f3; but this use has only 

now been justified. In just such investigations one 

needs to exercise the greatest care so that even with 

the best intention to be honest he shall not, through 

a hasty choice of expressions borrowed from other no­

tions already developed, allow himself to be led in to 

the use of inadmissible transfers from one domain to 

the other. 

If now we consider again somewhat carefully the 

case a> f3 it is obvious that the less number /3, if 

rational, certainly belongs to the class A 1 ; for si,nce 

there is in A 1 a number a'1=b'2 ·which belongs to the 

class B2, it follows that the number {3, whether the 

greatest number in B 1 or the least in B 2 is certainly 

< a'1 and hence contained in A 1. Likewise it is ob­

vious from a> f3 that the greater number a, if rational, 

certainly belongs to the class B 2, because a>: a' 1. Com­

bining these two considerations we get the following 

result: If a cut is produced by the number a then any 

rational number belongs to the class A 1 or to the class 

A2 according as it is less or greater than a; if the 

number a is itself rational it may belong to either 

class. 

From this we obtain finally the following: If a> /3, 

1. e., if there are infinitely many numbers in A1 not 

contained in B 1 then there are infinitely many such 

numbers that at the same time are different from a and 

from /3; every such rational number c is < a, because 
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it is contained in A1 and at the same time it is > f3 
because contained in B 2• 

V. 

CONTINUITY OF THE DOMAIN OF REAL NUMBERS. 

In consequence of the distinctions just established 

the system .R of all real numbers forms a well-arranged 

domain of one dimension; this is to mean merely that 

the following laws prevail: 

I. If a>/3, and f3>y, then is also a>y. We 

shall s~:: that the number f3 lies between a and y. 

II. If a, y are any two different numbers, then 

there exist infinitely many different numbers f3 lying 

between a, y. 

III. If a. is any definite number then all numberi 

of the system .R fall into two classe5 ir1 and U2 each 

of which contains infinitely many individuals; the 

first class U1 comprises all the numbers a1 that are 

less than a, the second U2 comprises all the numbers 

a.2 that are greater than a.; the number a. itself may be 

assigned at pleasure to the first class or to the second, 

and it is respectively the greatest of the first or the 

least of the second class. In each case the separation 

of the system .R into the two classes U1, U2 is such 

that every number of the first class U1 is smaller than 

every number of the second class U2 and we say that 

this separation is produced by the number a. 

For brevity and in order not to weary the reader I 

suppress the proofs of these theorems which follow 
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immediately from the definitions of the previous sec­

tion. 
Beside these properties, however, the domain R 

possesses also continuity; i. e., the following theorem 

is true: 

IV. If the system R of all real numbers breaks up 

into two classes lh, lh such that every number a1 of 

the class lh is less than every number a2 of the class 

l!2 then there exists one and only one number a by 

which this separation is produced. 

Proof. By the separation or the cut of R into it1 
and l.12 we obtain at the same time a cut (A1, A2) 

of the system R of all rational numbers which is de­

fined by this that A1 contains all rational numbers of 

the class l.11 and A2 all other rational numbers, i. e., 

all rational numbers of the class lh Let a be the 

perfectly definite number which produces this cut 

(A1, A2). If /3 is any number different from a, there 

are always infinitely many rational numbers c lying 

between ca and f3. If f3 < a, then c <a; hence c be­

longs to the class A1 and consequently also to the 

class l.11, and since at the same time f3 < c then f3 also 

belongs to the same class 211, because every number 

in ll2 is greater than every number c in l:( 1 . But if 

f3 > a, then is c >a; hence c belongs to the class A 2 

and consequently also to the class l:(2 , and since at 

the same time /3 > c, then /3 also belonbs to the same 

class ll2, because every number in U1 is less than 

every n~mper c in U2. Hence every number {3 differ-
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ent from a belongs to the class l(1 or to the class l(! 

according as f3<a or f3>a; consequently a itself is 

either the greatest number in l(1 or the least number 

in ~,fo, i. e., a is on~ and obviously the only number 

by which the separation of R into the classes ll1, 412 

is produced. Which was to be proved. 

VI. 

OPERATIONS WITH REAL NUMBERS. 

To reduce any operation with two real numbers 

a, /3 to operations with rational numbers, it is only 

necessary from the cuts (A 1, A2), (B1 , B2) produced 

by the numbers a and f3 in the system R to define the 

cut ( Ci, C2) which is to correspond to the result of 

the operation, y. I confine myself here to the discus­

sion of the simplest case, that of addition. 

If c is any rational number, we put it into the class 

C1, provided there are two numbers one a1 in A 1 and 

one b1 in B 1 such that their sum a1 + b 1 > c; all other 

rational numbers shall be put into the class C2. This 

separation of all rational numbers into the two classes 

Ci, C2 evidently forms a cut, since every number c1 in 

C1 is less than every number c2 in C2• If both a and 

f3 are rational, then every number c1 contained in C1 is 

<a+ /3, because a1 < a, b1 < {3, and therefore a1 + b1 

<a+ f3; further, if there were contained in C2 a num­

ber c2 <a+ /3, hence a+ f3 = c2 + p, where j is a pos­

itive rational number, then we should have 

C2 =(a-½P) + (/3-½-P).,. a,----.. 

/
~·f·~-J~~-~ \. ~f AOV-4,t..of~. 

{'\.· :; _,_,.....~1---;;::,--."" cb ~. 
,- r' /..F I ,...r ~ CF,._\ 
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which contradicts the definition of the number c2, be­

cause <1-}p is a number in A 1, and /3-½P a number 

in B1; consequently every number c2 contained in C2 

is >a+ /3. Therefore in this case the cut ( C1, C2) is 

produced by the sum a+ /3. Thus we shall not violate 

the definition which holds in the arithmetic of rational 

numbers if in all cases we understand by the sum 

a+ /3 of any two real numbers a, f3 that number"/ by 

which the cut ( C1, C2) is produced. Further, if only 

one of the two numbers a, f3 is rational, e. g., ci, it is 

easy to see that it makes no difference with the sum 

-y =a+ fl whether the number a is put in to the class 

A1 or into the class A2• 

Just as addition is defined, so can the other ope­

rations of the so-called elementary arithmetic be de­

fined, viz., the formation of differences, products, 

quotients, powers, roots, logarithms, and in this way 

we arrive at real proofs of theorems ( as, e. g., -V2-°-V3 
= V6), which to the best of my knowledge have never 

been established before. The excessive length that is 

to be feared in the definitions of the more complicated 

operations is partly inherent in the nature of the subject 

but can for the most part be avoided. Very useful in 

this connection is the notion of an interval, i. e., a 

system A of rational numbers possessing the follow­

ing characteristic property: if a and a' are numbers 

of the system A, then are all rational numbers lying 

between a and a' contained in A. The system R of 

all rational numbers, and also the two classes of any 
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cut are intervals. If there exist a rational number a1 

which is less and a rational number a2 which is greater 

than every number of the interval A, then A is called 

a finite interval; there then exist infinitely many num­

bers in the same condition as a1 and infinitely many in 

the same condition as a 2 ; the whole domain R breaks 

up into three parts A 1, A, A2 and there enter two per­

fectly definite rational or irrational numbers a1, a2 
which may be called respectively the lower and upper 

(or the less and greater) limits of the interval; the 

lower limit a1 is determined by the cut for which the 

system A 1 forms the first class and the upper a2 by the 

cut for which the system A2 forms the second class. 

Of every rational or irrational number a lying between 

a1 and a 2 it may be said that it lies within the interval 

A. If all numbers of an interval A are also numbers 

of an interval B, then A is called a portion of B. 

Still lengthier considerations seem to loom up 

when we attempt to adapt the numerous theorems of 

the arithmetic of rational numbers (as, e.g., the theo­

rem (a+b)c=ac+bc) to any real numbers. This, 

however, is not the case. It is easy to see that it 

all reduces to showing that the arithmetic operations 

possess a certain continuity. What I mean by this 

statement may be expressed in the form of a general 

theorem: 

"If the number ,\ is the result of an operation per­

formed on the numbers a, /3, y, ... and,\ lies within 

the interval L, then intervals A, B, C, ... can be 
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taken within which lie the numbers a, {3, -y, ... such 

that the result of the same operation in which the 

numbers a, /J, -y, ... are replaced by arbitrary num­

bers of the intervals A, B, C, ... is always a number 

lying within the interval L." The forbidding clumsi­

ness, however, which marks the statement of such a 

theorem convinces us that something must be brought 

in as an aid to expression ; this is, in fact, attained in 

the most satisfactory way by introducing the ideas of 

variable magnitudes, functions, limiting values, and it 

would be best to base the definitions of even the sim­

plest arithmetic operations upon these ideas, a matter 

which, however, cannot be carried further here. 

VII. 

INFINITESIMAL ANALYSIS. 

Here at the close we ought to explain the connec­

tion between the preceding investigations and certain 

fundamental theorems of infinitesimal analysis. 

We say that a variable magnitude x which passes 

through successive definite numerical values ap­
proaches a fixed limiting value a when in the course 

of the process x lies finally between two numbers be­

tween which a itself lies, or, what amounts to the 

same, when the difference x-a taken absolutely be­

comes finally less than any given value different from 
zero. 

One of the most important theorems may be stated 

m the following manner: "If a magnitude x grows 
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continua_lly but not beyond all limits it approaches a 

limiting value." 

I prove it in the following way. By hypothesis 

there exists one and hence there exist infinitely many 

numbers a 2 such that x remains continually < a 2 ; I 

designate by U2 the system of all these numbers a 2, 

by 411 the system of all other num hers a1 ; each of the 

latter possesses the property that in the course of the 

process x becomes finally >a1, hence every number a 1 

is less than every number a2 and consequently there 

exists a number a which is either the greatest in i{1 

or the least in U 2 (V, 1v). The former cannot be the 

case since x never ceases to grow, hence a. is the least 

number in l-fo Whatever number a.1 be taken we shall 

have finally 111 <x <a., i.e., x approaches the limiting 

value a.. 

This theorem is equivalent to the principle of con­

tinuity, i. e., it loses its validity as soon as we assume 

a single real number not to be contained in the do­

main R ; or otherwise expressed : if this theorem is 

correct, then is also theorem IV. in V. correct. 

Another theorem of infinitesimal analysis, likewise 

equivalent to this, which is still oftener employed, 

may be stated as follows: "If in the variation of a 

magnitude x we can for every given positive magni­

tude 8 assign a corresponding position from and after 

which x changes by less than 8 then x approaches a 

limiting value." 

This converse of the easily demonstrated theorem 
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that every variable magnitude which approaches a 

limiting value finally changes by less than any given 

positive magnitude can be derived as well from the 

preceding theorem as directly from the principle of 

continuity. I take the latter course. Let 8 be any 

positive magnitude (i. e., 8> 0), then by hypothesis 

a time will come after which x will change by less 

than 8, i. e., if at this time x has the value 11, then 

afterwards we shall continually have x>a-8 and 

x <a+ 8. I now for a moment lay aside the original 

hypothesis and make use only of the theorem just 

demonstrated that all later values of the variable x lie 

between two assignable finite values. Upon this I base 

a double separation of all real numbers. To the sys­

tem U2 I assign a number 112 (e.g., a+ 8) when in the 

course of the process x becomes finally < 112 ; to the 

system U1 I assign every number not contained in U2; 

if 111 is such a number, then, however far the process 

may have advanced, it will still happen infinitely many 

times that x > a2. Since every number a 1 is less than 

every number a2 there exists a perfectly definite num­

ber a which produces this cut (2(1, lt2) of the system 

R and which I will call the upper limit of the variable 

x which always remains finite. Likewise as a result 

of the behavior of the variable x a second cut (231, 

l:32) of the system R is produced; a number {32 (e.g., 

a-8) is assigned to l32 when in the course of the pro­

cess x becomes finally ?;J3; every other number {32, 

to be assigned to l:32, has the property that x is never 
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finally ?:;._/32 ; therefore infinitely many times x becomes 

< /32 ; the number f3 by which this cut is produced I 

call the lower limiting value of the variable x. The 

two numbers a, f3 are obviously characterised by the 

following property: if e: is an arbitrarily small positive 

magnitude then we have always finally x <a+ e: and 

x>{3-e:, but never finallyx<a.-e: and never finally 

x > f3 + e:. Now two cases are possible. If a and f3 

are different from each other, then necessarily a.> {3, 

since continually a2 > /32 ; the variable x oscillates, 

and, however far the process advances, always under­

goes changes whose amount surpasses the value 

(a.-{3)-2e: where e: is an arbitrarily small positive 

magnitude. The original hypothesis to which I now 

return contradicts this consequence; there remains 

only the second case a=/3 and since it has already 

been shown that, however small be the positive magni­

tude~, we always have finally x<a+ e: and x>f3-e:, 

x approaches the limiting value a, which was to be 

proved. 

These examples may suffice to bring out the cor.­

nection between the principle of continuity and in­

finitesimal analysis. 
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PREFACE TO THE FIRST EDITION. 

IN science nothing capable of proof ought to be ac­

cepted without proof. Though this demand seems 

so reasonable yet I cannot regard it as having been 

met even in the most recent methods of laying the 

foundations of the simplest science; viz., that part of 

logic which deals with the theory of numbers.* In 

speaking of arithmetic (algebra, analysis) as a part 

of logic I mean to imply that I consider the number­

concept entirely independent of the notions or intui­

tions of space and time, that I consider it an imme­

diate result from the laws of thought. My answer to 

the problems propounded in the title of this paper is, 

then, briefly this: numbers are free creations of the 

human mind; they serve as a means of apprehending 

more easily an<l more sharply the difference of things. 

It is only through the purely logical process of build­

ing up the science of numbers an<l by thus acquiring 

•Of the works which have come under my observation I mention the val• 
uahle Ld,,-budi d,·r Aritlw,d,k 1111d Alg,·brci of E. Schroder (Leipzig, 1873), 
which contains a bibliography of the subject, and in addition the memoirs of 
Kronecker and van Helmholtz upon the Number-Concept and upon Counting 
and Measuring (in the collec:tion of philosophical essays published in honor 
of E. Zeller, Leipzig, 188j). The appearance of these memoirs has induced 
me to publish my own views in many respects similar but in foundation 
essentially different, which I formulated many years ago in absolute inde­
pendence of the works of others. 
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the continuous number-domain that we are prepared 

accurately to. investigate our notions of space and 

time by bringing them into relation with this number­

domain created in our mind.* If we scrutinise closely 

what is done in counting an aggregate or number 

of things, we are led to consider the ability of the 

mind to relate things to things, to let a thing corre­

spond to a thing, or to represent a thing by a thing, 

an ability without which no thinking is possible. 

Upon this unique and therefore absolutely indispen­

sable foundation, as I have already affirmed in an an­

nouncement of this paper, t must, in my judgment, 

the whole science of numbers be established. The 

design of such a presentation I had formed before the 

publication of my paper on Co11ti11uilJ', but only after 

its appearance and with many interruptions occa­

sioned by increased official duties and other necessary 

labors, was I able in the years 1872 to 1878 to commit 

to paper a first rough draft which several mathemati­

cians examined and partially discussed with me. It 
bears the same title and contains, though not arranged 

in the best order, all the essential fundamental ideas 

of my present paper, in which they are more carefully 

elaborated. As such main points I mention here the 

sharp distinction between finite and infinite (G4), the 

notion of the number [Anzaltl] of things (lGl), the 

* See Section III. of my memoir, Contimtity and l,·ralit'11r1l l\rmnbers 
(Brannschweig, 1872), translated at pages 8 et seq. of the present volume. 

t Dirichlet's Vorl,,s1mgen iiber Zahlmtlu•orie, third edition, 1879, § 163, note 
on page 470. 
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proof that the form of argument known as complete 

induction ( or the inference from n to n + l) is really 

conclusive (5U), (GO), (80), and that therefore the 

definition by induction (or recursion) is determinate 

and consistent (12G). 

