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INTRODUCTION

A simple theory of invariants for the modular forms and linear
transformations employed in the theory of numbers should be
of an importance commensurate with that of the theory of
invariants in modern algebra and analytic projective geometry,
and should have the advantage of introducing into the theory
of numbers methods uniform with those of algebra and geometry.

In considering the invariants of a modular form (a homo-
geneous polynomial with integral coefficients taken modulo p,
where p is a prime), we see at once that the rational integral
invariants of the corresponding algebraic form with arbitrary
variables as coefficients give rise to as many modular invariants
of the modular form, and that there are numerous additional
invariants peculiar to the case of the theory of numbers. More-
over, nearly all of the processes of the theory of algebraic in-
variants, whether symbolic or not, either fail for modular in-
variants or else become so complicated as to be useless. For
instance, the annihilators are no longer linear differential oper-
ators. The attempt to construct a simple theory of modular
invariants from the standpoints in vogue in the algebraic theory
was a failure, although useful special results were obtained in
this laborious way. Later I discovered a new standpoint which
led to a remarkably simple theory of modular invariants. This

standpoint is of function-theoretic character, employing the
1



2 THE MADISON COLLOQUIUM.

values of the invariant, and using linear transformations only in
the preliminary problem of separating into classes the particular
forms obtained by assigning special values to the coefficients of
the ground form. As to the practical value of the new theory as
a working tool, it may be observed that the problem to find a
fundamental system of modular seminvariants of a binary form is
from the new standpoint a much simpler problem than the cor-
responding one in the algebraic case; indeed, we shall exhibit
explicitly the fundamental system of modular seminvariants for a
binary form of general degree.

It will now be clear why these Lectures make no use of the
technical theories of algebraic invariants. On the contrary, they
afford an introduction to that subject from a new standpoint
and, in particular, throw considerable new light on the relations
between the subjects of rational integral invariants and tran-
scendental invariants of algebraic forms and the corresponding
questions for seminvariants. Again, I shall make no use of
technical theory of numbers, presupposing merely the concepts
of congruence and primitive roots, Fermat’s theorem, and (in
Lectures IIT and V) the concept of quadratic residues.

The developments given in these Lectures are new, with
exceptions in the case of Lecture I, which presents an intro-
duction to the theory, and in the case of the earlier and final
sections of Lecture III. But in these cases the exposition is
considerably simpler and more elementary than that in my
published papers on the same topics. The contacts with the
work of other writers will be indicated at the appropriate places.
Much light is thrown upon the unsolved problem of Hurwitz
concerning formal invariants.

In many parts of these Lectures, I have not aimed at complete
generality and exhaustiveness, but rather at an illumination of
typical and suggestive topics, treated by that particular method
which I have found to be the best of various possible methods.
Surely in a new subject in which most of the possible methods are
very complex, it is desirable to put on record an account of the
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simple successful methods. Finally, it may be remarked that
the present theory is equally simple when the coefficients of the
forms and linear transformations are not integers, but are ele-
ments of any finite field.

I am much indebted to Dr. Sanderson and Professors Cole
and Glenn for reading the proof sheets.



LECTURE I

A THEORY OF INVARIANTS APPLICABLE TO ALGEBRAIC AND
MODULAR FORMS
INTRODUCTION TO THE ALGEBRAIC SIDE OF THE THEORY BY
MEANs oF THE EXAMPLE OF AN ALGEBRAIC QUADRATIC
Form IN m VariasrLes, §§ 1-3

1. Classes of Algebraic Quadratic Forms.—Let the coefficients of

¢)) qm = i Bijxix; B = Bsj)

1,J=1

be ordinary real or complex numbers. Let the determinant
2) D = || @Gj=1,--,m)

of a particular form g, be of rank » (» > 0); then every minor of
order exceeding r is zero, while at least one minor of order r is
not zero. There exists a linear transformation of determinant
unity which replaces this ¢, by a form*

3 ax?+ -+t ax? (rF0, -, a F0).

Indeed, if 811 F 0, we obtain a form lacking za., ---, 212 by
substituting

z; — Bu(Brexe + -+ + Bimm)

for z;. If By = 0, B:; + 0, we substitute @; for a; and — @
for z;; while, if every Bix = 0, and Bi2 F+ 0, we substitute
Zy + ; for z,; in either case we obtain a form in which the co-
efficient of z;2 is not zero. We now have a2, + ¢, where
a1 F 0 and ¢ involves only 22, ---, 2n. Proceeding similarly
with ¢, we ultimately obtain a form (3).

Now (3) is replaced by a similar form having a; = 1 by the

* Note for later use that each «x and each coefficient of the transformation
is a rational function of the #’s with integral coefficients.
4
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transformation
Ty = a],—&.'l?l,, Ty = alixm'y Ty = xi’ ('i = 2} cre, M — 1)

of determinant unity. Hence there exists a linear transforma-
tion with complex coefficients of determinant unity which
replaces ¢, by

“4) 24 oo F 2l + Dzn?, x4 -2l

according as r = m or r < m. In the first case, the final co-
efficient is D since the determinant (2) of a form g equals that
of the form derived from g, by any linear transformation of de-
terminant unity. Hence all quadratic forms (1) may be separated
into the classes

(5) Cm.D: Cr (D#O,r=0,1,---,m—1),

where, for a particular number D # 0, the class Cn, p is composed
of all forms g¢,, of determinant D, each being transformable into
(4,); while, for 0 < r < m, the class C, is composed of all forms
of rank r, each being transformable into (42); and, finally, the
class Co is composed of the single form with every coefficient
zero. In the last case, the determinant D is said to be of rank
zero. Using also the fact that the rank of the determinant of a
quadratic form is not altered by linear transformation, we con-
clude that two quadratic forms are transformable into each other
by linear transformations of determinant unity if and only if they
belong to the same class (5).

2. Single-valued Imvariants of gm—Using the term function
in Dirichlet’s sense of correspondence, we shall say that a single-
valued function ¢ of the undetermined coefficients B;; of the
general quadratic form g, is an tnvariant of ¢, if ¢ has the same
value for all sets B;;, 8%}, - -+ of coefficients of forms g, ¢y, - -
belonging to the same class.* The values v, p, v, of ¢ for the
various classes (5) are in general different. For example, the

determinant D is an invariant; likewise the single-valued func-

* Briefly, if ¢ has the same value for all forms in any class.
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tion r of the undetermined coefficients 8;; which specifies the rank
of B

Each consistent set of values of D and r uniquely determines a
class (5) and, by definition, each class uniquely determines a
value of ¢. Hence ¢ is a single valued function of D and r.

Every single-valued invariant of a system of forms s a single-
valued function of the invariants (D and r tn our example) which
completely characterize the classes.

3. Rational Integral Invariants of ¢m..—If the invariant ¢ is a
rational integral function of the coefficients 3;;, it equals a rational
integral function of D. For, if the 8’s have any values such
that D + 0, ¢ has the same value for the form (1) as for the
particular form (4;) of the same class. Hence ¢ = P(D),
where P(D) is a polynomial in D with numerical coefficients.
Since this equation holds for all sets of 3’s whose determinant
is not zero, it is an identity.

INTRODUCTION TO THE NUMBER THEORY SIDE OF THE
THEORY OF INVARIANTS BY MEANS OF THE EXAMPLE
OoF A MopurLar QuapraTic FormM, §§ 4-7

4. Classes of Modular Quadratic Forms qm.—Let 21, - -+, & be
indeterminates in the sense of Kronecker. Let each 8;; be an
integer taken modulo p, where p is an odd prime. Then the
expression (1) is called a modular quadratic form. By § 1, there
exists a linear transformation, whose coefficients are integers*
taken modulo p and whose determinant is congruent to unity,
which replaces ¢ by a quadratic form (3) in which each e is an
integer not divisible by p. Thust each ax is congruent to a
power of a primitive root p of p. After applying a linear trans-
formation of determinant unity which permutes x:%, ---, a,%,
we may assume that oy, ---, o, are even powers of p and that
Qsq1, -+, a, are odd powers of p. The transformation which

* Perhaps initially of the form a/b, where a and b are integers, b not divisible

by p. But there exists an integral solution g of ¢b = @ (mod p).
TForp=5,p=21=29,2=2,3=24 =2 (mod 5).
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multiplies a particular x; (¢ < m) by p* and z,, by p~* is of de-
terminant unity.

First, let r < m. Applying transformations of the last type
to (3), we obtain
(6) x4 oo+l paly, + oo+ pat
Under the transformation of determinant unity

2= aXi+ BX;, = —BXi+aXy wn= (0 + ) Xn,
2% 4 2, becomes (a? + 2 (X2 + X;2). Choose* integers «, 8
so that
(7) pl2+8)=1 (mod p).
Hence the sum of two terms of (6) with the coefficient p can be
transformed into a sum of two squares. Thus by means of a
linear transformation, with integral coefficients of determinant
unity, ¢» can be reduced to one of the forms
@) a+ - +al +a alt -l tex? (0<r<m).

Next, let r = m. We obtain initially

e R o T P:Uf-n + .-+ Px,z,;—x + ozt
in which o need not equal p asin (6). If there be an even number
of terms with the coefficient p, we obtain as above a form of
type (41). In the contrary case, we get
f=al4+ - 4ol + o2, + p Dy,
If D = p?1 (mod p), f is transformed into (41) by
Typ—1 = — Ple: Tm = P—le-l-
But if D = p%, f is reduced to (4,) by the transformation
Ty = aXpoy + 602 X, am = — 06Xy + apXam,
pla? + p?7%%) =1,

*IU p =5, p =2, we may take @« = 8 = 2. For any p, either there is an
integer ! such that 2 = — 1 (mod p) and we may take p(a +1I8) =1,
@ — I8 = 1; or else 22 + 1 takes 1 + (p — 1)/2 incongruent values modulo p,
no one divisible by p, when z ranges over the integers 0, 1, ---, p — 1, so
that 22 + 1 takes at least one value of the form p2~!. In the latter event,
a = p~° B = xa satisfy (7).
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of determinant unity. The final condition is of the form (7)
with 8 = p*'6 and hence has integral solutions «, 6.
Hence the classes of modular quadratic forms are

Cm. Dy Cr. 1, Cr, -1 CO

9
() (D=1:""P—1;T=1;"°,m—1),

where Cn, p 1s composed of all modular quadratic forms whose
determinant is a given integer D not divisible by p, each being
transformable into (4,), where C,, ; and C,, —; are composed of
all forms transformable into (8;) and (8;) respectively, and Cj is
composed of the form all of whose coefficients are zero.

Two modular quadratic forms are transformable into each other
by linear transformations with integral coefficients of determinant
unaty modulo p if and only if they belong to the same class (9).
Indeed, since D and r are invariants,* it remains only to show
that the two forms (8) are not transformable into each other.}
But if a linear transformation

951=201in;' (7:= 1: ""m)
J=1

replaces f = 2+ -+ + 22by F = X2+ .- 4+ X2, + pX.%
then, for j > r,

o S 0 Om_ e
aX 22‘2‘: ‘aX ax; = 0 aX’.—aﬁ"O E<rj>n,

r
i = 2 ayX; @=1,---,1).
=t

Hence under this partial transformation on 23, - - -, z,, we would
have f = F. Thus the determinant of F would equal |a;l|?
times the determinant unity of f and hence equal an even power
of p. But the determinant of F is actually p.

* r is now the maximum order of a minor not divisible by p.

t An immediate proof follows from the values taken by the invariant 4,
given below. But as the necessity of constructing A, is based upon the fact
that the forms (8) do not belong to the same class, it seems preferable to prove
the last fact without the use of A4,.
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The invariants D and r therefore do not completely characterize
the classes of modular quadratic forms, a result in contrast to
that for algebraic quadratic forms. We shall give a criterion
to decide whether a given form of rank r (0 < r < m) is of class
C:, 1 or of class C,, _; and later deduce an invariantive criterion.

5. Criterion for Classes C. .1.—Such a criterion may be
obtained from Kronecker’s elegant theory of quadratic forms.*
We shall make use of the theorem that a symmetrical determinant
of rank r (r > 0) has a non-vanishing principal minor M of order
r, 1. e., one whose diagonal elements lie in the main diagonal of
the given determinant.f After an evident linear transformation
of determinant unity, we may set
(10) M= |ﬂi.1'| $ 0 (mOd P) (Z,] = ]-’ R 7’).

In the present problem, »r < m. To ¢. apply the transforma-

tion .
= X;+ cilXm (’L=1,"‘,T),

v = X; (i=r+1,-°-,m)
of determinant unity in which the ¢; are integers. We get

m—1 m—1 »
S BuXiX; + 22 BinXiXo+ ( 3" Bint; + Bum ) X2
j=

i, j=1 Jj=1
where
BJ'm = iz ﬁijci + .Bjm (.7 =1--, 777«)-
=1
In view of (10) there are unique values of ¢, - -, ¢r such that
Bin=10 (mod p) G=1,--,7

But the determinant of the coefficients of ¢, *«+, ¢r, 1 In

Blmy B2m, M Brm, Bkm (1‘ < k g 7n)

* Kronecker, Werke, vol. 1, p. 166, p. 357; cf. Gundelfinger, Crelle, vol. 91
(1881), p. 221; Bécher, Introduction to Higher Algebra, p. 58, p. 139.

+ The most elementary proof is that by Dickson, Annals of Mathematics,
ser. 2, vol. 15 (1913), pp. 27, 28. For other short proofs, see Wedderburn,
ibid., p. 29, and Kowalewski, Determinantentheorie, pp. 122-124.
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is the minor of Bi» in the determinant
Iﬁfil @G i=1 -1k m)

and hence is zero, being of order r + 1. Hence Bin = 0. Thus
¢m has been transformed into

m—1

2 B XX,

t,J=1

After repetitions of this process, ¢n is transformed into*

(11) > B

1,J=1

This form, of determinant M, can be reduced (§ 4) to
x4 - 2l + Mz?

by a linear transformation on z;, - - -, z, with integral coeflicients
of determinant unity modulo p. Express M as a power p?t¢
(e =0 or 1) of a primitive root. Since r < m, we may replace
x, by p~%2, and zn» by p'z, and obtain (8;) or (8;) according as
e=0ore=1Now p» D2 is not congruent to unity, but its
square is congruent to unity modulo p, by Fermat’s theorem;
hence it is = — 1. Thus, in the respective cases,

p—1

(12) MT=+41 or —1 (mod p).

Hence if a form is of rank » and if M is any chosen r-rowed
principal minor not divisible by p, the form is of class C,, ; or
C,, —1 according as the first or second alternative (12) holds.

6. Invariantive Criterion for Classes Cr, .1.—A function which
has the value + 1 for any form of class C;, 41, the value — 1 for
any form of class C,,_;, and the value zero for the remaining
classes Cpn, p, Co, Ck, .1 (k ¥ r), i3 an invariant (§ 2). This
functiont is

* This proof and the results in §§ 4-13 are due to Dickson, Transactions of
the American Mathematical Society, vol. 10 (1909), pp. 123-133.
t Constructed synthetically in the paper last cited.
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p—1 -1
A, ={M; T + M, (1 — M
13) (M1 % 4+ M ( ) +

p—1
+ ﬂ,[n 2 (1 — ]‘Ilp—l) oo (1 — Mr-! }H(l _ dp—l),

n—1

where M, - -, M, denote the principal minors of order r taken
in any sequence, and d ranges over the principal minors of orders
exceeding . For, if any d £ 0, the rank exceeds r and A4, =
by Fermat’s theorem. Next, let every d = 0, so that the rank
is 7 or less, and the final factor in (13) is congruent to unity.
Then, if every M;= 0, the rank is less than r and A4,= 0.
But, if M, £ 0,

r—1

A4, =MyT==+1 (modp),
by (12), the sign being the same asin C;, .. If M1 = 0, M, % 0,

p—1

etc. Note for later use that

p_—l
(14) An=D7?.
7. Rational Integral Invariants of ¢»—The function
(15) IO= H(l— fj_l) ('i)j= 1:""m; ié])

has the value 1 for the form (of class () all of whose coefficients
are zero and the value O for all remaining forms ¢,, and hence
is an invariant of ¢,. We now have rational integral invariants

(16) Dy Aly tt Am-l; IO

which completely characterize the classes (9). Hence, by the
general theorem in § 12, any rational integral invariant of the
modular form g, is a rational integral function of the invariants
(16) with integral coefficients. In other words, invariants (16)
form a fundamental system of rational integral invariants of gy.

If we employ not merely, as before, linear transformations
with integral coefficients of determinant unity modulo p, but
those of all determinants, we obtain at once the classes

Cr, «1, Co (r=1,---, m),
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and see that these are characterized by Ai, ---, An, Io. The
latter therefore form a fundamental system of rational integral
absolute invariants. But D is a relative invariant.

GENERAL TaEORY OF MoDULAR INVARIANTS, §§ 8-14

8. Definitions.—Let S be any system of forms in @, -+, an
with undetermined integral coefficients taken modulo p, a prime.
Let G be any group of linear transformations on x, :--, an,

with integral coefficients taken modulo p. The particular systems
S’, 8, ..., obtained from S by assigning to the coefficients
particular sets of integral values modulo p, may be separated into
classes Cy, C1, --+, Crn_1 such that two systems belong to the
same class if and only if they are transformable into each other
by transformations of G.

A single-valued function ¢ of the coefficients of the forms in
the system S is called an 7nvariant of S under G if, for 2 =0, 1,
-+, n — 1, the function ¢ has the same value v; for all systems
of forms in the class C..

In case the values taken by ¢ are integers which may be
reduced at will modulo p and congruent values be identified,
the invariant is called modular. Since this reduction can be
effected on each coefficient of the modular forms comprising our
system S, any rational integral invariant of S is a modular
invariant.

An example of a non-modular invariant is the transcendental
function r defining the rank of the determinant of the modular
quadratic form ¢,. The values of r are evidently not to be
identified when merely congruent modulo p. However, the
residue of r modulo p is a modular invariant, since

(17) r=A24 242+ - + md,2  (mod p).

9. Modular Invariants are Rational and Integral.—Any modular
invariant ¢ of a system S of modular forms can be identified with a
rational integral function (with integral coefficients) of the
coefficients ¢1, - -+, ¢, appearing in the forms of the system S.
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For, if
¢ =10,.,, When ci=¢e;, +-,c,=e¢, (mod p),

then ¢ is identically congruent (as to ¢y, - - -, ¢;) to

p—1

(18) S e I_I (1= (c; — e},

€1y vy =0
as shown by Fermat’s theorem.

10. Characteristic Modular Invariants.—The characteristic in-
variant I of the class C} is defined to be that modular inva-
riant which has the value unity for systems of forms of the
class Cx and the value zero for any of the remaining classes.

For example, for a single quadratic form ¢, I, is given by
(15), while the characteristic invariants for the classes C,, 1 and
C,, 1 are

(19) I =342+ 40, I, =347 — 4.

For any system of forms with the coefficients ¢, -+, ¢;, We
have

(20) I, = Ef_I {1 — (c; — ;M) 1Y,

where the sum extends over all sets of coefficients ¢;®, - - -, ¢,®
of the various systems of forms of class Cix. In particular, in
accord with (15),

(21) L=1Ia— e,

11. Number of Linearly Independent Modular Imvariants.—
Since any modular invariant I takes certain values vg, - -, ¥a—1
for the respective classes Cy, - -+, Cn—1, we have

(22) I=wly+uli+ -+ Vn—1n—1.

Hence any modular invariant can be expressed in one and but
one way as a linear homogeneous function of the characteristic
invariants. Moreover, the number of linearly independent
modular tnvariants equals the number of classes.
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For example, using (19), we see that a complete set of linearly
independent modular invariants of the quadratic form g¢n
modulo p (p > 2) is given by

23) I, 4,y A2 (r=1,---,m—1), D*¥ (k=1,---,p—1).

12. Fundamental Systems of Modular Invariants.—While, by
(22), the characteristic invariants Iy, - - -, I,—; form a fundamental
system of modular invariants of a system S of modular forms, it
is usually much easier to find another fundamental system. In
fact, certain invariants are usually known in advance, e. g., the
invariants of the corresponding system of algebraic forms. We
shall prove the following fundamental theorem:

If the modular invariants A, B, - -+, L completely characterize
the classes, they form a fundamental system of modular invariants.

For example, Iy, ---, I,—1 evidently completely characterize
the classes and were seen to form a fundamental system.

Let ci, - - -, ¢, be the coeflicients of the forms in the system S.
Let each ¢; take the values 0, 1, ---, p — 1. For the resulting
p* sets of values of the ¢’s, let the rational integral functions
A,B, ---, Lof ¢y, ---, ¢, take the distinct sets of values

Ay By -+, Li (2=0,--.,n—1).
Thus there are n classes of systems S and by hypothesis the 7th
class is uniquely defined by the values 4;, - - -, L; of our invariants.
A rational integral invariant ¢(cy, - -, ¢;) takes the same value
for all systems of forms in the dth class, so that this value may
be designated by ¢.. Now the polynomial

n—1
P(4,B, -+, 1) = Zsll = (4 — 4y} {1 — (L — L)
is congruent to ¢; when 4 = 4, ---, L= L; (mod p). Hence
¢(CI; Tty Cs)EP(A, B: crey L) (mod p)

for all sets of integral values of ¢;, - -+, ¢, In view of Fermat’s
theorem, we may assume that each exponent in ¢(cy, - - -, Cs)
is less than p. If we replace 4, ---, L by their expressions in
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terms of the ¢’s, P (4, - - -, L) becomes a polynomial, which, after
exponents are reduced below p, will be designated by ¢ (cy, - - -, ¢,)-
Then ¢ and ¢ are identically congruent in ¢;, ---, c,, that is,
corresponding coefficients are congruent modulo p. In fact, a
polynomial of type ¢ is uniquely determined by its values for
the p* sets of values of ¢;, -+ -, ¢;, each chosen from 0, 1, ---,
p —1(§9). Hence ¢ can be expressed as a polynomial in .,
-+, L with integral coefficients.*

13. Minor Réle of Modular Covariants.—In contrast with the
case of algebraic forms, the classes of modular forms are com-
pletely characterized by rational integral invariants. Such
invariants therefore suffice to express all invariantive properties
of a system of modular forms. In this respect, modular co-
variants play a superfluous réle. For instance, a projective
property of a system of algebraic forms is often expressed by
the identical vanishing of a covariant. But if C is a modular
covariant with the coefficients ¢, - -+, ¢5, then I given by (21)
is a modular invariant of C' and hence of the initial system of
forms. We have C = 0 or C % 0 (mod p) identically, according
as Ip=1or I, = 0.

14. References to Further Developments.—This general theory of
modular invariants has been applied by me to determine a com-
plete set of linearly independent modular invariants of ¢ linear
forms on m variables,t and a fundamental system of modular
invariants of a pair of binary quadratic forms and of a pair of
binary forms, one quadratic and the other linear.}

The theory has been extended to combinants and applied to a
pair of binary quadratic forms.§

* This correct theorem for any finite field cannot be extended at once to
any field as stated by me in American Journal of Mathematics, vol. 31 (1909),
top of p. 338.

t Proceedings of the London Mathematical Soctety, ser. 2, vol. 7 (1909),
pp. 430444,

1 American Journal of Mathematics, vol. 31 (1909), pp. 343-354; cf. pp.
103-146, where a less effective method is used.

§ Dickson, Quarlerly Journal of Mathematics, vol. 40 (1909), pp. 349-366.




LECTURE 1II

SEMINVARIANTS OF ALGEBRAIC AND MODULAR BINARY
FORMS

INTRODUCTORY EXAMPLE OF THE BiNARY QUARTIC FORM, §§ 1-6

1. Comparative View.—Let the forms
f = aer? 4+ 4a,2%y + 6a.2%? 4 4asxy® + aqy?,

with real or complex coefficients, be separated into classes such
that two forms f are transformable into one another by a trans-
formation of type

1) =2+ ty, y=1v,
if and only if they belong to the same class. Then a single-
valued function S(ag, :--, a4) is called a seminvariant of f if

it has the same value for all of the forms in any class.

By the repeated application of this definition and without the
aid of new principles, we shall obtain a fundamental system of
rational integral seminvariants of f, then on the one hand the
additional single-valued seminvariant needed to form with these
a fundamental system of single-valued seminvarints, and on the
other hand the additional rational integral modular seminvariants
neec-led to form with them a fundamental system of modular
Seminvariants of f. It is such a comparative view that we desire
to emphasize here. In later sections, we shall show that it is
usua!ly much simpler to treat the modular case independently
and. In particular without introducing all of the algebraic semin-
variants, which become very numerous and most unwieldy for
forms of high degree. The rational integral seminvariants
S of an algebraic form are of special importance since each is
the leading coefficient of one and but one covariant, which can
be found from S by a process of differentiation. For example,

the seminvariant q, is the leading coefficient of the covariant f.
16
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2. The Classes of Algebraic Quartic Forms.—Consider a quartic
form f in which ay is the first non-vanishing coefficient. Apply
transformation (1) with

— Q41
2 t=7——1.
@) &+ Das
We obtain a form having zero in place of the former azy;. Drop-
ping the accents on 2/, ¥/, we obtain, for £ = 0, 1, 2, 3, the re-
spective forms

3) ao #+ 0: apxt + 6a¢71S2%y? 4+ 4ao2S:2y® + ao 384yt
4) ap=0, a+0: 4a:2%y + a8y + a2 Sy,
(5) ap=a=0, asF0: Baxx®y® + Fas1S24y4,
6) ap=a1=0a=0, az=+0: 4azzy?,
(7 ay=a1=a;=a3=0: asyt,
no transformation having been made in the last case. Here

(8) S = agas — a?, 83 = ag’az — 3apmas + 2a:3)

9) Ss = ad’as — 4ag’aya; + Gacar’a; — 3art,

10 Si3 = 4aa; — 3a2?, Su = ar’as — 2maz0; + add,
( ) 824 = 30204 - 2(132.

If we apply to one of the forms (3)-(6) a transformation (1)
with ¢ & 0, we obtain a form having an additional (second)
term. Hence no two of the forms (3)—(7) can be transformed
into each other by a transformation (1), so that each represents
a class of forms. For example, there is a class (5) for each set
of values of the parameters az and Sq4 (az ¥ 0).

3. Rational Integral Seminvariants of an Algebraic Quartic.—
First, ao is a seminvariant since it has a definite value # 0 for
any form in any class (3) and the value zero for any form in
any class (4)-(7). Next, Ss, S3 Sy are seminvariants, since
they have constant values

(11) Sz = — (112, Ss = 2013, S4 = — 3(114 (lf ag = 0)
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for any form in any class (4)—(7), and constant values for any
form of a definite class (3), for which therefore ao has a definite
value # 0 and a¢’S;, ---, and hence each S; has a definite
value. Moreover, these seminvariants ao, Sz, S, Ss completely
characterize the classes (3).

