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INTRODUCTION 

A simple theory of invariants for the modular forms and linear 
transformations employed in the theory of numbers should be 
of an importance commensurate with that of the theory of 
invariants in modern algebra and analytic projective geometry, 
and should have the advantage of introducing into the theory 
of numbers methods uniform with those of algebra and geometry. 

In considering the invariants of a modular form (a homo­
geneous polynomial with integral coefficients taken modulo p, 
where p is a prime), we see at once that the rational integral 
invariants of the corresponding algebraic form with arbitrary 
variables as coefficients give rise to as many modular invariants 
of the modular form, and that there are numerous additional 
invariants peculiar to the case of the theory of numbers. More­
over, nearly all of the processes of the theory of algebraic in­
variants, whether symbolic or not, either fail for modular in­
variants or else become so complicated as to be useless. For 
instance, the annihilators are no longer linear differential oper­
ators. The attempt to construct a simple theory of modular 
invariants from the standpoints in vogue in the algebraic theory 
was a failure, although useful special results were· obtained in 
this laborious way. Later I discovered a new standpoint which 
led to a remarkably simple theory of modular invariants. This 
standpoint is of function-theoretic character, employing the 
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2 THE MADISON COLLOQUIUM. 

values of the invariant, and using linear transformations only in 
the preliminary problem of separating into classes the particular 
forms obtained by assigning special values to the coefficients of 
the ground form. As to the practical value of the new theory as 
a working tool, it may be observed that the problem to find a 
fundamental system of modular seminvariants of a binary form is 
from the new standpoint a much simpler problem than the cor­
responding one in the algebraic case; indeed, we shall exhibit 
explicitly the fundamental system of modular seminvariants for a 
binary form of general degree. 

It will now be clear why these Lectures make no use of the 
technical theories of algebraic invariants. On the contrary, they 
afford an introduction to that subject from a new standpoint 
and, in particular, throw considerable new light on the relations 
between the subjects of rational integral invariants and tran­
scendental invariants of algebraic forms and the corresponding 
questions for seminvariants. Again, I shall make no use of 
technical theory of numbers, presupposing merely the concepts 
of congruence and primitive roots, Fermat's theorem, and (in 
Lectures III and V) the concept of quadratic residues. 

The developments given in these Lectures are new, with 
exceptions in the case of Lecture I, which presents an intro­
duction to the theory, and in the case of the earlier and final 
sections of Lecture III. But in these cases the exposition is 
considerably simpler and more elementary than that in my 
published papers on the same topics. The contacts with the 
work of other writers will be indicated at the appropriate places. 
Much light is thrown upon the unsolved problem of Hurwitz 
concerning formal invariants. 

In many parts of these Lectures, I have not aimed at complete 
generality and exhaustiveness, but rather at an illumination of 
typical and suggestive topics, treated by that particular method 
which I have found to be the best of various possible methods. 
Surely in a new subject in which most of the possible methods are 
very complex, it is desirable to put on record an account of the 
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simple successful methods. Finally, it may be remarked that 
the present theory is equally simple when the coefficients of the 
forms and linear transformations are not integers, but are ele­
ments of any finite field. 

I am much indebted to Dr. Sanderson and Professors Cole 
and Glenn for reading the proof sheets. 



LECTURE I 

A THEORY OF INVARIANTS APPLICABLE TO ALGEBRAIC AND 
MODULAR FORMS 

INTRODUCTION TO THE ALGEBRAIC SIDE OF THE THEORY BY 

MEANS OF THE EXAMPLE OF AN ALGEBRAIC QUADRATIC 

FORM IN m VARIABLES, §§ 1-3 

1. Classes of Algebraic Quadratic Forms.-Let the coefficients of 
m 

(1) qm = L PijXiXj 
,,j=l 

be ordinary real or complex numbers. Let the determinant 

(2) (i, j = 1, • • ·, m) 

of a particular form qm be of rank r (r > 0); then every minor of 
order exceeding r is zero, while at least one minor of order r is 
not zero. There exists a linear transformation of determinant 
unity which replaces this qm by a form* 

(3) 

Indeed, if Pu =I= 0, we obtain a form lacking X1X2, • • ·, X1Xm by 
substituting 

for X1. If Pu = 0, Pii =I= 0, we substitute x, for X1 and - X1 

for xi; while, if every Pkk = 0, and P12 =I= 0, we substitute 
x2 + x1 for x2; in either case we obtain a form in which the co­
efficient of x12 is not zero. We now have a1x12 + cf,, where 
a1 =I= 0 and ef, involves only x2, • • •, Xm• Proceeding similarly 
with <f,, we ultimately obtain a form (3). 

Now (3) is replaced by a similar form having a1 = 1 by the 
• Note for later use that each a1: and each coefficient of the transformation 

is a rational function of the /ls with integral coefficients. 
4 
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transformation 

5 

X1 = a1-!xi', Xm = a11Xm', Xi= x/ (i = 2, • • ·, m - 1) 

of determinant unity. Hence there exists a linear transforma­
tion with complex coefficients of determinant unity which 
replaces qm by 

(4) 

according as r = m or r < m. In the first case, the final co­
efficient is D since the determinant (2) of a form qm equals that 
of the form derived from qm by any linear transformation of de­
terminant unity. Hence all quadratic forms (1) may be separated 
into the classes 

(5) Cm,D, Cr (D =I= 0, r = 0, 1, • • ·, m - 1), 

where, for a particular number D =I= 0, the class C.,., Dis composed 
of all forms qm of determinant D, each being transformable into 
( 41); while, for 0 < r < m, the class Cr is composed of all forms 
of rank r, each being transformable into (42); and, finally, the 
class Co is composed of the single form with every coefficient 
zero. In the last case, the determinant D is said to be of rank 
zero. Using also the fact that the rank of the determinant of a 
quadratic form is not altered by linear transformation, we con­
clude that two quadratic forms are transformable into each other 
by linear transformations of determinant unity if and only if they 
belong to the same class (5). 

2. Single-valued Invariants of qm.-Using the term function 
in Dirichlet's sense of correspondence, we shall say that a single­
valued function <f, of the undetermined coefficients {,i; of the 
general quadratic form qm is an invariant of qm if q, has the same 
value for all sets r,:;, r,r~-, · · · of coefficients of forms q;,, q:, · · • 
belonging to the same class.* The values v,,., D, v,. of <f, for the 
various classes (5) are in general different. For example, the 
determinant Dis an invariant; likewise the single-valued func-

* Briefly, if ,p has the same value for all forms in any class. 
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tion r of the undetermined coefficients /3i; which specifies the rank 
of l/3i1I-

Each consistent set of values of D and r uniquely determines a 
class (5) and, by definition, each class uniquely determines a 
value of q,. Hence q, is a single valued function of D and r. 

Every single-valued invariant of a system of forms is a single­
valued function of the invariants (D and r in our example) which 
completely characterize the classes. 

3. Rational Integral Invariants of qm,-If the invariant q, is a 
rational integral function of the coefficients /3i;, it equals a rational 
integral function of D. For, if the {3's have any values such 
that D =I= 0, q, has the same value for the form (1) as for the 
particular form (41) of the same class. Hence q, = P(D), 
where P(D) is a polynomial in D with numerical coefficients. 
Since this equation holds for all sets of {3's whose determinant 
is not zero, it is an identity. 

INTRODUCTION TO THE NUMBER THEORY SIDE OF THE 

THEORY OF INVARIANTS BY MEANS OF THE EXAMPLE 

OF A MODULAR QUADRATIC FORM, §§ 4-7 

4. Classes of Modular Quadratic Forms qm,-Let Xi, • • ·, Xm be 
indeterminates in the sense of Kronecker. Let each /3i; be an 
integer taken modulo p, where p is an odd prime. Then the 
expression (1) is called a modular quadratic form. By § 1, there 
exists a linear transformation, whose coefficients are integers* 
taken modulo p and whose determinant is congruent to unity, 
which replaces qm by a quadratic form (3) in which each a.k is an 
integer not divisible by p. Thust each a.k is congruent to a 
power of a primitive root p of p. After applying a linear trans­
formation of determinant unity which permutes x 12, • • •, xr2, 

we may assume that a.1, • • ·, a.8 are even powers of p and that 
a.s+1, • • ·, a.r are odd powers of p. The transformation which 

* Perhaps initially of the form a/b, where a and b are integers, b not divisible 
by p. But there exists an integral solution q of qb = a (mod p). 

t For p = 5, p = 2, 1 = 24, 2 = 21, 3 = 23, 4 = 22 (mod 5). 
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multiplies a particular Xi (i < m) by pk and Xm by p-k is of de­
terminant unity. 

First, let r < m. Applying transformations of the last type 
to (3), we obtain 

(6) X12 + · · · + x.2 + px;+ 1 + · · · + px/. 

Under the transformation of determinant unity 

Xi = aXi + {3Xi, Xj = - {3X.; + aX;, x,,. = (a2 + {32)-1Xm, 

Xi2 + x;2 becomes (a2 + {32)(X.2 + X;2). Choose* integers a, {3 
so that 
(7) (mod p). 

Hence the sum of two terms of (6) with the coefficient p can be 
transformed into a sum of two squares. Thus by means of a 
linear transformation, with integral coefficients of determinant 
unity, qm can be reduced to one of the forms 

(8) X12 + .. · + x;_1 + x/, xi2 + .. · +x;_1+pxr2 (O<r<m). 

Next, let r = 1n. We obtain initially 

xi2 + · · • + x.2 + px;+ 1 + · · · + px;,,_ 1 + ux,,.2, 

in which u need not equal pas in (6). If there be an even number 
of terms with the coefficient p, we obtain as above a form of 
type (41), In the contrary case, we get 

f = xi2 + · · · + x~_ 2 + px;,_ 1 + p-1Dx,,.2• 

If D = p21+1 (mod p), f is transformed into (41) by 

Xm-1 = - p1}(m, Xm = p-1Xm-l• 

But if D = p21, f is reduced to (41) by the transformation 

Xm-1 = aXm--1 + op21- 1Xm, Xm = - oXm-1 + apXm, 

p(a2 + µ21-202) = 1, 

* If p = 5, p = 2, we may take a = {:J = 2. For any p, either there is an 
integer l such that z2 = - 1 (mod p) and we may take p(a + l{:J) = 1, 
a - l{:J = 1; or else x2 + 1 takes 1 + (p - 1)/2 incongruent values modulo p, 
no one divisible by p, when x ranges over the integers 0, 1, • • ·, p - 1, so 
that x2 + 1 takes at least one value of the form p2•-1• In the latter event, 
a = p-•, {:J = xa satisfy (7). 
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of determinant unity. The final condition is of the form (7) 
with fJ = pz-10 and hence has integral solutions a, o. 

Hence the classes of modular quadratic forms are 

Cm, D, Cr, 1, Cr, -1, Co 
(9) 

(D= 1, •··,p-l;r= 1, •·•,m-1), 

where Cm,» is composed of all modular quadratic forms whose 
determinant is a given integer D not divisible by p, each being 
transformable into (41), where Cr, 1 and Cr, _1 are composed of 
all forms transformable into (81) and (82) respectively, and Co is 
composed of the form all of whose coefficients are zero. 

Two modular quadratic forms are transformable into each other 
by linear transformations with integral coefficients of determinant 
unity modulo p if and only if they belong to the same class (9). 
Indeed, since D and r are invariants,* it remains only to show 
that the two forms (8) are not transformable into each other.t 
But if a linear transformation 

m 

Xi= Lai;X; (i = 1, • • ·, m) 
J=l 

replaces f = X12 + · · · + Xr2 by F = Xl- + • • • + X;_1 + pXr2, 

then, for j > r, 
of r OXi iJF 

.:ix.= 2:I:xi.:ix. =.:ix.= o, v, (=1 v, v, 

r 

OXi 
X =a;;= 0 

a ; 

Xi = L a;;X; 
J=l 

(i ~ r, j > r), 

(i = 1, • .. , r). 

Hence under this partial transformation on xi, • • •, Xr, we would 
have f = F. Thus the determinant of F would equal la;;l 2 

times the determinant unity off and hence equal an even power 
of p. But the determinant of F is actually p. 

• r is now the maximum order of a minor not divisible by p. 
t An immediate proof follows from the values taken by the invariant A, 

given below. But as the necessity of constructing A, is based upon the fact 
that the forms (8) do not belong to the same class, it seems preferable to prove 
the last fact without the use of A,. 
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The invariants D and r therefore do not completely characterize 
the classes of modular quadratic forms, a result in contrast to 
that for algebraic quadratic forms. We shall give a criterion 
to decide whether a given form of rank r (0 < r < m) is of class 
Cr, 1 or of class Cr, -1 and later deduce an invariantive criterion. 

5. Criterion for Classes Cr, ... 1.-Such a criterion may be 
obtained from Kronecker's elegant theory of quadratic forms.* 
We shall make use of the theorem that a symmetrical determinant 
of rank r (r > 0) has a non-vanishing principal minor M of order 
r, i. e., one whose diagonal elements lie in the main diagonal of 
the given determinant. t After an evident linear transformation 
of determinant unity, we may set 

(10) (mod p) (i,j = 1, • • ·, r). 

In the present problem, r < m. 
tion 

To qm apply the transforma-

Xi= xi+ CiXm 

Xi= Xi 

(i = 1, • • •, r), 

(i = r + 1, • • ·, m) 

of determinant unity in which the Ci are integers. We get 

]~;1 {3;jX;Xj + 2 ~
1 

BjmX;Xm + ( ti BjmCj + Bmm) Xm2, 

where 
r 

Bjm = L /3ijCi + /3;m (j = 1, • • •, m). 
f=l 

In view of (10) there are unique values of ci, • • ·, Cr such that 

B;m= 0 (mod p) (j = 1, • • ·, r). 

But the determinant of the coefficients of c1, • • ·, Cr, 1 in 

(r < k ~ m) 

• Kronecker, Werke, vol. 1, p. 166, p. 357; cf. Gundelfinger, Crelle, vol. 91 
(1881), p. 221; Bocher, Introduction to Higher Algebra, p. 58, p. 139. 

t The most elementary proof is that by Dickson, Annals of Mathematics, 
ser. 2, vol. 15 (1913), pp. 27, 28. For other short proofs, see Wedderburn, 
ibid., p. 29, and Kowalewski, Determinantentheorie, pp. 122-124. 
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is the minor of /3km in the determinant 

l/3;;1 (i, j = l, • • ·, r, k, m) 

and hence is zero, being of order r + l. Hence B1ma = 0. Thus 
qm has been transformed into 

m-1 

L /3i;XiX;. 
t,J-=l 

After repetitions of this process, qm is transformed into* 
r 

(11) L /3i;XiXj, 
,,J=l 

This form, of determinant M, can be reduced (§ 4) to 

X12 + · • · + X~-1 + Mxr2 

by a linear transformation on xi, • • •, Xr with integral coefficients 
of determinant unity modulo p. Express M as a power p21+• 
(E = 0 or 1) of a primitive root. Since r < m, we may replace 
Xr by p-1xr and x,,, by p 1x,,, and obtain (81) or (82) according as 
E = 0 or E = 1. Now p<P--1" 2 is not congruent to unity, but its 
square is congruent to unity modulo p, by Fermat's theorem; 
hence it is = - 1. Thus, in the respective cases, 

,i-1 

(12) M 2 = + 1 or -1 (mod p). 

Hence if a form is of rank r and if M is any chosen r-rowed 
principal minor not divisible by p, the form is of class Gr, 1 or 
Cr, -1 according as the first or second alternative (12) holds. 

6. Invariantive Criterion for Classes Gr, ,.,1,-A function which 
has the value + 1 for any form of class Gr, +i, the value - 1 for 
any form of class Gr, -1, and the value zero for the remaining 
classes Cm, D, Co, Ck, =l (k =t= r), is an invariant (§ 2). This 
function t is 

* This proof and the results in §§ 4-13 are due to Dickson, Transactions of 
the American Mathematical Soci-ety, vol. 10 (1909), pp. 123-133. 

t Constructed synthetically in the paper last cited. 
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p-1 p-1 

Ar= {M12 + M22 (1 - .ilf1P-1) + • • • 
(13) 

p-1 

+ Mn 2 (1 - .ilf1P-1) • • • (1 - M~:D}II(l - d-P--1), 

where M 1, • • • , llf n denote the principal minors of order r taken 
in any sequence, and d ranges over the principal minors of orders 
exceeding r. For, if any d $ 0, the rank exceeds rand Ar= O 
by Fermat's theorem. Next, let every d = 0, so that the rank 
is r or less, and the final factor in (13) is congruent to unity. 
Then, if every .Mi= 0, the rank is less than r and Ar= 0. 
But, if Jf 1 $ 0, 

p-1 

Ar= M12 = ± 1 (mod p), 

by (12), the sign being the same as in Or, ,., 1. If M1 = 0, M2 $ 0, 
p-1 

Ar= M22 = ± 1 (mod p), 

etc. Note for later use that 
p-1 

(14) Am= D2 . 

7. Rational Integral Invariants of qm,-The function 

(15) Io = II(l - f3~t) (i, j = l, • • ·, m; i ;£ j) 

has the value 1 for the form (of class 00) all of whose coefficients 
are zero and the value 0 for all remaining forms qm, and hence 
is an invariant of qm, We now have rational integral invariants 

(16) D, A1, • • ·, Am-1, lo 

which completely characterize the classes (9). Hence, by the 
general theorem in § 12, any rational integral invariant of the 
modular form qm is a rational integral function of the invariants 
(16) with integral coefficients. In other words, invariants (16) 
form a fundamental system of rational integral invariants of qm, 

If we employ not merely, as before, linear transformations 
with integral coefficients of determinant unity modulo p, but 
those of all determinants, we obtain at once the classes 

Or, ,.,1, Oo (r = 1, • • ·, m), 
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and see that these are characterized by Ai, • • ·, Am, Io, The 
latter therefore form a fundamental system of rational integral 
absolute invariants. But D is a relative invariant. 

GENERAL THEORY OF l\,fonULAR INVARIANTS, §§ 8-14 

8. Definitions.-Let S be any system of forms in X1, • • ·, Xm 

with undetermined integral coefficients taken modulo p, a prime. 
Let G be any group of linear transformations on xi, • • ·, Xm 

with integral coefficients taken modulo p. The particular systems 
S', S", .. •, obtained from S by assigning to the coefficients 
particular sets of integral values modulo p, may be separated into 
classes Co, Ci, • • •, Cn-i such that two systems belong to the 
same class if and only if they are transformable into each other 
by transformations of G. 

A single-valued function <f, of the coefficients of the forms in 
the system S is called an invariant of S under G if, for i = 0, 1, 
• • •, n - 1, the function <f, has the same value Vi for all systems 
of forms in the class Ci, 

In case the values taken by <f, are integers which may be 
reduced at will modulo p and congruent values be identified, 
the invariant is called modular. Since this reduction can be 
effected on each coefficient of the modular forms comprising our 
system S, any rational integral invariant of S is a modular 
invariant. 

An example of a non-modular invariant is the transcendental 
function r defining the rank of the determinant of the modular 
quadratic form qm, The values of r are evidently not to be 
identified when merely congruent modulo p. However, the 
residue of r modulo pis a modular invariant, since 

(17) (mod p). 

9. Modular Invariants are Rational and lntegral.-Any modular 
invariant <f, of a system S of modular forms can be identified with a 
rational integral function (with integral coefficients) of the 
coefficients c1, • • ·, Cs appearing in the forms of the system S. 
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For, if 

(mod p), 

then q, is identically congruent (as to ci, • • •, ca) to 
p-1 a 

(18) L Ve., ... , ,. II { 1 - (c; - ei)P-1}, 
e1, •··• e,=O i=-1 

as shown by Fermat's theorem. 

13 

10. Characteristic Modular Invariants.-The characteristic in­
variant Ik of the class Ck is defined to be that modular inva­
riant which has the value unity for systems of forr:i.s of the 
class Ck and the value zero for any of the remaining classes. 

For example, for a single quadratic form qm, Io is given by 
(15), while the characteristic invariants for the classes Cr, 1 and 
Cr, -1 are 

(19) Ir, 1 = ½(Ar2 + Ar), Ir, -1 = ½(Ar2 - Ar)• 

For any system of forms with the coefficients c1, • • ·, Ca, we 
have 

a 

(20) Ik = L II {l - (c; - c,<k>)P--1}, 
i=I 

where the sum extends over all sets of coefficients c1 Ck>, • • ·, Ca Ck> 

of the various systems of forms of class Ck. In particular, in 
accord with (15), 

• 
(21) Io = II (1 - c,.r-1). 

i=I 

11. Number of Linearly Independent Modular Invariants.­
Since any modular invariant I takes certain values Vo, • • ·, Vn-1 
for the respective classes Co, • • ·, Cn-1, we have 

(22) 

Hence any modular invariant can be expressed in one and but 
one way as a linear homogeneous function of the characteristic 
invariants. Moreover, the number of linearly independent 
modular invariants equals the number of classes. 
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For example, using (19), we see that a complete set of linearly 
independent modular invariants of the quadratic form qm 
modulo p (p > 2) is given by 

(23) lo, Ar, Al (r = 1, • • ·, m - 1), Dk (le= 1, • • ·, p-1). 

12. Fundamental Systems of Modular Invariants.-While, by 
(22), the characteristic invariants Io, • • ·, I n-1 form a fundamental 
system of modular invariants of a system S of modular forms, it 
is usually much easier to find another fundamental system. In 
fact, certain invariants are usually known in advance, e. g., the 
invariants of the corresponding system of algebraic forms. ,;ve 
shall prove the following fundamental theorem: 

If the modular invariants A, B, • • ·, L completely characterize 
the classes, they form a fundamental system of modular invariants. 

For example, 10, • • ·, In-1 evidently completely characterize 
the classes and were seen to form a fundamental system. 

Let c1, • • ·, Ca be the coefficients of the forms in the system S. 
Let each Ci take the values 0, 1, • • ·, p - 1. For the resulting 
p' sets of values of the e's, let the rational integral functions 
A, B, • • •, L of c1, • • ·, Cs take the distinct sets of values 

A;, B;, • • ·, L; (i = 0, . · . , n - 1). 

Thus there are n classes of systems S and by hypothesis the ith 
class is uniquely defined by the values A;, • • ·, Li of our invariants. 
A rational integral invariant ct,(c1, • • ·, Cs) takes the same value 
for all systems of forms in the ith class, so that this value may 
be designated by cf,;. Now the polynomial 

n-1 

P(A, B, • • ·, L) = ~ <f>;{ 1 - (A - Ai)P-1 } • • • { 1 - (L - L;)P-1 } 
•=O 

is congruent to </>i when A= Ai, • • ·, L = L; (mod p). Hence 

<f>(c1, • • ·, Cs) = P(A, B, • • ·, L) (mod p) 

for all sets of integral values of c1, • • ·, Cs, In view of Fermat's 
theorem, we may assume that each exponent in <f>(c1, ... , c,) 
is less than p. If we replace A, • • ·, L by their expressions in 
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terms of the e's, P (A, • • ·, L) becomes a polynomial, which, after 
exponents are reduced below p, will be designated by VI (ci, • • •, c8). 
Then ct, and VI are identically congruent in ci, • • •, Ca, that is, 
corresponding coefficients are congruent modulo p. In fact, a 
polynomial of type ct, is uniquely determined by its values for 
the p• sets of values of c1, • • ·, Cs, each chosen from 0, 1, • • •, 
p - 1 (§ 9). Hence ct, can be expressed as a polynomial in A, 
• • • , L with integral coefficients.* 

13. Minor Role of Modular Covariants.-ln contrast with the 
case of algebraic forms, the classes of modular forms are com­
pletely characterized by rational integral invariants. Such 
invariants therefore suffice to express all invariantive properties 
of a system of modular forms. In this respect, modular co­
variants play a superfluous role. For instance, a projective 
property of a system of algebraic forms is often expressed by 
the identical vanishing of a covariant. But if C is a modular 
covariant with the coefficients ci, • • •, Ca, then Io given by (21) 
is a modular invariant of C and hence of the initial system of 
forms. We have C = 0 or C $ 0 (mod p) identically, according 
as Io= 1 or Io = 0. 

14. References to Further Developments.-This general theory of 
modular invariants has been applied by me to determine a com­
plete set of linearly independent modular invariants of q linear 
forms on m variables, t and a fundamental system of modular 
invariants of a pair of binary quadratic forms and of a pair of 
binary forms, one quadratic and the other linear.t 

The theory has been extended to combinants and applied to a 
pair of binary quadratic forms.§ 

* This correct theorem for any finite field cannot be extended at once to 
any field as stated by me in American Journal of Mathematics, vol. 31 (1909), 
top of p. 338. 

t Proceedings of the London Mathematical Society, scr. 2, vol. 7 (1909), 
pp. 430-444. 

t American Journal of Mathematics, vol. 31 (1909), pp. 343-354; cf. pp. 
103-146, where a less effective method is used. 

§ Dickson, Quarterly Journal of Mathematics, vol. 40 (1909), pp. 349-366. 



LECTURE II 

SEMINVARIANTS OF ALGEBRAIC AND MODULAR BINARY 
FORMS 

INTRODUCTORY EXAMPLE OF THE BINARY QUARTIC FORM, §§ 1-6 

1. Comparative View.-Let the forms 

f = aoX4 + 4a1x3y + 6a2x2y2 + 4aaxy3 + a4y4, 

with real or complex coefficients, be separated into classes such 
that two forms f are transformable into one another by a trans­
formation of type 
(1) X = X 1 + ty', y = y', 

if and only if they belong to the same class. Then a single­
valued function S(a0, • • •, a4) is called a seminvariant of f if 
it has the same value for all of the forms in any class. 

By the repeated appli~ation of this definition and without the 
aid of new principles, we shall obtain a fundamental system of 
rational integral seminvariants of f, then on the one hand the 
additional single-valued seminvariant needed to form with these 
a fundamental system of single-valued seminvarints, and on the 
other hand the additional rational integral modular seminvariants 
needed to form with them a fundamental system of modular 
seminvariants off. It is such a comparative view that we desire 
to emphasize here. In later sections, we shall show that it is 
usually much simpler to treat the modular case independently 
and in particular without introducing all of the algebraic semin­
variants, which become very numerous and most unwieldy for 
forms of high degree. The rational integral seminvariants 
S of an algebraic form are of special importance since each is 
the leading coefficient of one and but one covariant, which can 
be found from S by a process of differentiation. For example, 
the seminvariant a0 is the leading coefficient of the covariant f. 

16 
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2. The Classes of Algebraic Quartic Forms.-Consider a quartic 
form f in which ak is the first non-vanishing coefficient. Apply 
transformation (1) with 

- ak+t 
(2) t = (k + l)ak • 

We obtain a form having zero in place of the former ak+l• Drop­
ping the accents on x', y', we obtain, for k = 0, 1, 2, 3, the re­
spective forms 

(3) ao =I= 0: 

(4) ao = 0, a1 =I= 0: 

(5) a-o = a1 = 0, a2 =I= 0: 

(6) ao = a1 = az = 0, aa =I= 0: 

6azx2y2 + ¼a2-1S24?f, 

4aaxy3, 

(7) ao = a1 = a2 = aa = 0: a4y4, 

no transformation having been made in the last case. Here 

(8) 

(9) 

S2 = aoa2 - a12, Sa = ao2aa - 3aoa1a2 + 2a13, 1 
84 = ao3a4 - 4ao2a1aa + 6aoa12a2 - 3a14, 

Sia = 4a1aa - 3a22, 814 = a12a4 - 2a1a2aa + a23, 

824 = 3a2a4 - 2aa2. 