This memoir can be understood by any one pos­

sessing what is usually called good common sense; 

no technical philosophic, or mathematical, knowledge 

is in the least degree required. But I feel conscious 

that many a reader will scarcely recognise in the 

shadowy forms which I bring before him his numbers 

which all his life long have accompanied him as faith­

ful and familiar friends ; he will be frightened by the 

long series of simple inferences corresponding to our 

step-by-step understanding, by the matter-of-fact dis­

section of the chains of reasoning on which the laws 

of numbers depend, and will become impatient at 

being compelled to follow out proofs for truths which 

to his supposed inner consciousness seem at once evi­

dent and certain. On the contrary in just this possi­

bility of reducing such truths to others more simple, 

no matter how long and apparently artificial the series 

of inferences, I recognise a convincing proof that their 

possession or belief in them is never given by inner 

consciousness but is always gained only by a more or 

less complete repetition of the individual inferences. 

I like to compare this action of thought, so difficult 

to trace on account of the rapidity of its performance, 

with the action which an accomplished reader per-
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forms in reading; this reading always remains a more 

or less complete repetition of the individual steps 

which the beginner has to take in his wearisome 

spelling-out; a very small part of the same, and there­

fore a very small effort or exertion of the mind, is suffi­

cient for the practised reader to recognise the correct, 

true word, only with very great probability, to be 

sure; for, as is well known, it occasionally happens 

that even the most practised proof-reader allows a 

typographical error to escape him, i. e., reads falsely, 

a thing which would be impossible if the chain of 

thoughts associated with spelling were fully repeated. 

So from the time of birth, continually and in increas­

ing measure we are led to relate things to things and 

thus to use that faculty of the mind on which the 

creation of numbers depends; by this practice con­

tinually occurring, though without definite purpose, 

in our earliest years and by the attending formation 

of judgments and chains of reasoning we acquire a 

store of real arithmetic truths to which our first teach­

ers later refer as to something simple, self-evident, 

given in the inner consciousness; and so it happens 

that many very complicated notions (as for example 

that of the number [Anzaltl] of things) are errone­

ously regarded as simple. In this sense which I wish 

to express by the word formed after a well-known 

saying &.d o t1.v0pw1ro,;; a.pL0fJ,1JTLtf.t, I hope that the follow­

ing pages, as an attempt to establish the science of 

numbers upon a uniform foundation will find a gener-
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ous welcome and that other mathematicians will be 

led 0to reduce the long series of inferences to more 

moderate and attractive proportions. 

In accordance with the purpose of this memoir I 

restrict myself to the consideration of the series of 

so-called natural numbers. In what way the gradual 

extension of the number-concept, the creation of 

zero, negative, fractional, irrational and complex 

numbers are to be accomplished by reduction to the 

earlier notions and that without any introduction of 

foreign conceptions (such as that of measurable mag­

nitudes, which according to my view can attain per­

fect clearness only through the science of numbers), 

this I have shown at least for irrational numbers 

in my former memoir on Continuity (1872); in a way 

wholly similar, as I have already shown in Section III. 

of that memoir,* may the other extensions be treated, 

and I propose sometime to present this whole subjec.t 

in systematic form. From just this point of view it 

appears as something self-evident and not new that 

every theorem of algebra and higher analysis, no mat­

ter how remote, can be expressed as a theorem about 

natural numbers,-a declaration I have heard repeat­

edly from the lips of Dirichlet. But I see nothing 

meritorious-and this was just as far from Dirichlet's 

thought-in actually performing this wearisome cir­

cumlocution and insisting on the use and recognition 

of no other than rational numbers. On the contrary, 

•Pages 8 et seq. of the present volume. 
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the greatest and most fruitful advances in mathematics 

and other sciences have invariably been made by the 

creation and introduction of new concepts, rendered 

necessary by the frequent recurrence of complex phe­

nomena which could be controlled by the old notions 

only with difficulty. On this subject I gave a lecture 

before the philosophic faculty in the summer of 1854 

on the occasion of my admission as pri vat-docent in 

Gottingen. The scope of this lecture met with the 

approval of Gauss; but this is not the place to go 

into further detail. 

Instead of this I will use the opportunity to make 

some remarks relating to my earlier work. mentioned 

above, on Continuity and Irrationai Numbers. The 

theory of irrational numbers there presented, wrought 

out in the fall of 1853, is based on the phenomenon 

(Section IV.)* occurring in the domain of rational 

numbers which I designate by the term cut [ Schnitt] 

and which I was the first to investigate carefully; it 

culminates in the proof of the continuity of the new 

domain of real numbers (Section V., iv.). t It appears 

to me to be somewhat simpler, I might say easier, 

than the two theories, different from it and from each 

other, which have been proposed by Weierstrass and 

G. Cantor, and which likewise are perfectly rigorous. 

It has since been adopted without essential modifica­

tion by U. Dini in his Fondamentl per la teorica de/le 

*Pages 12 et seq. of the present volume. 

tPage 20 of the present volume, 



MEANING OF NUAfBERS. 37 

funziom· di variabili reali (Pisa, 1878); but the fact that 

in the course of this exposition my name happens to 

be mentioned, not in the description of the purely 

arithmetic phenomenon of the cut but when the au­

thor discusses the existence of a measurable quantity 

corresponding to the cut, might easily lead to the sup­

position that my theory rests upon the consideration 

of such quantities. Nothing could be further from 

the truth; rather have I in Section III.* of my paper 

advanced several reasons why I wholly reject the in­

troduction of measurable quantities; indeed, at the 

end of the paper 1 have pointed out with respect to 

their existence that for a great part of the science of 
space the continuity of its configurations is not even 

a necessary condition, quite aside from the fact that 

in works on geometry arithmetic is only casually men­

tioned by name but is never clearly defined and there­

fore cannot be employed in demonstrations. To ex­

plain this matter more clearly I note the following 

example: If we select three non-collinear points A, 

.R, Cat pleasure, with the single limitation that the 

ratios of the distances AB, AC, BC are algebraic 

numbers, t and regard as existing in space only those 

points M, for which the ratios of AM, BM, CM to AB 

~re likewise algebraic numbers, then is the space made 

up of the points M, as is easy to see, everywhere dis-

*Pages 8 et seq. of the present volume. 

t Dirichlet's T ·orla1111gw iiber Z<1ltlcntlieo,.ie, § 159 of the second edition, 
ti 16o of the third. 
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continuous; but in spite of this discontinuity, and de­

spite the existence of gaps in this space, all construc­

tions that occur in Euclid's Elements, can, so far as I 

can see, be just as accurately effected as in perfectly 

continuous space; the discontinuity of this space 

would not be noticed in Euclid's science, would not 

be felt at all. If any one should say that we cannot 

conceive of space as anything else than continuous, I 
should venture to doubt it and to call attention to the 

fact that a far advanced, refined scientific training is 

demanded in order to perceive clearly the essence of 

continuity and to comprehend that besides rational 

quantitative relations, also irrational, and besides al­

gebraic, also transcendental quantitative relations are 

conceivable. All the more beautiful it appears to me 

that without any notion of measurable quantities and 

simply by a finite system of simple thought-steps man 

can advance to the creation of the pure continuous 

number-domain; and only by this means in my view 

is it possible for him to render the notion of continu­
ous space clear and definite. 

The same theory of irrational numbers founded 

upon the phenomenon of the cut is set forth in the 

Introduction a la theorie des fonctions d'une variable by 

J. Tannery (Paris, 1886). If I rightly understand a 

passage in the preface to this work, the author has 

thought out his theory independently, that is, at a 

time when not only my paper, but Dini's Fondamenti 

mentioned in the same preface, was unknown to him. 
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This agreement seems to me a gratifying proof that 

my conception conforms to the nature of the case, a 

fact recognised by other mathematicians, e. g., by 

Pasch in his Ei,z/eitung i,z die Differential- u11d Integral­

recltmmg (Leipzig, 1883). But I cannot quite agree 

with Tannery when he calls this theory the develop­

ment of an idea due to J. Bertrand and contained in 

his Traitt! d'arilhmelique, consisting in this that an ir­

rational number is defined by the specification of all 

rational numbers that are less and all those that are 

greater than the number to be defined. As regards 

this statement which is repeated by Stolz-apparently 

without careful investigation-in the preface to the 

second part of his V()r/esu11gen i"iber al/gmzeine Aritlz­

metik (Leipzig, 1886), I venture to remark the follow­

ing: That an irrational number is to be considered 

as fully defined by the specification just described, 

this conviction certainly long before the time of Ber­

trand was the common property of all mathematicians 

who concerned themselves with the notion of the 

irrational. Just this manner of determining it is in 

the mind of every computer who calculates the ir­

rational root of an equation by approximation, and if, 

as Bertrand does exclusively in his book, (the eighth 

edition, of the year 1885, lies before me,) one regards 

the irrational number as the ratio of two measur­

able quantities, then is this manner of determining it 

already set forth in the clearest possible way in the 

celebrated definition which Euclid gives of the equal-
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ity of two ratios (Elements, V., 5). This same most 

ancient conviction has been the source of my theory 

as well as that of Bertrand and many other more or 

less complete attempts to lay the foundations for the 

introduction of irrational numbers into arithmetic. 

But though one is so far in perfect agreement with 

Tannery, yet in an actual examination he cannot fail 

to observe that Bertrand's presentation, in which the 

phenomenon of the cut in its logical purity is not 

even mentioned, has no similarity whatever to mine, 

inasmuch as it resorts at once to the existence of a 

measurable quantity, a notion which for reasons men­

tioned above I wholly reject. Aside from this fact 

this method of presentation seems also in the succeed­

ing definitions and proofs, which are based on the 

postulate of this existence, to present gaps so essential 

that I still regard the statement made in my paper 

(Section VI.),* that the theorem 1/ 2 • 1/:I = V6 has no­

where yet been strictly demonstrated, as justified with 

respect to this work also, so excellent in many other 

regards and with which I was unacquainted at that 
time. 

R. DEDEKIND. 

HARZBURG, October 5, 1887. 

•Pages 21 et seq. of this volume. 



PREFACE TO THE SECOND EDITION. 

THE present memoir soon after its appearance met 

with both favorable and unfavorable criticisms; 

indeed' serious faults were charged against it. I have 

been unable to convince myself of the justice of these 

charges, and I now issue a new edition of the memoir, 

which for some time has been out of print, without 

change, adding only the following notes to the first 

preface. 

The property which I have employed as the defi 

nition of the infinite system had been pointed out be­

fore the appearance of my paper by G. Cantor (Ein 
Beitrag zur Mannigfaltz°J{keitslelzre, Crelle's Journal, Vol. 

84, 1878), as also by Bolzano (Paradoxien des Unend­

liclzen, § 20, 1851). But neither of these authors made 

the attempt to use this property for the definition of 

the infinite and upon this foundation to establish with 

rigorous logic the science of numbers, and just in this 

consists the content of my wearisome labor which in 

all its essentials I had completed several years before 

the appearance of Cantor's memoir and at a time 

when the work of Balzano was unknown to me even 

by name. For the benefit of those who are interested 

in and understand the difficulties of such an investi-
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gation, I add the following remark. \Ve can lay down 

an entirely different definition of the finite and infinite, 

which appears still simpler since the notion of sim­

ilarity of transformation is not even assumed, viz.: 

"A system Sis said to be finite when it may be so 

transformed in itself (3G) that no proper part (li) of S 

is transformed in itself; in the contrary case S is 

called an infinite system." 

Now let us attempt to erect our edifice upon this 

new foundation! We shall soon meet with serious 

difficulties, and I believe myself \\·arranted in saying 

that the proof of the perfect agreement of this defini­

tion with the former can be obtained only (and then 

easily) when we arc permitted to assume the series of 

natural numbers as already developed and to make 

use of the final considerations in (1:-n); and yet noth­

ing is said of all these things in either the one defini­

tioh or the other! From this we can see how very 

great is the number of steps in thought needed for 

such a remodeling of a definition. 

About a year after the publication of my memoir 

I became acquainted with G. Frege's Gru11dlagm dtr 

Aritlzmetik, which had already appeared in the year 

1884. However different the view of the essence of 

number adopted in that work is from my own, yet it 

contains, particularly from § 7!J on, points of very 

close contact with my paper, especially with my defi­

nition (44). The agreement, to be sure, is not easy 

to discover on account of the different form of expres-
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sion; but the positiveness with which the author 

speaks of the logical inference from n to n + 1 (page 

93, below) shows plainly that here he stands upon the 

same ground with me. In the meantime E. Schroder's 

Vorlesungen i'iber die Algebra dcr Logik has been almost 

completed (1890-1891 ). U pan the importance of this 

extremely suggestive work, to which I pay my highest 

tribute, it is impossible here to enter further; I will 

simply confess that in spite of the remark made on 

p. 253 of Part I., I have retained my somewhat clumsy 

symbols (8) and (17); they make no claim to be 

adopted generally but are intended simply to serve 

the purpose of this arithmetic paper to which in my 

view they are better adapted than sum and product 

symbols. 

R. DEDEKIND. 

H ARZBURG, August 24, 1893. 



THE NATURE AND l\!IEANING OF 
NUMBERS. 

I. 

SYSTEMS OF ELEMENTS. 

1. In what follows I understand by thing every 

object of our thought. In order to be able easily to 

speak of things, we designate them by symbols, e.g., 

by letters, and we venture to speak briefly of the 

thing a or of a simply, when we mean the thing de­

noted by a and not at all the letter a itself. A thing 

is completely determined by all that can be affirmed 

or thought concerning it. A thing a is the same as b 

(identical with b), and b the same as a, when all that 

can be thought concerning a can also be thought con­

cerning b, and when all that is true of b can also be 

thought of a. That a and b are only symbols or names 

for one and the same thing is indicated by the nota­

tion a=b, and also by b=a. If further b=c, that 

is, if c as well as a is a symbol for the thing denoted 

by b, then is also a= c. If the above coincidence of 

the thing denoted by a with the thing denoted by b 

does not exist, then are the things a, b said to be dif­

ferent, a is another thing than b, b another thing than 
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a; there is some property belonging to the one that 

does not belong to the other. 

2. It very frequently happens that different things, 

a, b, c, ... for some reason can be considered from 

a common point of view, can be associated in the 

mind, and we say that they form a SJ'stem S; we call 

the things a, b, c, . . clements of the system S, they 

are contained in S; conversely, S consists of these 

elements. Such a system S (an aggregate, a mani­

fold, a totality) as an object of our thought is like­

wise a thing (1); it is completely determined when 

with tespect to every thing it is determined whether 

it is an element of S or not.* The system Sis hence 

tl:e same as the system T, in symbols S= T, when 

every element of S is also element of T, and every 

element of Tis also element of S. For uniformity of 

expression it is advantageous to include also the spe­

cial case where a system S consists of a single (one 

and only one) element a, i. e., the thing a is element 

of S, but every thing different from a is not an ele­

ment of S. On the other hand, we intend here for 

certain reasons wholly to exclude the empty system 

which contains no element at all, although for other 

• In what manner this determination is brought about, and whether we 
know a way of deciding upon it, is a matter of indifference for all that follows; 
the general laws to be developed in no way depend upon it; they hold under 
all circumstances. I mention this expressly because Kronecker not long ago 
(Crcllc's Journal, Vol. 99, pp. 33~-3361 has endeavored to impose certain limi­
tations upon the free formation of concepts in mathematics which I do not 
believe to be justified; but there seems to be no call to enter upon this mat• 
ter with more detail until the distinguisher! mathematician shall have pub• 
Iished his reasons for the necessity or merely the expediency of these limi• 
lations. 
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investigations it may be appropriate to imagine such 

a system. 

