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Preface

This book is a guide to discovering mathematics.

Every mathematics textbook is filled with results and techniques which
once were unknown. The results were discovered by mathematicians who exper-
imented, conjectured, discussed their work with others, and then experimented
some more. Many promising ideas turned out to be dead—ends, and lots of hard
work resulted in little output. Often the first progress was the understanding
of some special cases. Continued work led to greater understanding, and some-
times a complex picture began to be seen as simple and familiar. By the time
the work reaches a textbook, it bears no resemblance to its early form, and the
details of its birth and adolescence have been lost. The precise and methodical
exposition of a typical textbook is often the first contact one has with the topic,
and this leads many people to mistakenly think that mathematics is a dry, rigid,
and unchanging subject.

We believe that the most exciting part of mathematics is the process of
invention and discovery. The aim of this book is to introduce that process to
you, the reader. By means of a wide variety of tasks, this book will lead you
to discover some real mathematics. There are no formulas to memorize. There
are no procedures to follow. By looking at examples, searching for patterns in
those examples, and then searching for the reasons behind those patterns, you
will develop your own mathematical ideas. The book is only a guide; its job is
to start you in the right direction, and to bring you back if you stray too far.
The discovery is left to you.

This book is suitable for a one semester course at the beginning undergrad-
uate level. There are no prerequisites. Any college student interested in discov-
ering the beauty of mathematics can enjoy a course taught from this book. An

interested high school student will find this book to be a pleasant introduction
to some modern areas of mathematics.

While preparing this book we were fortunate to have access to excellent
notes taken by Hui-Chun Lee. We thank Klaus Peters and Gretchen Wright for
helpful comments on an early version of this book.

David W. Farmer

Theodore B. Stanford
September, 1995
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Networks

1.1 Countries of the insect world. Imagine a world populated by semi-
intelligent insects. The world of the insects is divided into small countries, each
country consisting of a few cities connected by dark narrow tunnels. In the
course of their work and leisure the insects slowly walk these tunnels, and by
the time they reach adulthood all insects know how their country’s cities are
connected. If an insect needs to travel from one city to another, and those cities
are directly connected, then the connecting tunnel is taken. Maybe the route
could be shortened by taking two short tunnels through another city, but the
insects are only semi-intelligent, so this possibility never occurs to them. And
the insects are poor at measuring distances, so they probably couldn’t identify
a shorter route even it they looked for it. Life on the insect world is calm and
uneventful, the citizens blissfully bumping along in the dark, performing their
chores with calm inefficiency.

Let’s take a closer look at the world of the insects. Here are two insect

countries:

Our view from the ‘outside’ provides us with a complete picture of both coun-
Is, so they must expend

tries. The insects are confined to the cities and tunne eXpe
more effort to get an accurate view of the layout. Suppose that commumcatl'on
between insect countries takes place by radio. Citizens from th.e above countries
were talking, and they began to wonder if their two countries are tl}e same.
How can they determine that their countries have different layouts? First thgy
observe that both countries have four cities and four main tunnels. So far, their
countries appear similar. Then one says, “We have a ci.t).' with just one tun-
nel leading to it.” The other one says, «AHA! All our cities have two tunnels

connected to them, so our countries are not set up the same way.”

1
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There are many other ways the insects could determine that their countries
have different layouts. For example, each of these descriptions applies to exactly
one of the countries above:

“My country has a city which connects directly to every other city.”

“In my country, you can travel a route of four different tunnels and end up
back where you started.”

“In my country, you can travel a route of three different tunnels and end
up back where you started.”

Since the insects are bad at measuring distances, they are not always able
to distinguish between layouts which we would see as different.

o
Task 1.1.1: Explain why the insects
cannot distinguish between this coun-
try’s layout and the first one shown
previously.
<

Task 1.1.2: For e4ch pair of countries, determine whether the insects woulq
view them as the same or different. For those that are different, describe how,
the insects can tell them apart. Note: for each pair, the number of cities is the
same and the number of tunnels is the same. If this were not the case, then the
insects could immediately tell that the two countries had a different layout.

—1 4o
I

continued...




1.1 COUNTRIES OF THE INSECT WORLD 3

Task 1.1.3: Devise a precise description of what it means for two countries to
be ‘the same’ as far as the insects are concerned.

Task 1.1.4: An insect says, “My country has seven cities and nine tunnels. One
city has just one tunnel connected to it, one city has five tunnels connected to it,
two cities have three tunnels connected to them, and the other three cities have
two connecting tunnels.” Draw two different countries which fit that description,

and explain how the insects can tell them apart. How many different countries
fit that description?

Adyvice. As you go through this book, you may find it helpful to keep a record
of your thoughts and ideas. Set aside a notebook for this purpose. Put all of
your work there, not just the final answers. It is important to keep a record of
the entire process you went through as you worked on a problem, including work
which didn’t seem to lead to an answer. Your failed method on one problem
could turn out to be the correct method for another problem. Having all your

work in one place will help you see what you have done and will make it easy to
find old work when you need it.

It is important that you spend sufficient time thinking about the Tasks as
you encounter them. Some Tasks are easy and some are very difficult, so you
should not expect to find a complete answer to every one. If a Task seems
mysterious, it can help to discuss it with someone else. Occasionally you may
skip a Task and come back to it later, but skipping a Task in the hope of finding
the answers in the text will lead you nowhere. The only way for you to find an
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answer is to discover it yourself. Sometimes this will mean spending a long time
on one Task. That is the nature of mathematical discovery. You will find that
discovering your own mathematics is not at all like trying to learn mathematics
which has already been discovered by someone else.

1.2 Notation, and a catalog

The ideas of the previous section fall under the mathematical topic of graph
theory. The fanciful idea of insects crawling through dark tunnels will continue

to be useful, but we will switch to using the mathematical terminology. Here is
how to translate:

Insect name: Math name:
country graph
city point or vertex
tunnel line or edge

An example sentence is, “A graph is made up of points and lines.” Note that

‘vertices’ is the plural of ‘vertex,’ so we can also say, “A graph consists of vertices
connected by edges.”

The actual picture we draw of a graph is called a graph diagram. Just as
the insects could not distinguish between certain countries, the same graph can
be represented by many different graph diagrams. The only important feature
of the graph is how the various vertices are connected. Each graph diagram
will have additional features, such as the lengths of the edges and the relative

p(?Sition of the vertices, but these aspects of the diagram have nothing to do
with the graph itself.

Here are three diagrams of the same graph:

A diagram may appear to show two edges crossing, but if there is not a
vertex at the junction then the edges do not actually meet. Think of it as two
Insect tunnels which pass each other but do not intersect. The topic of drawing
graphs without crossing edges will be explored in a later section.

A graph is called connected if we can get from any vertex to any other

v?rtex by traveling along edges of the graph. The opposite of connected is
disconnected.
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This can be thought of as a
disconnected graph with 9
vertices, or as two separate
connected graphs.

Any graph is just a collection of connected graphs; these are called the compo-
nents of the graph.

The graphs we have been studying are presented as drawings on paper. It
is easy to invent graphs which are described in other ways. For example, we
can make a graph whose vertices are all of the tennis players in the world, and
where an edge connects two players if they have played tennis together. We have
defined a graph, although it would not be feasible to actually draw it. Another
graph can be made by letting the vertices be the countries of the world, and
having an edge connect two countries if those countries border each other. With
the help of a map it would be possible to draw this graph. It is amusing to
invent fanciful graphs and then try to determine what properties they have. For
example, is the tennis player graph connected? If it is, that would mean each
tennis player has played someone who has played someone who has . . . played
Jimmy Connors. The play Six Degrees of Separation mentions, informally, the
graph whose vertices are all of the people in the world, with edges connecting
people who know each other. The title of the play comes from speculation that
you can get from any one vertex to any other vertex by crossing at most 6 edges.

In order to make an organized study of graphs, we must impart a few more

rules. Usually we do not allow our graphs to have more than one edge connecting
two vertices, and we do not allow an edge to connect a vertex to itself.

A graph with

A h with loops
multiple edges grep P

Unless we state otherwise, a ‘graph’ is a ‘graph without loops or multiple edges.’

We classify graphs according to how many vertices they have. Here is a
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catalog of all graphs with 4 vertices:
° ° ° °
° ° ° I————~
L2 N\ i [
e

You should convince yourself that the list is complete.

Task 1.2.1: Make a catalog of all graphs with 5 vertices. Hint}; thiredare
between 30 and 40 of them. First find all the ones with no edges, then 1 edge,
then 2 edges, and so on.

In the above Task it is difficult to be absolutely sure that you found all the
graphs. Fortunately, there is something we can do to increase our confidence.
For the graphs with 4 vertices we found & total of 1 +1+2+ 3+2+1+1=11
graphs, where we counted the graphs according to how many edges they have.
Notice that the numbers form a symmetric pattern.

Task 1.2.2: Do your numbers from Task 1.2.1 form a symmetric pattern? If not,

go back and fix your list. After your list is correct, explain why the symmetric
pattern appears.

Task 1.2.3: Devise a code for describing a graph over the telephone. Note:
your code only needs to describe a graph, not a graph diagram.

1.3 Trees

If we think of a graph as a roadmap then it is natural to look at the various
routes we can take through the graph. A path in a graph is a sequence of edggs,
where successive edges share a vertex. To make things easier to read, we will

describe a path by showing which vertices the path visits; this should not cause
any confusion.
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Example paths: b
(d, b, c, d) 4
(fed bc)
(e.8 b,ab,g)

d e

A path is closed if it ends at the same vertex as it began. The first path
above is closed. A path is simple if it doesn’t use the same edge more than
once. The first two paths above are simple. A simple closed path is. sometimes
called a circuit. The first path above is a circuit, and so is (b, ¢, d, e, g, b). A
graph is connected if there is a path from any one vertex to any other vertex.

A graph is a tree if it is connected and it doesn’t have any circuits. Here
are three trees:

NIRRT

Task 1.3.1: What is the relationship between the number of vertices and the
number of edges in a tree? Why does this relationship hold?

Trees are particularly simple kinds of graphs, so our plan is to study trees,
and then to use trees to study other graphs. Here are all trees with 5 vertices:

/\_7 N——o 'j i
Those trees should be in your catalog of graphs from Task 1.2.1. Here are all
trees with 6 vertices:

1T N7 P

continued...
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L]

Task 1.3.2: Make a list of all trees with 7 vertices. If you feel ambitious, make
a list of all trees with 8 vertices. Hint: there are between 20 and 30 of them.

Task 1.3.3: Suppose you had plenty of time and you wanted to make a list of
all trees with a given large number of vertices; say, all trees with 12 vertices. De-
scribe the method you would use. Is your method guaranteed to give a complete
list with no repeats? Is your method practical?

Task 1.3.4: In Task 1.2.3 you devised a code for describing a graph over the
telephone. Suppose that you only needed the code for describing trees. Is it
possible to devise a simpler code which still works in this case?

1.4 Trees in graphs

A tree inside a graph which hits every vertex of the graph is called 2 span.
ning tree. A spanning tree must use the edges in the graph, and it must hig

every vertex. A useful way to show a spanning tree is to highlight the edges in
the tree:

A graph can have many different spanning trees. Here are three different span-
ning trees for the same graph:
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It is important to keep in mind that a graph can have several different
spanning trees, so without a picture the term ‘spanning tree’ can be ambiguous.
Task 1.4.1: Devise a way of counting the number of spanning trees of a graph.

In the next section we use spanning trees to study graphs.

1.5 Euler’s formula

A graph diagram divides the plane into separate regions:

N

4

The first diagram divides the plane into 4 regions, and the second divides
the plane into 3 regions. Note that the big outside area counts as a region.
Task 1.5.1: Draw several graphs and record the following information:

— the number of vertices in the graph (call it v)

— the number of edges in the graph (call it e)

the number of separate regions of the graph (call it f)

the number of vertices in a spanning tree (call it A)

the number of edges in a spanning tree (call it B)

the number of edges not in a spanning tree (call it C)
Here is an example.

Find a spanning tree and check that the numbers are
correct:

=11
e=14
f=5
A=11
B=10
C=4

Note: for this Task you should only use connected graphs which you have drawn
without crossing edges. A diagram drawn without crossing edges is called a
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planar diagram. The importance of using planar diagrams in this Task is
discussed in the next section.

Task 1.5.2: Look at the information you recorded and try to find patterns and
relationships among the six quantities.

Task 1.5.3: Explain why the observations you made are corrgct. Note: one
of your observations may have been A = B + 1. You already discussed this in
Task 1.3.1.

Task 1.5.4: Explain why your observations can be used to show v—e+f =2.

The equation v — e + f = 2 is known as Euler’s Formula. It was ﬁr§t
discovered by the Swiss mathematician Leonhard Euler in 1736. Note: Eulex: is
pronounced ‘Oiler.’ Say it out loud a few times. This will keep you from looking
foolish later.

Task 1.5.5: Suppose a graph has 7 vertices and 9 edges. Use Euler’s formula to
predict how many separate regions it would have if you drew the graph. Draw
such a graph and check if your prediction is correct.

1.6 Planar graphs

Euler’s formula v—e+ f = 2 is true for any connected graph which is drawn
without crossing edges. For instance:

Bad: Good:
»
l v =4 V) =4
3 2 e=6 e=6
- =4
4 f=5 f
v-e+f=2
5 4

We say that a graph is planar if it has a diagram without crossing edges.
Above are two diagrams of the same graph, but Euler’s formula only works in the
second case. This is usually expressed as “Euler’s formula holds for connected
planar graph diagrams.”

Task 1.6.1: What can you say about v — e + f if the graph is not connected?

The graph shown above is called ‘the complete graph on 4 vertices,’ and it
is denoted Kj, pronounced “kay four.” This means that it has 4 vertices and
each vertex is connected to every other vertex. Similarly, K is the graph with
5 vertices and each vertex is connected to every othLer vertex.
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Here is a representation of Kj:

Task 1.6.2: How many edges does K5 have? Kg? K77

Task 1.6.3: Explain why K, has 1+ 2+ 3+ .-+ (n — 1) edges. We will find
another expression for this in Task 1.7.9.

Task 1.6.4: Try to draw K5 without any crossing edges. Make at least four
attempts.

After four attempts at Task 1.6.4, you should stop. Further attempts would
be pointless because it is impossible to draw K3 without any crossing edges. In
other words, K5 is not planar. We will use Euler's formula to show why the
Task is impossible.

The reason we write f for the number of separate regions of a graph is that
those regions are usually called faces. A key fact we need is that each edge of
a planar graph diagram is a border of two faces.

The dotted edge is a border of face
X and face Y, and the fuzzy edge
is a border of faces Y and Z.

The number of edges of a face is called the order of the face. In the diagram
above, face X has order 4, face Y has order 3, and face Z has order 5.

An important relationship between the number of edges and the number of
faces in a planar graph is:

3f < 2e.

We will use the concept of order, along with the observation that each edge
borders two faces, to establish this inequality. Then we will use the inequality
to show that K5 does not have a planar diagram. But first, do this Task:

Task 1.6.5: Draw a few planar graph diagrams and check that 3f < 2e holds
in each case. What graphs have 3f = 2e?
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The first step in showing 3f < Z2e is this observation:

Counting Observation. If you add up the number of edges bordering every
face, then you get twice the number of edges. In other words:

the sum of all the orders of the faces = 2e.

