

lectures on CHOQUET'S THEOREM

517.5 P 516 L Robert R. Phelps

ASSOCIATE PROFESSOR OF MATHEMATICS
THE UNIVERSITY OF WASHINGTON

HEMATICAL STUDIES

tors

INDIAN INSTITUTE OF ADVANCED STUDY SIMLA

Jniversity of Michigan

ne University of Michigan

Paul R. Halmos—LECTURES ON BOOLEAN ALGEBRAS

Shmuel Agmon—LECTURES ON ELLIPTIC BOUNDARY

VALUE PROBLEMS

Noel J. Hicks—NOTES ON DIFFERENTIAL GEOMETRY

Leopoldo Nachbin—TOPOLOGY AND ORDER

Sterling K. Berberian—NOTES ON SPECTRAL THEORY

Roger C. Lyndon—NOTES ON LOGIC

Robert R. Phelps—LECTURES ON CHOQUET'S THEOREM

Additional titles will be listed and announced as issued.

20年以前一旦大学人

Lectures on

CHOQUET'S THEOREM

by

ROBERT R. PHELPS

The University of Washington

D. VAN NOSTRAND COMPANY, INC.

PRINCETON, NEW JERSEY

TORONTO NEW YORK LONDON

D. VAN NOSTRAND COMPANY, INC.

120 Alexander St., Princeton, New Jersey (*Principal office*)
24 West 40 Street, New York 18, New York

D. VAN NOSTRAND COMPANY, LTD. 358, Kensington High Street, London, W.14, England

D. VAN NOSTRAND COMPANY (CANADA), LTD.25 Hollinger Road, Toronto 16, Canada

COPYRIGHT © 1966, BY D. VAN NOSTRAND COMPANY, Inc.

Published simultaneously in Canada by D. VAN NOSTRAND COMPANY (Canada), LTD.

No reproduction in any form of this book, in whole or in part (except for brief quotation in critical articles or reviews), may be made without written authorization from the publishers.

Library

IIAS, Shimla

517.5 P 516 L

00017362

Preface

These notes are a revised and expanded version of mimeographed notes originally prepared for a seminar during Spring Quarter, 1963, at the University of Washington. They are designed to be read by anyone with a knowledge of the Krein-Milman theorem and the Riesz representation theorem (along with the functional analysis and measure theory implicit in an understanding of these theorems). The only major theorem which is used without proof is the one on "disintegration of measures" in Section 13.

The author is indebted to many people who helped, directly or indirectly, in the preparation of these notes. He has especially benefitted from the Walker-Ames lectures at the University of Washington in the summer of 1964, by Professor G. Choquet, and from the stay at the same institution during 1963 by Professor P. A. Meyer. He has received helpful comments from many of his colleagues, as well as from Professors N. Rothman and A. Peressini, who used the earlier version in a seminar at the University of Illinois. Finally, he wishes to thank Professor J. Feldman for permitting the inclusion of the unpublished material in Section 10 on invariant and ergodic measures.

A note to the reader: Although the applications of the theory are interspersed throughout the notes, they are never needed for subsequent material. Thus, Sections 2, 5, 7, 8 or 10, for in-

stance, may be put aside for later reading without encountering any difficulties. (To omit them entirely, however, would cut the subject off from its many and interesting connections with other parts of mathematics.)

R. R. P.

Seattle, Washington March 1965

Contents

Secti	ion	P ag ϵ			
1	Introduction. The Krein-Milman theorem as an integral representation theorem	1			
2	Application of the Krein-Milman theorem to completely monotonic functions				
3	Choquet's theorem: The metrizable case				
4	The Choquet-Bishop-de Leeuw existence theorem .				
5	Application to Rainwater's theorem				
6	A new setting: The Choquet boundary	35			
7	Application of the Choquet boundary to resolvents.	44			
8	The Choquet boundary for function algebras	49			
9	Uniqueness of representing measures				
10	Application to invariant and ergodic measures				
11	A method for extending the representation theorems: Caps				
12	A different method for extending the representation theorems	100			
13	Orderings and dilations of measures	106			
14	Suggestions for further reading	115			
	Bibliography	125			
	Index of symbols	128			
	Index	129			

1. Introduction. The Krein-Milman theorem as an integral representation theorem

The simplest example of a theorem of the type with which we will be concerned is the following classical result of Minkowski (see the exercise on page 10).

If X is a compact convex subset of a finite-dimensional vector space, and if x is an element of X, then x is a finite convex combination of extreme points of X. Thus, there exist extreme points x_1,\ldots,x_k and positive numbers μ_1,\ldots,μ_k with $\sum_{1}^k \mu_i = 1$ such that $x = \sum \mu_i x_i$. We now reformulate this representation of x as an "integral representation." For any point y of X let \mathcal{E}_y be the "point mass" at y, i.e., \mathcal{E}_y is the Borel measure which equals 1 on any Borel subset of X which contains y, and equals 0 otherwise. Abbreviating \mathcal{E}_{x_i} by \mathcal{E}_i , let $\mu = \sum \mu_i \mathcal{E}_i$; then μ is a regular Borel measure on X, $\mu \geq 0$, and $\mu(X) = 1$. Furthermore, for any continuous linear functional f on E, we have $f(x) = (\sum \mu_i f(x_i) =)\int_X f \, d\mu$. This last assertion is what we mean when we say that μ represents x.