Consider a quartic form f in which ao, a1, as, as, as are arbi-
trary, except that ap # 0. Any rational integral seminvariant
S(ao, - - +, as) has the same value for f as for the particular form
(3) in the same class as f. Hence

S = S(ao, O, S2 S_a. &) — ¢(a0, S2, 'Ss, S4) ,

ag’ a®’ ai ay’

where ¢ is a rational integral function of its arguments. We
therefore seek such functions ¢ as are divisible by a power of aq,

and hence by (11) in which the terms involving only a; cancel.
The function of lowest degree is evidently

(12) Ss+ 3852 = afl, I = a¢as — 4a1a; + 3a.?.
The next lowest degree is 6 and the function is
dSy8s + €Ss2 + (3d + 4e)S.3.
The coefficient of d is agl, S, that of e is
S@ + 487 = ag?D
(D = adas? — 6aaya:05 4 4aas® + 4aa; — 3alas?).

Hence ford = 1,¢ = — 1, the function is the product of a,? and

(13)

(14) I§;—D= aOJ, J= Qo2as— agazi+2a1a2a3— a,2as— as®.

We do not retain D since it is expressible in terms of the other
functions. Eliminating D between (13) and (14), we get

(15) S32 + 4823 - (102182 + ao3J = 0.

Now I and J are seminvariants. Indeed, if ao + O, they are
expressible in terms of the parameters ao, S; in (3) and hence
each has the same value for any form in a class (3); while

(16) I = - Sla, J = - 814 (lf Qg = O),
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so that each has the same value for any form in a class (4);
finally,
amn I =3a? J=—a? (if ap = a1 = 0),

so that each has the same value for any form in a class (5)—(7).

From ¢ we eliminate S; by means of (12) and then the second
and higher powers of S; by means of (15). Thus S equals
N/ao¥, where N is a rational integral function of

(18) @0, SZ) Sa, I: J.v

of degree O or 1in S;. If £ > 0, we may evidently assume that
not every term of the polynomial N in the arguments (18) has
the factor ao. Let P(Se, S;, I, J) denote the aggregate of the
terms of N not involving ao explicitly. We shall prove that,
if £ > 0, N/ao* is then not a rational integral function of ao, - - -,
as. For, if it be, P vanishes when ap = 0. By (11) and (16),
the terms independent of a in J involve a4, while those in I,
Sz, S; do not. Hence J does not occur in P. Then, by (11)
and the term 3as? in I, we conclude that I does not occur in P.
Thus P is a polynomial in S; and S; of degree 0 or 1 in S3 and
is not identically zero. By (11), it cannot vanish for ao = 0.

Under the initial assumption that as 3 0, we have now proved
that any rational integral seminvariant S equals a polynomial
in the functions (18). The resulting equality is therefore an
identity.

The seminvariants (18) form a fundamental system of rational
integral seminvariants of the algebraic quartic form.*

They are connected by the relation, or syzygy, (15).

4. Imvariantive Characterization of the Classes.—By §3, the
classes (3) are completely characterized by the seminvariants
ao, S2, S3, I. These with J characterize the classes (4) having
ao= 0, a; + 0. For, by (11), S; and S; determine a;; while,
by (16), I and J determine the remaining parameters in (4).

* The above proof differs from that by Cayley in minor details and in the
method of obtaining the functions (18) and the verification that they are
seminvariants (the present method being based upon the classes).
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The parameter az (a2 & 0) in (5) is determined by I and J, in
view of (17).

We have now gone as far as is possible in the characterization
of the classes by means of rational integral seminvariants S,
since the parameters Sq4, a3, a4 in (5)—(7) cannot be determined
by such seminvariants. Indeed,* for ao = a; = 0, we have
S2 = §3 = 0 by (11), while I and J reduce to powers of a; by (17).

5. Single-valued Seminvariants.—We may, however, construct
a single-valued seminvariant which shall determine these out-
standing parameters Sq4, a3, as. To this end consider the single-
valued function V defined as follows by its values in the sense
of Dirichlet. WetakeV = Qifag + Oorifa; = 0,and V = 8Sa4,
as, a4 in the respective cases (5), (6), (7). Since V has the same
value for all forms in any class, it is a seminvariant. The
seminvariants (18) and ¥V completely characterize the classes
(3)-(7) and hence, by § 2 of Lecture I, form a fundamental system

of single-valued seminvariants of the algebraic binary quartic
form.

6. Seminvariants of a Modular Quartic Form.—Passing to the
number theory case, let the coefficients of the quartic form f
be integers taken modulo p, where p is a prime exceeding 3.
The denominator in (2) is then not divisible by p, so that the
classes are again (3)—(7).

By the general theory in Lecture I, it is possible to character-
ize all of the classes by means of rational integral seminvariants,
and the latter will then form a fundamental system. In par-

ticular, we do not now require the use of such a bizarre function
as that used in § 5.

* A proof of this fact, not based upon the final theorem of § 3, would afford
a better insight into the nature of the last steps in § 3 and explain, in particular,
why we stopped with I and J and did not consider combinations of the S; of
higher than the sixth degree in the a’s. To this end, let S be a seminvariant
homogeneous of total degree ¢, in the a’s, and isobaric, of constant weight w.
As well known, 4 = 2w. Thus S cannot have a term a;? or a4 and cannot

reduce, when ao = a1 = 0, to a’Sy™ (m > 0), of degree I 4+ 2m and weight
2l + 6m.



INVARIANTS AND NUMBER THEORY. 21

We shall make frequent use of the abbreviation
(19) P; = (1 - aop_l)(]_ —_ a,lp"l) e (1 — a‘.P—l).

Then P;8S:4, Psa; and Pzas are seminvariants* since each takes
the same value for all forms in any class. For the classes (5),
(6), (7), their values are Sy, az and a4, respectively. Hence
the five seminvariants (18) together with P;Szs, Peaz and Psas
completely characterize the classes and therefore form a fundamental
system of rational integral seminvariants of the quartic form f
with integral coefficients taken modulo p, p > 3.

SEMINVARIANTS OF A MopuLAR Binary [FormM oF ORDER 7,
§§ 7-13

7. Fundamental System of Modular Seminvariants Derived
by Induction from n — 1 to n.—It is necessary to distinguish the
case in which the modulus p is prime to n from the case in which
p divides n. Binomial coefficients for the form are not per-
missible in the second case and often not in the first case (for
example, if n =4, p = 3, since (}) is then divisible by p).
Denote the form by

(20) Fn= A"+ A"y + -+ + Any™

First, let p be prime to n. For A, & 0, we can transform Fo
into a form lacking the second term and having as coefficients
the quotients of

(21) g9 = nAoAz - %(n - l)Alzy

os=n2A@? 43— (n—2)ndod1 s+ (n—1)(n—2) A7,

by powers of nd,. These may also be obtained from (8) by

identifying F, with
(22)  fu = a@" + nawly + n(n — 1)

5 azmn—%y?_l_ oo

* The first is one-half the discriminant of the semicovariant
Piffy* = P1(6a22? + 4aszy + ay?) (mod p),

and the last two are the seminvaria%ﬁz&\'%mod p)e
¥ 7 ey
ey -\\ﬂ“xjﬁLw%f;gfy

7 ;.;;aa ~ \ & %

f/.;:; Ne’ﬂf.?:%\\)%\ﬁ

\X‘m‘:.e.-. SURPPRS ';)) )
T
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For p prime to n, a fundamental system of seminvariants of F,
is given by Aq, o2, - - -, 0, together with a fundamental system of
the particular form of order n — 1

F:l—] =P0Fn/y
=Podx™ '+ Podox™ 2y+« - -+ Pod y™ ! (mod p),

where Pp =1 — A47L

Indeed, 4o, o3, - - -, 0, completely characterize the classes of
forms F, with 4o+ 0. Since yF.—.' = F, identically, when
Ao = 0, the classes of forms F, with Ao = 0 are completely
characterized by the seminvariants of the fundamental system
for Foy'.

For example, 4, and Py4; form a fundamental system of
modular seminvariants of 4oz + A1y (since these characterize
the classes represented by Aoz and Aiy). The corresponding
functions for

(23)

F\ = Podrx + Podoy
are Pyd4; and

{1 - (POAl)p_l}PoAz = (1 bt Alp—'l)PoAz = P1A2 (lIlOd p).
Hence the theorem shows that, if p > 2,
(24) Ao, 20, = 4404y, — A1%, PoA:, Pi1d.

form a fundamental system of modular seminvariants of Fy. For
S, these are

(24/) 2a¢, S, = Aoy — 012, Pa;, Pa,.

8. Order a Multiple of the Modulus—Next, let n = pq. By
Fermat’s theorem, a» — 271 and hence

(25) ¢ = Ao(zP — xy? )1

is unaltered modulo p by any transformation (1). Hence if, for
each value of the seminvariant 4o, we separate the forms

(26) For = ; (Fo— ¢)



INVARIANTS AND NUMBER THEORY. 23

into classes under (1), multiply each form by y and add ¢, we
obtain the classes of forms F, for this value of 4,. Hence, if n
18 divisible by p a fundamental system of modular _seminvariants
of Fn ts given by Ao and a fundamental system for F,_.
For example, if n = p = 2,
F_'; = (4o + A1)z + 4oy
can be transformed into x or 4.y by (1), according as Ao+ 4; =1
or 0 (mod 2). Adding ¢ = A¢(a®— xy) to xy and A.y?% we obtain
representatives of the classes of forms F,. Hence the 6 classes

are completely characterized by the seminvariants 4, and those
(§ 7) of F,, and hence by

27 Ay, Ay, J= 1A+ Ao+ A4)As.
9. Seminvariants of the Binary Cubic Form.—The classes of
algebraic forms f; are
(28) ap2® + 3a¢1S2xy? + a¢ S35,
(29) 3a:12%y + 1aiS1yp, 3awry?,  asyd,

where the S’s are given by (8) and (10;). The discriminant D
of f31is given by (13). Asin § 3, ao, S3, S3, D form a fundamental
system of seminvariants of f3; they are connected by the syzygy
(13).

Henceforth, let the coefficients of f; be integers taken modulo p,
the excluded case p = 3 being treated in § 15. If p > 3, the
classes are again (28) and (29), and a fundamental system of
seminvariants is given by

(30) Ao, S2) S:b D: Plazy P2a3-

It is instructive to compare this result with that obtained by
the method of § 7. Forming the functions (24) for

fof = Pofsly = 3Poa1x® + 3Poaszy + Poasy? (mod p),
and deleting the factor 3 from the first and second, we get*
Poal, 0= Po(4a1a3 - 3(122) = PoSm, P1a2; P2CL3.

* They characterize the classes (29) of f3 with ap = 0 and may be so derived.
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Hence, if p > 3, these four functions and ag, Sz, S3 form a funda-
mental system of modular seminvariants of f;. We may drop

Poa1 since
=3

(81)  PeS;? S3= 2P, = = 2Pga;  (mod p).
Hence a fundamental system of seminvariants of f; for p > 3 is
(32) ao, 82, O3, 8= PoSi;, Piaz, Pras.

It is easy to deduce 6 from the old set (30), and D from this new
set.*

Finally, let p = 2. By §7, a fundamental system of sem-
invariants for f; is given by ao, Sz, S; and a fundamental system
for fy'. The latter system is derived from (27) by replacing
Ao, A1, A2 by Poai, Pyas, Poas, and hence is

1+ adas, 1+ agas, 1+ a))( + a1 + az)as.
We may drop (1 4 ao)a:r = (1 + ao)S..

10. The Binary Quartic Form. For p = 2, we have
Fo= 4@+ (do+ A2y + dasry® + A,

whose seminvariants are obtained from those of f5 at the end of
§9. They with 4, give a fundamental system of seminvariants
of Fy:

AO) Al: A1A3 + AO + A2’ (1 + Al)AS’

A4+ Ards(Ao+ A43), K= (14 A)(1+ Ao+ A2+ 4s)4e
An equivalent fundamental system ist

Ao, Ai, As+ A4;, 1+ A1)A.,
A1A4 + AoAz + A2A3, K.

*D = ac?3(Sg? 4 48.3) — 5S; (mod p).

For, if @o & 0, then = 0 and this relation follows from (13); while, if @, = 0,
D = a®S1s = 4, = — S:5. Conversely, 5 can be expressed in terms of the
functions (30). The above relation gives 8S.. The product of this by 83?73
is congruent to & if S;=0. Also 6§ = 0 if @p + 0. There remains the case
in which S; =0, ao = 0, whence a; = 0, § = — 3a? = — 3(P1a2)?.

t Annals of Mathematics, ser. 2, vol. 15, March, 1914. I there give also a
complete set of linearly independent invariants and of linear covariants

(33)
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For p > 3, f3’ is obtained from f; by replacing ao, a1, a2, az by
4a1Po, 2a2Po, §a3Po, a4Po,

respectively. Making this replacement in the second set of sem-

invariants of f3 in § 9, we obtain Pya;, which may be dropped in

view of (31), and the last five functions (34). Hence, for p > 3,
a fundamental system of modular seminvariants of fi vs given by

(34) ao, Sz, Ss Ss PoS13, PoS14, P1Sa4, Poa;, Pjas.

Here the three S;; are given by (10). Since the functions (34)
completely characterize the classes (3)-(7), we have a new proof
that they form a fundamental system.

11. Explicit Fundamental System when p > n.—Instead of
employing the above step by step process, we can obtain directly
a fundamental system of modular seminvariants of f, when the
modulus p exceeds the order n of the binary form (22). Consider
a particular f, in which a;. is the first non-vanishing coefficient:

g: ( )a iyt (ax %+ 0).

To this we apply transformation (1) and obtain

i n—1i ( )(n - z)at’ /n-‘l—J ,1—]-] ZA x,n—l ,l
i=k J

=k

' M

where we have replaced j by I — ¢ and set

1 —_ l
b= £ () () E e

Take k < n and give to ¢ the value (2). Thus
o (] ) om
A5 = @+ Da>
o= Z (— 1)"’( ) (k + 1) *a,=* a7 i,

(35)
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In particular,
d l
ok =1, Or1=0, ou= 12: (— 1)t (z) aola " a;,
=0

the last being the algebraic seminvariant designated earlier by
S;. It is obtained from the expansion of (ao — a1)! by replacing
a single a, in each term by a;. Except for a numerical factor
not divisible by p, o1; (for 0 < k& < | — 1) equals the S;; in (10)
and in (38) below.

The classes Cy of forms f, in which a; is the first non-vanishing
a are distinguished from each other by the value of a, if &k = n,
and if £ < n by the values of the parameters ax, ox; (I = k + 2,
--+, n). Employing the notation (19), we shall verify that
Piiar and Pi ok are modular seminvariants of f,. They
vanish for a form C; (j £ k — 1) since then 1 — g7 1= (,
For Cy, they reduce to the parameters ax and ox; of that class.
Forao =0, -+, ar = 0, the first is zero and the second is the
expression for oi; when a; = 0, whose non-vanishing terms
(given by 2=1Fk and ¢ = k+ 1) are constant multiples of
ai7¥; but ar4: is constant for any class C; (7 > k).

It follows also that the parameter axy1 in a class Cryy is de.
termined by the seminvariants Pr—iou (I = k + 2, k + 3),
provided £ + 3 < n. But @, and ., not so determined, 4,
found from Prax (k=n—1, n). Hence a fundamensq;
system of modular seminvariants of fa, for p > n, is given by

Gy, Ool (=2, ceym),
(36) Pryorw (k=1,---,n—2;1l=Fk+2 ..

Pn—2an—1: Pn—lan-

i) n):

For n = 2, 3, 4, these are (24'), (32), (34), respectively, except
for the difference of notation indicated above. For n = 5, we
see that a fundamental system of modular seminvariants of fs,
for p > 5, s

ao, Sz, Ss3, Ss S5, PoSi, PoSu, PoSis,

37
(37) P1Sas, P1Sss, PaSss, Piay, Paas,
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in which the symbols are defined by (8)—(10), (19) and
Ss [= ao4(15 -_ 5a03a1a4 + 10(102012(13 - 10(10(113(12 + 4015,
S15 = 16(113(15 bl 40(112&2614 + 40(11(122(13 - 15024,

38
(38) Ses = 27as%as — 45a.aza4 + 20as®,

Sas = 8(13(15 - 5042.

12. Another Method for the Case p > n.—We may formulate the
method of § 7 so that it shall be free from the induction process.
The classes of forms (23) with Pod; + 0, and hence the classes
of forms F, with 4o = 0, 4, & 0, are characterized by the
seminvariants given by the products of P, by the functions
o2/, - - - obtained from o3, 03, - + -, 0n_y by increasing the subscript
of each 4; by unity and replacing n by n — 1; indeed, P? = P;
(mod p). When the process of deriving (23) from (20) is applied
to (23), we get

Fi_, = [l — (Podn)™F,_,/y = (1 = A7) PoFu[y’
(39) = P\F,[y* = P1da™?2 4+ P1Azx™ %y

+ oo 4 Pidyr? (mod p).

The class of forms (39) with P14, + 0, and hence the classes of
forms F, with 4o = 4; = 0, 4, #+ 0, are characterized by the
seminvariants given by the products of P; by the functions a2,

- obtained from o2/, - -+, ons’ by increasing the subscript of
each A; by unity and replacing n by n — 1. Finally, we obtain
P, 3An sz + P, d,y, characterized by the seminvariants
P, A, and P, 14, The earlier Py 4; may be dropped
(§ 11).

For example, if n = 3, p > 3, the fundamental system of Fsis

Ao, o3, 03, Pooy = Po(dd,d; — AF), Pids, Prds

Changing the notation from F; to fs, we see that oy’ becomes
3(4a;a5 — 3as%), so that the resulting seminvariants are (32).
We may of course apply the method directly to fs; in Sz we replace
ao, a1, az by 3ay, $as, az and obtain §(4aia5 — 3a2’).
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Again, to find a fundamental system of fs for p > 3, we take
ao, Sa, S3, S4 and the products of Py by the functions 4S5 and
16514 obtained from S, and S; by replacing ao, a1, as, as by
4a,, § - 6as, 3 - 4az, aq; then the product of P; by the function
28, obtained from S; by replacing ao, a1, a2 by 6a,, 3 - 4as, as;
then P.a; and Pjay, to characterize P:(4azx + asy). We again
have (34).

13. Number of Linearly Independent Seminvarianis.—Let
p > nand employ the notations of §11. In the classes C (k < n).
A = ai (7) has p — 1 values, Agry1 = 0, while Arrpo, -+ +5 Arn
take independently the values 0, 1, -+-, p — 1. In the classes
C., ar has p values. Hence there are

n~1

p+,§)(p—1)p""ﬂ=p+p"—l

distinct classes of forms f,. Thus by § 11 of Lecture I, there are

exactly p™ + p — 1 linearly independent modular seminvariants of
fn when p > n.

DEr1vaTioN* OF MODULAR INVARIANTS FROM SEMINVARIANTS,
§§ 14-15

14. Invariants of the Binary Quadratic Form.—First, let p=2,

Any polynomial in the seminvariants (27) is a linear function of

1, Ao, A1, Aod, J, Ao = Aodid,,

since (Ao + A1)J = 0. Since there were six classes, these six
seminvariants form a complete set of linearly independent sem-
invariants. Now a seminvariant is an invariant if and only if
it is symmetrical in 4o and 4,. But

I=(1—A0)(1—A41)(1—A)=(1—A4o)(J+1+44,) (mod 2).
Thus 1, 41, A¢J and I are invariants. By subtracting constant

* While this method is usually longer than the method of Lecture I, it
requires no artifices and makes no use of the technical theory of numbers.
Moreover, it leads to the actual expressions of the invariants in terms of the
seminvariants of a fundamental system, thus yielding material of value in the
construction of covariants.
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multiples of these four, any seminvariant can be reduced to
cAo + dAoA1, which is an invariant only when identically zero.
Hence 1, A4, AoAd14, and I form a complete set of linearly inde-
pendent invartants of Fy modulo 2.

Next, let p > 2. The discriminant of f; is D = S;. Any
polynomial in the four fundamental seminvariants (24’) is a
linear function of

aOiDj’ Poa'1i, PlaZi (7::]. = 0: 1’ e, D — 1):
since the product of Pya; or Pias by ao is zero, that of Pia; by
Poa, or D is zero, while DPya; = — Pa;3. Further,

Po =1 aop‘l, Po[Dj - (_ a12)j] = O’

P1 = Po —_ Po(llp_l, aop"lDf = Di— (— l)jpoalzj:
modulo p. Hence any seminvariant is a linear function of
aop—l’ aOiDj (7'= 0’ ]-) "',P—z;j=0, 1: e, D— 1))

Poa¥, Piac* (k=1,---,p—1).
The number of these is p>+ p — 1. Hence (§ 13) they form a
complete set of linearly independent modular seminvariants of fo
for p > 2.

The invariant 4 = 4; in § 6 of Lecture I becomes for two
variables
(41)  A={a*+a*(1—a” )} (1=D" ) =ac*(1—D7)+ P,
where u = (p — 1)/2. By the expansion of D71, we get*

(40)

I
(42) 4= (ao"' + az#) (1 - ;’ao"az"af“‘”) .

* Transactions of the American Mathematical Society, vol. 10 (1909), p. 132.
To give a direct proof of the identity of the final expression (41) and (42),
note that the product of the final factor in (42) by D equals acaz — (20a2)»*!
algebraically, so that the product AD is divisible by p. But the product of
(41) by D is evidently divisible by p. It therefore remains only to treat the
case D = 0. Replacing a2 by a.as, we see that the final factor in (42) becomes
1 — (u + 1)ao*az+, Hence (41) and (42) are now identical if

agtazk(agh — agk) =0 (mod p).

But, if aoa; & 0, agrar = a2+ =1, ap = a* = = 1,
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Since (42) is therefore a seminvariant and is symmetrical in

ao and a; and since the weight of every term is divisible by
P — 1, 4 is an absolute invariant. By (41),

A= ag™ (1 — D7) + Piag?*, (1 — a® HDr1l=
(43)

Poaf"l
A-‘?""l)p"l—].E —Io,

Io=(1—arH(1—a"H(A—ar™).

Hence also Ij is an absolute invariant. Subtracting multiples of

Io= l_aop—l—Poa'lp—l_PIaQP_l: 4, D/ (.7=0’ 1, -+, p— 1),
we may reduce any seminvariant to a linear function of the ex-
pressions (40) other than Pya,>!, Pias*, D7 (j =0, ---, p — 1).

The resulting linear function L is not an invariant. For example,
if p=3,itis

L=aaoz‘l‘bao-l-caoD-I-daoD?—l—ePoal-{—fPoalz (a, - - -, f constants).

Interchange ao and a,, and change the sign of a;. We get

aas? + ba, + casD + da.D? + (]. - (122) (fa12 — eay).

This is to be identically congruent to the invariant L. Taking
az=0, we see that e=f=a=b=0, c=d. Then L
= caoaz(ao + as) + cagar’a; is not symmetric in ao and a..
Hence L= 0. TFor any p, a like result may be proved by con-
sidering separately the terms of L of constant weights modulo

P — 1. Hence in accord with § 11 of Lecture I, @ c?mplete set
of linearly independent invariants of fa, for p > 2, is given by Io,

A and the powers of D. In place of D% = 1, we may use 4% in
view of (43).

15. Imvariants of the Binary Cubic Modulo 3.—A fundamental

system of seminvariants of F3 modulo 3 is given by 4, and a
fundamental system of

Fy= A+ (do+ As)ay + Asy™
Hence, by (24), a fundamental system for F; is given by
Ao, 4y, t= A1ds— (do+ 42)2, (1 — AP (4o + 42),
uw= (1= A1 — (4o + 42)%)4s.
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In place of the fourth and third we may evidently use
AN=(01A—A4%A4:, 0= A1A3+ AeAs — A242 =t 4+ A2+ N2

Here o is the discriminant of F; for p = 3. By § 13 there are
11 classes of forms F,. Hence, by §8, there are 3-11 classes of
forms F;. Thus there are exactly 33 linearly independent
seminvariants of F;. Since

Al)\ = All-" = O: o\ = AO)\2’ [.L(O' + AO?') = 0:
rA+ 49 =0, (1 — 4:®0 = Ao\,

modulo 3, any polynomial in the seminvariants Ao, 41, o, \, &
of the fundamental system is congruent to a linear function of

(44) AoiAlj, AoiO'k, Ao’:Alo'k, Ao’)\k, Aoi/.tk (2, j=0, 1, 2; k= 1, 2)
Hence these 33 functions form a complete set of linearly inde-

pendent seminvariants of 3. The seminvariants

P=1—47—N= (01— 4501 — 459,
3
(45) Io= (10— 4AH(P —p?) = I_Io(l — 43,
E = AoAl g — 02) +Ao[.l.= AoAa(AoAg—A1A3+A12—A22)

are seen to be invariants as follows.* The weights of the terms of
each are all even or all odd. Moreover, under the substitution
(AoA3)(A14,), induced upon the coefficients of F; by the
interchange of x and y, the functions o, P and I, are unaltered,
while E is changed in sign. Hence o, P, I, are absolute in-
variants, while E is an invariant of index unity. We now have
7 linearly independent invariants

(46) I, E, E* o, ¢ P, 1.
Noting that
(47) E? = Adu? + A¥(c — o + N?) — Ao\,

*Or by general theorems, Transactions of the American Mathematical
Society, vol. 8 (1907), pp. 206-207. Note that E is the eliminant of F5 = 0,
¥ =1z,4 =y (mod 3).
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we may employ the functions (46) to delete from (44)
u Ao, Ad?, o, % N, 1

in turn (no one of these terms being reintroduced at a later stage).
There remain 11 seminvariants of odd weight

(48) Ao'4,, AoiA10, Aoidie?, p, Adu (=0,1,2),
and 15 of even weight
(49) Ao, A%, A*A2, Aoo, Ago?, Ao, Ao?a? Ao\, AN2, APN2, Ao

Now the weight and index of a seminvariant of F3 modulo 3
are both even or both odd.* A linear combination of the func-
tions (48) which is changed in sign by the substitution (4¢43)
(4:14.) is seen to be identically zero (it suffices to set 45 = 0,
A2 = 0 in turn). A linear combination of the functions (49)
which is unaltered by that substitution is seen similarly to be
identically zero. Hencet a complete set of linearly independent
tnvariants of F3 modulo 3 is given by (46).

* When the sign of y is changed, a seminvariant is unaltered or changed in
sign according as its weight is even or odd.

 Another proof, using the classes of Fs under the group of all binary linear
transformations of determinant unity modulo 3, and involving a use of more
technical theory of numbers, is given in Transactions of the American Mathe-

matical Society, vol. 10 (1909), pp. 149-154. The case of any modulus p
is there treated.




LECTURE II1

INVARIANTS OF A MODULAR GROUP. FORMAL INVARIANTS
AND COVARIANTS OF MODULAR FORMS. APPLICATIONS

InvariaNTs oF CERTAIN MopurLar Groups, §§ 1-4

1. Introduction.—Let G be any given group of g linear homo-
geneous transformations on the indeterminates 2, -- -, z, with
integral coefficients taken modulo p, a prime. Hurwitz* raised
the question of the existence of a finite fundamental system of
invariants of G. For the relatively unimportant case in which ¢
is not divisible by p, he readily obtained an affirmative answer
by use of Hilbert’s well known theorem on a set of homogeneous
functions, but emphasized the difficulty of the problem in the
general case.