For example, in the diagram above there are three faces: X, Y, and Z. Adding
up the orders of each faces gives 4 + 3 + 5 = 12. And sure enough, 12 is twice
the number of edges in the graph. )

The reason behind the Counting Observation is that each edge is a border
of two faces, so as we add up the number of edges around each face, each edge
gets counted twice.

Now, we need at least 3 edges to make a face, so each face must have order
at least 3. So, adding up the orders of each face gives something at least 3f, so

3f < the sum of all the orders of the faces,
)

3f < 2e.

This is the inequality we wanted. We now use it to show Ks is not plan.ar.
The graph Kj has 5 vertices and 10 edges. IF K5 had a planar diagram,

then Euler’s formula v — e+ f =2 would tell us f = 7. The inequality we proved
would then say

3f <2
3.7<2-10
21 < 20.
Of course, 21 is more than 20, so something is wrong. The error was the as-
sumption that K5 had a planar diagram. The inescapable conclusion is that K

dc?es not have a planar diagram. In other words, it is impossible to draw Kj
with no crossing edges. In other other words, K3 is not planar.

Task 1.§.6: For each case below, either draw a planar graph with the given
information, or explain why this is not possible.

a) A graph with v = 7 and e = 17.
b) A graph with v = 8 and e = 12.
¢) A graph with v = 7 and e = 15.

The method we used to show that K does not have a planar diagram can

also be used to show that some other graphs are not planar, but the method is
not foolproof,

This graph is called K33. It has
6 vertices and 9 edges, and it does
not have a planar diagram.
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The name A.3_3, pronounced “kay three three,” means the graph consists of one
set of 3 vertices, each of which is connected to another set of 3 vertices. Here
are more examples to explain the notation: |

K2.3 f f K3_4 : |

Task 1.6.7: How many edges does K» 5 have? K¢6? Ki00.2007 Kn.m?

Task 1.6.8: iI‘ry to draw K33 without crossing edges. You will not succeed
because K33 is not planar, but you should make a few attempts anyway. ,

V\”e showed thfit K5 does not have a planar diagram, but the same method
doesn’t work for K3 3. Fortunately, we can modify the method. The key to the
modification is this observation:

No Triangles Observation. ;3 does not contain any simple closed paths of
three edges.

The quick way to say it is: K3 3 does not contain any triangles. This means
that if we could draw K33 without any crossing adges, then every face would
have order at least four.

Task 1.6.9: Explain why a planar graph with no triangles must have 4f < 2e.
Use this to show that K33 does not have a planar diagram. -

It turns out that understanding Ks and K33 is fundamental to under-
standing all nonplanar graphs. See the Notes at the end of the chapter for an
explanation.

Task 1.6.10: Do all trees have a planar diagram?

1.7 Paths in graphs

In this section we study various kinds of paths in a graph. We start with a
puzzle and two problems.

Task 1.7.1: Trace this figure with-
out picking up your peuncil and with-
out repeating a line, or explain why
this is impossible.
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Task 1.7.2: A huge snowstorm has
covered the town with snow! There
is only one snowplow, and the roads
need to be plowed as soon as pos-
sible. The snowplow driver figures
that if she can manage to plow all
the streets in one trip, without driv-
ing over a street which has previously
been plowed, then this will get the
job done quickly. Trace an efficient
route on the map shown to the right,

or explain why a completely efficient
route is impossible.

Task 1.7.3: The highway inspector
must evaluate the safety of all the
roads in town. Since he is lazy, he
wants to travel along each road ex-
actly once; he does not want to drive
on a road which he has already in-
spected. Trace an efficient route for

the lazy inspector, or explain why no
such route is possible.

Hopefully you traced the figure in Task 1.7.1 and you also found an efficient
path for the snowplow in Task 1.7.2. If not, then go back and try again! There
is no efficient path for the lazy inspector in Task 1.7.3. No matter how hard
you try, it is impossible to trace the roads of that town without using some road
more than once. Qur next goal is to give an explanation for this.

) Th*? three Tasks above have the same theme: each gives a graph and asks
if there is a simple path which uses every edge in the graph. Recall that simple
means that no edge is used twice. In a graph, a simple path which uses every

edge is called an Buler path. An Euler circuit is an Euler path which begins
and ends at the same vertex.

If you check back at your answers to the above Tasks, your solution to the
puzzle is an Euler path, and your solution to the snowplow problem is an Euler

circuit. The graph for the highway inspector has neither an Euler path nor an
Euler circuit.

Task 1.7.4: Find an Euler path in each of these graphs. The Task will become
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very easy once you determine the significance of the * vertices.

&,
5 &

The key to Euler paths in a graph lies in careful examination of the vertices.
The number of edges connected to a vertex is called the order of the vertex.

2
2 3
Each vertex in this graph is
labeled with its order. 1
4 4

Task 1.7.5: What relationship exists between an Euler path in a graph and the
orders of the vertices in that graph? If you don’t see a relationship yet, then do
plain why your observations are correct.

~
‘30,

more examples. Ex
The previous Task is the key point of this section. Be sure to give it sufficient

thought.

Task 1.7.6: Repeat your work in the previous Task for Euler circuits.

Task 1.7.7: Draw a graph with exactly one odd-order vertex. Does it have an
Euler path?
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Task 1.7.7 is a trick question: it is impossible to draw a graph with exactly
one odd-order vertex. Here is one way to see this:

Task 1.7.8: Explain why the Counting Observation following Task 1.6.5 is valid
with ‘face’ replaced by ‘vertex.’ Use this New Counting Observation to explain
why Task 1.7.7 is impossible.

Task 1.7.9: Use the New Counting Observation in Task 1.7.8 to show that Kn
has n(n — 1)/2 edges. Compare thic i Task 1.6.3.

The Handshake Principle is a sligh{ penergbization of oir rule that a graph
cannot have exactly one odd—order vertex.

The Handshake Principle. Take a group of people and have cach person
shake hands with various other people iu the group. The number of people who
shook hands an odd number of times must be even.

In terms of a graph, the Handshake Principle says that the number of odd-
order vertices must be even.

We have been studying paths which cross every edge once. Another inter-
esting problem is to study paths which visit every vertex once. This idea first
appeared in a game invented by the English mathematician Sir William Rowan
Hamilton. He sold the idea to a game producer, but the game never made any
money!

Hamilton’s problem: find a path
in this graph which visits every
vertex once, and which ends at
the same vertex as it began. In
the original version each vertex
was labeled with a famous city,
and the object was to ‘Travel the
World.’

A Hamiltonian path in a graph visits every vertex exactly once. The
path is a Hamiltonian circuit if it ends at the same vertex as it began. A
Hamiltonian path can also be thought of as a spanning tree with no ‘branches.’
See the middle graph at the very end of Section 1.4 for an example.

The study of Hamiltonian paths is much more difficult than the study of
Euler paths. A few rules are known, and any specific graph can be analyzed by

computer, but nobody has found a simple method for determining when a graph
has a Hamiltonian path.

1.8 Dual graphs

We introduce a way to take one graph diagram and use it to produce another
graph. This new graph is called the dual of the original diagram.
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Start with any planar diagram:

Put a vertex in each separate
region of the original diagram.

Connect the new vertices which
are in adjacent regions of the
original diagram. Each original
edge will have a new edge cross-
ing it.

The graph made with the new
edges and vertices is called the
dual of the original graph dia-
gram.

The above procedure is called taking the dual of the original graph diagram.
We will see that there are interesting relationships between a graph and its dual,
and the dual graph is useful for solving certain problems.

Recall that a graph is not permitted to have loops or multiple edges. Be-
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cause of this restriction, the dual of a graph diagram might not be a ‘graph’ in
the strictest sense. For example:

A diagram: Its dual:

That dual graph has multiple edges, so it is not ‘really’ a graph. It. is too much
effort to keep worrying about this distinction, so for the rest of this section we
will permit our graphs to have loops and multiple edges.

Task 1.8.1: Draw a few planar graph diagrams, and then find their duals.

Task 1.8.2: What is the relationship between v, e, f for a graph and v, €, f
for its dual?

After doing Task 1.8.2, you should look back at the first part of Task 1.7.8.
Task 1.8.3: What is the relationship between a graph, its dual, and the dual
of the dual?

Task 1.8.4: Find a few graphs which are the same as their dual.

Task 1.8.5: Can you draw a curve
which crosses each edge of this fig-
ure exactly once? The curve is not

allowed to cross itself. Two failed
attempts are shown below.

........

Task 1.8.6: Would the above Task be any easier if the curve was allowed to
cross itself?

1.9 A map of the United States
On the next page is a map of the 48 continental US states. It might not



1.9 A MAP OF THE UNITED STATES 19

look like a typical US map, but there is a way to label each region with the name
of a state so that each state borders the same states as on the usual map.

N\

Task 1.9.1: Label the 48 regions of the map, Explain how you determined
which region .corresponds to which ‘state. Is there only one way to correctly
label the regions?
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Task 1.9.2: Which state borders the most other states?
Task 1.9.3: Devise a similar map for your favorite geographic region.

1.10 Coloring graphs

A cartographer is producing a new map of the world. To make the map
easier to read, each country will be given a color, and adjacent countries must
be assigned different colors. Two countries can have the same color provided
they don’t border each other. Here is a map which we have colored using the
numbers 1, 2, 3 and 4:

L S

1
; I ;
1
. 4
2
3 1
2 - 20 1
L 2
3

4

Note that the large outside region also gets a color.

There are a few rules about the ‘maps’ we will consider. Each region rep-
resents) a separate country, and countries are not permitted to have ‘satellite
states.” For example, on the usual world map we would not permit Alaska to be

part of the Unites States, because Alaska is not directly connected to the other

states. We can use the world map as an example for our ‘map,’ but must permit
Alaska to be a different color t

: han the 48 continental states. Also, we do not
consider two regions to be bordering if they have only one point in common. For
example, Colorado and Arizona do not border each other on the United States
map. Another example can be seen in the lower right portion of the example
above. The small square labeled ‘1’ does not border the large region labeled ‘1.’

g;z;sk 1.10.1: Draw a few maps and color them. Use as few colors as possi-

All of your maps from Task 1.10.1 can be colored with at most 4 colors. If
you' used 5 or more colors in some of your maps then go back and color them
again. All maps can be colored with at most 4 colors. If you are skeptical about
this then try to design a map that requires 5 colors.

The statement that any map can be 4—colored is known as “The Four-Color
Theorem.” The Four-Color Theorem is easy to understand, and trying a few
examples makes it easy to believe, but giving a complete proof is extremely dif-
ficult. The Four-Color Theorem has been widely believed for more than 100
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C/)

years, but a formal proof was not given until 1974. The proof was controver-
sial because a computer was used for part of the calculation. Some people are
still skeptical that all of the details were checked properiy, and an independent
calculation has not yet been completed. In this book we give a detailed proof
that any graph can be 6-colored, and we roughly indicate why any graph can
be 5-colored. If you figure out a simple proof of The Four-Color Theorem, then
your name wil. be immortalized forever in the annals of mathematics.

We will spend the rest of this section using graphs to study map colorings.
It is easy to associate a graph to a map: put a vertex in each region, including
the large outside region, and connect adjacent regions with an edge. This works
just like finding a dual graph. Here is the graph associated to the map shown
previously:

And here is a simpler example. Each vertex in the graph is colored the same as
the corresponding region of the map.

3 1 N=—>'

2 O //

Coloring a map is now replaced by coloring a planar graph: we color the
vertices of the graph so that adjacent vertices, vertices which share an edge, have
different colors. For the purposes of coloring, the graph has the same information

N

«“’shaq
"" _0\7'6 OD\

N 'A-.-
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as the map. We will study graph coloring because then we can make use of our
knowledge of planar graphs.

Task 1.10.2: An obvious way to try to get a map which cannot be 4-colored
is to draw 5 countries, each one of which borders the other 4 countries. Since
each country borders every other country, 5 different colors would be needed.
However, such an arrangement is impossible. Explain why.

It might seem that since we can’t have 5 countries simultaneously bordering
each other, that would automatically imply that any map can be 4-colored.
However, the logic is flawed. To see the flaw, look at the map below.

Each region borders only
two other regions, but the
map requires three colors.

The above example shows that the number of neighbors of each region is not

always directly related to the number of colors needed to color the map. Another
version of the same idea is given in the next Task.

Task 1.10.3: Color the vertices of each of the following graphs with as few

colors as possible. Note that the number of colors is not directly related to the
number of neighbors of each vertex.

OO0

For certain kinds of graphs we can say exactly how many colors are needed
to color them.

Task 1.10.4: Suppose a graph has every vertex of order 3 or less. Explain how
to 4—color that graph.

Task 1.10.5: Explain why any tree can be 2—colored.

Task 1.10.6: Suppose each separate region of a graph has an even number of
sides. Is it necessarily true that the graph can be 2—colored? Note: you are
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coloring the graph, so each vertex gets a color, and vertices sharing an edge
must get different colors.

Task 1.10.7: Construct a map by drawing a continuous curve which begins
and ends at the same point and crosses itself as many times as you want. An
example is shown below. Determine how many colors are needed to color such
a map.

Task 1.10.8: Repeat Task 1.10.7 for maps made by several different overlapping
curves. That is, draw several different curves as in Task 1.10.7 and permit the
curves to cross each other.

Task 1.10.9: How many colors are needed to color K,? Note: for n > 5 that
graph will not be planar, but it still makes sense to color the vertices so that
vertices sharing an edge get different colors.

Task 1.10.10: How many colors are needed to color K, 7

Task 1.10.11: Devise some graphs which require exactly three colors.

1.1). The six—color theorem

Since The Four-Color Theorem is so hard, we will prove The Six—Color
Theorem: every graph can be colored with at most six colors. This is a common
occurrence in mathematics: the ultimate goal may be out of reach, but we
can still get satisfaction by proving a partial result. To prove The Six—Color
Theorem, we need this fact about planar graphs.

Planar Graph Fact. Every planar graph has at least one vertex of order five
or less.

In other words, we can’t have every vertex of order six or more. We will
prove The Six-Color Theorem, and after that we will prove the Planar Graph
Fact. But first...

Task 1.11.1: Draw a graph where each vertex has order at least five. What
does this say about the Planar Graph Fact?

We will describe a procedure for 6—coloring a planar graph, and then we
will illustrate the procedure with an example.
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To 6-color any planar graph, just follow these four steps:

Step 1: Locate a vertex of order 5 or less.
Step 2: Delete that vertex and all edges connected to it.

Keep repeating Steps 1 and 2 until only 5 vertices are left. Keep track of the
order in which you deleted the vertices.

Step 3: Color the five remaining vertices with the colors 1, 2, 3, 4, 5.

Step 4: Put back the last vertex and edges you deleted. Color that vertex
a different color than the vertices adjacent to it.

Repeat Step 4, replacing vertices in the reverse order they were deleted. After

you put all the vertices back you will have reconstructed the original graph and
each vertex will be colored with one of the 6 colors.