Definition. Suppose that X is a nonempty compact subset of a locally convex space E, and that μ is a probability measure on X. (That is, μ is a nonnegative regular Borel measure on X, with $\mu(X) = 1$.) A point x in E is

said to be represented by μ if $f(x) = \int_X f \ d\mu$ for every continuous linear functional f on E. (We will sometimes write $\mu(f)$ for $\int_X f \ d\mu$, when no confusion can result.) (Other terminology: "x is the barycenter of μ ," "x is the resultant of μ .") The restriction that E be locally convex is simply to insure the existence of sufficiently many functionals in E^* to separate points; this guarantees that there is at most one point represented by μ . Later, we will want to consider measures on other σ -rings, but the Borel measures suffice for the present.

Note that any point x in X is trivially represented by \mathcal{E}_x ; the interesting (and important) fact brought out by the above example is that for a compact convex subset X of a finite dimensional space, each x in X may be represented by a probability measure which is "supported" by the extreme points of X.

Definition. If μ is a nonnegative regular Borel measure on the compact Hausdorff space X and S is a Borel subset of X, we say that μ is supported by S if $\mu(X \sim S) = 0$.

We may now formulate the problems which concern us: If X is a compact convex subset of a locally convex space E, and x is an element of X, does there exist a probability measure μ on X which is supported by the extreme points of X and which represents x? If μ exists, is it unique? Choquet [12] has shown that, under the additional hypothesis that X be metrizable, the first question has an affirmative answer, while

an affirmative answer to the second question depends on a geometrical property of X. Bishop and de Leeuw [6] have shown that if we allow more general measures than Borel measures, then the answer to the first question is affirmative (without additional hypotheses on X).

In the above example, the introduction of an integral in place of a convex combination was a bit artificial. It seems worthwhile to translate two well-known theorems (the Riesz representation theorem and the Krein-Milman theorem) into the language which we have introduced; in these instances the use of integrals is quite natural. It will also make clear exactly how the theorems of Choquet and Bishop-de Leeuw generalize the Krein-Milman theorem.

Let Y be a compact Hausdorff space, C(Y) the space of all continuous real-valued functions on Y (supremum norm), and X the set of all continuous linear functionals L on C(Y) such that $L(1) = 1 = \|L\|$. Then X is a compact convex subset of $C(Y)^*$ (in its weak* topology) and the Riesz theorem asserts that to each L in X there corresponds a unique probability measure μ on Y such that $L(f) = \int_Y f \ d\mu$ for each f in C(Y). By a well-known theorem [17, p.442], Y is homeomorphic (via the natural embedding $y \to (\text{evaluation at } y)$) with the set of extreme points of X, so we may consider μ as a probability measure on the Borel subsets of X which vanishes on those contained in the open set $X \sim Y$, and hence μ is supported by the extreme points of X. One need only recall that the weak* continuous linear functionals on $C(Y)^*$ are precisely those of

the form $L \to L(f)$ (f in C(Y)) in order to see that this is a representation theorem of the type we are considering.

There are two points in the above paragraph which, it should be emphasized, are *not* characteristic of the general situation. First, the extreme points of X formed a compact (hence a Borel) subset; second, the representation was unique. (We will return to these points a little later.) It is clear that any probability measure μ on Y defines (by $f \to \int_Y f \, d\mu$) a linear functional on C(Y) which is in X. This fact is true under fairly general circumstances, as the next result shows.

PROPOSITION 1.1. Suppose that Y is a compact subset of a locally convex space E, and that the closed convex hull X of Y is compact. If μ is a probability measure on Y, then there exists a unique point x in X which is represented by μ , and the function $\mu \rightarrow$ (resultant of μ) is weak* continuous.

Proof. We want to show that the compact convex set X contains a point x such that $f(x) = \int_Y f \ d\mu$ for each f in E^* . For each f, let $H_f = \{y \colon f(y) = \mu(f)\}$; these are closed hyperplanes, and we want to show that $\cap \{H_f \colon f \in E^*\} \cap X$ is nonempty. Since X is compact, it suffices to show that for any finite set f_1, \ldots, f_n in E^* , $\bigcap_{i=1}^n H_{f_i} \cap X$ is nonempty. To this end, define $T \colon E \to R^n$ by $Ty = (f_1(y), f_2(y), \ldots, f_n(y))$; then T is linear and continuous, so that TX is compact and convex. It suffices to show that $p \in TX$, where $p = (\mu(f_1), \mu(f_2), \ldots, \mu(f_n))$. If $p \notin TX$ there exists a linear functional on R^n which strictly separates p and TX; representing the functional by

 $a=(a_1,\,a_2,\,\ldots,\,a_n)$, this means that $(a,\,p)>\sup\{(a,\,Ty):\,y\in X\}$. If we define g in E^* by $g=\sum a_if_i$, then the last assertion becomes $\int_Y g \ d\mu > \sup g(X)$. Since $Y\subset X$ and $\mu(Y)=1$, this is impossible, and the first part of the proof is complete. Suppose, next, that the net μ_α of probability measures on Y converges to the probability measure μ , and let x_α and x denote their respective resultants. Since X is compact, to show that $x_\alpha \to x$ it suffices to show that every convergent subnet x_β of x_α converges to x. But if $x_\beta \to y$, say, then μ_β converges to μ , and hence $f(x_\beta) = \mu_\beta(f) \to \mu(f) = f(x)$ for each f in E^* ; since the latter separates points of X, y=x.

The hypothesis that X be compact may be avoided in those spaces E in which the closed convex hull of a compact set is compact; for instance, if E is complete, or if E is the space obtained by taking a Banach space in its weak topology [17, p. 434].