In § 5 I shall consider the relation of this question to that of
modular covariants and formal invariants of a system of forms
and incidentally answer the above question for special groups
of orders divisible by p.

I shall, however, first present a simplification of my own work
on the total group. Itsinvariants are universal covariants, i. e.,
covariants of any system of modular forms (§ 13). It was from
the latter standpoint that I was led to the subject of invariants
of a modular group independently of Hurwitz’s paper, in the
title of which the word invariant does not occur.

2. Imvariants of the Total Binary Group.—Consider the group
G of all modular linear homogeneous transformations with integral
coefficients of determinant unity:

1) 2’s=be+dy, y=cx+ey be—cd=1 (mod p).
The term point will be used in the sense of homogeneous
coordinates, so that (z, y) = (ax, ay), while (0, 0) is excluded.

T Archiv der Mathematil: und Phystk, (3), vol. 5 (1903), p. 25.
33
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We do not restrict the coordinates to be integers, but permit
their ratio to be a root of any congruence with integral coefficients

modulo p. A point is called real if the ratio of its coordinates is
rational.

A point (z, y) is invariant under a transformation (1) if
"= pz, y’ = py, or

2 Gb—pz+dy=0, cz+(—py=0 (mod p).

If these congruences hold identically as to z, y, then
d=¢=0, b=e¢e= =1 (mod p)

and the transformation is one of the transformations

®3) =%z y==+y (modp),

which leave every point invariant.

A special point is one invariant under at least one trans-
formation (1) not of the form (3). There are p(p? — 1) trans-
formations (1). We shall assume in the text that p > 2 (rele-
gating to foot-notes the modifications to be made when p = 2).

Then there are two transformations (3). Hence any non-special
point is one of exactly*

4) = 3p(@*— 1)

conjugate points under the group @, while a special point is one
of fewer than w conjugates.

Let (z, y) be a special point and let (1) be a transformation,
not of the form (3), which leaves it invariant. Thus the con-
gruences (2) are not both identities. The determinant of their
coefficients must therefore be divisible by p. Hence p is a root
of the characteristic congruence (in which & = b + )

6)) P—ap+1=0 (mod p).

First, suppose that (5) has an integral root p. For this value
of p, one of the congruences (2) is a consequence of the other,
and the ratio « : y is uniquely determined as an integer modulo p.

*For p = 2, w is to be replaced by 2(22 — 1) = 6.
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Hence only real special points are invariant under a transforma-
tion [other than (3)] whose characteristic congruence has an
integral root. Moreover, all real points are conjugate under the
group G. Indeed,

2=bxr, y=a+bly and ’'=—y, y==x

replace (1, 0) by (b, 1) and (0, 1) respectively. Hence if an
invariant of G vanishes for one of the real points, it vanishes for
all and has the factor

p—1
(6) L=yll@—a)=ay—ay?> (mod p),
a=0

the congruence following from Fermat’s theorem. Obviously,
any transformation of G replaces a real point by a real point, and
therefore L by kL. The constant % is in fact unity and L is an
invariant of G. Indeed, for

) z=aX+0bY, y=cX+dY (mod p),

where a, ---, d are integers of determinant A = ad — be,

a? y?| [aXP+DY?P cXPH4dY? X yr
Yy aX +bY cX +dY X Y

Next, suppose that (5) has no integral root and therefore two
Galois imaginary roots. By (2), each root p uniquely determines
a point (x, y) with y 0. We may therefore take y = 1,
whence cx = p — e. The resulting two special points are
therefore imaginary points of the form (rp + s, 1), where r and s
are integers modulo p, and r is not divisible by p. The imagi-
naries introduced* by new transformations are expressible
linearly in terms of this p. Indeed, (2p — ) = A4, where
A = o® — 4 is a quadratic non-residue of p (i. e., is not the re-
mainder when the square of any integer is divided by p). Thus
A = a%, where v is a fixed non-residue of p. Hence the roots
of all congruences (5) having no integral roots are expressible
in the form %k 4 1V'», where k and I are integers.

8) (mod p).

* There are no new ones if p = 2, since @ = 0 (mod 2).



36 THE MADISON COLLOQUIUM.

Hence the special points invariant under transformations
whose characteristic congruences have no integral roots are all
of the form (rp 4- s, 1), where r and s are integers, r not divisible
by p, while p is a fixed root of a particular one of these congru-
ences (5).

We next show that these > — p imaginary special points are
all conjugate under the group G. It suffices to prove that they
are all conjugate with (p, 1), which is invariant under

¥=ar—y, y ==z
Now transformation (1) replaces (p, 1) by (R, 1), where

_bp+d
R—cp+e'

We are to prove that there exist integers b, ¢, d, e satisfying

(9) be —ed=1 (mod p),

such that R = rp + s, where r and s are any assigned integers
for which r is not divisible by p. Denote the second root of (5)
by o’ and multiply the numerator and denominator of R by
¢o’ + e. Using (9), we get
_pt+ N
R=T, N =be+ de + dea, q = c®+ ace+ e

We first show* that we can choose integers ¢ and e such that
g = 1 (mod p), where 7 is any assigned integer not divisible by p.
If ¢ is a quadratic residue of D, we may take ¢ = 0. Next, let
¢ be a quadratic non-residue of p. Taking ¢ £ 0, e = ke, we
have

¢=cfk), fk) =1+ ak+ 2

Now f(k) = f(K) if and only if K = kor K= — o — k. Hence
the p — 1 values of k other than — a/2 give by pairs the same
value of f(k). Thusfork = 0,--.,p — 1, f(k) takes 1 4+ L(p—1)
incongruent values, no one a multiple of p [since (5) has no

*If p = 2, then a = 0; taking ¢ = 1, ¢ = 0, we have ¢ = 1 = ¢ (mod 2).
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integral root], and consequently a value which is a quadratic
non-residue of p. Then, by choice of ¢, ¢ can be made congruent
to any assigned non-residue.

Having made ¢ = 7 (mod p) by choice of ¢ and e, we proceed
to choose integral solutions b and d of (9) such that N will be
congruent to any assigned integer j. If ¢ = 0, so that e 5 0,
we take d = jle. If ¢ &= 0, we eliminate d from N by use of (9)
and obtain

NE}(bq—e—ca), q=c*+ ace+ €.

Since ¢ £ 0, we may make N = j by choice of b.

We have therefore proved that there are exactly p? — p
imaginary special points, viz., (rp + s, 1), r = 0, and that they
are all conjugate under the group G. Hence any invariant of G
which vanishes for an imaginary special point has the factor

xpﬂy — :rypﬁ xp'.‘_.l — yp'.'_l
(10) Q= 7 == s
Indeed, the numerator of the first fraction vanishes for z=rp+s,
y = 1, since

(rp+ P=rp” 435, p*=p  (mod p),

the last congruence* being a case of Galois’s generalization of
Fermat’s theorem. We have divided out L, which vanishes for
the real points (s, 1) and (1, 0). Since any transformation of G
replaces one of our imaginary points by another, it replaces @
by kQ. The constant % is in fact unity and @ is an invariant of
G. Indeed, (8) holds if .we replace the exponents p by p
Hence the quotient  is invariant} under all transformations (7).

* It may be proved by noting that (5) implies
(P> —ap+1)P=p* —ap?+1=0  (mod p),

8o that p7 is the second root of (5). By the same argument, (p?)? is a root,
distinct from p?, and hence identical with p.

t I gave the notation Q to the invariant (10) since it is the product of all
of the binary quadratic forms z? 4 .- which are irreducible modulo p.
Indeed, the latter vanishes for two points of the form (rp + s, 1) and (rp’ +s, 1),
where p and p’ are the roots of (5) and r, s are integers, 7 == 0, and conversely.
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We are now ready to prove that any rational integral invariant
I, with integral coefficients, of the group G is a rational integral
Sunction of L and Q with integral coefficients.
After removing possible factors L and @, we may assume that
I vanishes for no special point. If I is not a constant, it vanishes
at a point (¢, d) and hence at the w distinct points conjugate with
(¢, d) under the group G. The invariants*
p+1 Pp—1)
(11) ¢g=Q*, I=1L*
are of degree . The constant 7, determined by
q(c, d) + 7 - l(c: d) =0 (mOd P):

is a root of a congruence of a certain degree t with integral coef-
ficients and irreducible modulo p. Now ¢q + 7l is a factor of I.
Since ¢, I and I have integral coefficients, I has also the factors

(12) q + Tpl: q + szl’ trcy @ + Tpt_ll‘

For, by Galois’s theorem mentioned above,

2 -1
T, Tp, TP s ceey TP

are the roots of our irreducible congruence of degree . Since
the conditions which imply that g + 2I shall be a factor of I are
congruences satisfied when z = 7, they are satisfied when z = 77"
Hence if we multiply ¢ + I by the product of the invariants
(12), we obtain an invariant T with integral coefficients modulo p.
Since L and @ have no common factor, no two of the functions
¢+ 7l and (12) have a common factor. Hence T is a factor of I.
Proceeding in like manner with I/T, we arrive finally at the
truth of the theorem.t

3. Invariants of Smaller Binary Groups.—We shall later need the
theorem that a fundamental system of rational integral invariants
*If p = 2, we omit the divisor 2 in the exponents. . .

t Proved less simply in Transactions of the American Mathematical Society,

vol. 12 (1911), p. 1. Still simpler is the proof that various coefficients of an
invariant are zero, Quarterly Journal of Mathematics, 1911, p. 158.
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of the group composed of the p powers of the transformation

13) d=ax+ty Y=y (mod p)

8 give'l;. by y and N\, where

(14) A =z(@+y)(42y) - @+p—Ily)=zp—ayzt  (mod P)-

Now (1, 0) is the only special point, being the only point
unaltered by (13) or its kth power, k < p. Hence an invariant
not having a factor y or N vanishes at imaginary points falling
into sets each of p points conjugate under our group. As at the
end of §2, the invariant is a product of factors y? + 7A SO
related that the product equals a polynomial in y? and A with
integral coefficients.

Other results will be merely stated, since they are not pre-
supposed in what follows. Within the group @ of all transforma-
tions (1), any subgroup of order a multiple of p is conjugate
with one containing (13) and transformations exclusively of the
form

(15) o =tx+ly, ¥y =% (modp)
and having y and \ as a fundamental system of invariants.*

The invariants of any subgroup whose order is prime to p have
been found.f

4. Invariants of the Total Group on m Variables.—The functions

m

P P ?" e Tl
a:f’""” . :L‘mpm—. xlp.ﬂ .. xmpﬂ-l
16) Lm=| - - + = |, @m=| | | T Ln
a,? e TP i1 T
oo X
1 m x cae T

are seen, by a generalization of (8), to be invariants of index 1
and O respectively of the group T, of all linear homogeneous
transformations on z;, - - -, 2, with integral coefficients modulo p.

* Bulletin of the American Mathemalical Society, vol. 20 (1913), pp. 132-4.
t American Journal of Mathematics, vol. 33 (1911), p. 175.
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Since L., is an invariant of ', and has the factor z;, it follows
from an examination of its diagonal term that*

m p—1

A7) L.= D; 2 (xk+ crp@rpr+ - o T Cnm) (mod p),

k=1 ¢;=0

in which occurs one of each set of proportional linear forms modulo
p. A like proof shows that the numerator of @ is divisible by
each of the linear functions (17) and hence by L., modulo p.

Making use of the theorem in §2, I have proved by inductiont
that the m invariants Ly, Qm1, * - *, Qmm—1 are independent and
form a fundamental system of rational integral invariants of T'.

A fundamental system of invariants of the group of all modular
linear transformations on two sets of two cogredient variables

has been obtained very recently by Dr. W. C. Krathwohl in his
Chicago dissertation.f

ForMAL INVARIANTS AND SEMINVARIANTS OF MODULAR FORMS,
§§ 5-13
5. Formal Modular Invariants.—Consider a binary form
f@y) = ax” + aia™ly + - -+ + @y,

in which , 9, ao, « - +, a, are arbitrary variables. The transforma-
tion (7) with integral coefficients, whose determinant A is not
divisible by the prime p, replaces f by a form

¢(X, V) = X" + L, X1Y + -+ + 4,17,
in which

(18) A0=f(a!c)) A1=7'ar—lba0+“‘; ttty Ar:f(bxd)

A polynomial P(ao, - --, a,) with integral coefficients is called a
formal invariant modulo p of index A of f under the transforma-

* E. H. Moore, Bulletin of the American Mathematical Society, vol. 2 (1896),
p. 189. His proofs do not use the invariantive property. A like remark is
true of the proof that the product (17), in the case z. = 1, is congruent to a
determinant of order m — 1, then obviously equal to Ln, by R. Levavasseur,
Mémoires de U Académie des Sciences de Toulouse, ser. 10, vol. 3 (1903), pp.
39-48; Comptes Rendus, 135 (1902), p. 949.

T Transactions of the American Mathematical Society, vol. 12 (1911), p. 75.

t American Journal of Mathematics, October, 1914.
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tion (7) if
(19) P(‘/IOJ /Ily ] flr) = A'\P(GO, Qy, -, a.,) (mOd p)s

identically as to aq, - - -, ar, after the A’s have been replaced by
their values (18) in terms of the a;. If P is invariant modulo p
under all transformations (7), it is called a formal invariant
modulo p of f.

The term formal is here used in connection with a form f whose
coefficients are arbitrary variables in contrast to the case, treated
in the earlier Lectures, in which the coefficients are undeter-
mined integers taken modulo p. In the latter case, (19) neces-
sarily becomes an identical congruence in the a’s only after the
exponent of each a is reduced to a value less than p by means
of Fermat’s theorem a? = a (mod p).

The functions (18) are linear in ay, - - -, a,. It is customary to
say that relations (18) define a linear transformation on aq, - - -, a,
which is induced by the binary transformation (7). Let I' be
the group of all of the transformations (18) induced by the group
of all of the binary transformations (7). Making no further
use of the form f, we may state the above problem of the de-
termination of the formal invariants of f in the following terms.
We desire a fundamental system of invariants of group I'.  This
problem is of the type proposed in § 1; the group I is a special
group of order a multiple of p. Here and below the term in-
variant is restricted to rational integral functions of a, -- -, a-.

A theory of formal invariants has not been found. TFor no
form f has a fundamental system of formal invariants been
published. Some light is thrown upon this interesting but
difficult problem by the following complete treatment of a
binary quadratic form, first for the exceptional case p = 2 and
next for the case p > 2, and preliminary treatment of a binary
cubic form.

6. Formal Invariants Modulo 2 of a Binary Quadratic Form.—
Write
(20) f = ax®+ bay + ¢y,
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where a, b, ¢ are arbitrary variables. Under the transformation
(21) ze=a'+y, y=9,

f becomes f’, in which the coefficients are

(22) ad=a b=b ¢/=a+b+c (mod 2).

By § 3, the only invariants under d’ = d, ¢/ = ¢ + d, modulo 2,
are the polynomials in d and c¢(c + d). Take d =a-+b.
Hence the only seminvariants of f are the polynomials in a, b and

(23) s=clc+ a—+ b).

Such a polynomial is an invariant of f if and only if it is
unaltered by the substitution (ac) induced by (zy). Thus

(24) b, k=as, g=blat+c)+a*+ac+ct=s+ab+a®

are invariants of f. Introducing ¢ in place of s, we see that any
seminvariant is a polynomial in a, b, ¢. Consider an invariant
of this type. Since its terms free of a are invariants, the sum
of its terms involving a is an invariant with the factor a and
hence also the factors ¢ and a + b + ¢, the last by (22). Hence
this sum has the factor %, and its quotient by % is an invariant.
By induction we have the theorem:

Any rational integral formal invariant of f equals a rational
integral function* of b, q, k.

7. Formal Seminvariants of a Binary Quadratic Form for p > 2.
Write

(25) f = ax® + 2bxy + cy?,

where g, b, ¢ are arbitrary variables. Under the transformation
(21), f becomes f’, whose coefficients are

(26) ad=a b=a+4+b ¢=a+2b+c

* Replace z1, Tz, Z3, of § 4 by a, b, ¢; then
L; = bk(k + bg), Qa2 =b* + bk + ¢%, Qs = b%g® + bk + b% + k2.
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Evident formal seminvariants are a, A = b2 — ac, and

27) B = ﬁ (fa + b) = b? — ba?? (mod p),

28) 'yk=p11{(t2—k)a+2tb+c} k=0,1, -, p—1).

Indeed, the linear function under the product sign in (28) is
transformed by (26) into the function derived from it by re-
placing t by t + 1. Asin (27),

(29) [Yrla=o = ¢ — cbP? (mod p).

Let S(a, b, ¢) be a homogeneous rational integral seminvariant
with integral coefficients. Then, by (26),

S(0, b, ¢) = S(0, b, 2b + ¢) (mod p).

Thus, by §3, S(0, b, ¢) equals a polynomial in b, ¢® — cb? L.
Hence, by (29),

S(a, b, ¢) = ao(a, b, ¢+ ¢(b’ Yx) (mOd P)’
where ¢ and ¢ are polynomials in their arguments. Now
bW =A+a( ), b =pA+a( ).

(p=3)12

(30) S = ax(a: b: C) + ‘»b(ﬁ: A: 'Yk) + 20 dib2i+17k“:

Hence

where N\ and ¢ are polynomials in their arguments, and d; is
an integer.

When y is multiplied by a primitive root p of p, a, b, ¢ are
multiplied by 1, p, p? respectively. Hence 8 is multiplied by p,
while, by (29), v+ and A are multiplied by p?. If therefore we
attribute the weights 0, 1, 2 to a, b, ¢, respectively, and the weight
s+ 2t to a'bc!, we see that the weight of every term of v is
congruent to 2 modulo p — 1.

We can now prove that every d; is divisible by p. For, if not,
the seminvariant S — ¢ has a term of odd weight, so that every
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term of N is of odd weight and hence has the factor b. Thus
S — ¢ has the factor b and therefore the factor 3, so that its
terms free of a have the factor b». But this is impossible, since
224+ 1 < p and (29) does not have the factor b.

Hence S — ¢ has the factor ¢ and the quotient is a semin-
variant of the form e\’ + /. Proceeding in this way, we obtain
the theorem:

Any seminvariant is a polynomsial in a, A, B and any single vyr.

Of these, 8 alone is of odd weight. Hence any seminvariant is

a polynomial in @, A, vy, 82 or the product of such a polynomial by
B. But

-1

31) B=ary+ AL T — a1 (mod p).

To prove this, it suffices to show that the second member is
divisible by b and hence by 8, and being of even weight therefore

by 8% and to remark that each member of (31) reduces to b* for
a=0. Now

= c{cp% - (= a)p_;—}2 (mod p),
a?lyole=0 = ac{(— ac)‘% — qr1}? (mod p).

But A reduces to — ac for b = 0. Hence the second member of

(31) has the factor b. We therefore have the theorem:
For p > 2, any formal seminvariant of a binary quadratic form
is a polynomial in a, A, ~, or the product of such a polynomial by B.

8. Formal Invariants of a Binary Quadratic Form for p > 2.
The product

(32) I'= IkI')/k (k ranging over the quadratic non-residues of p)

is an absolute invariant of f under the group G of all binary
transformations with integral coefficients taken modulo p of
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determinant unity. It suffices to prove that this seminvariant
is unaltered by the substit ution

(33) a =¢ ¢ =a b =-—0,

induced by the transformation z = y’, y = — 2’. Under (33),
the general factor in (28) is replaced by

@ = B{(T* = K)a+ 2Tb + ¢},

— ¢ k
T K=m.

-k
Hence K is quadratic non-residue of p when % is. Also,

where

p—1 p=1)2 p—1
I_I G—k)=—k {( g (k—1t») }25 —k(k T —1)>=—4k  (mod p)

if k is a non-residue. To show that the product of the resulting
numbers — 4k is congruent to unity, we set x = 0 in

-1

(34) [Me—Fk=z*+1 (mod p),

and note that 271 = 1. Hence (32) is unaltered by (33) and is
an absolute invariant of f under G.
It is very easy to verify that

(35) J = ayo

is unaltered by (33), so that J is an invariant of f under G.
If an invariant has the factor B, it has the factor

(36) B = @Iy, (rranging over the quadratic residues of p).

For, under the substitution (33), b+ra (r40) becomes 7(c—b/7).
By choice of 7, we reach ¢ + 2tb, where ¢ is any assigned integer
not divisible by p. This is a factor of v, where k = .

The fact that B is an invariant may be verified as in the case
of (32) or deduced from the fact that

p—1
aB [1vx = ayo - BT

k=0
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is an invariant, being the product of all non-proportional linear
functions of a, b, ¢ with integral coefficients modulo p.

Hence any invariant is the product of a power of B by an
invariant which is a polynomial P in a, A, v,.

Since i is a seminvariant not divisible by B, it equals a
polynomial in a, A, vo (§ 7). But if a = 0, vx = o (mod p), by
(29), and A = b is free of ¢, so that v; is not a polynomial in a
and A only. Hence

(37) e = Yo+ grla, A) (mod p).

For p = 3, the polynomial P therefore equals a polynomial in
a, A, v2 = T. Now an invariant ¢(a, A, I') differs from the
invariant ¢(0, A, T') by an invariant with the factor ¢ and hence
the factor (35). Treating the quotient similarly, we ultimately
obtain the following theorem for the case p = 3:

A fundamental system of formal tnvariants of the binary quad-
ratic form f modulo p, p > 2, is given by the discriminant A and
T, J, B, defined by (32), (35), (36). The product of the last three
1s congruent modulo p to the product of all the mon-proportional
linear functions of the coefficients of f.

To prove the theorem for p > 3, note first, by (37), that T,
given by (32), differs from v, by a polynomial in v,, a, A of
degree n — 1in+yo, wheren = (p — 1)/2. Hence a polynomial in
a, A, v equals a polynomial in a, A, v, I" of degree at most n — 1
in 7o. Subtract from each the terms of the latter involving

only the invariants A, I'. We have therefore to investigate
invariants of the type

n—1 n—1
(38) ;lcmfPi(A, T) + gquxa, A, 1),

in which the ¢; are integers, while P; and ¢: are polynomials in
their arguments, and ¢; has the factor a. If every ¢; = 0, the
invariant has the factor a and hence the factor ay, = J, and the
quotient by J is an invariant which may be treated similarly.
The theorem will therefore follow if we show that a contradiction
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is involved in the assumption that a certain ¢; is not divisible by p.
First, the remaining c¢; are divisible by p. For if also ¢; 5= 0,
let %,A™T*¢ be the term of P; of highest degree in A. Since
7o and IT' are of degrees p and mp, and of weights = 2 and 0
(mod p — 1), vo'P; is of degree pi + 2r; + smp and of weight
= 22+ 2r; (mod p — 1). But p =1 (mod n). Hence

v+ 2ri =354 2r;, 204 2r;= 254 2r; (mod n),

so that 7= j (mod n). But 7z and j are positive integers < n.
Hence 7 = j. Multiplying our invariant by a suitably chosen
integer, we have the invariant

n—1

(39) v PiA, r)+§vof¢f(a, A, T), Pi=AT*+ ---.

Now — (¢ — ka)b”! is the term of highest degree in b in 7.
Hence

(40) Yo= —cbP 14 oo, T =gb"® D4 ...,
@) o=[l— et} = (=" + (—a" (modp),

where & ranges over the non-residues of p, the last following
from (34) for x = c¢/a. Since 7o and T are of even weights,
only even powers of b enter (39). Hence an invariant (39) is
symmetrical in @ and ¢. We shall prove that this is not the
case for the terms of highest degree in b. For v¢’P; this term is

(42) (— cyob?, B=jlp—1)+ 2r+ sn(p — 1).

Let C;a®A’T% be one of the terms of ¢, in which the exponent of
b is a maximum. Then in y¢°p; the highest power of b occurs
in the terms

(43) Ciati(— c¢)igobfs, Bi=2fi+ gm(p — 1)+ i(p — 1).
Since the weight and degree is the same as for (42),
20+B:=2j+8 (modp—1),

(44) ) )
ei+i1+gm+Bi=j+sn+ 0.
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First, let B; = B. Then 7 = j, e, = 0 (mod n), whence ¢ = j.
Thus the exponent of a in any term (42) or (43) is divisible by =,
while the exponent of ¢ is not, being congruent to j modulo 7.
Hence the coefficient of b® in the sum of (42) and the various
terms (43), with 7 = j, is not symmetrical in @ and ¢, unless
identically zero. But (43) has the factor a while (42) does not.
Hence the greatest 3; exceeds 3.

Next, consider a set of terms (43) and a set of terms of like
form with < replaced by £, all being of equal degree in b. Then
B: = Br. By (441), 21+ B;= 2k + Bi, ¢ = k. Consider finally
terms (43) with B; constant. In them the residue modulo =»
of e; is a constant =% 7. For, if ¢; =1, then 20 + B: =7+ B
(mod ) by (44,), so that j = 0 (mod n) by (44;). Hence these
terms (43) are not symmetric in a and ¢ and yet do not cancel.*

Our fundamental invariants are connected by a syzygy; for
p=3,

(45) B> = A2 4 J(J — A2

9. Formal Invariants of a Binary Cubic Form for p % 3.—
We have seen that the theory of formal invariants of a binary
quadratic form is dominated by the invariantive products of
linear functions of the coefficients. While these products de-
pended upon the classification of integers into the quadratic
residues and the non-residues of p, we shall find that for a cubic
form it is a question not merely of cubic residues and non-residues

of p, but of the larger classes of reducible and irreducible con-
gruences. Write

f = a2’ + 3ba’y + 3exy? + dofd,

thus taking p # 3. Under transformation (21), f becomes f,
whose coefficients are given by (26) and

(46) d' = a+ 3b+ 3¢+ d.

*If two are of like degree in ¢, their g’s are equal and hence their f’s are

equal; then, if of like degree in g, their ¢’s are equal. But then we have the
same term of ¢;.
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Hence a, B and 4, given by (27) and (28), are again seminva-
riants; also,

p—1

47) 6 = II {(® — 3kt — a+ 3(2 — k)b + 3ic + d}
= G k=0, p—1).
Indeed, if F.(a, b, ¢, d) is the function in brackets,
F,(a, b, c,d) = Fyi(a, b, ¢, d).

Any invariant with the factor a has the factor
»—1

(48) adpo = a I_I0 (B3 + 32 + 3te + d) = f(1, 0)’:I:I: f@, 1),

whose vanishing is the condition that one of the points (z, ¥)
represented by f = O shall be one of the existing p + 1 real
points (1, 0), (¢, 1) of the modular line. To verify algebraically
that the seminvariant (48) is an invariant,* note that it is
unaltered modulo p by the substitution

(49) a'=—d, d’=a, b'=c’ c'=—b’

which is induced on the coefficients of f by z =y, y= — 2",
The product P of the ;. in which j and k are such that

A= —3kt—;

s trreductble modulo p is a formal tnvariant.
The substitution (49) replaces the general factor of (47) by

—a+3th—3—Ek)}c+ M

= N(T® — 3KT — J)a + 3(T% — K)b + 3Tc + d},
where

— 2
r=t2% k=% u=

b= — 2k + 6822 + 3ktj + 1% + -

*For any form, see Transactions of the American Mathemaltical Sociely,
vol. 8 (1907), pp. 207-208.

g =+ k41,
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We are to show that there is no integral solution  of
22 —3Ke—J=0 (mod p).
Multiply this by A\® and set Ax = y. Then
¥—3gy—h=0 (mod p).
But the negative of the left member is the result of substituting
r+s=—1t rs=—y—2k
in the expansion of the product
(¥ — 3kr — 7)(s® — 3ks — 7).