The Planar Graph Fact mentioned above is what makes the procedure work.
Since a planar graph must have a vertex of order 5 or less, Step 1 can always be
done. As you put the vertices back, each vertex is connected to at most 5 other
vertices. Since there are 6 colors available, Step 4 can always be done.

Here is an example of using the procedure to 6~color a graph. The important
thing to notice is that the procedure described above is followed exactly. No
cleverness is needed. We just mechanically follow the plan and everything will
work out right. First remove vertices one-by-one, also removing the connecting
edges. If there is more than one vertex of order less than 6 then it doesn’t matter
which one we choose. Stop when there are only 5 vertices left.

& F
= s

Now color the remaining vertices, and then replace the vertices in the reverse
order they were deleted. When we replace a vertex we color it with any number
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different from the vertices it is adjacent to.

The result is a 6-coloring of the graph.

Of course, it is also possible to 4-color that same graph, but this requires
cleverness. Nobody has ever found a simple procedure which is guaranteed to
4—color any planar graph.

Task 1.11.2: Four—color the graph shown above.

Now we prove the planar graph fact used above. This is the plan: we assume
that it is possible for a planar graph to have all vertices of order at least 6. Using
this assumption we will end up with a nonsensical statement. This shows that
the assumption was not valid.

We use Euler’s formula v — e+ f = 2. We also need the earlier observations:

Sum of the orders of all the faces = 2e,
and
Sum of the orders of all the vertices = 2e.

First consider the faces. Each face must have at least 3 edges. In other
words, the order of each face must be > 3. If we counted ‘3’ for each face then
we would get something smaller than if we counted the order of each face. In
other words, 3f < 2e. This can also be written f < %e. Note: a more complete
version of this same argument is given in Section 1.6.

Next consider the vertices. IF every vertex has order at least 6, then count-
ing ‘6’ for each vertex gives something smaller than counting the order of each
vertex. In other words, 6v < 2e. This can also be written v < %e.
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Here are the three relationships we have:

2=v—e+f

Putting them all together gives

2<1 +ge
S3¢7€T3

S0,
2<0.

That last inequality is nonsense, so our assumption that all vertices had order

at least 6 is invalid, so we conclude that at least one vertex has order 5 or less.
End of Proof.

Task 1.11.3: Modify the above calculation to show that if a planar graph has
all vertices of order 5 or more, then the graph must have at least 30 edges.

Conclude that it must have at least 12 vertices. Find a graph with 12 vertices,
each vertex having order 5.

We end this chapter by describing a procedure for 5—coloring any planar

graph. This procedure is a modification of the 6—-coloring method. The basis for
the improvement is the following fact:

Another Planar Graph Fact. Given any 5 vertices in a planar graph, there
must be two which are not directly connected to each other.

The proof is simple: If all 5 vertices were directly connected to each other
then that would be K3, but K is not planar.

We use this new fact to modify Step 2 of the procedure. We delete vertices
and edges as before, but then we glue two of the vertices together. Specifically,
if there were five vertices connected to the vertex we just deleted, choose two of
them which are not adjacent, and then form a new graph by gluing those two
vertices together. If this gives multiple edges then delete all but one of each

repeated edge. This ends the new Step 2. Here is an example using the previous
graph:

Delete a vertex of
order 5 or less.
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The vertices marked * are not adjacent, so we can glue them together.

@ Ccmbine multiple edges. @

In the new procedure, repeat the new Step 2 until there are only 4 vertices
left. For the new Step 3, color each of the remaining 4 vertices a different color.
For the new Step 4, replace the deleted vertices in the reverse order they were
removed. This is slightly more complicated than the original method because
sometimes you have to rip apart two vertices which had been glued together.

To complete this Task, convince yourself that the procedure works. Note
that if the graph has a vertex of order 4 or less then we can choose to delete that
vertex first, so we only need to use the “gluing two vertices” step when every
vertex has order 5 or more.

1.12 Notes

Note 1.12.a: Graphs were invented by Leonhard Euler to solve the ‘Seven
bridges of Konigsberg’ problem. The city of Konigsberg, now known as Kalin-
ingrad, Russia, had seven bridges. Here is what it looked like in Euler’s time:

The citizens of the city wondered about the following question: Was it
possible to take a walk which crossed each of the seven bridges exactly once?
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& Euler path
A walk crossing each bridge exactly once would correspond to an
in this graph:

to a bridge,
Each vertex corresponds to a piece of land, each edge correfpt?fgs cach bridge
and an Euler path in the graph corresponds to a wa%l‘c cr ost.here e Fulor
exactly once. Since the graph has four odd—order vertices,

: s ctly once.
path, 5o it is impossible to walk across each of the seven bridges exactly
Note 1.12.b: There is

These are known as
the edges are like o

iscussed.
a large class of graphs which we have noIt (::Sc;i;sraph
‘directed graphs,” commonly called digraphs. In
ne-way streets. Here are two examples:

. . : ath
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must ‘follow the arrows’ Fore

xample, if you ignore the arrows then ]izthd%ragslsl
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Note 1.12.c: Some people use the word valence where we use the word or
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Note 1.12.d: A graph contained within another graph is calleld a Se‘:gil;a:nd
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i le, a
Many properties of a graph also hold for all its subgraphs. For examp
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subgraph of a planar graph is also planar. Also, if a grapn can be colored with
at most N colors, then so can all its subgraphs.

Note 1.12.e: The usual way to prove Euler's formula v — e + f = 2 is by
induction on the number of vertices and edges in the graph.

Note 1.12.f: We showed that K5 and K33 are not planar. An important re-
sult known as “Kuratowski's Theorem” says that all nonplanar graphs ‘contain’
either K5 or K33, or both. Exactly what it says is:

Kuratowski’s theorem. Starting with any nonplanar graph, you can produce
one of K5 or K33 by repeatedly performing these three moves:

Move A: Delete an edge.
Move B: Delete a vertex and all edges connected to it.

Move C: Delete a vertex of order 2, combining the two ‘dangling’ edges into
one edge.

The idea of Kuratowski’s theorem is that we can take a nonplanar graph
and throw away a bunch of it until we reduce down to either K5 or K33. The
proof can be found in [GT], or in any other good introductory graph theory
book.

Kuratowski’s theorem says that if a graph is nonplanar then it ‘contains’
either K5 or K3 3. The reverse is also true: if a graph ‘contains’ either K3 or
K3 3 then it is nonplanar. Is this obvious?

Task 1.12.1: Determine if the following statement is true:
Suppose a graph is nonplanar, but deleting any one edge results in a graph
that is planar. Then the original graph must be either Ky or K3 3.
Either explain why the statement is true, or modify the statement so that it
becomes true.

Task 1.12.2: The Petersen graph is nonplanar. Draw a picture to show that
the Petersen graph contains one of K5 or K3 3.

The Petersen graph.

9

Task 1.12.3: Here is an amusing way to show that the Petersen graph is non-
planar. First, show that the Petersen graph does not contain any simple closed
paths with fewer than 5 edges. Second, explain why this means that any dia-
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gram of the Petersen graph would have 5f < 2e. Finally, use v — e + f = 2 and
5f < 2e to show that the Petersen graph is nonplanar.

Note 1.12.g: In this chapter we discovered that if a graph has an Euler path
then it must have 0 or 2 odd order vertices. The question remains: if a graph
has 0 or 2 odd order vertices, does that automatically imply that it has an Euler
path? The answer is ‘yes’, and this can be proved by induction on the number of
vertices in the graph. See [GT] or any other introductory book on graph theory.

Task 1.12.4: Which graphs K, and K, ,, have an Euler path? Euler circuit?

Task 1.12.5: Use your answer to Task 1.12.4 to show that it is possible to place
the tiles from the game of Dominoes in a circie so that the number of spots on
the end of each tile matches the number of spots on the end of the adjacent tile.

Note 1.12.h: When discussing planar graphs we made the point of saying ‘dual
of a planar diagram.’ This is important because we use the diagram to find the

dual, and a planar graph can have several different planar diagrams. Here are
two different diagrams of the same graph:

And here are the dyals of those diagrams:

The d}l&lS are different: one has a vertex of order 10 and the other does not.
Keep in mind that when

. : you refer to the dual of a graph, you may need a
diagram to describe which dyal you mean.
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Surfaces

2.1 The shape of the world. How do we know the world is round?

S

A sphere A torus

Is it possible that we live on a torus, as opposed to a sphere? Pictyres taken
from space give uncontestable proof that the world is not a big donut, but people
knew that the surface of the Earth was a sphere long before humang developed
spaceflight. What was the evidenrce?

Task 2.1.1: List the evidence for why the surface of the Earth is g sphere.

Task 2.1.2: If the world was perpetually shrouded in dense fog and the terrain
was extremely lumpy, would the evidence you gave in Task 2.1.1 still work?
Do your methods permit the inhabitants to distinguish between the two worlds
below?

A lumpy sphere A lumpy torus

31
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If you confine yourself to just a small bit of your world then it is not possible
to determine whether you live on a sphere, or a torus, or on some other §urface.
You must travel over the whole surface in order to truly understand it. The
inhabitants of a world perpetually shrouded in dense fog would not have an easy

task to determine the shape of their world. Keep that picture in mind as you
read the rest of the chapter.

Note. In this chapter we are studying surfaces, not ‘solid’ ijfiCtj- When we
say sphere you should have in mind the outer skin of a ball. Similarly, the torus
can be thought of as the outer skin of a donut.

One way to explore the whole world is to form a l0OP of llc)l?OPlf all facing
the same way, and have them walk across the surface while holding hangg,

A large group of people hold hands
to form a big loop on the Earth.

As the people walk forward they
all bunch together in one spot.

Task 2.1.3: Explain why any loop of people on a sphere will end up in one
spot as they walk forward. Note: the loop may first get bigger before it gefs
smaller.

Definition. A loop on a surface is called contractible if the loop can be shrunk
to a point without leaving the surface.

The result of Task 2.1.3 can be rephrased as, “On the sphere, all loops are
contractible.” The situation is quite different on the torus.



2.1 THE SHAPE OF THE WORLD 33

Task 2.1.4: Convince your-
self that neither of these loops
on the torus is contractible.

Keep in mind that the loops in Task 2.1.4 are on the surface. The loops must
stay on the surface; they are not allowed to ‘dig through the donut.’

Loops on a torus can have amazing properties unlike anything on a sphere:

A large loop of people are
holding hands. They begin
to walk forward.

After a while they will have
walked halfway around the
world.

Eventually everybody gets
back where they started.

Task 2.1.5: Invent a story about the inhabitants of a torus planet and their
attempts to determine the shape of their world. Would the members of the
‘human chain’ described above be surprised when they all returned to their
original spot?
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Task 2.1.6: What will happen

as this loop of people starts walk-
ing forward? Is this different

from what happens with the loop
shown above?

Task 2.1.7: How would your answers to the last two Tasks change if the 10(?p8
were on the lumpy torus shown at the beginning of the chapter, and everything
was shrouded in dense fog? If any of your answers involv

ed measuring distances

or looking outside the torus, then those reasons are no longer valid.
Part of Tasks 2.1.6 and 2.1.7 asks you to determine how the inhabitants of
a torus can tell the difference between the two loops shown in Task 2.1.4. If

you are unable to measure distances properly, as would happen if the torus were

very lumpy, and if there was no way to look at the torus from the outside, then

it is impossible to distinguish between those two loops. This is an important
concept which may become more clear in the next section.

Task 2.1.8: The two loops in Task 2.1.4 cross at one point. Explain why, on

th‘? plane, or on the sphere, it is impossible for two loops to Cross at only one
point.

Task 2.1.9: Draw a loop on the torus which crosses each of the loops in
Task 2.1.4 exactly once.

Task ?.1.10: Draw a different pair of loops on the torus which cross at only
one point.

st Th? book The Shape of Space [SoS), by Jeff Weeks, contains an amusing
ory of a creature who travels around its world drawing lines on t

T . he ground.
wo of its longer trips result in a huge blue loop and a huge re

d th d loop drawn
t:::sun : © world.. It turns out that these loops cross each other only once. This
sphe?;n © confusing to the creature, but all it means is that its world is not a

2.2 The flat torus

Here is a way to build a torus. Start with a square:

The arrows show you which
edges to glue together.

continued...
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\

A
First glue the top edge
to the bottom to make

a cylinder.

—

Then bend the cylinder...

and glue the other edges to
complete the torus. The glue
lines become the loops shown
in Task 2.1.4.

It is easy to draw a square, so we will use a square to represent a torus
whenever possible. We call this the flat torus. Putting ‘arrows’ on the sides
of a square shows that we mean for the opposite edges to be glued, with the
understanding that the glue lines become the two curves shown directly above.
Here is an example. Both figures represent the same loop on the torus:

It is worth spending some time looking at that example. On the square, the



36 2. SURFACES

places where the dotted line hits opposite edges must ‘match up. Thls eniures
that, when the edges are glued, the dotted line will form one COT}“““‘)UIS ‘f{":t‘
To verify that the two pictures represent the same thing, it is easwslt to so -
where the loop intersects the glue lines. The left picture ShO\.VS the 'Oc})llt? ‘roture
into three segments. You need only check that each segment in the right pic
is drawn properly. . .
Herepis gnot};ler example. The segments are marked so that it 15 easier to
see how things correspond.

T
1

iobl

Qa

Task 2.2.1: Draw your answers to Tasks 2.1.9 and 2.1.10 on the flat torus.

The next section will provide plenty of practice drawing on the torus.

We mentioned earlier that it is not possible, in general, to distinguish be-
tween the two curves shown in Task 2.1.4. Thinking in terms of the flat t‘orus
will make this clear. If you repeat the procedure of gluing the square to glve &
torus, but first glue the left edge to the right edge to make a ‘vertical cyhn‘der,
the result will be a torus with glue lines the reverse of those shown above. Since

it is impossible to distinguish between the edges of the flat torus, it is impossible
to distinguish between the glue lines.

2.3 Graphs on the torus

In the previous chapter we showed that it is impossible to draw th.e gr gphs
Ks and K3 3 without crossing edges. Actually, that statement isn’t quite Il ght.
It is impossible to draw those graphs on the plane or the sphere without crossing
edges. We will see that both K5 and K34 can be drawn on the torus. Here Is
one way to draw K, given in both representations:

</

Usually it is easiest to first drai on the square, and then transfer everything to
the other picture. When possible, show both pictures.
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Task 2.3.1: Draw K33 on the torus. Do the same for K34 and Ki4. There
are several nice representations for K 4.
Task 2.3.2: Draw K and K7 on the torus.

The graphs Kg and K, 5 cannot be drawn on the torus. This is discussed
in the next section.
Task 2.3.3: Draw the Petersen graph on the torus.

Task 2.3.4: Gluing opposite
sides of a hexagon produces a
torus. Use this representation
to give a nice way to draw K.

In Section 2.10 we will see why gluing opposite sides of a hexagon gives a
torus.

2.4 Euler’s formula, again

In the previous chapter we established Euler’s formula v — e+ f = 2 for any
graph drawn on the plane. This formula also holds for any graph on the sphere.
Task 2.4.1: Explain why v — e + f = 2 holds for any connected graph drawn
on the sphere.