A simple, but useful, characterization of the closed convex hull of a compact set can be given in terms of measures and their barycenters.

PROPOSITION 1.2. Suppose that Y is a compact subset of a locally convex space E. A point x in E is in the closed convex hull X of Y if and only if there exists a probability measure μ on Y which represents x.

Proof. If μ is a probability measure on Y which represents x, then for each f in E^* , $f(x) = \mu(f) \leq \sup f(Y) \leq \sup f(X)$. Since X is closed and convex, it follows that x

is in X. Conversely, if x is in X, there exists a net in the convex hull of Y which converges to x. Equivalently, there exist points y_{α} of the form $y_{\alpha} = \sum_{i=1}^{n_{\alpha}} \lambda_i^{\alpha} x_i^{\alpha}$, $(\lambda_i^{\alpha} > 0, \sum \lambda_i^{\alpha} = 1, x_i^{\alpha}$ in Y, α in some directed set) which converge to x. We may represent each y_{α} by the probability measure $\mu_{\alpha} = \sum \lambda_i^{\alpha} \mathbb{E}_{x_i} \alpha$. By the Riesz theorem, the set of all probability measures on Y may be identified with a weak*-compact convex subset of C(Y)*, and hence there exists a subnet μ_{β} of μ_{α} converging (in the weak* topology of C(Y)*) to a probability measure μ on Y. In particular, each f in E* is (when restricted to Y) in C(Y), so $\lim f(y_{\beta}) = \lim \int f d\mu_{\beta} = \int f d\mu$. Since y_{α} converges to x, so does the subnet y_{β} , and hence $f(x) = \int_{Y} f d\mu$ for each f in E*, which completes the proof.

The above proposition makes it easy to reformulate the Krein-Milman theorem. Recall the statement: If X is a compact convex subset of a locally convex space, then X is the closed convex hull of its extreme points. Our reformulation is the following: Every point of a compact convex subset X of a locally convex space is the barycenter of a probability measure on X which is supported by the closure of the extreme points of X. To prove the equivalence of these two assertions, suppose the former holds and that x is in X. Let Y be the closure of the extreme points of X; then x is in the closed convex hull of Y. By Proposition 1.2, then, x is the barycenter of a probability measure μ on Y. If we extend μ (in the obvious way) to X, we get the desired result. Conversely, suppose the second assertion is valid and that x is in X.

Then (defining Y as above) by Proposition 1.2, x is in the closed convex hull of Y, hence in the closed convex hull of the extreme points of X.

It is now clear that any representation by means of measures supported by the extreme points of X (rather than by their closure) is a sharpening of the Krein-Milman theorem. In fact, Klee [25] has shown that in a sense (which he makes precise) almost every compact convex subset of an infinite dimensional Banach space is the closure of its extreme points. For such sets, then, the Krein-Milman representation gives no more information than the "point mass" representation.

The difficulty in finding measures supported by the extreme points of X stems, in large part, from the fact that the set of extreme points need not be a Borel set [6, p.327]. This difficulty is avoided in case X is metrizable, as shown by the following result.

PROPOSITION 1.3. If X is a metrizable, compact convex subset of a topological vector space, then the extreme points of X form a G_{δ} set.

Proof. Suppose that the topology of X is given by the metric d, and let $F_n = \{x \colon x = 2^{-1}(y+z), y \text{ and } z \text{ in } X, d(y,z) \ge n^{-1} \}$, for each integer $n \ge 1$. It is easily checked that each F_n is closed, and that a point x of X is not extreme if and only if it is in some F_n . Thus, the complement of the extreme points is an F_n .

Recall the trivial representing measure ε_x for a point x of

X. If x is not an extreme point of X, then it is easily seen that there exist other representing measures. Indeed, the extreme points of X are characterized by the fact that they have no other representing measures.

PROPOSITION 1.4 (Bauer [2]). Suppose that X is a non-empty compact convex subset of a locally convex space E, and that x is in X. Then x is an extreme point of X if and only if the point mass \mathcal{E}_x is the only probability measure on X which represents x.

Proof. Suppose that x is an extreme point of X and that the measure μ represents x. We want to show that μ is supported by the set $\{x\}$; for this, it suffices (due to the regularity of μ) to show that $\mu(D) = 0$ for each compact set Dwith $D \subset X \sim \{x\}$. Suppose $\mu(D) > 0$ for some such D; from the compactness of D it follows that there is some point y of D such that $\mu(U \cap X) > 0$ for every neighborhood U of y. Choose U to be a closed convex neighborhood of y such that $K = U \cap X \subset X \sim \{x\}$. The set K is compact and convex, and $0 < r = \mu(K) < 1$. (If $\mu(K) = 1$, then the resultant x of μ and would be in K.) Thus, we can define Borel measures μ_1 μ_2 on X by $\mu_1(B) = r^{-1} \mu(B \cap K)$ and $\mu_2(B) =$ $= (1 - r)^{-1} \mu(B \cap (X \sim K))$ for each Borel set B in X. Let x_i be the resultant of μ_i ; since $\mu_1(K) = 1$, we see that $x_1 \in K$ and hence $x_1 \neq x$. Furthermore, $\mu = r\mu_1 + (1-r)\mu_2$, which implies that $x = rx_1 + (1 - r)x_2$, a contradiction.