If we apply to one of the forms (3)-(6) a transformation (1) 
with t =I= 0, we obtain a form having an additional (second) 
term. Hence no two of the forms (3)-(7) can be transformed 
into each other by a transformation (1), so that each represents 
a class of forms. For example, there is a class (5) for each set 
of values of the parameters a2 and 824 (az =I= 0). 

3. Rational Integral Seminvariants of an Algebraic Quartic.­
First, a0 is a seminvariant since it has a definite value =I= 0 for 
any form in any class (3) and the value zero for any form in 
any class (4)-(7). Next, 82, 8 3, 84 are seminvariants, since 
they have constant values 
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for any form in any class (4)-(7), and constant values for any 
form of a definite class (3), for which therefore ao has a definite 
value + 0 and a0- 1s2, • • •, and hence each Si, has a definite 
value. Moreover, these seminvariants ao, 82, Sa, 84 completely 
characterize the classes (3). 

Consider a quartic form fin which a0, ai, ll2, aa, a4 are arbi­
trary, except that a0 + 0. Any rational integral seminvariant 
S(ao, • • ·, a4) has the same value for f as for the particular form 
(3) in the same class as f. Hence 

S = S (a 0 S2 Sa 84 ) = </,(ao, 82, _Sa, S4), 
0• ' ao ' ao2 ' aoa ao' 

where ¢ is a rational integral function of its arguments. We 
therefore seek such functions ¢ as are divisible by a power of ao, 
and hence by (11) in which the terms involving only a1 cancel. 
The function of lowest degree is evidently 

(12) 84 + 3Sl = a02l, I= aoa4 - 4a1aa + 3al. 

The next lowest degree is 6 and the function is 

dS2S4 + eSa2 + (3d + 4e)S23• 

The coefficient of dis a02/S2, that of e is 

Sa2 + 4Si = ao2D (13) 
(D = ao2aa2 - 6aoa1a2aa + 4aoai + 4ai3aa - 3a12a22). 

Hence for d = 1, e = - 1, the function is the product of a02 and 

(14) 182-D= aoJ, J=a0a2a4-a0aa2+2a1a2aa-a12a4-a23• 

We do not retain D since it is expressible in terms of the other 
functions. Eliminating D between (13) and (14), we get 

(15) 

Now I and J are seminvariants. Indeed, if a0 =I= 0, they are 
expressible in terms of the parameters ao, Si in (3) and hence 
each has the same value for any form in a class (3); while 

(16) I= - 813, J = - Su (if ao = 0), 
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so that each has the same value for any form in a class ( 4); 
finally, 
(17) I= 3al, J = - a23 (if ao = a1 = 0), 

so that each has the same value for any form in a class (5)-(7). 
From cp we eliminate S4 by means of (12) and then the second 

and higher powers of Sa by means of (15). Thus S equals 
N/al, where N is a rational integral function of 

(18) 

of degree O or 1 in Sa, If k > 0, we may evidently assume that 
not every term of the polynomial N in the arguments (18) has 
the factor a0• Let P(S2, Sa, I, J) denote the aggregate of the 
terms of N not involving a0 explicitly. We shall prove that, 
if k > 0, N/a0k is then not a rational integral function of ao, • • ·, 
a4. For, if it be, P vanishes when a 0 = 0. By (11) and (16), 
the terms independent of a 0 in J involve a4, while those in I, 
S2, Sa do not. Hence J does not occur in l'. Then, by (11) 
and the term 3a22 in I, we conclude that I does not occur in P. 
Thus P is a polynomial in S2 and Sa of degree O or 1 in Sa and 
is not identically zero. By (11), it cannot vanish for ao = 0. 

Under the initial assumption that a0 =I= 0, we have now proved 
that any rational integral seminvariant S equals a polynomial 
in the functions (18). The resulting equality is therefore an 
identity. 

The seminvariants (18) form a fundamental system of rational 
integral seminvariants of the algebraic quartic form.* 

They are connected by the relation, or syzygy, (15). 

4. lnvariantive Characterization of the Classes.-By § 3, the 
classes (3) are completely characterized by the seminvariants 
ao, S2, Sa, I. These with J characterize the classes (4) having 
ao = 0, a 1 =I= 0. For, by (11), 8 2 and Sa determine a1; while, 
by (16), I and J determine the remaining parameters in ( 4). 

* The above proof differs from that by Cayley in minor details and in the 
method of obtaining the functions (18) and the verification that they are 
seminvariants (the present method being based upon the classes). 
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The parameter a2 (a2 =!= 0) in (5) is determined by I and J, in 
view of (17). 

Yve have now gone as far as is possible in the characterization 
of the classes by means of rational integral seminvariants 8, 
since the parameters 824, a3, a4 in (5)-(7) cannot be determined 
by such seminvariants. Indeed,* for ao = a1 = 0, we have 
S2 = S3 = 0 by (11), while I and J reduce to powers of a2 by (17). 

5. Single-valued Seminvariants.-vVe may, however, construct 
a single-valued seminvariant which shall determine these out­
standing parameters S24, a3, a4• To this end consider the single­
valued function V defined as follows by its values in the sense 
of Dirichlet. We take V = 0 if a0 =!= 0 or if a1 =I= 0, and V = 824, 

a3, a4 in the respective cases (5), (6), (7). Since V has the same 
value for all forms in any class, it is a seminvariant. The 
seminvariants (18) and V completely characterize the classes 
(3)-(7) and hence, by § 2 of Lecture I, form a fundamental system 
of single-valued seminvariants of the algebraic binary quartic 
form. 

6. Seminvariants of a Modular Quartic Form.-Passing to the 
number theory case, let the coefficients of the quartic form f 
be integers taken modulo p, where p is a prime exceeding 3. 
The denominator in (2) is then not divisible by p, so that the 
classes are again (3)-(7). 

By the general theory in Lecture I, it is possible to character­
ize all of the classes by means of rational integral seminvariants, 
and the latter will then form a fundamental system. In par­
ticular, we do not now require the use of such a bizarre function 
as that used in § 5. 

* A proof of this fact, not based upon the final theorem of § 3, would afford 
a better insight into the nature of the last steps in§ 3 and explain, in particular, 
why we stopped with I and J and did not consider combinations of the S, of 
higher than the sixth degree in the a's. To this end, let S be a seminvariant 
homogeneous of total degree i, in the a's, and isobaric, of constant weight w. 
As well known, 4i >- 2w. Thus S cannot have a term aa1 or a,1 and cannot 
reduce, when ao = a1 = O, to a21S 2,m (m > 0), of degree l + 2m and weight 
2l + 6m. 
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We shall make frequent use of the abbreviation 

(19) Pl= (1 - aoP-1)(1 - a1P-1) • • • (1 - aiP-1). 

Then P1S24, P2aa and Paa4 are seminvariants* since each takes 
the same value for all forms in any class. For the classes (5), 
(6), (7), their values are S24, a3 and a4, respectively. Hence 
the five seminvariants (18) together with P1S24, P2aa and Paa4 
completely characterize the classes and therefore form a fundamental 
system of rational integral seminvariants of the quartic form f 
with integral coe:fficients talten modulo p, p > 3. 

SEMINV ARIANTS OF A MODULAR BINARY l FORM OF ORDER n, 
§§ 7-13 

7. Fundamental System of Modular Seminvariants Derived 
by Induction from n - 1 to n.-It is necessary to distinguish the 
case in which the modulus pis prime ton from the case in which 
p divides n. Binomial coefficients for the form are not per­
missible in the second case and often not in the first case (for 
example, if n = 4, p = 3, since G) is then divisible by p). 
Denote the form by 

(20) F n = Aoxn + A1xn-ly + • • • + Anyn. 

First, let p be prime to n. For Ao =I= 0, we can transform F n 

into a form lacking the second term and having as coefficients 
the quotients of 
(2l) cr2 = nAoA2 - ½(n - l)Ai2, 

cra=n2Ao2A3-(n-2)nA 0A1A2+½(n-l)(n-2)Ai3, 

by powers of nA 0• These may also be obtained from (8) by 
identifying F n with 

(22) 

* The first is one-half the discriminant of the semicovariant 

(mod p), 
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For p prime to n, a fundamental system of seminvariants of F n 

is given by Ao, <T2, • • ·, u n together with a fundamental system of 
the particular form of order n - I 

F:_J =PoFnfY 
(23) 

=PoA1xn-1+PoA2xn-2y+ • • ·+PoAnyn-l (mod p), 

where Po = 1 - A0P-1. 

Indeed, Ao, u2, • • •, u n completely characterize the classes of 
forms F n with Ao =I= 0. Since yF n-1' = F n identically, when 
Ao = 0, the classes of forms F n with Ao = 0 are completely 
characterized by the seminvariants of the fundamental system 
for Fn-1'. 

For example, Ao and P 0A 1 form a fundamental system of 
modular seminvariants of A 0x + A1y (since these characterize 
the classes represented by A 0x and A1y). The corresponding 
functions for 

are PoA1 and 

{l - (PoA1)P-1}PoA2 = (1 - A1P-1)PoA2 = P1A2 

Hence the theorem shows that, if p > 2, 

(24) Ao, 2u2 = 4A0A 2 - A?, PoA1, P1A2 

(mod p). 

form a fundamental system of modular seminvariants of F2• For 
/2, these are 

8. Order a Multiple of the Modulus.-Next, let n = pq. By 
Fermat's theorem, xP - xyP-1 and hence 

(25) 

is unaltered modulo p by any transformation (1). Hence if, for 
each value of the seminvariant Ao, we separate the forms 

(26) 
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into classes under (1), multiply each form by y and add <f,, we 
obtain the classes of forms F n for this value of A 0• Hence, if n 
i..s divisible by p a fundamental system of modular seminvariants 
of F n i..s given by Ao and a fundamental system for F n-l• 

For example, if n = p = 2, 

Fi= (Ao+ A1)x + A2y 

can be transformed into x or A 2y by (1), according as Ao+ A1 = 1 
or O (mod 2). Adding <f, = A 0(x2- xy) to xy and A2y2, we obtain 
representatives of the classes of forms F2• Hence the 6 classes 
are completely characterized by the seminvariants Ao and those 
(§ 7) of Fi, and hence by 

(27) Ao, Ai, J = (1 + Ao + A1)A2. 

9. Seminvariants of the Binary Cubic Form.-The classes of 
algebraic forms fa are 

(28) 

(29) 

aoa..3 + 3ao-1S2xy2 + ao-2Say3, 

3aix2y + ¼a1-1S1ay3, 3a2xy2, aay3, 

where the S's are given by (8) and (101). The discriminant D 
of fa is given by (13). As in§ 3, a0, S 2, S 3, D form a fundamental 
system of seminvariants of fa; they are connected by the syzygy 
(13). 

Henceforth, let the coefficients of fa be integers taken modulo p, 
the excluded case p = 3 being trea:ted in § 15. If p > 3, the 
classes are again (28) and (29), and a fundamental system of 
seminvariants is given by 

(30) a0, S2, Sa, D, P1a2, P2a3. 

It is instructive to compare this result with that obtained by 
the method of § 7. Forming the functions (24) for 

h' = Pofa/y = 3Poaix2 + 3Poa2xy + Poaay2 (mod p), 

and deleting the factor 3 from the first and second, we get* 

Poai, a = Po(4a1aa - 3a22) = P0S1a, P1a2, P2aa. 

* They characterize the classes (29) off a with ao = 0 and may be so derived. 
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Hence, if p > 3, these four functions and ao, S2, Sa form a funda­
mental system of modular seminvariants of fa, Vie may drop 
Poa1 since 

p-3 

(31) Po82-2 Sa = ± 2Poai1' = ± 2Poa1 (mod p). 

Hence a fundamental system of seminvariants of fa for p > 3 is 

(32) ao, 82, Sa, o = PoS1a, P1a2, P2aa, 

It is easy to deduce o from the old set (30), and D from this new 
set.* 

Finally, let p = 2. By § 7, a fundamental system of sem­
invariants for fa is given by a0, S2, Sa and a fundamental system 
for h', The latter system is derived from (27) by replacing 
Ao, Ai, A2 by Poa1, Poa2, Poaa, and hence is 

(1 + ao)a1, (1 + ao)a2, (1 + ao)(l + a1 + a2)aa, 

We may drop (1 + ao)a1 = (1 + a0)S2, 

10. The Binary Quartic Form. For p = 2, we have 

Fa= A1x3 +(Ao+ A2)x2y + A 3xy2 + A4y3, 

whose sem.invariants are obtained from those of f 8 at the end of 
§ 9. They with Ao give a fundamental system of seminvariants 
of F4: 

Ao, A1, A1Aa + Ao + A2, (1 + A1)Aa, 

A1A4 + A1Aa(Ao + A2), K = (1 + A1)(1 +Ao+ A2 + Aa)A4. 

An equivalent fundamental system ist 

(33) 
Ao, A1, A2 + Aa, (1 + A 1)A2, 

A1A4 + AoA2 + A2Aa, K. 

(mod p). 

For, if ao =I= 0, then Ii = 0 and this relation follows from (13); while, if ao = 0, 
D = a12Su = a12li = - S2li, Conversely, Ii can be expressed in terms of the 
functions (30). The above relation gives liS2, The product of this by S11,-1 

is congruent to li if S2 =I= 0. Also li = 0 if a0 =I= 0. There remains the case 
in which S2 = 0, ao = 0, whence a1 = 0, Ii = - 3a22 = - 3(P1a2)2• 

t Annals of Mathematics, ser. 2, vol. 15, March, 1914. I there give also a 
complete set of linearly independent invariants and of linear covariants 



INVARIANTS AND NUMBER THEORY. 25 

For p > 3, fa' is obtained from fa by replacing ao, ai, a2, aa by 

4a1Po, 2a2Po, ¼aaPo, a4Po, 

respectively. Making this replacement in the second set of sem­
invariants of fa in § 9, we obtain P 0a1, which may be dropped in 
view of (31), and the last five functions (34). Hence, for p > 3, 
a fundamental system of modular seminvariants of /4 is given by 

(34) ao, S2, Sa, S4, PoS1a, PoSu, P1S24, P2aa, Paa-1. 

Here the three Si; are given by (10). Since the functions (34) 
completely characterize the classes (3)-(7), we have a new proof 
that they form a fundamental system. 

11. Explicit Fundamental System when p > n.-Instead of 
employing the above step by step process, we can obtain directly 
a fundamental system of modular seminvariants of fn when the 
modulus p exceeds the order n of the binary form (22). Consider 
a particular fn in which ak is the first non-vanishing coefficient: 

To this we apply transformation (1) and obtain 

n n-i ( ) ( • ) ""'I n " " n n - 'l, ti ,n-i-j ,i+i .:. " A ,n-l ,z L.J L.J . . a, X y - L.J k!X Y , 
i=k J=O 'l, J l=k 

where we have replaced j by l - i and set 

t ( )( ") ( ) l (l) n n - i z-. - n z-, 
Akz = L . l _ . ait ' = l L . a.t • 

i=k 'l, 'l, i=k 'l, 

Take k < n and give tot the value (2). Thus 

ak ( 7) Uk! 

(35) Aki = { (k + l)ad z-k' 

ukz= j;;, (- l)l-i (!)(le+ l)•-kaki-t-1aL+ta,. 
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In particular, 

Ukk = 1, Ukk+l = 0, Uoz = t (- l)Z-i ( z_) aoi-la1l-iai, 
i=O i 

the last being the algebraic seminvariant designated earlier by 
Sz. It is obtained from the expansion of (ao - a1)z by replacing 
a single a0 in each term by ai, Except for a numerical factor 
not divisible by p, Ukz (for O < k < l - 1) equals the Skz in (10) 
and in (38) below. 

The classes Ck of formsfn in which ak is the first non-vanishing 
a are distinguished from each other by the value of an if k = n, 

and if k < n by the values of the parameters ak, ukz (l = k + 2, 
• • •, n). Employing the notation (19), we shall verify that 
Pk-1ak and P1c-1rrkz are modular seminvariants of fn, They 
vanish for a form C; (j ~ k - 1) since then 1 - a;P-1 == O. 
For Ck, they reduce to the parameters ak and ukz of that class. 
For ao = 0, • • ·, ak = 0, the first is zero and the second is the 
expression for ukz when ak = 0, whose non-vanishing terms 
(given by i = k and i = k + 1) are constant multiples of 
aL:;:f; but ak+i is constant for any class C; (j > le). 

It follows also that the parameter ak-t1 in a class Ck+i is de­
termined by the seminvariants Pk-tUkz (l = le + 2, le + 3), 
provided k + 3 ~ n. But an-1 and an, not so determined, are 
found from Pk-1ak (k = n - 1, n). Hence a fundamental 
system of modular seminvariants off n, for P > n, is given by 

ao, rroz (l = 2, ... , n), 

(36) P1c-1Ukl (k = 1, • .. , n - 2; l = k + 2 ... n) 
' ' ' 

For n = 2, 3, 4, these are (24'), (32), (34), respectively, except 
for the difference of notation indicated above. For n = 5, we 
see that a fundamental system of modular seminvariants of f 5, 

for p > 5, is 

(37) 
ao, S2, Sa, S4, Ss, P0S1a, Po814, P 0S15, 

P1S24, P182a, P2Sas, Paa4, P 4a5, 
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in which the symbols are defined by (8)-(10), (19) and 

(38) 

Ss r = ao4as - 5ao3a1a4 + 10ao2ai2aa - l0aoa13a2 + 4a15, 

Sis= 16a13a5 - 40ai2a2a4 + 40a1alaa - 15a24, 

S2s = 27a22as - 45a2a3a.4 + 20aa3, 

Sas = 8aaas - 5ai. 
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12. Another Method for the Case p > n.-We may formulate the 
method of § 7 so that it shall be free from the induction process. 
The classes of forms (23) with P0A 1 + 0, and hence the classes 
of forms F n with Ao= 0, A 1 + 0, are characterized by the 
seminvariants given by the products of Po by the functions 
ui, · · · obtained from o-2, o-3, • • •, O'n-l by increasing the subscript 
of each Ai by unity and replacing n by n - 1; indeed, Pl= Pi 

(mod p). When the process of deriving (23) from (20) is applied 
to (23), we get 

F~-2 = [1 - (PoA1)P-1]F~_1/y = (1 - A1P-1)PoFn/Y2 

(39) = P1F n/Y2 = P1A2xn-2 + P1Aaxn-3y 

(modp). 

The class of forms (39) with P1A2 + 0, and hence the classes of 
forms F n with Ao = A 1 = 0, A2 + 0, are characterized by the 
seminvariants given by the products of P1 by the functions 0-2", 

• • • obtained from 0-2', • • ·, O'n-2' by increasing the subscript of 
each Ai by unity and replacing n by n - I. Finally, we obtain 
P n-2An-1X + P n-2Any, characterized by the seminvariants 
P n-2An-1 and P n-1An. The earlier Pk-iAk may be dropped 
(§ 11). 

For example, if n = 3, p > 3, the fundamental system of Fa is 

Ao, 0-2, ua, Pou2' = Po(4A1Aa - A22), P1A2, P2Aa. 

Changing the notation from F 3 to J3, we see that 0-2' becomes 
3(4a1a3 - 3a22), so that the resulting seminvariants are (32). 
We may of course apply the method directly tofa; in S2 we replace 
ao, a1, a2 by 3ai, ja2, a3 and obtain ¾ (4a1aa - 3a22). 
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Again, to find a fundamental system of /4 for p > 3, we take 
a0, S2, Sa, 84 and the products of Po by the functions ½Sia and 
16S14 obtained from 82 and Sa by replacing ao, ai, a2, aa by 
4a1, ½ • 6a2, ½ • 4a3, a4; then the product of P1 by the function 
2824 obtained from S2 by replacing ao, a1, a2 by 6a2, ½ • 4aa, a4; 
then P2aa and Paa-1, to characterize P2(4a3x + a4y). We again 
have (34). 

13. Number of Linearly Independent Seminvariants.-Let 
p > n and employ the notations of § 11. In the classes Ck (le < n). 
Akk = ak G) has p - 1 values, Akl•+l = 0, while Akk+2, • • ·, Akn 

take independently the values 0, 1, • • •, p - 1. In the classes 
Cn, an has p values. Hence there are 

n-1 

p + L (p - l)pn-k-1 = p + pn - 1 
k=O 

distinct classes of formsfn• Thus by§ 11 of Lecture I, there are 
exactly pn + p - 1 linearly independent modular seminvariants of 
fnwhenp > n. 

DERIVATION* OF l\fODULAR INVARIANTS FROM SEMINVARIANTS, 

§§ 14-15 
14. Invariants of the Binary Quadratic Form.-First, let p-=2. 

Any polynomial in the seminvariants (27) is a linear function of 

1, Ao, A1, AoAi, J, AoJ = AoA1A2, 

since (Ao+ A1)J = 0. Since there were six classes, these six 
seminrnriants form a complete set of linearly independent sem­
invariants. Now a sem"invariant is an invariant if and only if 
it is symmetrical in Ao and A2. But 

(mod 2). 

Thus 1, Ai, AoJ and I are invariants. By subtracting constant 

* While this method is usually longer than the method of Lecture I, it 
requires no artifices and makes no use of the technical theory of numbers. 
Moreover, it leads to the actual expressions of the invariants in terms of the 
seminvariants of a fundamental system, thus yielding material of value in the 
construction of covariants. 
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multiples of these four, any seminvariant can be reduced to 
cAo + dAoA1, which is an invariant only when identically zero. 
Hence 1, Ai, AoA1A2 and I form a complete set of linearly inde­
pendent invariants of F 2 modulo 2. 

Next, let p > 2. The discriminant of f2 is D = S2. Any 
polynomial in the four fundamental seminvariants (24') is a 
linear function of 

aiDi, Poa1i, P1a2i (i, j = 0, 1, • • ·, p - 1), 

since the product of P 0a1 or P1a2 by ao is zero, that of P1a2 by 
Poa1 or D is zero, while DPoa1 = - Pa13• Further, 

Po = 1 - aor-1, Po[Di - (- a12)i] = 0, 

P1 = Po - Poa1v-1, aoP-1Di = Di - (- l)iP0ai2i, 

modulo p. Hence any seminvariant is a linear function of 

aoP---1 a0iDi (i = 0, 1, • • ·, p- 2;j = 0, 1, • • ·, p-1), 
(40) ' 

(le = 1, • • ·, p - 1). 

The number of these is p2 + p - I. Hence (§ 13) they form a 
complete set of linearly independent modular seminvariants of /2 
for p > 2. 

The invariant A = A1 in § 6 of Lecture I becomes for two 
variables 

(41) A= { ao"+a2"(1-aoP--1)} (1-DP---1) = ao"(l-DP-1)+ P1a2,..., 

whereµ= (p - 1)/2. By the expansion of DP-1, we get* 

(42) A = (ao" + a2,...) ( 1 - t aoia2ia12,..-2i). 
* Transactions of the American Mathematical Society, vol. 10 (1909), p. 132. 

To give a direct proof of the identity of the final expression (41) and (42), 
note that the product of the final factor in (42) by D equals aoa2 - (aoa2)µ+1 
algebraically, so that the product AD is divisible by p. But the product of 
(41) by D is evidently divisible by p. It therefore remains only to treat the 
case D = 0. Replacing a12 by aoa2, we see that the final factor in (42) becomes 
1 - (µ + l)aol'-a2,.... Hence (41) and (42) are now identical if 

ao,...a:.,...(ao,... - a21.L) = 0 (mod p). 

But, if aoa2 ,j= O, a0,...a2,... = a12,... = 1, aol'- = a2I'- = :1: 1. 



30 THE MADISON COLLOQUIUl\l. 

Since (42) is therefore a seminvariant and is symmetrical in 
ao and a2 and since the weight of every term is divisible by 
p - l, A is an absolute invariant. By (41), 

(43) A2 = alµ. (1 - Dir-1) + P 1alµ., (1 - a 0ir-1)Dr-1 = Poa1r-1, 

A2 + Dir-1 - l = - Io, Io= (l-a0ir-1)(l-a1P--1)(1-a2ir-1). 

Hence also Io is an absolute invariant. Subtracting multiples of 

Io=l-aoP--1-Poa1P--1-P1a2P--1, A, Di (j=O, l, • • ·, p-l), 

we may reduce any seminvariant to a linear function of the ex­
pressions (40) other than P 1a2r-1, P 1a2µ., Di (j = 0, • • ·, p - l). 
The resulting linear function Lis not an invariant. For example, 
if p = 3, it is 

L=aao2+bao+ca0D+da0D2+eP0a1+f P 0ai2 (a, • • ·, f constants). 

Interchange a0 and a2, and change the sign of a1. We get 

aal + ba2 + ca2D + da2D2 + (1 - al)(fai2 - ea1). 

This is to be identically congruent to the invariant L. Taking 
a2 = 0, we see that e = f = a = b = 0, c = d. Then L 
= caoa2(ao + a2) + ca02a12a2 is not symmetric in ao and a2. 
Hence L = 0. For any p, a like result may be proved by con­
sidering separately the terms of L of constant weights modulo 
P - l. Hence in accord with § 11 of Lecture I, a complete set 
of linearly independent invariants of h, for p > 2, is given by Io, 
A and the powers of D. In place of D0 = l, ,ve may use A2, in 
view of ( 43). 

15. Invariants of the Binary Cubic Modulo 3.-A fundamental 
system of seminvariants of F 3 modulo 3 is given by Ao and a 
fundamental system of 

F2 = A1x2 + (Ao+ A 2)xy + Aay2• 

Hence, by (24), a fundamental system for F 3 is given by 

Ao, Ai, t = A1Aa - (Ao+ A 2)2, (1 - Ai2)(Ao + A2), 

µ, = (1 - Ai2)[1 - (Ao+ A2)2]Aa. 
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In place of the fourth and third we may evidently use 

>,. = (1 - Ai2)A2, u = A1Aa + AoA2 - A12Al = t + Ao2 + >,.2. 

Here u is the discriminant of Fa for p = 3. By § 13 there are 
11 classes of forms F2. Hence, by § 8, there are 3 • 11 classes of 
forms Fa. Thus there are exactly 33 linearly independent 
seminvariants of Fa. Since 

A1>,. = A1µ = 0, u>,. = Ao>,.2, µ(u + A02) = 0, 

µ(>,. + Ao) = 0, (1 - A12)u = Ao>,., 

modulo 3, any polynomial in the seminvariants Ao, Ai, u, >,., µ 
of the fundamental system is congruent to a linear function of 

(44) Ao'Ai, Aiuk, Ao'A1uk, Ao•).k, Aiµk (i, j=0, 1, 2; le= 1, 2). 