Let’s investigate v — e + f for the torus. In these examples it is important
to keep track of what is being glued together when counting edges and regions.

2 3
@ 2 2
3
v=4 v=S, v==6
e=4 e=10 e=8
f=2 f=5 f=3
v-e+f=2 v-e+f=0 v-e+f= 1

This looks like bad news. The value of v — e + f doesn’t appear to always be
the sdme. Fortunately, the discrepancy is just an illusion. The key lies in the
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; st only use
i f the h. To get a workable formula, we must on '
oaahs whose seps o : a surface is called a cell if

graphs whose separate regions are cells. A region of
all loops in that region are contractible.

This is region 2 of the first
graph given above. The loop
shown is not contractible, so
the region is not a cell.

Here are more examples.

These are cells:

These are not cells:

Roughly speaking, a region is a cell if it doesn’t have any ‘holes’ in it.

. In Fh'e examples shown previously, we found v — e + f = 0 for the graph
which divides the torus into cells. This is Euler’s formula for the torus.
Euler’s formula for the torus. If a connected graph is drawn on the torus
so that the separate regions are cells, then v — e + f=0.

The next two Tasks suggest methods of seeing why v — e+ f = 0 is true for
the torus.

Task 2.4.2: Refer to Task 1.5.1. The graphs you drew in that Task can all be
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drawn on the torus, but the large outside region will not be a cell. It takes 2
more edges to turn that region into a cell. Putting in those edges adds 2 to
e and C, and leaves all other quantities unchanged. Replace e by e 4+ 2 and
C by C + 2 in all of your formulas for the sphere, and you will wind up with
v —e+ f =0 for the torus.

Task 2.4.3: A torus can be built from a sphere by cutting out two triangles
and gluing the cut edges together:

SICI0

Altogether the triangles had 6 edges, 6 vertices, and 2 faces. The 2 faces were
thrown away, and after the gluing, the two triangles became one triangle. So in
going from a sphere to a torus we ‘lost’ 3 vertices, 3 edges, and 2 faces., Check
that if you start with Euler’s formula for the sphere, replace v by v — 3, replace
e by e — 3, and replace f by f — 2, you get Euler’s formula for the torus.

Task 2.4.4: What happens if you modify Task 2.4.3 by cutting out squares
instead of triangles? Do you still get Euler’s formula for the torus?

Task 2.4.5: Use v — e+ f = 0 and 3f < 2e to show that Kg cannot be drawn
on the torus.
Task 2.4.6: Use v —e+ f = 0 and 4f < 2e to show that K, 5 cannot be drawn

on the torus. Can K3 ¢ be drawn on the torus? Either do it or explain why it is
impossible.

Task 2.4.7: Suppose that removing one edge from a graph results in a graph
which can be drawn on the sphere. Does it follow that the original graph can
be drawn on the torus?

In Section 1.10 we discussed maps on the plane (or the sphere), and we
mentioned that all planar maps can be 4—colored. One can also look at maps
on the torus, and in this case the result is that all maps on the torus can be
7—colored. The proof is described in the Notes at the end of the chapter.

2.5 Regular graphs
In this section we study a special kind of graph.

Definition. A graph diagram is called regular if every vertex has the same
order and every face is a cell of the same order.

We will often refer to regular graphs, although technically it is only correct
to speak of regular graph diagrams. First we study regular graphs on the sphere.
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Here are two regular graphs:

vertices have order 3 vertices have order 3
faces have order 3 faces have order 4

Those graphs are drawn on the plane, but it is easy to picture them drawn on
the sphere.

Task 2.5.1: Explain why the dual of a regular graph diagram is also regular.

. ‘Our. goal is to find all of the regular graphs on the sphere. There is an
infinite list of uninteresting ones, three of which are:

Thos; l;grftiphs are commonly referred to as cyclic graphs.
e dual of a cyclic graph has multiple edges, so it is not actually a graph

1p our strict sense. You can decide for yourself if it should be included on our
list of regular graphs.

Tasllc 2~5-23h§1f1d as many regular graphs as possible. Try to find at least three
z;%:szl;; tgif)?lp . In addition to the cyclic graphs and the two at the beginning of
: o h or each one that you find, list the number of vertices, edges, and
aces, and the orders of the vertices and the faces.

Now that you have a list of regular graphs, we want to check if the list is
complete. Our secret weapon, as usual, will be Euler’s formula v —e + f = 2.

Let M be the (?rder of each vertex in a regular graph, and let J be the
order of each. face. First we will determine the possibilities for M and J. A little
cleverness will save us lots of work. Each face of a graph must have order at
least 3, so J 2 3. By Task 2.5.1, the dual of a regular graph is regular. Taking
duals switches vertices and faces, so taking duals switches J and M. Therefore,
we also have M > 3.
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In Section 1.11 we showed that any planar graph must have a vertex of
order less than or equal to 5. Since all the vertices in a regular graph have the
same order, we conclude that A/ < 5. By the same argument as above, we also
have J < 5.

We have shown that J and M must both be between 3 and 5. It remains to
be determined which possibilities can actually occur. You already listed some
of these in Task 2.5.2.

Task 2.5.3: The cyclic graphs have M = 2. This contradicts M > 3. What is
the problem?

To finish our analysis we must use Euler’s formula v — e + f = 2. The
important step here is to use the Counting Observation from Section 1.6: “If
you add up the orders of all the vertices in a graph, the result equals twice
the number of edges.” In a regular graph all the vertices have order M, so we
have Mv = 2e. Dividing by M gives v = 2e/M. We had a similar observation
concerning faces: “If you add up the orders of all the faces in a graph, the
result equals twice the number of edges.” In a regular graph, this says Jf = 2e.
Dividing by J gives f = 2e/J. Plugging our new formulas into Euler’s formula
v—e+ f =2 gives

2e 2e

H—6+7=2.

For each of the possible values for M and J, we plug into that formula and
solve for e. For example, if J =3 and M = 3 then

2e 2e

S et = =2

3 3

which tells us e = 6. Sure enough, J = 3, M = 3, e = 6 describes one of the
regular graphs we found earlier.

Another possibility is J = 4 and M = 5. This gives

2e et 2e 9
5 4 7
which reduces to e = —20. That is nonsense, because the number of edges must

be positive. We conclude that there is no regular graph with J = 4 and M = 5.
The next Task finishes our study of regular graphs on the sphere.

Task 2.5.4: For each possible value of J and M, use the formula above to find
the value of e. If the value of e is sensible, then find a regular graph with those
values of J, M, and e. Note: there are 9 combinations of J and M to be checked.
Two of them were already done in the text above.

The regular graphs on the sphere were first studied by the ancient Greeks
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in terms of the regular solids:

Jemmm -~ F---=

Tetrahedron Cube Qctahedron

Dodecahedron Icosahedron

For more information on the regular solids, see the book Shapes, Space, and
Symmetry [SSS] by Holden.

Now we turn our attention to the torus. Part of our previous work can be

reused: the relations Mv = 2e and Jf = 2e hold for a regular graph on any
surface. Plugging into Euler’s formula for the torus gives

2e—e+2—e—0
M J

We can factor the left side to get

e £+g-—1 =0
M J e

We may assume e # 0, otherwise our graph would have no edges. So we must
have

2 9
Z4Z 1=
M7 0

When solving that equation we must keep in mind the meaning of J and M.

For example, M = 3} and J = I is a solution, but this is a nonsense solution

because it is impossible for % to be the order of a vertex. We must restrict

ourselves to whole number values of J and M.
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Task 2.5.5: Check that these are the only positive integer solutions to the above
equation:

J=3 and M=6
J=4 and M=4
J=6 and M=3

Task 2.5.6: Draw regular graphs on the torus corresponding to each possibility
in Task 2.5.5. You have already done some of these in Section 2.3.

2.6 More surfaces: holes

So far we have studied the sphere and the torus. Now we look at some other
surfaces.
One way to get a new surface is to cut holes in a surface you already haye,

A sphere with A sphere with A sphere with
one hole two holes three holes

Surfaces can appear in disguised form. Each of these surfaces is ‘the Same’
as the corresponding sphere with holes shown above:

O @ W

A disk An annulus A pair of pants

In a later section we will discuss what it means for two surfaces to be ‘the
same.’ For now, it is sufficient to think of two surfaces as ‘the same’ if one can
be smoothly deformed to give the other. For example, an annulus is ‘the same’
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as a cylinder:

Task 2.6.1: Convince yourself that » disk is ‘the same’ as a sphere with one

hole, an annulus is ‘the same’ as 5 Sphere with two holes, and a pair of pants is
‘the same’ as a sphere with three ho)eq.

Task 2.6.2: What common article of clothing is ‘the same’ as a sphere with
four holes?

On ‘quotes’. In the last page we haye used the phrase ‘the same’ several times.
Each time we were careful to put ‘quote marks’ around it. The quote marks are
used to show that we are using words imprecisely. Specifically, since we have not
given a precise definition of whag it means for two surfaces to be the same, wre
put quote marks around it to show that we are aware of this shortcoming: This
is a useful way of working with g concept which is not yet fully understood.

On equivalence. In Chapter 1 ye encountered different-looking diagrams
which we considered to be ‘the same graph.’ In this chapter we encountered
different-looking surfaces which we consider to be ‘the same.” In both cases
there was the underlying idea that, although we had two things which weren’t
‘really’ the same, we were g0ing to think of them as ‘the same’ for our cur-
rent purposes. This situation occurs o frequently that mathematicians have a
special word to describe it. Instead of using saying ‘the same,’ we use the wqrd
equivalent. An example sentence is, “An annulus is equivalent to a sphere with
two holes.” Now, we still haven’t given a precise definition of what equivalent

means in this context, but at least we no longer have to use those annoying
quote marks.

In everyday life the words “the same” rarely means “absolutely exactly the
same.” Take the phrase, “my car is the same as your car.” That statement
is perfectly sensible, and we know it doesn’t mean that we both own the very
same automobile! It could mean that our cars are the same make and model,
or maybe it means that our cars are the same make, model, year, and color.
If you heard that phrase in a conversation, you would be able to understand
what it meant. In the same way, we use equivalent to mean “the same, as far as

our current purposes are concerned.” It is everybody’s job to keep track of the
current meaning of equivalent.

2.7 More surfaces: connected sums

We created new surfaces by cutting holes in a surface we already had. A}b
other way to get a new surface is to ‘glue together’ two surfaces. The official
-.wme for this is taking the connected sum of the two surfaces. Here is an
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example where we take the connected sum of two tori:

Remove a disk from each

surface. @) <
Glue the surfaces together

along the cut edges. <

Smooth out the seam. “

Surprisingly, nobody has invented a good name for the surface we just created.
We will call it the double torus.

The above procedure can be applied to any pair of surfaces. Taking the
connected sum of a torus and a double torus produces this surface:

We will call this the triple torus.

Task 2.7.1: Draw a sequence of pictures to show that if you take the connected
sum of a surface with a sphere, the result is equivalent to the original surface.

Another way to prove the fact mentioned in Task 2.7.1 is: A sphere minus
a disk is the same as a disk, so taking the connected sum with a sphere just
replaces the disk which was removed from the original surface.

Combining our two methods of producing surfaces gives this catalog:
Spheres with holes:
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Tori with holes:

O
<> O
=D (Ceo C=

Double tori with holes:

S ol
=

Triple tori with holes:

and so on....

Note that each of these surfaces can \be described with just two numbers:

the number of tori in the connected sum, and the number of holes.

We refer to the edges of the holes as the boundary of the surface. A sphere
has no boundary, a torus with three holes has three boundary curves, and so
on. To a creature living on the surface, the idea of a boundary curve is more
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natural than the idea of a hole. As the inhabitants move about on the surface
they occasionally encounter an ‘edge’ to their world. From the outside we can
see that they have walked up to the one of the holes, but on the surface it merely
looks like the world ends. An inhabitant can walk along the edge until it gets
back to where it started. To the creature, it just seems like there is a line on the
ground which marks the boundary of the world. If the surface has more than
one ‘hole’ then the inhabitant can walk along the surface to another boundary
curve and walk around it until it gets back to where it started. By making marks
on the ground it can count how many boundaries the world has. We can see
that the creature is just counting holes, but our view from outside the world is
unnatural. The natural perspective is that of the creature on the -urface, and
so boundary curves, not holes, are the preferred object of study. We will look
at this further in a later section.

2.8 One—sided surfaces

Our list of surfaces is not complete. One surface we are missing is the
Moébius strip, named after the German mathematician August Mobius. To make
a Mobius strip, glue the ends of a strip of paper with a half-twist.

Glue the ends

after making

a half-turn.
The result
will look
like this:

Task 2.8.1: Imagine that you take a Mobius strip made of paper and you cut it
in half down the center. What will be the result? What if you cut the resulting
surface in half again? What if you cut the original Mobius strip into thirds?
Make detailed predictions as to the result of each operation.

Task 2.8.2: Make some MGgbius strips out of paper and check your predictions
from the previous Task. If your predictions were wrong, try to figure out where
you made an error.

The Mébius strip has two interesting properties: it has just one edge, and
it has only one side. Check those properties with your paper model: you can
trace the whole edge without picking up your finger, and you can go from ‘one
side’ to ‘the other side’ by going around the strip. It is worthwhile to look back
at the previous two Tasks and express your results in terms of the number of
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edges and sides of the surfaces.

Since the Mébius strip has only one side, it cannot be in the large Catalf’g
of surfaces we produced previously. If you look back on that list,, you can easily
convince yourself that all those surfaces have two sides.

A Mébius strip has one curve for its boundary. A disk also has one boundary
curve. We can imagine gluing a disk onto a Mébius strip, producing a surface
with no boundary. The resulting surface is called the projective plane.

We put a fuzzy ? because it is impossible to accurately draw a projective plane.
This should be believable, because you can imagine trying to sew a disk onto a
Mébius strip: things will be easy at first, but no matter how stretchy the fabric
is, you will get stuck before you are able to finish. However, our inability to
draw the projective plane will not stop us from learning things about it.

The projective plane is the building block for all the one-sided surfaceg
Just like we made more two—sided surfaces by taking the connected sum of tori,
all one-sided surfaces are made by taking the connected sum'of projective planes
(and cutting holes in those surfaces). The connected sum of two projective planes
is called the Klein bottle, named after Felix Klein. Since a projective plane
minus a disk is a Mébius strip, the Klein bottle is equivalent to the surface you
get when you glue together two Mébius strips. The reason it is called a ‘bottle’
is shown in the Project on one-sided surfaces, at the end of the book.

The projective plane and the Klein bottle have useful representations as
squares with opposite sides glued:

— _———}———"’T

I

The projective plane The Klein bottle

Note that the arrows do not all face the same way, sometimes we ‘make & twist’
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when gluing. These representations are useful for drawing graphs on the surfaces:

]

K 5 on the projective plane K ; on the Klein bottle

It is important that edges of the graph match up properly after we glue the
sides of the square. The presence of a ‘twist’ makes things a bit more tricky
than when we were dealing with the torus. Check that the above examples are
drawn correctly.

This ends our discussion of one-sided surfaces. To learn more about these
interesting surfaces see the Project on one—sided surfaces at the end of the book.
In the next section we return to two--sided surfaces.