It is interesting to note that Milman's "converse" to the

Krein-Milman theorem [17, p. 440] is an easy consequence of Propositions 1.2 and 1.4:

Suppose that X is a compact convex subset of a locally convex space, that $Z \subset X$, and that X is the closed convex hull of Z. Then the extreme points of X are contained in the closure of Z. Indeed, let $Y = \operatorname{cl} Z$ and suppose $x \in \operatorname{ex} X$. By Proposition 1.2, there exists a measure μ on Y which represents x; by Proposition 1.4, $\mu = \mathcal{E}_x$. It follows that $x \in Y$.

To conclude this introduction, we return to the example of a compact convex subset X of a finite dimensional space E, in order to illustrate the question concerning uniqueness of integral representations. Suppose that X is a plane triangle, or more generally, is the convex hull of an affinely independent subset Y of E, that is, X is a simplex. (A set Y is affinely independent provided no point y in Y is in the linear variety generated by $Y \sim \{y\}$.) It then follows from the affine independence that Y is the set of extreme points of X, and that every element of X has a unique representation by a convex combination of elements of Y. It is not difficult to show (Proposition 9.11) that if X is not a simplex, then some element of X has two such representations. In Section 9 we will give an infinite dimensional generalization of the notion of "simplex" which will allow us to prove (among other things) Choquet's uniqueness theorem, which states that for a metrizable compact convex set X in a locally convex space, each point of X has a unique representing measure supported by the extreme points of X if and only if X is a simplex.

In the next section we give an application of the Krein-Milman theorem. Before doing this, it is worthwhile to make some general remarks concerning applications of the various representation theorems. It is generally not difficult to recognize that the objects of interest form a convex subset X of some linear space E. One is then faced with two problems: First, find a locally convex topology for E which makes X compact and at the same time yields sufficiently many continuous linear functionals so that the assertion " μ represents x" has some content. Second, identify the extreme points of X, so that the assertion " μ is supported by the extreme points" has a useful interpretation.

EXERCISE

Prove Carathéodory's sharper form of Minkowski's theorem: If X is a compact convex subset of an n-dimensional space E, then each x in X is a convex combination of at most n+1 extreme points of X. (Hint: Use induction on the dimension. If x is a boundary point of X, there exists a supporting hyperplane H of X with x in $H \cap X$, and the latter set has dimension at most n-1. If x is an interior point of X, choose an extreme point y of X and note that x is in the segment [y, z] for some boundary point z of X.)

2. Application of the Krein-Milman theorem to completely monotonic functions

A real valued function f on $(0, \infty)$ is said to be completely monotonic if f has derivatives $f^{(0)} = f$, $f^{(1)}$, $f^{(2)}$, ... of all orders and if $(-1)^n f^{(n)} \ge 0$ for $n = 0, 1, 2, \ldots$ Thus, f is nonnegative and nonincreasing, as is each of the functions $(-1)^n f^{(n)}$. [Some examples: $x^{-\alpha}$ and $e^{-\alpha x}$ ($\alpha \ge 0$).] The following representation theorem for such functions is due to S. Bernstein (see [36] for several proofs and much related material). We denote the one-point compactification of $[0, \infty)$ by $[0, \infty]$.

THEOREM (Bernstein). If f is completely monotonic on $(0, \infty)$, then there exists a unique Borel measure μ on $[0, \infty]$ such that for each x > 0,

$$f(x) = \int_0^\infty e^{-\alpha x} d\mu(\alpha).$$

(Note that the converse is true, since if a function f on $(0, \infty)$ can be represented as above, then differentiation under the integral sign is possible, and it follows that f is completely monotonic.) We will prove the theorem only for bounded functions; the extension to unbounded functions (with infinite representing measures) follows from this by classical arguments [36]. The

idea of the proof is due to Choquet [11; Ch. VII], who proved this and related results in a much more general setting. We start by giving a sketch of the proof.

Denote by CM the convex cone of all completely monotonic functions f such that $f(0^+) < \infty$. (Since a completely monotonic function f is nonincreasing, this right-hand limit at 0always exists, although it may be infinite.) Let K be the convex set of those f in CM such that $f(0^+) \leq 1$; if $f \in CM$, $f \neq 0$, then $f/f(0^+) \in K$, so it suffices to prove the theorem for elements of K. Now, K is a subset of the space E of all real valued infinitely differentiable functions on $(0, \infty)$, and E is locally convex in the topology of uniform convergence (of functions and all their derivatives) on compact subsets of $(0, \infty)$. We will show that K is compact in this topology, so that the Krein-Milman theorem is applicable to K. Furthermore, the extreme points of K are precisely the functions $x \to e^{-\alpha x}$, $0 \le$ $\leq \alpha \leq \infty$. [We define $e^{-\infty x}$ to be the zero function on $(0, \infty)$.] It will follow easily that ex K is homeomorphic to $[0, \infty]$ and is therefore compact. By the Krein-Milman theorem, to each fin K there exists a Borel probability measure m on ex Kwhich represents f. The measure m can be carried to a measure μ on $[0, \infty]$ and the evaluation functionals $f \to f(x)$ (x > 0) are continuous on E; these facts are easily combined to obtain the desired representation. The uniqueness assertion is obtained by a simple application of the Stone-Weierstrass theorem to the subalgebra of $C([0, \infty])$ generated by the exponentials.

The first step in our proof is to show that K is a compact subset of E. The topology on E is the same as that given by the countable family of pseudonorms

$$p_{m,n}(f) = \sup \{ |f^{(k)}(x)| : m^{-1} \le x \le m, \ 0 \le k \le n \}$$

 $(m, n = 1, 2, 3, \ldots)$. Thus, E is metrizable, and every closed and bounded subset of E is compact. [This may be proved by Ascoli's theorem, together with repeated use of the diagonal procedure, or by following the outline given in the exercises on "distribution spaces" in [23].] It is easily seen that K is closed. To show that it is bounded we must show that for each m and n, sup $\{p_{m,n}(f): f \in K\}$ is finite, and for this it suffices to show that sup $\{\mid f^{(n)}(x)\mid: m^{-1} \leq x \leq m, f \in K\}$ is finite for each $n \geq 0$ and $m \geq 1$. It is clear that the following lemma will establish this fact.