Hence these 33 functions form a complete set of linearly inde­
pendent seminvariants of Fa. The seminvariants 

3 

(45) Io= (1 - Ao2)(P - µ2) = IT (1 - Ai), 
(=O 

E = AoA1(u - u2) +Aoµ= AoAa(AoA2-A1Aa+ A12 - Al) 

are seen to be invariants as follows.* The weights of the terms of 
each are all even or all odd. Moreover, under the substitution 
(AoAa)(A1A2), induced upon the coefficients of Fa by the 
interchange of x and y, the functions u, P and Io are unaltered, 
while E is changed in sign. Hence u, P, lo are absolute in­
variants, while Eis an invariant of index unity. We now have 
7 linearly independent invariants 

(46) Io, E, E2, u, u2, P, 1. 
Noting that 

(47) E2 = Ao2µ2 + Ao2(u - u2 + >,.2) - Ao>,., 

* Or by general theorems, Transactions of the American Mathematical 
Society, vol. 8 (1907), pp. 206-207. Note that E is the eliminant of Fa = 0, 
z3 = x, y3 = y (mod 3). 
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we may employ the functions ( 46) to delete from ( 44) 

in turn (no one of these terms being reintroduced at a later stage). 
There remain 11 seminvariants of odd weight 

(48) 

and 15 of even weight 

(49) Ao, Ao2, Ao'A12, A 0u, A 0u2, Alu, Alu2, Ao'A, AoX2, AlX2, Aoµ2• 

Now the weight and index of a seminvariant of Fa modulo 3 
are both even or both odd.* A linear combination of the func­
tions (48) which is changed in sign by the substitution (AoA 3) 

(A1A2) is seen to be identically zero (it suffices to set Aa = 0, 
A2 = 0 in turn). A linear combination of the functions (49) 
which is unaltered by that substitution is seen similarly to be 
identically zero. Hencet a complete set of linearly independent 
invariants of F3 modulo 3 is given by (46). 

* When the sign of y is changed, a seminvariant is unaltered or changed in 
sign according as its weight is even or odd. 

t Another proof, using the classes of Fa under the group of all binary linear 
transformations of determinant unity modulo 3, and involving a use of more 
technical theory of numbers, is given in Transactions of the American Mathe­
matical Society, vol. 10 (1909), pp. 149-154. The case of any modulus p 
is there treated. 



LECTURE III 

INVARIANTS OF A MODULAR GROUP. FORMAL INVARIANTS 
AND COVARIANTS OF MODULAR FORMS. APPLICATIONS 

INVARIANTS OF CERTAIN MODULAR GROUPS, §§ 1-4 

I. Introduction.-Let G be any given group of g linear homo­
geneous transformations on the indeterminates xi, • • •, Xm with 
integral coefficients taken modulo p, a prime. Hurwitz* raised 
the question of the existence of a finite fundamental system of 
invariants of G. For the relatively unimportant case in which g 
is not divisible by p, he readily obtained an affirmative answer 
by use of Hilbert's well known theorem on a set of homogeneous 
functions, but emphasized the difficulty of the problem in the 
general case. 

In § 5 I shall consider the relation of this question to that of 
modular covariants and formal invariants of a system of forms 
and incidentally answer the above question for special groups 
of orders divisible by p. 

I shall, however, first present a simplification of my own work 
on the total group. Its invariants are universal covariants, i. e., 
covariants of any system of modular forms (§ 13). It was from 
the latter standpoint that I was led to the subject of invariants 
of a modular group independently of Hurwitz's paper, in the 
title of which the word invariant does not occur. 

2. Invariants of tlie Total Binary Group.-Consider the group 
G of all modular linear homogeneous transformations with integral 
coefficients of determinant unity: 

(1) x' =bx+ dy, y' =ex+ ey, be - cd= 1 (mod p). 

The term point will be used in the sense of homogeneous 
coordinates, so that (x, y) = (ax, ay), while (0, 0) is excluded. 

* Archiv der Mathematik und Physik, (3), vol. 5 (1903), p. 25. 
33 
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We do not restrict the coordinates to be integers, but permit 
their ratio to be a root of any congruence with integral coefficients 
modulo p. A point is called real if the ratio of its coordinates is 
rational. 

A point (x, y) is invariant under a transformation (1) if 
x' = px, y' = py, or 

(2) (b - p)x + dy = 0, ex+ (e - p)y = 0 (mod p). 

If these congruences hold identically as to x, y, then 

d = c = 0, b = e = ± 1 (mod p) 

and the transformation is one of the transformations 

(3) x' = ± x, y' = ± y (mod p), 

which leave every point invariant. 
A special point is one invariant under at least one trans­

formation (1) not of the form (3). There are p(p2 - 1) trans­
formations (1). We shall assume in the text that p > 2 (rele­
gating to foot-notes the modifications to be made when p = 2). 
Then there are two transformations (3). Hence any non-special 
point is one of exactly* 

(4) 

conjugate points under the group G, while a special point is one 
of fewer than c., conjugates. 

Let (x, y) be a special point and let (1) be a transformation, 
not of the form (3), which leaves it invariant. Thus the con­
gruences (2) are not both identities. The determinant of their 
coefficients must therefore be divisible by p. Hence p is a root 
of the characteristic congruence (in which a = b + e) 

(5) P2 - ap + 1 = 0 (mod p). 

First, suppose that (5) has an integral root p. For this value 
of p, one of the congruences (2) is a consequence of the other, 
and the ratio x : y is uniquely determined as an integer modulo p. 

* For p = 2, "' is to be replaced by 2(22 - 1) = 6. 
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Hence only real special points are invariant under a transforma­
tion [other than (3)] whose characteristic congruence has an 
integral root. Moreover, all real points are conjugate under the 
group G. Indeed, 

x' = bx, y' = x + b-1y, and x' = - y, y' = x 

replace (1, 0) by (b, 1) and (0, 1) respectively. Hence if an 
invariant of G vanishes for one of the real points, it vanishes for 
all and has the factor 

p-1 

(6) L = y IT (x - ay) = x"y - :ry" (mod p), 
a=O 

the congruence following from Fermat's theorem. Obviously, 
any transformation of G replaces a real point by a real point, and 
therefore L by kL. The constant k is in fact unity and L is an 
invariant of G. Indeed, for 

(7) x = aX + bY, y = cX + dY (mod p), 

where a, • • •, d are integers of determinant A = ad - be, 

(8) Ix" y" I = I aX" + b Y" cX" + d Y" I = A IX" Y" I 
x y aX +bY cX +dY X Y 

(mod p). 

Next, suppose that (5) has no integral root and therefore two 
Galois imaginary roots. By (2), each root p uniquely determines 
a point (x, y) with y =I= 0. We may therefore take y = 1, 
whence ex = p - e. The resulting two special points are 
therefore imaginary points of the form (rp + s, 1), where rands 
are integers modulo p, and r is not divisible by p. The imagi­
naries introduced* by new transformations are expressible 
linearly in terms of this p. Indeed, (2p - a)2 = A, where 
A = a2 - 4 is a quadratic non-residue of p (i. e., is not the re­
mainder when the square of any integer is divided by p). Thus 
A = a211, where v is a fixed non-residue of p. Hence the roots 
of all congruences (5) having no integral roots are expressible 
in the form k + zv';, where k and l are integers. 

* There are no new ones if p = 2, since a = 0 (mod 2). 
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Hence the special points invariant under transformations 
whose characteristic congruences have no integral roots are all 
of the form (rp + s, 1), where rands are integers, r not divisible 
by p, while p is a fixed root of a particular one of these congru­
ences (5). 

We next show that these p2 - p imaginary special points are 
all conjugate under the group G. It suffices to prove that they 
are all conjugate with (p, 1), which is invariant under 

x' = ax - y, y' = x. 

Now transformation (1) replaces (p, 1) by (R, 1), where 

R = bp+ d 
cp + e· 

We are to prove that there exist integers b, c, d, e satisfying 

(9) be - cd = 1 (mod p), 

such that R = rp + s, where r and 8 are any assigned integers 
for which r is not divisible by p. Denote the second root of (5) 
by p' and multiply the numerator and denominator of R by 
cp' + e. Using (9), we get 

P+N 
R = -q- , N = be + de + dca, q = c2 + ace + e2• 

We first show* that we can choose integers c and e such that 
q = i (mod p), where i is any assigned integer not divisible by p. 
If i is a quadratic residue of p, we may take c = 0. Next, let 
i be a quadratic non-residue of p. Taking c $ 0, e = lee, we 
have 

q == c2f(k), f(k) = 1 +ale+ lc2. 

Now f(k) = f(K) if and only if K = k or K = - a - 1.:. Hence 
the p - 1 values of k other than - a/2 give by pairs the same 
value of f(k). Thus fork = 0, • • •, p - 1,f(lc) takes 1 + ½(p-1) 
incongruent values, no one a multiple of p [since (5) has no 

* If p = 2, then a = O; taking c = 1, e = O, we have q = 1 = i (mod 2). 
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integral root], and consequently a value which is a quadratic 
non-residue of p. Then, by choice of c, q can be made congruent 
to any assigned non-residue. 

Having made q = i (mod p) by choice of c and e, we proceed 
to choose integral solutions b and d of (9) such that N will be 
congruent to any assigned integer j. If c = 0, so that e $ 0, 
we take d = j/e. If c $ 0, we eliminated from N by use of (9) 
and obtain 

1 
N = -(bq - e - ca), q = c2 +ace+ e2• 

C 

Since q $ 0, we may make N = j by choice of b. 
We have therefore proved that there are exactly p2 - p 

imaginary special points, viz., (rp + s, 1), r $ 0, and that they 
are all conjugate under the group G. Hence any invariant of G 
which vanishes for an imaginary special point has the factor 

(10) 
Xp2--l _ yp2--l 

xv---1 _ yv--1 • 

Indeed, the numerator of the first fraction vanishes for x= rp+s, 
y = 1, since 

(mod p), 

the last congruence* being a case of Galois's generalization of 
Fermat's theorem. We have divided out L, which vanishes for 
the real points (s, 1) and (1, 0). Since any transformation of G 
replaces one of our imaginary points by another, it replaces Q 
by kQ. The constant le is in fact unity and Q is an invariant of 
G. Indeed, (8) holds if .we replace the expo'lents p by p2• 

Hence the quotient Q is invariantt under all transformations (7). 

* It may be proved by noting that (5) implies 

(p2 _ ap + l)P = p2P - apP + 1 = O (mod p), 

so that pP is the second root of (5). By the same argument, (pP)P is a root, 
distinct from pP, and hence identical with p. 

t I gave the notation Q to the invariant (10) since it is the product of all 
of the binary quadratic forms x2 + • • • which are irreducible modulo p. 
Indeed, the latter vanishes for two points of the form (rp + s, 1) and (rp' + s, 1), 
where p and p1 are the roots of (5) and r, s are integers, r $ 0, and conversely. 
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We are now ready to prove that any rational integral invariant 
I, with integral coefficienf,s, of the group G is a rational integral 
function of L and Q with integral coejfici,eni,s. 

After removing possible factors L and Q, we may assume that 
I vanishes for no special point. If J is not a constant, it vanishes 
at a point (c, d) and hence at the c., distinct points conjugate with 
(c, d) under the group G. The invariants* 

(11) 
p+l p(p-l) 

q= QT, l= L-2-

are of degree"'· The constant -r, determined by 

q(c, d) + -r • l(c, d) = 0 (mod p), 

is a root of a congruence of a certain degree t with integral coef­
ficients and irreducible modulo p. Now q + -rl is a factor of I. 

Since q, l and I have integral coefficients, I has also the factors 

(12) q + -r"l, q + -r"~l, ... ' q + 7P1-1z. 

For, by Galois's theorem mentioned above, 

are the roots of our irreducible congruence of degree t. Since 
the conditions which imply that q + zl shall be a factor of I are 
congruences satisfied when z = -r, they are satisfied when z = -r"\ 
Hence if we multiply q + -rl by the product of the invariants 
(12), we obtain an invariant T with integral coefficients modulo p. 
Since L and Q have no common factor, no two of the functions 
q + -rl and (12) have a common factor. Hence Tis a factor of I. 

Proceeding in like manner with 1/T, we arrive finally at the 
truth of the theorem. t 

3. Invariani,sof Smaller Binary Groups.-We shall later need the 
theorem that a fundamental system of rational integral invariants 

* If p = 2, we omit the divisor 2 in the exponents. 
t Proved less simply in Transactions of the American Mathematical Society, 

vol. 12 (1911), p. 1. Still simpler is the proof that various coefficients of an 
invariant are zero, Quarterly Journal of Mathematics, 1911, p. 158. 
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of the group composed of the p powers of the transformation 

(13) 3:1 = X + y, y' = y (mod p) 

is given by y and >., where 

(14) >. = x(x+y)(x+2y) • • • (x+p-ly) =xP-xyrr-1 (mod p). 

Now (1, 0) is the only special point, being the only point 
unaltered by (13) or its kth power, k < p. Hence an invariant 
not having a factor y or >. vanishes at imaginary points falling 
into sets each of p points conjugate under our group. As at the 
end of § 2, the invariant is a product of factors yP + -r>. so 
related that the product equals a polynomial in yP and >. with 
integral coefficients. 

Other results will be merely stated, since they are not pre­
supposed in what follows. Within the group G of all transforma­
tions (1), any subgroup of order a multiple of p is conjugate 
with one containing (13) and transformations exclusively of the 
form 

(15) x' = tx + ly, y' = t,-ly (mod p}, 

and having y and >. as a fundamental system of invariants.* 
The invariants of any subgroup whose order is prime top have 
been found. t 

4. Invariants of the Total Group on m Variables.-The functions 

Xi 
p"'-1 pm-1 

Xm 
X1P"' x,,.P"' 

ptn-2 pm-2 
p•+l p ... 1 Xi Xm 

Qma= 
Xi Xm 

+Lm (16) Lm= J pe-1 p•-1 

X1P Xmp Xi Xm 

Xi Xm X Xm 

are seen, by a generalization of (8), to be invariants of index 1 
and O respectively of the group rm of all linear homogeneous 
transformations on x1, • • •, Xm with integral coefficients modulo p. 

• BuUetin of the American Mathematical Society, vol. 20 (1913), pp. 132-4. 
t American Journal of Mathematics, vol. 33 (1911), p. 175. 
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Since Lm is an invariant of rm and has the factor xi, it follows 
from an examination of its diagonal term that* 

"' p-1 

(17) Lm = IT L (xk + CJo.+.1Xk+1 + · · · + CmXm) (mod p), 
k=l c;=O 

in which occurs one of each set of proportional linear forms modulo 
p. A like proof shows that the numerator of Qms is divisible by 
each of the linear functions (17) and hence by Lm, modulo p. 

Making use of the theorem in §2, I have proved by inductiont 
that the m invariants Lm, Qm1, • • •, Qmm-l are independent and 
form a fundamental system of rational integral invariants of rm• 

A fundamental system of invariants of the group of all modular 
linear transformations on two sets of two cogredient variables 
has been obtained very recently by Dr. W. C. Krathwohl in his 
Chicago dissertation.t 

FORMAL INVARIANTS AND SEMINVARIANTS OF MODULAR FORMS, 

§§ 5-13 

5. Formal Modular Invariants.-Consider a binary form 

f(x, y) = aoa:r + a1xr-1y + · · · + aryr, 

in which x, y, ao, • • •, a7 are arbitrary variables. The transforma­
tion (7) with integral coefficients, whose determinant .1 is not 
divisible by the prime p, replaces f by a form 

cf,(X, Y) = AoXr + A 1xr-1y + · · · + ArYr, 
in which 

(18) Ao= f(a, c), A1 = rar-1ba0 + • · •, , Ar = f(b, d). 

A polynomial P(ao, • • •, ar) with integral coefficients is called a 
formal invariant modulo p of index X off under the transforma-

• E. H. Moore, Bulletin of the American Mathematical Society, vol. 2 (1896), 
p. 189. His proofs do not use the invariantive property. A like remark is 
true of the proof that the product (17), in the case x., = 1, is congruent to a 
determinant of order m - 1, then obviously equal to Lm, by R. Levavasseur, 
Memoires de l'Academie des Sciences de Toulouse, ser. 10, vol. 3 (1903), pp. 
39-48; Comptes Rendus, 135 (1902), p. 949. 

t Transactions of the American Mathematical Society, vol. 12 (1911), p. 75. 
i American Journal of Mathematics, October, 1914. 
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(mod p), 

identically as to ao, • • ·, Or, after the A's have been replaced by 
their values (18) in terms of the ai. If P is invariant modulo p 
under all transformations (7), it is called a formal invariant 
modulo p off. 

The term formal is here used in connection with a form/ whose 
coefficients are arbitrary variables in contrast to the case, treated 
in the earlier Lectures, in which the coefficients are undeter­
mined integers taken modulo p. In the latter case, (19) neces­
sarily becomes an identical congruence in the a's only after the 
exponent of each a is reduced to a value less than p by means 
of Fermat's theorem aP = a (mod p). 

The functions (18) are linear in a0, • • •, a,. It is customary to 
say that relations (18) define a linear transformation on ao, • • ·, ar 

which is induced by the binary transformation (7). Let r be 
the group of all of the transformations (18) induced by the group 
of all of the binary transformations (7). Making no further 
use of the form f, we may state the above problem of the de­
termination of the formal invariants off in the following terms. 
We desire a fundamental system of invariants of group r. This 
problem is of the type proposed in § 1; the group r is a special 
group of order a multiple of p. Here and below the term in­
variant is restricted to rational integral functions of ao, • • ·, a,. 

A theory of formal invariants has not been found. For no 
form f has a fundamental system of formal invariants been 
published. Some light is thrown upon this interesting but 
difficult problem by the following complete treatment of a 
binary quadratic form, first for the exceptional case p = 2 and 
next for the case p > 2, and preliminary treatment of a binary 
cubic form. 

6. Formal Invariants Modulo 2 of a Binary Quadratic Form.­
Write 
(20) f = ax2 + b;-c]! + cy2, 
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where a, b, care arbitrary variables. Under the transformation 

(21) X = x' + y', y = y', 

f becomes f', in which the coefficients are 

(22) a'= a, b' = b, c' = a+ b + c (mod 2). 

By § 3, the only invariants under d' = d, c' = c + d, modulo 2, 
are the polynomials in d and c(c + d). Take d = a+ b. 
Hence the only aeminvariants off are the polynomials in a, b and 

(23) a= c(c+ a+ b). 

Such a polynomial is an invariant of f if and only if it 1s 
unaltered by the substitution (ac) induced by (xy). Thus 

(24) b, le = as, q = b(a + c) + a2 + ac + c2 = a + ab + a2 

are invariants of J. Introducing q in place of a, we see that any 
seminvariant is a polynomial in a, b, q. Consider an invariant 
of this type. Since its terms free of a are invariants, the sum 
of its terms involving a is an invariant with the factor a and 
hence also the factors c and a+ b + c, the last by (22). Hence 
this sum has the factor le, and its quotient by le is an invariant. 
By induction we have the theorem: 

Any rational integral formal invariant of f equals a rational 
integral function* of b, q, le. 

7. Formal Seminvariants of a Binary Quadratic Form for p > 2. 
Write 
(25) f = ax2 + 2bxy + cy2, 

where !l, b, c- are arbitrary variables. Under the transformation 
(21), f becomesf', whose coefficients are 

(26) a' = a, b' = a + b, c' = a + 2b + c. 

* Replace z1, x:, xa, of § 4 by a, b, c; then 

L3 = bk(k + bq), Qu = b4 +bk+ q2, Q31 = b2q2 + bqk + b3k + k2• 
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Evident formal seminvariants are a, tJ.. = b2 - ac, and 
p-1 

(27) {3 = II (ta+ b) = bP - bar-1 (mod p), 

p-1 

43 

(28) 'Yk = II {(t2 - lc)a + 2tb + c} (k = 0, 1, • • •, p - 1). 
t=O 

Indeed, the linear function under the product sign in (28) is 
transformed by (26) into the function derived from it by re­
placing t by t + 1. As in (27), 

(29) (mod p). 

Let S(a, b, c) be a homogeneous rational integral seminvariant 
with integral coefficients. Then, by (26), 

S(0, b, c) = S(0, b, 2b + c) (mod p). 

Thus, by § 3, 8(0, b, c) equals a polynomial in b, cP - cbr-1• 
Hence, by (29), 

S(a, b, c) = aa(a, b, c) + cj,(b, -y,1:) (mod p), 

where a and cj, are polynomials in their arguments. Now 

b2i = tJ..i + a( ), bP+2i = (3/J..• + a( ). 
Hence 

(p-3)/2 

(30) S = aX(a, b, c) + y;({3, !J.., 'Yk) + L dib2•+i-yke., 
t=O 

where A and y; are polynomials in their arguments, and d. is 
an integer. 

When y is multiplied by a primitive root p of p, a, b, c are 
multiplied by 1, p, p2, respectively. Hence {3 is multiplied by p, 

while, by (29), 'Yk and tJ.. are multiplied by p2• If therefore we 
attribute the weights 0, 1, 2 to a, b, c, respectively, and the weight 
s + 2t to arbsct, we see that the weight of every term of 'Yk is 
congruent to 2 modulo p - 1. 

We can now prove that every di is divisible by p. For, if not, 
the seminvariant S - y; has a term of odd weight, so that every 
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term of >. is of odd weight and hence has the factor b. Thus 
S - y; has the factor b and therefore the factor (3, so that its 
terms free of a have the factor bP. But this is impossible, since 
2i + 1 < p and (29) does not have the factor b. 

Hence S - y; has the factor a and the quotient is a semin­
variant of the form a>.'+ y;'. Proceeding in this way, we obtain 
the theorem: 

Any seminvariant is a polynomial in a, A, (3 and any single 'Yk• 

Of these, (3 alone is of odd weight. Hence any seminvariant is 
a polynomial in a, A, 'Yk, {32 or the product of such a polynomial by 
(3. But 

p-1 

(31) /32 = aP-yo + A(A-2 - aP-1) 2 (mod p). 

To prove this, it suffices to show that the second member is 
divisible by band hence by (3, and being of even weight therefore 
by /32, and to remark that each member of (31) reduces to b2P for 
a= 0. Now 

p-1 { (p-1)/2 }2 

['Yo]b=O = 1]; (t2a + c) = c g (t2a + c) 

p-1 p-1 = c{c-2 - (- a)2}2 (mod p), 

p-1 

aP["(o]b=o = ac { ( - ac) 2 - aP-1 I 2 (mod p). 

But A reduces to - ac for b = O. Hence the second member of 
(31) has the factor b. We therefore have the theorem: 

For p > 2, any formal serninvariant of a binary quadratic form 
is a polynomial in a, A, 'Yo or the product of such a polynomial by (3. 

8. Formal Invariants of a Binary Quadratic Fonn for p > 2. 
The product 

(32) r = II 'Yk (I,; ranging over the quadratic non-residues of p) 
k 

is an absolute invariant of f under the group G of all binary 
transformations with integral coefficients taken modulo p of 
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determinant unity. It suffices to prove that this seminvariant 
is unaltered by the substitution 

(33) a' = c, c' = a, b' = - b, 

induced by the transformation x = y', y = - x'. Under (33), 
the general factor in (28) is replaced by 

(t2 - k){ (T2 - I()a + 2Tb + c}, 
where 

k 
K = (t2 - k)2· 

Hence K is quadratic non-residue of p when k is. Also, 

p-1 { (p-1)/'l }2 p-1 

II(t2-lc)=-k II (k-t2) =-k(l,;2 -1)2=-4k 
t=O t=l 

(modp) 

if k is a non-residue. To show that the product of the resulting 
numbers - 41c is congruent to unity, we set x = 0 in 

p-1 

(34) II (x - k) = x 2 + 1 (mod p), 
k 

and note that 2p-t = 1. Hence (32) is unaltered by (33) and is 
an absolute invariant off under G. 

It is very easy to verify that 

(35) J = a-yo 

is unaltered by (33), so that J is an invariant of f under G. 
If an invariant has the factor {J, it has the factor 

(36) B = fJIT'Yr (r ranging over the quadratic residues of p). 

For, under the substitution (33), b+ra (r=l=O) becomes r(c-b/r). 
By choice of r, we reach c + 2tb, where tis any assigned integer 
not divisible by p. This is a factor of 'Yk where k = t2• 

The fact that B is an invariant may be verified as in the case 
of (32) or deduced from the fact that 

p-1 

a{J IT 'Yk = a-yo • Br 
k=O 
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is an invariant, being the product of all non-proportional linear 
functions of a, b, c with integral coefficients modulo p. 

Hence any invariant is the product of a power of B by an 
invariant which is a polynomial P in a, A, 'Yo• 

Since 'Yk is a seminvariant not divisible by {3, it equals a 
polynomial in a, A, 'Yo (§ 7). But if a = 0, 'Yk = 'Yo (mod p), by 
(29), and A = b2 is free of c, so that 'Yk is not a polynomial in a 
and A only. Hence 

(37) (mod p). 

For p = 3, the polynomial P therefore equals a polynomial in 
a, A, -y2 = r. Now an invariant cf,(a, A, r) differs from the 
invariant cf,(0, A, r) by an invariant with the factor a and hence 
the factor (35). Treating the quotient similarly, we ultimately 
obtain the following theorem for the case p = 3: 

A fundamental system of formal invariants of the binary quad­
ratic form f modulo p, p > 2, is given by the discriminant A and 
r, J, B, defined by (32), (35), (36). The product of the last three 
is congruent modulo p to the product of all the non-proportional 
linear functions of the coefficients off. 

To prove the theorem for p > 3, note first, by (37), that r, 
given by (32), differs from 'Yon by a polynomial in 'Yo, a, A of 
degree n - 1 in 'Yo, where n = (p - 1) /2. Hence a polynomial in 
a, A, 'Yo equals a polynomial in a, A, 'Yo, r of degree at most n - 1 
in 'Yo• Subtract from each the terms of the latter involving 
only the invariants A, r. We have therefore to investigate 
invariants of the type 

n-1 n-1 

(38) LC,'YoiPi(A, r) + L'Yo'cpi(a, A, r), 
i=I i=O 

in which the c, are integers, while Pi and cf,i are polynomials in 
their arguments, and cf,i has the factor a. If every c, = 0, the 
invariant has the factor a and hence the factor a-yo = J, and the 
quotient by J is an invariant which may be treated similarly. 
The theorem will therefore follow if we show that a contradiction 
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is involved in the assumption that a certain c; is not divisible by p. 
First, the remaining c, are divisible by p. For if also c, $ 0, 
let kil;:,,_r;rs; be the term of Pi of highest degree in A. Since 
'Yo and r are of degrees p and np, and of weights = 2 and 0 
(mod p - 1), ,y0iP, is of degree pi+ 2ri + s,-np and of weight 
= 2i + 2ri (mod p - 1). But p = 1 (mod n). Hence 

i + 2r,; = j + 2r;, 2i + 2r, = 2j + 2r; (mod n), 

so that i = j (mod n). But i and j are positive integers < n. 
Hence i = j. Multiplying our invariant by a suitably chosen 
integer, we have the invariant 

n-1 

(39) 'YiP;(A, r) + L'Yoic/>i(a, A, r), P; = A'T' + · · •, 
•=0 

Now - (c - ka)b~1 is the term of highest degree in b in 'Yk• 
Hence 
(40) 'Yo= - cb~1 + • · ·, r = ubn(~l) + · · ·, 
(41) u = II { - (c - ka)} = (- c)n + (- a)" (mod p), ,. 
where k ranges over the non-residues of p, the last following 
from (34) for x = c/a. Since 'Yo and r are of even weights, 
only even powers of b enter (39). Hence an invariant (39) is 
symmetrical in a and c. We shall prove that this is not the 
case for the terms of highest degree in b. For ,yiP; this term is 

(42) (- c)iusbfJ, {3 = j(p - 1) + 2r + sn(p - 1). 

Let O,;ae•A''r,u be one of the terms of c/>, in which the exponent of 
b is a maximum. Then in 'Yoic/>, the highest power of b occurs 
in the terms 

(43) C.ae'(- c)iuo•b 13 ', {3,; = 2/.: + g,-n(p - 1) + i(p - 1). 