The latter is congruent to zero modulo p for no values of 7 and

s which are integers or the roots of an irreducible quadratic
congruence with the integral coefficients ¢, — y — 2k.

For p=2, P= 4. For p=5, P is the product of two
invariants*

(50) 611822632641; 6l.’?.624634643.v

neither of which is a product of invariants. The last property
is true also of the following invariants:

1) Y1003, Y4d02, Y2004012030820042,
Y3001010023033040, BY0014021031844.

The product of these seven invariants and a8 equals the product
of all the linear functions of a, b, ¢, d, not proportional modulo 5.

For p = 2, each of the 15 linear functions is a factor of just
one of the following invariants (no one with an invariant factor):

(52)  @doo, 81, PBydoy, K=b+e¢, (a4 b+ ).

For any p # 3, the cubic form has the formal invariant

(53) G = 3(be? — bPc) — (ad® — ard),

* In those linear factors of the first which lack ¢, the product of the coef-

ficients of @ and b is a quadratic non-residue of 5; in those of the second in-
variant, a quadratic residue.
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and an absolute formal invariant* K of degree p — 1. For
p =25
(54) K = b*+ ¢t — b*d®> — a%? — bc*d — ab’ + acd? + a?bd.

Thus, for p = 5, K and the discriminant D are invariants of
degree 4, and weights = 0, 2 (mod 4), while ady and G are
of degree 6 and weight = 3 (mod 4). It follows from § 10 that
there are no further invariants of degree less than 8. Now the
first and second invariants (51) are of degree 10 and weight = 1
(mod 4). Hence if either is expressible as a polynomial in in-
variants of lower degrees, it must be the product of D by a
linear function of adgo and G. This is seen to be impossible
either by a consideration of the terms of degree = 5 in d or by
noting that D has no linear factor. Thus ;803 or 4802 occurs in a
fundamental system of invariants.

Invariantive products of linear functions of the coefficients
of the cubic form therefore play an important réle in the theory
of its formal invariants. Whether or not they play as dominant
a rdle as in the case of the quadratic form is not discussed here.
We shall however treat more completely the seminvariants.

10. Formal Seminvariants of a Binary Cubic for p > 3.—We
shall first determine the character of the function to which any
seminvariant S(a, b, ¢, d) reduces when ¢« = 0. Set 4 = 3b,
2B = 3¢, C = d. Then (26) and (46) give
A'= A4, B =A4A+ B, C"=4+4+2B+C (when a = 0).
Any function unaltered by this transformation is (§ 7) a poly-
nomial in 4, B2 — AC, v¢, or the product of such a polynomial
by B’, where v, and B’ are the functions 7, and 8 written in
capitals. But

-1
o = g (3% + 3tc + d) = [850)a=0,

p—1

g = g; {32th + ©)} = [yale=o,

* Transactions of the American Mathematical Society, vol. 8 (1907), p. 221;
vol. 10 (1909), p. 154, foot-note. Bulletin of the American Mathematical
Society, vol. 14 (1908), p. 316. Cf. Hurwitz, I. c.
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modulo p. Hence

(55) S = aa(a’ b’ () d) + 'Yked) (b: q, 6_1'0) (6 = 0O or 1),
where k, j may be given any assigned integral values and
(56) q=c®— $bd, — 3b’q = [D]azo,

D being the discriminant of f. We use the seminvariants (II, §2)
(57) Sy = — b*+ ac, S; = 2b%+ a(ad — 3bc).

First, let p = 5. Then ¢ = ¢* 4 2bd. We have the formal
seminvariants*

o3 = bg — a(ab + 2cd),

oy = K — 85 = ¢+ a(abd — 2ac®* + b + cd?),

o5 = bg® + a(— ad® — bed? + 3c®d + abe® — 2b% + a®b),

o6 = ¢°+ a(ad* — 2bed?® — c3d? + abc®d — 2b%cd 4 a®bd + 2act

(58) — b%® — 2a%? + ab?),

a1 = qvo+ a{2(b® — ac)d* + a?bd® — bc®d® — 2¢'d? 4 2a2cd?
— 2ac(b? — ac)d? — (b — ac)’d® — 2a'd® + 2abc®d
+ 2a%bed + 2ab'c + 3(b? — ac)c! — a'b® 4 2433},

while 2@ differs from by, by a multiple of a. By (55)-(58), S
differs from a polynomial in the seminvariants

59) a, D, S, Ss o3 K, o5 05 o1, G, Yo, 0oo

by a function a\ + pbd}, + ¢d},, in which p and ¢ are constants
at least one of which is zero (in view of the degree of the terms).
But the increment to b8, under transformation (26), (46), is

* As the terms with the factor a were taken all of the proper degree and
weight; then a term common to a combination of the seminvariants (59) was
deleted. Finally the coefficients were found by a process equivalent to the
use of a (non-linear) annihilator, T'ransactions of the American Mathemalical
Society, vol. 8 (1907), p. 205. Expansions were made in powers of d and the
terms involving d rechecked. As each remaining term involves a new coef-
ficient, there is no doubt as to the existence of covariants of type os, o6, o7,
though the terms free of d were not rechecked.
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ad, with the term ad®, while d does not occur to this power in
the increment to a function X of degree 5g. Again, the increment
to ¢85, has the term 2ad**%%, while the increment to a function
A of degree 5k 4 1 is of smaller degree in d. Hence p = o = 0.
Then in a), A is a seminvariant which may be treated as was the
initial S.

A fundamental system of formal seminvariants of the binary
cubic form modulo 5 is given by the functions (59).

11. For p = 2, the method of § 10 fails. In place of ¢ we
now introduce the seminvariant K = b 4 ¢. Then the trans-
formation (26), (46), becomes

60) o' =a, K=K, b’=a+0b, d=ac+ K-+ d.

By § 3, any seminvariant S(a, K, b, d) becomes for a = 0 a
polynomial in K, b, d(K + d). In place of the last we may
use 8go. Hence

S = ac + ¢(by K: 600): 6oo = d(a’+ K+ d)‘
We make use of the seminvariants
A = ad + bc = 8¢0 + 001, B = b2+ ab,
B+ A=0bK+ al+ d).

Hence S differs from a polynomial in K, 80, A, 8 by a function
ap + br (B, 800). Let (60) replace p by p’. Then p+ p'=17
(mod 2). Take a = K = 0; then (60) is the identity and
0 = 7(b?, d? identically in b, d. Hence the function 7(8, 9)
is identically zero. Thus ap and hence p is a seminvariant.
Hence a, K, 800, A, B form a fundamental system of formal semin-
variants of the cubic modulo 2.

Note that A? is the discriminant, so that A is an invariant.

The invariants (52) may be expressed in terms of our semin-
variants:

bu=I+4, Byda=pLE+ K?+ aK) (A + d00),
(@a+ K)éyo = (e + K)(a*+ I) = aboo + KI,

where I = a2+ aK + 8y is an invariant.

(61)

(62)
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12. Mqiss Sanderson’s Theorem.*—Given a modular invariant 2
of a system of forms under any modular group G, we can con-
struct a formal modular invariant I of the system of forms under
G such that I = ¢ (mod p) for all integral values of the coefficients
of the forms. As the proof does not give a simple method of
actually constructing I from ¢, it is in place here to give a very
interesting illustration of the theorem with independent veri-
fication. Take as 7 the fundamental seminvariant (— 1)™P,_1a,,
of a binary form f (Lecture IT). Then I is the quotient Lyy1/Ln,
where L, is given by (16) or (17) with 3, - - -, 2 replaced by the
first m coefficients ao, a1, - -+, am—; of the binary form f. Now
x=2a' 4+ 19y, y =1y, replaces f(x, y) by a form in which the
coefficient a;’ is a linear function of ao, ---, @;. Hence L; is a
formal seminvariant of f modulo p. First,

ap? a,?

+ ap = ao” lay — ai?
ao a;

is a formal seminvariant which reduces to — Poa, for integral
values of ag, a;, where Py = 1 — gy* 1. Compare (27). Next,

a ] o

a” a” @™
Ly=\a®> a» a.?|,
Ao ay 1%
C = L3/Ly = ax? — a;PQ + aL,7! (mod p),
where, as in (10),
Q= ao?’ar — aea,?’

P
L2 = Zao"(”‘”al’f (8 =p— 1).

=0

For integral values of the a’s, we have
L, = 0, QE ao°+a1°+ (p —_ l)ao’al"E 1— P1,
Pi=(1- a1 — a,

modulo p, since each term of @, with j # 0, j % p, is congruent
* Transactions of the American Mathematical Society, vol. 14 (1913), p. 490.
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to ao’a,®. Hence C = Pja,. Similarly,
Li/Ly = — a3 + a3°Qz — a3”Qs1 + asLs?! (mod p),
where the @’s are defined by (16) and are congruent to*
Qa1 = Q(Ls/Lo)" 4 L7, Qg = (L3/L2)” + @7,
with @ as above. Hence for integral values of the a’s,
Q= (1—P)P1a;"'=0, Qu=1—P(1—a?)=1— P,
Ly/Ly = — Psa,.

13. Modular Covariants.—Extending the usual definition of a
covariant of an algebraic form f to the case in which the group is
the set of all linear transformations with integral coefficients
taken modulo p, we obtain the concepts modular covariants or
formal modular covariants according as the coefficients of f
are integers taken modulo p or are indeterminates. The contrast
is the same as in § 5. The universal covariants obtained in § 2
and § 4 do not involve the coefficients of f and hence are formal
covariants.

I have recently proved} that all rational integral modular
covartants of any system of modular forms are rational integral
funetions of a finite number of these covariants. In the same paper
I proved that a fundamental system of modular covariants of the
binary quadratic form (25) modulo 3 1s given by the form f itself,
its discriminant A, the universal covariants L and Q, together with}

g= (a+ B+ ac— 1), fa=ax+ bay+ bxy®+ cy
(63) C1 = (a® — b¥a? 4 2(b* + ac) (c — a)ay + (b° — beA)y?,
C: = (A+ a)a® — 2b(a + o)zy + (A + Ay~

Here f4 is a formal covariant, which is congruent to f for integral

* Transactions of the American Mathematical Society, vol. 12 (1911), p. 77,

t Transactions of the American Mathematical Sociely, vol. 14 (1913), pp.
299-310. The extension to cogredient sets of variables has since been made
by Professor F. B. Wiley, and will be published in his Chicago dissertation.

t No one of the eight is a rational integral function of the remaining seven
even in the case of integral coefficients a, b, ¢ taken modulo 3.
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values of z, y. Also C; and (as here written) C, are formal
covariants. Note that — ¢ is the invariant (42) of Lecture II.
When ¢ is made homogeneous by replacing — a — ¢by — a® — ¢3,
we obtain the formal invariant I' = 7., given by (32). The
resulting eight formal covariants of f do not form a fundamental
system of formal covariants; not all the formal invariants are
polynomials in A and T (§8). No instance of a fundamental
system of formal covariants has yet been published.

The method of proof will be here illustrated by the new and
simpler case of a binary quadratic form (20) with integral coef-
ficients modulo 2. By § 6 any invariant of f is a polynomial in

(24') b, abe, g= (b4 1)(a+ ¢ + ac,

to which the formal invariants (24) reduce modulo 2. Such a

polynomial is congruent to a linear function of these three and
unity, since

bg = abe (mod 2).

Further, any seminvariant is a polynomial in @, b and ¢ (§ 6),
and hence is a linear function of 1, a, b, ab, g, abe. For,

aq = a + ab + abe (mod 2).

These results are in accord with those obtained otherwise in § 14
of Lecture II. We shall now prove the following theorem:
Every rational integral covariant K of the binary quadratic form f

modulo 2 43 a rational integral function of f, its snvariants b and g,
the universal covariants

@=2+ay+y’, L=+ ay

and the linear covariant

l=(a+baz+ b+c)y, P=f+0bQ (mod 2).

The leading coefficient S of K is a seminvariant and hence is
of the form I+ ra + sab, where r and s are constants, and I

is an invariant, a linear combination of the invariants (24’) and
unity.
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First, let K be of even order 2n. Then
K, = K — IQ™ — rfr — sbfr

is a covariant in which the coefficient of 22" is zero and hence

has the factor y. Thus K; has the factor L and the quotient is

a covariant of order 2n — 3 to which the next argument applies.
Next, let K be of odd order:

K = 8 4 Sy + - -.

After subtracting from K constant multiples of 1Q" and blQ",
in which the coefficients of z?**! are a + b and ab -+ b, re-
spectively, we may assume that S is an invariant. After also
subtracting from K a constant multiple of ILQ", where I is a
linear combination of the invariants (24’) and unity, we may
assume that S; = Bia + B¢, where the B’s are functions of b
only. Then the covariance of K with respect to the trans-
formation (21) gives

lecnﬂ_l__sl;x/cny/_l_ e.=K= lefnﬂ_l_ (S"I' Sl)xifﬂy'.i_ e (mod 2),

where 8,” denotes the function S; formed for the new coefficients

(22). Hence

Sy — 81=B:(a+b)
must equal the invariant 8. Since B:b is a function of the in-
variant b, B.a must be an invariant, so that 8, = 0. Thus
S = 0 and K has the factor L as before. Hence the theorem is
true for covariants of order w if true for those of order w — 3.
But it was proved true for those of order zero.

By a similar method I obtain the following theorem:

A fundamental system of covariants of the binary quadratic form
fy given by (20), and the linear form \ = asx + ayy modulo 2 s
gwen by f, \, I,

L = (aaz + jz + (ca1 + 7y,

Q, L and the invariants b, q, (a; — 1) (az — 1) and
j= (a4 b)a,+ b+ c)a.
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Since a; and a; are cogredient with = and y, the function j
obtained from the covariant [ of f is an invariant of f and \.

The reverse of the last process is important. If we adjoin to a
system of binary forms in the variables 2’ and y’ the linear form
yx’ — zy’, any modular invariant of the enlarged system, formal
as to x, y, is a modular covariant of the given system with a’, ¥’
replaced by z, y. The theorem of § 12 therefore proves the
existence of certain formal covariants.*

APPLICATIONS OF INVARIANTS OF A MobpuLAaR GRroup, §§ 14, 15

14. Form Problem for the Total Binary Modular Group T'.—
This group is composed of all binary linear transformations (7)

with integral coefficients taken modulo p whose determinant A
is not divisible by p. By (8),

(64) L(z,y) =ALX,7Y), Q,»)=Q(X,Y) (modp),

so that L7~! and @ are absolute invariants of I.  Hence, of the
functions (11), ¢ is invariant under T', while [ is unaltered by certain
transformations and changed in sign by others. Thus a homo-
geneous function of ¢ and / having a term which is a power of ¢
is a relative invariant of T' only when an absolute invariant.
Hence if p > 2, it involves only even powers of [, and by the
homogeneity, only even powers of gq. Hence any absolute in~
variant of T is a product of powers of L7~ and Q by a polynomial
n g, I, wherey = 14f p=2,v=21f p> 2.

In particular, L7 and Q form a fundamental system of absolute
invariants of I'. The so-called form problem for the group T'
requires the determination of all pairs of values of the variables
x and y for which L7 and Q are congruent modulo p to assigned
values N and , either integers or imaginary roots of congruences
modulo p.  'We have therefore to solve the system of congruences

(65) Ly} =), Q@ y) =p  (mod p).

* After these. l?ctmes were delivered, I saw a manuscript by Professor O.
E. Glenn, containing tables of formal concomitants for forms of low orders

and moduli 2 and 3. He employs transvection between the form and the
covariant L of § 2.




INVARIANTS AND NUMBER THEORY. 59

First,let X £ 0. For z= z or 2 = y, we have

xpﬂ yp’: zp‘.‘
O0=|a? y? 2P|= Lz*"— QLz"+ LPz  (mod p).
x Yy =z

Hence « and y are roots of
(66) Fi@ =2"—pzp+N2=0 (mod p).

Having no double root, this congruence has p? distinct integral
or imaginary roots. These roots are

(67) 3X+fy (3,f=0, 1, "':P"l),

where X and Y are particular roots linearly independent modulo
p. For,

(68) F(eX + fY) = eF(X) 4+ fF(Y).

Hence any pair of solutions x, y of (65) is of the form (7), where
a, ---, d are integers, whose determinant A is not divisible by
p, in view of (64;) and \ == 0.

Conversely, if X and Y are fixed linearly independent solutions
of (66), any pair of linear functions of X and Y with integral
coefficients, whose determinant is not divisible by p, gives a
solution of (65). Indeed, by (68), x and y are solutions of (66).
From the two resulting identities, we eliminate X\ and u in turn
and get

H = Q(OJ, y): {L(x: y)}p = AL(z, y).

Since X and Y are linearly independent modulo p, L(X, Y) is
not divisible by p [cf. (6)]. Thus L(z, y) &= 0 by (64). Hence
(65) hold.

Hence, for \ 5= 0, the form problem has been reduced to the
solution of congruence (66). The latter will be discussed here
in the simple but typical* case in which N\ and u are integers.
Now the problem to find the real and imaginary roots of a con-

* For the general case, see Transactions of the American Mathematical
Society, vol. 12 (1911), p. 87.
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gruence with integral coefficients is at bottom the problem to
factor it into irreducible congruences with integral coefficients.

When v is an integer, z» — vz is a factor of (66) if and only if
v is a root of the characteristic* congruence

(69) 2—w+A=0 (mod p).

Such a binomial is a productt of binomials z? — 8, irreducible
modulo p, whose degree d is the exponent to which the integer »
belongs modulo p. Since 2p — 1 < p?, the function (66) has
an irreducible factor ¢ (z) of degree D > 1, not of the preceding
typez? — §, and hence with a root » such that r?/r is not congruent
to an integer. Thus every root of (66) is of the form cir-+epr?,
where the ¢’s are integers. The irreducible factors of (66) are of
degree D except those, occurring only when (69) has an <ntegral
root, of the form 2¢ — §, where d is a divisor of D.

To find D, note that by raising (66) to the powers p, p% ---,
We can express 2”° as a linear function I, of 2» and z. Now D is
the least value of ¢ for which I, = z. But the coefficients of [,
are the elements of the first row of the matrix of S¢1, where

s=(4 70)

* Note the analogy of (66) with the linear differential equation

d?z dz
F(z) =d_t2_“§+>‘z =0,
having the solution z = €7 if » is a root of v2 — uv 4+ A = 0. Also, (68) holds.
Make dz/dt correspond to z» and hence d?z/dt* to (z?)?. Thus the differential
equation corresponds to (66), and the integral z = e* (viz., dz/df = 12) to
2P = vz,

T Let 7(2) be an irreducible factor of degree d. Its roots are

T, TP=ur, 1= vr, pd™1

-
where v =1, 9'% 1,0 <1 < d. Thus d is a divisor of p — 1. Hence

2Pl — gy = 21 . ppm1

= pd7'r,

has the factor z¢ — 74, The latter has a root  in common with f(z). But

)Pl =i = 1,

Thus 6 = r¢ is an integer. Hence f(z) = z¢ — 5.
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But l, = z implies that Ip,; = 2P. The condition for the latter is
therefore S® = 1. Hence D is the period of S. But (69) is
the characteristic determinant of S. According as it has distinct
roots v; and . or equal roots » = 3u = A}, a linear substitution
of matrix S can be transformed linearly into one of matrix*

n 0 v
< 0 2 ) ’ ( 0 v ) )

According as the characteristic congruence (69) has distinct (real
or 1maginary) roots or a double root, D s the least common multiple
of the exponents to which the distinct roots belong modulo p, or s p
times the exponent to which the double root belongs.

Finally, let A=0. By (6), either y=0 or x —ay =0
(mod p), where a is an integer. In the first case,

Q = 27™», 27 — ugr = 0.

If u=0, then x =y = 0. If g+ 0, the roots = are equal in
sets of p and hence are cx; (c=0, 1, ---, p — 1), where z; is a
particular root not divisible by p. In the second case x —ay =0,
we take z — ay as a new variable X and conclude from the
absolute invariance of @ that

Qx, y) = Q(0, y) = y*™~.

We thus have the first case with y in place of z.
Using similar methods, I have solved the form problem for
the total group of modular linear transformations on m variables.f

15. Invariantive Classification of Forms.—Let
(70) ¢z, y) =am+ - (m > 1)

be a binary form irreducible modulo p and having unity as the

coefficient of the highest power of . Let G be the group of all

modular binary linear transformations (1) with integral coef-
* In the second case we use the new variables z and = — vy.

t Transuctions of the American Mathematical Society, vol. 12 (1911), pp.
§4-92,
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ficients of determinant unity. Let ¢; = ¢, ¢2, - -+, ¢r denote
all the forms of type (70) which can be transformed into constant
multiples of ¢ by transformations of G. Evidently their product
P = ¢1¢ - - - ¢ is transformed into ¢,P by any transformation
tof G. The constant ¢ is easily seen* to be congruent to unity.
Hence P is an absolute invariant of G. If m > 2, no ¢; vanishes
for a special point. We now apply the theorem in the first part
of § 14. Hence, if m > 2, the absolute invariant P is an integral
function with integral coefficients of the invariants q, I, each ex-
ponent of q and [ being even if p > 2. In view of the definition of
the ¢, this function of ¢ and ! is an irreducible function of those
arguments modulo p.

Two binary forms shall be said to be equivalent if and only if
one of them can be transformed into a constant multiple of the
other by a transformation of G. A set of all forms equivalent
to a given one shall be called a genus. Thus ¢, ---, ¢r form a
genus. All of the irreducible forms (70) separate into a finite
number f of distinct genera; let Py, - -+, P; denote the products
of the forms in the respective genera. Thus mm = Py --- P,
is the product of all of the binary forms a™ + --- irreducible
modulo p. Hence 7, is a polynomial in g, I with integral coef-
ficients. Hence the f genera of irreducible binary forms of degree
m > 2 are characterized invariantively by the f irreducible factors
Pi(g, D) of mm(g, 1) modulo p.

We shall see that m,(q, 1) is easily computed. By finding its
factors irreducible modulo p in the arguments g, I, we shall have
invariantive criteria for the equivalence of two irreducible
binary forms of degree m. For example, we shall prove that
m3 = ¢ — L if p =2, so that all irreducible binary cubic forms
modulo 2 are equivalent. Further, 7; = ¢ — I2if p > 2,50 that
the irreducible cubic factors of ¢ — I are all equivalent, also those

of ¢ + I, while no factor of the former is equivalent to one of the
latter.

* Transaction:s of fhe American Mathematical Society, vol. 12 (1911), p. 3, §4.
The present section is an account of the simpler topics there treated at length.
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In general, let m be a product of powers of the distinct prime
numbers ¢y, - - -, g,, and set

Fi= (a?y — ay?)/L.
From the expression for m,, due to Galois we readily obtain

T = Fo - HFMIM,- ) HF"’IQ(Q,’QI:QI te
Hleq; ) HFm/qaq,-q* ot ’
in which the first product in the numerator extends over the
su(u — 1) combinations of ¢y, - -, ¢, two at a time, and similarly
for the remaining products. By the first theorem of this section,
and (11), m, is a polynomial in

J=qr=Qrtl, K=0=Lr?PD (y=1if p=2,¢y=21if p>2).

We readily verify the recursion formula
F,= QF:_, — KF?", (mod p),
since F, = 1, F; = Q. In particular,
Fy=J— K, Fy=Q(Fs» — KJ7Y),
Now 73 = F3, 74 = F4/Q. Hence
m3=J — K, my=JP— K?— KJr! (mod p).

The first of these results was discussed above. Next, for
p = 2, w4 is the irreducible quadratic form ¢ — > — Ig, so that
all quartic forms irreducible modulo 2 are equivalent. For
p > 2, w4 vanishes for K = pJ, where

pP=1—p  (mod p).
Except for p = %, p is a quadratic Galois imaginary since
pP"=1—p?=p  (mod p).

Thus 74 is a product of J — 2K and £(p — 1) irreducible quad-
ratic forms in J, K. Some of the latter yield a quartic in ¢ and [
which is irreducible; others yield a quartic which is a product of
two irreducible quadratics modulo p. A simple discussion shows



64 THE MADISON COLLOQUIUM.

that the number of irreducible factors of mws(g,1) is 6k 4+ ¢4 1
fp=8k+t({t==x1o0r —3), but is 6k + 2 if p = 8k + 3.
We have therefore the number f of genera of irreducible quartics
modulo p. For quintics and septics, the analogous discussion
is simple, for sextics laborious.

We may utilize similarly the invariants (16) of the group on
m variables, obtain expressions in terms of them of the product
of all forms in m variables of specified types (as quadratic forms
transformable into an irreducible binary form, non-vanishing
ternary forms, non-degenerate ternary quadratic forms, etc.),
and hence draw conclusions as to the equivalence of forms of the
specified type.*

* Transactions of the American Mathematical Society, vol. 12 (1911), pp.
92-98.



LECTURE 1V

MODULAR GEOMETRY AND COVARIANTIVE THEORY OF A
QUADRATIC FORM IN m VARIABLES MODULO 2

1. Introduction.—The modular form that has been most used
in geometry and the theory of functions is the quadratic form

(1) gm (@) = Zejaar; + Zba? (4, 5=1, -+, m; © < j)

with integral coefficients taken modulo 2. In accord with
Lecture III, we shall use the term point to denote a set of m
ordered elements, not all zero, of the infinite field F; composed of
the roots of all congruences modulo 2 with integral coefficients.
We shall identify such a point (z1, - - -, &) with (pz1, - - -, pZm)
where p is any element not zero in F,. The point is called real
if the ratios of the a’s are congruent to integers modulo 2.
Let the c;; and b; in (1) be elements not all zero of the field F,.
Then the aggregate of the points (x) = (a1, + -+, &m) for which
gn(x) = 0 (mod 2) shall be called a quadric locus, in particular,
a conic if m = 3. The locus is thus composed of an infinitude
of points, a finite number of which are real.

While our results are purely arithmetical, we shall find that
the employment of the terminology and methods of analytic
projective geometry is of great help in the investigation. Usually
the proofs are given initially in an essentially arithmetical form.
In case a preliminary argument is based upon geometrical
intuition, a purely algebraic proof is given later. The geometry
brings out naturally the existence of a linear covariant, which is
important in the problem of the determination of a fundamental
system of covariants.

2. The Polar Locus.—The point (xy1 4+ N21, *+*, KYm + Nom)
is on g(x) = 0 if

(2) K*q(y) + ~AP(y, 2) + Nq(z) =0 (mod 2),
65
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where .
3) P(y, 2) = Zei(yiz; + yiz) G 5=1, -+, m;1 <j).