LEMMA 2.1. Let $K_n = \{(-1)^n f^{(n)}: f \in K, n = 0, 1, 2, ...\}$. Then for each a > 0 and each $n \ge 0$, the (nonnegative) functions in K_n are bounded above on $[a, \infty)$ by $a^{-n} 2^{(n+1)(n/2)}$.

Proof. We proceed by induction. The functions in K_0 are bounded above by 1, so suppose the assertion is true for K_n . Since the functions in K_{n+1} are nonincreasing, it suffices to establish the bound at the point a. By applying the mean value theorem to $f^{(n)}$ on [a/2, a], we see that there exists c with a/2 < c < a such that $(a/2) f^{(n+1)}(c) = f^{(n)}(a) - f^{(n)}(a/2)$. This fact, together with the induction hypothesis (applied at a/2), shows that

$$(a/2)^{-n} 2^{(n+1)(n/2)} \ge (-1)^n f^{(n)}(a/2) \ge$$

$$\ge (-1)^{n+1} (a/2) f^{(n+1)}(c) \ge (a/2) (-1)^{n+1} f^{(n+1)}(a),$$

and the desired result follows.

[A compactness proof different from the above may be obtained by using the topology of *pointwise* convergence on $(0, \infty)$. This is also locally convex, and, of course, the evaluation functionals are continuous. It is known [36, p.151] that a function is completely monotonic if and only if it satisfies a certain sequence of "iterated difference" inequalities; since these are defined pointwise, it is easily seen that CM is closed in this topology, and the Tychonov product theorem then yields compactness of K.]

Our next step is to identify the extreme points of K.

LEMMA 2.2. The extreme points of K are those functions f of the form $f(x) = e^{-\alpha x}$, x > 0, $0 \le \alpha \le \infty$.

Proof. Suppose that $f \in \operatorname{ex} K$ and that $x_0 > 0$. For x > 0, let $u(x) = f(x + x_0) - f(x) f(x_0)$. Suppose that we have shown that $f \pm u \in K$. Since f is extreme, this implies that u = 0, so that $f(x + x_0) = f(x) f(x_0)$ whenever $x, x_0 > 0$. Since f is continuous on $(0, \infty)$, this implies that either f = 0 or $f(x) = e^{-\alpha x}$ for some α . Since $0 \le -f'(x) = \alpha e^{-\alpha x}$, we must have $\alpha \ge 0$. It remains to show that $f \pm u \in K$. Let $b = f(x_0)$ (so that $0 \le b \le 1$), and note that $(f + u)(0^+) = (1 - b) f(0^+) + b \le 1$ and $(f - u)(0^+) = f(0^+) - b [1 - f(0^+)] \le f(0^+) \le 1$. Furthermore, $(-1)^n (f + u)^{(n)}(x) = (1 - b) (-1)^n f^{(n)}(x) +$

 $+(-1)^n f^{(n)}(x+x_0) \ge 0$ and $(-1)^n (f-u)^{(n)}(x) = [(-1)^n f^{(n)}(x) - (-1)^n f^{(n)}(x+x_0)] + b(-1)^{(n)} f^{(n)}(x)$. Since $(-1)^n f^{(n)}$ is non-increasing, the latter is nonnegative.

To prove the reverse inclusion, consider the transformation $T_r(r>0)$ of K into itself defined by $(T_r f)(x)=f(rx)$. Since T_r is one-to-one, onto, and preserves convex combinations, it carries ex K onto itself. Since K is compact, it is the closed convex hull of its extreme points, and therefore has at least one which is nonconstant. By what we have just proved, this extreme point is of the form $e^{-\alpha x}$ for some $\alpha>0$, and hence the image $e^{-\alpha rx}$ of this function under T_r is extreme. Since this holds for each r>0, all the exponentials are extreme (and the constant functions 0 and 1 are clearly extreme), so the proof is complete.

We now finish the proof of Bernstein's theorem for bounded functions. It is not difficult to show that the map $T: \alpha \to e^{-\alpha(\cdot)}$ from $[0,\infty]$ into K is continuous; since $[0,\infty]$ is compact, its image $\operatorname{ex} K$ is also compact. By the Krein-Milman representation theorem, to each f in K there corresponds a regular Borel probability measure m on $\operatorname{ex} K$ such that $L(f) = \int_{\operatorname{ex} K} L \, dm$ for each continuous linear functional L on E. Now, if x>0, then the evaluation functional $L_x(f)=f(x)$ is continuous on E, so that $f(x)=\int_{\operatorname{ex} K} L_x \, dm$ for each x>0. Define μ on each Borel subset B of $[0,\infty]$ by $\mu(B)=m(T^{-1}B)$ (i.e., $\mu=m\circ T^{-1}$). Since $L_x(T\alpha)=e^{-\alpha x}$, we have

$$f(x) = \int_{\operatorname{ex} K} L_x \, dm = \int_{T^{-1}(\operatorname{ex} K)} L_x \circ T \, d(m \circ T^{-1})$$
$$= \int_0^\infty e^{-\alpha x} \, d\mu(\alpha) \qquad \text{for each} \qquad x > 0.$$