Since the weight and degree is the same as for ( 42), 

(44) 
(mod p - 1), 
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First, let f3i = {3. Then i = j, ei = 0 (mod n), whence i = j. 
Thus the exponent of a in any term (42) or (43) is divisible by n, 
while the exponent of c is not, being congruent to j modulo n. 
Hence the coefficient of b13 in the sum of ( 42) and the various 
terms (43), with i = j, is not symmetrical in a and c, unless 
identically zero. But ( 43) has the factor a while ( 42) does not. 
Hence the greatest f3i exceeds {3. 

Next, consider a set of terms (43) and a set of terms of like 
form with i replaced by k, all being of equal degree in b. Then 
f3i = f3k- By (441), 2i + f3i = 21c + (31., i = k. Consider finally 
terms (43) with f3i constant. In them the residue modulo n 
of ei is a constant + i. For, if ei = i, then 2i + (3. = j + (3 
(mod n) by (442), so that j = 0 (mod n) by (441). Hence these 
terms (43) are not symmetric in a and c and yet do not cancel.* 

Our fundamental invariants are connected by a syzygy; for 
p = 3, 
(45) B2 = Aar2 + J(J - A2)2. 

9. Formal Invariants of a Binary Cubic Form for p + 3.­
We have seen that the theory of formal invariants of a binary 
quadratic form is dominated by the invariantive products of 
linear functions of the coefficients. While these products de­
pended upon the classification of integers into the quadratic 
residues and the non-residues of p, we shall find that for a cubic 
form it is a question not merelv of cubic residues and non-residues 
of p, but of the larger classes of reducible and irreducible con­
gruences. Write 

f = ax3 + 3bx2y + 3cxy2 + dy3, 

thus taking p + 3. Under transformation (21), f becomes f', 
whose coefficients are given by (26) and 

(46) d' = a + 3b + 3c + d. 

* If two are of like degree in c, their g's are equal and hence their f's are 
equal; then, if of like degree in a, their e's are equal. But then we have the 
same term of <f,;. 
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Hence a, {3 and 'Yk, given by (27) and (28), are a.gain seminva­
riants; also, 

p-1 

(47) a;k = II { (t3 - 3kt - j)a + 3(t2 - k)b + 3tc + d} 
t=O 

(j, k = 0, • • ·, p - 1). 

Indeed, if Fe(a, b, c, d) is the function in brackets, 

Fi(a', b', c', d') = Fz.+-1(a, b, c, d). 

Any invariant with the factor a has the factor 
p~ p~ 

(48) aaoo = a II (t3a + 3t2b + 3tc + d) = f(l, 0) IIf(t, 1), 
t=O 1=0 

whose vanishing is the condition that one of the points (x, y) 
represented by f = 0 shall be one of the existing p + 1 real 
points (1, 0), (t, 1) of the modular line. To verify algebraically 
that the seminvariant (48) is an invariant,* note that it is 
unaltered modulo p by the substitution 

(49) a' = - d, d' = a, b' = c, c' = - b, 

which is induced on the coefficients off by x = y', y = - x'. 
The product P of the a;k in wliich j and k are such that 

X = t3 - 3kt - j 

is irreducible modulo p is a formal invariant. 
The substitution (49) replaces the general factor of (47) by 

- a+ 3tb - 3(t2 - k)c + Xd 

= X{ (T3 - 3KT - J)a + 3(T2 - K)b + 3Tc + d}, 
where 

k - t2 
T=--

X ' g = k2 + kt2 + tj, 

Ii= - 2k3 + 6k2t2 + 3/ctj + t3j + j2. 

• For any form, see Transact-tons of the American Mathematical Society, 
vol. 8 (1907), pp. 207-208. 
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We are to show that there is no integral solution x of 

x3 - 3Kx - J = 0 (mod p). 

Multiply this by >.3 and set >.x = y. Then 

y3 - 3gy- h = O (mod p). 

But the negative of the left member is the result of substituting 

r + s = - t, rs = - y - 21c 

in the expansion of the product 

(r3 - 3kr - j) (s3 - 3ks - j). 

The latter is congruent to zero modulo p for no values of rand 
s which are integers or the roots of an irreducible quadratic 
congruence with the integral coefficients t, - y - 2k. 

For p = 2, P = ou, For p = 5, P is the product of two 
invariants* 
(50) 

neither of which is a product of invariants. The last property 
is true also of the following invariants: 

(51) 'Y10oa, 'Y 4002, '}'20o40120ao02o042, 

'Ya00101o023033040, /1-yoo14021oa1044. 

The product of these seven invariants and ao00 equals the product 
of all the linear functions of a, b, c, d, not proportional modulo 5. 

For p = 2, each of the 15 linear functions is a factor of just 
one of the following invariants (no one with an invariant factor): 

(52) aooo, ou, /1-yoooi, K = b + c, (a+ b + c)o10, 

For any p =I= 3, the cubic form has the formal invariant 

(53) 

* In those linear factors of the first which lack c, the product of the coef• 
ficients of a and b is a quadratic non-residue of 5; in those of the second in­
variant, a quadratic residue. 
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and an absolute formal invariant* K of degree p - 1. For 
p = 5, 

(54) K = b4 + c4 - b2d2 - a2c2 - bc2d - ab2c + acd2 + a2bd. 

Thus, for p = 5, K and the discriminant D are invariants of 
degree 4, and weights = 0, 2 (mod 4), while ao00 and G are 
of degree 6 and weight = 3 (mod 4). It follows from§ 10 that 
there are no further invariants of degree less than 8. Now the 
first and second invariants (51) are of degree 10 and weight = 1 
(mod 4). Hence if either is expressible as a polynomial in in­
variants of lower degrees, it must be the product of D by a 
linear function of aooo and G. This is seen to be impossible 
either by a consideration of the terms of degree ~ 5 in d or by 
noting that D has no linear factor. Thus -y1o03 or ')'40o2 occurs in a 
fundamental system of invariants. 

Invariantive products of linear functions of the coefficients 
of the cubic form therefore play an important role in the theory 
of its formal invariants. Whether or not they play as dominant 
a role as in the case of the quadratic form is not discussed here. 
We shall however treat more completely the seminvariants. 

10. Formal Seminvariants of a Binary Cubic for p > 3.-We 
shall first determine the character of the function to which any 
seminvariant S (a, b, c, d) reduces when a = 0. Set A = 3b, 
2B = 3c, C = d. Then (26) and (46) give 

A' = A, B' = A + B, C' = A + 2B + C (when a = 0). 

Any function unaltered by this transformation is (§ 7) a poly­
nomial in A, B2 - AC, -y0', or the product of such a polynomial 
by {3', where -y0' and {3' are the functions 'Yo and {3 written in 
capitals. But 

p-1 

'Yo' = II (3t2b + 3tc + d) = [o;o]a=o, 
1=0 

p-1 

{3' = II {!(2tb + c) J = hk]a=o, 
l=O 

* Transactions of the American Mathematical Society, vol. 8 (1907), p. 221; 
vol. 10 (1909), p. 154, foot-note. Bulletin of the American Mathematical 
Society, vol. 14 (1908), p. 316. Cf. Hurwitz, l. c. 
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modulo p. Hence 

(55) S = acr(a, b, c, d) + 'Ykecp(b, q, Ojo) (e = 0 or 1), 

where k, j may be given any assigned integral values and 

(56) 

D being the discriminant off. We use the seminvariants (II, § 2) 

(57) S2 = - b2 + ac, Sa= 2b3 + a(ad - 3bc). 

First, let p = 5. Then q = c2 + 2bd. We have the formal 
seminvariants * 

cr3 = bq - a(ab + 2cd), 

cr4 = K - Sz2 = q2 + a(abd - 2ac2 + b2c + cd2), 

cr5 = bq2 + a(- ad3 - bcd2 + 3c3d + abc2 - 2b3c + a3b), 

cr6 = q3 + a(ad4 - 2bcd3 - c3d2 + abc2d- 2b3cd + a3bd+ 2ac4 

(58) - b2c3 - 2a3c2 + ab4), 

cr7 = q-yo + a{2(b2 - ac)d4 + a2bd3 - bc2d3 - 2c4d2 + 2a2c2d2 

- 2ac(b2 - ac)d2 - (b2 - ac)2d2 - 2a4d2 + 2abc3d 

+ 2a3bcd + 2ab4c + 3 (b2 - ac)c4 - a4b2 + 2a3c3 }, 

while 2G differs from b-y0 by a multiple of a. By (55)-(58), S 
differs from a polynomial in the seminvariants 

(59) a, D, S2, 83, <Ta, K, crs, crs, CT1, G, 'Yo, o0o 

by a function aX + pboiJ0 + crqo~0 , in which p and cr are constants 
at least one of which is zero (in view of the degree of the terms). 
But the increment to Mi0 under transformation (26), (46), is 

* As the terms with the factor a were taken all of the proper degree and 
weight; then a term common to a combination of the seminvariants (59) was 
deleted. Finally the coefficients were found by a process equivalent to the 
use of a (non-linear) annihilator, Transactions of the American Mathematical 
Society, vol. 8 (1907), p. 205. Expansions were made in powers of d and the 
terms involving d rechecked. As each remaining term involves a new coef­
ficient, there is no doubt as to the existence of covariants of type u5, us, u1, 

though the terms free of d were not rechecked. 
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aog0 with the term ad50, while d does not occur to this power in 
the increment to a function>.. of degree 5g. Again, the increment 
to qo~0 has the term 2ad1+5h, while the increment to a function 
>.. of degree 5h + 1 is of smaller degree in d. Hence p = u = 0. 
Then in a>.., >.. is a seminvariant which may be treated as was the 
initial S. 

A fundamental system of formal seminvariants of the binary 
cubic form modulo 5 is given by tlie functions (59). 

11. For p = 2, the method of § 10 fails. In place of c we 
now introduce the seminvariant K = b + c. Then the trans­
formation (26), (46), becomes 

(60) a' = a, K' = K, b' = a + b, d' = a + K + d. 

By § 3, any seminvariant S(a, K, b, d) becomes for a= 0 a 
polynomial in K, b, d(K + d). In place of the last. we may 
use ooo- Hence 

S = au+ q,(b, K, 000), Ooo = d(a + K + d). 

We make use of the seminvariants 

(61) 
Ll = ad + be = ooo + ooi, (3 = b2 + ab, 

(3 + Ll = bK + a(b + d). 

Hence S differs from a polynomial in K, 000, Ll, (3 by a function 
ap + bT(/3, 000). Let (60) replace p by p'. Then p + p' = T 
(mod 2). Take a= K = 0; then (60) is the identity and 
0 = T(b2, d2) identically in b, d. Hence the function T(ft, o) 

is identically zero. Thus ap and hence p is a seminvariant. 
Hence a, K, o0o, Ll, (3 form a fundamental system of formal semin­
variants of the cubic modulo 2. 

Note that Ll2 is the discriminant, so that Ll is an invariant. 
The invariants (52) may be expressed in terms of our semin­
variants: 

(62) 
011 = I+ Ll, f3-yooo1 = (3((3 + K2 + aK) (Ll + 000), 

(a + K)o10 = (a + K) (a2 + I) = aooo + KI, 
where I= a2 + aK + 000 is an invariant. 



54 THE MADISON COLLOQUIUM. 

12. Miss Sanderson's Theorem. *-Given a modular invariant i 
of a system of forms under any modular group G, we can con­
struct a formal modular invariant I of the system of forms under 
G such that I= i (mod p) for all integral values of the coefficients 
of the forms. As the proof does not give a simple method of 
actually constructing I from i, it is in place here to give a very 
interesting illustration of the theorem with independent veri­
fication. Take as i the fundamental seminvariant (- l)"'Pm-1am 
of a binary formf (Lecture II). Then I is the quotient Lm-t-1/Lm, 
where Lm is given by (16) or (17) with x1, • • ·, Xm replaced by the 
first m coefficients ao, ai, • • • , am-i of the binary form f. Now 
x = x' + y', y = y', replaces f(x, y) by a form in which the 
coefficient a/ is a linear function of a0, • • •, ai. Hence Li is a 
formal seminvariant off modulo p. First, 

L2 = I aoP a1 P I + ao = aor-1a1 - a1 P 

L1 ao a1 

is a formal seminvariant which reduces to - Poa1 for integral 
values of a

0
, ai, where Po = 1 - a

0
P--1

• Compare (27). Next, 

ao 

C = La/ L2 = a2P2 
- a2PQ + a2L2P--1 

where, as in (10), 

Q= 

For integral values of the a's, we have 

(mod p), 

(s = p - 1). 

L2 = 0, Q = ao8 + a18 + (p - l)ao8ll18 = 1 - Pi, 

P1 = (1 - ao8)(l - a18), 

modulo p, since each term of Q, with j =I= 0, j =I= p, is congruent 

* Transactions of the American Mathematical Society, vol. 14 (1913), p. 490. 
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to ao•a1•. Hence C = P1a2. Similarly, 

55 

L4/ La = - a3P3 + aaP~Qa2 - aaPQa1 + aaLaP--1 (mod p), 

where the Q's are defined by (16) and are congruent to* 

Qa1 = Q(La/L2)P--1 + L2P2-P, Qa2 = (La/L2)P--1 + QP, 

with Q as above. Hence for integral values of the a's, 

Qai = (1 - P1)P1a2P--1 = 0, Qa2 = 1 - P1 (1 - a2P--1) = 1 - P2, 

L4/La = - P2aa. 

13. :Modular Covariants.-Extending the usual definition of a 
covariant of an algebraic form f to the case in which the group is 
the set of all line.•=tr transformations with integral coefficients 
taken modulo p, we obtain the concepts modular covariants or 
formal modular covariants according as the coefficients of f 
are integers taken modulo p or are indeterminates. The contrast 
is the same as in § 5. The universal covariants obtained in § 2 

and § 4 do not involve the coefficients off and hence are formal 
covariants. 

I have recently provedt that all rational integral modular 
covariants of any system of modular forms are rational integral 
functions of a finite number of these covariants. In the same paper 
I proved that a fundamental system of modular covariants of tlie 
binary quadratic form (25) modulo 3 i,s given by the form f itself, 
its discriminant A, the universal covariants L and Q, together witht 

q = (a+ c)(b2 + ac - 1), f4 = ax4 + bx3y + bxy3 + cy4, 

(63) C1 = (a2b - b3)x2 + 2(b2 + ac) (c - a)xy + (b3 - bc2)y2, 

02 = (A+ a2)x2 - 2b(a + c)xy + (A+ c2)y2• 

Here f 4 is a formal covariant, which is congruent to f for integral 

* Transactions of the American Mathematical Society, vol. 12 (1911), p. 77. 
t Transactions of the American Mathematical Society, vol. 14 (1913), pp. 

299-310. The extension to cogredient sets of variables has since been made 
by Professor F. B. Wiley, and will be published in his Chicago dissertation. 

t No one of the eight is a rational integral function of the remaining seven 
even in the case of integral coefficients a, b, c taken modulo 3. 
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values of x, y. Also 02 and (as here written) 01 are formal 
covariants. Note that - q is the invariant (42) of Lecture II. 
When q is made homogeneous by replacing - a - c by - a3 - c3, 

we obtain the formal invariant r = 'Y2, given by (32). The 
resulting eight formal covariants off do not form a fundamental 
system of formal covariants; not all the formal invariants are 
polynomials in ll. and r (§ 8). No instance of a fundamental 
system of formal covariants has yet been published. 

The method of proof will be here illustrated by the new and 
simpler case of a binary quadratic form (20) with integral coef­
ficients modulo 2. By § 6 any invariant off is a polynomial in 

(24') b, abc, q = (b + 1) (a+ c) + ac, 

to which the formal invariants (24) reduce modulo 2. Such a 
polynomial is congruent to a linear function of these three and 
unity, since 

bq = abc (mod-2). 

Further, any seminvariant is a polynomial in a, b and q (§ 6), 
and hence is a linear function of 1, a, b, ab, q, abc. For, 

aq= a+ ab+ abc (mod 2). 

These results are in accord with those obtained otherwise in § 14 
of Lecture II. We shall now prove the following theorem: 

Every rational integral covariant K of the binary quadratic form J 
modulo 2 i.s a rational integral function off, its invariants b and q, 
the universal covariants 

Q = x2 + xy + y2, L = x2y + xy2, 

and the linear covariant 

l = (a+ b)x + (b + c)y, l2 = f + bQ (mod 2). 

The leading coefficient S of K is a seminvariant and hence is 
of the form I + ra + sab, where r and s are constants, and I 
is an invariant, a linear combination of the invariants (24') and 
unity. 
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First, let K be of even order 2n. Then 

is a covariant in which the coefficient of x2n is zero and hence 
has the factory. Thus K1 has the factor Land the quotient is 
a covariant of order 2n - 3 to which the next argument applies. 

Next, let K be of odd order: 

K = sx2n+i + S1x2ny + .... 
After subtracting from K constant multiples of lQn and blQ", 
in which the coefficients of x2n+1 are a + b and ab + b, re­
spectively, we may assume that S is an invariant. After also 
subtracting from K a constant multiple of ILQn-1, where I is a 
linear combination of the invariants (24') and unity, we may 
assume that 81 = {31a + {32c, where the (3's are functions of b 
only. Then the covariance of K with respect to the trans­
formation (21) gives 

S,,.,~n+l+ s I ,~. '+ -1(-s /~n+l+ (S+ s ) I~" '+ "" 1 X y • • •= = X 1 X y • • • (mod 2), 

where S1' denotes the function S1 formed for the new coefficients 
(22). Hence 

S1' - S1 = f32(a + b) 

must equal the invariant S. Since {32b is a function of the in­
variant b, {32a must be an invariant, so that /32 = 0. Thus 
S = 0 and K has the factor L as before. Hence the theorem is 
true for covariants of order w if true for those of order w - 3. 
But it was proved true for those of order zero. 

By a similar method I obtain the following theorem: 
A fundamental system of covariants of the binary quadratic form 

f, given by (20), and tlze linear form }. = a2x + a1y modulo 2 is 
given by f, >., l, 

l1 = (aa2 + j)x + (ca1 + j)y, 

Q, L and tlze invariants b, q, (a1 - 1) (a2 - 1) and 

j = (a+ b)a1 + (b + c)a2. 
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Since a1 and a 2 are cogredient with x and y, the function j 
obtained from the covariant l off is an invariant off and X. 

The reverse of the last process is important. If we adjoin to a 
system of binary forms in the variables x' and y' the linear form 
yx' - xy', any modular invariant of the enlarged system, formal 
as to x, y, is a modular covariant of the given system with x', y' 
replaced by x, y. The theorem of § 12 therefore proves the 
existence of certain formal covariants.* 

APPLICATIONS OF INVARIANTS OF A MODULAR GROUP,§§ 14, 15 

14. Form Problem for the Total Binary Jl,,fodular Group r.­
This group is composed of all binary linear transformations (7) 
with integral coefficients taken modulo p whose determinant Ll 
is not divisible by p. By (8), 

(64) L(x, y) = LlL(X, Y), Q(x, y) = Q(X, Y) (mod p), 

so that LP---1 and Q are absolute invariants of r. Hence, of the 
functions (11), q is invariant under r, while l is unaltered by certain 
transformations and changed in sign by others. Thus a homo­
geneous function of q and l having a term which is a power of q 
is a relative invariant of r only when an absolute invariant. 
Hence if p > 2, it involves only even powers of l, and by the 
homogeneity, only even powers of q. Hence any absolute in­
variant of r i,s a product of powers of v,--1 and, Q by a polynomial 
in q·Y, l.,, where 'Y = 1 if p = 2, 'Y = 2 if p > 2. 

In particular, LP--1 and Q form a fundamental system of absolute 
invariants of r. The so-called form problem for the group r 
requires the determination of all pairs of values of the variables 
x and y for which LP-1 and Qare congruent modulo p to assigned 
values X and µ, either integers or imaginary roots of congruences 
modulo p. We have therefore to solve the system of congruences 

(65) {L(x, y) }P---1 = X, Q(x, y) = µ (mod p). 

* After these lectures were delivered, I saw a manuscript by Professor 0. 
E. Glenn, containing tables of formal concomitants for forms of low orders 
and moduli 2 and 3. He employs transvection between the form and the 
covariant L of § 2. 
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First, let X =I= 0. For z = x or z = y, we have 
Xp2 yP2 zP2 

O= xP yP zP = LzP2 - QLzP + LPz (mod p). 

X y z 

Hence x and y are roots of 

(66) (mod p). 

Having no double root, this congruence has p2 distinct integral 
or imaginary roots. These roots are 

(67) eX + JY (e,f = 0, 1, • • ·, p - 1), 

where X and Y are particular roots linearly independent modulo 
p. For, 
(68) F(eX + JY) = eF(X) + JF(Y). 

Hence any pair of solutions x, y of (65) is of the form (7), where 
a, • • •, d are integers, whose determinant Ll is not divisible by 
p, in view of (641) and X =I= 0. 

Conversely, if X and Y are fixed linearly independent solutions 
of (66), any pair of linear functions of X and Y with integral 
coefficients, whose determinant is not divisible by p, gives a 
solution of (65). Indeed, by (68), x and y are solutions of (66). 
From the two resulting identities, we eliminate X and µ in turn 
and get 

µ = Q(x, y), {L(x, y) l P = XL(x, y). 

Since X and Y are linearly independent modulo p, L(X, Y) is 
not divisible by p [cf. (6)]. Thus L(x, y) =I= 0 by (64). Hence 
(65) hold. 

Hence, for >. =I= 0, the form problem has been reduced to the 
solution of congruence (66). The latter will be discussed here 
in the simple but typical* case in which X and µ are integers. 
Now the problem to find the real and imaginary roots of a con-

* For the general case, see Transactions of the American Mathematical 
Society, vol. 12 (1911), p. 87. 
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gruence with integral coefficients is at bottom the problem to 
factor it into irreducible congruences with integral coefficients. 

When vis an integer, zP - vz is a factor of (66) if and only if 
v is a root of the characteristic* congruence 

(69) v2 - µv+ A= 0 (mod p). 

Such a binomial is a productt of binomials zd - o, irreducible 
modulo p, whose degree d is the exponent to which the integer v 
belongs modulo p. Since 2p - 1 < p2, the function (66) has 
an irreducible factor ct,(z) of degree D > 1, not of the preceding 
type zd - o, and hence with a root r such that rP /r is not congruent 
to an integer. Thus every root of (66) is of the form c1r+c2r11, 
where the e's are integers. The irreducible factors of (66) are of 
degree D except those, occurring only when (69) has an integral 
root, of the form zd - o, where dis a divisor of D. 

To find D, note that by raising (66) to the powers p, p2, • • ·, 

we can express zP' as a linear function lt of zP and z. Now D is 
the least value of t for which l, = z. But the coefficients of l1 

are the elements of the first row of the matrix of s1- 1, where 

* Note the analogy of (66) with the linear differential equation 

F(z) = d2z - µ. dz + >..z = 0 
dt2 dt ' 

having the solution z = e•' if v is a root of v2 - µ.v + >,. = O. Also, (68) holds. 
Make dz/dt correspond to zP and hence d2z/dt2 to (z1>)1>. Thus the differential 
equation corresponds to (66), and the integral z = e•' (viz., dz/dt = t'Z) to 
zP = VZ, 

t Let f(z) be an irreducible factor of degree d. Its roots are 

r, rP = vr, r1>2 = v2r, rPd-1 = vd-1r, 

where vd = 1, V1 $ 1, 0 < l < d. Thus dis a divisor of p - l. Hence 

zp-1 - v = z11-1 - r11-1 

has the factor zd - rd. The latter has a root r in common with f(z). But 

(rd) p-1 = vd = 1. 

Thus o = rd is an integer. Hence f(z) = zd - o. 
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But lD = z implies that lD+-1 = zP. The condition for the latter is 
therefore SD = 1. Hence D is the period of S. But (69) is 
the characteristic determinant of S. According as it has distinct 
roots v1 and v2 or equal roots v = ½µ = -X1, a linear substitution 
of matrix S can be transformed linearly into one of matrix* 

According as the characteristic congruence (69) has distinct (real 
or imaginary) roots or a double root, D is the least common multiple 
of the exponents to which the distinct roots belong modulo p, or is p 
times the exponent to which the double root belongs. 

Finally, let 'X = 0. By (6), either y = 0 or x - ay = 0 
(mod p), where a is an integer. In the first case, 

If µ. = 0, then x = y = 0. If µ =l= 0, the roots x are equal in 
sets of p and hence are cx1 (c = 0, 1, • • •, p - 1), where x1 is a 
particular root not divisible by p. In the second case x - ay = 0, 
we take x - ay as a new variable X and conclude from the 
absolute invariance of Q that 

Q(x, y) = Q(0, y) = yP:._P, 

We thus have the first case with yin place of x. 
Using similar methods, I have solved the form problem for 

the total group of modular linear transformations on m variables. t 

15. Invariantive Classification of Forms.-Let 

(70) cp(x, y) = x'7' + ... (m > 1) 

be a binary form irreducible modulo p and having unity as the 
coefficient of the highest power of x. Let G be the group of all 
modular binary linear transformations (1) with integral coef-

* In the second case we use the new variables x and x - vy. 
t TranstLctions of the American Mathematical Society, vol. 12 (1911), pp. 

84-92. 
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ficients of determinant unity. Let </>1 = </>, </>2, • • ·, </>k denote 
all the forms of type (70) which can be transformed into constant 
multiples of <f, by transformations of G. Evidently their product 
P = </,1</,2 • • • </>k is transformed into c1P by any transformation 
t of G. The constant c1 is easily seen* to be congruent to unity. 
Hence Pis an absolute invariant of G. If m > 2, no </>i vanishes 
for a special point. We now apply the theorem in the first part 
of § 14. Hence, if m > 2, the absolute invariant P is an integral 
function with integral coefficients of the invariants q, l, each ex­
ponent of q and l being ei,en if p > 2. In view of the definition of 
the cp;, this function of q and l is an irreducible function of those 
arguments modulo p. 

Two binary forms shall be said to be equivalent if and only if 
one of them can be transformed into a constant multiple of the 
other by a transformation of G. A set of all forms equivalent 
to a given one shall be called a genus. Thus </>1, • • ·, </>k form a 
genus. All of the irreducible forms (70) separate into a finite 
number f of distinct genera; let Pi, ... , PI denote the products 
of the forms in the respective genera. Thus 7rm = P1 • • • P, 
is the product of all of the binary forms xm + · · · irreducible 
modulo p. Hence 7rm is a polynomial in q, l with integral coef­
ficients. Hence the f genera of irreducible binary forms of degree 
m > 2 are characterized invariantit,ely by the f irreducible factors 
Pi(q, l) of 7rm(q, l) modulo p. 

We shall see that 7rm(q, l) is easily computed. By finding its 
factors irreducible modulo pin the arguments q, l, we shall have 
invariantive criteria for the equivalence of two irreducible 
binary forms of degree m. For example, we shall prove that 
1ra = q - l if p = 2, so that all irreducible binary cubic forms 
modulo 2 are equivalent. Further, 1ra = q2 - l2 if p > 2, so that 
the irreducible cubic factors of q - l are all equivalent, also those 
of q + l, while no factor of the former is equivalent to one of the 
latter. 

* Transactions of the American Mathematical Society, vol. 12 (1911), p. 3, § 4. 
The present section is an account of the simpler topics there treated at length. 