3. Definition. A system A is said to be part of a 

system S when every element of A is also element of 

S. Since this relation between a system A and a sys­

tem Swill occur continually in what follows, we shall 

express it briefly by the symbol A:>, S. The inverse 

symbol S£ A, by which the same fact might be ex­

pressed, for simplicity and clearness I shall wholly 

avoid, but for lack of a better word I shall sometimes 

say that S is whole of A, by which I mean to express 

that among the elements of S are found all the ele­

ments of A. Since further every elements of a system 

S by (2) can be itself regarded as a system, we can 

hereafter employ the notation s3S. 

4. Theorem. A:>,A, by reason of (3). 

5. Theorem. If A3B and B3A, then A=B. 

The proof follows from (3), (2). 

6. Definition. ,A system A is said to be a proper 

[echter] part of S, when A is part of S, but different 

from S. According to (5) then S is not a part of A, 

i. e., there is in San element which is not an element 

of A. 

7. Theorem. If A3B and B3 C, which may be 

denoted briefly by A 3 B 3 C, then is A:>, C, and A is 

certainly a proper part of C, if A is a proper part of 

B or if B is a proper part of C. 

The proof follows from ( 3), (6). 

8. Definition. By the system compounded out of 
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any systems A, B, C, ... to be denoted by m (A, B, 

C, ... ) we mean that system whose elements are de­

termined by the following prescription: a thing is 

considered as element of 111 (A, B, C, ... ) when and 

only when it is element of some one of the systems 

A, B, C, ... , i. e., when it is element of A, or B, or 

C, . . . We include also the case where only a single 

system A exists; then obviously 111 (A)=A. We 
observe further that the system 211 (A, B, C, . - •) 

compounded out of A, B, C, ... is carefully to be dis­

tinguished from the system whose elements are the 

systems A, B, C, ... themselves. 

!1. Theorem The systems A, B, C, ... are parts 

of 111 (A, B, C, ... ). 

The proof follows from (8), (3). 

10. Theorem. If A, B, C, ... are parts of a sys-

tem S, then is 111 (A, B, C, ... ) 3 S. 

The proof follows from (8), (3). 

11. Theorem. If P is part of one of the systems 

A, B, C, ... then is P·-32.11 (A, B, C, .. . ). 

The proof follows from (9), (7). 

12. Theorem. If each of the systems P, Q, .. • 
1s part of one of the systems A, B, C, . . . then is 

lli (P, Q, .. . ) -3lli (A, B, C, .. . ). 

The proof follows from (11), (10). 

13. Theorem. If A is compounded out of any of 

the systems P, Q, ... then is AllH (P, Q, ... ). 
Proof. For every element of A is by (8) element 

of one of the systems P, Q, ... , conse<J.uently by (8) 
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also element of m (P, Q, ... ), whence the theorem 

follows by (3). 

14. Theorem. If each of the systems A, B, C, .. . 

is compounded out of any of the systems P, Q, .. . 
then is 

lTI(A,B, C, .. . )3lTI(P, Q, .. . ) 

The proof follows from ( 13), (10). 

15. Theorem. If each of the systems P, Q, ... 
1s part of one of the systems A, B, C, . . . , and if 

each of the latter is compounded out of any of the 

former, then is 

2TI (P, Q, ... ) =lli (A, B, C, ... ). 

The proof follows from (12), (14), (5). 

16. Theorem. If 

A=2H (P, Q) and B=lTI (Q, R) 

then is 111 (A, R) = lTI (P, B). 

Proof. For by the preceding theorem (15) 

lli (A, R) as well as lTI (P, B) = lTI (P, Q, R). 

17. Definition. A thing g is said to be common 

element of the systems A, B, C, ... , if it is contained 

in each of these systems (that is in A and in B and 

in C . ... ) . Likewise a system Tis said to be a com­

mon part of A, B, C, ... when Tis part of each of 

these systems; and by the communil}' [ Gcmeinheit] of 

the systems A, B, C, ... we understand the perfectly 

determinate system <B (A, B, C, ... ) which consists 

of all the common elements g of A, B, C, ... and 
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hence is likewise a common part of those systems. 

We again include the case where only a single system 

A occurs; then (5 (A) (is to be put) =A. But the 

case may also occur that the systems A, B, C, ... 

possess no common element at all, therefore no com­

mon part, no community; they are then called sys­

tems without common part, and the symbol (5 (A, B, 

C, . . . ) is meaningless (compare the end of (2)). 

We shall however almost always in theorems con­

cerning communities leave it to the reader to add in 

thought the condition of their existence and to dis­

cover the proper interpretation of these theorems for 

the case of non-existence. 

18. Theorem. Every common part of A, B, C, . .. 
is part of <B r A, B, C, ... ). 

The proof follows from (17). 

19. Theorem. Every part of (5 (A, B, C, ... ) is 

common part of A, B, C, ... 

The proof follows from (17), (7). 

20. Theorem. If each of the systems A, B, C, ... 

is whole (3) of one of the systems P, Q, ... then is 

(B (P, Q, ... ) 1 <B (A, B, C, ... ) 

Proof. For every element of (!5 (P, Q, ... ) is 

common element of P, Q, ... , therefore also common 

element of A, B, C, ... , which was to be proved. 



50 THE NATURE AND 

II. 

TRANSFORMATION OF A SYSTEM. 

21. Definition.* By a tramformation [ A bbifdung] 

cf, of a system S we understand a law according to 

which to every determinate element s of S there be­

longs a determinate thing which is called the trans­

form of sand denoted by cf, (s); we say also that cf, (s) 

corresponds to the element s, that cf, (s) results or is 

produced from s by the transformation •p, that s is 

trans.formed into cf, (s) by the transformation <j,. If now 

Tis any part of S, then in the transformation cf, of S 

is likewise contained a determinate transformati::m of 

T, which for the sake of simplicity may be denoted by 

the same symbol cf, and consists in this that to every 

element t of the system T there corresponds the same 

transform cp(t), which t possesses as element of S; at 

the same time the system consisting of all transL>rms 

cf, (t) shall be called the transform of T and be denoted 

by cf, ( T), by which also the significance of cf, ( S) is 

defined. As an example of a transformation of a sys­

tem we may regard the mere assignment of deter­

minate symbols or names to its elements. The sim­

plest transformation of a system is that by which each 

of its elements is transformed into itself; it will be 

called the identical transformation of the system. For 

convenience, in the following theorems (22), (23), 

(24), which deal with an arbitrary transformation cf, of 

•See Dirichlet's Vorles,mgen uber Zaldentluorie, 3d edition, 1879, § 163. 
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an arbitrary system S, we shall denote the transforms 

of elements s and parts T respectively bys' and T'; 

in addition we agree that small .and capital italics 

without accent shall always signify elements and parts 

of this system S. 

22. Theorem.*. If A3B, then A' 3 B'. 

Proof. For every element of A' is the transform 

of an element contained in A, and therefore also in B. 

and is therefore element of B', which was to be proved. 

23. Theorem. The tranaform of lTI (A, B, C, ... ) 
• lli (A' B' C' ) IS , , , . . . . 

Proof. If we denote the system lTI (A, B, C, ... ) 

which by (10) is likewise part of S by 11.f, then is every 

element of its transform llf' the transform m' of an 

element m of 11£; since therefore by ( 8) nz is also ele­

ment of one of the systems A, B, C, . . . and conse­

quently m' element of one of the systems A', B', C', 

.. , and hence by (8) also element of !11 (A', B', C', 

. ), we have by (3) 

M'3!11(A', B', C', .. . ). 

On the other hand, since A, B, C, .. . are by (9) parts 

of M, and hence A', B', C', ... by (22) parts of M', 

we have by (10) 

lTI(A', B', C', . .. )3M'. 

By combination with the above we have by (5) the 

theorem to be proved 

llf' = IB(A', B', C', ... ), 

•See theorem 2,. 
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24. Theorem.* The transform of every common 

part of A, B, C, ... , and therefore that of the com-

munity <B (A, B, C, .. . ) is part of <B (A', B', C', .. . ). 

Proof. For by (22) it is common part of A', B', 

C', ... , whence the theorem follows by (18). 

25. Definition and theorem. If cf, is a transforma­

tion of a system S, and y, a transformation of the 

transform S' = cf, (S), there always results a transfor­

mation O of S, compoundedt out of cf, and tf,, which con­

sists of this that to every elements of S there corres­

ponds the transform 

0 (s) = tf, (s') = tf, ( cf, (s)), 

where again we have put cf, (s) =s'. This transforma­

tion O can be denoted briefly by the symbol tf,. cf, or 

y,cf,, the transform O(s) by it,cf,(s) where the ordl•r of 

the symbols cf,, if, is to be considered, since in general 

the symbol cpif, has no interpretation and actually has 

meaning only when ip(s')-3s. If now x signifies a 

transformation of the system if,(s')=tf,cf,(s) and 7J the 

transformation xtf, of the system S' compounded out 

of if, and x, then is x0(s)=xtf,(s')=7J(s')=7Jcp(s); 

therefore the compound transformations x O and 7J cf, 

coincide for every element s of S, i. e., X 0 = 7J cf,. In 

accordance with the meaning of 0 and 7J this theorem 

can finally be expressed in the form 

X • if! cf, = X if!· cf,, 

• See theorem 29. 

t A confusion of this compounding of transformations with that of sys­
tems of elements is hardly to be feared. 
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and this transformation compounded out of cf,, I{!, X 

can be denoted briefly by xl{lcf,. 

III. 

SIMILARITY OF A TRANSFORMATION. SIMILAR 
SYSTEMS. 

2G. Definition. A transformation cf, of a system S 

is said to be similar [ almliclt J or distinct, when to dif­

ferent elements a, b of the system S there always cor­

respond different transforms a'=cp(a), b'=cp(b). 

Since in this case conversely from s' = t' we always 

have s = t, then is every element of the system S' = 

cf, (S) the transforms' of a single, perfectly determi­

nate elements of the system S, and we can therefore 

set over against the transformation cf, of S an i,wcrse 

transformation of the system S', to be denoted by ~' 

which consists in this that to every element s' of S' 

there corresponds the transform 'if, ( s') = s, and obvi­

ously this transformation is also similar. It is clear that 

cf> (S') = S, that further cf, is the inverse transformation 

belonging to ~ and that the transformation 'if, cf, com­

pounded out of cf, and cf> by (25) is the identical trans­

formation of S (21 ). At once we have the following 

additions to II., retaining the notation there given. 

27. Theorem.* If A' 3B', then A 3B. 

Proof. For if a is an element of A then is a' an 

element of A', therefore also of B', hence =b', where 

bis an element of B; but since from a'=b' we always 

* See theorem 22. 
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pave a=b, then is every element of A also element of 
B, which was to be proved. 

28. Theorem. If A'= B', then A = B. 

The proof follows from (27), (4), (5). 

29. Theorem.* If G=<f>(A, B, C, .. . ), then 

G'=<B(A', B', C', . .. ). 

Proof. Every element of <f, (A', B', C', ... ) is 

certainly contained in S', and is therefore the trans­

form g' of an element g contained in S; but since g' 

is common element of A', B', C', ... then by (27) must 

g be common element of A, B, C~ . . . therefore also 

element of G; hence every element of <B (A', B', 

C', ... ) is transform of an element g of G, therefore 

element of G', i.e., <B(A', B', C', ... )3 G', and ac­

cordingly our theorem follows from (24), (5). 

30. Theorem. The identical transformation of a 

system is always a similar transformation. 

31. Theorem. If cf, is a similar transformation of 

Sand v, a similar transformation of cf, (S), then is the 

transformation v,cf, of S, compounded of cf, and v,, a sim· 

ilar transformation, and the associated inverse trans­

formation f cf,= 'cf,?,. 
Proof. For to different elements a, b of S corre­

spond different transforms a'= cf, (a), b' = cf, (b), and 

to these again different transforms v,(a') = v,cf, (a), 

v,(b')=v,cf,(b) and therefore v,<f, is a similar transfor­

mation. Besides ·every element v,cf, (s) =v,(s') of the 

system v, cf> (S) is transformed by 'iii into s' = cf, (s) and 

• See theorem 24-
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this by ?, into s, therefore y,cf, (s) is transformed by 
cp i{! into s, which was to be proved. 

32. Definition. The systems R, Sare said to be 

simi/i'zr when there exists such a similar transforma­

tion cf, of S that cf,(S)=R, and therefore~(R)=S. 

Obviously by (30) every system is similar to itself. 

33. Theorem. If R, S are similar systems, then 

every system Q similar to R is also similar to S. 

Proof. For if cf>, if, are similar transformations of 

S, R such that cf>(S)=R, y,(R)= Q, then by (31) y,cf> 

is a similar transformation of S such that if, cf> (S) = Q, 
which was to be proved. 

3-!. Definition. We can therefore separate all sys­

tems into classes by putting into a determinate class 

all systems Q, R, S, .. . , and only those, that are 

similar to a determinate system R, the representative 

of the class; according to (33) the class is not changed 

by taking as representative any other system belong­

ing to it. 

35. Theorem. If R, S are similar systems, then 

is every part of S also similar to a part of R, every 

proper part of S also similar to a proper part of R. 

Proof. For if cf, is a similar transformation of S, 

cp(S)=R, and T3S, then by (22) is the system sim­

ilar to T cf,(T)3R; if further Tis proper part of S, 

and s an element of Snot contained in T, then by (27) 

the element cf, (s) contained in R cannot be contained 

in cf, ( T) ; hence cf, ( T) is proper part of R, which was 

to be proved. 
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IV. 

TRANSFORMATION OF A SYSTEl\I IN ITSELF. 

36. Definition. If cf, is a similar or dissimilar trans­

formation of a system S, and cf, (S) part of a system 

Z, then cf, is said to be a transformation of S in Z, and 

we say S is transformed by cf, in Z. Hence we call 

cf, a transformation of the system S in itself, when 

cf, (S)3 S, and we propose in this paragraph to investi­

gate the general laws of such a transformation cf,. In 

doing this we shall use the same notations as in II. 

and again put cp(s)=s', cp(T)= T'. These trans­

forms s', T' are by (22), (7) themselves again ele­

ments or parts of S, like all things designated by italic 

letters. 

37. Definition. K is called a chain [ Kette], when 

K'3K. We remark expressly that this name does 

not in itself belong to the part K of the system S, but 

is given only with respect to the particular transfor­

mation cf,; with reference to another transformation 

of the system S in itself K can very well not be a 

chain. 

38. Theorem. S is a chain. 

39. Theorem. The transform K' of a chain K is 

a chain. 

Proof. For from K' 3 K it follows by (22) that 

(K')'3K', which was to be proved. 

40. Theorem. If A is part of a chain K, then is 

also A'3K. 
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Proof. For from A 3 K it follows by (22) that 

A'-3 K', and since by (37) K'3 K, therefore by (7) 

A'3IC, which was to be proved. 

-!l. Theorem. If the transform A' is part of a 

chain L, then is there a chain A·, which satisfies the 

conditions A3K, K'3L; and l11(A, L) is just such a 

chain K. 