It remains to prove that μ is unique. Suppose there exists a second measure ν on $[0,\infty]$ such that $f(x)=\int_0^\infty e^{-\alpha x}\ d\nu(\alpha)$ (x>0). For each $x\geqq0$ the function $\alpha\to e^{-\alpha x}$ is continuous on $[0,\infty]$. Let A be the subalgebra of $C([0,\infty])$ generated by these functions; A consists of finite linear combinations of the same functions and as linear functionals on $C[0,\infty]$, μ and ν are equal on the nonconstant members of A. By applying the Lebesgue dominated convergence theorem to the sequence of functions $\alpha\to e^{-\alpha/n}$, we see that μ and ν are equal on the constant functions. Since A separates points of $[0,\infty]$, the Stone-Weierstrass theorem implies that it is dense in $C([0,\infty])$, so $\mu=\nu$.

There is an interesting result which is closely related to the foregoing material, and which is also an application of the Krein-Milman theorem. It is due to Choquet [11] and (independently and in slightly different form) to Kendall [24]. We will sketch the latter's treatment.

An element f of K is said to be infinitely divisible if for each $n \ge 1$ there exists f_n in K such that $f = (f_n)^n$. Let C be the convex cone of all functions g of the form $g = -\log f$, where $f \in K$, f > 0, and f is infinitely divisible. Those g such that g(1) = 1 form a base for this cone, and the extreme points of the base are the functions

$$g_{\alpha}(x) = \exp\left\{-\frac{1-e^{-\alpha x}}{1-e^{-\alpha}}\right\}, \qquad 0 < \alpha < \infty,$$

$$g_{0}(x) = e^{-x}, \qquad \text{and} \qquad g_{\infty}(x) = e^{-1}.$$

The Krein-Milman theorem (applied to the base of this cone in the weak topology defined by the functionals "evaluation at a positive rational number"), followed by exponentiating, leads to the following result: To every infinitely divisible function f of K there corresponds a unique Borel measure μ on $[0, \infty]$ such that

$$f(x) = \exp \left\{-\int \frac{1-e^{-\alpha x}}{1-e^{-\alpha}} d\mu(\alpha)\right\}, \quad x > 0.$$

3, Choquet's theorem: The metrizable case

In this section we will prove Choquet's representation theorem for metrizable *X*. This is actually a special case of the general Choquet-Bishop-de Leeuw theorem, but its proof is quite short and it gives us an opportunity to introduce some of the machinery which is needed in the main result.

Suppose that h is a real valued function defined on a convex set C. The function h is affine [convex] if $h[\lambda x + (1-\lambda)y] = [\leq] \lambda h(x) + (1-\lambda)h(y)$ for each x, y in C and $0 \leq \lambda \leq 1$. We say that h is concave if -h is convex, and h is called *strictly convex* if h is convex and the defining inequality is strict whenever $x \neq y$ and $0 < \lambda < 1$.

Denote by A the set of all continuous affine functions on X. Note that A is a subspace of C(X) which contains the constant functions. Furthermore, A contains all functions of the form $x \to f(x) + r$, where $f \in E^*$, r is real and $x \in X$, so that A contains sufficiently many functions to separate the points of X.

Definition. If f is in C(X) and $x \in X$, let $\overline{f}(x) = \inf \{h(x): h \in A \text{ and } h \ge f\}.$

The function \overline{f} , which is called the upper envelope of f,

has the following useful properties:

- (a) \overline{f} is concave, bounded, and upper semicontinuous (hence Borel measurable).
 - (b) $f \leq \overline{f}$ and $f = \overline{f}$ if f is concave.
- (c) If $f, g \in C(X)$, then $\overline{f+g} \leq \overline{f} + \overline{g}$ and $|\overline{f} \overline{g}| \leq \overline{f} + \overline{g}$, while $\overline{f+g} = \overline{f} + g$ if $g \in A$. If r > 0, then $\overline{rf} = r\overline{f}$.

The proofs of most of the above facts follow in a straightforward manner from the definitions. (Recall that a function f is upper semicontinuous if for each real λ , $\{x: f(x) < \lambda\}$ is open.) The second assertion in (b) may be proved as follows: If f is concave, then in the locally convex space $E \times R$ the set $K = \{(x, r): f(x) \ge r\}$ (i.e., the points below the graph of f) is closed and convex. If $f(x_1) < \overline{f}(x_1)$ at some point x_1 , the separation theorem asserts the existence of a continuous linear functional L on $E \times R$ which strictly separates $(x_1, \overline{f}(x_1))$ from K, i.e., there exists λ such that $\sup L(K) < \infty$ $<\lambda< L(x_1,\overline{f}(x_1)).$ From the fact that $L(x_1,f(x_1))<$ $< L(x_1, \overline{f}(x_1))$, it follows that L(0, 1) > 0, and hence the function h defined on X by h(x) = r if $L(x, r) = \lambda$ exists and is in A. Furthermore, f < h and $h(x_1) < \overline{f}(x_1)$, a contradiction. The second assertion in (c) follows from the fact that constant functions are affine: Since $f \leq ||f||$, we have $\overline{f} \leq |f|$. Furthermore $\overline{f} = \overline{(f-g)+g} \leq \overline{(f-g)}+\overline{g}$, so $\overline{f} - \overline{g} \leq \overline{f - g}$ and hence $\overline{f} - \overline{g} \leq \|f - g\|$. Interchanging fand g yields the desired result.