INVARIANTS AND NUMBER THEORY. 63 

In general, let m be a product of powers of the distinct prime 
numbers q1, • • •, q,., and set 

Fi= (xP'y - xyP')/L. 

From the expression for 7rm due to Galois we readily obtain 

in which the first product in the numerator extends over the 
½µ(µ - 1) combinations of qi, • • ·, q,. two at a time, and similarly 
for the remaining products. By the first theorem of this section, 
and (11), 7rm is a polynomial in 

J = qY = QP"+-1, K = lY = Lp(p--1) (-y = 1 if p=2, -y=2 if p >2). 

We readily verify the recursion formula 

Fi == QF1;_ 1 - KF~:_ 2 

since F 1 = 1, F2 = Q. In particular, 

(mod p), 

Fa = J - K, F4 = Q(FaP - J{JP--1). 

Now 1ra = F 3, 71"4 = F4/Q. Hence 

71"3 = J - K, 71"4 = JP - J{P - l(JP--1 (mod p). 

The first of these results was discussed above. Next, for 
p = 2, 71"4 is the irreducible quadratic form q 2 - l 2 - lq, so that 
all quartic forms irreducible modulo 2 are equivalent. For 
p > 2, 71"4 vanishes for K = pJ, where 

pP = 1 - p (mod p). 

Except for p = ½, p is a quadratic Galois imaginary since 

pP' = 1 - pP = p (mod p). 

Thus 71"4 is a product of J - 21( and ½(p - 1) irreducible quad­
ratic forms in J, K. Some of the latter yield a quartic in q and l 
which is irreducible; others yield a quartic which is a product of 
two irreducible quadratics modulo p. A simple discussion shows 
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that the number of irreducible factors of ,r4(q, Z) is 6k + t + 1 
if p = 8k + t (t = ± 1 or - 3), but is 6k + 2 if p = Bk + 3. 
We have therefore the number f of genera of irreducible quartics 
modulo p. For quintics and septics, the analogous discussion 
is simple, for sextics laborious. 

We may utilize similarly the invariants (16) of the group on 
m variables, obtain expressions in terms of them of the product 
of all forms in m variables of specified types (as quadratic forms 
transformable into an irreducible binary form, non-vanishing 
ternary forms, non-degenerate ternary quadratic forms, etc.), 
and hence draw conclusions as to the equivalence of forms of the 
specified type.* 

* Transactions of the American Mathematical Society, vol. 12 (1911), pp. 
92-98. 



LECTURE IV 

MODULAR GEOMETRY AND COVARIANTIVE THEORY OF A 
QUADRATIC FORM IN m VARIABLES MODULO 2 

1. lntroduction.-The modular form that has been most used 
in geometry and the theory of functions is the quadratic form 

(1) qm (x) = !CijXiXj + !bixi2 (i, j = 1, • • ·, m; i < j) 
with integral coefficients taken modulo 2. In accord with 
Lecture III, we shall use the term point to denote a set of m 
ordered elements, not all zero, of the infinite field F2 composed of 
the roots of all congruences modulo 2 with integral coefficients. 
We shall identify such a point (x1, • • ·, x,,.) with (px1, • • ·, px,,,) 

where p is any element not zero in F2. The point is called real 
if the ratios of the x's are congruent to integers modulo 2. 
Let the Cii and b, in (1) be elements not all zero of the field F2, 

Then the aggregate of the points (x) = (xi, • • •, Xm) for which 
q,n(x) = 0 (mod 2) shall be called a quadric locus, in particular, 
a conic if m = 3. The locus is thus composed of an infinitude 
of points, a finite number of which are real. 

While our results are purely arithmetical, we shall find that 
the employment of the terminology and methods of analytic 
projective geometry is of great help in the investigation. Usually 
the proofs are given initially in an essentially arithmetical form. 
In case a preliminary argument is based upon geometrical 
intuition, a purely algebraic proof is given later. The geometry 
brings out naturally the existence of a linear covariant, which is 
important in the problem of the determination of a fundamental 
system of covariants. 

2. The Polar Locus.-The point (KY1 + >.zi, • • ·, KYm + 'Xzm) 
is on q(x) = 0 if 

(2) K2q(y) + K>.P(y, z) + >.2q(z) = 0 
65 

(mod 2), 
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where 
(3) P(y, z) = "2,c;;(y;z; + y;z;) (i, j = 1, • • ·, m; i < j). 

If (y) is a fixed point, all points (z) for which P(y, z) = 0 
(mod 2) are said to form the polar* locus of (y). For (z) = (y), 
each summand in (3) is congruent to zero modulo 2. Hence the 
polar of (y) passes through (y). If (z) is on the polar of (y), (2) 
has a double root K : >. and the line joining (y) and (z) is tangent 
to q = 0. 

We may write (3) in the form 

(3') P(y, z) = U1Y1 + · · · + 1lmYm, 
where 

U1 = C12Z2 + C13Z3 + C14Z4 + • ' . + C1mZm, 

1t2 = C12Z1 + C23Z3 + C24Z4 + · • • + C2mZm, 

(4) U3 = C13Z1 + C23Z2 + C34Z4 + • • • + C3mZm, 

Um = C1mZ1 + C2111Z2 + C3mZa + • • • + Cm-lmZm-1• 

There is a striking difference between the cases m odd and m 
even. 

3. Odd Number of Variables; Apex; l;i,near Tangential Equation. 
Let m be odd. Then the determinant of the coefficients in (4) 
is congruent modulo 2 to a skew-symmetric determinant of odd 
order and hence is identically congruent to zero. Hence we can 
find values of zi, • • •, Zm not all congruent to zero such that 
u1, • • ·, Um are all zero modulo 2. Thus the polars of all points 
(y) have at least one point in common. 

We shall limit attention to the case in which the pfaffians 

(5) C1 = [23 • • • m], C2= [134 • • • m.], • • •, Cm= [12 · · · m-1] 

are not all congruent to zero. The point (C1, • • •, Cm) shall be 

*Take" = 1 and let (z) be a point not on q(x) = 0. Then (2) is a quad­
ratic congruence in>,. with coefficients in F2 and hence has two roots >..1 and >..2 
in that field. Now the points (y) and (z) are separated harmonically by 
(y + >..1z) and (y + >..2z) if and only if >,.1 = - >,.2, that is, if >..1 = >..2 (mod 2). 
But the condition fo:c a double root of (2) is P = O (mod 2). 
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called the apex* of the locus q(x) = 0. Now each ui = 0 if 
z1 = C1, • • ·, Zm = Cm. Hence, for m odd, the polars of all points 
pass through the apex. 

If (y) is any point not the apex, the line joining (y) to the apex 
is tangent to q(x) = 0 (§ 2). Thus any line through the apex is 
tangent to q(x) = 0. 

For m = 3, it is true conversely that, if the line 

(6) (mod 2) 

is tangent to q(x) = 0, it passes through the apex, so that 

(7) 

is zero modulo 2. Taking, for example, u3 =I= 0, we obtain by 
eliminating x3 from (6) and q(x) = 0 a quadratic equation in 
x1 and x2 whose left member is the square of a linear function 
modulo 2 if and only if the coefficient of x1x2 is congruent to zero. 
But this coefficient is the product of K by a power of u3• Thus 
K = 0 i,s the tangential equation of q(x) = O. 

The last result is true for any odd m. The spread (6) is said 
to be tangent to q(x) = 0 if the locus of their intersections is 
degenerate. Taking Um =I= 0, and eliminating Xm between (6) 
and q(x) = 0, we obtain a quadratic form whose discriminant, 
defined by (24), equals a product of K by a power of 'Um, and hence 
is degenerate if and only if K = 0. 

We thus have geometrical evidence that K is a formal contra­
variant of q(x), i. e., an invariant of q(x) and ~UiXi• 

To give an algebraic proof, note that K is unaltered when Xi 

and x; are interchanged, while 

(8) X1 = X1 1 + X2 1, X2 = X21, •' •, Xm = Xm1 

replaces q(x) by q'(x') in which the altered coefficients are 

(9) b2' = b2 + b1 + c12, c;i = c2; + CH (i = 3, • • ·, m). 

* After these lectures were delivered, I learned that Professor U. G. 
Mitchell had obtained, independently of me, the notion apex (" outside point") 
for the case m = 3, Princeton dissertation, 1910, printed privately, 1913. 
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The pfaffians 02, • • •, Cm are unaltered modulo 2, while 

(10) Oi'=01+02, u2'=U2+u1, u/=u, (i=l=2) 

Hence K is unaltered modulo 2. Note that 

0 C12 C13 C1m 'lt1 

C12 0 C23 C2m U2 

(mod 2). 

(11) 1<2= (mod 2). 
C1m C2m Cam 0 Um 

U1 U2 Ua Um 0 

We saw that 01, • • •, Cm are cogredient with xi, • • ·, Xm, This 
is evident from the fact that the apex is covariantively related 
to q(x). Hence if we substitute 0 1 for x1, • • ·, Om for x,,. in (1), 
we obtain the formal invariant 

(12) qm(C) = '1;c,;Ci0; + '1;bi0.2 (i, j = 1, • • ·, m; i < JJ. 
If this invariant vanishes, the apex is on the locus, which is 
then a cone. Indeed, by (2), every point on the line joining (0) 
to a point on q(x) = 0 lies on the latter. Hence q(x) can be 
transformed into a form in m - 1 variables and hence has the 
discrhninant zero. To argue algebraically, let new variables be 
chosen so that the apex becomes (0, • • •, 0, 1). The polar of any 
point (y) passes through the apex. Taking z1 = 0, • • ·, Zm-1 = 0, 
Zm = 1 in (4), we see that the polar (3') becomes C1mY1 + · · • 
+ Cm--1mYm-1, which must vanish for arbitrary y's. Hence 
bmxm2 is the only term of (1) involving Xm• But the apex is on 
the locus. Hence bm = O and q(x) is free of Xm• The converse 
is obvious from (5). 

Whether mis odd or even, q(x) has the invariant 

(13) Am= IT(ci; + 1) (i, j = 1, • • •, m; i < j). 

This is evidently true by (9) or as follows. If Am= 1 (mod 2), 
every Ci;= 0 and q = ('1;bixi) 2 ; while if Am= 0, at least one 
c;; is not congruent to zero, and q is not a double line. 

Hence the product Amq(x) is a covariant; in fact, the square 
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of the linear covariant Am'};bixi. We shall see however that there 
exists a more fundamental linear covariant. 

4. Covariant Line of a Conic.-Since we shall later treat in 
detail the case m = 3, we shal1 replace (1) by the simpler notation 

(14) F(x) = a1X2Xa + a2X1Xa + aaX1X2 + b1x12 + b2x22 + b3x32. 

Its apex is (a1, a2, a3). Its discriminant (12) is 

(15) A = F(a1, a2, aa) = a1a2aa + a12b1 + alb2 + aa2ba, 

The invariant (13) becomes 

(16) 

Consider a form (14) with integral coefficients and not the 
square of a linear function. Then not every a, is congruent to 
zero modulo 2. By an interchange of variables we may set 
aa = 1. Replace X1 by X1 + a1xa and x2 by X2 + a2xa, We get 

X1X2 + b1Xi2 + b2X22 + Axa2, 

Let A = 1. Replace x3 by Xa + b1X1 + b2X2, We get 

(17) ct, = X1X2 + Xa2, 

The only real points on cf, = 0 (mod 2) are (1, 1, 1), (1, 0, 0), 
(0, 1, 0). In addition to these and the apex (0, 0, 1), the only 
real points in the plane are (1, 1, 0), (0, 1, 1), (1, 0, 1). These 
lie on the straight line 

(18) (mod 2). 

Hence with every non-degenerate conic modulo 2 is associated 
covariantly a straight line. 

The inverse of the transformation used above is 

X1 = :r1 + a1xa, X2 = X2 + a2xa, 

Xa = b1x1 + b2x2 + (1 + a1b1 + a2b2)xa, 

It must therefore replace cf, by the general form (14) having 
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a3 = 11 = 1. It actually replaces (18) by 

(bi + l)x1 + (b2 + l)x2 + (ba + a1a2 + l)xa, 

in which we have added 11 + 1 = 0 to the initial coefficient of xa. 
Guided by symmetry, we restore terms which become zero for 
aa = 1 and get 

3 

(19) 
L = 1: C/3i + l)Xi, 

(=l 

/31 = b1 + a2aa, /32 = b2 + a1aa, /3a = ba + a1a2. 

Making the terms homogeneous we obtain the formal co­
variant 
(20) 

B1 = b12 + a2aa + a22 + al, B2 = b22 + a1aa + ai2 + aa2, 

(21) B b 2 + + 2 + 2 a = a aia2 a1 a2 . 

Under the substitution (a,a;) (bib;) induced upon the coefficients 
of F by (xix;), we see that Bi and B; are interchanged. Under 
(9), viz., 

(22) (mod 2), 

there results 

(23) B1' = Bi, B2' = B2 + Bi, Ba' = Ba (mod 2). 

Hence (20) is a formal covariant of F. For other interpretations 
of L see§ 8. 

5. Even Number of Variables.-The determinant of the coef­
ficients in (4) is congruent modulo 2 to the square of the pfaffian 

(24) 11m = [123 • • • m]. 

This is in fact the discriminant of qm, which is degenerate if and 
only if 11m = 0 (mod 2). I have elsewhere* discussed at length 
the invariants of qm. 

* Transactions of the American Mathematical Society, vol. 8 (1907), p. 213 
(case m = 2); vol. 10 (1909), pp. 133-149; American Journal of Mathematics, 
vol. 30 (1908), p. 263; Proceedings of the London Mathematical Society, (2), 
vol. 5 (1907), p. 301. 
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If Am $ 0 (mod 2), we can solve equations (4) for the z's. 
Substituting the resulting values into q(z), we obtain the tangen­
tial equation Um = 0 of q(x) = 0. For m = 2 and m = 4, we 
get 

U2 = c12u1u2 + b2u12 + b1u22, 
(25) 

u4 = [1234]2°:C34U1u2+2":(C23C24C34+b2ci,+bac~4+b4Cia)U12• 

Bordering the algebraic discriminant of (1), we find that 

2b1 C12 C13 C1m U1 

C12 2b2 C23 C2m U2 

(26) 2Um= (mod 4). 

C1m C2m Cam 2b,.. itm 

U1 U2 U3 Um 0 

Finally, let Am= 0 (mod 2). Then all of the first minors of 
the matrix of the coefficients in (4) are zero modulo 2. Hence 
the polars of all points have in common the points of a straight 
line S. Since its discriminant vanishes, q(x) can be transformed 
linearly into a quadratic form in xi, • • •, Xm--1, which therefore 
represents a cone with the vertex (0, • • •, 0, 1). Let (z) be the 
vertex of the initial cone q(x) = 0. If (x) is any point on the 
cone, (x + AZ) is on the cone, and, by (2), P(x, z) is congruent 
to zero identically in xi, • • •, Xm, Hence the linear functions 
( 4) all vanish. Thus the line S meets the cone in its vertex, and 
Zm2 is the discriminant of qm_1(x), while z;2 is obtained from that 
discriminant by interchanging m and i. For example, if m=4, 

Z42 = C12C13C23 + b1Ci3 + b2Ci3 + b3cr2, ' ' ', 

z12 = C23C2-1C34 + b2Ci4 + baci4 + b,ic~a-

The product of the general form (1) by o =Am+ 1 is a quad­
ratic form whose discriminant is zero modulo 2 and hence has 
the vertex (ozi, • • •, ozm), where z.2 has the value just given. 
Hence oz12, • • ·, oZm2 are cogredient with xi, • • ·, Xm, 

6. Covariant Plane of a Degenerate Quadric Surface.-The 
product of q4 by o = [1234] + 1 is a quaternary form f whose 
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discriminant is zero and hence can be transformed into a form 
(14) free of x4• With this cone F = 0 is associated covariantively 
the plane l = 0, where l is the ternary covariant (19). Hence f 
has a linear covariant L which reduces to l when b4 = 0, C;4 = 0 
(i = 1, 2, 3). Relying upon symmetry and the presence of the 
factor o, we are led to conjecture that 

L = o{b1 + 1 + (c12 + l)(c13 + l)(cu + 1) }x1 + · · · 
<27) + o{b4 + 1 + (cu+ l)(C24 + l)(C34 + 1) }X4, 

It is readily verified algebraically that L is a covariant of q4. 
There is a simple interpretation of L. If [1234] =I= 0 (mod 2), 

then o = 0 and L is identically zero. If [12341 = 0, q4 is de­
generate and can be transformed into cp = x1x2 + xa2 or a form 
involving only x1 and x2• In the former case, L = x1 + X2 + Xa, 
Of the 15 real points in space, the seven (IO0x), (0IOx), (lllx) 
and (0001) are on the cone cp = O, the two (00lx) are on the 
invariant line S through the vertex (0001) of the cone and the 
apex (0010) of the conic cut out by x4 = 0, while the remaining 
six (lOlx), (0llx), (ll0x) lie on the plane L = 0. Hence with a 
degenerate quadric surface, not a pair of planes, is associated 
covariantively a plane, just as a line (19) is associated with a 
non-degenerate conic (14). 

Every linear covariant is of the form IL, where I is an in­
variant. Every quadratic covariant is a linear combination of 
the IL2 and Jq4• 

7. A Configuration Defined by the Quinary Surface.-A q5 

whose discriminant is not zero modulo 2 can be transformed into 

F = x1x2 + xax4 + xl. 
The 15 real points on F == O (mod 2) are given in the last column 
of the table below. In addition to these and the apex (00001) 
of F, there are just 15 real points in space: 

1=(00011), 2=(01001), 3=(01011), 4=(00101), 5=(01101), 

6= (00110), 7= (01110), 8= (10001), 9= (10011), a= (10101), 

b= (10110), c= (11000), d= (11010), e= (11100), f= (11111). 
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These lie by threes in exactly 20 straight lines, which occur in the 
columns of the table, with the heading "Sides." With these 
lines we can form exactly 15 complete quadrilaterals, the three 
diagonals of each of which intersect* in a point on F = 0, given in 
the last column. The columns, with the heading "Plane," give 
the equations defining the plane of the quadrilateral. In each 
case, the two equations of the plane have in common with F = 0 
a single real point, the intersection of the diagonals. Thus the real 
points on F = 0 are its points of contact with these tangent planes. 

Sides Diagonals Plane Inter-
section 

146 157 356 347 13 45 67 X1=0, xa+x,+xs=0 01000 
146 lab 49b 69a 19 4a 6b X2=0, xa+x,+xs=0 10000 
146 lcf 4df 6de ld 4e 6f X1 =X2 =xa+x,+xs 11001 
157 lab Sac 7bc le 5b 7a X1 +x2+xa =xa+x,+xs =0 11011 
157 lef 58e 78f 18 5f 7e X2=Xa, X1 =xa+x,+xs 10010 
lab lef 2ae 2bf 12 af be X1=Xa 1 x2=xa+x,+xs 01010 
28c 29d 38d 39c 23 89 cd Xa=O, x1=x2+xs 00010 
28c 2ae Sac 58e 25 Sa ce x,=0, x1=x2+xs 00100 
28c 2bf 78f 7bc 27 Sb cf xa=x,, x1 =x2+x,+xs 00111 
29d 2ae 69a 6de 26 9e ad X1=xa+x,=x2+xs 01111 
29d 2bf 49b 4df 24 <Jf bd X1=X1 1 x2=xa+x,+x. 01100 
347 38d 4df 78f 3f 48 7d X2 =x,, X1 =xs+x,+xs 10100 
347 39c 49b 7bc 3b 4c 79 x, =x1 +x2 =xa+xs 11101 
356 38d 58e 6de 3e 5d 68 x2=xa+x,, x1 =x2+xs 10111 
356 39c Sac 69a 3a 59 6c x.=x1+x2=xa+x, 11110 

8. Certain Formal and Modular Covariants of a Conic.-For 

conic (14), the polar form is 

a1 a2 aa 

(28) Y1 Y2 Ya 

Z1 Z2 Zs 

Hence if two sets of variables Yi and Zi be transformed cogredi-
ently with the set Xi, this polar form (28) is a covariant of F 
and the two points (y), (z), in an extended sense of the term 

* The dual of the theorem of Veblen and Bussey, "Finite projective ge-
ometries," Transactions of the American Mathematical Society, vol. 7 (1906), 
p. 245. 



74 THE MADISON COLLOQUIUM, 

covariant. In particular, if we take (y) = (x), (z) = (x2"), we 
obtain a covariant of F in the narrow sense used in these lectures. 
In particular, 

a1 a2 aa a1 a2 aa 

(29) K= X1 X2 X3 , M= X1 X2 X3 

X12 X22 Xa2 Xt-1 X24 Xa4 

are formal covariants of F. While the discriminant .1, given by 
(15), is a formal invariant, (16) is not. But 

(30) (mod 2), 

(31) a = '}';aibi + '}';al-+ a1a2 + a1aa + a2aa, 

a being a formal invariant of F. By (23), the B's are contra­
gredient to the x's and hence to the a's, so that 

(32) '11 = '}';a;B, = '}';aibl- + '}';aia/' + a1a2aa 

is a formal invariant. For integral values of a., b,, 

(33) (mod 2). 

Any form with undetermined integral coefficients c1, c2, • • ·, 
taken modulo 2, has, by (21) of Lecture I, the invariant 
(c1 + 1) (c2 + 1) • • •. Thus (16) is an invariant of (7) and hence 
of F. Likewise from (19) and F itself, we obtain the invariants 

(34) 

In (6) we made use geometrically of 

(35) A= U1X1 + U2X2 + U3X3. 

Now F + 0...2 is congruent modulo 2 to the quadratic form derived 
from F by replacing each b; by b; + tul-. Making this replace­
ment in .1, we see that the coefficient oft is congruent to K?-, where 

(36) 

is therefore a formal invariant* of F and>.. Making the same 
* Since (36) is a contravariant of F, T.a;(oC/ox;) is a covariant of F if C is. 

Taking Q2, Q,, L as C, we get K, M, .1, respectively. 
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replacement in J and taking t and u, to be integers, we obtain 
as the coefficient of t = t2 

W = f31f32U3 + f31{33U2 + f32{331t1 + f31U2U3 
(37) + /32U1U3 + /33U1U2 + 'lt1U2U3, 

a modular invariant of F and >.. By the theorem used above, 

(38) 

is an invariant of>.. In w + u. + 1, we replace ~i by the con­
gruent value Bi+ 1, and render the expression homogeneous 
in the u's and B's separately. We get 

(39) w = ~(B1B2 + B12 + B?)ua2 + ~B12u2ua, 

a formal invariant of F, >.. For, it is unaltered by the sub­
stitution 

(aiai) (bibi) ( u,-u;), 

induced by (xix;), and by the substitution (23) and (10) induced 
by (8). Let the coefficients of F be integers not all even. Then 
(39) becomes 
(39') ~((31(32 + l)ua2 + ~((31 + l)'Zt2Ua. 

Its covariant I, is identically zero. Hence, by the table in § 9, 
if c., is not identically zero it can be transformed into u12 + u'J.2 

+ u1u2 and hence vanishes for a single set of integral values of 
ui, u2, u3. These are seen to be ui = {3; + 1. Hence* the line 
L = 0 is the only line with ·integral line coordinates on the line 
locns (39). 

The invariant A for (39) is J (its discriminant is zero, as just 
seen). Thus a knowledge of any one of the concomitants L, J, 
w implies that of the other two. 

The covariance of J(. in (29) implies that 

(40) 

* Also thus: just as the point conic F = 0 determines its line equation (36) 
and hence its apex (a), so the covariant line conic (39) determines the point 
equation "l;B •2x. = O, which is the line L = 0 for integral values of the coef­
ficients. 
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are contragredient with a1, a2, a3 and hence with Xi, x2, x 3, and 
therefore cogredient with u1, u2, u 3. Thus (39) yields the formal 
covariant 
(41') W' = "t:,(B1B2 + B12 + B22)~a2 + "1:;B12~2~a-

From this or (39'), we obtain the modular covariant 

(41) W = "1::,(/31/32 + l)~a2 + "t:,(/31 + l)~2~a-

In these notations (29) become 

(42) K = "l::,ai~i, M = "l::,a1~1(x22 + x2xa + xa2). 

Finally, by (16) of Lecture III, we have the universal co­
variants 

X1 X2 X3 
Qi= "t:,x14X22 + "l::,x14X2:t:a + xi2xlxa2, 

(43) La= X12 X22 xa2 ' Q2 = "l::,x14 + "t:,xi2xl + x1x2xa"l::,x1. 
X14 :l:24 Xa4 

The covariant line L = 0 of a non-degenerate conic F = 0 is 
determined by the three (collinear) diagonal points of the complete 
quadrangle having as its vertices the apex (a) and the three 
intersections of F = 0 with its covariant cubic curve K = 0. 

FUNDAMENTAL SYSTEM OF COVARIANTS OF THE TERNARY FORM F, 
§§ 9-32 

9. Invariants of F.-A fundamental system of invariants of F 
is given by fl, A, J. It suffices to prove that they completely 
characterize the classes of forms Funder the group of all ternary 
linear transformations with integral coefficients modulo 2. 
This is evident from the following table 

Class fl A J L 
-- --

X1X2 + xa2 1 0 0 X1 + X2 + X3 

X1X2 + xi2 + X22 0 0 1 0 

X1X2 0 0 0 X1 + X2 

X12 0 1 0 X1 

0 0 1 1 0 
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As to the classes, we saw in§ 4 that, if Fis not the square of a 
linear function (i. e., not reducible to x12 or 0), it can be trans­
formed into X1X2 + b1x12 + b2x22 + fl.xa2 and hence into one of 
the first three classes of the table. By means of the relations 

(44) fl.A= 0, fl.J= 0, fl.2 =fl., A2=A, J2 = J 

any polynomial in fl., A, J equals a linear function of 

(mod 2), 

(45) 1, fl., A, J, AJ. 

These are linearly independent since there are five classes. 

10. Leader of a Covariant of F.-Let S be the coefficient of X3"' 
in a covariant of order w of F. Writing (14) in the form 

(46) F=f+lx3+b3xa2, f= b1xi2+aax1x2+b2x22, l=a2x1+a1x2, 

we see that the leader S is a function of b3 and the invariants of 
the pair of forms f and l under the linear group on xi, X2. 

In the modular covariants forming a fundamental system for f 
(§ 13 of Lecture III), we replace x1 by a1 and x2 by a2 and obtain 
a fundamental system of modular invariants of the pair f and l: 

(47) aa, a1a2, q=b1b2+(b1+b2)a3, j= (b1+a3)a1+(b2+a3)a2, 

where a; = ai + 1. By means of the relations 

(48) (mod 2), 

any polynomial in the four functions (47) can be reduced to a 
linear combination of 

( 49) 1, aa, q, a3q, a1a2, a1a2a3, 0t.1a2q, a1a2a3q, j, aaj. 

These form a complete set of linearly independent* invariants 
off, l. 

• Instead of verifying as usual that these 10 functions are linearly inde­
pendent, we may deduce that result from the fact that there are 10 classes: 

l = x1, f = a3x1x2 + a3x22 or qx12 + aax1x2 + a3x22, 

l = o, j = X12 + X1X2 + X22, X1X2, X12 or o. 
Since (47) characterize the classes, they form a fundamental system. 
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Hence S is a linear combination of the functions ( 49) and their 
products by b3• Moreover, S must remain unaltered modulo 2 
when aa and b1 are replaced by 

(50) 

which are the only altered coefficients of the form obtained from 
F by the transformation 

(51) (mod 2). 