If (y) is a fixed point, all points (2) for which P(y, 2) =0
(mod 2) are said to form the polar* locus of (y). For (z) = (),
each summand in (3) is congruent to zero modulo 2. Hence the
polar of (y) passes through (y). If (z) is on the polar of (), (2)
has a double root  : \ and the line joining (y) and (2) is tangent
to ¢g= 0.

We may write (3) in the form

(3" P(y, z) = Y1+ -+ UnYm,
where
U = C1222 + 1323 + C14%s + -+ + + Cim3m,
U = €192 -+ coszz + cosza + - -+ + ComZm,
(4) Uz = C€13%1 + €232 + c3424 + - -+ + CamZm,

Un = Cim21 + Com22 + C3m2z + + + + C;n—1mZm—1-

There is a striking difference between the cases m odd and m
even.

3. 0dd Number of Variables; Apex; Linear Tangential Equation.
Let m be odd. Then the determinant of the coefficients in @
is congruent modulo 2 to a skew-symmetric determinant of odd
order and hence is identically congruent to zero. Hence we can
find values of 2;, ---, 2, not all congruent to zero such that
Uy, - -+, Unm are all zero modulo 2. Thus the polars of all points
(y) have at least one point in common.

We shall limit attention to the case in which the pfaffians
6 Ci=[23---m], Cy=[134... m), -+, Cpn=[12--- m—1]

are not all congruent to zero. The point (Cy, -+, Cp) shall be

* Take « = 1 and let (2) be a point not on g(z) = 0. Then (2) is a quad-
ratic congruence in A with coefficients in F, and hence has two roots A, and As
in that field. Now the points (y) and (2) are separated harmonically by
(y + Ni2) and (y 4+ No2) if and only if A, = — )y, that is, if A = A, (mod 2).
But the condition for a double root of (2) is P = 0 (mod 2).
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called the apea* of the locus q(x) =0. Now each u;= 0 if
z1= Cy, +++, 2n = Cn. Hence, for m odd, the polars of all points
pass through the apex.

If (y) is any point not the apex, the line joining (y) to the apex
is tangent to g(x) = 0 (§ 2). Thus any line through the apex is
tangent to q(x) = 0.

For m = 3, it is true conversely that, if the line

(6) Suz; =0 (mod 2)
is tangent to ¢(x) = 0, it passes through the apex, so that
@) k= ZCu;

is zero modulo 2. Taking, for example, u; £ 0, we obtain by
eliminating 2; from (6) and g(2) = 0 a quadratic equation in
21 and a; whose left member is the square of a linear function
modulo 2 if and only if the coefficient of x;2; is congruent to zero.
But this coefficient is the product of k by a power of us. Thus
k = 0 s the tangential equation of q(x) = 0.

The last result is true for any odd m. The spread (6) is said
to be tangent to g(x) = 0 if the locus of their intersections is
degenerate. Taking u, + 0, and eliminating z, between (6)
and ¢(x) = 0, we obtain a quadratic form whose discriminant,
defined by (24), equals a product of x by a power of %=, and hence
is degenerate if and only if x = 0.

We thus have geometrical evidence that « is a formal conira-
variant of q(x), i. e., an invariant of ¢(x) and Zu.w:.

To give an algebraic proof, note that & is unaltered when x;
and z; are interchanged, while

(8) Ty = mll_l_ .’L’2’, X = .7:2', cee, A= me/
replaces g(a) by ¢’(2) in which the altered coefficients are

(9) bo' = by + b1+ c1o, Clzi = Coi + €15 (’1' =3, m)

* After these lectures were delivered, I learned that Professor U. G.
Mitchell had obtained, independently of me, the notion apex (‘“ outside point ')
for the case m = 3, Princeton dissertation, 1910, printed privately, 1913.



68 THE MADISON COLLOQUIUM.

The pfaffians C,, - - -, C, are unaltered modulo 2, while
(10) C/=C1+0C: uw'=urtw, ui=u; (@F2) (mod 2).
Hence « is unaltered modulo 2. Note that

0 Ci2 Ciz °*°*° Cim W1

cig O Co3 *°* Com U2

(11)

(mod 2).
Cim Com Cam -+ O Um

U U Uz - Um O

We saw that Cy, - - -, C, are cogredient with 2y, + - -, ¥. This
is evident from the fact that the apex is covariantively related

to g(x). Hence if we substitute C; for 1, - -+, Cn for @, in (1),
we obtain the formal invariant

(12) Qm(o) = EC,','C.'OJ' + 2b:,C3 (2, _7 =1, ---,mr< j).

If this invariant vanishes, the apex is on the locus, which is
then a cone. Indeed, by (2), every point on the line joining (C)
to a point on ¢(z) = 0 lies on the latter. Hence g(z) can be
transformed into a form in m — 1 variables and hence has the
discriminant zero. To argue algebraically, let new variables be
chosen so that the apex becomes 0, ---,0,1). The polar of any
point (y) passes through the apex. Takingz =0, -, 2,1 =0,
Zm = 1 in (4), we see that the polar (3’) becomes cimys + - -
+ Cm-1mYm—1, which must vanish for arbitrary u’s. Hence
bnn’ is the only term of (1) involving . But the apex is on
the locus. Hence b, = 0 and ¢(z) is free of n.. The converse
is obvious from (5).

Whether m is odd or even, g(z) has the invariant
(13) An = H(cij'l" 1) ('L’]= 1’ ) 7n;7:<j)'

This is evidently true by (9) or as follows. If A, = 1 (mod 2),
every ¢;; = 0 and q = (Zb2;)?; while if 4,, = 0, at least one
¢i; is not congruent to zero, and q is not a double line.

Hence the product 4,¢(2) is a covariant; in fact, the square
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of the linear covariant 4,,2b;x;. We shall see however that there
exists a more fundamental linear covariant.

4. Covartant Line of a Conic.—Since we shall later treat in
detail the case m = 3, we shall replace (1) by the simpler notation

(14) F(a) = a1xexs + aox123 + aszire + bixy® + baxs? + baxs?
Its apex is (a1, as, a3). Its discriminant (12) is

(15) A = F(ay, az, a3) = aia2a3 + a,?b; + a2?b; + as?bs.

The invariant (13) becomes

(16) A = ajonos (i = a; + 1).

Consider a form (14) with integral coefficients and not the
square of a linear function. Then not every a; is congruent to
zero modulo 2. By an interchange of variables we may set
a; = 1. Replace z; by X; + ai123 and z, by X2 + asz;. We get

XX, + b1 X2+ b X0+ Axsz-
Let A= 1. Replace 3 by X3+ 01Xy + b X,. We get
(17) ¢ = X1iXo + X

The only real points on ¢ = 0 (mod 2) are (1, 1, 1), (1, 0, 0),
(0,1,0). In addition to these and the apex (0, 0, 1), the only
real points in the plane are (1, 1, 0), (0, 1, 1), (1, 0, 1). These
lie on the straight line

(18) Xi+ X+ X;5=0  (mod 2).

Hence with every non-degenerate conic modulo 2 is associated
covariantly a straight line.

The inverse of the transformation used above is
Xi =214 a1xs, X2 = 23+ aos,
Xs = by + bors + (1 + a1bs + asbs)zs.
It must therefore replace ¢ by the general form (14) having
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a; = A= 1. It actually replaces (18) by
(by + Dy + (b2 + Dz + (bs 4 cacz + 1D,

in which we have added A + 1 = 0 to the initial coefficient of zs.

Guided by symmetry, we restore terms which become zero for
a3 = 1 and get

9) L= 2+ Dz,
31 = bl -+ Qla3, 52 = bz + ajas, 63 = ba “+ ajae.

Making the terms homogeneous we obtain the formal co-
variant

(20) L = Bja: + Baxe, + Bjxs,
By = b2+ aa; + a? + ai?, By = b2+ awas+ a* + ad,
B; = b + aya2 + a® + as’.

Under the substitution (a.a;)(b:b;) induced upon the coefficients

of F by (z:;), we see that B; and Bj; are interchanged. Under
9), viz.,

(22) by =bs+bi+a;, ai’=a1+ a (mod 2),
there results

@1

(23) Bl, = Bl, Bz’ = Bz + Bl, Bal = B3 (mod 2)-

Hence (20) 4s a formal covariant of F. For other interpretations
of L see § 8.

5. Even Number of Variables—The determinant of the coef-
ficients in (4) is congruent modulo 2 to the square of the pfaffian

(24) A, =123 -+ - m].

This is in fact the discriminant of ¢,,, which is degenerate if and

only if A, = 0 (mod 2). I have elsewhere* discussed at length
the invariants of ¢,.

* Transactions of the American Mathematical Society, vol. 8 (1907), p. 213
(case m = 2); vol. 10 (1909), pp. 133-149; American Journal of Mathematics,

vol. 30 (1908), p. 263; Proccedings of the London Mathematical Society, (2),
vol. 5 (1907), p. 301.
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If A == 0 (mod 2), we can solve equations (4) for the z’s.
Substituting the resulting values into q(z), we obtain the tangen-
tial equation U, = 0 of ¢(x) = 0. For m = 2 and m = 4, we
get

(25) U. = crouqus + baus® +- b1u22,

Us = [1234]Zcsqu1us+Z (cascacsatback i+ bacttbacks) ur.
Bordering the algebraic discriminant of (1), we find that

2b;  c1o Ci3 *** Cim WU
ciz 2by Co3 v+ Com U
26) 22U,=|. - . .« .« .« . . . (mod 4).
Clm Com Cam *°+ 2bm Un
Uy Uy Uz o Un O

Finally, let A,, = 0 (mod 2). Then all of the first minors of
the matrix of the coefficients in (4) are zero modulo 2. Hence
the polars of all points have in common the points of a straight
line S. Since its discriminant vanishes, q(x) can be transformed
linearly into a quadratic form in z;, ---, %n—1, which therefore
represents a cone with the vertex (0, ---, 0, 1). Let () be the
vertex of the initial cone g(x) = 0. If (x) is any point on the
cone, (x -+ N2) is on the cone, and, by (2), P(x, 2) is congruent
to zero identically in 2, ---, 2,. Hence the linear functions
(4) all vanish. Thus the line S meets the cone in its vertex, and
Zm® Is the discriminant of ¢,—;(z), while 22 is obtained from that
discriminant by interchanging m and 7. For example, if m=4,

2 = C12€13C23 + blcgs + bcha + b:sC%z, ct
2? = C23C24C34 + b20§4 + b30§4 -+ b40§3-
The product of the general form (1) by § = A, + 1 is a quad-
ratic form whose discriminant is zero modulo 2 and hence has

the vertex (821, - -+, 82,), where 22 has the value just given.
Hence 62% -- -, 62,2 are cogredient with 2, - -, Tm.

6. Covariant Plane of a Degenerate Quadric Surface.—The
product of g4 by & = [1234] + 1 is a quaternary form f whose
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discriminant is zero and hence can be transformed into a form
(14) free of z4. 'With this cone F = 0 is associated covariantively
the plane I = 0, where [ is the ternary covariant (19). Hence f
has a linear covariant L which reduces to I when by = 0, ¢;s = 0
(=1, 2, 3). Relying upon symmetry and the presence of the
factor 8, we are led to conjecture that

L=5{bi+ 1+ (cro+ 1)(ers + Ders+ D} + -+
+ 0{bs + 1 + (c1a + D(cos + L)(cas + 1) }s

It is readily verified algebraically that L is a covariant of gs.

There is a simple interpretation of L. If [1234] == 0 (mod 2),
then 8 =0 and L is identically zero. If [1234] = 0, g is de-
generate and can be transformed into ¢ = z172 + @32 or a form
involving only ; and @,. In the former case, L = ; + 2 + 3.
Of the 15 real points in space, the seven (100z), (010z), (111z)
and (0001) are on the cone ¢ = 0, the two (001z) are on the
invariant line § through the vertex (0001) of the cone and the
apex (0010) of the conic cut out by 4 = 0, while the remaining
six (101z), (011z), (110z) lie on the plane L = 0. Hence with a
degenerate quadric surface, not a pair of planes, is associated
covariantively a plane, just as a line (19) is associated with a
non-degenerate conic (14).

Every linear covariant is of the form IL, where I is an in-

variant. Every quadratic covariant is a linear combination of
the 112 and Ig,.

@7)

7. 4 .Co’flﬁguration Defined by the Quinary Surface.—A ¢s
whose discriminant is not zero modulo 2 can be transformed into

F = a2 + x5z, + 252

The 15 real points on F = 0 (mod 2) are given in the last column

of the table below. In addition to these and the apex (00001)
of F, there are just 15 rea] points in space:

1=(00011), 2=(01001), 3=(01011), 4=(00101), 5=(01101),
6=(00110), 7=(01110), 8=(10001), 9=(10011), a=(10101),
b=(10110), ¢=(11000), d=(11010), e=(11100), f=(11111).
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These lie by threes in exactly 20 straight lines, which occurin the
columns of the table, with the heading ““ Sides.” With these
lines we can form exactly 15 complete quadrilaterals, the three
diagonals of each of which intersect* in a point on F = 0, given in
the last column. The columns, with the heading “Plane,” give
the equations defining the plane of the quadrilateral. In each
case, the two equations of the plane have in common with F = 0
a single real point, the intersection of the diagonals. Thus the real
points on F = 0 are its points of contact with these tangent planes.

. . Inter-

Sides Diagonals Plane section
146 157 356 347 13 45 67 |z,=0, z3tzitas=0 01000
146 lab 49 69a 19 4a 6b |2.=0, =z3+z4+25=0 10000
146 1lef 4df 6de 1d 4e 6f |ri=z2=23tx3it 25 11001

157 1lab 5ac Tbc lc &b Ta |zi+zetzs=z3+24+2:=0] 11011
157 1lef 58e 78f 18 5f Te |re=z3, zi=z3tzit2s5 10010
lab 1lef 2ae 2bf 12 af be |ri=z3, z:=z3}Fzit25 01010

28¢c 294 38d 39c 23 89 cd [z3=0, zi=224xs 00010
28c 2ae 5ac 58e 25 8a ce |ri=0, zi=z247s 00100
28c 2bf 78f Tbc 27 8b o |Ts=24 Ti=Tot+TitTs 00111
29d 2ae 69a 6de 26 9¢ ad |Zi=z3txi=z24 25 01111

29d 2bf 49b 4df 24 9f bd |Ti=x4 Te=T3tT4t+Ts 01100
347 38d 4df 78f 3f 48 7d |xa=mi, T1=2s+T4+Ts 10100

347 39¢ 49> ‘The 3b 4c 79 |mi=zt-zo=123+75 11101
356 38d 58¢ 6de 3e 5d 68 |z2=mz3tzi, T1=Z2+2s 10111
356 39c¢ 5ac 69a 3a 59 6c lzs=z1t22=75+7¢ 11110

8. Certain Formal and Modular Covariants of a Conic.—For
conic (14), the polar form is

a as ag
(28) Y1 Y2 Ys|-
21 22 23

Hence if two sets of variables y; and z; be transformed cogredi-
ently with the set a;, this polar form (28) is a covariant of F
and the two points (y), (2), in an extended sense of the term

* The dual of the theorem of Veblen and Bussey, *‘ Finite projective ge-

ometries,” Transactions of the American Mathematical Sociely, vol. 7 (1906),
p. 245.
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covariant. In particular, if we take (y) = (z), (3) = (%), we
obtain a covariant of F in the narrow sense used in these lectures.
Ip particular,

ai a Gag ay ax 4as
(29) K= 1 T2 T3 |, M= A1 ) T3
x 12 x 22 T 32 x 14 x 24 x34

are formal covariants of F. While the discriminant A, given by
(15), is a formal invariant, (16) is not. But

(30) A+ A+ 1=« (mod 2),
(31) a = Za;b; + Zal + a1a; + aras + aas,

a being a formal invariant of F. By (23), the B’s are contra-
gredient to the 2’s and hence to the a’s, so that

(32) Al = Ea,-B; = Eaib? + Ea,-a,z + a1aqsag
is a formal invariant. For integral values of a;, b;,
(33) A=A=Za;(B3:+ 1) (mod 2).

Any form with undetermined integral coefficients ci, ¢z, ** s
taken modulo 2, has, by (21) of Lecture I, the invariant
(e 4+ 1)(e; + 1) ---. Thus (16) is an invariant of (7) and hence
of F. Likewise from (19) and F itself, we obtain the invariants

(34) J = BiBsfs, AJ = AI(b; + 1).
In (6) we made use geometrically of
(35) A= U1 + UsTo + U3T3.

Now F + \?is congruent modulo 2 to the quadratic form derived
from F by replacing each b; by b; + tu?. Making this replace-
ment in A, we see that the coefficient of ¢ is congruent to «?, where
(36) k = ayuy + asup + azus

is therefore a formal invariant* of F and A. Making the same

* Since (36) is a contravariant of F, Za;(8C/dz;) is a covariant of F if C is.
Taking @2, @1, L as C, we get K, M, A, respectively.




INVARIANTS AND NUMBER THEORY. 75

replacement in J and taking ¢ and u; to be integers, we obtain
as the coefficient of ¢t = ¢

w = B1faus + Bi1Bsuz + Bofsur + Brusus

+ Bauz + Byuaus + wrusus,
a modular invariant of F and \. By the theorem used above,
(38) = (u1 + 1)(u2 + 1) (us + 1)

is an invariant of \. In w 4 u 4 1, we replace 3; by the con-
gruent value B;- 1, and render the expression homogeneous
in the »’s and B’s separately. We get

(39) W = E(BIB2 + Bl2 + B22)’u32 + 2B12u2u3,

a formal invariant of F, \. For, it is unaltered by the sub-
stitution

(37)

(@;a;) (bib;) (usu;),
induced by (z:z;), and by the substitution (23) and (10) induced
by (8). Let the coefficients of F be integers not all even. Then
(39) becomes
(39") Z(B1B2 + Dus® + Z(Br + 1)ugus.

Its covariant L is identically zero. Hence, by the table in § 9,
if w is not identically zero it can be transformed into us? + u.?
+ uyue and hence vanishes for a single set of integral values of
uy, Uz, Us. 'These are seen to be u; = B; + 1. Hence* the line
L = 0 s the only line with integral line coordinates on the line
locus (39).

The invariant A for (39) is J (its discriminant is zero, as just
seen). Thus a knowledge of any one of the concomitants L, J,
w implies that of the other two.

The covariance of K in (29) implies that

T3 x; T3 T X2

x
@ a=|,

) 23

s £2= 2 ) £3=

&2y 2

T3

2 Tt

* Also thus: just as the point conic F = 0 determines its line equation (36)
and hence its apex (a), so the covariant line conic (39) determines the point

equation ZB.2x; = 0, which is the line L = 0 for integral values of the coef-
ficients.
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are contragredient with a;, as, a3 and hence with 2, 2, 23, and
therefore cogredient with u;, u2, u3. Thus (39) yields the formal
covariant

(417 W' = Z(B1B; 4 B:* + B:)&s? + ZB2Ls&s.

From this or (39’), we obtain the modular covariant

(41) W = Z(B1B: + 1)&* + Z(B1 + 1)&:263.
In these notations (29) become
(42) K = Za;t;, M = Zaréi(xe? + oz + 23%).

Finally, by (16) of Lecture III, we have the universal co-
variants

Ty X2 X3
(43) La = |2 z? x3? )

2314 df24 .’l:34

Q1 = Zay'rs? + Zaytweas + xikrlad,

Qz = E$14 + E:v12$22 + (13123211732?61.

The covariant line L = 0 of a non-degenerate conic F = 0 is
determined by the three (collinear) diagonal points of the complete
quadrangle having as its vertices the apex (a) and the three
intersections of F = 0 with its covariant cubic curve K = 0.

FUuNDAMENTAL SYSTEM OF COVARIANTS OF THE TERNARY FoRrM F,
§§ 9-32
9. Imvariants of F.—A fundamental system of invariants of F
is given by A, 4, J. It suffices to prove that they completely
characterize the classes of forms F under the group of all ternary
linear transformations with integral coefficients modulo 2.
This is evident from the following table

Class A A J L
x1Ts + x5’ 1 0 0 21+ 22 + 23
e+t a?| 0 0 1 0
2129 0 0 0 1+ @
x,? 0 1 0 Xy
0 0 1 1 0
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As to the classes, we saw in § 4 that, if F is not the square of a
linear function (i. e., not reducible to % or 0), it can be trans-
formed into x;xs + bixy? + bowe? + Azs® and hence into one of
the first three classes of the table. By means of the relations

(44) AA=0, AJ=0, A=A, A*=4d, J*=J  (mod?2),
any polynomial in A, 4, J equals a linear function of

(45) 1, A, 4, J, AJ.

These are linearly independent since there are five classes.

10. Leader of a Covariant of F.—Let S be the coefficient of x3*
in a covariant of order w of F. Writing (14) in the form

(46) F =f +lxs+bss?, f= b1z ®+aztixat-boxs®, 1= as1taixe,

we see that the leader S is a function of b3 and the invariants of
the pair of forms f and I under the linear group on x, ..

In the modular covariants forming a fundamental system for f
(§ 13 of Lecture III), we replace 2; by a; and z, by a; and obtain
a fundamental system of modular invariants of the pair f and I:

(47) a3, ouos, g=bibyt(bitbo)as, j= (b1t as)art (bat-as)az,
where @; = a; + 1. By means of the relations
(48) aopj=0, gj=j+ aj (mod2),

any polynomial in the four functions (47) can be reduced to a
linear combination of

49) 1, a3 ¢, axq, oo, o1onas qoag, oo, J, 03]

These form a complete set of linearly independent* invariants

of f, L

* Instead of verifying as usual that these 10 functions are linearly inde-
pendent, we may deduce that result from the fact that there are 10 classes:

l=x, f=anz +azd or ¢+ ati2: + azd,
1=0, f=uz24 21+ 28 21Zs, T2 or O,

Since (47) characterize the classes, they form a fundamental system.
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Hence S is a linear combination of the functions (49) and their
products by b;. Moreover, S must remain unaltered modulo 2
when a; and b, are replaced by

(50) as’ = ag =+ ay, b/ = by =+ bs + [¢23)

which are the only altered coefficients of the form obtained from
F by the transformation

Bl) m=a), m=a, x3=a + ' (mod 2).
Both requirements are evidently met by the functions
(52) 1, o, bz, baoios
and any invariant of F. We find that

4 = ajos(az + 1), A = anasa; + j + asbs + as,
(83)  J = ason(as + 1)(bs + 1) + bsj + ashsj + bsq + g,

AT = aren(ag + 1)(bs + 1)(g + 1).
From these and their products by bs, we see that
(54) AJ, biJ, J, bA, bid, A, A
contain the respective terms
biaicaasg, baonang, ajoeq, bzj, bouasas, j, ouasas,

while no one involves an earlier one of these terms. Hence any
linear combination of the functions (49) and their products by
bs is a linear combination of the functions (52), (54) and

(85) as, bia;, g, bsg, asq, bsasq, asj, bsasj, cuasasg.
A linear combination of the latter is of the form
0 = M3 + myq + myazq + mas j + Mmaraasg,

where my, - - -, mq are linear functions of b3, while m is a constant.
The coefficient of asb; is seen to be

P = me + ’mabz + msa;y + mbgal(R + b3 + 1)’
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where R = b3 + a, is the increment to b; in (50). Set

(56) o=pashi+raz;+sb+t (p, ---, t independent of as, by).
Let the substitution (50) replace o by ¢’. Then

(57) ¢’ — o = pRas + paiby + pa,R + ra, + sR.

This is zero for every as, b; if and only if

(58) pR=0, pa,=0, re;,=sR (mod 2).

For p=me+ -+, pa;=0 gives m3= 0, my= me. Then
pR = 0 gives m; = 0, mb; = 0, whence m=0. Thus o= mas,
so that m; = 0. Hence the leader of a covariant of F has the form

(59) I 4 b3l + carar + daasbs,

where I and I, are invariants, ¢ and d are constants.

CovARIANTS WHOSE LEADERs ARE Not ZERro, §§ 11-19
11. Consider a covariant of odd order w:
(60) C = Sz3* 4+ S1a3° 7y + Sexs* 22+ ---.
If Sy’ is derived from S; by the substitution (50), then, by (51),
(61) S’'=814+wS=8+38 (mod 2).

Give S, the notation (56). Then 8 is given by (57) and has no
term with the factor asb;. Now asb; enters no term of (59)
except J and AJ of I and* bsJ of b3I;,and in these is multiplied by

(62) bsar + aroe, araa(by + 1)(bs + 1), baias,

respectively. Since the latter are linearly independent, neither
J nor AJ occurs in the I, I; of the leader (59). Also, 4 and
aya; oceur only in the combinations 4 + 1, ayee + 1, since (57)
has no constant term. The coefficients of x3* in L°, AL®,
(4 4+ A)L® are respectively

(63) bs + aias + 1, Ab;, A+ Ab; +bsuiae,

* AJ is not retained in I, since bsAJ = 0, AJ being (34).
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Wlll.ere L is the linear covariant (19). After subtracting from C
& linear combination of these three covariants, we may set

S = ml(A + 1) + mzA + 77'[3[)3 + mb3a1a2.
Since Bsbsonar, = 0, AJ = 0, the leader of the covariant JC is
IS = mdJ + miJ + msbsJ.

m3= 0. The coefficient of a; in S is now
ma(a1a; + b3) and must vanish for bs = a- since it is of the form
PR by (57). Hence my = 0. Thus S = mbyoncs. For w > 1,
mFL">2 has this same leader. For w = 1 R

Hence m, =

C = m(bsicos + brasazty + baciatzzs),

which satisfies (61) only when m = 0. Hence every linear
covariant is g lineqr funetion of L, AL, AL; every covarzant of odd
order » > 1 differs from a linear combination of L*, AL®, AL®,
FL* by a covariant whose leader s zero.

12. In the covariants of order 4n
64) I1Qy*, IF?*, [L*, F?»'[2 (I an invariant),
the coefficients of ;'™ are respectively
I, byl, b3+ ajae+ 1, bzoae.

Linear combinations of these give every leader (59). Hence
every covariant of order 4n differs from a linear combination of the
covariants (64) by a covariant whose leader is zero.

13. In the covariants of order w = 4n + 2
(65) 1Q°F, QrI?, AQrI* (I an invariant),
the coefficients of x3* are respectively
bal, b3+ cuay + 1, A+ by(A + cuonas).

The sum of the third function and bs(4 + A) is A + by,
Hence any covariant C'is of the form P + (", where P is a linear
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. . . . . . 0s€
combination of the covariants (65), while C” is a covariant wh
leader is an invariant. For w = 2,

C’ = Saz2 + Sixsx1 + S + 00.
This is transformed by (51) into a function having S1 2% the
coefficient of ;. Since S is an invariant, §; = §. Thus every
coefficient of C’ equals S. Then (51) transforms C’ into 8
function in which the coefficient of a,’x.’ is zero, so that S="
Hence every quadratic covariant i a linear function of

(66) F, AF, AF, JF, 13 AI2

14. There remains the more difficult case of covariants (60)
of order w = 4n + 2 > 2. If S/ is the function obtained from
S: by the substitution (50), then
(67) S’ =81, S=8+48:4 8..
Now S; is unaltered also by the substitutions (22) and
(68) as’ = az 4+ as, b’ =ba+ b3+ a, (mod 2),
induced on the coefficients of F by the transformations (8) and
(69) 1 =x, a2=2a, x3= 2+ ..