THEOREM (Choquet). Suppose that X is a metrizable

compact convex subset of a locally convex space E, and that x_0 is an element of X. Then there is a probability measure μ on X which represents x_0 and is supported by the extreme points of X.

Proof (Bonsall [8]). Since X is metrizable. C(X) (and hence A) is separable. Thus, we can choose a sequence of functions $\{h_n\}$ in A such that $||h_n|| = 1$, and the set $\{h_n\}_{n=1}^{\infty}$ is dense in the unit sphere of A. Let $f = \sum 2^{-n} h_n^2$; this limit exists and is a strictly convex function in C(X). (Indeed, if $x \neq y$, then $h_n(x) \neq h_n(y)$ for some n, and hence h_n is nonconstant and affine on the segment [x, y]. It follows that h_n^2 is strictly convex on [x, y] and therefore f is strictly convex on [x, y].) Let B denote the subspace A + Rf of C(X) generated by A and f. Now, from property (c) above, it follows that the functional p defined on C(X) by p(g) = $=\overline{g}(x_0)$ ($g \in C(X)$) is subadditive and positive-homogeneous. Define a linear functional on B by $h + rf \rightarrow h(x_0) + rf(x_0)$ (h in A, r real). We will show that this functional is dominated on B by the functional p, i.e., that $h(x_0) + r\overline{f}(x_0) \leq \overline{h + rf}(x_0)$ for each h in A, r in R. If $r \ge 0$, then $h + r\overline{f} = \overline{h + rf}$, by (b) and (c), while if r < 0, then h + rf is concave, and hence $\overline{h+rf}=h+rf \ge h+r\overline{f}$. By the Hahn-Banach theorem, then, there exists a linear functional m on C(X) such that $m(g) \le$ $\leq \overline{g}(x_0)$ for g in C(X), and $m(h+rf) = h(x_0) + rf(x_0)$ if $h \in A$, $r \in R$. If $g \in C(X)$ and $g \subseteq 0$, then $0 \supseteq \overline{g}(x_0) \supseteq m(g)$, i.e., m is nonpositive on nonpositive functions and hence is continuous. By the Riesz representation theorem, there exists

a nonnegative regular Borel measure μ on X such that $m(g) = \mu(g)$ for g in C(X). Since $1 \in A$, we see that $1 = m(1) = \mu(1)$, so μ is a probability measure. Furthermore, $\mu(f) = m(f) = \overline{f}(x_0)$. Now, $f \leq \overline{f}$, so $\mu(f) \leq \mu(\overline{f})$. On the other hand, if $h \in A$ and $h \geq f$, then $h \geq \overline{f}$, and consequently $h(x_0) = m(h) = \mu(h) \geq \mu(\overline{f})$. It follows from the definition of \overline{f} that $\overline{f}(x_0) \geq \mu(\overline{f})$, and therefore $\mu(f) = \mu(\overline{f})$. This last fact implies that μ vanishes on the complement of $\{x: f(x) = \overline{f}(x)\}$. We complete the proof by showing that this latter set is contained in the set of extreme points of X. Indeed, if $x = \frac{1}{2}y + \frac{1}{2}z$, where y and z are distinct points of X, then the strict convexity of f implies that $f(x) < \frac{1}{2}f(y) + \frac{1}{2}f(z) \leq \frac{1}{2}\overline{f}(y) + \frac{1}{2}f(z) \leq \overline{f}(x)$.

It is interesting to note that $\{x : \overline{f}(x) = f(x)\}$ actually coincides with the set of extreme points of X. This is a consequence of the next proposition.

Definition. If μ and λ are probability measures such that $\mu(f) = \lambda(f)$ for each f in A, we will write $\mu \sim \lambda$.

PROPOSITION 3.1. If f is a continuous function on the compact convex set X, then for each x in $X, \overline{f}(x) = \sup \{ \int f d\mu : \mu \sim \varepsilon_x \}$. Consequently, $\overline{f}(x) = f(x)$ if x is an extreme point of X.

Proof. The second assertion follows from Proposition 1.4. To prove the first assertion, let $f'(x) = \sup \{\mu(f): \mu \sim \mathcal{E}_x\}$; we must show that $f' = \overline{f}$. It follows easily from the definition that f' is concave; we prove that it is upper semicontinuous. Indeed,

suppose that $\{x_{\alpha}\}$ is a net in X converging to a point x, with $f'(x_{\alpha}) \geq r$, say. To see that $f'(x) \geq r$, suppose that $\varepsilon > 0$ and choose $\mu_{\alpha} \sim \varepsilon_{x_{\alpha}}$ such that $\mu_{\alpha}(f) > r - \varepsilon$. By weak*-compactness, there exist a probability measure μ and a subnet $\{\mu_{\beta}\}$ of $\{\mu_{\alpha}\}$ which converges to μ . If g is in A, then $g(x_{\beta}) = \mu_{\beta}(g) \rightarrow \mu(g)$; since $g(x_{\beta}) \rightarrow g(x)$, we see that $\mu \sim \varepsilon_{x}$. Thus, $r - \varepsilon \leq \lim \mu_{\beta}(f) = \mu(f) \leq f'(x)$; it follows that $f'(x) \geq r$. Since f' is upper semicontinuous, $\{(x, r): f'(x) \geq r\}$ is closed (and convex) in $E \times R$; using the same argument as in (b) (above), we conclude that $\overline{f} \leq f'$. On the other hand, if h is in A, x in X, and $h \geq f$, then for any $\mu \sim \varepsilon_{x}$, we have $h(x) = \mu(h) \geq \mu(f)$. It follows that $f'(x) \leq h(x)$, and from this we get $f' \leq \overline{f}$.