Proof. If we actually put K=l11 (A, L), then by 

(9) the one condition A 3 K is fulfilled. Since further 

by (23) K' = 2.11 (A', L') and by hypothesis A'3L, 

L'3L, then by (10) is the other condition K'3L also 

fulfilled and hence it follows because by (9) L3K, 

that also K' 3 K, i. e., K is a chain, which was to be 

proved. 

42. Theorem. A system M compounded simply 

out of chains A, B, C, ... is a chain. 

Proof. Since by (23) M'=lTI(A', B', C', .. . ) and 

by hypothesis A'3B, B'3B, C'3 C, ... therefore by 

(12) JJ£'3M, which was to be proved. 

43. Theorem. The community G of chains A 

B, C, ... is a chain. 

Proof. Since by (17) G is common part of A, B, 

C, ... , therefore by (22) G' common part of A', B', 

C', ... , and by hypothesis A'3A, B'3B, C'-3 C, ... , 

then by (7) G' is also common part of A, B, C, .. . 

and hence by (18) also part of G, which was to be 

proved. 

4--1. 'Definition. If A is any part of S, we will de­

note by A 0 the community of all those chains (e.g., S) 
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of which A is part; this community A 0 exists (17) be­

cause A is itself common part of all these chains. 

Since further by (43) A 0 is a chain, we will call A 0 

the chain o.f tlu system A, or briefly the chain of A. 

This definition too is strictly related to the f undamen­

tal determinate transformation cf, of the system Sin 

itself, and if later, for the sake of clearness, it is 

necessary we shall at pleasure use the symbol cp0 (A) 

instead of A 0 , and likewise designate the chain of A 

corresponding to another transformation w l.Jy w0 (A). 

For this very important notion the following theorems 

hold true. 

45. Theorem. A3A0 • 

Proof. For A is common part of all those chains 

whose community is A 0 , whence the theorem follows 

by (18). 
4G. Theorem. (Ao)'3A 0 • 

Proof. For by(-!-!) A 0 is a chain (37). 

47. Theorem. If A is part of a chain K, then is 

also A 0 3K. 

Proof. For A 0 is the community and hence also 

a common part of all the chains K, of which A is 

part. 

48. Remark. One can easily convince himself that 

the notion of the chain A 0 defined in (-!-!) is com­

pletely characterised by the preceding theorems, ( 45), 

(46), (-!i). 

4!l. Theorem. A'3 (A 0 )'. 

The proof follows from ( 45 ), (22). 
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50. Theorem. A'3A0• 

The proof follows from ( 4!:l), ( 46), (i). 

51. Theorem. If A is a chain, then A 0=A. 

Proof. Since A is part of the chain A, then by 

(47) A 03A, whence the theorem follows by (-!3), C:>). 
52. Theorem. If B3A, then B3A0• 

The proof follows from ( 45 ), (7). 

53. Theorem. If B3A0, then B 03A0, and con­

versely. 
Proof. Because A O is a chain, then by ( •!7) from 

B3A0, we also get B 03A0; conversely, if B/3A0, then 

by (7) we also get B3A0, because by (45) B3B0• 

54. Theorem. If B3A, then is B/'>A0 • 

The proof follows from (52), (53). 

55. Theorem. If B3A0 , then is also B'3A0 • 

Proof. For by (53) B 03A0, and since by (50) B'3B0, 

the theorem to be proved follows by (7). The same 

result, as is easily seen, can be obtained from (22), 

(46), (7), or also from (40). 

56. Theorem. If B3 A 0 , then is (Be)'·'> (A 0 )'. 

The proof follows from (53), (22). 

57. Theorem and definition. (Ao)'= (A')0 , 1. e., 

the transform of the chain of A is at the same time 

the chain of the transform of A. Hence we can desig­

nate this system in short by A'0 and at pleasure call it 

the chain-transform or transform-chain of A. \Vith the 

clearer notation given in ( 44) the theorem might be 

expressed by cp(cpo(A))=cf>0 (q,(A)). 

Proof. If for brevity we put (A') 0 =L, L is a 
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chain (44) and by (45) A'3L; hence by (41) there ex­

ists a chain K satisfying the conditions A·3K, A-'-~L; 

hence from (47) we have A/,K, therefore (A 0)'-!,A-', 

and hence by (7) also (A0)' 3 L, i. e., 

(A 0 )' -3 (A')o· 

Since further by (49) A'-3 (A0)', and by (44), (;HI) 

(A 0)' is a chain, then by (47) also 

(A') 0 3 (A 0 )', 

whence the theorem follows !Jy com !Jining with the 

preceding result (5). 

58. Theorem. A 0 =211(A, .;/'0 ), i. c., the chain of 

A is compounded out of A and the transform-chain 

of A. 

Proof. If for brevity we again put 

L=A'0 =(A0 )'=(A')0 and K=2TI(A, L), 

then by (45) A'3L, and since L is a chain, by (-!1) 

the same thing is true of K; since further A 3 K (!1), 

therefore by ( 4 7) 

A/,K. 

On the other hand, since by ( 45) A 3 A 0 , and by ( ..J.6) 

also L 3 A 0, then by (10) also 

whence the theorem to be proved A 0 =K follows by 

combining with the preceding result (3). 

5!). Theorem of complete induction. In order to 

show that the chain A 0 is part of any system l- be 

this latter part of Sor not-it is sufficient to show, 

P· that A 3 l, and 



MEANING OF NUJ1IBERS. 

u. that the transform of every common element of 

A 0 and l is likewise element of l. 

Proof. For if p is true, then by ( 45) the com­

munity G = <fj (A0 , l) certainly exists, and by (18) 

A 3 G; since besides by (17) 

G3A0 , 

then is G also part of our system S, which by cf, is 

transformed in itself and at once by (i>5) we have also 

G' 3 A 0 • If then er is likewise true, i. e., if G'3 l, then 

must G' as common part of the systems A 0 , l by (18) 

be part of their community G, i. e., G is a chain (3i), 

and since, as above noted, A 3 G, then by (-!i) is also 

A 0 3G, 

and therefore by combination with the preceding re­

sult G = A 0 , hence by (17) also A 0 3 l, which was to 
be proved. 

GO. The preceding theorem, as ,vill be shown later, 

forms the scientific basis for the form of demonstra­

tion known by the name of complete induction (the 

inference from n to n + 1) ; it can also be stated in 

the following manner: In order to show that all ele­

ments of the chain A 0 possess a certain property <f 
(or that a theorem 5 dealing with an undetermined 

thing n actually holds good for all elements n of the 

chain A 0 ) it is sufficient to show 

p. that all clements a of the system A possess the 

property <f (or that 5 holds for all a's) and 

er. that to the transform 11' of every such element 

n of A 0 possessing the property <f, belongs the same 
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property <f (or that the theorem 5, as soon as it holds 

for an element n of A 0 , certainly must also hold for 

its transform n'). 

Indeed, if we denote by l the system of all things 

possessing the property <f ( or for which the theorem 

5 holds) the complete agreement of the present man­

ner of stating the theorem with that employed in (5fl) 

is immediately obvious. 

Gl. Theorem. The chain of 2l1(A, B, C, .. . ) is 

m (A0 , B,,, C0 , ••• ). 

Proof. If we designate by M the former, by X 

the latter system, then by (42) K is a chain. Since 

then by (45) each of the systems A, B, C, ... is part 

of one of the systems A 0 , B 67 C0 , ••• , and therefore 

by (12) M3K, then by (47) we also have 

Jlf0 :3K. 

On the other hand, since by (!l) each of the systems 

A, B, C, ... is part of .llf, and hence by (·15), (7) 

also part of the chain M 0 , then by ( 47) must also each 

of the systems A 0, B 0, C0, ••• be part of M,,, therefore 

by (10) 

whence by combination with the preceding result fol­

lows the theorem to be proved M 0 =K (5). 

62. Theorem. The chain of 63 (A, B, C, ... ) is 

part of 63 (A0 , B 0 , C0 , ••• ). 

Proof. If we designate by G the former, by K the 

latter system, then by ( 43) K is a chain. Since then 

ei:i.Ch of the systems A 0, B 0, C0, ••• by (45) is whole 
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of one of the systems A, B, C, ... , and l:.ence by (20) 

G 3 K, therefore by ( 47) we obtain the theorem to be 

proved G0 3 K. 

G3. Theorem. If K' 3 L 3 K, and therefore K is a 

chain, L is also a chain. If the same is proper part 

of K, and U the system of all those elements of K 

which are not contained in L, and if further the chain 

u;, is proper part of K, and V the system of all those 

elements of K which are not contained in u;,, then is 

K = 211 ( u;,, V) and L = lH ( U'0 , V). If finally L=K' 
then V3 V'. 

The proof of this theorem of which (as of the two 

preceding) we shall make no use may be left for the 
reader. 

v. 
THE FINITE AND INFINITE. 

G-!. Definition.* A system Sis said to be in.finite 

when it is similar to a proper part of itself (32); in 

the contrary case Sis said to be a finite system. 

65. Theorem. Every system consisting of a single 
element is finite. 

Proof. For such a system possesses no proper 
part (2), (6). 

• If one does not care to employ the notion of similar systems (32) he must 
say: Sis said to be mfinite, when there is a proper part of S (6) in which S 
can be distinctly (similarly) transformed (26), (36). In this form I submitted 
the definttion of the infinite which forms the core of my whole investigation 
in September, 1882, to G Cantor and several years earlier to Schwarz and 
\Veber. All other attempts that havP. come to my knowledge to distinguish 
the infinite from the finite seem to me to have met with so little succsss that 
i think I may be permitted to forego any criticism of them. 
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6G. Theorem. There exist infinite systems. 

Proof.* My own realm of thoughts, i. e., the to­

tality 5 of all things, which can be objects of my 

thought, is infinite. For ifs signifies an element of 

S, then is the thought s', that s can be object of my 

thought, itself an element of S. If we regard this as 

transform q, (s) of the element s then has the transfor­

mation q, of S, thus determi!)ed, the property that the 

transform 5' is part of S; and S' is certainly proper 

part of S, because there are elem en ts in S ( e. g., my 

own ego) which are different from such thoughts' and 

therefore are not contained in S'. Finally it is clear 

that if a, b are different elements of S, their trans­

forms a', // are also different, that therefore the trans­

formation q, is a distinct (similar) transformation (26). 

Hence Sis infinite, which was to be proved. 

G7. Theorem. If R, Sare similar systems, then is 

R finite or infinite according as S is finite or infinite. 

Proof. If Sis infinite, therefore similar to a proper 

part S' of itself, then if R and S arc similar, S' by 

(33) must be similar to R and by(~~) likewise similar 

to a proper part of R, which therefore by (33) is itself 

similar to R; therefore R is infinite, which was to be 

proved. 

68. Theorem. Every system S, which possesses 

an infinite part is likewise infinite; or, in other words, 

every part of a finite system is fi.ni te. 

•A similar consideration is found in§ 13 of the I'aradoxie11 des Uncnd­
liclzcn by Balzano (Leipzig, 1851). 
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Proof. If Tis infinite and there is hence such a 

similar transformation y, of T, that y,(T) is a proper 

part of T, then, if T is part of S, we can extend this 

transformation y, to a transformation cf, of S in which, 

ifs denotes any element of S, we put cf,(s) =y,(s) or 

cf, (s) = s according as s is element of Tor not. This 

transformation cf, is a similar one; for, if a, b denote 

different elements of S, then if both are contained in 

T, the transform cf,(a)=y,(a) is different from the 

transform q,(b)=y,(b), because y, is a similar transfor­

mation; if further a is contained in T, but b not, then 

is q,(a)=y,(a) different from q,(b)=b, because tf,(a) 

is contained in T; if finally neither a nor b is con­

tained in Tthen also is cf,(a)=a different from cf,(b)=b, 

wh:ch was to be shown. Since further y,( T) is part 

of T, because by (i) also part of S, it is clear that also 

1, (S) 3 S. Since finally y,( T) is proper part of T there 

exists in T and therefore also in S, an element t, not 

contained in y, ( T) = cf, ( T) ; since then the transform 

cf, (s) of every element s not contained in Tis equal to 

s, and hence is different from t, t cannot be contained 

in 1,(S); hence cf,(S) is proper part of Sand conse­

quently Sis infinite, which was to be proved. 

Gfl. Theorem. Every system which is similar to 

a part of a finite system, is itself finite. 

The proof follows from (67), (68). 

70. Theorem. If a is an element of S, and if the 

aggregate T of all the elements of S different from a is 

finite, then is also S finite. 
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Proof. We have by (64) to show that if q, denotes 

any similar ·transformation of S in itself, the trans­

form q, (S) or S' is never a proper part of S but al­

ways = S. Obviously S= 211 (a, T) and hence by 

(23), if the transforms are again denoted by accents, 

S' = 2.11 (a', T'), and, on account of the similarity of 

the transformation q,, a' is not contained in T' (26). 

Since further by hypothesis S'-3 S, then must a' and like­

wise every element of T' either = a, or be element of 

T. If then-a case which we will treat first-a is not 

contained in T', then must T' 3 T and hence 1· 1 = T, 
because q, is a similar transformation and because Tis 

a finite system; and since a', as remarked, is not con­

tained in T', i.e., not in T, then must a'= a, and hence 

in this case we actually have S' = S as was stated. In 

the opposite case when a is contained in T' and hence 

is the transform b' of an element b contained in T, we 

will denote by Uthe aggregate of all those elements u 

of T, which are different from b; then T= 2.11 (b, U) 
and by (]5) S=2.11(a, b, U), hence S'=-=2.H(a', a, U'). 

We now determine a new transformation If of T in 

which we put i/!(b)=a', and generally tp(11)=1l, 

whence by (23) i/!(T)=2.H(a', U'). Obviously if, is 

a similar transformation, because q, was such, and be­

cause a is not contained in U and therefore also a' not 

in U'. Since further a and every element u is differ­

ent from b then ( on account of the similarity of q,) 

must also a' and every element u' be different from a 

and consequently contained in T; hence tp( T) ~ T 
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and smce Tis finite, therefore must tf!(T) =T, and 

m (a', U') = T. From this by (15) we obtain 

211 (a', a, U') = 211 (a, T) 

i. e., according to the preceding S' = S. Therefore 

in this case also the proof demanded has been se­

cured. 

VI. 

SIMPLY INFINITE SYSTEMS. SERIES OF NATURAL 

NUMBERS. 

71. Definition. A system N is said to be simply 

infinite when there exists a similar transformation cf, of 

Nin itself such that N appears as chain (-1-!) of an 

element not contained in cf, (~V). We call this ele­

ment, which we shall denote in what follows by the 

symbol 1, the base-element of 1V and say the simply 

infinite system N is set in order [geordnet] by this 

transformation cf>. If we retain the earlier convenient 

symbols for transforms and chains (IV) then the es­

sence of a simply infinite system N consists in the 

existence of a transformation cf, of N and an element 1 

which satisfy the following conditions a, {3, y, o: 

a. N'3N. 

{3. N=l0 • 

y. The element 1 is not contained in N'. 

8. The transformation cf, is similar. 

Obviously it follows from a, y, 8 that every simply in­

finite system N is actually an infinite system ( 6-!) be­

cause it is similar to a proper part N' of itself. 
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72. Theorem. In every infinite system Sa simply 

infinite system N is contained as a part. 

Proof. By (64) there exists a similar transforma­

tion cf, of S such that cf, (S) or S' is a proper part of 

S; hence there exists an element 1 in S which is not 

contained in S'. The chain N=l0 , which corresponds 

to this transformation cf, of the system Sin itself (44), 

is a simply infinite system set in order by cf,; for the 

characteristic conditions a, /3, y, 8 in (71) are obvi­

ously all fulfilled. 