Both requirements are evidently met by the functions 

(52) 

and any invariant of F. We find that 

A = a1a2(a3 + 1), A = a 1a 2a 3 + j + aaba + aa, 

(53) J = a1a2(aa + l)(b3 + 1) + baj + aabaj + baq + a1a2q, 

AJ = a1a2(aa + l)(b3 + l)(q + 1). 

From these and their products by b3, we see that 

(54) AJ, baJ, J, bad, baA, A, A 

contain the respective terms 

baa1a2aaq, baa1a2q, a1a2q, b3j, baa1a2aa, J, a1a2a-a, 

while no one involves an earlier one of these terms. Hence any 
linear combination of the functions ( 49) and their products by 
ba is a linear combination of the functions (52), (54) and 

(55) aa, baaa, q, baq, a3q, b3a3q, aaj, baaaj, a1a2aaq. 

A linear combination of the latter is of the form 

u = m1aa + m2q + m3a3q + m4aa j + ma1a2aaq, 

where m1, • • ·, m4 are linear functions of b3, while m is a constant. 
The coefficient of aab1 is seen to be 

p = m2 + mab2 + m4a1 + mb2a1(R + ba + 1), 
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where R = b3 + a2 is the increment to b1 in (50). Set 

(56) o-= pa3b1+raa+sb1+t (p, • • ·, t independent of a3, bi). 

Let the substitution (50) replace o- by u'. Then 

(57) u' - <T = pRaa + pa1b1 + pa1R + ra1 + sR. 

This is zero for every aa, b1 if and only if 

(58) pR = 0, pa1 = 0, ra1 = sR (mod 2). 

For p = m2 + · · ·, pa1 = 0 gives m3 = 0, m4 = m2, Then 
pR = 0 gives m2 = 0, mba = 0, whence m = 0. Thus u = m1aa, 
so that ni1 = 0. Hence the leader of a covariant of F has the form 

(59) 

where I and Ii are invariants, c and d are constants. 

COVARIANTS WHOSE LEADERS ARE NOT ZERO, §§ 11-19 

11. Consider a covariant of odd order w: 

(60) C = Sxa°' + S1xa°'-1a:1 + S2xa°'-2xi2 + • • •. 
If S1' is derived from S1 by the substitution (50), then, by (51), 

(61) S1' = S1 + wS = S1 + S (mod 2). 

Give S1 the notation (56). Then S is given by (57) and has no 
term with the factor aab1, Now a3b1 enters no term of (59) 
except J and AJ of I and* b3J of b3I 1, and in these is multiplied by 

(62) baa1 + a1a2, a1a2(b2 + 1) (b3 + 1), baa1a2, 

respectively. Since the latter are linearly independent, neither 
J nor AJ occurs in the I, I 1 of the leader (59). Also, A and 
a 1a2 occur only in the combinations A+ 1, a 1a2 + 1, since (57) 
has no constant term. The coefficients of x3°' in L°', AL°', 
(A + Ll)L°' are respectively 

(63) ba + a1a2 + 1, Ab3, Ll + Llba +baa1a2, 

* AJ is not retained in Ii, since b3AJ = 0, AJ being (34). 
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wh:re Lis the linear covariant (19). After subtracting from 0 
a hnear combination of these three covariants, we may set 

S = m1(A + 1) + m2/:,,. + m3ba + mb3a1a2. 

Since f3abaa1a2 = O, t:,,.J = O, the leader of the covariant JC is 

JS= m1AJ + m1J + m3b3J. 

Hence m1 == m 3 = O. The coefficient of aa in S is now 
m2(a1a2 + ba) and must vanish for b3 = az since it is of the form 
pR by (57). Hence m2 = 0. Thus S = mb3a1a2. For w > 1, 
mFL-•-2 has this same leader. For w = 1, 

C = m(b3a 1a2x3 + b1a2a3X1 + b2a1a3X2), 

which satisfies (61) only when m = 0. Hence every linear 
coi-ariant is a linear function of L, AL, !:,,.L; every covariant of odd 
0rder w > 1 differs from a linear combination of Lw, ALw, t:,,.L"', 
FL'"-2 by a covariant whose leader is zero. 

12. In the covariants of order 4n 

(64) JQ2n, JF2n, L4n, p2n-1L2 (I an invariant), 

the coefficients of x34n are respectively 

I, bal, b3 + a 1a2 + 1, b3a1a2. 

Linear combinations of these give every leader (59). Hence 
every covariant of order 4n differs from a linear combination of the 
covariants (64) by a covariant whose leader is zero. 

13. In the covariants of order w = 4n + 2 

(65) (I an invariant), 

the coefficients of x3"' are respectively 

bal, ba + a1a2 + 1, t:,,. + b3 (!:,,. + a1a2aa), 

The sum of the third function and b3(A + !:,,.) is A + baa1a2. 
Hence any covariant C is of the form P + C', where Pis a linear 
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combination of the covariants (65), while C' is a covariant whose 
leader is an invariant. For w = 2, 

C' = Sxa2 + S1xax1 + Sx12 + x2q,. 
This is transformed by (51) into a function having 81 as the 
coefficient of x1'2 • Since Sis an invariant, 81 = S. Thus e-verY 

C, • to a 
coefficient of C' equals S. Then (51) transforms 10 

function in which the coefficient of x1'x2 ' is zero, so that S === O. 
Hence every q'lladratic covariant is a linear function of 

(66) F, AF, AF, JF, L2, AL2. 

14. There remains the more difficult case of covariants (60) 
of order w = 4n + 2 > 2. If S/ is the function obtained from 
Si by the substitution (50), then 

(67) 

Now S1 is unaltered also by the substitutions (22) and 

(68) aa' = aa + a2, b2' = b2 + ba + a1 (mod 2), 

induced on the coefficients of F by the transformations (8) and 

(69) X1 = X1', X2 = X2 1, X3 = X3 1 + Xz'. 

15. A fundamental system of invar·iants of F, under the group r 
generated by the transformations (8), (51) and (69), is given by 
A, A, J, a2, ba, a1a2 and 

(70) 

It suffices to prove that these seven functions, which are 
evidently invariant under r, completely characterize the classes 
of forms F under r. There are six ca~es. 

(i) b3 = a2 = l. Replacing X1 by x1 + a 1x 2 and Xa by 
Xa + a3x2, we get 

F = {3xi2 + Ax22 + xi + X1Xa. 

(ii) ba = 1, a2 = 0, a1a2 = I. Replacing x3 by Xa + a3Xi, 

we get 
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If A= 0, then b2 = J. If A= 1, we replace X1 by X1 + b2x2 

and get 
X12 + xa2 + X2X3. 

(iii) ba = 1, a2 = a1a2 = 0. Replacing Xa by xa + b1x1 + b2x2, 

we get 
xa2 + Axix2. 

(iv) ba = 0, a2 = 1. After replacing xa by Xa + a3x 2, we 
obtain a form with also a3 = 0. Taking this as F, and replacing 
xi by x1 + a1x2, we get 

b1x12 + Ax22 + x1xa. 

Replacing xa by :ra + bixi, we get Axl + xixa, 
(v) ba = a2 = 0, a1a2 = 1. Replacing xa by Xa + aaxi + b2x2, 

we get 
(3x12 + X2X3. 

(vi) ba = ll2 = aia2 = 0. Then Fis the binary formf in (46). 
The effective part of r is now the subgroup r1 generated by (8). 
Now 

(3 = bi, A + 1 = aa, J = B + (b1 + l)aa, B = b2(bi + aa). 

These seminvariants b1, a3, B of f completely characterize the 
classes of forms funder ri, For, if aa = bi, 

f = bix12 + Bx22 + b1X1X2; 

while if aa = bi+ 1, we replace x1 by X1 + b2x2 and get 

b1x12 + (b1 + l)x1x2. 

16. The number of classes of forms F in the respective cases 
(i)-(vi) is 4, 3, 2, 2, 6. Hence there are exactly 19 linearly 
independent invariants of F under the group r. As these we 
may take 

(71) 

A = b1ai + · · ·, a~ = b1a1a2 + · · ·, 
(3 = bi (ba + a2), ll2f3 = b1baa2, 
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(71) A,B=b1(ba+l)A, ba,6.=b1baa1+· • ·, a2ba-6.=b1baa1a2+· • •, 

J = b1b2ba + · · ·, a2J = b1b2baa2 + · · ·, 
baJ = b1b2ba(a1a2 + a1 + a2) + · · ·, AJ = b1b2baA + · · •. 

These are linearly independent since the first eight do not involve 
bi, while all the terms with the factor b1 in the next seven are 
given explicitly, likewise all with the factor b1b2ba in the last 
four. Hence the 19 functions (71) form a complete set of linearly 
independent invariants of F under the group r. 

17. Hence, in§ 14, 8 1 is a linear combination of the functions 
(71). By (672), 8 + 81 is of the form (57) if 82 be denoted by 
(56). Now aab1 occurs in J, AJ, b3J, a2J, A,8, but in no further 
function (71). In the first three, aab1 is multiplied by the linearly 
independent functions (62), respectively; in the last two by 
b3a 1a2 and a1a2(ba + 1), whose sum is congruent to the first 
function (62). Hence the part of 8 + 81 involving J, • • ·, A,8 
is a linear combination of 

(72) (ba + a2)J = b1b2baa1a2 + b2baa1a2aa, 

(73) J + baJ + A,8 = (ba + l)(b1b2a1a2 + b2A + A). 

But b1 occurs in just six of the functions (71) other than the 
five just considered. Thus the factor pa1 of b1 in (57) is a linear 
combination of the coefficients of b1 in (72), (73), ,8, ll2.B, A, a2A, 
baA, a2baA. Now a1 is a factor of the coefficients of b1 in all except 
the second, third and fourth, while in these the coefficients are 

(ba + l)b2a1a2, ba + a2 + 1, a2ba 

and are linearly independent. Hence (73), ,8, a2,8 do not occur 
in S + 81, By (57), the latter has no constant term and hence 
involves 1, A only in the combination A+ 1. This cannot 
occur since the total coefficient of a3 must be of the form pR 
and hence vanish for b3 = a2• At the same time we see that 
the sum of the constant multipliers of A, a:z_ll, ball, a2bsll is zero 
modulo 2. Hence 8 + 8 1 is a linear combination of the functions 
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a2, b3, baa2, a1a2, and the last six in (74) below. Like (57), this 
combination must vanish for a1 = 0, b3 = a2, Since all but the 
first three of the ten functions then vanish, the sum of the 
multipliers of these three must be zero modulo 2. Hence S + S1 
is a linear combination of 

(74) 
ba + a2, a2(ba + 1), a1a2, baa1a2, baA, 

.6.a2, .6.(ba + 1), .6.(a2bs + 1), (ba + a2)J. 

18. Without altering the invariant S, we may simplify S1 by 
subtracting from O constant multiples of L4n-1 K and its product 
by .6., where K is given by (29), and hence delete a2(b3 + 1) 
and .6.(a2ba + 1) from the terms (74) of S1. Then 

S1 = S + m.6.a2 + m1.6.(ba + 1) + m2(ba + a2)J 

+ ma(ba + a2) + m4a1a2 + msbaa1a2 + m6b3A. 

The coefficient T of x3°'-1x2 in O is obtained from S1 by applying 
the substitution (a1a2)(b1b2) induced by (x1x2). In view of the 
transformation (8), we see that T' = T + Si, where T' is derived 
from T by (22). Hence 

S = (m + m1).6. + m1ba.6. + m2baJ 

+ (m4 + m6b3)(a1a2 + a1 + a2) + maba + m6b3A. 

Let ~ be the sum of the second member and the function ob­
tained from it by the substitution (a2aa) (b2ba), Thus ~ === 0. 
Taking b3 = b2, we get m 4 = m5 = 0. Then 

~ = (b2 + ba)l, I= m1.6. + m2J +ma+ msA. 

Applying to ~ the substitution (68), we get (b2 + a1)I = o. 
Applying (a1aa)(b1ba) to the latter, we get (b2 + aa)I = o. 
Adding, we get (a1 + a3)l = 0. Applying (50), we see that 
a3l = 0. Then each aJ = 0, so that I = gA, where g is a 
constant. By ~ = 0, g = 0. Thus m1, mz, ma, ms are zero. 
Hence S = m.6., S1 = m.6.a2. But 

(75) E = F(L4 + .6.F2) + (.6. + A)L6 = .6.xa6 + · · ·. 
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Hence C - Q2n-1E has the leader zero. Any c01:ariant of order 
w = 4n + 2 > 2 differs from a linear combination of the co­
variants (65) and Q2n-1E by a CO'l.'ariant whose leader is zero. 

19. Regular and Irregular Covariants; Rank.-A covariant 
shall be called regular or irregular according as it has not or 
has the factor La, given by (43). The quotient of an irregular 
covariant by La is a covariant. Hence the determination of all 
irregular covariants reduces to that of the regular covariants. 
If a covariant has a linear factor it has as a factor each of the 
seven ternary linear functions incongruent modulo 2, whose 
product is La. Hence a. regular covariant has a non-vanishing 
component involving only x1, xa. In a regular covariant 0 
without terms xi°' (i. e., with leader zero), this component has 
the factors Xi, xa and (by the covariant property) also :i:1 + xa. 
The product of these three linear factors was denoted by ~2 

in (40). Let ~2m be the highest power of ~2 which is a factor of 
the component and let n be the degree of the quotient in the x's, 
Then C may be given the notation 

3 

(76) Rm, n = LhU11 + X1X2Xsc/>, 
i=l 

where, if n = 0, /2 is a function of the a's and b's not identically 
zero, while, if n > 0, /2 is a function also of x1, xa in which the 
coefficients of X1n and xan are not zero; Ji is a function of x2, xa; 
fa of Xi, X2, 

The regular covariant (76) shall be said to be of rank m. In 
an irregular covariant the component free of x2 is zero and hence 
is divisible by an arbitrary power of ~2 ; it is proper and convenient 
to say that an irregular covariant is of infinite rank. 

Any covariant of rank zero differs from one of rank greater than 
zero by a polynomial in the known covariants 

(77) A, A, J, F, L, Q2. 

This is a consequence of the theorems in §§ 11-18, where the 
polynomial is given explicitly. Any product, of order"' in the 
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x's, of powers of the covariants (77) can be reduced by means of 
the syzygies 

JL = 0, AL2 = AF, (A+ A+ J + l)(FL + I() = 0, 

(78) AK = 0, FL2 + (A + A)L4 + AF2 + AQ2 = LK, 

F 3 + Q2F = L3K + (A+ J)K2 + (A+ l)LG + (A+ l)Q1, 

to a sum of covariants of order w given in §§ 11-18 and a linear 
function, with covariant coefficients, of K, Qi and 

G = Q2L + L5 = ~~2~3(,B1 + l)x32 + (/31/3a + l)xax1 

(79) + /31(/3a + l)xi2] + x1x2xa[(/31 + /32 + /3a + 1) 

X (x1x2 + X1X3 + X2X3) + ~(,B. + l)x?]. 

Here G and K, given by (42), are of rank 1, while Q1 = ~:i2+x2 ( ) 
is of rank 2. As this theorem is not presupposed in what follows , 
its proof is omitted. However, it led naturally to the important 
relations (75) and (79) and showed that no new combinations 
of the covariants (77) of rank zero yield covariants of rank > o 

' a fact used as a guide in the investigation of the latter covariants. 

REGULAR COVARIANTS Rino, §§ 20-22 

20. A separate treatment is necessary for covariants (76) 
with n = 0. Then each h is a function of the coefficients a;, b. 
Since the factor U" of the part Ja~r of R..,o free of X3 is unaltered 
by every linear transformation on xi and X2, !a is a linear com­
bination of the functions (49) and their products by b3 . Also , 
fa must be unaltered by 

(80) X1 = xi'+ xa': a1' = a1 + aa, ba' = ba +bi+ a2. 

Both conditions are evidently satisfied by the ternary invariants 
and by aa and q, in (47). In view of (53), we may employ 

AJ, J, aaA, A, aaJ, qA, A 

to replace in turn 

baa1a2aaq, baa1a2aa, aaJ, J, aabaq, a1a2aaq, o:1a 2a3, 
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since a term previously replaced is not introduced later. Thus 
fa is a linear combination of these seven functions, aa, q, aaq, and 

Give to any linear function m1a 1a2 + • • • of these the notation 

O" = aa1ba + Pai + -rba + a. 
Call e the increment b1 + a2 to ba in (80) and employ e to eliminate 
b1. Then O" is unaltered by (80) if and only if 

ae = 0, aaa = 0, Paa= -ye (mod 2). 

Since ba does not occur in q or j, nor a1 in q, we have 

a= msa2 + m1a2q + ms(e + a2 + aa) + mgaa(e + a2 + aa), 

Thus ae = 0 gives m6 = m7 = 0, m8 = mg. Then aaa = 0 
gives me= 0. Now 

P = m1a2 + ~a2q, 'Y = ma + m4aa + msq, 

and Paa = -ye readily gives O" = 0. Any function of ba and the 
invariants (49) off and l, which is unaltered by (80), is a linear 
combination of the ternary invariants (45) and aa, q, a3q, aatl, 
aaJ, qA. 

21. For n = 0 and m even, there exists a covariant (76) in 
which f s is any function specified in the preceding theorem. 
For, if I is any ternary invariant, IQi'"/2 has fa = I. By (42) 
and ( 41), K"' and W"''2 are of the form (76) with fa = aa and 
PIP2 + 1, respectively; they may be multiplied by any invariant. 
By (19) and (47), we have 

(81) PIP2 + 1 = q + aatl +A+ 1, a3q = aatl + qA + a3J. 

Hence we obtain q, then qA, qA, and therefore aaq, Any co­
variant with n = 0, m even, differs by an irregular covariant from a 
linear function of 

IQ1"''2, I1K"', l 2W"''2 (I= 1, A, A, J, AJ; 11= 1,A, J; 12= 1, A, A). 
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22. For n = 0 and m odd, we may delete the terms aaI1 from 
fa by use of I 1K"'. First, let m = 1 and apply transformation 
(51); we get 

h = f1' + fa', f2 = f2', fa = ~a', 

(82) R' = Ji~1' + h~2' + (Ji + fa)~a' + (x1'x2'xa' + x1'2x2')q,. 

Thus cf, = 0. Since fa = I + l2q, condition Ji + fa = fa' gives 

I = I2(a1b1 + a2b2 + aaba + a2aa + a1a2). 

Add to this the relation obtained by permuting the subscripts 
1, 2. Thus 

0 = I2(b1 + b2 + a2aa + a1aa). 

The increment under (22) is I2(b1 + aa + a2aa) = 0. Now 12 
is of the form x + y!J,,. + zA, where x, y, z are constants. From 
the terms in b1b2, we get y = 0. Then x = z = 0. The only 
covariants are therefore I1K. 

Second, let m > 1. Then KW<•-012 is of the form (76) with 
fa = aaq + aa, by (811). Hence we may set 

fa = I+ cq + dqA (c, d constants). 

In R given by (76), let g denote the coefficient of 

(83) 

In the function derived from R by the transformation (51), the 
term corresponding to (83) has the coefficient g + Ji, since by 
(82) the ~, parts contribute only one such term, that from 
f1~1,m-i~a'. Now 

Ji = I + cq' + dq' A, q' = b2ba + (b2 + ba)a1. 

When g is given the notation (56), g' - g = Ji is the function 
(57). But aab1 occurs in / 1 only in J and AJ and in them with 
the linearly independent multipliers (62). Hence 

I = n1(A + 1) + ~Ll. 

The coefficient of aa inf 1 is now 

n1a1a2 + n2(a1a2 + b3) + dq'a1a2 = p(ba + a2). 
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Taking b3 = a2, we see that n1 = n2 = d = 0. Thus f1 = cq'. 
By (57) for a1 = 0, ba = a 2, we get c = 0. Any covariant with 
n = 0 and m odd d(f!ers by an irreg·ular covariant from a linear 
f'uncti.on of J(m, AJ(m, J J{m and, if m > 1, KW<m-1> 12• 

COVARIANTS OF RANK UNITY, §§ 23-26 

23. Henceforth let m > 0, n > 0 in (76) and set 

(84) f2 = Sxan + S1xan-1x1 + S2xan-2x12 + · · • (S =f 0), 

Since S is unaltered by the group r of § 15, it is a linear com­
bination of the functions (71). We may omit the functions 
a2(b3 + 1) and Aa2(b3 + 1), since KmLn is of the form (76) with 
S = a2(ba + 1). Thus 

(85) S = l + a2l1 + bal2 + k1a1a2 + k2baa1a2+ka.B+k,a2.B+ksA.B, 

where 1 is any invariant, 11 a linear function of 1, A, J; 12 one of 
1, A, A, J;-while ,8 = b1(ba + a2). 

First, let m = 1. If T and B are the coefficients of x2n in fa 
and Ji, transformation (51) replaces the covariant (76) by a 
function in which, by (82), the coefficient of x1'x2'n+2 is 

(86) T+ B = T', 

where T' is derived from T by the induced substitution (50). 
But T is obtained from S by the interchange [23] of subscripts, 
and B from T by [13]. We thus find by (86) that 

I = b2l2 + (k1 + k2b2) (a1 + aaa1) 

+ ka(a1b1 + a2b2 + aab3 + a1a2 + a2aa) 

+ k,b2(a1b1 + a3ba + a1a2 + a2aa). 

Let~ be the sum of the second member and the function obtained 
by applying (a2aa) (b2b3) to it. In ~ = 0, set b2 = ba; we get 

{k1 + ka + ba(k2 + k,)} (a2 + a 3)a1 = 0, ka = k1, k4 = k2. 

Then ~ = 0 may be written in the form 

(b2 + ba)>-. = 0, >-. = 12 + k2(A + A + 1). 
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As in § 18, >. = O. Thus 12 and I are the products of A + A + I 
by k2, k1, so that 

S = (ki + k2b3)(A +A+ 1) + a,,zl1 + k1(b1ba + b1a2 + a1a2) 

(87) + k2b3(a2b1 + a1a2) + k&A(b1ba + b1), 

For n odd, Sis the increment to S1 under (50) and hence has 
no term containing a3b1, If t is the coefficient of J in I 1, aab1 
occurs in (87) only in ta2J and in the final part, being multiplied 
by ta2a1ba and k5a1a2(ba + 1), respectively. Hence t = /c5 = O. 
Since S is of the form (57), the coefficient of b1 must vanish if 
a1 = 0. Thus 

k1(ba + a2) + k2baa2 = 0, k1 = k2 = 0. 

Now S = a2I1 = ll2(U + vA) must vanish for a1 = 0, b3 = a2 
by (57); then A = a2(b2 + a3), so that u = v = 0, S = 0. Any 
covariant with m = 1 and n odd dijf ers from one of rank > 1 by 
a linear function of KLn, AKLn. 

24. For m = I, n = 4P, we may delete a2I1 from (85) by use 
of l1KQ2", Set /i = Bx2n + • • • + Bnxan, Then (51) replaces 
(76) by 

R' = ~2[Sxan + S1xan-1x1 + (S1 + S2)xan-2x12 + · · ·] + ~ala 

+ (ti + ta) [Bn(Xan + X3n-4X14 + · • ·) 
+ Bn-1X2(x3n-l + xan-2x1 + • • • )] + (X1X2Xa + xi2:,:2)q,'. 

Since S1 is the increment of 82, it is a linear combination of the 
functions (74). By use of Ln-3Q1, Ln-3K 2 and their products by 
A and ll, we may, without disturbing S, delete from 81 

ba+a1a2+ 1, Aba, ll+baA+baa1a2, a2(ba+ 1), a2A(b3+ I). 
Hence we may set 

81 = t1(ba + a2) + t2baa1a2 + taAa2 + t«(ba + a2)J. 

Applying (a1a2)(b1b2) to S and Si, we obtain Bn and Bn-i• 
Let l be the coefficient of x2x3n-l in q,. By the coefficient of 
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x1:r2xa • :r2xan-l in R', we have 

B,. + Bn-1 + l = l'. 

For l given by (56), Bn + Bn-l is given by (57). By the coef­
ficient of aabi, we get t4 = 0. The coefficient of a3 must vanish 
for ba = a2, Hence 

k1a1 + (k2 + ta)a1a2 + ksa1a2b2 = 0, k1 = k& = 0, ta = k2, 

S = k2ba(t!,,. +A+ 1 + a1a2 + a2b1). 

The coefficient of k2 equals that of !2x3n in 

GFQ2-1 + t!,,.KLn + t:,.KQ2v. 

Any covariant with m = 1, n = 4v, differs from one with m ~ 2 
by a linear function of KLn, aKLn, IKQ2v, GFQ2,,_1 (I = 1, t:,., J). 

25. For m = 1, n = 4v + 2, we may delete a2I1 from S, 
given by (87), by use of I 1 Q2v M. The coefficient of !2xan in 
Q2vG is 

d = /3a<fl1 + 1) = A+ (b1 + l)(a1a2 + ba) + baa2a3. 

The coefficient of /,1 in S equals d + azl:,. + a2(ba + 1), the final 
term of which was reached in § 23, and a2l:,. above. The coef­
ficients of k& and k2 in S equal Ad and 

b1ba(a1+a2)+ba(a2b2+a1aa+a2a3+az) =ad+a2(J + l)+a2(ba+ 1), 

respectively. Any covariant with m = 1, n = 4v + 2, differs 
from one with m ~ 2 by a linear function of KLn, !:,.KL", IQ2vG, 
I1Q2VM (I= 1, A, !:,.; Ii= 1, t:,., J). 

For use in § 26, we replace Q2v M by Q2vFK, noting that 

(88) M= (F+L2)K 

and that QvL2K differs from KLn by a covariant of rank 2. 

26. By the last four theorems, any covariant of rank 1 differs 
from one of rank ~ 2 by CK+ DG, where C and D are known 
covariants of rank zero. Taking as 0 1 and D1 arbitrary func-
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tions of the proper degree in the x's, of the generators (77) of 
covariants of rank zero, I found the syzygies needed to reduce 
CiK + DiG to an expression differing from the above CK + DG 
by a covariant of rank ~ 2, in which those of rank 2 are linear 
combinations of K2, KG, G2, W, Qi and the new one 

(89) 
where 
(90) 

+ tiL3 K2 + tiL3Qi = ~22xa3v + • • •, 

v = az + ba(l + a1a2). 

The only new syzygies needed for this reduction are 

LG= Q2L2 + L6 = W, FLK = tiW + tiQi + (J + l)J(2, 

(91) (F2 + L4 + Q2)K = (A + l)La, 

(ti+ l)(FG + KL4 + KQ2) + JKQ2 = ALQi + wL3, 

in which w is an invariant not computed. Proof need not be 
given of these facts since we presuppose below merely the ex­
istence of relation (89) which may be verified independently. 
Of course, the fact that V is the only new covariant of rank 2 
was a guide in the later investigation. 

COVARIANTS OF EVEN RANK m = 2µ > 0, §§ 27-29 

27. First, let n be odd. In the covariant (76) replace x3 by 
xa + x1. In view of (82), we get 

R' = h'~2m + fa~am + Ji'(t12 + 62)" + (X1X2X3 + Xi2X2)</,'. 

Using the notation (84) for f2, we have 81' = 81 + 8 in j 2'. 