2.9 Identifying two—sided surfaces

In Section 2.7 we gave a complete list of two sided surfaces. There remains
the problem: given a two—sided surface, how do we decide which surface it is?
This is not as trivial as it sounds. The surfaces below are two—sided, but it is
not obvious where each fits on our previous list.

- =
_/

Before identifying these surfaces in terms of our previous list, we must
develop our concept of what it means for two surfaces to be equivalent. Recall
that we take the perspective of someone living on the surface. If you are confined
to the surface then you can’t distinguish many things which are evident from the
‘outside.’ For example, suppose you live on an annulus. You would be oblivious
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to the following procedure:

Choose any line going from
one boundary to the other.

Cut along the line and twist
the surface in various ways.

Glue the cut edges together
the way they were originally.

The cut edge was put back exactly the way it started, so if you are confined to

the surface it is impossible to distinguish between the original annulus and the
twisted annulus.

Task 2.9.1: Show that each of these is equivalent to an annulus.

Also, the figure on the cover of this book is equivalent to an annulus.

It is difficult to write down a useful and completely rigorous‘ dfaﬁnigiol} of
what it means for two surfaces to be equivalent. For our purposes it is su clent
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to think of it as “indistinguishable by people who are confined to the surface,
have poor eyesight, and are bad at measuring distances.” Two important ways
of manipulating a surface to get an equivalent surface are: bend and stretch
without tearing it: and cut it apart and twist it around, reassembling the pieces
so they fit together the same as originally.

On topology. The above discussion of a mystery world inhabited by people who
have poor eyesight and are bad at measuring distances might remind you of the
insect world from Chapter 1. This is a main theme of this book: we ignore size
and distance, and just look at how things are connected. For example, when we
studied graphs the only thing we cared about was which vertices were connected
to which other vertices. And as we study surfaces, we only care how the surface
is ‘connected to itself,” the outside appearance of the surface being of only minor
consequence. Mathematicians call this area of mathematics topology- Note:

do not confuse topology, a branch of mathematics, with topography, the study
of mapmaking.

Now we develop an organized way to distinguish surfaces. The surfaces on
our list can each be described as the connected sum of some number of tori,
each with some number of holes. Counting holes is the easier part. Each hole
has one boundary curve, so we count holes by counting boundary curves. To do
this, start at one point on the edge of the surface, and trace that edge until you
end up back where you started. If there is a part of the boundary which hasn’t
been traced, then start over on an untraced part. Keep going until you trace
the entire edge. The number of times you started tracing is equal to the number

of boundary curves. An easy way to keep track is to trace each boundary curve
with a different color pen.

Task 2.9.2: Check that these are labeled correctly:

One Two

Three
boundary curve boundary curves boundary curves

Task 2.9.3: Count the number of boundary curves on the two surfaces at the
beginning of this section.

If a two—sided surface has no boundary then it is a sphere, or a torus, or a
double-torus, or.... If a surface has one boundary curve then it is a something
with one hole. The problem is to determine the something. The key to this is
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our friend v — e + f. In the case of the sphere we found v — e + f = 2 and for
the torus we found v —e + f = 0, so we can use v — e + f to distinguish between
the sphere and the torus. This suggests that it will be useful to find v —e + f
for our other surfaces.

Since f stands for the number of separate regions...
Task 2.9.4: Explain why cutting a hole in a surface decreases v —e + f by 1.

So, a sphere with one hole has v — e + f = 1, a sphere with 5 holes has
v —e+ f = -3, a torus with 2 holes has v — e + f = —2, and so on.

If we knew v — e + f for the double torus, triple torus, and so on, then we
could determine v — e + f for all the 2-sided surfaces.
Task 2.9.5: Explain why taking the connected sumi of a surface with a torus
decreases v — e + f by 2. So, for the double torus v — e + f = —2, for the triple
torus v — e + f = —4, etc. The reasoning in Task 2.4.3 may be helpful here.

Task 2.9.6: Make a chart of all the 2-sided surfaces and write the vajye of
v — e+ f next to each one.

Now we have an infallible way to identify any 2-sided surface: first count
the number of boundary curves, then find v — e + f and look Up the answer in
your chart from Task 2.9.6. To find v — e+ f, draw a graph on the surface which
divides the surface into cells. The usual method is to decide how many edges
need to cut across the surface to divide it into cells, put vertices at the ends of

those edges, and connect the vertices by putting graph edges along the entire
boundary of the surface. Here are two examples:

v=6 y =
e=11 e=
f=3 f=
The first surface has three boundary curves and v — € + f=-lsojtisqa

sphere with three holes. The second has two boundary curves andv—e+f _ -2,
so it is a torus with two holes. In both examples we used more Vertices and edges
than were absolutely necessary to cut the surface into cells. Adding too many
vertices and edges makes it difficult to correctly count v, €, and f, but if you
fail to cut the surface into cells then you won’t get the right answer.

Task 2.9.7: Identify all the surfaces which have appeared in this section.
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2.10 Cell complexes

This section finishes our study of two—sided surfaces.

Below are assembly instructions for building a surface. Edges labeled with
the same number get glued together, and the arrows show which way to match
the edges.

This is an example of a cell complex: a bunch of cells which are glued together
to make a surface. We first encountered this idea back when we began studying
the flat torus. Gluing the sides of a square to get a torus is an example of a cell
complex with just one cell.

Task 2.10.1: Is it possible to make the above surface out of actual pieces of
paper?

We use our usual method to determine what surface is formed from the
cell complex. First we count boundary curves. In this example, every edge gets
glued, so the surface has no boundary, so the surface is a something with no
holes. Next we find v — e + f. The glue lines form the edges of a-graph, so
we will use that graph to find v, e, and f. The cell complex has 3 ceils, so
f = 3. There are 7 glue lines, labeled 1 through 7, so e = 7. The corners of the
cells will become vertices, but many corners will be glued together at the same
vertex. When a pair of edges get glued, that also glues together the corners at
the respective ends of the edges. To count vertices, label a corner and then trace
through all the glued edges and give the same label to all the corners which get
glued to the original corner. If some corner hasn’t been labeled, then repeat the
process. The number of labels you need is equal to the number of vertices. Here
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is the result for the above example:

a a
a
b a
a
a
a
a
a b
a
b a

There are two different vertices: a and b, so v = 2. Therefore v —e + f = =2,
so the surface is a double torus.

Task 2.10.2: Identify this surface:

Task 2.10.3: In Task 2.3.4 we stated that gluing opposite sides of a hexagon
gives a torus. Verify that this is true.

Task 2.10.4: What surface do you get when you glue opposite sides of an
octagon? decagon? dadecagon? (Those polygons have 8, 10, and 12 sides,
respectively.)

We have repeatedly stated that our list of two—sided surfaces is complete.
The easiest proof of this fact uses cell complexes. This is briefly discussed in the
Notes at the end of the Chapter.
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One type of cell complex is of particular importance:
Definition. A triangulation is a cell complex where:
- All the cells are triangles.

- Two different triangles in the ceil complex share either exactly one vertex,

or exactly one edge (and the vertices at the ends of that edge), or else they
don’t meet at all.

- No triangle shares a vertex or edge with itself.
The triangles can look bent or twisted, but they must still be cells whose
border has three vertices and three edges.

Here are some of the ways that triangles are not allowed to border in a
triangulation:

NZ0N

Task 2.10.5: Explain why the number of triangles in a triangulation must be
even. Hint: this is related to Task 1.6.5.

The answers to the next Task have already appeared in this Chapter.

Task 2.10.6: Find a triangulation of the sphere using 4 triangles. Find a
triangulation of the torus using 14 triangles.

It is impossible to triangulate the sphere with fewer than 4 triangles. We
must use an even number of triangles, so the only possibility would be to use
2 triangles. You can easily make a sphere by gluing together two triangles, but
the result is not a triangulation.

It is also impossible to triangulate the torus with fewer than 14 triangles.
You can show this by combining v — e + f = 0, the idea behind Task 2.10.5, and
the observation that a graph with n vertices has at most as many edges as Kn.
There is a simple way to triangulate the torus with 18 triangles: cut the flat
torus into 9 squares, then divide each square into two triangles.

2.11 Notes

Note 2.11.a: The statement “The Earth is a sphere” is inaccurate in several
ways. It is more precise to say “The surface of the Earth is a sphere.” That
statement is also inaccurate because certain geographic features, such as arches
and tunnels, cause the surface of the Earth to be quite complicated. It would
oe impossible to determine exactly which two-sided surface the surface of the
Earth is, because the answer depends on how fine of a scale you use to measure.
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If you measure things on a very large scale then the surfage of the Earth is a
good approximation to a sphere. Outside of pure mathematics, that 1s the best
you could hope for.

Note 2.11.b: The plural of torus is tori.

Note 2.11.c: Although the word equivalent will have different meanings in
different contexts, in each case we require the following:

- Everything is equivalent to itself.
— If A is equivalent to B, then B is equivalent to A.

— If Ais equivalent to B, and B is equivalent to C, then A is equivalent to C.

Note 2.11.d: It is traditional to use the letter F' to represent a surface. This
is because the German word for “surface” is “flache.”

Note 2.11.e: For any surface F', the number v — e + f is called the E|';ler
characteristic of the surface, and it is denoted by x(F). For example, if T
is the torus, then we would write x(T) = 0. Note: x is the Greek letter chi,
pronounced ‘ki,’ as in ‘kite.’

Note 2.11.f: The two—sided surfaces with no boundary are all connected sums
of tori. The number of tori is called the genus of the surface, and it is commonly
denoted by g. The connection between genus and Euler characteristic is x(F) =
2 — 2g. If the surface also has b boundary curves, then x(F) =2 — 29 — b.

Note 2.11.g: The distinction between two—sided and one-sided surfaces may
seem natural, but this actually refiects our prejudice as 3-dimensional bein‘gS-
First, you should not think of the inhabitants of a surface as people walking
on top it, but rather as 2-dimensional beings embedded in it. These beings
do not think in terms of ‘sides’ of the surface. They can only conceive of two
directions of motion, so the possibility cf a third direction of motion towards the
‘top’ is beyond their comprehension. Fortunately, they can still understand our
distinction between one- and two-sided surfaces by using the related concept

of orientability. We will see that the two-sided surfaces are orientable and the
one-sided surfaces are nonorientable.

It is easiest to explain by an example. The following illustrates that the

Mébius strip is nonorientable. Keep in mind that the objects ‘on’ the surface
are actually 2—dimensional objects ‘in’ the surface.

Take a right-hand glove and
slide it around a Mobius strip.

J
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Keep sliding until it returns to
its original place. It is now a
left-hand glove!

A surface is nonorientable if it is possible to turn any shape into its mirror-
image by moving it along some path in the surface. Such a path is called an
orientation reversing path. A surface is orientable if it isn’t nonorientable.
You should convince yourself that the two—-sided surfaces are orientable, meaning
that it is impossible to turn a right-hand glove into a left—hand glove by moving
around on those surfaces.

An alternate definition of orientability uses cell complexes. To orient a
cell means to specify a direction of travel around its boundary.

An oriented cell.

A cell complex is orientable if we can orient each cell, such that at the edge
where two cells meet, the orientations from each of the two cells are in opposite
directions. We say that a surface is orientable if it is given by a cell complex that
is orientable. This is equivalent to the previous definition of orientable. Note:
it is best to think of an orientation of a cell not as a cyclic ordering of its edges,
but rather as a cyclic ordering of its vertices. In two dimensions the distinction
is irrelevant, but in higher dimensions the latter view is better.

Note 2.11.h: Here is one way to prove that our list of two—sided surfaces is
complete:

— Show that all surfaces can be written as a cell complex.
— Show that the cell complex can be ehosen to have just one cell.

— Show that the cell complex can be chosen to have just one cell and one
vertex.
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X

— Show that the complex
can be chosen to have x
just one cell with the
sides glued in groups of
four like so:

- Finally, conclude that the cell complex gives one of the surfaces on our list.

The representation of a surface as one cell with edges glued in groups of four (as
above) is called the standard form for the surface.

tandard form of the
double torus:

c

Note 2.11.i: On the plane, or the sphere, any map can be 4-colored, and some
maps cannot be done with fewer than 4 colors. The proof of this is very difficult.
On the torus, any map can be 7—-colored, and some maps require 7 colors. This
can be proven by an easy modification of the 6—coloring method from Chapter 1.
Here are the steps:

- Use v—e+ f =0 to show that any graph on the torus has a vertex of order
6 or less.

- Modify the 6—coloring method of Chapter 1 to show that any graph on the
torus can be 7-colored.

— Give an example of a graph on the torus which requires 7 colors.

The first step requires a small bit of calculation, the second is nearly identical
to the planar method of Chapter 1, and the third has already been done in
Task 2.3.2.

It is interesting that the Four-Color Theorem for the sphere is very difficult.
while the Seven-Color Theorem for the torus is very easy.



Knots

3.1 The view from the outside. In the previous two chapters we were
concerned with graphs and surfaces as viewed from the object itself. Now we
shift our perspective and consider objects as viewed from the outside.

Here are three knots. The pictures are meant to represent a piece of string
which has been twisted around and then had its ends sealed together.

O&E

If you were put on the knot itself, all you could tell was that it is one
continuous closed loop, so a knot isn’t interesting unless you view it from the
outside. The manipulations we do to mathematical knots are exactly the same as
those which can be done to an actual piece of string. For example, the following
manipulation takes the third knot above and rearranges 't to give the first knot.

GIEIC1O:

Visualizing and drawing knots can be difficult at first, so you may find it helpful
to keep on hand an old shoelace or other piece of string to tie into the knots we
study.

The picture we draw of a knot is called a knot diagram, and there are

59
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many different diagrams representing the same knot. Think of tlrlle g;z;r‘:
floating around in space. Each diagram of that knot is one of th.e ma ')I(‘wo oot
we might see as we look at the knot from different PerSPeCtlvefjk the other.
diagrams are called equivalent if one can be manipulated to look i Z represent
Another way to put it is, two knot diagrams are equivalent if the;y bot . iimilar
the same knot. The distinction between a knot and a knot diagram 151 Also
to the distinction between a graph and a graph diagram from Chapt%f .of twc;
the concept of two knot diagrams being equivalent is similar to the i ez}m{ o the
surfaces being equivalent from Chapter 2. It may be helpful to look bac
discussion of equivalence in Section 2.6.

. . i id line and
From now on we will represent knot diagrams by drawing a solid
leaving a ‘gap’ to indicate the under—-crossing;:

is the same as

is the same as

The individual segments that we draw in the diagram are called the strands of
the knot diagram. The first diagram above has three strands, and the second
has four strands. The place where we leave a ‘gap’ to show that one part of the
knot passes ‘above’ another part is called a crossing in the diagram.

Task 3.1.1: What is the relationship between the number of crossings and the
number of strands in a knot diagram? Explain why this relationship holds.

3.2 Manipulating knots

There are lots of ways to manipulate knots. The best way to show Z.(s)illlr
manipulations is as a sequence of diagrams, where a nou‘nal person can f ny1
see exactly what you did at each step. For example, here is one possible st€P
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~T3 (5 ¢
O 8 0

The diagrams are intended to show that we took one strand of the knot and
dragged it underneath and to the left. If each step of your manipulation involves
moving just one strand, then you can be fairly sure that other people will be
able to follow what you are doing. Here is another example of moving just one
strand.