73. Definition. If in the consideration of a simply 

infinite system N set in order by a transformation cf, 

we entirely neglect the special character of the ele­

ments; simply retaining their distinguishability and 

taking into account only the relations to one another 

in which they are placed by the order-setting trans­

formation cf,, then are these elements called naturat 

numbers or ordinal numbers or simply numbers, and the 

base-element 1 is called the base-number of the number­

series N. With reference to this freeing the elements 

from every other content (abstraction) we are justified 

in calling numbers a free creation of the human mind. 

The relations or laws which are derived entirely from 

the conditions a, /3, y, 8 in (71) and therefore are al­

ways the same in all ordered simply infinite systems, 

whatever names may happen to be given to the indi­

vidual elements (compare 134), form the first object of 

the science of numbers or arithmetic. From the general 

notions and theorems of IV. about the transformation 
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of a system in itself we obtain immediately the follow­

ing fundamental laws where a, b, ... 111, n, ... always 

denote elements of N, therefore numbers, A, B, C, . .. 

parts of JV, a', b', ... m', n', ... A', B', C' ... the 

corresponding transforms, whic1¼ are produced by the 

order-setting transformation cf, and are always ele­

ments or parts of N; the transform n' of a number n 

is also called the number following n. 

74. Theorem. Every number n by (-!5) is con­

tained in its chain 110 and by (53) the condition n3m0 

is equivalent to n03 1110• 

75. Theorem. By (3i) ,(,=(Ii,)' = (n') 0 • 

76. Theorem. By (-!li) n'3n,,. 

77. Theorem. By (58) 110=2.TI(n, n'0). 

i8. Theorem. N=!TI (1, JV'), hence every num­

ber different from the base-number 1 is element of N', 

i. e., transform of a number. 

The proof follows from (77) and (71 ). 

79. Theorem. 1V is the only number-chain con­

taining the base-number 1. 

Proof. For if 1 is element of a number-chain K, 

then by (47) the associated chain N1K, hence N=K, 

because it is self-evident that K11V. 

80. Theorem of complete induction (inference 

from n to 11'). In order to show that a theorem holds 

for all numbers n of a chain m0 , it is sufficient to show, 

p. that it holds for n = m, and 

u. that from the valid~y of the theor&,m for a num-
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ber n of the chain 1110 its validity for the following 

number 1z' always follows. 

This results immediately from the more general 

theorem (59) or (60). The most frequently occurring 

case is where m = 1 and therefore m0 is the complete 
number-series .N. 

VII. 

GREATER AND LESS NU:MBERS. 

81. Theorem. Every number n is different from 
the following number n'. 

Proof by complete induction (80) : 

p. The theorem is true for the number n = 1, be­

cause it is not contained in N' (71), while the follow­

ing number 1' as transform of the number 1 contained 
in N is element of N'. 

u. If the theorem is true for a number n and we 

put the following number n' =P, then is n different 

from p, whence by (26) on account of the similarity 

(71) of the order-setting transformation cf, it follows 

that n', and therefore p, is different from p'. Hence 

the theorem holds also for the number p following n, 
which was to be proved. 

82. Theorem. In the transform-chain n'. of a num­

ber n by (7 4), (75) is contained its transform n', but 
not the number n itself. 

Proof by complete induction (80): 

p, The theorem is true for n = J, because 1'0 = N', 
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and because by (71) the oase-number 1 1s not con­

tained in LV'. 

u. If the theorem 1s true for a number n, and we 

again put n' = p, then is n not contained in p0 , there­

fore is it different from every number q contained in 

P0 , whence by reason of the similarity of cp it follows 

that n', and therefore p, is different from every num­

ber q' contained in p'0 , and is hence not contained in 

p',,. Therefore the theorem holds also for the number 

p following n, which was to be proved. 

83. Theorem. The transform-chain n'0 is proper 

part of the chain n0 • 

The proof follows from (76), (7 4), (82). 

84. Theorem. From m0 = n0 it follows that m = 11. 

Proof. Since by (74) mis contained in m0 , and ; 

m0 = n0 = 211 (n, n'0 ) 

by (77), then if the theorem were false and hence m 

different from n, m would be contained in the chain 

n'0 , hence by (74) also m)n'0 , i.e., n)n'0 ; but this 

contradicts theorem (83). Hence our theorem is es­

tablished. 

85. Theorem. If the number n is not contained 

in the number-chain K, then is K 3 n'0 • 

Proof by complete induction (80): 

p. By ( 78) the theorem is true for n = l. 
u. If the theorem is true for a number n, then is 

it also true for the following number p = n'; for if p 
is not contained in the number-chain K, then by (40) 

n also cannot be contained in K and hence by our 
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hypothesis K3n'0; now since by (77) n'0=P0= 
m (p, p'0), hence K 3 lTI (p, p'0) and p is not contained 

in K, then must K3p'0, which was to be proved. 

86. Theorem. If the number n is not contained 

in the number-chain K, but its transform n' is, then 

K=n'0 • 

Proof. Since n is not contained in K, then by 

( 85) K 3 n'0 , and since n' 3 K, then by ( 47) is also 

n'/,K, and hence K=n'0, which was to be proved. 

87. Theorem. In every number-chain K there ex­

ists one, and by (84) only one, number k, whose chain 

k0 =K. 

Proof. If the base-number 1 is contained in K, 

then by (79) K = N = 10• In the opposite case let Z 

be the system of all numbers not contained in K; 

since the base-number 1 is contained in Z, but Z is 

only a proper part of the number-series N, then by 

(79) Z cannot be a chai~, i. e., Z' cannot be part of 

Z; hence there exists in Z a number n, whose trans­

form n' is not contained in Z, and is therefore certainly 

contained in K; since further n is contained in Z, and 

therefore not in K, then by (86) K = n'0 , and hence 

k=n', which was to be proved. 

88. Theorem. If m, n are different numbers then 

by (83), (84) one and only one of the chains m0, n0 is 

proper part of the other and either n0 3111'0 or m_?, n'0 • 

Proof. If n is contained in 1110, and hence by (74) 

also n03 m0, then m can not be contained in the chain 11,, 

(because otherwise by (74) we should have m03n0, 
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therefore m0 = 110 , and hence by (84) also m = n) and 

thence it follows by (85) that 110 3111'0 • In the contrary 

case, when n is not contained in the chain m0 , we must 

have by (85) m 0 311'0 , which was to be proved. 

8fl. Definition. The number m is said to be less 

than the number n and at the same time n greater than 

111, in symbols 

when the condition 

is fulfilled, which by (74) may also be expressed 

n3m'0 • 

90. Theorem. If m, n are any numbers, then al­

ways one and only one of the following cases.\, µ., v 

occurs: 

.\. m=n, n=m, 1. e., 1110 =n0 

JL· 1ll < 11, n>m, 1. e., n)m'0 

v. m > n, n<m, 1. e., m.3 n'0 • 

Proof. For if .\ occurs (84) then can neither µ. 

nor v occur because by (83) we never have n0 3n'0 • But 

if .\ does not occur then by (88) one and only one of 

the cases µ.. v occurs, which was to be proved. 

91. Theorem. n < 11'. 

Proof. For the condition for the case v in (90) is 

fulfilled by m = n'. 

92. Definition. To express that m is either = n 

or < n, hence not > n (90) we use the symbols 

m < n or also n > m = = 
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and we say m is at 111ost equal to 11, and n is at least 

equal tom. 

93. Theorem. Each of the conditions 

111<n, 111<n', 110 3111 0 

is equivalent to each of the others. 

Proof. For if 111 < 11, then from >.., µ. m (DO) we 

always have 110 3111.,, because by (ili) 111'0 ·3111. Con­

versely, if 11.,3m0, and therefore by(7-1-) also 1131110, it fol­

lows from m0 = 211 (m, m'J that either 11 = 111, or n3 111'.,, 

i.e., n>111. Hence the condition 111< 11 is equivalent 

to n03tn0• Besides it follows from (ii), (~7), (ir>) 

that this condition n031110 is again equivalent to 11'.,-3111',,, 

1. e., byµ. in (!JO) to 111 < n', which was to be proved. 

9--1. Theorem. Each of the conditions 

111' < n, 111' < n', m < n 

is equivalent to each of the others. 

The proof follows immediately from ( !13), if we 

replace in it 111 by 111', and from µ. in (flO). 

95. Theorem. If l<111 and m<n or if /~111, and 

m<n, then is l<n. 

l<n. 

But if l< 111 and m < 11, then is = = 

Proof. For from the corresponding conditions 

(89), (93) m0 3!'0 and n0 31110 , we have hy (7) 11_-3 /' 0 and 

the same thing comes also from the conditions 1110 3 !0 

and n.3111'0, because in consequence of the former we 

have also m'_3l'0• Finally from m03l0 and n.:',1110 we 

have also 110 310 , which was to be proved. 

9G. Theorem. In every part T of N there exists 

one and only one least number k, i. e., a number k 
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which is less than every other number contained in 

T. If T consists of a single number, then is it also 

the least number in T. 

Proof. Since T 0 is a chain (44), then by (87) there 

exists one number k whose chain k 0 = T.,. Since from 

this it follows by ( 45), (77) that T3 2.11 (k, k'0 ), then 

first must k itself be contained in T (because other­

wise T-3k'0, hence by (47) also T03k'0, i. e., k·3k'0, 

which by (83) is impossible), and besides every num­

ber of the system T, different from k, must be con­

tained in k'0 , i.e., be >k (89), whence at once from 

(90) it follows that there exists in Tone and only one 

least number, which was to be proved. 

97. Theorem. The least number of the chain n0 is 

n, and the base-number l is the least of all numbers. 

Proof. For by (74), (93) the condition 11dn0 is 

equivalent to m ~ n. Or our theorem also follows im­

mediately from the proof of the preceding theorem, 

because if in that we assume T= n0 , evidently k = n 

(51). 
98. Definition. If n is any number, then will we 

denote by Z,. the system of all numbers that are not 

greater than n, and hence not contained in n'0 • The 

condition 
ndZ,. 

by (92), (93) is obviously equivalent to each of the 

following conditions : 

1ll < n, 1Jl < n', 110 -3 mo. 

99. Theorem. 1 ~ Z,. and n-3 Z,.. 
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The proof follows from (98) or from (71) and (82). 

100. Theorem. Each of the conditions equivalent 

by (98) 

m:iz,., m::;,n, m <n', n.3m. 

is also equivalent to the condition 

Z,,,3Z,,. 

Proof. For if m3 Z,,, and hence m < n, and if /3 Z,,,, 

and hence l<m, then by (95) also 1<11, i.e., 13Z,,; if 

therefore m 3 Z,,, then is every element l of the system 

Z,,, also element of Z,., i.e., Z,,,3Z,,. Conversely, if 

Z,,. 3 Z,,, the:r:.t by (7) must also m 3 Z,,, because by (UO) 

m 3 Zm, which was to be proved. 

101. Theorem. The conditions for the cases A, p,, 

v in (90) may also be put in the following form: 

A. m=n, 11=111, Z 111 =Z,, 

p,. m < n, n > 111, z,,,.3 X,, 

v. m > n, n < m, Z,,.-3 Z,,,. 

The proof follows immediately from (90) if we ob­

serve that by (100) the conditions n.3 m0 and Z,,, 3 Z,, are 

equivalent. 

102. Theorem. Z1=1. 
Proof. For by (OD) the base-number 1 is con­

tained in Z1, while by (78) every number different 

from 1 is contained in 1'0 , hence by (08) not in Z1, 

which was to be proved. 

103. Theorem. By (!"!8) N =ID (Z,,, 11'0 ). 

104. Theorem. n = (B (Z,,, 11.,), i. e., n is the only 

common element of the system Z,, and n0 • 

Proof. From (99) and (74) it follows that n is 
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contained in Z,, and 110 ; but every element of the chain 

110 different from n by (7i) is contained inn'., and hence 

by (!18) not in Z,., which was to be proved. 

105. Theorem. By (91 ), (98) the number n' is not 

contained in Z,.. 

l0G. Theorem. If m < 11, then is Z,,, proper part 

of Z,, and conversely. 

Proof. If m < n, then by (100) Z,,, 3 Z,,, and since 

the number 11, by (9!1) contained in Z,,, can by (98) 

not be contained in Z,,, because n> 111, therefore Z,,. is 

proper part of Z,,. Conversely if Z,,. is proper part of 

Z,, then by (100) m < 11, and since m cannot be = n, 

because otherwise Z,,, = Zn, we must have m < n, which 

was to be proved. 

107. Theorem. Z,. is proper part of z,. .. 
The proof follows from (l0G), because by (91) 

n<n'. 

108. Theorem. z,.. = 2TI (Z,,, n'). 

Proof. For every number contained in Z,,. by (98) 

is _s;: 11', hence either = 11' or < 11', and therefore by ( 98) 

element of Z,.. Therefore certainly z,..3 211 (Z,,, n'). 

Since conversely by (l0i) Z,,3Z,,. and by (99) n'3Z,.,, 

then by (10) we have 

211 (Z,,, n') 1 Z,,., 

whence our theorem follows by (5). 

10!:J. Theorem. The transform Z',, of the system 

Z,, is proper part of the system Z,, .. 

Proof. For every number contained in Z',. is the 

transform m' of a number m contained in Zn, and since 
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m < 11, and hence by (94) 111' <__, 11', we have by (!JB) 

Z',.3Z,,.. Since further the number 1 by (Dfl) is con­

tained in Z,.., but by (71) is not contained in the trans­

form Z',., then is Z',, proper part of z,,., which was to 

be proved. 

110. Theorem. Z,,,=lTI(l, Z',,). 

Proof. Every number of the system Z,,. different 

from 1 by (78) is the transform m' of a number m and 

this must be < n, and hence by (f18) contained in Z,, 

(because otherwise 111 > n, hence by ( fl4) also 111' > n' 

and consequently by (!JS) m' would not be contained 

in Z,.,); but from m3Z,, we have 111'3Z',,, and hence 

certainly 

Z,..3111 (1, Z',,). 

Since conversely by (!l!J) B Z,,, and by (1 OD) Z',,-iz,,., 

then by (10) we have 2.11 (1, Z',,)3 z,,. and hence our 

theorem follows by (5). 

111. Definition. If in a system E of numbers 

there exists an element g, which is greater than every 

other number contained in E, then g is said to be the 

greatest number of the system E, and by (DO) there can 

evidently be only one such greatest number in E. If 

a system consists of a single number, then is this num­

ber itself the greatest number of the system. 

112. Theorem. By (98) n is the greatest number 
of the system Z,,. 

113. Theorem. If there exists in E a greatest 

number g, then is E 3 Zc. 

Proof. For every number contained in Eis <g 
=' 
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and hence by (98) contained in ZE, which was to be 

proved. 

114. Theorem. If E is part of a system Zn, or 

what amounts to the same thing, there exists a num­

ber n such that all numbers contained in E are <n, 

then E possesses a greatest number g. 

Proof. The system of all numbers p satisfying 

the condition E ·3 z..,.-and by our hypothesis such 

numbers exist-is a chain (37), because by (107), 

(7) it follows also that E-3 Zp., and hence by (87) =g0 , 

where g signifies the least of these numbers (96), (97). 

Hence also E 3 z,.., therefore by (98) every number con­

tained in E is <g, and we have only to show that the 

number g is itself contained in E. This is immediately 

obvious if g= 1, for then by (102) Zi:, and consequently 

also E consists of the single number 1. But if g is 

different from 1 and consequently by (78) the trans­

form/' of a number_/, then by (108) is E3m(zfl g); 

if therefore g were not contained in E, then would 

E 3 Zft and there would consequently be among the 

numbers p a number .f by (91) <g, which is contrary 

to what precedes; hence g is contained in E, which 

was to be proved. 