15. A fundamental system of invariants of F, under the grouP r
generated by the transformations (8), (51) and (69), s grven by
A’ A: J’ az, b3’ [25Te 2} and

(70) B = bi(bs + ).

It suffices to prove that these seven functions, which are
evidently invariant under T, completely characterize the classes
of forms F under I'. There are six cases.

(i) b3 = a2 = 1. Replacing z, by a;+ awx, and s by
x3 + azrz, we get

F = B:l?12 + szz + :E32 + 213,

(i) b3=1, @, =0, aioo = 1. Replacing 3 by s+ @s%v
we get
F = Ax® + boxo? + x3® + aovs.
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If A= 0, then b= J. If A= 1, we replace z1 by x1 + by
and get

x4+ @3 + 203,

(i) bs= 1, as = ;s = 0. Replacing 23 by x5+ b1 + bos,
we get

0332 + A:lez.

(v) b3=0, a2 = 1. After replacing z;3 by a3 asr,, we
obtain a form with also a; = 0. Taking this as F, and replacing
x1 by @1 + aixe, we get

b1$12 + A:cf + 213,

Replacing ;3 by x5 4 b1z, we get Ax? + z123.

(v) by= a; = 0, ajoo = 1. Replacing x3 by =3 + asx; + by,
we get

Bz? + xoxs.

(vi) b3 = a2 = a1p = 0. Then F is the binary form f in (46).
The effective part of T is now the subgroup I'y generated by (8).
Now

ﬁ_='b1, A+].Eaa, JEB+(b1+1)a3, B=b2(b1+a3).

These seminvariants by, a3, B of f completely characterize the
classes of forms f under I';. For, if a3 = by,

f = bz + Bz, + bix1e;
while if a; = by + 1, we replace x; by 1 + bsz2 and get
blxlz =+ (b1 -+ 1).’1311172.

16. The number of classes of forms F in the respective cases
(i)—(vi) is 4, 3, 2, 2, 6. Hence there are exactly 19 linearly

independent invariants of F under the group I'. As these we
may take

1, az, Qi1As, A, b3, baag, baalaz, baA,
A=b1a1+---, a7A=bla1az+"',
(71) B = bi(bs + a2), axB = bibsas,
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(71) Aﬁ= b1(b3+ I)A, b3A= b1b3(11+ ) a?.bsA=b1baala2+ T
J = bibsbs 4 cov, e = bibobsar + - - -,
byJ = blb2ba(01a2 +aita))+ -, AJ = bibobsd 4 ---.

These are linearly independent since the first eight do not involve
by, while all the terms with the factor b, in the next seven are
given explicitly, likewise all with the factor bibsb; in the last
four. Hence the 19 functions (71) form a complete set of linearly
independent tnvariants of F under the group T'.

17. Hence, in § 14, S, is a linear combination of the functions
(71). By (673), S 4 S, is of the form (57) if S; be denoted by
(56). Now asb; occurs in J, 4J, bsJ, axJ, 4B, but in no further
function (71). In the first three, asb; is multiplied by the linearly
independent functions (62), respectively; in the last two by
bsazaz and ajaz(b; + 1), whose sum is congruent to the first
function (62). Hence the part of S + 8, involving J, -+, 4B
is a linear combination of

(72) (bs + az)J = bibobsaics + bebsancaas,
(73) J + b3J + Aﬂ = (b3 + 1) (b;bgalaz + bzA + A)

But b, occurs in just six of the functions (71) other than the
five just considered. Thus the factor pa; of b, in (57) is a linear
combination of the coefficients of b; in (72), (73), 8, a28, A, a:A,
bsA, azsbsA. Now q; is a factor of the coefficients of b; in all except
the second, third and fourth, while in these the coefficients are

(ba + 1)b2a16¥2, bs + a2+ 1, ashs

and are linearly independent. Hence (73), 8, a28 do not occur
in § + S1. By (587), the latter has no constant term and hence
involves 1, 4 only in the combination 4 + 1. This cannot
occur since the total coefficient of a; must be of the form pR
and hence vanish for b; = a,. At the same time we see that
the sum of the constant multipliers of A, a4, bsA, asbsA is zero
modulo 2. Hence S 4 S, is a linear combination of the functions
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a2, b3, bs@s, a1z, and the last six in (74) below. Like (57), this
combination must vanish for a; = 0, b; = as;. Since all but the
first three of the ten functions then vanish, the sum of the
multipliers of these three must be zero modulo 2. Hence S 4 S;

is a linear combination of

bs+ a2, ax(bs+ 1), ajos, bzaios, b3d,

Aoz, A(bs+1), A(abs+ 1), (bs+ az)d.

18. Without altering the invariant S, we may simplify S; by

subtracting from C constant multiples of L**~! K and its product

by A, where K is given by (29), and hence delete ay(b; 4+ 1)
and A(a:b; + 1) from the terms (74) of S;. Then

S1 = S + mAas + miA(b; + 1) + mo(bs + a2)J

(74)

+ ma(bs + az) + Mmaais + msbsaioe + mehs 4.
The coefficient T of x3"'z» in C is obtained from S, by applying
the substitution (aiaz)(bib2) induced by (ziz2). In view of the

transformation (8), we see that T’ = T + Si, where 1" is derived
from T by (22). Hence

S = (m 4+ m1)A + mybsA + mobsJ

+ (my + msbs) (araz + a1+ az) 4 Mmabs + mgh, 4.

Let = be the sum of the second member and the function ob-
tained from it by the substitution (azas)(bsbs). Thus T = g
Taking b = by, we get ms = ms = 0. Then

T = (bz+ ba)I, I= m1A+ m2J+ m3+ mBA..

Applying to Z the substitution (68), we get (b2 + a))I = (.
Applying (aia3)(bibs) to the latter, we get (b2 a3)I = o,
Adding, we get (a1 4 a3)I = 0. Applying (50), we see that
asl = 0. Then each ;] = 0, so that I = g4, where ¢ is g

constant. By 2 =0, g = 0. Thus mi, ms, m3 Ms are zero.
Hence S = mA, S; = mAq,. But

(75) E=F(L*4 AF) 4 (A+ AL = Azt + ---.
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Hence C — Q. 'E has the leader zero. Any covariant of order
w=4n+ 2 > 2 differs from a linear combination of the co-
variants (65) and Q" *E by a covariant whose leader is zero.

19. Regular and Irregular Covariants; Rank.—A covariant
shall be called regular or irregular according as it has not or
has the factor Ls, given by (43). The quotient of an irregular
covariant by Ls is a covariant. Hence the determination of all
irregular covariants reduces to that of the regular covariants.
If a covariant has a linear factor it has as a factor each of the
seven ternary linear functions incongruent modulo 2, whose
product is Ls. Hence a regular covariant has a non-vanishing
component involving only x;, a3 In a regular covariant C
without terms z;* (i. e., with leader zero), this component has
the factors 1, 23 and (by the covariant property) also x; + 3.
The product of these three linear factors was denoted by £
in (40). Let £™ be the highest power of £, which is a factor of
the component and let » be the degree of the quotient in the z’s.
Then C may be given the notation

(76) R, n = ;f £+ 2iT0sg,

where, if n = 0, f2 is a function of the a’s and &’s not identically
zero, while, if > 0, f2 is a function also of z;, ;3 in which the
coefficients of &1” and x3™ are not zero; f; is a function of s, 23;
fa Of 1, 2.

The regular covariant (76) shall be said to be of rank m. In
an irregular covariant the component free of z, is zero and hence
is divisible by an arbitrary power of £&; it is proper and convenient
to say that an irregular covariant is of infinite rank.

Any covariant of rank zero differs from one of rank greater than
zero by a polynomial in the known covariants

@ 4, 4, J, F, L, Q.

This is a consequence of the theorems in §§ 11-18, where the
polynomial is given explicitly. Any product, of order w in the
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a’s, of powers of the covariants (77) can be reduced by means of
the syzygies

JL=0, AL?= AF, A+ A+ J+ 1)FL+ K) =0,
(78) AK =0, FL?+ (44 A)L*+ AF*+ AQ, = LK,

FPt@QF =LK+ A+ N+ A+ 1)LGE+ (4+ 1)Qy,
to a sum of covariants of order w given in §§ 11-18 and a linear
function, with covariant coefficients, of K, ¢, and

G = QzL + L5 = 252[53(31 + 1)$32 + (B1Bs + Dazx
(79) + B1(Bs + D] + z1zexs[(B1 + B2 + B3 + 1)

X (122 + 2123 + 2073) + Z(B: 4 1) 3.

Here G and K, given by (42), are of rank 1, while Q= £, 4z, ( )
is of rank 2. As this theorem is not presupposed in what follows,
its proof is omitted. However, it led naturally to the important
relations (75) and (79) and showed that no new combinationg
of the covariants (77) of rank zero yield covariants of rank > 0,
a fact used as a guide in the investigation of the latter covariants,

ReGULAR COVARIANTS Rno, §§ 20-22
20. A separate treatment is necessary for covariants (76)
with n = 0. Then each f; is a function of the coefficients aj, b.
Since the factor £ of the part fz£s™ of Rno free of a3 is unalterej(i
by every linear transformation on z; and s, f3 is a linear com-
bination of the functions (49) and their products by b, Also,
fs must be unaltered by

80) z=a’+ 't a =ar+as b =bs+ b+ q,

Both conditions are evidently satisfied by the ternary invariants
and by a3 and ¢, in (47). In view of (53), we may employ

AJ, J, aA, A, aiJ, g4, A4
to replace in turn

b3011a2(13q, baalaza;;, asl, J aabaq, Q1002a3q, ojaas,
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since a term previously replaced is not introduced later. Thus
f31s a linear combination of these seven functions, a3, ¢, asq, and

a1z, aionq, by, bsas, bsq, bsias, byonanq, bsj, bsasj.
Give to any linear function miaias + - -+ of these the notation

o = aabs + Ba; + ‘Yba + 0.

Call e the increment b; + a to b3 in (80) and employ e to eliminate
bi. Then ¢ is unaltered by (80) if and only if

ae=0, aaz=0, Laz;= e (mod 2).

Since b3 does not occur in ¢ or j, nor @, in g, we have

a = mgay + miasq -+ me(e + az + as) + meas(e + az + as).

Thus ae= 0 gives mg= m; =0, mg= mg. Then aa;=0
gives my = 0. Now

B = mias + moonq, v = mz+ msaz + msq,

and Ba; = «ve readily gives 0 = 0. Any function of b; and the
wnvartants (49) of f and 1, which is unaltered by (80), is a linear

combination of the ternary invariants (45) and as, q, asq, a3,
a;;J ) qA.

21. For n = 0 and m even, there exists a covariant (76) in
which f; is any function specified in the preceding theorem.
For, if I is any ternary invariant, IQ,™/ has f; = I. By (42)
and (41), K™ and W™/ are of the form (76) with f; = as and
8182 + 1, respectively; they may be multiplied by any invariant.
By (19) and (47), we have

(81) BB+ 1=g+aA+ A+ 1, aq=ad+gA+ asl.

Hence we obtain g, then g4, ¢gA, and therefore asq. Any co-
variant with n = 0, m even, differs by an irregular covariant from a
linear function of

IQm2, [LK™ I,Wwmi2 (I=1,A,A,J,AJ; 1=1,A,J;,=1,4, 4).
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92. For n = 0 and m odd, we may delete the terms asl; from
fs by use of I;Km, TFirst, let m = 1 and apply transformation
(51); we get

) =8+ &, L=§& &L=1§,

R = fi&)' 4+ fobo' + (fr + f: )&’ + (w1 2" + x1'2a:2')¢.
Thus ¢ = 0. Since f3 = I + I.g, condition f; + f3 = f3’ gives
I = Iy(a1b; + asbe + ashs + acaz + a1as).

Add to this the relation obtained by permuting the subscripts
1, 2. Thus

0 = I(by + b2 + acas + aras).
The increment under (22) is I2(b1 + a3 + axx3) = 0. Now I,
is of the form z + yA + z4, where z, y, z are constants. From

the terms in b1b,, we get y = 0. Then x = 2= 0. The only
covartants are therefore I K.

Second, let m > 1. Then KW®™ /2 is of the form (76) with
fs = asq + a3, by (81;). Hence we may set

fs=1I-4 cqg+ dgd (¢, d constants).
In R given by (76), let g denote the coefficient of
(83) X103 ¢ zz"'xa"""‘a.

In the function derived from R by the transformation (51), the
term corresponding to (83) has the coefficient g + fi, since by
(82) the &; parts contribute only one such term, that from
fiE/™7E!. Now

fi=I+cq +dgd, ¢ = bobs+ (b2 + b3)ay.

When g is given the notation (56), ¢’ — g = f1 is the function
(57). But asb; occurs in f; only in J and 4J and in them with
the linearly independent multipliers (62). Hence

I= nl(A + 1) + noA.
The coefficient of a3 in f; is now

noaas + ng(aras + bs) + dg'aras = p(bs + as).
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Taking bs = as, we see that ny=n,=d= 0. Thus f; = 7.

By (57) for a; = 0, by = a,, we get ¢ = 0. Any covariant with

n = 0 and m odd differs by an irregular covariant from a linear

function of K™, AK™, JK™ and, if m > 1, KW®™DE,
CovarianTs oF Rank Uniry, §§ 23-26

23. Henceforth let m > 0, » > 0 in (76) and set

(84) fo = Sxg™ 4+ Swxs" 2y 4 Sexs™Zr 24 o0 (S F0).

Since S is unaltered by the group T of § 15, it is a linear com-

bination of the functions (71). We may omit the functions

aq(bs + 1) and Aas(b; + 1), since K™L" is of the form (76) with

S = az(bs + 1). Thus

(85) S =TI+ asli+ bslo+ kiarioe + kobsaioo+ksB+EsasB+-E:AB,

where I is any invariant, I, a linear function of 1, A, J; I; one of
1, 4, A, J;while 8 = bi(bs + az).

First, let m = 1. If T and B are the coefficients of x;" in f3
and fi, transformation (51) replaces the covariant (76) by a
function in which, by (82), the coefficient of ay'z,""** is

(86) I'4+B=1T,

where T’ is derived from T by the induced substitution (50).
But 7 is obtained from S by the interchange [23] of subscripts,
and B from T by [13]. We thus find by (86) that

I = boIy + (k1 + koba) (a1 + azas)
+ ka(a1bl + ab, + asb; + araz + asors)
+ kaba(arbs + asbs + a10: + a209).

Let = be the sum of the second member and the function obtained
by applying (asas)(bebs) to it. In = = 0, set by = bs; we get

(k1 + ks + ba(ks + k) } (a2 + ag)n = 0, ks=h1, ks= ke
Then £ = 0 may be written in the form

(ba+bs)A =0, N\=L+k@+4+1).
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Asin § 18, = 0. Thus I, and I are the productsof A + 4 + 1
by kz, k1, so that

S = (k1 + Eob3)(A + A + 1) + aoly + k1(bibs + bias + ar02)
+ kzba(azbl + awtz) + ksA(b1b3 + bl)'

For » odd, S is the increment to S, under (50) and hence has
no term containing asb;. If ¢ is the coefficient of J in Iy, ash:
occurs in (87) only in fazJ and in the final part, being multiplied
by tascibs and ksaiaz(bs + 1), respectively. Hence t = ks = 0.
Since 8 is of the form (57), the coefficient of b; must vanish if
a1 = 0. Thus

ki(ba + as) + kobsaz = 0, ki=k:= 0.

Now 8 = a,I; = as(u + vA) must vanish for @, =0, b;= a;
by (57); then A = ay(b, + a3), so that u =v=0,8 = 0. Any
covariant with m = 1 and n odd differs from one of rank > 1 by
a linear function of KL*, AKL".

87

24. For m = 1, n = 4v, we may delete azI, from (85) by use
of IlKsz. Set f1 = B:tz" + ... -+ Bhxs™. Then (51) replaces
(76) by

R = &[Szs™ + Sizs™ 1 + (81 + So)as™ 22 + - -] + &£y
+ (&1 + &)[Ba(xs™ + x5 ot + -+ 0)
+ Boaza(xg™ + 252y + )]+ (@amams + 22,

Since S; is the increment of Ss, it is a linear combination of the
functions (74). By use of L*~%Q;, L**K* and their products by
A4 and A, we may, without disturbing S, delete from S,

bstaiet1, Abs, A+bA+bsancs, ax(bst1), aA(bs4-1).
Hence we may set
81 = t(bs + as) + tbsaice + tAap + ta(bs + as)d.

Applying (@1a2)(b1b2) to S and §;, we obtain B, and B,;.
Let I be the coefficient of z,z;"! in ¢. By the coefficient of
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217273 - T2x3" 1 in R’, we have
B+ Bpa+1=1.

For ! given by (56), B, + B is given by (57). By the coef-
ficient of asb;, we get s, = 0. The coefficient of a; must vanish
for b3 = a».. Hence

krar + (k2 + t)onas + ksaionby = 0, ki=ls=0, t3=rk,
S = kobz(A + 4 + 1+ a1z + azby).
The coefficient of %, equals that of £a;™ in
GFQ, ' + AKL™ + AKQ,".

Any covariant with m = 1, n = 4v, differs from one with m 2 2
by a linear function of KL, AKL", IKQ.", GFQ;” 1 (I = 1, A, J).

25. For m =1, n = 4v 4 2, we may delete a,I; from S,
given by (87), by use of I:Q,"M. The coefficient of &23™ in
szG is

d=pBB1+ 1) = A4+ (b1 + 1)(cacs + bs) + bsozas.

The coefficient of k; in S equals d + a:A + aa(bs + 1), the final
term of which was reached in § 23, and a.A above. The coef-
ficients of ks and %, in S equal Ad and

b1bs (a1+a2)+ba (azbz'l" a1a3+axasz+-as) =Ad+a2(J + 1)+‘12(b3+ 1),

respectively. Any covariant with m = 1, n = 4 + 2, differs
from one with m > 2 by a linear function of KL*, AKL", 1Q,*G,
IlevM (I = 1, A, A; Il = 1, A, J).

For use in § 26, we replace Q"M by Q.*FK, noting that

(88) M= (F+ IHK
and that Q"L?K differs from KL® by a covariant of rank 2.

26. By the last four theorems, any covariant of rank 1 differs
from one of rank > 2 by CK + DG, where C and D are known
covariants of rank zero. Taking as C; and D, arbitrary func-
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tions of the proper degree in the 2’s, of the generators (77) of
covariants of rank zero, I found the syzygies needed to reduce
C1K + D,@G to an expression differing from the above CK + DG
by a covariant of rank > 2, in which those of rank 2 are linear
combinations of K2, K@, G2, W, @ and the new one

(89) V=GF+ AQ.G + (A+ J + 1)Q.FK
where + ALK?2+4 ALQ, = &% 4 - - -,
(90) v = a» + b3(1 + aon).
The only new syzygies needed for this reduction are

LG= Q.L*+ L =W, FLK =AW+ AQ:+ (J 4+ 1)Kz,
(91) (F*+ L+ @)K = (4 + 1 Ls,

(A+ 1)(FG + KL* + KQs) + JKQ: = ALQ1 + wLs,

in which  is an invariant not computed. Proof need not be
given of these facts since we presuppose below merely the ex-
istence of relation (89) which may be verified independently,
Of course, the fact that ¥ is the only new covariant of rank 2
was a guide in the later investigation.

CovARIANTS OF EveEN RaNk m = 2p > 0, §§ 27-29

27. First, let n be odd. In the covariant (76) replace z, by
x3 + x1. In view of (82), we get

R = f'&™ + fat™ + fi' (82 + E0)* + (muezs + 21%00) ¢,

Using the notation (84) for f;, we have Si' = 81+ 8 in f,.
Thus, as in § 17, S is a linear combination of the functions (74).
Now @,*L" and its products by 4 and 4 + A are covariants (76)
with S given by (63). Using also K™L", in which S = ay(bs+41),
and its product by A, we may set

S = ]C1(b3 + as) + k2b3l11a2 + kAo + k4(b3 + a?)J-
In z17973¢, let g be the coefficient of

T1X2X3 :c22"-1m34“+"—2 — (x22x34) m 933"—1&11.
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Such a term occurs in neither of the first two parts of R’, since
they are functions of only two variables. To obtain such a
term from the third part of R’, we must omit terms with the
factor £ (and hence 2,%) and take (xox3?)%* in £,%%, so as not to
make the degree in x, too high. Hence if T be the coefficient of
a"in f1, ¢ =g+ T. Now (a1a2)(bi1bs) replaces S by T. The
resulting 7 must be of the form (57). By the coefficient of
ashy, k4= 0; cf. (72). By the coefficient kseibs of as, ks = 0.
Since T = Ofora; = 0, by = a,, we get ky = k.. Hence S = kv,
where vis given by (90).

For n =1, f; = Sa; 4 Sia;. Thus Sy = k', where v’ is
derived from v by interchanging the subscripts 1 and 3. Then
S/ =8, + S gives k, = 0.

For n 2 3, @7 1L" %V is of the form (76) with S = v, since
Bz = 0.

Any covariant with n odd, m = 2u > 0, differs from one of rank
> m by a linear combination of IQ*L* (I = 1, A, A), K™L",
AK™L™ and, if n > 1, Q,*~1L"3V.

28. For m = 2u > 0, n = 4» > 0, the coefficients of &™xs™ in
@, KmQy, Q*F*, @QL*, K~L",
Q1*1Q,1G2,  Km2(Q,1G2

(92)
are respectively

L as bs, B+ 1, as(bs+ 1), d=psBs+ 1), asd

These may be multiplied by any invariant. Now
B+ 1+ az + bs = ayon,
ABs+ 1) + (A+ A + 1)bg + bgas + A = bsaom,
d+ A4+ B+ ax(A + bs) = by(bs + az) = B,
axd + azbs = ashibs = @B, Ad = Aby(bs + 1) = 4B.

Hence we have a covariant (76) in which the coefficient of £&™zs"
is any linear combination of the functions (71). Hence the
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covariant differs from one of rank > m by a linear function of the
covariants (92), the products of the first three by any invariani

except 1, the products of the fourth and fifth by A and the product of
the sxth by A.

29. For m = 2u > 0, n = 4y 4 2, the coefficients of £z in
(93) MEK™Qy*, KmIL*, GK™'Q,, F2Q,*, LrQ*
are respectively
az, ax(bs+ 1), abs(bi+ 1), bs, b3+ oo + 1.
Linear combinations of products of these by invariants give*
az, @A, aJ, ahs, Aashs, ashibs, Ibs, @i, A+ by,

Since S and S, are unaltered by the group I' of § 15, they are
linear combinations of the functions (71). Deleting the above
functions as, az4, - - - from S, we have

S=1TI+4cB+ edB, B = bi(bs+ o),
where ¢ and e are constants, and I is an invariant, Set
f1 = Bx," + Bz, s+ - + Bnyxexsn ! Bnl-an’
and call ¢ the coefficient of
(94) G o

in zizszsp. The coefficientt of (94) in R’ of §27 is p, +q
Hence )
g —o= Bl;
if (50) replaces ¢ by ¢’. Thus B; must be of the form (57).
For n =2, S, is derived from S by applying (a1a3) (b
Then (67,) gives S1. Applying (a1a2)(bib2) to §;, we get

Bi = I+ c(bsbs + baar + bsor) + €A (bobs + b, + by).

* For the last two, use the first two of the four equations in § 28,

+ The first part of R’ is free of z2, the second of z;, while in the third part
&2 has the factor z,% and in fi’£,%+ there is a single term (9 4) and it ha.sp'flfe
coefficient B;.

1b3).
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Since this must be of the form (57), we get I =0, ¢ = ¢ = 0.
A covariant with m = 2u, n = 2, differs from one of rank > m by a
linear function of

tMKm, KmIL? AKm™L?, GK™, IFQ.*, L*Q.", AL*Q\"
=1 A J;I=1, 4, A, J).
For n > 2, we may delete A from the part I of S by use of
EQ;*Q, 1, where E is given by (75). Without disturbing S we
may delete az(b; + 1) and its product by A from S; by use of
K?H["3 since the term of £2“f, with the coefficient S, is
the term of highest degree in z3 in £2*H(Sus™ 2+ ---).
Since 8 + 8, is a linear combination of the functions (74),

S1 = 8 4+ ti(bs + a2) + tamras + tsbsarce + tsbsd + t:Ae
+ tA(bs + 1) + to(bs + a2)J.
Apply (aiasa3)(bibeb;) to Bi, of the form (57). Hence
(96) 81 = ppa;s + pashs + pazp + raz + sp, p = b1+ as.

Now a;3b; occurs in S only in the terms J, 4J of I and in the part
of (95) after S only in the last term, given by (72). In these the
factors of aib; are linearly independent. Hence % =0,

= 2(4 + 1). The coefficient of a; in S; must vanish for
b1 = a3, and 8 itself if also a; = 0. Hence

(95)

c=thh=a Lh=KB=4=t =z+1
8y = 2(4d 4 1+ bibs + bivs + a1z + Aaz) + edbs(bs + 1)
+ t(bs + a; + bzaias + bsd + bsA + ab).
Call € the coefficient in x;2,23¢ of
B9y TP = (zg2rh) Ry @aTs” R

In R’ of § 27, the coefficient of this product is € + Bn—1. Hence
Bn1 is of the form (57). Interchanging the subscripts 1 and 2
in B,—1, we get 1. Thus the coefficient of a5 in S1 vanishes for
bs = a;. Hence S = Sy = 0. Any covariant with n > 2 differs
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from one of rank > m by a linear combination of
(ME™1Qy, KmLr, GKm™Qy, IF~PQy*, jL"@r" EQ:*@"
G=1,4,J;i=1248;1=1, 4, A, J)-

CovaRIANTS OF Opp RANK m = 2u+ 1> 1, §§30-31
30. Replacing 23 by 23 + 1 in the covariant (76), we get

R = £/t 4 fats™ + fi' (B1 + E)™ + (@122 + z,%e) P’

In z@s2:o, let g be the coefficient of (2122%) (x?as)™x".  The
coefficient of the corresponding term of R’ is ¢’ = ¢ + B, where
B is that of #,” in fi. Hence B is of the form (57).

Tirst, let » be odd. Then Sy’ = 81+ S under (50), so that
S is a linear combination of functions (74) with az(bs + 1) and
its product by A deleted (§ 23). Thus S is the sum of the terms
(95) after the first. Applying (a12a5)(bibebs) to B, of the form
(57), we see that S is of the form (96). By these two results,

S = t(ba + Qg + baalaz + baA + baA + a‘lA)'

If 1 is the coefficient of (zoxs2)™zy"z; in Zixsxsp, that in R is
! =1+ nB,. Hence, for n odd, B, is of the form (57). Inter-
changing the subscripts 1, 2 in B,, we get S. 'Thus the coefficient
of az in S vanishes for by = a,,so thatt = 0. Any covariant with
m and n odd differs from one of rank > m by a linear function of
K™L™ and AK™L".