(X ) XX
) — 9

Some moves can’t be easily shown ‘one strand at a time.’ For example:

HOtE)

The diagrams should convey the idea that we took one part of the knot and
‘flipped it around.’

All the manipulations you do to a diagram result in a different diagram of
the same knot. Some of the diagrams will look incredibly complicated, while
others may look simple. It is natural to try and manipulate a knot diagram to

make it look as simple as possible. How simple it can get depends on which knot
it represents.
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The simplest koot is called the
unknot. It is the only knot
which has a diagram with no
Crossings.

Note that we said the unknot has a diagram with no crossings. A diagram with
crossings could still possibly be the unknot. For example, two of these diagrams
represent the unknot:

N GN A

Task 3.2.1: Rearrange cach of the above diagrams so that it has as few crossings
as possible. Two of them are the unknot, so they can be rearranged to have no
crossings. The other one isn’t the unknot, so no matter how hard you try, you
can’t get rid of all the crossings.

" Task 3.2.2: Make up some mathematical puns using “un,” “not,” “knot,” anq
“unknot.” Explain them to your friends.

Some of our goals will be to classify knots, find interesting propertieg of
knots, and devise clever ways to determine if two diagrams represent the same
knot. But first we need some hands-on experience. Here are a few simple kpot
diagrams:

: S
Iy == ¥

L.ater we will discuss that each of those diagrams represents a different knot,
and each is drawn with as few crossings as possible.
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As you may have noticed, it is not always easy to tell when two knot dia-
grams are equivalent. Showing that two knots are different can be even more
difficult because you must show that no manipulation, no matter how clever or

complicated, can rearrange one to look like the other. These are some of the
things we will address later in the chapter.

3.3 Lots of knots

In this section we discuss the problem of creating a ‘catalog’ of knots.

In Chapter 1 we made a list of some graphs, arranging them by the number
of vertices and edges. In Chapter 2 we made a list of surfaces, arranging them by
the number of holes and the number of tori in the connected sum. If we want to
make a list of knots, then we need some way to organize the list. Surprisingly(?),
nobody has found a good way to write down a list of all knots. You will see that
the method we will use has its shortcomings, but until someone invents a better
way, it is the best choice we have. The method is based on the idea of crossing
number.

The smallest number of crossings needed to draw a knot is called the cross-
ing number of the knot. A great shortcoming in the definition of crossing
number is that each knot has many different diagrams. Given a knot diagram
it might take a lot of work to reduce it down to the smallest possible number‘
of crossings. It can even be difficult to determine when a knot has been drawn
with the smallest possible number of crossings.

Recall that the unknot can be drawn with no crossings. In other words, the
unknot has crossing number 0. If you look back at the examples in the previous
section, you will find knots with crossing numbers 3, 4, 5, 6, and 7.

Task 3.3.1: Draw a few knot diagrams with 1 or 2 crossings. What knot does
each of your diagrams represent?

The next few Tasks use the idea of a projection to show that there are no
knots with crossing number 1 or 2, and to find all knots with crossing number 3.

A knot projection is like a knot diagram, except that the over/under
crossings are not shown. The name comes from the idea that it looks like the
2-dimensional shadow of a 3-dimensional knot. Here are some examples:

Q% &

Given a knot projection, you can turn it into a knot diagram by choosing

over/under at each crossing. There is a choice at each crossing, so there can be
many different knots with the same projection.
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Task 3.3.2: Find all projections with one crossing (there are only two of them).
Show that every way of turning those projections into a knot diagram results in
the unknot. Thus there are no knots with crossing number 1.

Task 3.3.3: Find all projections with two crossings (there are between 5 and 10
of them). Show that every way of turning those projections into a knot diagram
results in the unknot. Thus there are no knots with crossing number 2.

Task 3.3.4: Find all projections with three crossings (there are between 20
and 25 of them). Determine which of those projections represent the unknot no

matter how the projection is turned into a diagram. How many different knots
can be obtained from the remaining diagrams?

Task 3.3.5: Begin making a list of projections with 10 crossings. Write down a
dozen or so of them and then describe how you would go about systematically
completing the list (assuming you had enough time to do it).

Task 3.3.6: If you draw any continuous curve which crosses itself a bunch of
times and ends up back where it started, the result is a knot projection. See
Task 1.10.7 for an example. Now modify the procedure so that when you are
about to cross a line which you drew previously, you pick up your pen and then
put it down again on the other side. Keep drawing as much as you want, but
always pick up your pen as you cross a previously drawn line, and eventually
finish at the same point where you started. The result will be a knot diagram.
Draw a few examples and see what knot the diagram represents.

For more than 100 years work has been spent classifying and cataloging
knots. There is no reason for us to repeat all that work, so you can turn to the
end of the chapter to see a chart of all of the knots with 7 or fewer crossings.
There are 26 of them. Spend some time looking at the similarities and differences
among the various knots. After the unknot, the next three simplest knots also
have common names.

SO SO ¢

Left trefoil Right trefoil Figure-8

Other diagrams of those knots appeared in Task 3.2.3.

The names “left” and “right” given to the two forms of the trefoil might
seem arbitrary, but they actually have a perfectly logical basis. To understand
this, we need the concept of an oriented knot. An orientation of a knot is a
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choice of direction of flow around the knot. Here are two oriented knots.

NG

. ‘ ’ and then f ing that
Given a knot, you can orient it by drawing oneé Z;rc;‘;,;:h strand. Toillz“:}?fice of
arrow around the knot drawing another arrow ill b ne wa
direction of the first arrow is arbitrary, but afterdt-h:zt'icgsrgf“‘/fliowez entve !
to draw the other arrows to maintain the same dir '

i ither ‘left— d’ or
Each crossing in a knot diagram can be classified as either ‘left-hande
‘right-handed.’

A left-handed crossing A right-handed crossing

Here is how the names are determined. Take your right hand and Pomt thti
thumb in the direction of one of the strands in the ‘right—-hand’ Crossing. Cu.r
your fingers as if you were grabbing that strand, and your fingers will point in
the direction of the arrows on the other strand. If you use your lgft hand on a
right-hand crossing, then it won’t work and your fingers will pom't the wrong
way. In the two knots shown above, the one on the left has four right-hande

and two left-handed crossings, while the one on the right has two left-handed
and two right—handed crossings.

Task 3.3.7: Orient a right trefoil knot and a left trefoil knot. Are the names
‘right trefoil’ and ‘left trefoil’ appropriate?

Task 3.3.8: Orient your favorite knot diagram and write down whif:h cro.ssmisf
are right-handed and which are left-handed. Then reverse ‘the onentat(;;;)n
the knot (that is, reverse all the arrows). How have the crossings changed?

On the chart you will find some pairs of knots with the same pame. T'he two
knots of the pair have the same projection, but all the crossings in the diagram
are ‘opposite.” We say that the diagrams are mirror images of each othfl!]l'-
Sometimes a diagram and its mirror image represent different knots, such as the
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left and right trefoil. And sometimes a diagram and its mirror image represent
the same knot, as in the next two Tasks.

Task 3.3.9: Show that these diagrams represent the same knot.

SRS

Task 3.3.10: Show that these diagrams represent the same knot.

& ©

The last two tasks illustrate the difficulty of finding a ‘good’ diagram of a
knot. The diagrams in Task 3.3.9 make it easy to show that the figure-8 knot is
its own mirror image. The diagrams in Task 3.3.10 show that the figure-8 knot
has a nice symmetry. Both sets of diagrams are interesting, and which one you
consider to be ‘better’ will depend on what purpose you have in mind.

Task 3.3.11: Hold this diagram up to

a mirror and draw the image. How \_/
does the knot you drew compare to \
what we have called the ‘mirror image’ C

of a knot?

The chart of knots at the end of the chapter shows both a knot and its
mirror image (when those are different knots). Knot tables in other books save
space by only showing one of a mirror image pair.

We said that the chart has all the knots with up to 7 crossings. That was
a lie. Neither of these knots appears on the chart:

08 @Y
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Both of those knots are an example of a connected sum of knots. Here is
the procedure for making the connected sum of two knots.

Start with any two knots. C Q\)

O/\
Remove a small segment &/ @
from each knot. \

Connect the loose ends

without introducing any C Qb
new crossings. \> C

.. imil
The result is called a connected sum of the two original knots. We used similar
terminology, and a similar procedure, in the chapter on surfaces.

- ts i
A knot which can be written as a connected sum of two nontrivial knots is
called a composite knot.

Task 3.3.12: Two composite knots appeared in Section 3.2, and one appeattfld
in Task 3.2.3. For each one, find two knots whose connected sum makes USioue
composite knot. Do the same for the two composite knots shown on the pre S
page.

A knot which cannot be written as a connected sum of two nontrivial kﬂ.OtS
is called a prime knot. The chart at the end of the chapter only shows %Fime
knots. Given a composite knot, it can be written as the connected sum 0 I‘I’VO
knots. If those two knots are not prime then each can also be written as another
connected sum. The process continues and the hope is that event}lally one gets
down to prime knots, and those can be identified using a chart like the one at
the end of the chapter. For example, the following knot is the connected sum of



3.4 ALTERNATING KNOTS 69

four prime knots, and those four knots can be found on the chart.

(XD @
?\‘%} ——GF

It is a fact that a composite knot can always be written as a connected sum of
prime knots, but the proof is too complicated for us to address in this book.

There are several subtle questions we haven’t addressed. For example, can
you take the connected sum of two knots and get the unknot? Can a composite
knot be written as a connected sum of prime knots in more than one way? Is
there more than one way to take the connected sum of two knots? One of these
questions is addressed by the next Task.

Task 3.3.13: Show that these diagrams represent the same knot.

L/ C

)

Q.

S
(2 Q==
NN,

3.4 Alternating knots

Put your finger on & knot diagram and begin tracing it. At each crossing, the
strand you are on will either go ‘over’ or ‘under’ the other strand. If the pattern
of crossings you encounter goes over—under—over—under..., continually switching
back and forth from over to under, then we say the diagram is alternating. An
alternating knot is a knot that has an alternating diagram.

You can check that all of the knots in the chart at the end of the chapter
are alternating. This might lead you to guess that every knot has an alternating
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diagram. That guess would be wrong. Here is an example.

It is impossible to rearrange '
this knot to get an alternating
diagram. \

Task 3.4.1: In the previous section is shown a connected sum of a left trefoil
and a right trefoil. Rearrange that knot to get an alternating diagram.

Task 3.4.2: Spend a few minutes trying to find an alternating diagram Of_the
knot shown above. You will not succeed, because that knot isn’t alternating,
but you should make a few attempts anyway.

One reason alternating diagrams are important is this useful fact.

Almost True Fact. An alternating diagram cannot be rearranged to have
fewer crossings.

We say ‘almost true’ because there is one way in which the fact can fail,
and it is easy to detect when this one exception occurs. We have encounteredq
such exceptions earlier in the chapter.

Task 3.4.3: Find alternating diagrams which violate the Almost True Fact.

Dereraine what they have in common, and find a concise way to describe the
exceptions to the ATF.

Task 3.4.4: Draw a knot diagram with 10 crossings which cannot be simplifieq
to have fewer crossings. Then do one with 20 crossings.

Task 3.4.5: Is it always possible to turn a knot projection into an alter‘natﬁng
knot diagram? If ‘yes, explain why. If ‘no,’ give an example of a projection
which can’t be turned into an alternating diagram.

Task 3.4.6: Is it always possible to turn a knot projection into a diagram of
the unknot? If ‘yes,’ explain why. If ‘no,” give an example. Hint: Task 3.3.6.

Task 3.4.7: Draw some diagrams where the pattern of crossings goes 0-0~u~
u-0-0-U-U..., where o=over and u=under. Which knots can be represented by

diagrams of this type? Can all of those diagrams be simplified to have fewer
crossings?
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3.5 Unknotting number

Suppose we do an ‘illegal’ move of switching one crossing of a knot.

switch one

crossing

A

Task 3.5.1: Determine which knot appears on the right side above. That is,
identify it as one of the knots shown in the chart at the end of the chapter.

Task 3.5.2: Determine what other knots occur when different crossings are
switched in the diagram on the left side above. Can you obtain the unknot by
switching one crossing?

Task 3.5.3: Determine which of the knots with 6 or fewer crossings can be
turned into the unknot by changing one crossing.

Task 3.5.4: Does switching one crossing in a diagram always result in a diagram
of a different knot?

The unknotting number of a knot is the least number of crossing changes
which are needed to turn the knot into the unknot. We have seen that the trefoil
and figure-8 knot have unknotting number 1. The 5; knot has unknotting
number 2.

Task 3.5.5: Is it reasonable to think of a knot with a large unknotting number
as being ‘more knotted’ than a knot with a small unknotting number?

Warning. The unknotting number is defined in terms of the knot, not the
diagram. If it takes a certain number of crossing changes to turn one diagram
into the unknot, there could possibly be another diagram of the same knot which
requires fewer crossing changes to give the unknot. An example of this is given
in the Notes at the end of the chapter.

A knot with a diagram of this
form is called a twist knot.

/\f...>\/

The diagram can have any number of ‘twists’ in its lower portion. On the chart,
the 5,, 61, and 7, knots are drawn in a way which makes it clear that they are
twist knots.

Task 3.5.6: Draw diagrams of the trefoil and figure-8 which make it clear that
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they are twist knots.

Task 3.5.7: Show that this %
is a twist knot. %

Task 3.5.8: What is the unknotting number of a twist knot?

Task 3.5.9: The 3;, 5;, and (\//\
7, knots are the beginning of a

family of knots, the next mem-
ber of which is the 9, knot:
Next comes the 11, knot, the 13; knot, and so on. Determine the unknotting
number. of.each of those knots. (Do the first few and then make a guess.)
Note: it is not feasible for you to be absolutely sure that your answer to
Task 3.5.9 is correct. This is because it is difficult to rule out the possibility
?hat the knot§ could be rearranged to give a diagram which can be unknotted
in fewer crossings. However, mathematicians have shown in this particular case
that no such rearrangement is possible, so your answer to Task 3.5.9 is probably
correct.

A family of knots is an informal term used to describe a list of knots where

:aghtsllclccisswe knot is obtained from the previous one by a simple process. The
WISt XNOLS are an example, as are the knots 31, 51, 71,

Task 3.5.10: Invent your owp family of knots.

Task 3.5.11: Given a knot diagram, can you always make crossing changes in

that particular diagram, without doj . di
T f the
unknot? Hint: Task 3'4" 6. oing any rearranging, to get a diagram o

Task 3.5.12: What relationships are there between crossing number and un-

knotting numbgr? For example, if a knot has crossing number 15, how large or
how small can its unknotting number be?
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3.6 Links

Here are some links.

) )

Hopf link King Solomon’s knot
Whitehead link Borromean rings

A link is like a knot, except that it is made from more than one ‘loop.’
The separate ‘loops’ of the link are called the components of the link. In the
examples above, the Borromean rings have three componc.ts, and the other links
have two components. King Solomon’s knot has a misleading name because it
is a link, not a knot. Apparently it wasn't named by a mathematician!