115. Definition. If l<m and m<n we say the 

number m lies between land n (also between n and l). 

116. Theorem. There exists no number lying be­

tween n and n'. 

Proof. For as soon as m < n', and hence by (93) 
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m < n, then by (90) we cannot have n < m, which was 

to be proved. 

117. Theorem. If tis a number in T, but not the 

least (96), then there exists in T one and only om 

next less number s, i. e., a numbers such that s < t, 
and that there exists in T no number lying bet,Yecn s 

and t. Similarly, if tis not the greatest number in T 

(111) there always exists in Tone and only one next 

greater number 11, i.e., a number u such that t<u, 

and that there exists in T no number lying bet\yeen t 

and u. At the same time in T t is next greater than s 

and next less than u. 

Proof. If tis not the least number m T, then let 

E be the system of all those numbers of T that are 

<t; then by (!JS) E3Z11 and hence by (114) there 

exists in Ea greatest numbers obviously possessing 

the properties stated in the theorem, and also it is the 

only such number. If further t is not the greatest 

number in T, then by (9G) there certainly exists among 

all the numbers of T, that are > t, a least number u, 

which and which alone possesses the properties stated 

in the theorem. In like manner the correctness of the 

last part of the theorem is obvious. 

118. Theorem. In Nthe number n' is next greater 

than n, and n next less than n'. 

The proof follows from (116), (117). 
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VIII. 

FINITE AND INFINITE PARTS OF THE NUMBER-
SERIES. 

119. Theorem. Every system Z,. in (98) is finite. 

Proof by complete induction (80). 

p. By (G5), (102) the theorem is true for n=l. 

CT. If Z,. is finite, then from (108) and (70) it fol­

lows that Z,,, is also finite, which was to be proved. 

120. Theorem. If m, n are different numbers, then 

are Z,,., Z,. dissimilar systems. 

Proof. By reason of the symmetry we may by 

(90) assume that m < n; then by (106) Z,,, is proper 

part of Z,., and since by (119) Z,. is finite, then by (64) 

Zm and Z,. cannot be similar, which was to be proved. 

121. Theorem. Every part E of the number­

series N, which possesses a greatest number (111), is 

finite. 

The proof follows from (113), (119), (68). 

122. Theorem. Every part U of the number-series 

N, which possesses no greatest number, is simply in­

finite (71 ). 

Proof. If u is any number in U, there exists in V 
by (117) one and only one next greater number than 

u, which we will denote by tf, ( u) and regard as trans­

form of u. The thus perfectly determined transforma­

tion If! of the system Uhas obviously the property 

a. tf, ( U) 3 U, 
i. e., U is transformed in its elf by If· If further u, v 
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are different numbers in U, then by symmetry we may 

by (90) assume that u < v; thus by (117) it follows 

from the definition of y, that y, (u) < v and v < y, (v), 

and hence by (95) y,(u) < y,(v); therefore by (90) the 

transforms y,(u), y,(v) are different, i.e., 

8. the transformation V' is similar. 

Further, if u1 denotes the least number (96) of the 

system U, then every number u contained in U is 

>u1, and since generally u<y,(u), then by (95) u1< 

y,(u), and therefore by (90) 111 is different from t(u), 

1. e., 

y. the element 111 of U is not contained in "1( U). 

Therefore y, ( U) is proper part of U and hence by (64) 

Uis an infinite system. If then in agreement with 

(44) we denote by y,0( V), when Vis any part of U, 
the chain of V corresponding to the transformation ip, 
we wish to show finally that 

[3. U=t.(u1). 

In fact, since every such chain Y'o ( V) by reason of its 

definition (44) is a part of the system U transformed 

in itself by y,, then evidently is y,.(u1) 3U; conversely 

it is first of all obvious from ( 45) that the element u1 

contained in U is certainly contained in "10 (u1); but 

if we assume that there exist elements of U, that 

are not contained in t. (u1), then must there be among 

them by (96) a least number w, and since by what 

precedes this is different from the least number u1 of 

the system U, then by (117) must there exist in U 

also a number v which is next less than w, whence it 



JlIEANING OF NUllfBERS. 

follows at once that w = cf, ( v); since therefore v < w, 

then must 11 by reason of the definition of w certainly 

be contained in If,, (111); but from this by (55) it fol­

lows that also if, (21), and hence w must be contained 

in y,0 (u1), and since this is contrary to the definition of 

w, our foregoing hypothesis is inadmissible; therefore 

U 3 if, v ( u1) and hence also U = if,,, (111), as stated. From 

a, {3, y, S it then follows by (71) that U is a simply in­

finite system set in order by if,, which was to be proved. 

12:3. Theorem. In consequence of (121), (122) 

any part To£ the number-series JV is finite or simply 

infinite, according as a greatest number exists or does 

not exist in T. 

IX. 

DEFINITION OF A TRANSFORMATION OF THE 

NUMBER-SERIES BY INDUCTION. 

12°1. In what follows we denote numbers by small 

Italics and retain throughout all symbols of the pre­

vious sections VI. to VIII., while O designates an 

arbitrary system whose elements are not necessarily 

contained in N. 

125. Theorem. If there is given an arbitrary (sim­

ilar or dissimilar) transformation 0 of a system O in 

itself, and besides a determinate element w in 0, then 

to every number n corresponds one transformation 

o/n and one only of the associated number-system Z,. 

explained in (98), which satisfies the conditions:* 

* For clearness here and in the following theorom (126) I have especially 
mentioned condition I., although properly it is a consequence of II. and III 
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I. 1/f,. (Z,.) 30 

II. 1/f,.(l)=w 

III. 1/f,.(t')=Ot,.(t), if t<n, where the symbol 

01/f,. has the meaning given in (25). 

Proof by complete induction (80). 

P· The theorem is true for n = l. In this case in­

deed by (102) the system Z,. consists of the single 

number 1, and the transformation 1/', is therefore com­

pletely defined by II alone so that I is fulfilled wbile 

III drops out entirely. 

u. If the theorem is true for a number n then we 

show that it is also true for the following number 

p =n', and we begin by proving that there can be only 

a single corresponding transformation 1/'p of the sys­

tem Z~. In fact, if a transformation 1/'p satisfies the 

conditions 

I'. 1/fp (Zp) 3 0 

II'. 1/'p (1) = w 

III'. t;(m')=Otp(m), when m<P, then there is 

also contained in it by (21), because Z,. 3 Zp (107) a 

transformation of Z,. which obviously satisfies the 

same conditions I, II, III as 1/f,., and therefore coin­

cides throughout with If,,; for all numbers contained 

in Z,., and hence (98) for all numbers m which are 

<P, i. e., < n, must therefore 

ipp(m)=1/f,. (m) (m) 

whence there follows, as a special case, 

'PP (n)=ifl,. (n); (n) 

since further by (105), (108) p is the only number of 
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the system Zp not contained in Z,., and since by III' 

and (n) we must also have 

'fp (p) =()If,. (n) (P) 

there follows the correctness of our foregoing state­

ment that there can be only one transformation 'fp of 

the system 7,P satisfying the conditions I', II', III', 

because by the conditions (m) and (p) just derived 

'fp is completely reduced to If,,• We have next to show 

conversely that this transformation Y,p of the system 

Zp completely determined by (111) and (P) actually 

satisfies the conditions I', II', III'. Obviously I' fol­

lows from (m) and (P) with reference to I, and because 

() (0) ·3 n. Similarly 11' follows from (m) and II, since 

by (!HI) the number 1 is contained in Z,,. The correct­

ness of III' follows first for those numbers m which 

are < n from (m) and III, and for the single number 

m = n yet remaining it results from (p) and (n). Thus 

it is completely established that from the validity of 

our theorem for the number n always follows its valid­

ity for the following number p, which was to be proved. 

12G. Theorem of the definition by induction. If 

there is given an arbitrary (similar or dissimilar) trans­

formation () of a system n in itself, and besides a de­

terminate element w in n, then there exists one and 

only one transformation t/1 of the number-series N, 

which satisfies the conditions 

I. if, (N) 30 

II. if,(1) =w 
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III. y,(n')=Oy,(n), where n represents every num­

ber. 
Proof. Since, if there actually exists such a trans­

formation y,, there is contained in it by (21) a trans­

formation V'n of the system Z,,, which satisfies the con­

ditions I, II, III stated in (125), then because there 

exists one and only one such transformation y,,, must 

necessarily 
y,(n) =y,,, (n). (n) 

Since thus y, is completely determined it follows also 

that there can exist only one such transformation y, 
(see the closing remark in (130)). That conversely 

the transformation tf! determined by (n) also satisfies 

our conditions I, II, III, follows easily from (n) with 

reference to the properties I, II and (P) shown in (125), 

which was to be proved. 

127. Theorem. Under the hypotheses made in the 

foregoing theorem, 

y, (T')= Oy,( T), 

where T denotes any part of the number-series N. 

Proof. For if/ denotes every number of the sys­

tem T, then y,(T') consists of all elements tf!(t'), and 

Oy,(T) of all elements Oy,(t); hence our theorem fol­

lows because by III in (126) y,(t')=Oy,(t). 

128. Theorem. If we maintain the same hypoth­

eses and denote by 00 the chains (44) which corre­

spond to the transformation O of the system O in itself, 

then is 
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Proof. We show first by complete induction (80) 

that 
I{, (N) 3 00 (w), 

1. e., that every transform I{, (n) is also element of 

00 (w). In fact, 

p. this theorem is true for n = 1, because by (126, 

II) l{,(l)=w, and because by (45) w300 (w). 

er. If the theorem is true for a number n, and hence 

l{,(n)300 (w), then by (55) also O(y;(n))300 (w), i.e., by 

(126, III) l{,(n')30o(w), hence the theorem is true for 

the following number n', which was to be proved. 

In order further to show that every element v of 

the chain 00 (w) is contained in y;(N), therefore that 

00 (w)31{,(1V) 

we likewise apply complete induction, i. e., theorem 

( 59) transferred to O and the transformation 0. In 

fact, 

p. the element w=l{,(l), and hence is contained in 

lf!(N). 

u. If v is a common element of the chain 00 (w) 

and the system l{,(N), then v=l{,(n), where n denotes 

a number, and by (126, III) we get O(v)=Oy;(n)= 

l{,(n'), and therefore O(v) is contained in y;(N), which 

was to be proved. 

From the theorems just established, y;(N)300 (w) 

and 00 (w)31{,(N), we get by (5) l{,(N)=00 (w), which 

was to be proved. 

129. Theorem. Under the same hypotheses we 

have generally : 



88 THE NATURE AND 

y,(n0 ) = 00 (y, ( n)). 

Proof by complete induction (80). For 

P· By (128) the theorem holds for n = 1, since 

l 0 =Nand y,(l)=w. 
a-. If the theorem is true for a number n, then 

0 (y,(n0 ) )= 0( 0.,( y,(n))); 

since by (12i), (75) 
0(y,(n0 )) =y,(n'0 ), 

and by (57), (126, III) 

0( 00 (y,(n))) = 00 (0(y,(n))) = Oo(i/J(n') ), 

we get y,(n'0 )=0.(y,(n')), 

i.e., the theorem is true for the number n' following 

n, which was to be proved. 
130. Remark. Before we pass to the most im­

portant applications of the theorem of definition by in­

duction proved in (12G), (sections X-XIV), it is worth 

while to call attention to a circumstance by which it 

is essentially distinguished from the theorem of dem­

onstration by induction proved in (80) or rather in 

(59), (60), however close may seem the relation be­

tween the former and the latter. For while the theorem 

(59) is true quite generally for every chain A 0 where 

A is any part of a system S transformed in itself by 

any transformation cp (IV), the case is quite different 

with the theorem (12G), which declares only the exist­

ence of a consistent ( or one-to-one) transformation y, 

of the simply infinite system 10 • If in the latter the­

orem (still maintaining the hypotheses regarding O 

and 0) we replace the number-series 10 by an arbitrnrv 
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chain A 0 out of such a system S, and define a trans­

formation If of A 0 in O in a manner analogous to that 

in (12G, II, III) by assuming that 

p. to every element a of A there is to correspond a 

determinate element If (a) selected from 0, and 

<r. for every element n contained in A 0 and its 

transform n'=<f,(11), the condition lf!(n')=0f(n) is to 

hold, then would the case very frequently occur that 

such a transformation If does not exist, since these con­

ditions p, er may prove incompatible, even though the 

freedom of choice contained in p be restricted at the 

outset to conform to the condition (J". An example will 

be sufficient to convince one of this. If the system S 

consisting of the different elements a and bis so trans­

formed in itself by <p that a'= b, b' =a, then obviously 

a0 =b0 -:=S; suppose further the system O consisting of 

the different elements a, f3 and y be so transformed in 

itself by 0 that 0(a)=/3, 0(f3)=y, 0(y)=a; if we 

now demand a transformation lfl of a0 in O such that 

if;(a) =- a, and that besides for every element n con­

tained in a0 always f(n')=0if;(n), we meet a contra­

diction; since for n=a, we get lfl(b) =0(a)=/3, and 

hence for n=b, we must have if;(a)=0(/3)=y, while 

we had assumed f(a) =a. 

But if there exists a transformation if; of A 0 in 0, 

which satisfies the foregoing conditions p, <T without 

contradiction, then from (GO) it follows easily that it 

is completely determined; for if the transformation X 

satisfies the same conditions, then we have, generally, 
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X (n) = t/1 (n), since by p th is theorem is true for all ele­

m en ts n = a contained in A, and since if it is true 

for an element n of A 0 it must by cr be true also for its 

transform n'. 

13]. In order to bring out clearly the import of 

our theorem (12G), we will here insert a consideration 

which is useful for other investigations also, e. g., for 

the so-called group-theory. 

We consider a system n, whose elements allow a 

certain combination such that from an element v by 

the effect of an element w, there always results again a 

determinate element of the same system n, which may 

be denoted by w. v or w v, and in general is to be dis­

tinguished from vw. We can also consider this in 

such a way that to every determinate element w, there 

corresponds a determinate transformation of the sys­

tem n in itself (to be denoted by ~J), in so far as every 

element v furnishes the determinate transform w (v) = 
wv. If to this system n and its element w we apply 

theorem (12G), designating by w the transformation 

there denoted by 0, then there corresponds to every 

number n a determinate element t/1 (n) contained inn, 

which may now be denoted by the symbol w" and some­

times called the nth power of w; this notion is com­

pletely defined by the conditions imposed upon it 

I I. w 1 ,-::c_c w 

I I I. w"' = w w", 

and its existence 1s established by the proof of the­

orem (12G). 
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If the foregoing combination of the elements is 

further so qualified that for arbitrary elements p., v, 

co, we always have w(vp.) =wv(p.), then are true also 

the theorems 

whose proofs can easily be effected by complete in­

duction and may be left to the reader. 

The foregoing general consideration may be im­

mediately applied to the following example. If Sis 

a system of arbitrary elements, and O the associated 

system whose elements are all the transformations v of 

Sin itself (36), then by (25) can these elements be con­

tinually compounded, since v(S)3S, and the transfor­

mation wv compounded out of such transformations v 

and w is itself again an element of 0. Then are also 

all elements w" transformations of S in itself, and we 

say they arise by repetition of the transformation w. 