Thus, as in§ 17, 8 is a linear combination of the functions (74). 
Now Qi" Ln and its products by A and A + ti are covariants (76) 
with 8 given by (63). Using also KmLn, in which S = a2(b3+1), 
and its product by ti, we may set 

8 = k1(ba + a2) + k2b3a1a 2 + kaD,.ot.2 + k4(ba + a2)J. 

In x1x2xa</,, let g be the coefficient of 
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Such a term occurs in neither of the first two parts of R', since 
they are functions of only two variables. To obtain such a 
term from the third part of R', we must omit terms with the 
factor ~32 (and hence xi2) and take (x2x32) 2" in ~12", so as not to 
make the degree in x2 too high. Hence if T be the coefficient of 
xan in Ji, g' = g + T. Now (a1a2)(b1b2) replaces S by T. The 
resulting T must be of the form (57). By the coefficient of 
aabi, k,i = 0; cf. (72). By the coefficient lc3a1ba of a3, lea= 0. 
Since T = 0 for a1 = 0, b3 = a2, we get k1 = k2• Hence S = ki-v, 
where vis given by (90). 

For n = l, f2 = Sx3 + S1x1. Thus S1 = lc1v', where v' is 
derived from v by interchanging the subscripts 1 and 3. Then 
S1' = S1 + S gives lc1 = 0. 

For n ~ 3, Q1"-1Ln-3v is of the form (76) with S = v, since 
f3av = 0. 

Any covariant witli n odd, m = 2µ, > 0, differs from one of ranlc 
> m by a linear combination of IQ1"Ln (I= 1, A, A), KmLn, 
AKMLn and, if n > l, Q1"-1Ln-av. 

28. For m = 2µ, > 0, n = 4v > 0, the coefficients of ~2,,.Xan in 

(92) 
Q1"Q2", KmQ2v, Qi"F2v, Qi"Ln, J(mLn, 

are respectively 

1, a2, ba, {33 + 1, a2(b3 + 1), d = (33(/33 + l), a2d. 

These may be multiplied by any invariant. Now 

/3a + 1 + a2 + ba = a1a2, 

A(fJa + 1) + (A + A + l)b3 + b3a2 + A = baa1a2, 

d + A+ {33 + a2(A + b3) = b1(ba + a2) = /3, 

a2d + a2ba = a2b1b3 = a2{3, Ad = Ab1(b3 + l) = A/3. 

Hence we have a covariant (76) in which the coefficient of ~2mX371 

is any linear combination of the functions (71). Hence tlie 
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covariant differs from one of rank > m by a linear function of the 
covariants (92), the products of the first three by any invariant 
except 1, the products of the fourth and fifth by A and the product of 
the sixth by A. 

29. Form = 2µ > 0, n = 4v + 2, the coefficients of ~2mx3n in 

(93) ]J,[Km-lQ2", KmLn, oxm-lQ2", pnl2Qi''-, LnQ1"' 

are respectively 

a2, a2(ba + 1), a2ba(b1 + 1), ba, ba + a1a2 + 1. 

Linear combinations of products of these by invariants give* 

a2, a~, ll2J, a2ba, Aa2ba, ll2b1ba, Iba, a1a
2

, A + b
3

a1a 2

• 

Since Sand S1 are unaltered by the group r of§ 15, they are 
linear combinations of the functions (71). Deleting the above 
functions a2, a~, • • • from S, we have 

S = I+ c/3 + eA/3, /3 = b1(ba + a
2
), 

where c and e are constants, and I is an invariant. Set 

!1 = Bx2n + B1x2n-lx3 + ... + B,._1X2X3n-1 + Bnxan, 

and call u the coefficient of 

(94) 

in X1X2X3q,. 
Hence 

X1X2X3 • X24µ+n-2X32µ-l = (X22X3)2"'x2n-1X1 

The coefficientt of (94) in R' of § 27 1s B1 + u 

u' - u = Bi, 

if (50) replaces u by u'. Thus B1 must be of the form (57). 
For n = 2, 8 2 is derived from S by applying (a1a3)(b b ) 

Then (672) gives 8 1. Applying (a1a2)(b1b2) to Si, we get 1 3 • 

B1 = I+ c(b2ba + b2a1 + baa1) + eA(b2ba + b2 + ba). 

* For the last two, use the first two of the four equations in § 28. 
t The first part of R' is free of x2, the second of xa, while in the third 

d • , 2 h • • 1 part 1;1 2 has the factor x1
2

, an ID /i /;1 "' t ere 1s a smg c term (94) and it has th 
. B e coefficient 1. 
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Since this must be of the form (57), we get I= 0, c = e = 0. 
A covariant with m = 2µ, n = 2, differs from one of rank > m by a 
linear function of 

iMKm-1, Km£2, AKm£2, GKm-l, IFQ1"", L2Q1"", AL2Q1"" 

(i = 1, A, J; I = 1, A, A, J). 

For n > 2, we may delete A from the part I of S by use of 
EQ1""Q2,-1, where E is given by (75). Without disturbing S we 
may delete a2(b3 + 1) and its product by A from S1 by use of 
K211-+1Ln-a, since the term of ~•i""h with the coefficient S1 is 
the term of highest degree in x3 in ~2211-+1(S1x3n-3 + · · · ). 
Since S + S1 is a linear combination of the functions (74), 

(95) 
S1 = S + t1(ba + a2) + t2a1a2 + tabaa1a2 + t4baA + ti;Aa2 

+ tA(b3 + 1) + fo(ba + a2)J. 

Apply (a1a2aa)(b1b2ba) to Bi, of the form (57). Hence 

(96) S1 = ppa1 + pa2b2 + pa2p + ra2 + sp, p = b1 + aa. 

Now a1b2 occurs in Sonly in the terms J, AJ of I and in the part 
of (95) after Sonly in the last term, given by (72). In these the 
factors of a1b2 are linearly independent. Hence to = 0, 
I= x(A + 1). The coefficient of a1 in S1 must vanish for 
b1 = aa, and S1 itself if also 02 = 0. Hence 

C = t2 = X, t1 = fa = t4 = t, t5 = X + t, 

S1 = x(A + 1 + b1b3 + b1a 2 + a1a 2 + Aa2) + eAbi(ba + 1) 

+ t(ba + a2 + b3a1a 2 + baA + baA + a2'1.). 

Call E the coefficient in x1x2x3cf> of 

In R' of § 27, the coefficient of this product is E + B n-1• Hence 
Bn-1 is of the form (57). Interchanging the subscripts 1 and 2 
in Bn-1, we get S1. Thus the coefficient of a3 in S1 vanishes for 
b3 = a1, Hence S = S1 = 0. Any covariant with n > 2 differs 
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from one of rank > m by a linear combination of 

iMKm-1Q2", jKmLn, GKm-lQ2", Jpnl2Q1,,., jLnQ1,,., EQ1"'Q2.-t 

(i = 1,. A, J; j = 1, A; I= 1, A, A, J). 

COVARIANTS OF ODD RANK m = 2µ. + 1 > 1, §§ 30-31 

30. Replacing x3 by x3 + x1 in the covariant (76), we get 

R' = h'~2m + b~r + f1'(~1 + ~ar + (x1X2X3 + X12X2)cf>'. 

ln X1X2Xac/>, let g be the coefficient of (x1x22)(xlxar-1x2n, The 
coefficient of the corresponding term of R' is g' = g + B, where 
B is that of x2n in fi. Hence B is of the form (57). 

First, let n be odd. Then 8 1' = 8 1 + 8 under (50), so that 
S is a linear combination of functions (74) with a2(ba + 1) and 
its product by A deleted(§ 23). Thus 8 is the sum of the terms 
(95) after the first. Applying (a1a2a3) (b1b2b3) to B, of the form 
(57), we see that S is of the form (96). By these two results, 

S = t(ba + a2 + baa1a2 + baA + baA + ll2A) • 

If l is the coefficient of (x2x32}fflx3n-1x1 in x 1x2x3cf:,, that in R' is 
l' = l + nBn, Hence, for n odd, Bn is of the form (57). Inter­
changing the subscripts 1, 2 in Bn, we get 8. Thus the coefficient 
of aa in S vanishes for b3 = ai, so that t = 0. Any covariant with 
m and n odd dijf ers from one of ranlc > m by a linear function °! 
Km Ln and AKm Ln. 

31. Finally, let m be odd and n even. According as n = 4v 
or 4v + 2, KmQ2" or Km-1MQ2" is of the form (76) with a2 as 
the coefficient of ~2mx3n. Hence we may delete the terms a2I 1 
in (85) and hence the terms a1I 1 in B of § 23. But (§ 30), B is 
of the form (57). Now a3b1 occurs in J and AJ of I and in 
b2J of b2I2, having in these linearly independent multipliers. 
Hence 

I= x(A + 1) + yA, 12 = e + JA + gA. 

Since the coefficient of aa in B shall vanish for b3 = a2, and B 
itself if also a1 = 0, we get k1 = x = y = k3, k2 = f = g = e. 
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Thus 

(97) 
S = x(A + 1 + A + a1a2 + b1b3 + b1a2) + k4a2b1b3 

+ g(A + 1 +A+ a1a2)b3 + k0Ab1(b3 + 1). 

First, let n = 4v + 2 and write 2µ + 1 for m. Then 

GQ11J.Q,{, K2GQ1µ.-lQ2v 

have d = /3a(/31 + 1) and a2d as the coefficients of ~2mx3". As 
in § 25, the coefficients of x, k4, g, k5 in (97) equal respectively 

d + a2(A + ba + 1), a2d + a2b3, Ad+ a2d + a2J, Ad. 

The terms not containing d are combinations of the above a2I1 

and a2(b3 + 1) of § 23. Any covariant with m = 2µ + 1 > 1, 
n = 4v + 2, differs from one of rank > m by a linear function of 

iKmLn, [iJ(_m-llrJQ2v, [GQ1,,.Q2v, K2GQ1µ.-lQ2v 

(i = 1, A; I1 = 1, A, J; I= 1, A, A). 

Next, let n = 4v > 0. In the last two covariants of the 
theorem below, the coefficients of ~22,,.+1xa4v are a2b3(b1 + 1) and 
o = b3{~3(/31 + 1). We had reached covariants in which the 
corresponding coefficients are a2I and a2(b3 + l)I. Thus we 
obtain the coefficient of k4 in (97) and o + Aa2b3 + a2b1ba, which 
equals the coefficient of g. We may therefore set k4 = g = 0. 
Subtracting covariants of the fourth and fifth types in the 
theorem, we may take as 8 1 the function in § 24, without dis­
turbing S. Applying (a1a2)(b1b2) to S and Si, we get B .. and 
Bn-1• If l is the coefficient of x1x 2m+1xim+n-2 in X1X2X3</,, its 
coefficient in R' of§ 30 isl'= l + B .. + B,._1. Thus B .. + Bn-1 
is of the form (57). By the coefficient of a3b1, t4=0. Since the 
coefficient of aa is zero for b3 = a2, we get x = ks = ta = 0. 
Thus S= 0. Any comria.nt with m = 2µ + 1 > 1, n = 4v > 0, 
differs from one of ran/,: > m by a linear function of 

l{_mLn, AKmLn, JKmQ2V, iLn-3Q1µ.+1, iLn-3K2/J.+2, G2KQ2v-IQ1µ.-l, 



98 THE MADISON COLLOQUIU~I. 

32. We have now completed the proof of the theorem: 
As a fund,amental system of modular covariants of the ternary 

quadratic form F with integral coefficients modulo 2, we may tal,;e 
F, its invariants A, .1, J, its linear covariant L, its "polar" cubic 
covariant K, and, the universal covariants Qi, Q2, La, 

Incidentally, we have obtained a complete set of linearly 
independent covariants of each order and rank. ·we might then 
find a complete set of independent syzygies. Syzygies whose 
members are covariants of low rank are given in (78), (88), (91). 

33. References on Modular Geometry.-Other aspects of the 
modular geometry of quadratic forms modulo 2 and, in particular, 
applications to theta functions have been considered by Coble.* 
For a treatment of non-homogeneous quadratic forms in x, Y 
modulo p (p an odd prime), analogous to that of conics in 
elementary analytic geometry, but employing only real points on 
the modular locus, see G. Arnoux, Essai de Geometrie analytique 
modulaire, Paris, 1911. The earlier paper by Veblen and Bussey 
was cited in§ 7. The paper by Mitchell was cited in § 3. Appli­
cations of modular geometries have been made by Conwell.t 

The problem of coloring a map has been treated from the 
standpoint of modular geometry by Veblen.:j: 

* Transactions of the American Mathematical Society, vol. 14 (1913), pp. 
241-276. 

t Annals of Mathematics, ser. 2, vol. 11 (1910), pp. 60-76. 
:!:Annals of Mathematics, ser. 2, vol. 14 (1912), pp. 86-94. 



LECTURE V 

A THEORY OF PLANE CUBIC CURVES WITH A REAL INFLEXION 
POINT VALID IN ORDINARY AND IN MODULAR GEOMETRY 

1. Normal Form of Cubic.-Consider a ternary cubic form 
C(x, y, z) with coefficients in a field F not having modulus 2 or 3. 
After applying a linear transformation with coefficients in F 
and of determinant unity, we may assume that (1, 0, 0) is an 
inflexion point. In particular, C lacks the term x3• If it lacks 
also x2y and x2z, its first partial derivatives vanish for y = z = 0. 
But we shall assume that the discriminant of C is not zero. Hence 
the coefficient of x2 may be taken as the new variable y. At the 
inflexion point (1, 0, 0) the tangent y = 0 is to be an inflexion 
tangent, i. e., meet the cubic in a single point. Hence C lacks 
the term xz2• Thus 

C = x2y + 2x(ay2 + (3yz) + cf,(y, z). 

Replacing x by x - ay - (3z, we see that x2y is now the only term 
involving x. If y were a factor, the discriminant would be zero. 
Hence the term z3 occurs. Adding a suitable multiple of y to z, 
we get 
(1) C = x2y + gy3 + hy2z + oz3 (o =i= 0). 

2. The Invariants sand t.-The Hessian of (1) is 

11 = - 3ox2z - h2y3 + 9ogy2z + 3oliyz2• 

The sides of an inflexion triangle form a degenerate cubic be­
longing to the pencil of cubics kC + 11. The latter has the 
factor z only when k = h = 0 and the factor y - lz only when 
kl= 35 (as shown by the terms in x2), where k is a root of 

k4 + 18Mk2 + 108o2gk - 27o2h2 = o. 

Before considering the factors involving x, we note that the 
99 
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coefficients of this quartic equation are the values which relative 
invariants of a general cubic assume for the case of our cubic (1). 
Indeed, a linear transformation of determinant unity which 
replaces G by a cubic G' must replace H by the Hessian II' of C', 
and hence replace the inflexion triangle of G given by a root k 
of the quartic by that inflexion triangle of G' which is given by 
the same number le. We denote the invariants by* 

(2) s = - 3Mi, t = - 10sa2u. 

The above quartic now becomes 

(3) k4 - 6slc2 - tic - 3s2 = 0. 

The discriminant a of G is such that 

(4) 27a = t2 - 64s3• 

There are four distinct roots of (3) since its discriminant is 
- 273a 2• 

Our earlier results are that lcC + H has the factor z only 
when k = s = 0 and the factor y - 3ak-1z if k is a root =I= 0 of 
(3). It has the factor x - ry - pz if and only if 

3p2 = k, 952kr2 = s2 + tk/12, lcp2 - 65pr = s, 

65kpr - 952r 2 - sk - t/4 = 0. 

These conditions are satisfied if and only if k is a root of (3) and 

P = le = 0, 3652r 2 = - t 

3p2 = k, 65kr = p(k2 - 3s) 

(k = O), 

(le =I= O). 

3. The Four Inflexion Triangles.-First, let s = 0. Then 
t =I= 0 by (4). The root le = 0 gives the inflexion triangle with 
the sides 

(5) z = 0, X = ± T1Y 

* We haves = - 34S, t = - 38T, where Sand T, given in Salmon's Higher 
Plane Curves, p. 189, are the invariants of the general cubic with multinomial 
coefficients. 
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Each root of k3 = t gives an inflexion triangle 

(6) 

Next, let s =I= 0. Each root of (3) gives an inflexion triangle 

(7) 
3o 

y = k z, 
{k( lc2-3s) 

x = ± '\/3 z + 6ok Y • 

4. The Parameter o.-If we multiply x, y, z by p, p-2, p, we 
obtain from (1) a cubic with o replaced by op3• If Fis the field 
of all complex numbers, the field of all real numbers, or the finite 
field of the residues of integers modulo 3j + 2, a prime, every 
element is the cube of an element of the field [in the third case, 
e = (e-3)3], so that the parameter o may be taken to be unity. 
Although we do not use the fact below, it is in place to state here 
that for all further fields a new invariant is needed to distinguish 
the classes of cubics (1). I.deed, two cubics (1), with coef­
ficients in F and with the same invariants s and t and discrim­
inants not zero, are equivalent under a linear transformation 
with coefficients in F and having determinant unity if and only 
if the ratio of their o's is the cube of an element of F. 

CRITERIA FOR 9, 3 OR 1 REAL INFLEXION POINTS, §§ 5-9 

5. Inflexion Points when s = 0.-Let K be a fixed root of k3 = t. 
Let r1 and T2 be fixed roots of the equations at the end of (5) 
and (6). Then 

(ri/r2)2 = - 3 = (1 + 2w)2, w2 + w + 1 = 0. 

Choose w so that r1/r2 = 1 + 2w. Denote the lines z = 0, 

x = T1Y, x = - T1Y in (5) by Li, L2, La, For each value of 
i = 0, 1, 2, denote the three lines (6) with k = Kwi by Li;, L2i, 

Lai, that with the lower sign being Lai• Then the 9 inflexion 
points and the subscripts of the 4 inflexion lines through each 
are given in the following table: 
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I 

( KWi ): ( KW') 
(1, 0, 0) (T2, 1, 0) i (-T2, 1, 0) TJ, 1, Jo i -n, 1, Jo 

1 1 I 1 2 3 

(8) 
10 20 30 Ii Ii 

11 21 31 2,i - 1 2, i - 2 

12 22 32 3,i - 2 3, i - 1 

In the last two columns, i has the values 0, 1, 2; while-i - 1 or 
i - 2 is to be replaced by the number 0, 1, 2 to which it is con­
gruent modulo 3. 

When Fis the field of all real numbers, K may be taken to be 
real, while just one of the numbers TI and r 2 is real. Hence 
3 and only 3 of the 9 inflexion points are real. The same result 
is true if F is the field of the p residues of integers modulo P, 
where p is a prime 3j + 2 > 2. For, K may be taken to be 
integral (§ 4), while w is imaginary and hence - 3 is a quadratic 
non-residue of p. If - t is a quadratic residue, n is real and r2 

imaginary. If - tis a non-residue, the reverse is true. 
Next, let p = 3j + 1, so that c-, is real and hence - 3 a quad­

ratic residue. By (5) and (6), TI and T 2 are both real or both 
imaginary according as - t is a quadratic residue or non-residue 
of p. Hence all 9 inflexion points are real if and only if - t is 
both a square and a cube and hence a 6th power modulo P· If 
- t is a square but not a cube, only the first 3 inflexion points 
are real. If - t is a quadratic non-residue, (1, 0, 0) is the only 
real inflexion point. 

A cubic with integral coefficients talcen modulo p, a prime > 3, 
with at least one real inflexion point and with invariant s = 0 
and invariant t =t= 0, has 9 real inflexion points if p = 3j + 1 
and - t is a sixth power modulo p, a single real inflexion point if 
p = 3j + 1 and - t is a quadratic non-residue of p, and exactly 
3 real inflexion points in all of the remaining cases. 

For example, if p = 7 and s = 0, t =+= O, there are 9 real in-
flexion points only when t = - l. Taking o = 3, n = - 2, 
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72 = + 1, K = - 1, we get "'= 2. Thus x2y - y3 + 3z3 = 0 
has the 9 inflexion points (1, 0, 0), (1, 1, 0), (- 1, 1, 0), 
(-2, 1, 3 • 2i), (2, 1, 3 · 2i) (i = 0, 1, 2). 

6. Inflexion Points ichen s + 0, ~ + 0.-These are (1, 0, 0) 
and 

(9) 
35 
k ' 

where k ranges over the roots of the quartic (3). We seek the 
number of real roots k for which ✓ - k is real. In order that 
the left member of (3) shall have the factors 

(10) k2 + wk + l, k2 - wk + m, 

it is necessary and sufficient that 

(11) l + m - w2 = - 6s, (l - m)w = t, lm = - 3s2• 

Lett + 0 (fort= 0 see§ 9). Then w + 0 and 

(12) 2l = w2 - 6s + t/w, 2m = w2 - 6s - t/w. 

Inserting these values into (lla), we get 

(13) w6 - 12sw4 + 48s2w2 - t2 = 0. 

Set w2 = y + 4s. Then 

(14) y3 = t2 - 64s3 = 27~. 

For the rest of this section, let the field be that of the residues 
of integers modulo p, where p is an odd prime 3j + 2. Since 
any integer e has a unique cube root e-i modulo p, there is a 
single real root y of (14). 

First, let y + 4s be a quadratic residue of p. Then w is 
real and hence also z and m. The product of the discriminants 
of the quadratic functions (10) is seen by (lli) and (113) to equal 

(15) (w2 - 4Z)(w2 - 4m) = - 3(w2 - 4s)2 = - 3y2 

and hence is a quadratic non-residue of p. Thus a single one of 
the quadratics (10), say the first, has a discriminant which is a 
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quadratic residue and hence has real roots. By (121), 

4l(w2 

- 4l)w2 = - 2w6 

- 6w 3 t + 36sw4 

- 4t2 + 48stw - 144s2w2• 

Adding the vanishing quantity (13), we see that 

(16) 4l(w2 - 4l)w2 = - 3(w3 - Ssw + t)2. 

Since w2 - 4l is a quadratic residue and - 3 is a non-residue 
of p, it follows that l is a non-residue. Hence a single one of 
the roots of the first quadratic (10), and hence a single one of 
the roots of the quartic (3), is the negative of a quadratic residue. 
Thus just two of the inflexion points (9) are real. 

Next, let y + 4s be a quadratic non-residue of p. Then there 
is no factorization of the quartic (3) into real quadratic factors. 
Nor is there a real linear factor k - r and a real irreducible 
cubic factor. For, if so, the roots of the latter are of the form 
}., }.P, }.P2 (cf. the first foot-note p. 37). Then 

(r-}.)(r-V)(r-}.P2), P= (A-V)(V-XP2)(V2-X)=PP (mod p) 

are real, so that the discriminant of (3) is a quadratic residue. 
But this discriminant was seen to be - 3(81.1)2, and - 3· is a 
non-residue. Hence (3) is irreducible modulo p. Thus (1, 0, 0) 
is the only real inflexion point. 

For p = 3j + 2 > 2, a cubic (1) with stLl =!= 0, has exactly 
three real inflexion points or a single one according as the real 
number 3,1! + 4s is a quadratic residue or non-residue of p. 

7. Cubic with stLl =!= 0, p = 3j + 1.-Xow - 3 is a quadratic 
residue of p and there are three real cube roots 1, w, w2 of unity 
modulo p. 

In this section we shall assume that Ll is a cube modulo p. 
Then there are three real roots Yi of (14). At least one of the 
Yi + 4s is a quadratic residue of p since 

3 

II (y, + 4s) = Y13 + 64s3 = t 2

• 

i=l 

If y1 + 4s is a quadratic residue, while y2 + 4s and y3 + 4s 
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are non-residues, there is a single factorization of quartic (3) 
into real quadratics (10) and hence certainly not four real roots. 
The product (15) of the discriminants of the real quadratic 
factors is now a quadratic residue of p. If each were a residue, 
there would be four real roots. Hence each is a non-residue and 
there is no real root. Tliere i,s a single real inflea:ion point if 
p = 3j + 1, stll. =t= 0, fl. i,a a cube, and if the three values of 3/l.1 + 4s 
are not all quadratic residues of p. 

Next, let each Yi+ 4s be a quadratic residue of p. Then there 
are three ways of factoring quartic (3) into real quadratics (10). 
But a root common to two distinct real quadratics is real. Hence 
all four roots are real. The discriminant of each quadratic (10) 
is therefore a quadratic residue of p. Hence, by (16), l is a 
quadratic residue of p; similarly for the constant term of each 
quadratic factor. Thus the negatives of the four roots are all 
quadratic residues or all non-residues. 

To decide between these alternatives, we need the actual roots. 
In w? = Yi+ 4s, let the signs of the Wi be chosen so that 

k2 - Wik + ?ni = 0 

have a common root. As in (12), 

2mi = wl - 6s - t/wi. 

(i = 1, 2, 3) 

For e =t= 1, we find by subtraction and cancellation of W1 - We 

that 
2k = W1 + We+ t/(wiw,). 

Comparing the results for e = 2 and e = 3, we get 

(17) 

Hence* the roots of (3) are 

(18) 
½(w1 + W2 + wa), ½(w1 - W2 - wa), 

½(- W1 + W2 - Wa), ½(- W1 - U'2 + 1l'3). 

The product of the first and (i + l)th roots is seen to equal r,ii 

* In particular, we have deduced Euler's solution by the method of Descartes. 
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and hence is a quadratic residue. For given values of p, s, t, 
we can readily find by a table of indices the real values of the Wi 

and thus a real root and hence decide whether or not it (and 
hence each of the four roots) is the negative of a quadratic 
residue. 

However, changing our standpoint, we shall make an explicit 
determination of all sets s, t for which the quartic (3) has four 
real roots each the negative of a quadratic residue of p. 

By the definition of thew?, or direct from (13), 

(19) ~1012 = 12s, ~wi2w22 = 48s2, wi2wboa2 = t2• 

Let w be a fixed integral root of w2 + w + 1 = 0 (mod p). Then 

0 = (12s)2 - 3(48s2) = ~w14 - ~wi2w22 

= ( W12 + wwl + w2wa2) ( wi2 + w2w22 + wwa2). 

Interchanging w2 and w3, if necessary, we have 

(20) (mod p). 

Conversely, if the wi are any quadratic residues satisfying 
(20) and if we defines and t by (191) and (17), we obtain a quartic 
(3) with the four real roots (18). If we permute w1, w2, w3 

cyclically we obtain solutions of (20) leading to the same s and 
t and to the same four roots (18). 

Our first problem is therefore to find all sets of solutions of 
(20). To this end it is necessary to treat separate:iy the cases 
- 1 a quadratic residue and - 1 a non-residue; viz., p = I2q + I 
and p = 12q + 7 (since already p = 3j + 1). 

First, let p = I2q + 1. Then - 1 = i2 (mod p), where i is an 
integer. Set 

2p = Wi - iww3, 2u = w1 + iwwa. 

Then (20) becomes 

4pu = - ww22 = (iw2w2)2, 

so that pu must be a quadratic residue. Hence we may take 
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u = p"fl-, where p and l are integers not divisible by p. Then 

(21) W1 = p(l + "fl-), W2 = 2u,,pl, Wa = iw2p(l - "fl-). 

We must exclude the values of l which lead to equal values of 
two of the w/, and hence to equal y/s, since the roots of (14) are 
incongruent. Now if any two of the w;2 in (20) are congruent, 
all three are congruent. But w12 = w22 implies 

1 +"fl-= ± 2iwl, (l =F iw)2 = w4, l = ± u,, + ew2 (e2 = l). 

The values l2 = 0, ± 1 make one of the Wi = 0. Hence we must 
exclude the 9 incongruent integral values of l: 

(22) l = 0, ± 1, ± i, w2 ± iw, - w2 ± u,,. 