The manipulations we do to a link are the same as the manipulations we
do to a knot.

Task 3.6.1: For each diagram, determine if it represents one of the links shown
above.

( =
/ s

Task 3.6.2: We have seen diagra.ns of the Hopf link and King Solomon’s knot
in which the components cross each other, but no component crosses itself. Find
a diagram of the Whitehead link which has this property.
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A 2-component link is called splittable if it has a diagram where one
component doesn’t cross over or under the other component. Informally, a

splittable link is one that has two pieces which aren’t ‘linked together.” One
of the links in Task 3.6.1 is splittable. Here is another example.

Task 3.6.3: Show that

this link is splittable. /—\ f/%
Lo\ %

Some interesting 2—component links come from the double of a knot dia-
gram.

Start with any knot diagram.

Draw a second strand parallel

to the original. The resulting \-
link is called the double of the -
original link diagram. .

Task 3.6.4: Show that the link created above is King Solomon’s knot. Then
find a 2—crossing diagram whose double is splittable.

Task 3.6.5: Find the double of a few diagrams of the unknot. Try to find some
rules for when the link is splittable.

The following operation is called a crossing elimination. The idea is to
cut the strands at a crossing, and reconnect them in a different way so as to
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eliminate the crossing. There are two different ways to do the reconnection.

S~
e

/N

)

As an example, we apply the above operation to the circled crossing in this
diagram of the trefoil:

&
~ &

Task 3.6.6: In the example above, we started with a knot diagram. One of
the new diagrams represents a knot and the other represents a link. Does this
always happen? If ‘yes,’ explain why. If ‘no,’ find the other possibilities.

Task 3.6.7: In the example above, one of the new diagrams represents the
unknot. Does this usually happen?

3.7 Linking number

Now we develop a way to measure how ‘linked together’ the components
of a link are. This will be based on the linking number of a link. The linking
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number will also be useful for distinguishing between different links.

Start with any link diagram. @
‘y\
Orient each component.
\

At each crossing of different / \
components, assign either +1
or —1 to that crossing accord- A
ing to these diagrams.

q +1

+1
+1 /\
Here are the +1’s and —1’s for Ry
the example above. Note that \/\
—1 goes with a left-hand cross-

ing, and +1 goes with a right- -1
hand crossing.
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The final step is to add up all the +1’s and —1’s, divide the total by 2, and take
the absolute value of the result. That number is called the linking number of
the link. In the above example, the sum of all the crossingsis -1 —-1—-1-1+

1 + 1 = —2, dividing by 2 gives —1, and taking absolute value we get 1. So the
linking number is 1.

Task 3.7.1: Find the linking number of the links below. Do the same for the
2-component links shown at the beginning of the section.

-
E s

Task 3.7.2: One of the steps in finding the linking number is to add up a bunch
of +1's and —1's. Is that sum always an even number?

An Obvious Question: What is linking number good for?

A Less Obvious, but More Important, Question: Does linking number make
sense?

We will answer the second question first.

The point of the second question is: we use the link diagram to compute the
linking number. If we used a different diagram of the same link, would we get
the same answer? We hope that the answer is ‘yes,’ but since there are so many
complicated ways to rearrange a link, it is not obvious that all those different
diagrams will give the same linking number. Fortunately, we can make use of
an important theoretical tool called the Reidemeister moves.

In 1927 Kurt Reidemeister proved that any rearrangement of a knot or link
is actually built from three simple steps called the Reidemeister moves. The
three Reidemeister moves are:

Put in or take out a left-hand or right-hand kink:

/\gﬁ_,

\/D<—*
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Slide a loop over or under a fixed strand:
a_ -
C - R2 :
- —

Slide a strand past a crossing:

\\/ R3 /

| - |

Each of these moves affects one small part of the knot, and leaves the rest
unchanged.

The two pictures we drew for R2 can actually be thought of as the same. You
can change one picture into the other by turning it upside down, straightening
one strand, and bending the other. For R3 we only need to draw one set of
pictures because we can think of it either as the ‘bottom’ strand moving to the
right, or as the ‘middle’ strand moving up and to the left, or as the ‘top’ strand
moving down and to the left.

It may seem quite natural to you that any knot or link manipulation can be
rewritten in terms of the Reidemeister moves. However, the proof that the Rei-
demeister Moves are sufficient makes use of some powerful mathematical tools,
and it would take us another whole book just to lead up to it. Reidemeister’s
theorem is one of many statements in mathematics which seem very sensible and
‘obvious,” yet which take lots of time and effort to prove rigorously. This extra
work to give a rigorous proof sometimes seems odd to nonmathematicians. The
reason for it is that mathematics is about absolute certain proof, as opposed to
‘proof beyond a reasonable doubt’ or ‘it seems to work in all the cases we care
about.’ In this book we are just beginning our study of mathematics, so we are
aiming to explore interesting ideas and we do not worry too much about giving
proofs of all the things we assert. If you go on to study the subject at a more
advanced level then there will be a great emphasis on giving complete proofs of
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your assertions.

Task 3.7.3: Choose one or two of the manipulations shown in the text of Sec-
tion 3.2 and rewrite it as a sequence of Reidemeister moves.

Task 3.7.4: Explain knot manipulation and the Reidemeister moves to a friend
who doesn’t know anything about mathematical knots.

Returning to our previous questions, the Reidemeister moves give us a way
to show that linking number depends only on the link, not on the particular
diagram of the link. All we must do is show that the linking number is the same
before and after each of R1, R2, and R3.

For example, suppose we do move R2, in the case that the two strands come
from different components:

The sum of the numbers is the same (ie, zero) on both sides, so R2 did not
change the linking number.

Task 3.7.5: The above example does not completely take care of R2, because
the two strands could possibly be part of the same component, and the strands
could be oriented differently. Write out the possibilities and check that the move
does not change the linking number.

Task 3.7.6: Check that R1 and R3 do not change the linking number.

We have shown that linking number depends on the link, not the choice of
diagram of the link. We usually refer to this as, “Linking number is an invariant
of the link.”

Now we can determine a use for linking number. Recall that by switching
the crossings in a knot we can get the unknot. Similarly, by switching the
crossings in a link, we can get a splittable link. When switching a crossing in
a link, there are two possibilities: the crossing could involve strands from the
same component, oI it could involve strands from different components. The
next Task locks at the difference between these operations.

Task 3.7.7: For several two—component links, make crossing changes so that
the link becomes splittable. For each one, try to determine:

a) the smallest number of crossing changes needed,

b) the smallest necessary number of crossing changes involving different com-

ponents. For this part you can make as many crossing changes as you want
involving a component with itself.
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Your answer to part b) of Task 3.7.7 should be tihe same as thile l;{nk(l:i
number of the link. If you got something different, then go baclf and ¢ e(:reg'the
work! In other words, the linking number of a two—component link measu

i i i ‘hich are
smallest number of crossing changes, involving different components, whic
needed to make the link splittable.

c . . k
Task 3.7.8: Check that both of these links have linking number 0. Then make

Ly . me
crossing changes only involving a component with itself so that the links beco
splittable.

We found that the Whitehead link has linking number 0, the Hopf lmkhha-z
linking number 1, and King Solomon’s knot has linking number 2. Since t gs
numbers are all different, we conclude that the links are also different. I.n ot Er
words, linking number can tell the difference between the Whitehead llpk, t 'z
Hopf link, and King Solomon’s knot. This is significant, because up to this poin

. : ke
we did not actually have any effective way of showing that two knots or link
were different.

Task 3.7.9: Draw two different links with linking number 3. How can you be
sure that your links are different?

Since a splittable 2-component link has linking number 0, one cannot.use
linking number to determine that the Whitehead link isn’t splittable. So, link-
ing number is an imperfect way of distinguishing between links. In the nex(ti
section we will discuss another way of distinguishing between various knots an

links. This method is also imperfect, but it succeeds in sume cases where linking
number fails.

3.8 Coloring knots and links

A knot or link diag

ram is called 3—colorable if it is possible to d° the
following:

~ color each strand of the diagram,
- use a total of 3 colors,

- at each crossing, all the strands are the same color, or all the strands are &

different color. In other words, you can’t have two strands the same color
and the third a different color.

Here are two 3—colored diagrams. We use the numbers 1, 2, 3, to color the
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strands. While we use numbers to ‘color’ the strands (this is a black-and-white
book!), you will probably get better results if you use colored pens.

Task 3.8.1: 3-color these diagrams.

D KK

Task 3.8.2: Show that these diagrams cannot be 3—colored.

Task 3.8.3: Draw a diagram with between 10 and 15 crossings and try to

determine if it can be 3—colored. Given a diagram with many crossings, describe

how you would determine if it could be 3—colored.

We see that some diagrams can be 3—colored, and some cannot. However,
we are more concerned with studying knots, not just knot diagrams. Fortunately,
we have the following fact:

3-Coloring Fact. Given a knot, either every diagram of that knot can be
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3—colored, or no diagram of that knot can be 3-colored.

We will establish this fact by using the Reidemeister moves. We must sho.w
that if a diagram is 3—colorable, then after doing a Reidemeister move it is still
3—colorable. Here is R2.

/i

Note that there were two cases to consider, depending on how the strands were
initially colored. Note also that the parts of the strands which 80 to the rest
of the knot’ cannot be changed, because those strands are involved in other
crossings of the diagram.

Task 3.8.4: Check that 3-colorability is not changed by the Reidemeister
moves.

Task 3.8.5: Explain why the unknot isn’t 3~colorable.

Since the trefoil is 3—colorable, and the unknot isn’t 3—colorable, we conclude
that the trefoil isn’t the unknot. It is important to understand the significance
of that statement. We have repeatedly said that various knots are different, but
this is the first time that we actually proved that two knots are not the same.
Up until now, a skeptic could have claimed that all the knot diagrams we have
drawn might actually represent the unknot, it’s just that we haven’t been clever
enough to rearrange them to get rid of all the crossings. We now know that any
3—colorable diagram doesn’t represent the unknot. Of course, this method isn’t
perfect. For example, the figure-8 isn’t the unknot, but it can’t be 3—colored.

We must make a slight modification concerning 3—colorability of links. A 2-
Component splittable link, drawn with the components not crossing each other,
can be colored by making one of the components one color, and the other com-
bonent another color. This counts as a 3—coloring, even though it only uses 2
colors. In Particular, any splittable link is 3—colorable.

In Task 3.8.2 you showed that the Whitehead link isn’t 3—colorable. Since
a splittable link ig 3—colorable, we conclude that the Whitehead link isn’t split-
table. It is interesting that linking number failed to show that the Whitehead
link is splittable, but 3—colorability succeeded.
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3.9 Notes

Note 3.9.a: The diagrams below represent the same knot. The diagram on the
left is drawn with as feW crossings as possible, an~d you must switch 3 crossings
in order to get a diagram of t'he unk.t}ot. The diagram on the ri.ght.has more
crossings, yet it can b€ t}lrnfed into a diagram qf the unknot b'y switching only 2
crossin gsj This example indicates some of the difficulty of finding the unknotting

number of a knot.

- q%l\

ey o
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3.10 Catalog of knots

Knots are named in terms of crossing number and position in the catalog.
For example, the 6, knot, pronounced “the six-two knot” is the second knot
with 6 crossings. There is no logic to the order in which we list the knots with
a given crossing number. The first published catalog of knots listed them in a
certain order, and all subsequent catalogs have used the same arbitrary order.

_______________________________________

______________________________

__________

____________________________
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Projects

4.1 Ideas for projects. These projects involve applying methods from this
book to topics which are not usually considered to be part of mathematics, or
they involve collecting together our old work in an interesting way.

These topics appeal to a general audience, so you should include both a
general introduction to the subject, and also an introduction to the mathematics
you will use in your analysis.

Surfaces as sculpture. Many works of modern sculpture can be identified as
gurfaces we encountered in Chapter 2. You can find v — e + f for the surface
count boundary curves, determine if it is one-sided or two-sided, and identif}1
it on our list of surfaces. Use your creativity to find other interesting aspects
to analyze. For example, the sculpture may appear more symmetric than our
usual picture of the surface, or there may be some interesting lines drawn on the

surface.
Some useful references:

«Mathematical Ideas Shape Sculptor's Work.” Barry A. Cipra, SIAM News,
May, 1990, 24fF.
«Equations in Stone.” Ivars Peterson, Science News 138, 1990, 150-154.

«Mathematics in Marble and Bronze: The Sculpture of Helaman Rolfe Pratt
Ferguson.” J W. Cannon, The Mathematical Intelligencer 13, 1991, 30-39.

«Two Theorems, Two Sculptures, Two Posters.” Helaman Ferguson, Amer-
ican Mathematical Monthly 97, No. 7, 1990, 589-610.

«3D Mathematics in Wood and Stone.” Michael Haggerty, Displays on
Display, IEEE Computer Graphics and Applications 11, No. 5, 1991, 7-10.

«Sculptures of John Robinson at the University of Wales, Bangor.” Ronald
Brown, The Mathematical Intelligencer 16, No. 3, Summer 1994.

The Visual Mind, M. Emmer, Ed., MIT Press, Cambridge, MA, 1993. (This
book has several articles showing interesting sculpture.)

Practical knots. For centuries knots have been used for practical and aesthetic
purposes. Find a class of knots which interest you and do the following:

— Explain the history and the uses of the knots.

— Give diagrams showing how to make some of the knots.

87
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~ Give background information on mathematical knots so that an untrained
person interested in practical knots will be able to appreciate the mathe-
matics.

- Analyze the knots mathematically.

You will need some creativity when analyzing the knots. First you must
connect any dangling ends in order to get a mathematical knot. If there are more
than two loose ends, then this can be done in several ways; some combinations
will give knots, and others will give links. Each can be analyzed using the
methods of Chapter 3. For example, is it alternating? prime? composite? a
link, and if so, how many components? is it 3—colorable?

Some interesting knots:

Sailor knots: Sailors make use of many interesting and practical knots. Look
in the ‘sailing’ section of your local library.

Boy Scout knots: There are dozens of knots in the Boy Scout handbook.

Ornamental knots: Beautiful and intricate knots appear in many Asian
cultures. Learn to tie some fancy knots and include them with your project.

Celtic knotwork. These knots are not made from string, but are carved in
stone, drawn on paper, and cast in metal. These can be analyzed as described
in the Practical knots project. Look up ‘Art, Celtic’ in the library. The Book of
Kells is a particularly rich source of intricate knotwork.

The family tree of knots. If you switch one crossing of a knot diagram then
you get another knot. If you switch a different crossing then maybe you get the
same knot, maybe not. Make a big chart showing the 15 or so simplest knots,
with arrows pointing to the knots you get when you switch various crossings.
You do not have to limit yourself to the knots shown at the end of Chapter 3.
First you will have to do the work of finding what you get when you switch each
crossing of each knot. Then you will have to find a good way to represent all
that information. Also write a few pages giving general information about knots
and explaining the purpose of your chart. Note: you will have to decide if it is
Detter to use just one knot out of a mirror image pair. Doing this will allow you
to show more knots, but it may not capture the whole story. You can explain
your choice in the paper accompanying your chart.