31. Finally, let m be odd and n even. According as n = 4
or 4v + 2, K™Qy* or K™ 1MQ," is of the form (76) with a: a8
'.che coefficient of £mz;". Hence we may delete the terms azly
in (85) and hence the terms a,I; in B of §23. But (§30), B is
of the form (57). Now azh, occurs in J and AJ of I and in

boJ of byl;, having in these linearly independent multipliers.
Hence

=x(Ad+ 1)+ yA, I, =e+ fA+ gA.

Since the coefficient of a; in B shall vanish for b3 = as, and B
itself if also a3 =0, we get by =a =y =ks, ke =Ff=g9= ¢
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Thus
S=a(d+ 14+ A+ aias + bibs + biae) + ksazbibs
+ 94+ 14 A+ aro2)bs + ksAbi(bs + 1),
First, let n = 4v 4+ 2 and write 2u -+ 1 for m. Then
6QrQr, K6QrQr

have d = B3(8: + 1) and asd as the coefficients of &£™a3™. As
in § 25, the coefficients of x, k4, g, ks in (97) equal respectively

d-+ ax(A + bs + 1), axd + asbs, Ad + a.d + axJ, Ad.

The terms not containing d are combinations of the above a.I;
and ax(bs + 1) of §23. Any covariant with m = 2u+ 1> 1,
n = 4v + 2, differs from one of rank > m by a linear function of

'Z:KmL", IlI{m_]‘]k[sz, IGQl“Qz", KzGQ1“—1Q2V
C=1,01=1A4,J;1=1,4,A4).

(97)

Next, let n = 4» > 0. In the last two covariants of the
theorem below, the coefficients of £,2*tlxs® are asbs(b; + 1) and
8 = byB3(B1+ 1). We had reached covariants in which the
corresponding coefficients are a»I and ap(bs + 1)I. Thus we
obtain the coefficient of k4 in (97) and 8 4+ Aasbs + a2bibs, which
equals the coefficient of g. We may therefore set ks = g = 0.
Subtracting covariants of the fourth and fifth types in the
theorem, we may take as S, the function in § 24, without dis-
turbing S. Applying (a1a:)(bibs) to S and S, we get B, and
B,—1. If 1 is the coefficient of az™Ha™t"2 in 12230, its
coefficient in R’ of § 30is!’ = I + B, 4+ B,_,. Thus B,+ B,
is of the form (57). By the coefficient of asb;, #4=0. Since the
coefficient of a3 is zero for b; = a., we get 2 = ks = {3 = 0.
Thus S= 0. Any covariant with m =2u—+ 1> 1, n= 4> 0,
differs from one of rank > m by a linear function of

KL, AKmLr, IK™Qy, iL™9Qu+, iLr3K+, CKQrQi,
FGQQ (i=1,4,8;1=1,4,7).
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32. We have now completed the proof of the theorem:

As a fundamental system of modular covariants of the ternary
quadratic form F with integral coefficients modulo 2, we may take
F, its invariants A, A, J, its linear covariant L, its “ polar cubic
covariant K, and the universal covariants 1, @2, Ls.

Incidentally, we have obtained a complete set of linearly
independent covariants of each order and rank. We might then
find a complete set of independent syzygies. Syzygies whose
members are covariants of low rank are given in (78), (88), (91).

33. References on Modular Geometry.—Other aspects of the
modular geometry of quadratic forms modulo 2 and, in particular,
applications to theta functions have been considered by Coble.*
For a treatment of non-homogeneous quadratic forms in @, ¥
modulo p (p an odd prime), analogous to that of conics in
elementary analytic geometry, but employing only real points on
the modular locus, see G. Arnoux, Essai de Géométrie analytique
modulaire, Paris, 1911. The earlier paper by Veblen and Bussey
was citedin § 7. The paper by Mitchell was cited in §3. Appli-
cations of modular geometries have been made by Conwell.t

The problem of coloring a map has been treated from the
standpoint of modular geometry by Veblen.i

241* le’;'gnsactions of the American Mathematical Socicly, vol. 14 (1913), pp-

t Annals of Mathematics, ser. 2, vol. 11 (1910), pp. 60-76.
1 Annals of Mathematics, ser. 2, vol. 14 (1912), pp. 86-94.




LECTURE V

A THEORY OF PLANE CUBIC CURVES WITH A REAL INFLEXION
POINT VALID IN ORDINARY AND IN MODULAR GEOMETRY

1. Normal Form of Cubic.—Consider a ternary cubic form
C(z, y, z) with coefficients in a field F not having modulus 2 or 3.
After applying a linear transformation with coefficients in F
and of determinant unity, we may assume that (1, 0, 0) is an
inflexion point. In particular, C lacks the term 2% If it lacks
also 2% and 2%, its first partial derivatives vanish for y = z= 0.
But we shall assume that the discriminant of C is not zero. Hence
the coefficient of 22 may be taken as the new variable y. At the
inflexion point (1, 0, 0) the tangent ¥ = 0 is to be an inflexion
tangent, i. e., meet the cubic in a single point. Hence C lacks
the term az2. Thus

C = 2% + 2x(ay® + By2) + ¢(y, 2).

Replacing « by x — ay — Bz, we see that 2%y is now the only term
involving . If y were a factor, the discriminant would be zero.

Hence the term 2% occurs. Adding a suitable multiple of y to 2,
we get

1) C = 2%+ gy® + hy*z + 82° (8 & 0).
2. The Invariants s and t.—The Hessian of (1) 1s
H = — 382% — h%y® + 96gy%s + 36hy22.

The sides of an inflexion triangle form a degenerate cubic be-
longing to the pencil of cubics kC + H. The latter has the
factor z only when k = h = 0 and the factor y — Iz only when
kl = 30 (as shown by the terms in 2?), where k is a root of

k* + 186hk? 4 1086%k — 278%h* = 0.

Before considering the factors involving x, we note that the
99
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coefficients of this quartic equation are the values which relative
invariants of a general cubic assume for the case of our cubic (1).
Indeed, a linear transformation of determinant unity which
replaces C by a cubic ¢’ must replace H by the Hessian I’ of (",
and hence replace the inflexion triangle of C given by a root
of the quartic by that inflexion triangle of ¢’ which is given by
the same number k. We denote the invariants by*

(2) s = — 36k, t= — 1088%.
The above quartic now becomes

3) k* — 6sk?* — th — 352 = 0.
The discriminant A of C is such that

4) 27A = 2 — 6458,

There are four distinct roots of (3) since its discriminant is
— 273A2,

Our earlier results are that kC 4+ H has the factor z only
when k = s = 0 and the factor y — 35k if % is a root = 0 of
(3). It has the factor  — 7y — pz if and only if

3p* =k, 98%r2= g4 tk/12, kp?* — 66pT = s,
60kpr — 96%72 — o — t/4 = 0.
These conditions are satisfied if and only if k is a root of (3) and

p=k=0, 368%72= —t¢ (k= 0),

30 =k, 68kr = p(k* — 33) (k + 0).

3. The Four Inflexion Triangles.—TFirst, let s = 0. Then
t % 0 by (4). The root & = 0 gives the inflexion triangle with
the sides

(5) 2=0, z==xry (366°7:* = — ).

*Wehaves = — 348, = — 3T, where S and T, given in Salmon’s Higher
Plane Curves, p. 189, are the invariants of the general cubic with multinomial
coefficients.
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Each root of k* = ¢ gives an inflexion triangle
64
(6) y=7z a=*mnlytz) 3:368r2=1).

Next, let s & 0. Each root of (3) gives an inflexion triangle

-3
@ =§IE 7’—:':\[(Z‘" 6ok sy)

4. The Parameter 6.—If we multiply =z, y, z by p, p7% p, we
obtain from (1) a cubic with § replaced by §p3. If F is the field
of all complex numbers, the field of all real numbers, or the finite
field of the residues of integers modulo 3j 4 2, a prime, every
element is the cube of an element of the field [in the third case,
e = (¢77)%, so that the parameter 6 may be taken to be unity.
Although we do not use the fact below, it is in place to state here
that for all further fields a new invariant is needed to distinguish
the classes of cubics (1). Indeed, two cubics (1), with coef-
ficients in F and with the same invariants s and ¢ and discrim-
inants not zero, are equivalent under a linear transformation
with coefficients in F and having determinant unity if and only
if the ratio of their 8’s is the cube of an element of F.

CrITERIA FOR 9, 3 or 1 REAL INFLEXION PoINTs, §§ 5-9

5. Inflexion Points when s = 0.—Let « be a fixed root of k% = t.
Let 71 and 7, be fixed roots of the equations at the end of (5)
and (6). Then

(1ifm)?= —8=(1+4+2w)? *+w-+1=0.

Choose w so that 7,/72 = 14 2w. Denote the lines z = 0,
x=1yY, €= — 1y in (5) by L, L,, L;. For each value of
i =0, 1, 2, denote the three lines (6) with k = kw* by Ly;, Las,
Ls;, that with the lower sign being L;;. Then the 9 inflexion
points and the subscripts of the 4 inflexion lines through each
are given in the following table:
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! Kkew® \! Kw'®
1,0,0) | (o, 1,0)5(—12, 1, 0) (71,1, 3_5) (—TI, 1,§)
1 1| 1 2 3
® 10 20 | 30 14 13
1 21 | 31 9,i—1 | 2,i—2
12 22 32 3,5 —2 3,i—1

In the last two columns, ¢ has the values 0, 1, 2; while's — 1 or
7 — 2 is to be replaced by the number 0, 1, 2 to which it is con-
gruent modulo 3.

When F is the field of all real numbers, k may be taken to be
real, while just one of the numbers r; and 7, is real. Hence
3 and only 3 of the 9 inflexion points are real. The same result
is true if F is the field of the p residues of integers modulo p,
where p is a prime 35+ 2 > 2. For, x may be taken to be
integral (§ 4), while w is imaginary and hence — 3 is a quadratic
non-residue of p. If — ¢tisa quadratic residue, 7, is real and 72
imaginary. If — tisa non-residue, the reverse is true.

Next, let p = 35 4 1, so that w is real and hence — 3 a quad-
ratic residue. By (5) and (6), 71 and 7, are both real or both
imaginary according as — ¢ is a quadratic residue or non-residue
of p. Hence all 9 inflexion points are real if and only if — ¢ is
both a square and a cube and hence g 6th power modulo p. If
— tis a square but not a cube, only the first 3 inflexion points
arereal. If — ¢is a quadratic non-residue, (1, 0, 0) is the only
real inflexion point.

A cubic with integral coefficients taken modulo D, a prime > 3,
with at least one real inflexion point and with invariant s = 0
and invariant ¢ % 0, has 9 real inflexion points of p=3j+1
and — t i3 a sixth power modulo D, a single real inflexion point of
P =3j+1and — t is a quadratic non-residue of p, and exactly
3 real inflexion points in all of the remaining cases.

For example, if p=7 and s = 0, ¢ + 0, there are 9 real in-
flexion points only when ¢t= — 1, Taking 6 =3, 7, = — 2,
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7o=-+1, k= —1, we get o=2. Thus 2% — 3°+ 32® =0
has the 9 inflexion points (1, 0, 0), (1, 1, 0), (— 1, 1, 0),
(-2,1,3-29,(2,1,3-2) (2=0,1,2).

6. Inflexion Points when s #+ 0, A & 0.—These are (1, 0, 0)
and

— K 36
9 ( ’ 3 1.0 1 ) ’
2 +2kV—k k
where % ranges over the roots of the quartic (3). We seek the

number of real roots % for which ¥ — k is real. In order that
the left member of (3) shall have the factors

(10) R4 wk+1, kB—wk+m,

it is necessary and sufficient that

Q) I4+m—wt=—6s, (—mw=1t Imn=—3s
Let ¢ % 0 (for t = O see §9). Then w + 0 and

(12) 2l = w? — 6s + t/w, 2m = w? — 6s — t/w.
Inserting these values into (113), we get

(13) wb — 12sw* + 48s°w? — &2 = 0.

Set w? = y 4 4s. Then

(14) y® = 1 — 6453 = 27A.

For the rest of this section, let the field be that of the residues
of integers modulo p, where p is an odd prime 3j + 2. Since
any integer ¢ has a unique cube root ¢~/ modulo p, there is a
single real root y of (14).

First, let y + 4s be a quadratic residue of p. Then w is
real and hence also 7 and m. The product of the discriminants
of the quadratic functions (10) is seen by (11,) and (115) to equal

(15) (w* — 4l)(w® — 4m) = — 3(w® — 45)? = — 3y?

and hence is a quadratic non-residue of p. Thus a single one of
the quadratics (10), say the first, has a discriminant which is a
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quadratic residue and hence has real roots. By (12,),

4l(w? — 4D)w? = — 2ub — 6wt + 36sw* — 412 + 48stw — 1445202,
Adding the vanishing quantity (13), we see that

(16) 4l(w? — 4D)w? = — 3(w? — 8Ssw + )2

Since w? — 4l is a quadratic residue and — 3 is a non-residue
of p, it follows that ! is a non-residue. Hence a single one of
the roots of the first quadratic (10), and hence a single one of
the roots of the quartic (3), is the negative of a quadratic residue.
Thus just two of the inflexion points (9) are real.

Next, let y + 4s be a quadratic non-residue of p. Then there
is no factorization of the quartic (3) into real quadratic factors.
Nor is there a real linear factor & — r and a real irreducible
cubic factor. For, if so, the roots of the latter are of the form
A, AP, \?* (cf. the first foot-note p. 37). Then

(=N (r—=27) (r=2%), P=A—N)A*—N")A*—N)=P? (mod p)

are real, so that the discriminant of (3) is a quadratic residye.
But this discriminant was seen to be — 3(81A)% and — 3'is a
non-residue. Hence (3) is irreducible modulo p. Thus (1, 0, 0)
is the only real inflexion point.

For p=3j4+2> 2, a cubic (1) with stA + 0, has exactly
three real inflexion points or a single one according as the real
number 3A% + 4s is a quadratic residue or non-residue of p.

7. Cubic with stA + 0, p = 3j 4+ 1.—Now — 3 is a quadratic
residue of p and there are three real cube roots 1, w, w? of unity
modulo p.

In this section we shall assume that A is a cube modulo p.
Then there are three real roots y; of (14). At least one of the
y: + 4s is a quadratic residue of p since

3
1+ 49) =y + 645° = 2

If y1 + 4s is a quadratic residue, while y;, + 4s and y; + 4s
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are non-residues, there is a single factorization of quartic (3)
into real quadratics (10) and hence certainly not four real roots.
The product (15) of the discriminants of the real quadratic
factors is now a quadratic residue of p. If each were a residue,
there would be four real roots. Hence each is a non-residue and
there is no real root. There is a single real inflexion point +f
p = 35+ 1, stA £ 0, A is a cube, and if the three values of 3AY+ 4s
are not all quadratic residues of p.

Next, let each y; + 4s be a quadratic residue of p. Then there
are three ways of factoring quartic (3) into real quadratics (10).
But a root common to two distinct real quadratics isreal. Hence
all four roots are real. The discriminant of each quadratic (10)
is therefore a quadratic residue of p. Hence, by (16), [ is a
quadratic residue of p; similarly for the constant term of each
quadratic factor. Thus the negatives of the four roots are all

quadratic residues or all non-residues.
To decide between these alternatives, we need the actual roots.

In w? = y; + 4s, let the signs of the w; be chosen so that
k2= wik 4+ mi=0 (t=1,2,3)
have a common root. As in (12),
2m; = w? — 6s — tfw..

For ¢ # 1, we find by subtraction and cancellation of w, — w.

that
2k = w1 + w. + t/(wiw,).

Comparing the results for ¢ = 2 and ¢ = 3, we get
1w W1Wews = L.
Hence* the roots of (3) are

3 (w1 4 we + w3), 3(wy — wp — w3),
3(— w1+ w, — wy), E(— w — we + w3).

The product of the first and (¢ + 1)th roots is seen to equal m;

* In particular, we have deduced Euler’s solution by the method of Descartes.

(18)
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and hence is a quadratic residue. For given values of p, s, ¢,
we can readily find by a table of indices the real values of the w;
and thus a real root and hence decide whether or not it (and
hence each of the four roots) is the negative of a quadratic
residue.

However, changing our standpoint, we shall make an explicit
determination of all sets s, ¢ for which the quartic (3) has four
real roots each the negative of a quadratic residue of p.

By the definition of the w2, or direct from (13),

(19) Zw? = 125, ZSwlw? = 48s%, wtwws? = {2
Let w be a fixed integral root of «?* + w + 1 = 0 (mod p). Then
0 = (12s)2 — 3(48s?) = Zw;* — Zwi*w,?
= (w2 + wws? 4 w?ws?) (wi + ww:? + wwsd).
Interchanging w; and ws, if necessary, we have
(20) w2 + ww.? - wws? = (mod p).

Conversely, if the w? are any quadratic residues satisfying
(20) and if we define s and ¢ by (19) and (17), we obtain a quartic
(3) with the four real roots (18). If we permute wi, ws, ws
cyclically we obtain solutions of (20) leading to the same s and
t and to the same four roots (18).

Our first problem is therefore to find all sets of solutions of
(20). To this end it is necessary to treat separately the cases
— 1 a quadratic residue and — 1 a non-residue; viz., p=12¢q+1
and p = 12¢+ 7 (since already p = 35+ 1).

First,let p = 1294+ 1. Then — 1 = 2 (mod p), where 7 is an
integer. Set

2p = wy — fww;, 2 = w; + twws.

Then (20) becomes
dpo = — w2 = (2w?w2)?,

so that po must be a quadratic residue. Hence we may take
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o = pl?, where p and [ are integers not divisible by p. Then
21)  wr = p(1+ B), 1w = 2dwpl, ws;= (1l — B).

We must exclude the values of I which lead to equal values of
two of the w.? and hence to equal y;’s, since the roots of (14) are
incongruent. Now if any two of the w;? in (20) are congruent,
all three are congruent. But w,? = w,? implies

14+ 2= +2%0, (Fiw’=o, l==Etivte? (@=1).

The values 2 = 0, &= 1 make one of the w; = 0. Hence we must
exclude the 9 incongruent integral values of I:
(22) =0, £1, £12, o**tiw, — o xio.
Using the values (21), we get
(23) 125 = p?{(1 — w)(1 + 1Y) — 60}, &t = 20%(1* — 1),

N 2
QD) 3w ) = 31+t (14 155 )

To make the negative of the last a square, we must take

(25) p = — 2(1 + )2 (r % 0).
Now s, given by (23), is zero only when
(26) l=wxiw, — ki

The desired sets s, t are given by (23) and (25), where 15 any
wnteger not divisible by p, while 1 is any one of the p — 13 positive
wntegers < p not congruent modulo p to one of the 13 incongruent
integers (22), (26). The minimum p s 37.

Second, let p = 12¢ + 7. Then A\2= — 1 (mod p) is irre-
ducible. Its roots ¢ and — 7 = ¢? are Galois imaginaries. Set
(27) r=p+1, oc=p—1

There exists a linear function R of 7 with integral coefficients
such that R™ = 1, while no lower power of R is unity. Any
function of 7 is zero or a power of R and any integer is a power of
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R™, a primitive root of p. Hence we may set
wws = R™, w; + wwst = R, w; — wwst = RPe,
where 0 <7 < 0, 0 £ e < mo. Then (20) is equivalent to
R+ R =0, we= 2wy + ino (mod o).
The last condition is equivalent to

(28) e=29+4+0c/2+ jo 0O Lji<m.
We have

we = wR™, 2w; = R¢-+ Rre, 2w; = — w?(R*— Rre),
2622w; = 2R™ 4 (w? — tw)R¢ + (w®+ tw)RPe,
(@ — ) (> 4+ iw) = — 1,
(@W—tw)"=—1, ?—iw=DRI" (f odd),

20w, = 2R™ + Ret/or2 — Rre—ioi2

(29)

= RrU-UH)2)(Rr—j+p(+D /2 | Rer—pit U+ [2)2

The last binomial is its own pth power and hence is real. We
desire that the root 3Zw,; shall be the negative of a quadratic
residue and hence a non-residue. Since R™ is a primitive root
of p, the condition is that j — (f 4 1)/2 shall be odd:

(30) f=20—1, j—1=odd
We must exclude the values making w,? = w.%:

0 = 2R P(w, = w,) = Rertotio T 2R 2 — RPp1—io,

the second term having been simplified by use of
R = —1, Ree =R
Completing the square of the first two terms, we get
(R G2 2 g Ron—vifzy2 — (w? + 1) B2,

Now o? + 1= — w = (ciw)?, where ¢ = 1 or — 1. Hence

RrtoGtn e — (:t W+ Ciwg)RDn-Uj/2'
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But
31) (w+ tw)(w—10*) = — 1, w4 = R~
) w — i = — RoR (v odd).
Hence we must exclude the four cases in which

(32) n=j+3£v+1), j+3(Ev+r+1) (modm),

these four values being incongruent.
No one of the w’s in (29) is zero, since ¢ is odd by (28), so that
e £ 0, /2 (mod 7). By (19,) and (17),

48s = (1 — w)(R? + R?%) + 6w?2R2™,

33) 4 = — iR™(R* — R»°),

Finally, we must here exclude the cases in which s = 0.
Combining Zw;> = 0 with (20), we obtain the necessary and
sufficient condition w,? = wwz? for s = 0. But w; = == wws,
in connection with (29), gives

Re(l = iw) = Rre(— 1 £ 1iw), Re(w =+ iw?)® = Ree.

Thus, by (31), the condition is that e &= v¢ = pe (mod ms) or
e= =19 (mod ). Then, by (28), n is congruent modulo =
to one of the values (32) decreased by m/4. Hence the desired
sets s, t are given by (33), subject to (28), in which the 8 incongruent
n’s given by (32) and those values decreased by w[4 are excluded.
In particular, p > 7.

For p = 19, the only admissible pairs are

s=2.22 t=6(—2% (I=0,1,--+,8).
For any [, the negatives of the roots of quartic (3) are the products
of —3=424 7= 8 — 8= 72by (— 2)" and hence are quad-
ratic residues of 19 since — 2 = 62
For p = 31, the only pairs are
s= 3%, t=5(—3)%; s=-3% t=13(-3)* (1=0,--, 1)),
the negatives of the roots of (3) being the products of 7, — 11,

— 12, — 15 and — 3, 5, 9, — 11, respectively, by (— 3)% and
hence are quadratic residues of 31.
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8. Case p = 35+ 1, stA + 0, A not a Cube.—The roots of (14)
are now Galois imaginaries ¥, 37, ¥?°. As at the beginning of § 7,

2= (y+ 49" + 45)(¥™ + 4s) = (y + 4s)t+7+°,

Raise each member to the power (p — 1)/2. We see that y + 4¢
is the square of an element, say w, of the Galois field of order p2.
The first root (18) is 3(w + w? + w?’) and equals its own pth
power, and hence is real. This is not true of the remaining roots
(18), since w? =+ w, or since a real quadratic factor would imply
that w is real. Hence the quartic has a single real root.

For p = 7, the only cases in which the negative of the single

real root is a quadratic residuearet = — lor3,s = — 1, — o 3;
t = 2, s arbitrary + 0. For p = 13, the only cases are
:l:t=4,5,6; 3=—1,—3,4 (835—1);

£1=1,56 s=—2—5-6 (9=g5),
and == ¢ = 3, — s equals one of the preceding six values of ¢,
9. Cubic with t = 0, s + 0.—In this case, (3) becomes
(k? — 3s)? = 1252
If there be a real root k, 3 is a quadratic residue of p, and
B2=1s, 1=3=%243

First, let p = 3j + 2, so that — 3 is a quadratic non-residue of
p. Then — 1 must be a non-residue of p and hence p = 12, 4 17
The product of the two I’s is — 3, so that a single value of 2 is
a quadratic residue. Since the two real £’s are of opposite sign,
there is a single real root & whose negative is a quadratic residye.
Fort=0,s #+ 0, and p = 12r 4 5, there is a sinyle real inflexion
point; for p = 12r + 11, there are just three real inflexion points.

Finally, let p = 3j + 1, so that — 3 is a quadratic residue of .
If p = 12r 4 7, then 3 is a non-residue, and there is no real %
and hence a single real inflexion point. If p = 12r 4 1, the
four roots % are all real or all imaginary. Forp = 13, k2= — 2
or — 5s, and — k is a quadratic residue if and only if /¢ = 1,
$8=28,8=2,5 6. For p=237, k*= — 45 or 10s, and — k
is a residue if and only if s° = 1.

The end
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exercises, problems. Index. xvi <+ 447pp. 538 x 8. S300 Paperbound $2.25

THEORY OF GROUPS OF FINITE ORDER, W. Burnside. First published some 40 years ago,
this is still one of the clearest introductory texts. Partial contents: permutations, groups
independent of representation, composition series of a group, isomorphism of a group with
itself, Abelian groups, prime power groups, permutation groups, invariants of groups of linear
substitution, graphical representation, etc. 45pp. of notes. Indexes. xxiv_+ 512pp. 53 X 8.