Using the values (21), we get 

(23) 12s = p2 { (1 - w)(l + l4

) - 6w2 l2}, t = 2p 3 l(l4 

- 1), 

(24) ½(w1 + W2 + Wa) = ½P(l + u.J2) ( 1 + 1 !'~2 y. 
To make the negative of the last a square, we must take 

(25) p = - 2(1 + iw2)r2 (r $ 0). 

Nows, given by (23), is zero only when 

(26) 

The desired sets s, t are given by (23) and (25), where r is any 
integer not divisible by p, while l i<J any one of the p - 13 positive 
integers < p not congruent modulo p to one of the 13 incongruent 
integers (22), (26). The minimum p is 37. 

Second, let p = 12q + 7. Then >.,2 = - 1 (mod p) is irre­
ducible. Its roots i and - i = i-P are Galois imaginaries. Set 

(27) 71" = p + 1, (f = p - 1. 

There exists a linear function R of i with integral coefficients 
such that R,,,,. = 1, while no lower power of R is unity. Any 
function of i is zero or a power of R and any integer is a power of 
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R1r, a primitive root of p. Hence we may set 

w2w2 = R1r", W1 + wwai = R•, W1 - wwai = RP•, 

where 0 ~ 11 < u, 0 ~ e < 1ru. Then (20) is equivalent to 

R"• + R2" 71 = 0, 1re = 21r11 + ½1ru 

The last condition is equivalent to 

(mod 1ru). 

(28) e = 211 + u /2 + ju (0 ~ j < 7i). 
We have 

W2 = wR" 71, 2w1 = R• + RP•, 2w3 = - iw2(R• - RP•), 

2w2~w1 = 2R"71 + (w2 - iw)R• + (w2 + iw)RP•, 

(29) 
(w2 - iw)(w2 + iw) = - 1, 

(w2 - iwY = - 1, w2 - iw = R1" 12 

2w2~w1 = 2R"TI + R•+frr /2 - R1>c-/rr /2 

(f odd), 

= R" [j-(/+l) /2] (RTl-i+PU+I) /2 + Rp71-pj+(f+l) /2)2. 

The last binomial is its own pth power and hence is real. We 
desire that the root ½~w1 shall be the negative of a quadratic 
residue and hence a non-residue. Since R" is a primitive root 
of p, the condition is that j - (f + 1) /2 shall be odd: 

(30) f = 2l - 1, j - l = odd. 

We must exclude the values making wi2 = wl: 

0 = 2R" /2( W1 =i= W2) = R2.,,+rr+;rr =i= 2wR1r71+rr /2 - R2p71-jrr' 

the second term having been simplified by use of 

R"" 12 = - 1, RP"= R-". 

Completing the square of the first two terms, we get 

(R.,,+rrc;+1>12 =i= wRp.,,-rr;12)2 = (w2 + l)R2p.,,-rr;_ 

Now w2 + 1 = - w = (ciw2)2, where c = 1 or - 1. Hence 

R.,,+rr(j+l)/2 = (± W + ciw2)Rp71-rrjf2. 
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But 
(w + iw2)(w - iw2) = - 1, w + iw2 = Rvrrf2, 

(31) 
w - iw2 = - Jrvrr 12 (v odd). 

Hence we must exclude the four cases in which 

(32) 7/=j+½(±v+l), i+½(±v+1r+l) (mod 1r), 

these four values being incongruent. 
No one of the w's in (29) is zero, since e is odd by (28), so that 

e $ 0, 1r/2 (mod 1r). By (191) and (17), 

48s = (1 - w)(R2• + R2P•) + 6w2R2"", 
(33) 

4t = - iR""(R2• - R2P•). 

Finally, we must here exclude the cases in which s = 0. 
Combining ~w12 = 0 with (20), we obtain the necessary and 
sufficient condition w12 = wwa2 for s = 0. But w1 = ± w2w3, 

in connection with (29), gives 

R•(l ± UJ) = RP•(- 1 ± iw), R•(w ± iw2) 2 = RP•. 

Thus, by (31), the condition is that e ±vu= pe (mod 1ru) or 
e = ± v (mod 1r). Then, by (28), 7/ is congruent modulo 1r 
to one of the values (32) decreased by 1r/4. Hence the desired 
sets s, tare given by (33), subject to (28), in which the 8 incongruent 
11's given by (32) and those values decreased by 1r/4 are excluded. 
In particular, p > 7. 

For p = 19, the only admissible pairs are 

s = 2 . 221, t = 6(- 2) 31 (l = 0, 1, • • ·, 8). 

For any l, the negatives of the roots of quartic (3) are the products 
of - 3 = 42, 4, 7 = 82, - 8 = 72 by (- 2) 1 and hence are quad­
ratic residues of 19 since - 2 = 62• 

For p = 31, the only pairs are 

s=321, t=5(-3) 31 ; s=-321, t=13(-3)31 (l=0,··•,15), 

the negatives of the roots of (3) being the products of 7, - 11, 
- 12, - 15 and - 3, 5, 9, - 11, respectively, by (- "3) 1, and 
hence are quadratic residues of 31. 
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8. Case p = 3j + 1, st!::. =I= 0, I::. not a Cube.-The roots of (14) 
are now Galois imaginaries y, yP, yP'. As at the beginning of § 7, 

t2 = (y + 4s)(yP + 4s)(yP' + 4s) = (y + 4s)1+P"f-P'. 

Raise each member to the power (p - 1)/2. We see that y + 4a 
is the square of an element, say w, of the Galois field of order p3. 
The first root (18) is ½(w + wP + wP') and equals its own pth 
power, and hence is real. This is not true of the remaining roots 
(18), since wP =I= w, or since a real quadratic factor would imply 
that w is real. Hence the quartic has a single real root. 

For p = 7, the only cases in which the negative of the single 
real root is a quadratic residue are t = - 1 or 3, s = - 1, - 2, 3; 
t = 2, s arbitrary =I= 0. For p = 13, the only cases are 

±t=4,5,6; s=-1,-3,4 (s3 ==-I); 

± t = 1, 5, 6; s = - 2, - 5, - 6 (s3 s 5); 

and ± t = 3, - s equals one of the preceding six values of s. 

9. Cubic with t = 0, s =I= 0.-In this case, (3) becomes 

(lc2 - 3s)2 = 12s2• 

If there be a real root le, 3 is a quadratic residue of p, and 

lc2 = ls, l = 3 ± 2 ✓3. 

First, let p = 3j + 2, so that - 3 is a quadratic non-residue of 
p. Then - 1 must be a non-residue of p and hence p = 12r + 11. 
The product of the two l's is - 3, so that a single value of 1,2 is 
a quadratic residue. Since the two real Tc's are of opposite sign, 
there is a single real root k whose negative is a quadratic residue. 
Fort = 0, a =I= 0, and p = 12r + 5, there is a single real inflexion 
point; for p = 12r + 11, there are juat three real inflexion points. 

Finally, let p = 3j + 1, so that - 3 is a quadratic residue of p. 
If p = 12r + 7, then 3 is a non-residue, and there is no real k 
and hence a single real inflexion point. If p = 12r + 1, the 
four roots k are all real or all imaginary. For p = 13, k2 == - 28 

or - 5a, and - k is a quadratic residue if and only if /c6 == 1, 
a3 = 8, s = 2, 5, 6. For p = 37, lc2 = - 4s or 10s, and - k 
is a residue if and only if s9 = 1. 

The end 
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sentations, Doubly Periodic Functions, Natural Boundaries, etc. Problems. Index. 38 illus. 
269pp. Vol. 2, Part 2: Differential Equations, Cauchy-Lipschitz Method, Non-linear Differential 
Equations, Simultaneous Equations, etc. Problems. Index. 308pp. 53/e x 8. 

Vol. 1 S554 Paperbound $2.50 
Vol. 2 part 1 S555 Paperbound $1.85 
Vol. 2 part 2 S556 Paperbound $1.85 

3 vol. set $6-20 

MODERN THEORIES OF iNTEGRATION, H. Kestelman. Connected and concrete coverage, with 
fully-worked-out proofs for every step. Ranges from _element_ary definitions through . theory 
of !lggregates, sets of points, Riemann and Lebesgue integration, ~nd_ mu_ch mor~. This new 
revised and enlarged edition contains a new chapter on R1emann-St1elt1es integration, as well 
as a supplementary section of 186 exercises. Ideal for the mathematician, student, teacher, 
or self-studier. Index of Definitions and Symbols. General Index. Bibliography. x + 310pp. 
So/a x 83/e. S572 Paperbound $2.25 

THEORY OF MAXIMA AND MINIMA, H. Hancock. Fullest treatment ever written; only work in 
English with extended discussion of maxima and minima for functions of 1, 2, or n variables, 
problems with subsidiary constraints, and relevant quadratic forms. Detailed proof of each 
important theorem. Covers the Scheeffer and van Dantscher theories, homogeneous quadratic 
forms, reversion of series, fallacious establishment of maxima and minima, etc. Unsurpassed 
treatise for advanced students of calculus, mathematicians, economists, statisticians. Index. 
24 diagrams. 39 problems, many examples. 193pp. SJA! x 8. S665 Paperbound $1.50 

AN ELEMENTARY TREATISE ON ELLIPTIC FUNCTIONS, A. Cayley. Still the fullest and clearest 
text on the theories of Jacobi and Legendre for the advanced student (and an excell~nt 
supplement for the beginner). A masterpiece of exposition by the great 19th century British 
mathematician (creator of the theory of matrices and abstract geometry), it C(!Vers the 
addition-theory, Landen's theorem, the 3 kinds of elliptic integrals, transformations, the 
q-functions, reduction of a differential expression, and much more. Index. xii + 386pp. 5% x 8. 

S728 Paperbound $2.00 

THE APPLICATIONS OF ELLIPTIC FUNCTIONS, A. G. Greenhill. Modern books forego detail. for 
sake of brevity-this book offers complete exposition necessary for proper u~derstanding, 
use of elliptic integrals. Formulas developed from definite physical, geometric probl~m~; 
examples representative enough to offer basic information in widely us_ea~le form. Elliptic 
integrals, addition theorem, algebraical form of addition theorem, elli~t1c integrals of ~nd, 
3rd kind, double periodicity, resolution into factors, series, transformation, etc. lntrodduc$~0f5 
Index. 25 illus. xi + 357pp. 53/s x 8. S603 Paperboun • 

THE THEORY OF FUNCTIONS OF REAL VARIABLES, James Pierpont. A 2-volume authoritat(ve 
exposition, by one of the foremost mathematicians of his time. Each theorem s_tated w1.th 
all conditions, then followed by proof. No need to go through complicated reasoning _to dis­
cover conditions added without specific mention. Includes a particularly completr, t:orous 
presentation of theory of measure; and Pierpont's own work on a theory o e e_sgue 
integrals, and treatment of area of a curved surface. Partial contents, Vol. l:. rational 
numbers, exponentials, logarithms, point aggregates, maxima, minim~, prope_r integrals, 
improper integrals, multiple proper integrals, continuity, discontinuity, indeterm1~ate fo;ms. 
Vol. 2: point sets, proper integrals, series, power series, aggregates, ordin~ num. ers, 
discontinuous functions, sub-, infra-uniform convergence, much more. Index. 95 b11lus~at$1~n;0 1229pp. 53/e x 8. S558-9, 2 volume set, paper oun • 
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ELEMENTS OF THE THEORY OF REAL FUNCTIONS, J. E. Littlewood. Based on lectures given at 
Trinity College Cambridge, this book has proved to be extremely successful In introaucing 
graduate students to the modern theory of functio_ns. It offers a full and_ concise coverage 
of classes and cardinal numbers, well-ordered series, other types of series, and elements 
of the theory of sets of points. 3rd revised edition. vii + 7lpp. 53/a x 8. 

S171 Clothbound $2.85 
S172 Paperbound $1.25 

TRANSCENDENTAL AND ALGEBRAIC NUMBERS, A. D. Gelfond. First English translation of work 
by leading Soviet mathematician. Thue-Siegel theorem, its p-adic analogue, on approximation 
of algebraic numbers by numbers in fixed algebraic field; Hermite-Lindemann theorem on 
transcendency of Bessel functions, solutions of other differential equations; Gelfond-Schneider 
theorem on transcendency of alpha to power beta; Schneider's work on elliptic functions, 
with method developed by Gelfond. Translated by L. F. Boron. Index. Bibliography. 200pp. 
53/a x B. S615 Paperbound $1.75 

ELLIPTIC INTEGRALS, H. Hancock. Invaluable in work involving differential equations contain­
ing cubics or quartics under the root sign, where elementary calculus methods are inade­
quate. Practical solutions to problems that occur in mathematics, engineering, physics: 
differential equations requiring integration of Lame's, Briot's, or Bouquet"s equations; deter­
mination of arc of ellipse, hyperbola, lemniscate; solutions of proble~s in elastica; motion 
of a projectile under resistance varying as the cube of the velocI_ty; pendulums· many 
others. Exposition is in accordance with Legendre-Jacobi theory and includes rigorous dis­
cussion of Legendre transformations. 20 figures. 5 place table. Index. 104pp. 51/a x 8. 

S484 Paperbound $1.25 

LECTURES ON THE THEORY OF ELLIPTIC FUNCTIONS, H. Hancock. ~eissue of the only book 
in English with so extensive a coverage, especially of Abel, Jacobi, lege_ndr~, Weierstrasse 
Hermite, Liouville, and Riemann. Unusual fullness of treat_me_nt,_ plus appl1ca!1on~ as Well as 
theory, in discussing elliptic function (the universe of ell1pt1c integ~als originating_ in works 
of Abel and Jacobi), their existence, and ultimate meaning. Use I~ made o!_, Riemann to 
provide the most general theory. 40 page table of formulas. 76 figures. xxI11 + 49Bpp 

S483 Paperbound $2.SS 

THE THEORY AND FUNCTIONS OF A REAL VARIABLE AND THE THEO~Y OF FOURIER'S SERIES 
E. W. Hobson. One of the best introductions to set theory and various a~pects of functions 
and Fourier's series. Requires only a good background in cal~ulus. Prov1_d~s an exhaustive 
coverage of: metric and descriptive properties of sets of points; transfinite numbers and 
order types; functions of a real variable; the Riemann and Leb~sgue Integrals; sequences 
and series of numbers; power-series; functions representable by series sequences of continuous 
functions; trigonometrical series; representation of functions by Fourier's series; complete 
exposition (200pp.) on set theory; and much more. "The best possible guide," Nature. Vol I· 
88 detailed examples, 10 figures. Index. xv + 736pp. Vol. II: 117 detailed examples,· 13 
figures. Index. x + 780pp. 61/e x 9¼. Vol. I: S387 Paperbound $3.00 

Vol. II: S388 Paperbound $3.00 

ALMOST PERIODIC F~NCTIONS, A. S. Besicovitch. This unique and important summary by a 
well-known _ma_themat1c_ian covers in detail the two stages of devel~P")e_nt in ~ohr's theory of 
almost periodic functions: (1) as a generalization of pure period1c1ty, with results and 
proofs; (2) the work done by Stepanoff, Wiener, Weyl, and Bohr in generalizing the theory 
Bibliography. xi + 180pp. 53/a x 8. S18 Paperbound $1.75 

THE ANALYTICAL THEORY OF HEAT, Joseph Fourier. This book, which revolutionized mathe­
matical physics, is listed. in the_ Great Books program, and m~ny other list_in_gs of great 
books. It h~s b~en used with ~refit by generations of mathemat1c1ans and phys1c1sts who are 
lnteres_ted in either heat or in the application of the Fourier Integral. Covers cause and 
reflection of rays of heat, radiant heating, heating of closed spaces, use of trigonometric 
series in Jhe theory of heat, Fourier integral, etc. Translated by Alexander Freeman. 20 
figures. XXII + 466pp. 53/a x 8. S93 Paperbound $2.SO 

AN INTRODUCTION TO FO~RIER METHODS AND THE LAPLACE TRANSF~RMATION, Philip Franklin. 
Concertrates upon ess~ntIals, enabling the reader with only a workini: knowledge of calculus 
to gain '!n understanding of Fourier methods in a broad sense, suitable for most applica­
tions. This work covers complex qualities with methods of computing elementary functions 
for complex values of the argument and finding approximations by the use of charts· 
Fourier series and integrals with half-range and complex Fourier series; harmonic analysis: 
Fourier and Laplace transformations, etc.; partial differential equations with applications to 
transmission of electricity, etc. The methods developed are related to physical problems of 
heat flow, vibrations, elec_trical transmission, electromagnetic radiation, etc. 828 problems 
with answers. Formerly entitled "Fourier Methods." Bibliography. Index. x + 289pp. 53/a x 8. 

S452 Paperbound $2.00 

THE FOURIER INTEGRAL AND CERTAIN OF ITS APPLICATIONS, Norbert Wiener. The only book­
length study of the Fourier integral as link between pure and applied math. An expansion 
of lectures given at Cambridge. Partial contents: Plancherel's theorem, general Tauberian 
theorem, special Tauberian theorems, generalized harmonic analysis. Bibliography. viii + 
20lpp. 53/a x 8. S272 Paperbound $1.50 
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INTRODUCTION TO THE THEORY OF FOURIER'S SERIES ANO INTEGRALS, H. S. Carslaw. 3rd 
revised edition. This excellent introduction is an outgrowth of the author's courses at 
Cambridge. Historical introduction, rational and irrational numbers, infinite sequences and 
series, functions of a single variable, definite integral, Fourier series, Fourier integrals, and 
similar topics. Appendixes discuss practical harmonic analysis, periodogram analysis. Lebes­
gue's theory. Indexes. 84 examples, bibliography. xii + 368pp. 5¾ x 8. :;45 Paperbound $2.25 

FOURIER'S SERIES AND SPHERICAL HARMONICS, W. E. Byerly. Continues to be recognized as 
one of most practical, useful expositions. Functions, series, and their differential equations 
are concretely explained in great detail; theory is applied constantly to practical problems, 
which are fully and lucidly worked out. Appendix includes 6 tables of surface zonal har­
monics, hyperbolic functions, Bessel's functions. Bibliography. 190 problems, approximately 
half with answers. ix + 287pp. 51/e x 8. S536 Paperbound $1.75 

INFINITE SEQUENCES AND SERIES, Konrad Knopp. First publication in any language! Excel­
lent introduction to 2 topics of modern mathematics, designed to give the student back­
ground to penetrate farther by himself. Sequences & sets, real & complex numbers, etc. 
Functions of a real & complex variable. Sequences & series. Infinite series. Convergent 
power series. Expansion of elementary functions. Numerical evaluation of series. Bibliog­
raphy. v + 186pp. 5¾ x 8. S153 Paperbound $1.75 

TRIGONOMETRICAL SERIES, Antoni Zygmund. Unique in any language on modern advanced 
level. Contains carefully organized analyses of trigonometric, orthogonal, Fourier syst~ms. of 
functions, with clear adequate descriptions of summability of Fourier series, prox1mat1on 
theory, conjugate series, convergence, divergence of Fourier series. Especially valuable for 
Russian, Eastern European coverage. Bibliography. 329pp. 5¾ x 8. S290 Paperbound $2.DO 

DICTIONARY OF CONFORMAL REPRESENTATIONS, H. Kober. Laplace's equation In 2 dimensions 
solved In this unique book developed by the British Admiralty. Scores of geometrical f~rms 
& their transformations for electrical engineers, Joukowski aerofoil for aerodynam1sts. 
Schwarz-Christoffel transformations for hydrodynamics, transcendental functions. Contents 
classified according to analytical functions describing transformation. Twin diagrams show 
curves of most transformations with corresponding regions. Glossary. Topological index. 447 
diagrams. 244pp. 61/a x 9¼. S160 Paperbound $2.00 

CALCULUS OF VARIATIONS, A. R. Forsyth. Methods, solutions, rather than determination of 
weakest valid hypotheses. Over 150 examples completely worked-out show use .o! Euler, 
Legendre, Jacobi, Weierstrass tests for maxima, minima. Integrals with one ~ngrnal de­
pendent variable; with derivatives of 2nd order; two dependent variables, one rnd~pendent 
variable; double integrals involving 1 dependent variable, 2 first derivatives; double integrals 
involving partial derivatives of 2nd order; triple integrals; much more. 50 diagrams. 678pp5• 5% x 8¾. S622 Paperbound $2.9 

LECTURES ON THE CALCULUS OF VARIATIONS, 0. Bolza. Analyzes in detail the fundamental 
concepts of the calculus of variations, as developed from Euler to .Hilbert, with sharp formu­
lations of the problems and rigorous demonstrations of their solutions. More than a score 
of solved examples; systematic references for each theorem. Covers the necessary ~nd 1suffi­
cient conditions; the contributions made by Euler, Du Bois-Reymond, Hilbert, We1ers ~as+s, 
Legendre, Jacobi, Erdmann, Kneser, and Gauss; and much more. Index. Bibliography. x$11 65 271pp. 5¾ x 8. S218 Paperbound • 

A TREATISE ON THE CALCULUS OF FINITE DIFFERENCES, G. Boole. A classic in the literature 
of the ~alculus. Thorough, clear discussion of basic principles, theorems, methods. Covers 
MacLaunn's and Herschel's theorems, mechanical quadrature factorials, periodical constants, 
Be_rnoul[l's i:iumber~, difference-equations (linear, mixed, a'nd partial), etc. S~r~sses anal­
ogies with d1fferent1al calculus. 236 problems, answers to the numerical ones. v111 + 336pp. 
5¾ x 8. S695 Paperbound $1.85 

Prices subject to change without notice. 

Dover publishes books on art, music, philosophy, literature, languages, 
history, social sciences, psychology, handcrafts, orientalia, riizzle~ and 
entertainments, chess, pets and gardens, books explaining scien~e, in~er­
mediate and higher mathematics, mathematical physics, engineering, 
biological sciences, earth sciences, classics of science, etc. Write to: 

Dept. catrr. 
Dover Publications, Inc. 
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An Introduction to the Geometry of N Dimensions, D. M. Y. Sommerville. 
$1.50 

Elements of Non-Euclidean Geometry, D. M. Y. Sommerville. $1.50 

The Methods of Statistics, L. H. C. Tippett. Clothbound $7.50 
The Theory of Determinants, Mutrices, and Invariants, H. W. Turnbull. 

$2.25 
An Intrnduction to the Theory of Canonical Matrices, H. W. Turnbull 

and A. C. Aitken. $1.55 

Elements of Number Theory, I. M. Vinogradov. $1.75 

Theory of Functionuls and of Integral and Integro-Differentiol Equo­
tions, Vito Volterrn. $1.75 

The Schwarz-Christoffel Transformation rrncl Its Applicotions: A Simple 
Exposition, Miles Walker. $1.25 

Algebraic Curves, Robert J. Walker. $1.60 

Selected Pupcrs on Noise und Stochastic Processes, edited by Nelson 
Wax. $2.50 

Purtiul Differnnticd Equutions of Mathemutical Physics, Arthur G. 
Webster. $2.00 

Lectures on Matrices, James Wedderburn. $1.65 

The Theory of Grnups rrnd Quuntum Mechanics, Hermann Weyl. $2.25 
The Fourier lntegrnl and Certain of Its App/icotions, Norbert Wiener. 

$1.50 

Prnctical Analysis: Grnphical and Numericrd Methods, Frederick A. 
Willers. $2.00 

Vector AnuJysis with cm Introduction to Tensor Analysis, Albert P. Wills. 
$1.75 

Advanced Cu/culus, Edwin Il. Wilson. $2.45 
An Introduction to Projective Geometry, Roy M. Winger. $2.00 
Higher Geometry: An Introduction to Advanced Methods in Analytic 

Geometry, Frederick S. Woods. $2.00 
Monographs on Topics of Modern Mutlwmatics, edited by]. W. A. Young. 

$2.0() 

The Advrmced Geometry of PJonc Curves c111cl Their Applicutions, 
C. Zwikker. $2.00 

Trigonometricnl Series, Antoni Zygmund. $2.00 

Paperbound unless otherwise indicated. Prices subject to change with­
out notice. Available al your book dealer or write for free catalogues lo 
Dept. Admath, Dover Publicntions, Inc., 180 Varick St., N. Y .. N. Y.10014. 
Please indicate your ficild of interest. Dover publishes over 125 new 
books nnd records m1ch year on science, elementary and advanced math­
ematics. puzzles, arl, philosophy, religion, Iangunges, classical music. and 
othcir areas. 



oN 
INVARIANTS 

ANo'THE 
THEORY OF NUMBERS 

LEONARD EUGENE 
DICKSON 

Historically, thi s b ok is of enorn1011s importance. Originally pub­
li s hed in 1914. it wasli11: firstp ublicforn111la1ionofDickson's theory 
of i11va ri a11 rs for the modu lar forms and linear transformations em­
ployed i 11 th · th <.:or of nun1bers. This new theory int roduced much 
s i111 p1<.: 1- m e th o d s into 1ht: theo ry of nur~bcrs than had previou~ly 
b e ·n possib le. \\ bile 110 longer revolutionary, the book remams 
re fr ·shingly lucid. 

ln man y sc tions of thl' five lccwres included here, Dickson aimed 
not at compkt<.: gcn cra lil)'· but at an illumination of typical and 
s u gg<.·s ti vc top ics . The i111ruduc1ory first lec ture is followed by sec­
ti o n s on sc111111 var ia11 1s of algebra ic and modular binary forms; 
in varian ts of a m odu l:1 r group and forma l invariants and cova riants 
of modular fon11 s ; modular geometry and covaria111ive theory of 
a quadratic fo rm in 111 ,·ariablcs, mod ulo 2; and a theory of pla1:e 
ubic tir,· ·s w ith a real i111lcxion point va lid in ordinary and 111 

modu lar geome t ry. 

\ ,V i t hin t hcsc. Dick on sing-lcs out such topics as methods for the 
case fJ > 11, th e dcri, ati o11 of modu lar in variants from seminvari­
an ts. J [11rwitz' problem , the fon11 problem for the total binary 
modular gro up , th c covariant line of a conic, the covariant plane of 
a dcgcn <.Ta tc quadric surface. the 11or111al form of a ternary cubic, 
and ni tc1·ia for 9, 3 or I rea l inOcx ion points. 

\ Vr i r te n b y o n e o f r h • 111os1 important men of his age in the theory 
of 11 u11il il'rs. 1 hi s book IJ ;is the i11 ca lcu lablc advantage of being 
a c lea r at:co 11 11t of it s adva nced in :i th ematica l material. It is a perfect 
b eginni n g p o int for st ud ents of this area of number theory. 

l 11 al>r icl gcd re p11b li ca tio11 of Th e J\fadiso11 Colloquiwn, 191 3 
(Pa rt I). Bibliograp h y in footno tes. ix+ IIOpp. 51/sxB½. 

• Sl667, Paperbound Sl.50 

A DOVER ED IT ION DESIGNED FOR YEARS OF USE! 

We h ave m a d e eve ry e ffort 10 make this the best book possi_ble. Our 
p a per is opaq ue. with n 1i ni111a l show-through; it will not discolor or 
becom e I.nit ti e with age , Pages arc sewn in signa tures, in the method 
tra ditiona l ly u sed for th e best books. an,· f>:i\ , • • -· "'' "" 
h appen s with pape rbacks held together ~ L1hni1J ..-_ IIAS, Shimla 

!o;c:::n;~:c~~~f: The "'""'"• "'" • 11111111~11i~~l~ll1i!11/1111~111 
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