Graphs, knots, and surfaces in art. By using a little creativity you can

find many examples of graphs, knots, and surfaces in many paintings and other
works of art. See

the above descriptions for some ideas for analyzing the objects
you find. "

Symmetry and aesthetics of graphs, knots, and surfaces. What does it

mean to give a ‘nice’ picture of a graph, knot, or surface? This was very briefly
addressed following Task 3.3.10.

Illust.rate.a mathematical topic. Use your artistic ability to create an in-
teresting picture/ sculpture/something else related to the mathematics you have
been studying.

Graphs, knots, and chemistry. Graphs: Hydrocarbon compounds are often
drawn as if they were graphs. In fact, the problem of listing all hydrocarbons
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with a given number of carbon atoms can be rephrased in terms of listing graphs
with certain properties. Knots: Chemists have synthesized knotted organic com-
pounds, and knotted DNA occurs naturally. See The Knot Book [KB] for more
details and some references, and also,

“Lifting the Curtain: using topology to probe the hidden action of enzymes,”
by De Witt Sumners, Notices of the AMS, 42 (5) May 1995, p 529.

4.2 Mathematical topics
These projects extend and build upon the material in this book.

Games on Surfaces. Many popular games are played on part of the plane.
Some of those games can be modified to make interesting games on other sur-
faces.
— If you glue the opposite edges of a checkerboard, the result is a torus. Is it
possible to modify the rules of checkers to make an interesting game on the
torus?

— Is there an interesting 3-player game similar to checkers on a hexagon with
opposite edges glued?

_ Glue opposite edges of a tic-tac—toe board. Does the game now become
interesting? How about 4-in-a-row?

The Shape of Space [SoS] discusses torus chess and torus tic-tac—toe.

An interesting game to analyze is sprouts, a game invented by Conway
and Paterson. Here are the rules.

a) Start with some number of ‘spots.’

b) A legal move is to draw a curve connecting any one spot to any other spot
(including itself), and then putting a new spot in the middle of that curve.

c) No spot can have more than 3 lines coming out from it.

d) The winner is the last person to make a move.
Here is a sample game of 2-spot sprouts:

1 PY 2 3
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For a given starting number of spots, eithe}' the player who moves first, or
the player who moves second, can guarantee a win by perfect play. Which player
is able to force a win depends on the initial number of spots.

~ Analyze 1-, 2-, and 3-spot sprouts. Your analysis will be greatly simplified
if you recognize when a position is equivalent to a position you have seen
before. Also, it is helpful to think of the game as being played on the sphere,
as opposed to the plane. For example, in 2-spot sprouts, there are only two
inequivalent first moves.

— Suppose you wanted to play sprouts on the torus or the double torus. How
should the rules be modified? Does the same person win?

The game of sprouts is discussed by Martin Gardner in his July 1967 col-

umn in Scientific American. That article is reprinted in his book Mathematical
Carnival.

The double torus. In Chapters 2 and 3 we made an extensive study of which
graphs and knots can be drawn on the torus. In this project we find the corre-
sponding results for the double torus. Some good things to do:

— Find useful representations of the double torus as a polygon with sides
glued. For some ideas see Task 2.10.4 and the standard form given in the

Notes to Chapter 2. Note that ‘standard form’ does not mean ‘most useful
form.’

- Which graphs K, can be drawn on the double torus? Draw those that are
possible, and show that the others are impossible.

— Repeat the above for K, ,, (this is more difficult and can be omitted).
— Find the regular graphs on the double torus.

- Find some knots and links which can be drawn on the double torus. The
figure-8 knot 1s one example.

- Find some knots which are the boundary of a double torus with one hole.

One-sided surfaces. In this project you continue the study of one-sided sur-
faces begun in Chapter 2. The one-sided surfaces are also known as the ‘nonori-
entable surfaces.” This is discussed in the Notes at the end of Chapter 2. It
would take considerable time and effort to make a complete study of one-sided
surfaces, so you should concentrate on the parts you find most interesting.

Recall that we say a surface is closed if it has no boundary and it can be
written as a finite cell complex. The projective plane is defined to be the closed
surface obtained by gluing the boundary of a disk onto the boundary of a M&bius
strip. The Klein bottle is defined as the connected sum of two projective planes.

— Show that the square-with-sides—glued pictures of the projective plane and
the Klein bottle given at the end of Section 2.6 are correct. That is, show
that the given form of the projective plane can be cut into a disk and a
Mbbius strip, and the flat Klein Bottle can be cut into two Mobius strips.

Taking the connected sum of a surface with a projective plane is sometimes
called adding a crosscap. The projective plane could then be called ‘a sphere
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with crosscap.’

==

A sphere with crosscap:

_ Discuss the accuracy of the crosscap representation of the projective plane.
In order to represent a one-sided surface as a 3-dimensional object, it is
necessary to have the surface pass through itself. The crosscap picture’is an
example. However, if the surface has a hole in it, then it can be drawn without

intersecting itself. The simplest example of this is the Mdbius strip: it is the
projective plane with one hole.

A Klein bottle with one hole:

If you glue a disk onto the hole, then you get the commonly given picture of
the Klein bottle. Its shape suggests the name ‘bottle,” but you can’t put much
in a bottle that doesn’t have an inside!

We mentioned in Chapter 2 that the projective plane is the building block
for the one—sided surfaces: any one-sided surface is the connected sum of some
number of projective planes, with some number of holes. We use v — e + f and
the number of boundary curves to identify one-sided surfaces.

_ Show that for the projective plane v —e + f = 1, and for the Klein bottle
v—e+ f=0.

— Explain why taking the connected sum of a surface with a projective plane
decreases v — e+ f by 1.

- Explain why cutting a hole in a surface decreases v —e + fbyl
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We write A#B for the connected sum of the surfaces A and B, and we
denote the projective plane by P and the Klein bottle by K. So K = P+#P, and
the closed one—sided surfaces are P, P#P, P#P#P, and so on.

_ Make a chart of the one-sided surfaces, labeled with the value of v—e+ f.

You can’t draw them, so your chart will contain entries like “P#P#P with

one hole, v —€e+ f=-27

— Explain how to tell if a cell-complex represents a one-sided surface.

_ Identify these surfaces:

— Explain why the connected sum of a one-sided surface with a two—sided
surface is one-sided.

— Let T denote the torus. Which one-sided surface is T#P ?
— Determine which graphs K, and K, ,, can be drawn on P and K.

Warning. It is not possible to draw K7 on the Klein bottle. This is contrary
to what you would probably predict. The Klein bottle is the only surface where
the method of using 3e < 2f fails to correctly predict which K, can be drawn

on the surface. Nobody knows a simple reason why the Klein bottle should be
the one exception to the rule.

- Find some regular graphs on the projective plane and the Klein bottle.

Space Tyrant mazes. An evil galactic tyrant from outer space has trapped
you in a giant maze. You have barely enough room to stand up in the corridors
as you slowly explore your cold prison. There are dancing blue lights at the
intersection of corridors and along some of the passageways; in their dim light
you can see only a few feet ahead. You wander the maze, but find no entrance
or exit. You struggle to scratch the wall, but can make no mark, and you have
nothing to leave on the floor to make a trail. You often come to places that look

familiar, but since you cannot leave a mark you don't really know if you have
been there before.

The evil tyrant offers you the following deal: make a graph with the dancing
blue lights as vertices and the connecting corridors as edges. If you can identify



4.2 MATHEMATICAL TCPICS 93

which graph this produces, then you will be set free.

After a bit of work you realize that the space tyrant’s task is impossible.
You can't even determine how many vertices the graph has! Convince yourself
that it is impossible to distinguish between the following space tyrant mazes:

LR NS

A B C D

The galactic tyrant refuses to obey the usual rules, so his graphs may contain
Joops and multiple edges.

You confront the space tyrant with the impossibility of his task, and he is
impressed that a pitiful human could be so clever. He agrees to modify his offer
by granting you one request. In this project you attempt to learn enough about
these mazes SO that you can make an intelligent request.

For the rest of this project, all terms such as ‘equivalent’ and ‘indistinguish-
able’ are meant in terms of space tyrant mazes.
_ Pick a few graphs and for each find a few space tyrant mazes which are

indistinguishable from that graph. Devise a method of producing lots of
mazes which are equivalent.

_ What mazes don’t have any other mazes which are equivalent to it?
Here are some ideas to help you find a way out of your terrible predicament:
_ What if you were allowed a bunch of different markers which you could

Jeave around the maze? This way you would occasionally know when you

returned to a spot. You could then pick up the marker and put it somewhere
clse. How many markers would you need?

— What if you were allowed to write on the walls? You would know when you
returned to a place you had been before, although you would not be able to
pick up the mark and leave it elsewhere. How many marks would you need
to make?

Covering graphs. This project uses some ideas from the project on Space
Tyrant mazes.

A graph is a covering graph of another graph if it can be folded up and
placed on top of the other graph so that edges lie on top of edges and vertices
lie on top of vertices of the same order. We will use the graphs in the Space
Tyrant project as examples.
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Graph B shown above is a cover-
ing graph of graph A: CDA

You should draw pictures showing that graphs C and D shown above are also
covering graphs of graph A. For the sake of completeness, a graph is considered
to be a covering graph of itself, so graphs A, B, C, and D, are all covering
gra,phs of graph A

Graph B is called a 2-fold cover of A because every part of graph A has
two parts of B lying atop it. Equivalently, when you fold up graph B it lies in
two layers on top of A. You should draw pictures to show that C is also a 2-fold
cover of A, while D is a 3—fold cover of A. You should convince yourself that all
covering graphs are n—fold covers, meaning that when you fold up the covering

graph it forms the same number of layers everywhere, as opposed to forming a
different number of layers in different places.

— Explain why two covers of the same graph are indistinguishable as space
tyrant mazes. (The graphs A, B, C, and D illustrate this.)

— If two graphs can’t be told apart, does it follow that they are both covering
graphs of the same graph? For example, C and D can’t be told apart, and
both are covering graphs of graph A.

- Find some graphs which don’t cover any other graphs. Are these the same
as the mazes which don’t appear the same as any other maze?

Does this give a method of outwitting the space tyrant? If you thought of

using covering graphs in the Space Tyrant project, would the following request
assure that you could determine the true shape of the maze?

‘Mr. Tyrant, I request that my maze not be a cover of any other maze.”

The evil tyrant is unlikely to grant that request, for the perfectly good
reason that he has already constructed one maze for you, and if it happens-to
cover some other maze, there is no reason he should go to the expense of building
you another. Actually, you would be lucky if he denied that request, because it
does not guarantee you success. I'll leave it to you to figure out why.

Knots and graphs. This project investigates a way to use graphs to study

knots. Here is how to associate a graph to a knot. The graph produced is called
a signed graph because each edge has a + or — associated to it.
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4
—
Start with any knot diagram. ( b)
/ T\
Two—color the map determined (
by the projection of the knot. l

Put a vertex in each colored
region, and connect vertices by

an edge through each crossing
of the diagram.

Write + Or — next to each edge / \
as shown in these pictures. / \
- +

This is the signed graph associ-
ated to the knot shown above.

Some ideas:

— Show that the above process can be reversed. That is, show how to take
a signed graph and produce a knot, and explain why the process, knot —
graph — knot, gives back the same knot you started with.

- Determine how the Reidemeister moves work in terms of the graph. For
example, here is R1 in the case of a left-hand kink.
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ds, R1 either adds or deletes a loop or a vertex of order 1. N
In other Words, ei
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hat th t because there are two possibilities for which side of
that there are two cases
strand is colored.

II W d € l 1 h 1)' a (ila ram COIrlpaIe 1() 11|e Si ]|e(l ]al)l[ ()f itS
. . .

i to the knot asso-
i to a signed graph compare '
i HOZV c(1:l (zest;hedkn?to?stsl?; lg::gh? Note: you will first have to decide how to
Cla € 0] e ua. l
deal with the + and — when you take the dua

i hs.
= Analyze the knots associated to cyclic grap
= Analyze the knots associated to trees.
~ Analyze alternating knot diagrams. |
i i al.
~ Analyze the knots associated to graphs which are their own du

~ Investigate the connection between knot projectiops a‘nd (;msigned) graphs.
S this of any use in finding a catalog of knot projections?

Knot Polynomials, See Chapter 6 of The Knot Book (KB].
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alternating diagram, 69
alternating knot, 69
annulus, 43
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cell, 38
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knot, 80
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component, 5, 73
composite knot, 68
connected graph, 4, 7
connected sum, 44, 68
knots, 68
surfaces, 44
Connors, Jimmy, 5
contractible loop, 32
covering graph, 93
crosscap, 91
crossing, 60
crossing elimination, 74
crossing number, 64
cube, 42
cyclic graph, 40
cylinder, 43
decagon, 54
digraph, 28
directed graph, see digraph
disconnected graph, 4

disk, 43
dodecagon, 54
dodecahedron, 42
double of a link, 74
double torus, 45
dual graph, 16

edge, 4

equivalent, 44
knot diagram, 60
surface, 50
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Euler circuit, 14

Euler path, 14

Euler’s formula
plane, 10
projective plane, 91
sphere, 37
torus, 38

Euler, Leonhard, 10, 27
pronunciation, 10

evil galactic tyrant, 92

faces of a graph, 11
family of knots, 72
figure-8 knot, 65

flat torus, 35
four—color theorem, 20

galactic tyrant, 92

genus, 56

graph, 4, 5
coloring, 21
component, 5
connected, 4, 7
covering, 93
cyclic, 40
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diagram, 4
disconnected, 4
dual, 16
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Petersen, 29
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Hamilton, Sir William Rowan, 16
Hamiltonian circuit, 16
Hamiltonian path, 16
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Hopf link, 73

icosahedron, 42

King Solomon’s knot, 73
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knot, 59
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coloring, 80
composite, 68
crossing number, 64
diagram, 59
figure-8, 65
mirror image, 66
oriented, 65
prime, 68
projection, 64
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unknotting number, 71
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Kuratowski’s theorem, 29
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linking number, 77
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space tyrant, 92
mirror image of a knot, 66
Mobius strip, 47
Mbobius , August, 47
multiple edges, 5

nonorientable surface, 57

octagon, 54
octahedron, 42
one-sided surface, 47, 90
order, 11, 15
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vertex, 15
orientable surface, 57
oriented knot, 65

pair of pants, 43
path, 6
closed, 7
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prime knot, 68
projection, 64
projective plane, 48

regular graph, 39
regular solid, 42
Reidemeister moves, 77
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space tyrant, 92
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sphere, 31

splittable link, 74

sprouts, 89

strand, 60

subgraph, 28

surface
closed, 90
crosscap, 91
equivalent, 50
nonorientable, 57
one-sided, 47, 90
orientable, 57
standard form, 58

tennis, 95

101

tetrahedron, 42
topology, 51
tori, 56
torus, 31

flat, 35

hexagon, 37
tree, 7
trefoil, 65
triangulation, 55
triple torus, 45
twist knot, 71
tyrant

evil galactic, 92

unknot, 62
unknotting number, 71

valence, 28
vertex, 4

order, 15
vertices, see vertex -
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