S38 Paperbound $2.75

CONTINUOUS GROUPS OF TRANSFORMATIONS, L. P. Eisenhart. Intensive study of the theory and
geometrical applications of continuous groups of transformations; a standard work on the
subject, called forth by the revolution in physics in the 1920’s. Covers tensor analysis,
Riemannian geometry, canonical parameters, transitivity, imprimitivity, differential n.nvanants,
the algebra of constants of structure, differential geometry, contact transformations, etc.
“Likely to remain one of the standard works on the subject for many years . . . principal
mg?rems are proved clearly and conciselyt,”and tl;le alrgasmgeme[\t of ‘;hiughézllgplssggh:rgnt,
-i ibliography. exercises. i . .
HEMATICAL GAZETTE. Index. 72-item bibliography e d0aED. aend $2.00

THE THEORY OF GROUPS AND QUANTUM MECHANICS, H. Weyl. Discussions of Schroedinger’s
wave equation, de Broglie’s waves of a particle, Jordan-Hoelder theorem, Lie's qontmuoug
groups of transformations, Pauli exclusion principle, quantization of Maxwell-Dirac f{el
equations, etc. Unitary geometry, quantum theory, groups, application of groups to quanzun‘}
mechanics, symmetry  permutation group, algebra of symmetric transformation, etc. Vns
revised edition. Bibliography. Index. xxii + 422pp. 5% Xx 8. S269 Paperbound $2.3

APPLIED GROUP-THEORETIC AND MATRIX METHODS, Bryan Higman. The first systematic
treatment of group and matrix theory for the physical scientist. Contains a compr.ehensnved
easily-followed exposition of the basic ideas of group theory (realized through r‘namcfst)‘ gF
its applications in the various areas of physics and chem.stry: tensor analysis, felat!z!lyv
quantum theory, molecular structure and ~spectra, and Eddington’s quantun;] retarl Iayfi
Includes rigorous proofs available only in works of a far more advanced character.

i ibli ) 88.
figures, numerous tables. Bibliography. Index. xiii + 454pp. 5% x81147 paperbound $2.50

. i intro-
THE THEORY OF GROUP REPRESENTATIONS, Francis D. Murnaghan. A comprehensive in
duction to the theory of group representations. Particular attention is devoéed otfo fh‘:‘%sae_
groups—malnly the Symmefric and rotation groups—which have proved t°| t?le contribu-
mental significance for quantum mechanics (esp. nuclear physics). Also a valud Cops of
tion to the literature on matrices, since the usual representations of groups aéewge by the
matrices. Covers the theory of group integration (as developed by Schur atn_ ro{lp' the
theory of 2-valued or spin representations, the representations of the symme -:;g'ngheérem
cn;ys)tal{ggraqlt'nic g{oups, the Lorentz group, Qﬁducibt“ity (thuf;ip'e";g‘:a'lga'g;s' List of refer-
etc.), the alternating group, linear groups, the orthogonal group, : :

onces. Xt b aeoppC sy P ayacar & p S1112 Paperbound $2.35

f ion i i i for inde-
THEORY OF SETS, E. Kamke. Clearest, amplest introduction in English, well suited f
pendent study. Subdivision of main theory, such as theory of sets of points, arebig::?;sgggs'
but emphasis is on general theory. Partial contents: rudiments of set theory, a{s and thelr
and their cardinal numbers, ordered sets and their order types, well-ordered se

R ikt : 8.
cardinal numbers. Bibliography. Key to symbols. Index. vii + lMpp"sﬂ;%l/ap:perbound $1.35
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i i L. E. Dickson.
THEORY AND APPLICATIONS OF FINITE GROUPS, G. A. Miller, H. F. Blichfeldt, I kson,
Unusually accurate and authoritative work, each section prepared by fal_leadlnr% ns;geg:laelssuts.
Miller on substitution and abstract groups, Blichfeldt on finite groups od mea(;' kso thigs i
transformations, Dickson on applications of finite groups. Unlike more moberln w rroﬁ LN
the concrete basis from which abstract group theory arose. Includes Asel an B ps' Galois’
power groups, isomorphisms, matrix forms of linear transformations, yt'DW Etéw% "Indares
theory of algebraic equations, duplication of a cube, trisection of ""S;q% eﬁ*aeerbound $2.00
267 problems. xvii + 390pp. 53 x 8. p )

Il. Important
THE THEORY OF DETERMINANTS, MATRICES, AND INVARIANTS, H. W. Turnbull.

study includes all salient features and major theories. 7 chapters on c:-eterm"éa%tastioannsd
matrices cover fundamental properties, Laplace identities, mult:plncatlon.t_ '"ea’mb%“c and
rank and differentiation, etc. Sections on invariants gives general proper msf, syat'on ot
direct methods of reduction, binary and polar forms, general linear trans orrtn alnd' root
fundamental “theorem, multilinear forms. Following chapters study developrneTnh m pand
of [Milbert's Basis Theorem, Gordan-Hilbert Finiteness Theorem, Clebsch's eI pebae
';nclude disclussions of apolarity, canonical forms, %‘eometrlff::ée'g}&'l’a’g;ﬂg?: gim?og,apny
or i . New pre . :
it Sapp. Sy of the Beneral quadric, eté P $699 Paperbound $2.25

AN} INTRODUCTION TO THE THEORY OF CANONICAL MATRICES, H. W. Turnbull and A. C. Aitken.
All principal aspects of the theory of canonical matrices, from definitions and fu‘nd?mfentnﬁl
Boperties of matrices to the practical applications of their reduction to She Buthors. go
cginning with matrix multiplications, reciprocals, and partitioned matrices, the MR e
on to elementary transformations and bilinear and guadratic forms. Also A T kg
as a rational canonical form for the collineatory group, congruent and conjunctive transf I'I
mation for quadratic and hermitian forms, unitary and orthogonal transformations, i
Biniionon of pencils of matrices, etc. Index, Appendix. Historical notes at chapter $1.55
Bibliographies. 275 problems. xiv' + 200pp. 5% x 8. S177 Paperbound $1.
A TREATISE ON THE THEORY OF D . Muir. Unequalied as an exhaustive compila-
tion of nearly all the known factssgggrtl%z?grsﬁizants up to the early 1930’s. Covers nptat:ton
and general "properties, row and column transformation, symmetry,” compound determinants,
adjugates, rectangular arrays and matrices, linear dependence, gradients, Jacobians, Hessians,
Wronskians, and much more, Invaluable for libraries of industrial and research organizations
:-fcﬁ'e" astor sc}udent, teacher, and mathematician; very usefutl)'ln thedflel%rg ,ff',','ﬂ.‘#e"r‘ig
achines. Revised and enlar ex. 485 problems and sc .
cal examples. iv + 766pp. 5%3: xb)é.w' H. Metzler. Ind P S670 Paperbound $3.00

THEOGRY OF DETERMINANTS | OF DEVELOPMENT, Sir Thomas Muir.
Unabridged reprintima. oy oy;N_THE HISTORICAL ORDER

S compl 1,859 papers on determinant theory written
between' 1693 and 1900, ost Tn%ggfta%trdgngforiginalp s%ctions reproduced, valuable com-
mentary on each. No other work is necessary for determinant research: all ty{)es are covered—
each subdivision of the theory treated separately; all papers dealing with each type are
covered; you are told exactly what each paper s about and how important its contribution is.
fﬁ‘:h result, theory, extension, or modification is assigned its own identifying numeral so that
! e full history may be more easily followed. Includes papers on determinants in general,
Soerminants " and linear equations, symmetric determinants, alternants, recurrents, determi
nants havmg..'""a”ant factors, and al) other major types. ‘A model of what such histories
TiEht to be.” ‘NATURE. “Mathematicians must ever be grateful to Sir Thomas for his monu-
mental work, AMERICAN MATH MONTHLY. Four volumes bound as two. Indices. Bibliog-
raphies. Total of Ixxxiv + 1977pp. 533 x 8. $672-3 The set, Clothbound $12.50

Calculus and funct

cul fon theory, Fourier theory, infinite series, calculus of
variations, real and

complex functions

FIVE VOLUME “THEORY OF FUNCTIONS' SET BY KONRAD KNOPP
This five-volume set, prepared b Kon K rovides a complete and readily followed
account of theory of functions., P)r,oofs garg gicggp'co%cisely, yet without sacrifice of complete-
ness or rigor, These volumes are used as texts by such universities as M.1.T., University of
c"'”%?' N. Y. City College, ang many others. “Excellent introduction . . . remarkably
readable, concise, clear, rigorous,” JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION.

ELEMENTS OF THE THEORY OF FuncTig rad Knopp. This book provides the student
with background for further volumes in tl?ig' sganordtextspgn a similar level, Partial contents:
foundations, system of complex numbers and the Gaussian plane of numbers, Riemann
sphere of numbers, mapping by linear functions, normal forms, the logarithm, the cyclometric
a-lﬂl‘ft:w:w:ﬂg”b;%%m{al |ixt’:{les. “Not only for the young studfnt,B grt als.o:;1 fmi (t'.lhe s{gg;gt
Ut what is in it,” MATHEMATICAL JOURNAL. Bibliography. Index. .

s X 8. S154 Paperbound $1.35
THEORY OF FUNCTIONS, PART I, Konrad Knopp. With volume 11, this book provides coverage
of basic concepts and theorems. Partial contents: numbers and points, functions of a com-
plex variable, integra| of a continuous function, Cauchy’s integral theorem, Cauchy's integral
formulae, series with variable terms, expansion 'of analytic functions in power series, analytic
continuation and complete definition of analytic functions, entire transcendental functions,
Laurent expansion, types of singularities. Bibliography. Index. vii + 146pp. 538 x 8

S156 Paperbouna $1.35
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THEORY OF FUNCTIONS, PART 1I, Konrad Knopp. Application and further development of
general theory, special topics. Single valued functions, entire, Weierstrass, Meromorphic
functions. Riemann surfaces. Algebraic functions. Analytical configuration, Riemann surface.
Bibliography. Index. x + 150pp. 538 x 8. S157 Paperbound $1.35

PROBLEM BOOK IN THE THEORY OF FUNCTIONS, VOLUME 1, Konrad Knopp. Problems in ele-
mentary theory, for use with Knopp's THEORY OF FUNCTIONS, or any other text, arranged
according to increasing difficulty. Fundamental concepts, sequences of numbers and infinite
series, complex variable, integral theorems, development in series, conformal mapping. 182
problems. Answers. viii 4+ 126pp. 53 x 8. S158 Paperbound $1.35

PROBLEM BOOK IN THE THEORY OF FUNCTIONS, VOLUME 2, Konrad Knopp. Advanced theory
of functions, to be used either with Knopp’s THEORY OF FUNCTIONS, or any other com-
parable text. Singularities, entire & meromorphic functions, periodic, analytic, continuation,
multiple-valued functions, Riemann surfaces, conformal mapfmg. Includes a section of addi-
tional elementary problems. “The difficult task of selecting from the immense material of the
modern theory of functions the problems just within the reach of the beginner is here
masterfully accomplished,” AM. MATH. SOC. Answers. 138pp. 538 x 8. S159 Paperbound $1.35

A COURSE IN MATHEMATICAL ANALYSIS, Edouard Goursat. Trans. by E. R. Hedrick, 0. Dunkel.
Classic study of fundamental material thoroughly treated. Exceptionally lucid exposition of
wide range of subject matter for student with 1 year of calculus. Vol. 1: Derivatives and
Differentials, Definite Integrals, Expansion in Series, Applications to Geometry. Problems.
Index. 52 illus. 556pp. Vol. 2, Part I: Functions of a Complex Variable, Conformal Repre-
sentations, Doubly Periodic Functions, Natural Boundaries, etc. Problems. Index. 38 illus.
EGSptp. Vol. 2, Part 2: Differential EquationsblCauch)lf-laipsch:;:)zs Metgg/t;, Nog‘lmear Differential
uations, Si ions, etc. Problems. Index. Pp. x 8.

a imultaneous Equations Vol. 1 S554 Paperbound $2.50
Vol. 2 part 1 S555 Paperbound $1.85

Vol. 2 part 2 S556 Paperbound $1.85

3 vol. set $6.20

MODERN THEORIES OF iNTEGRATION, H. Kestelman. Connected and concrete coverage, with
fully-worked-out proofs for every step. Ranges from elementary definitions through theory
of aggregates, sets of points, Riemann and Lebesgue integration, and much more. This new
revised and enlarged edition contains a new chapter on Riemann-Stieltjes integration, as well
as a supplementary section of 186 exercises. Ideal for the mathematician, student, teacher,
or self-studier. Index of Definitions and Symbols. General Index. Bibliography. x -+ 310pp.
5% x 8. §572 Paperbound $2.25

THEORY OF MAXIMA AND MINIMA, H. Hancock. Fullest treatment ever written; only work in
English with extended discussion of maxima and minima for functions of 1, 2, or n variables,
problems with subsidiary constraints, and relevant quadratic forms. Detailed proof of each
important theorem. Covers the Scheeffer and von Dantscher theories, homogeneous quadratic
forms, reversion of series, fallacious establishment of maxima and minima, etc. Unsurpassed
treatise for advanced students of calculus, mathematicians, economists, statisticians. |nde):).
24 diagrams. 39 problems, many examples. 193pp. 5% x 8. S665 Paperbound $1.5

AN ELEMENTARY TREATISE ON ELLIPTIC FUNCTIONS, A. Cayley. Still the fullest and clearesg
text on the theories of Jacobi and Legendre for the advanced student (and an e"ceg't?"h
supplement for the beginner). A masterpiece of exposition by the great 19th century Bri tltsl
mathematician (creator of the theory of matrices and abstract geometry), it covers the
adfdition-theory. Landen’s theorem, the 3 kinds oé elligtic mt(ig'rjals: i’gra_:s?)gl’ﬁﬂ;;“%“;zxae
N f H : A i re. Index. Xxii . .
g-functions, reduction of a differential expression, and much more. In 728 Paperbound $2.00

THE APPLICATIONS OF ELLIPTIC FUNCTIONS, A. G. Greenhill. Modern books forego dettalzll'r:m
sake of brevity—this book offers complete exposition necessary for proper unders 31;‘|e'm§.v
use of elliptic integrals. Formulas developed from definite physical, geometric melIi tie
examples representative enough to offer basic information in widely useable fon;n. - 2pnd
integrals, addition theorem, algebraical form of addition theorem, elliptic mtegll'ats c?uction'
3rd kind, double periodicity, resolution into factors, series, transformation, etc. bnm:gd o T
Index. 25 illus. xi + 357pp. 5% x 8. S603 Paper .

) itative
THE THEORY OF FUNCTIONS OF REAL VARIABLES, James Pierpont. A 2-volume authoritati
exposition, by one of the foremost mathematicians of his time. Each theorem nsit:tettio V;lit:_
all conditions, then followed by proof. No need to go through corppllcated reas[ote grigorous
cover conditions added without specific mention. Includes a particularly comp ef'Lebesgue
presentation of theory of measure; and Pierpont's own work on a theco\;)’I 01‘ o tional
integrals, and treatment of area of a curved surface. Partial contents, O-er “integrals
numbers, exponentials, logarithms, point aggregates, maxima, minima, propel ate forms'
improper integrals, multiple proper integrals, continuity, discontinuity, mdeteJ;ﬂll; numbers'
Vol. 2: point sets, proper integrals, series, power series, aggregates, Orgs:nallustrations'
discontinuous functions, sub-, infra-uniform convergence, much more. Index. Ib und- $5 %
1229pp. 538 x 8. $558-9, 2 volume set, paperbo .
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ELEMENTS OF THE THEORY OF REAL FUNCTIONS, J. E. Littlewood. Based on lectures given at
Trinity College, Cambridge, this book has proved to be extremely successful in introducing
graduate students to the modern theory of functions. It offers a full and concise coverage
of classes and cardinal numbers, well-ordered series, other_types of series, and elements
of the theory of sets of points. 3rd revised edition. vii + 71pp. 53 x 8.
S171 Clothbound $2.85
S172 Paperbound $1.25

TRANSCENDENTAL AND ALGEBRAIC NUMBERS, A. 0. Gelfond. First English translation of work
by leading Soviet mathematician. Thue-Siegel theorem, its p-adic analogue, on approximation
of algebraic numbers by numbers in fixed algebraic field; Hermite-Lindemann theorem on
transcendency of Bessel functions, solutions of other differential equations; Gelfond-Schneider
theorem on transcendency of alpha to power beta; Schneider’s work on elliptic functions,
with method developed by Gelfond. Translated by L. F. Boron. Index. Bibliography. 200pp.
5% x 8. S615 Paperbound $1.75

ELLIPTIC INTEGRALS, H. Hancock. Invaluable in work involving differential equations contain-
ing cubics or quartics under the root sign, where elementary calculus methods are inade-
quate. Practical solutions to problems that occur in mathematics, engineering, physics:
differential equations requiring integration of Lamé’s, Briot’s, or Bouquet's equations; deter-
mination of arc of ellipse, hyperbola, lemniscate; solutions of problems in elastica; motion
of a projectile under resistance varying as the cube of the velocity; pendulums; many
others. Exposition is in accordance with Legendre-Jacobi theory and includes rigorous dis-
cussion of Legendre transformations. 20 figures. 5 place table. Index. 104pp. 515 x g,
$484 Paperbound $1.25

LECTURES ON THE THEORY OF ELLIPTIC FUNCTIONS, H. Hancock. Reissue of the only book
in English with so extensive a coverage, especially of Abel, Jacobi, Legendre, Weierstrasse
Hermite, Liouville, and Riemann. Unusual fullness of treatment, plus applications as we| as
theory, in discussing elliptic function (the universe of elliptic integrals originating in Works
of Abel and Jacobi), their existence, and ultimate meaning. Use is made of Riemann to
provide the most general theory. 40 page table of formulas. 76 figures. xxiii + 498pp

S483 Paperbound $2.55

THE THEORY AND FUNCTIONS OF A REAL VARIABLE AND THE THEORY OF FOURIER'S SER|Eg
E. W. Hobson. One of the best introductions to set theory and various aspects of functions
and Fourier’s series. Requires only a good background in calculus. Provides an exhaustive
coverage of: metric and descriptive properties of sets of points; transfinite numbers ang
order types; functions of a real variable; the Riemann and Lebesgue integrals; sequences
and series of numbers; power-series; functions representable by series sequences of continuoys
functions; trigonometrical series; representation of functions by Fourier’s series; complete
exposition (200pp.) on set theory; and much more. ‘‘The best possible guide," Nature. VoI, I:
88 detailed examples, 10 figures. Index. xv + 736pp. Vol. I: 117 detailed examples, 13
figures. Index. x + 780pp. 618 X 9Vj. Vol. |: S387 Paperbound $3.0p

Vol. 1l: S388 Paperbound $3.00

ALMOST PERIODIC FUNCTIONS, A. S. Besicovitch. This unique and important summary by a
well-known mathematician covers in detail the two stages of development in Bohr's theory of
almost periodic functions: (1) as a generalization of pure periodicity, with results “ang
proofs; (2) the work done by Stepanoff, Wiener, Weyl, and Bohr in generalizing the theory.
Bibliography. xi + 180pp. 53 x 8. S18 Paperbound $1.75

THE ANALYTICAL THEORY OF HEAT, Joseph Fourier. This book, which revolutionized mathe.
matical physics, is listed in the Great Books program, and many other listings of great
books. It has been used with profit by generations of mathematicians and physicists who are
interested in either heat or in the “application of the Fourier integral. Covers cause and
reflection of rays of heat, radiant heating, heating of closed spaces, use of trigonometric
series in the theory of heat, Fourier integral, etc. Translated by Alexander Freeman. 20
figures. xxii + 466pp. 538 x 8. $93 Paperbound $2.50

AN INTRODUCTION TO FOURIER METHODS AND THE LAPLACE TRANSFORMATION, Philip Franklin.
Concentrates upon essentials, enabling the reader with only a working knowledge of calculus
to gain an understanding of Fourier methods in a broad sense, suitable for most applica.
tions. This work covers complex qualities with methods of computing elementary functions
for complex values of the argument and finding approximations by the use of charts;
Fourier series and integrals with half-range and complex Fourier series; harmonic analysis;
Fourier and Laplace transformations, etc.; partial differential equations with applications to
transmission of electricity; etc. The methods developed are related to physical problems of
heat flow, vibrations, electrical transmission, electromagnetic radiation, etc. 828 problems
with answers. Formerly entitied *‘Fourier Methods.”” Bibliography. Index. x + 289pp. 5% x 8,

$452 Paperbound $2.00

THE FOURIER INTEGRAL AND CERTAIN OF ITS APPLICATIONS, Norbert Wiener. The only book-
length study of the Fourier integral as link between pure and applied math. An expansion
of lectures given at Cambridge. Partial contents: Plancherel’s theorem, general Tauberian
theorem, special Tauberian theorems, generalized harmonic analysis. Bibliography. viii =+
201pp. 5% x 8. §272 Paperbound $1.50
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INTRODUCTION TO THE THEORY OF FOURIER'S SERIES AND INTEGRALS, H. S. Carslaw. 3rd
revised edition. This excellent introduction is an outgrowth of the author’s courses at
Cambridge. Historical introduction, rational and irrational numbers, infinite sequences and
series, functions of a single variable, definite integral, Fourier series, Fourier integrals, and
similar topics. Appendixes discuss practical harmonic analysis, periodogram analysis. Lebes-
gue's theory. Indexes. 84 examples, bibliography. xii + 368pp. 5% x 8. 548 Paperbound $2.25

FOURIER'S SERIES AND SPHERICAL HARMONICS, W. E. Byerly. Continues to be recognized as
one of most practical, useful expositions. Functions, series, and their differential equations
are concretely explained in great detail; theory is applied constantly to practical problems,
which are fully and lucidly worked out. Appendix includes 6 tables of surface zonal har-
monics, hyperbolic functions, Bessel's functions. Bibliography. 190 problems, approximately
half with answers. ix + 287pp. 53 x 8. S536 Paperbound $1.75

INFINITE SEQUENCES AND SERIES, Konrad Knopp. First publication in_any language! Excel-
lent introduction to 2 topics of modern mathematics, designed to give the student back-
ground to penetrate farther by himself. Sequences & sets, real & complex numbers, etc.
Functions of a real & complex variable. Sequences & series. Infinite series. Convergent
power series. Expansion of elementary functions. Numerical evaluation of series. Bibliog-
raphy. v + 186pp. 53 x 8. $153 Paperbound $1.75

TRIGONOMETRICAL SERIES, Antoni Zygmund. Unique in any language on_modern advanced
level. Contains carefully organized analyses of trigonometric, orthogonal, Fourier systems of
functions, with clear adequate descriptions of summability of Fourier series, proximation
theory, conjugate series, convergence, divergence of Fourier series. Especially valuable for
Russian, Eastern European coverage. Bibliography. 329pp. 53s x 8. S$290 Paperbound $2.00

DICTIONARY OF CONFORMAL REPRESENTATIONS, H. Kober. Laplace’s equation in 2 dimensions
solved In this unique book developed by the British Admiralty. Scores of geometrical forms
& their transformations for electrical engineers, Joukowski aerofoil for aerodynamists.
Schwarz-Christoffel transformations for hydrodynamics, transcendental functions. Contents
classified according to analytical functions describing transformation. Twin diagrams show
curves of most transformations with corresponding regions. Glossary. Topological index. 447
diagrams. 244pp. 618 x 9Va. S160 Paperbound $2.00

CALCULUS OF VARIATIONS, A. R. Forsyth. Methods, solutions, rather than determination of
weakest valid hypotheses. Over 150 examples completely worked-out show use of Euler,
Legendre, Jacobi, Weierstrass tests for maxima, minima. Integrals with one original de-
pendent variable; with derivatives of 2nd order; two dependent variables, one in ependent
variable; double integrals involving 1 dependent variable, 2 first derivatives; qouble integrals
involving partial derivatives of 2nd order; triple integrals; much more. 50 diagrams. 678pp.
558 x 8%&. S622 Paperbound $2.95

LECTURES ON THE CALCULUS OF VARIATIONS, 0. Bolza. Analyzes in detail the fundamental
concepts of the calculus of variations, as developed from Euler to Hilbert, with sharp formu-
lations of the problems and rigorous demonstrations of their solutions. More than a score
of solved examples; systematic references for each theorem. Covers the necessary and suffi-
cient conditions; the contributions made by Euler, Du Bois-Reymond, Hilbert, Weierstrass,
Legendre, Jacobi, Erdmann, Kneser, and Gauss; and much more. Index. Bibliography. Xi +
271pp. 5% x 8. $218 Paperbound $1.65

A TREATISE ON THE CALCULUS OF FINITE DIFFERENCES, G. Boole. A classic in the literature
of the ga’lculus. Thorough, clear discussion of basic principles, theorems, methods. Covers
MacLaunr}s and Herschel's theorems, mechanical quadrature, factorials, periodical constants,
Bernoulll's numbers, difference-equations (linear, mixed, and partial), etc. Stresses anal-
ogies with differential calculus. 236 problems, answers to the numerical ones. viii + 336pp.
5% x 8. S695 Paperbound $1.85

Prices subject to change without notice.

Dowver publishes books on art, music, philosophy, literature, languages,
history, social sciences, psychology, handcrafts, orientalia, puzzles and
entertainments, chess, pets and gardens, books explaining science, inter-
mediate and higher mathematics, mathematical physics, engineering,
biological sciences, earth sciences, classics of science, etc. Write to:

Dept. catrr.

Dover Publications, Inc.
e ..d80 Varick Street, N. Y.14, N.Y.
1T F App e

A~~~

3l Sz,
ST 304—/% ? %\0\6‘\

........... L7

N

‘.'
A



(continued from front flap)

An Introduction to the Geometry of N Dimensions, D. M. Y. Sommerville.
$1.50

Elements of Non-Euclidean Geometry, D. M. Y. Sommerville. $1.50
The Methods of Statistics, L. H. C. Tippett. Clothbound $7.50

The Theory of Determinants, Matrices, and Invariants, H. W. Turnbull.
$2.25

An Introduction to the Theory of Canonical Matrices, H. W. Turnbull
and A. C. Aitken. $1.55

Elements of Number Theory, I. M. Vinogradov. $1.75

Theory of Functionals and of Integral and Integro-Differential Equa-
tions, Vito Volterra. $1.75

The Schwarz-Christoffel Transformation and Its Applications: A Simple
Exposition, Miles Walker. $1.25

Algebraic Curves, Robert ]J. Walker. $1.60

Sclected Papers on Noise and Stochastic Processes, edited by Nelson
Wax. $2.50

Partial Differential Equations of Mathematical Physics, Arthur G.
Webster. $2.00

Lectures on Matrices, James Wedderburn. $1.65

The Theory of Groups and Quantum Mechanics, Hermann Weyl. $2.25

The Fourier Integral and Certain of Its Applications, Norbert Wiener.
$1.50

Practical Analysis: Graphical and Numerical Methods, Frederick A.
Willers. $2.00

Vector Analysis with an Introduction to Tensor Analysis, Albert P. Wills.
$1.75

Advanced Calculus, Edwin B. Wilson. $2.45

An Introduction to Projective Geometry, Roy M. Winger. $2.00

Higher Geometry: An Introduction to Advanced Methods in Analytic
Geometry, Frederick S. Woods. $2.00

M(;nogmphs on Topics of Modern Mathematics, edited by ]. W. A. Young.

2.00

The Advanced Geometry of Plane Curves and Their Applications,
C. Zwikker. $2.00

Trigonometrical Series, Antoni Zygmund. $2.00

Paperbound unless otherwise indicated. Prices subject to change with-
out notice. Available at your book dealer or write for free catalogues to
Dept. Admath, Dover Publications, Inc., 180 Varick St., N. Y., N. Y. 10014.
Pleasc indicate your ficld of interest. Dover publishes over 125 new
books and records cach year on science, elementary and advanced math-
ematics, puzzles, art, philosophy, religion, languages, classical music. and
other arcas.



ON
INVARIANTS
AND THE

THEORY or NUMBERS

LEONARD EUGENE
DIckSON

Historically, this book is of enormous importance. Originally pub-
lished in 1914, it was the first public formulation of Dickson's theory
of invariants for the modular forms and linear transformations em-
ployed in the theory of numbers, This new [hcory introduced _much
simpler methods ing the theory of nunllbcrs than had prcvnoufly
been possible. While no longer revolutionary, the book remains
refreshingly lucid.

In many sections of the five lectures included here, Dickson aimed
not at complete generality, but at an illumination of lypicnl and
suggestive topics. The introductory first lecture is followed by se¢-
tions on seminvariants of algebhraic and modular binary forms;
invariants of a modular group and formal invariants and covariants
of modular forms; modular geometry and covariantive theory of
a quadratic form in mn variables, modulo 2; and a theory of plar}c
cubic curves with a yeal inflexion point valid in ordinary and in
modular gecometry.

Within these, Dickson singles out such topics as methods for th.e
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