We will now call attention to a simple connection ex­

isting between this notion and the notion of the chain 

w0 (A) defined in (44), where A again denotes any part 

of S. If for brevity we denote by A,. the transform 

w" (A) produced by the transformation w", then from 

III and (25) it follows that w(A,,)=A,... Hence it is 

easily shown by complete induction (80) that all these 

systems A,, are parts of the chain w0 (A); for 

p. by (50) this statement is true for n = 1, and 

er. if it is true for a number n, then from (55) and 

from A,,.= w(A,,) it follows that it is also true for the 

following number n', which was to be proved. Since 
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further by ( 45) A-3 w0 (A), then from (10) it results that 

the system K compounded out of A and all transforms 

An is part of w,, (A). Conversely, since by (23) w(K) 

is compounded out of w(A)=A 1 and all systems 

w(A,,)=A,.., therefore by (78) out of all systems A,,, 

which by (9) are parts of K, then by (10) is w (K)-3 K, 

i. e., K is a chain (3i), and since by (!l) A -3 K, then 

by (47) it follows also that that w0 (A) 3 K. Therefore 

wo(A)=K, i. e., the following theorem holds : If w is a 

transformation of a system Sin itself, and A any part 

of S, then is the chain of A corresponding to the trans­

formation w compounded out of A and all the trans­

forms w"(A) resulting from repetitions of w. We ad­

vise the reader with this conception of a chain to re­

turn to the earlier theorems (5i), (58). 

X. 

THE CLASS OF SIMPLY INFINITE SYSTEMS. 

132. Theorem. All simply infinite systems are 

similar to the number-series N and consequently by 

(33) also to one another. 

Proof. Let the simply infinite system O be set in 

order (71) by the transformation 0, and let w be the 

base-element of O thus resulting; if we again denote 

by 00 the chains corresponding to the transformation 

0 (4-1), then by (71) is the following true: 

a. 0(0)30. 

/3. 0=00 (w). 



,JIEANJNG OF .NUMBERS. 93 

-y. w is not contained in 0(0). 

8. The transformation 0 is similar. 

If then tf; denotes the transformation of the number­

series N defined in (126); then from f3 and (128) we 

get first 
tf;(N)=O, 

and hence we have only yet to show that t/; is a sim­

ilar transformation, i. e., (2G) that to different num­

bers 111, n correspond different transforms if; (111), if; (n). 

On account of the symmetry we may by (90) assume 

that 111 > n, hence 1113 11'0, and the theorem to prove 

comes to this that tf;(n) is not contained in if;(n'0), and 

hence by (127) is not contained in 0if;(n0). This we 

establish for every number n by complete induction 
(80). In fact, 

p. this theorem is true by -y for n = 1, since tf; (l) = w 

and tf; (10) = If (N) = 0. 

er. If the theorem is true for a number n, then is it 

also true for the following number n'; for if y;(n'), 

i.e., 0tf;(n), were contained in 0if;(n'0), then by 8 and 

(27), tf;(n) would also be contained in if;(n'0) while 

our hypothesis states just the opposite; which was to 
be proved. 

133. Theorem. Every system which is similar to 

a simply infinite system and therefore by (132), (33) 

to the number-series N is simply infinite. 

Proof. If O is a system similar to the number­

series N, then by (32) there exists a similar transfor­

mation If of .N such that 
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then we put 
II. if,(1) =w. 

If we denote, as in (26), by if, the inverse, likewise 

similar transformation of 0, then to every element v 

of O there corresponds a determinate number f(v)=n, 

viz., that number whose transform if,(n) =v. Since 

to this number n there corresponds a determinate fol­

lowing number cf, (n) = n', and to this again a deter­

minate element if, (n') in O there belongs to every ele­

ment v of the system O a determinate element if, (n') of 

that system which as transform of v we shall designate 

by O (v). Thus a transformation () of O in itself is com­

pletely determined,* and in order to prove our the­

orem we will show that by () 0 is set in order (71) as a 

simply infinite system, i. e., that the conditions a, /3, 

y, 3 stated in the proof of (132) are all fulfilled. First 

:i is immediately obvious from the definition of 0. 
Since further to every number n corresponds an ele­

ment v=cf,(n), for which O(v) =if,(n'), we have gen­
erally, 

III. if,(n') =Oif,(n), 

and thence m connection with I, II, a it results that 

the transformations 0, if, fulfill all the conditions of 

theorem (126); therefore /3 follows from (128) and I. 

Further by (127) and I 

if,(N') = flif, (N) = 0 (0), 

and thence in combination with II and the similarity 

• Evidently 9 is the transformation t/J cf, ifi compounded by (25) out of ifi, '1>, t/1. 
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of the transformation tf! follows y, because otherwise 

"1(1) must be contained in tf,(iV'), hence by (27) the 

number 1 in 1V', which by ('il, y) is not the case. If 

finally p., v denote elements of O and m, n the corre­

sponding numbers whose transforms arc lf(m)=p., 

lf(n)=v, then from the hypothesis H(p.)=O(v) it fol­

lows by the foregoing that lf(m')=lf(n'), thence on 

account of the similarity of If, cf> that 111' = n', m = n, 

therefore also p. = v; hence also 8 is true, which was 

to be proved. 

13-!. Remark. By the two preceding theorems 

(132), (133) all simply infinite systems form a class in 

the sense of (3-!). At the same time, with reference to 

(71), (73) it is clear that every theorem regarding 

numbers, i. e., regarding the elements 11 of the simply 

infinite system N set in order by the transformation cf>' 

and indeed every theorem in which we leave entirely 

out of consideration the special character of the ele­

ments n and discuss only such notions as arise from 

the arrangement cf>, possesses perfectly general validity 

for ~very other simply infinite system O set in order by 

a transformation {) and its elements v, and that the 

passage from N to O (e. g., also the translation of an 

arithmetic theorem from one language into another) 

is effected by the transformation If considered in 

(132), (133), which changes every element n of N into 

an element v of 0, i. e., into if;(n). This element v 

can be called the 11th element of n and accordingly 

the number n is itself the nth number of the number-
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series N. The same significance which the transfor­

mation cf, possesses for the laws in the domain N, in 

so far as every element n is followed by a determinate 

element cf, (n) = n', is found, after the change effected 

by t{,, to belong to the transformation fJ for the same 

laws in the domain n, in so far as the element v = if, (11) 

arising from the change of n is followed by the ele­

ment O(v)=t{,(n') arising from the change of n'; we 

are therefore justified in saying that by t{, cf, is changed 

into 0, which is symbolically expressed by 0=t{,cf,i{,, 

cf,= 'iii 0t{,. By these remarks, as I believe, the defini­

tion of the notion of numbers given in (73) is fully 

justified. We now proceed to further applications of 

theorem (126). 

XI. 

ADDITION OF NUMBERS. 

135. Definition. It is natural to apply the defini­

tion set forth in theorem (126) of a transformation t/J 
of the number-series N, or of the function t{,(n) deter­

mined by it to the case, where the system there de­

noted by n in which the transform if, (N) is to be con­

tained, is the number-series N itself, because for this 

system n a transformation 0 of n in itself already ex­

ists, viz., that transformation cf, by which N is set in 

order as a simply infinite system (71 ), (73). Then is 

also O=N. 0(n)=cf,(n)=n', hence 

I. if, ( N) 3 .l\T, 

and it remains in order to determine t{, completelr 
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only to select the element w from O, i. e., from N, at 

pleasure. If we take w= 1, then evidently i/t becomes 

the identical transformation (21) of N, because the 

conditions 
i/t(l)=l, i/t(n')=(i/t(n))' 

are generally satisfied by i/t (n) = n. If then we are to 

produce another transformation if! of N, then for w we 

must select a number m' different from 1, by (78) con­

tained in N, where m itself denotes any number; since 

the transformation if! is obviously dependent upon the 

choice of this number m, we denote the correspond­

ing transform if! (n) of an arbitrary number n by the 

symbol m + 11, and call this number the sum which 

arises from the number m by the addition of the num­

ber n, or in short the sum of the numbers m, n. 

Therefore by (126) this sum is completely determined 

by the conditions* 

II. m+l=m', 

111. m+n'=(m+n)'. 

136. Theorem. m'+n=m+n'. 

Proof by complete induction (80). For 

p. the theorem is true for n = 1, since by (135, II) 

111' + 1 = (m')' =(m + l)', 

and by (135, III) (m + 1)' =m + l'. 
•The above definition of addition based immediately upon theorem (z261 

seems to me to be the simplest. By the aid of the notion developed in (131) 
we can, however, define the sum m+n by ,t,11(111) or also by ,t,m(n), where ,f, has 
again the foregoing meaning. In order to show the complete agreement of 
these definitions with the foregoing, we need by (126) only to show that if 
,t,n(m) or ,t,m(n) is denoted by ,i,(n), the conditions ,i,(1)=m', ,i,(n')=,t,,i,(n) are 
fulfilled which is easily done with the aid of complete induction (So) by the 
help of (131). 
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er. If the theorem is true for a number n, and we 

put the following number n'=P, then is 111'+1i= 

m + p, hence also (m' + n)' = (m + p)', whence by (135, 

III) m' + p = m + p'; therefore the theorem is true 

also for the following number p, which was to be 
proved. 

137. Theorem. m' + n= (m + n)'. 

The proof follows from (136) and (135, III). 

138. Theorem. 1 + n=n'. 

Proof by complete induction (80). For 

P· by (135, II) the theorem is true for n = 1. 

er. If the theorem is true for a number n and we 

put n'=P, then 1 + n=p, therefore also (1 + n)'=p', 

whence by (135, III) 1 + p = p', i. e., the theorem is 

true also for the following number p, which was to be 
proved. 

139. Theorem. 1 + n = n + 1. 

The proof follows from (138) and (135, II). 

140. Theorem. m + n = n + m. 

Proof by complete induction (80). For 

P· by (139) the theorem is true for n = 1. 

er. If the theorem is true for a number n, then there 

follows also (m+n)'=(n+m)', i.e., by (135, III) 

m + n'= n + m', hence by (136) m + n'= n' + 111; there­

fore the theorem is also true for the following number 

n', which was to be proved. 

141. Theorem. (l+m)+n=l+(m+n). 

Proof by complete induction (80). For 
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p. the theorem is true for n= 1, because by (135, 

II, III, II) (l+m)+l=(l+m)'=l+m'=l+(m+l). 
er. If the theorem is true for a number n, then there 

follows also ((!+ 111) + n)' =(I+ (m + n))', i. e., by 

(135, III) 

(I+ m) + n'=l+ (m + n)'=l+ (m + n'), 

therefore the theorem is also true for the following 

number n', which was to be proved. 

142. Theorem. m + n > 111. 

Proof by complete induction (80). For 

p. by (135, II) and (91) the theorem is true for 

n=l. 

er. If the theorem is true for a number n, then by 

(95) it is also true for the following number n', be­

cause by (135, III) and (91) 

m +n'=(m+ n)'>m+n, 

which was to be proved. 

143. Theorem. The conditions m > a and m + n> 

a+ n are equivalent. 

Proof by complete induction (80). For 

p. by (135, II) and (94) the theorem is true for 
n=l. 

er. If the theorem is true for a number n, then is it 

also true for the following number n', since by (94) 

the condition m + n >a+ n is equivalent to (m + n)'> 

(a+ n)', hence by (135, III) also equivalent to 

m + n' > a+ n', 

which was to be proved. 
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144. Theorem. If m > a and n > b, then is also 

m+n>a+b. 

Proof. For from our hypotheses we have by (143) 

m+n>a+n and n+a>b+a or, what by (140) is 

the same, a + n >a+ b, whence the theorem follows 

by (95). 

145. Theorem. If m+n=a+n, then m=a. 

Proof. For if m does not = a, hence by (90) either 

m>a or m<a, then by (143) respectively m+n> 

a+ n or m + n <a+ n, therefore by ( 90) we surely 

cannot have m+n=a+n, which was to be proved. 

146. Theorem. If l> n, then there exists one and 

by (157) only one number m which satisfies the con­

dition m + n=l. 

Proof by complete induction (80). For 

p. the theorem is true for n = 1. In fact, if l> 1, 

i. e., (89) if l is contained in N', and hence is the 
transform m' of a number m, then by (135, II) it fol­

lows that l= m + l, which was to be proved. 

u. If the theorem is true for a number n, then we 

show that it is also true for the following number n'. 

In fact, if l> n', then by (91), (95) also l> n, and hence 

there exists a number k which satisfies the condition 

l=k+ n; since by (138) this is different from 1 (other­

wise l would be = n') then by (78) is it the transform 

m' of a number m, consequently l=m' + n, therefore 

also by (136) l=m+ n', which was to be proved. 
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XII. 

MULTIPLICATION OF NUMBERS. 

1-17. Definition. After having found in XI an in­

finite system of new transformations of the number­

series Nin itself, we can by (126) use each of these 

in order to produce new transformations 1/J of N 

When we take 11=JV, and O(n)=m+ n =n+m, 

where m is a determinate number, we certainly again 

have 
I. I/J(N)3N, 

and it remains, to determine 1/J completely only to se­

lect the element w from N at pleasure. The simplest 

case occurs when we bring this choice into a certain 

agreement with the choice of 0, by putting w=m. 

Since the thus perfectly determinate 1/J depends upon 

this number m, we designate the corresponding trans­

form 1/J(n) of any number n by the symbol m X n or 

m. n or m n, and call this number the product arising 

from the number m by multiplication by the number n, 

or in short the product of the numbers m, 11. This 

therefore by (126) is completely determined by the 

conditions 
II. m.l=m 

Ill. 111 n' = m n + m, 

1-18. Theorem. m' n = m n + n. 

Proof by complete induction (80). For 

p. by (1-J.7, II) and (135, II) the theorem 1s true 

for n=l. 
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er. If the theorem is true for a number n, we have 

m' n+ m'=(mn + n) + 111' 

and consequently by (147, III), (141), (140), (136), 

(141), (147, III) 

m' n' =mn + (n + 111') = 111 n + (m'+ n) =m n + (m+n') 

=(mn + m) + n' =m n' + n'; 

therefore the theorem is true for the following num­

ber n', which was to be proved. 

149. Theorem. 1. n = n. 

Proof by complete induction (80). For 

P· by (147, II) the theorem is true for n=l. 

er. If the theorem is true for a number n, then we 

have l.n-1-1=-=n+l, i.e., by (147, III), (135, II) 

1 . n' = n', therefore the theorem also holds for the fol­

lowing number n', which was to be proved. 

150. Theorem. m n =nm. 

Proof by complete induction (80). For 

p by (14 7, II), (149) the theorem is true for n = l. 
er. If the theorem is true for a number n, then we 

have 
m n + 111 =nm+ 111, 

i. e., by (147, I II), (148) m n' = n' m, therefore the the­

orem is also true for the following number n', which 

was to be proved. 

151. Theorem. l(m+n)=lm+ln. 

Proof by complete induction (80). For 

p. by (135, II), (147, III), (147, II) the theorem 

is true for n = l. 
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rr. If the theorem is true for a number n, we have 

l(m + n) + l=(lm + ln)+l; 

but by (14i, III), (135, III) we have 

l(m + n) + l=l(m + n)'=l(m + n'), 

and by (141 ), (14 7, III) 

(lm + /11) + l=lm + (ln+ l)=lm+ ln', 

consequently !(111 + n') = lm + In', i. e., the theorem 

is true also for the following number n', which was to 

be proved. 

152. Theorem. (m + n)l=ml+ nl. 

The proof follows from (1-51 ), (150). 

153. Theorem. (lm)n=l(mn). 

Proof by complete induction (80). For 

P· by ( 147, II) the theorem is true for n = 1. 

rr. If the theorem is true for a number n, then we 

have 
(Im) n+ lm=l(mn) + lm, 

i. e., by (147, Ill), (151), (147, III) 

(./m)n'= l(mn + m)=l(mn'), 

hence the theorem is also true for the following num­

ber 11', which was to be proved. 

154. Remark. If in (147) we had assumed no re­

lation between w and 0, but had put w=k, O(n)= 

m + n, then by (126) we should have had a less simple 

transformation if, of the number-series N; for the num­

ber 1 would "1 ( 1) = k and for every other number 

(therefore contained in the form n') would t(n')= 

m n + k; since thus would be fulfilled, as one could 
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easily convince himself by the aid of the foregoing 

theorems, the condition tfJ(n')= 0tfJ(n), i. e. 1 y,(n')= 

m+.p(n) for all numbers n. 

XIII. 

INVOLUTION OF NUMBERS. 

155. Definition. If in theorem (126) we again put 

O=N, and further (l)=a, 0(n)=an=na, we get a 

transformation .p of N which still satisfies the condi•• 
tion 

I. .p(N)3N; 
the corresponding transform .p (n) of any number n 

we denote by the symbol a", and call this number a 

power of the base a, while n is called the exponent of 

this power of a. Hence this notion is completely de­

termined by the conditions 

II. a1=a 

III. a"' =a.a"=a".a. 
156. Theorem. a'"+"= a"'. a". 

Proof by complete induction (80). For 

P· by (135, II), (155, III), (155, II) the theorem 
is true for n= 1. 

u. If the theorem is true for a number n, we have 

a"'+n. a= (a"'. a")a_; 

but by (155, III), (135, III) a"'+".a=a<"'+">'-=a"'+"', 

and by (153), (155, III) (a"'.a")a=a'"(a".a)=a"'.a"'; 

hence a"'+"'= a"'. a"', i. e., the theorem is also true for 

the following number n', which was to be proved. 

157. Theorem. (a"')"= a""'. 
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Proof by complete induction (80). For 

p. by (155, II), (147, II) the theorem is true for 

-;l=1. 

u. If the theorem is true for a number n, we have 

but by (155, III) (am)". a"'= (am)"', and by (156), (147, 

III) a""'.a"'=a11111+111 =a"'"0
; hence (a"')"'=a'""', i.e., 

the theorem is also true for the following number n', 

which was to be proved. 

158. Theorem. (ab)"=a".b". 

Proof by complete induction (80). For 

p. by (155, II) the theorem is true for n = l. 
u. If the theorem is true for a number 11, then by 

(150), (153), (155, III) we have also (ab)" .a= 

a(a".b")=(a.a")b"=a" 0 .b", and thus ((ab)".a)b= 

(a"'.b")b; but by (153), (155, III) ((ab)".a)b= 

(ab)". (ab)=( ab)"', and likewise 

(a"'. b") b = a"'. (b". b) = a"'. b"'; 

therefore (ab)"'=a"'.b"', i.e., the theorem is also true 

for the following number n', which was to be proved. 

XIV. 

NUMBER OF THE ELEMENTS OF A FINITE SYSTEM. 

159. Theorem. If l is an infinite system, then is 

every one of the number-systems Z,. defined in (98) 

similarly transformable in l (i. e., similar to a part of 

l), and conversely. 

Proof. If l is infinite, then by (72) there certainly 

exists a part T of l, which is simply infinite, there-
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fore by (132) similar to the number-series JV, and con­

sequently by (35) every system Z,, as part of N is sim­

ilar to a part of T, therefore also to a part of ~. which 
was to be proved. 

The proof of the converse-however obvious it 

may appear-is more complicated. If every system Z,, 

is similarly transformable in ~, then to every number 

n corresponds such a similar transformation a,, of Z,, 

that a,, (Z,,) 3 l. From the existence of such a series 

of transformations a regarded as given, but respect-
"' 

ing which nothing further is assumed, we derive first 

by the aid of theorem (12G) the existence of a new 

series of such transformations tf;,, possessing the spe­

cial property that whenever m < 11, hence by (100) 

Z,,. 3 Z,,, the transformation tf;,,, of the part Z,,, is con­

tained in the transformation tf;,. of z,, (21 ), i. e., the 

transformations if,,,, and tf;,, completely coincide with 

each other for all numbers contained in Z,,,, hence al­
ways 

if,,,, (m) = ift,, (m). 

In order to apply the theorem stated to gain this end 

we understand by n that system whose elements are 

all possible similar transformations of all systems Z,. 

in l, and by aid of the given elements a,,, likewise 

contained in n, we define in the following manner 

a transformation 0 of n in itself. If /3 is any element 

of 0, thus, e. g., a similar transformation of the de­

terminate system z,. in l, then the system a,., (Z,.,) 

cannot be part of {3(Z,.), for otherwise Z,.. would be 
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similar by (35) to a part of Z,,, hence by (107) to a 

proper part of itself, and consequently infinite, which 

would contradict theorem (119); therefore there cer­

tainly exists in Z,., one number or several numbers fr 

such that a,., (P) is not contained in /3 (Z,.) ; from these 

numbers p we select-simply to lay down something 

determinate-always the least k (96) and, since Z,,. by 

(108) is compounded out of Z,, and 11', define a trans­

formation y of Z,,. such that for all numbers m con­

tained in Z,, the transform y (111) = /3 (m) and besides 

y(n') =a,.,(k); this obviously similar transformation y 

of Z,., in l we consider then as a transform 0(/3) of the 

transformation {3, and thus a transformation 0 of the 

system O in itself is completely defined. After the 

things named n and 0 in (12G) are determined we se­

lect finally for the element of O denoted by w the given 

transformation a 1 ; thus by (12G) there is determined 

a transformation V' of the num her-series JV inn, which, 

if we denote the transform belonging to an arbitrary 

number n, riot by V' (n) but by if!,., satisfies the condi­

tions 
II. V'l =a1 

III. i/J,.,=0(if!,.) 

By complete induction (80) it results first that if!,. is a 

similar transformation of Z,. in l; for 

P· by II this is true for n = 1. 
u. if this statement is true for a number n, it fol­

lows from III and from the character of the above de­

scribed transition 0 from f3 to y, that the statement is 
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also true for the following number n', which was to be 

proved. Afterward we show likewise by complete in­

duction (80) that if m is any number the above stated 
property 

tft,,(m) =t/tm(m) 

actually belongs to all numbers n, which are >m, and 

therefore by (93), (74) belong to the chain 1110 ; m 
fact, 

p. this is immediately evident for n = m, and 

u. if this property belongs to a number n it follows 

again from III and the nature of 0, that it also belongs 

to the number n', which was to be proved. After this 

special property of our new series of transformations 

if;,, has been established, we can easily prove our the­

orem. We define a transformation x of the number­

series N, in which to every number n we let the trans­

form x(n)=if;,,(n) correspond; obviously by (21) all 

transformations .,, are contained in this one trans-.,,,, 
formation X· Since 'Pn was a transformation of Z,, in 

l, it follows first that the number series N is likewise 

transformed by X in l, hence x(N) 3 l. If further m, 

n are different numbers we may by reason of sym­

metry according to (90) suppose m < n; then by the 

foregoing x(m)=if;,,,(m)=if;,,(m), and x(n)=if;,,(n); 

but since if;,, was a similar transformation of Z,, in l, 
and m, n are different elements ut Z,,, then is if;" (m) 

different from if;,, (n), hence also X (m) different from 

X (n), i. e., Xis a similar transformation of N. Since 

further N is an infinite system (71 ), the same thing 
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is true by (67) of the system x (N) similar to it and 

by (68), because x(.N) is part of S, also of S, which 

was to be proved. 

160. Theorem. A system S is finite or infinite, 

according as there does or does not exist a system 

Z,. similar to it. 

Proof. If S is finite, then by (159) there exist 

systems Z,. which are not similarly transformable in 

S; since by ( 102) the system Z1 consists of the single 

number 1, and hence is similarly transformable in 

every system, then must the least number k (96) to 

which a system Z1: not similarly transformable in S cor­

responds be different fn,m 1 and hence by (78) =n', 

and since n < n' (91) there exists a similar transforma­

tion if, of Z,, in S; if then if, (Z,.) were only a proper part 

of S, i. e., if there existed an element a in S not con­

tained in if,(Z,.), then since Z,.,=lTI(Zn, n') (108) 

we could extend this transformation if, to a similar 

transformation if, of z,.. in S by putting if,(n') =a, while 

by our hypothesis Z,., is not similarly transformable 

in S. Hence if,(Z,.)=S, i.e., Z,.and Sare similar 

systems. Conversely, if a system S is similar to a 

system Z,., then by (119), (67) S is finite, which was 
to be proved. 

161. Definition. If S is a finite system, then by 

(160) there exists one and by (120), (33) only one 

single number n to which a system Z,, similar to the 

system S corresponds; this number n is called the 

numbeJ [Anzalzl] of the elements contained in S (or 
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also the degree of the system l) and we say l consists 

of or is a system of n elements, or the number n shows 

lzow many elements are contained in l.* If numbers 

are used to express accurately this determinate prop­

erty of finite systems they are called cardinal numbers. 

As soon as a determinate similar transformation if! of 

the system Z,. is chosen by reason of which ip(Z,,)=Z, 

then to every number m contained in Z,, ( i. e., every 

number m which is < n) there corresponds a determi­

nate element ip(m) of the system l, and conversely 

by (26) to every element of l by the inverse trans­

formation if! there corresponds a determinate number 

m in Z,.. Very often we denote all elements of l by a 

single letter, e. g., a, to which we append the distin­

guishing numbers m as indices so that if!(m) is denoted 

by a,,,. We say also that these elements are counted 

and set in order by if! in determinate manner, and call 

am the mth element of l; if 111 < n then a,,., is called 

the element fiollowing a and a is called the last ele-,,,, 11 

ment. In this counting of the elements therefore the 

numbers m appear again as ordinal numbers (73). 

162. Theorem. All systems similar to a finite sys­

tem possess the same number of elements. 

The proof follows immediately from (33), (161). 

163. Theorem. The number of numbers contained 

in Z,., i. e., of those numbers which are <n, is n. 

* For clearness and simplicity in what follows we restrict the notion of 
the number throughout to finite systems; if then we speak of a number of cer­
tain things, it is always understood that the system whose elements these 
things are is a finite system. 
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Proof. For by (32) Z,, is similar to itself. 

164,. Theorem. If a system consists of a single 

element, then is the number of its elements =1, and 

con verse I y. 

The proof follows immediately from (2), (26), (32), 

(102), (1 Gl ). 

165. Theorem. If Tis proper part of a finite sys­

tem :S, then is the number of the elements of T less 

than that of the elements of :S. 
Proof. By ( GS) T is a finite system, therefore 

similar to a system X.,,, where m denotes the number 

of the elements of T; if further n is the number of 

elements of :S, therefore :S similar to Z,,, then by (35) 

Tis similar to a proper part E of Z" and by (33) also 

Z,,, and E are similar to each other; if then we were 

to have n < 111, hence Z,, ·1 X,,,, by (7) E would also be 

proper part of Z,,,, and consequently Z,,. an infinite 

system, which contradicts theorem (1 Hl); hence by 

(90), m < 11, which was to be proved. 

166. Theorem. If r = 111 (B, y), where B denotes 

a system of n elements, and y an element of r not 

contained in B, then r consists of n' elements. 

Proof. For if B=tf! (Z,,), where If denotes a sim­

ilar transformation of Z,,, then by (105), (108) it may 

be extended to a similar transformation tfl of z,,., by 

putting if;(n')=y, and we get tf,(Z,,,) = r, which w:1.s to 

be proved. 

167. Theorem. If y is an element of a system r 
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consisting of n' elements, then is n the number of all 

other elements of r. 
Proof. For if B denotes the aggregate of allele­

ments in r different from y, then is r=- lli(B, y); if 

then b is the number of elements of the finite system 

B, by the foregoing theorem b' is the number of ele­

ments of r, therefore = n', whence by (26) we get 

b = n, which was to be proved. 

168. Theorem. If A consists of 111 elements, and 

B of n elements, and A and B have no common ele­

ment, then m(A, B) consists of m + n elements. 

Proof by complete induction (80). For 

p. by (166), (164), (135, II) the theorem is true 
for n=l. 

er. If the theorem is true for a number n, then is it 

also true for the following number n'. In fact, if r is 

a system of n' elements, then by (167) we can put 

r=m(B, y) where y denotes an element and B the 

system of the n other elements of r. If then A is a 

system of m elements each of which is not contained 

in r, therefore also not contained in B, and we put 

m(A, B)= "S, by our hypothesis m + n is the number 

of elements of l, and since y is not contained in l, 

then by (166) the number of elements contained in 

m(l, -y)=(m+n'), therefore by (135, III) =m+n'; 

but since by (15) obviously Zli(l, y)=m(A, B, -y)= 

m(A, r), then ism+ n' the number of the elements 

of m (A, r), which was to be proved. 

169. Theorem. If A, Bare finite systems of m, n 
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elements respectively, then is m (A, B) a finite sys­

tem and the number of its elements is < 111 + 11. 

Proof. If B 3 A, then 111 (A, B) =A, and the 

number m of the elements of this system is by (142) 

< m + n, as was stated. But if B is not part of A, 

and Tis the system of all those elements of B that 

are not contained in A, then by (165) is their number 

p < n, and since obviously 

ill(A, B)=lTI(A, T), 

then by (143) is the number m + p of the elements of 

this system < m + n, which was to be proved. 

170. Theorem. Every system compounded out of 

a number n of finite systems is finite. 

Proof by complete induction (80). For 

p. by (8) the theorem is self-evident for n = 1. 

a-. If the theorem is true for a number n, and if l 
is compounded out of n' finite systems, then let A be 

one of these systems and B the system compounded 

out of all the rest; since their number by (167) =n, 

then by our hypothesis B is a finite system. Since 

obviously l=lTI(A, B), it follows from this and from 

(169) that :S is also a finite system, which was to be 

proved. 

171. Theorem. If ip is a dissimilar transformation 

of a finite system :S of n elements, then is the number 

of elements of the transform ip(:S) less than n. 

Proof. If we select from all those elements of l 

that possess one and the same transform, always one 

and only one at pleasure, then is the system T of all 
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these selected elements obviously a proper part of 

l, because If is a dissimilar transformation of l (26). 

At the same time it is clear that the transformation 

by (21) contained in If of this part Tis a similar trans­

formation, and that if;( T) =if;(~); hence the system 

1/1 (l) is similar to the proper part T of l, and conse­

quently our theorem follows by (162), (165). 

172. Final remark. Although it has just been 

shown that the number m of the elements of 1/!("l) is 

less than the number n of the elements of l, yet in 

many cases we like to say that the number of ele­

ments of 1/!(l) = n. The word number is then, of 

course, used in a different sense from that used 

hitherto (161); for if a is an element of l and a the 

number of all those elements of l, that possess one 

and the same transform if; (a) then is the latter as ele­

ment of 1/!(l) frequently regarded still as representa­

tive of a elements, which at least from their deriva­

tion may be considered as different from one another, 

and accordingly counted as a-fold element of 1/!("l). 

In this way we reach the notion, very useful in many 

cases, of systems in which every element is endowed 

with a certain frequency-number which indicates how 

often it is to be reckoned as element of the system. 

In the foregoing case, e. g., we would say that n is 

the number of the elements of if; (l) counted in this 

sense, while the number m of the actually different 

elements of this system coincides with the number of 

the elements of T. Similar desiations ltom the oti.g-
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inal meaning of a technical term which are simply ex­

tensions of the original notion, occur very frequently 

in mathematics; but it does not lie in the line of this 

memoir to go further into their discussion. 
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