4. The Choquet-Bishop-de Leeuw existence theorem

Suppose that X is a nonmetrizable compact convex subset of a locally convex space E. As shown by examples in Bishopde Leeuw [6], the extreme points of X need not form a Borel set. Thus, the statement "the probability measure μ is supported by the extreme points of X^n is meaningless under our present definitions. There are at least two ways to get around this. We can drop the requirement that $\,\mu\,$ be a Borel measure (i.e., allow measures defined on a different σ -ring), or we can change the definition of "supported by" for Borel measures. An alternative definition might require that μ vanish on every Borel set which is disjoint from the set of extreme points, but Bishop and de Leeuw have shown that it is not always possible to obtain representing measures μ with this property. If, howhowever, one demands only that μ vanish on the Baire subsets of X which contain no extreme points, then a representation theorem can be obtained. (Recall that the Baire sets are the members of the $\,\sigma\text{-ring}$ generated by the compact $\,G_{\delta}\,$ sets.) Furthermore, this result leads easily to an equivalent theorem in which the definition of "supported by" remains formally the same, but the measure is no longer a Borel measure.

THEOREM (Choquet-Bishop-de Leeuw). Suppose that X is a compact convex subset of a locally convex space E, and that x_0 is in X. Then there exists a probability measure μ on X which represents x_0 and which vanishes on every Baire subset of X which is disjoint from the set of extreme points of X.

The rest of this section is devoted mainly to the proof of this theorem.

Definitions. The set of extreme points of X will be denoted by ex X. The set of all continuous affine [convex] functions on X will be denoted by A[C].

The subspace C-C (of all functions of the form f-g, f,g in C) is a lattice under the usual partial ordering in C(X). [Note that $\max (f_1-g_1,\ f_2-g_2)=\max (f_1+g_2,\ f_2+g_1)-(g_1+g_2)$.] Since it contains A,C-C separates the points of X and contains the constant functions; by the Stone-Weierstrass theorem, it is dense in the norm topology of C(X). We now partially order the nonnegative measures on X in the following way:

Definition. If λ and μ are nonnegative regular Borel measures on X, write $\lambda > \mu$ if $\lambda(f) \ge \mu(f)$ for each f in C.

This relation is clearly transitive and reflexive; the fact that $\lambda > \mu$ and $\mu > \lambda$ imply $\lambda = \mu$ comes from the fact that C - C is dense in C(X). Note that if f is in A, then both f and -f are in C, so that $\lambda > \mu$ implies $\lambda(f) = \mu(f)$, i.e., λ and μ

represent the same linear functional on the subspace A. (In particular, if they are probability measures, then they have the same resultant in X.) It is also well worth noting that if $\mu \sim \mathcal{E}_x$, then $\mu > \mathcal{E}_x$; indeed, if $f \in -C$, then $\overline{f} = f$ and hence $f(x) = \inf \{h(x) \colon h \in A, h \geq f\} = \inf \{\mu(h) \colon h \in A, h \geq f\} \geq \mu(f)$. We will be concerned with measures which are maximal with respect to this ordering; such a measure will be called a "maximal measure", without further reference to the ordering. The fact that if $\lambda > \mu$, then λ has its support "closer" to the extreme points of X than does μ , may be heuristically verified by considering measures and convex functions on a triangle in the plane, say. This fact is what leads us to hope that a maximal measure will be supported by the extreme points.

LEMMA 4.1. If λ is a nonnegative measure on X, then there exists a maximal measure μ such that $\mu > \lambda$.

Proof. Suppose $\lambda \geqq 0$ and let $Z = \{\mu \colon \mu \geqq 0 \text{ and } \mu > \lambda\}$. Suppose that we have found an element μ in Z which is maximal (with respect to the ordering >) in Z. Then μ will be a maximal measure, since if ν is a nonnegative measure and $\nu > \mu$, then $\nu > \lambda$, so that $\nu \in Z$ and hence $\nu = \mu$. To find a maximal element of Z, let W be a chain in Z. We may regard W as a net (the directed "index set" being the elements of W themselves) which is contained in the weak* compact set $\{\mu \colon \mu \geqq 0 \text{ and } \mu(1) = \lambda(1)\}$. Thus, there exists μ_0 with $\mu_0 \geqq 0$ and a subnet $\{\mu_\alpha\}$ of W which converges to μ_0 in the weak* topology. If μ_1 is any element in W, it follows from

the definition of subnet that eventually $\mu_{\alpha} > \mu_{1}$ and hence $\mu_{0} > \mu_{1}$. Thus, μ_{0} is an upper bound for W; furthermore, since $\mu_{0} > \lambda$, we have $\mu_{0} \in Z$. By Zorn's lemma, then, Z contains a maximal element.

Bishop and de Leeuw originated the idea of looking at maximal measures, although they used an ordering which differs slightly from the one used here. The notion is applied in a very simple way: If x_0 is in X, choose a maximal measure μ such that $\mu > \mathcal{E}_{x_0}$. As noted above, μ represents x_0 ; it remains to show that the maximality of μ implies that μ vanishes on Baire sets which contain no extreme points. The first step toward doing this is contained in the following result.

PROPOSITION 4.2. If μ is a maximal measure on X, then $\mu(f) = \mu(\overline{f})$ for each continuous function f on X.

Proof. Choose f in C(X) and define the linear function. L on the one-dimensional subspace Rf by $L(rf) = r\mu(\overline{f})$. Define the sublinear functional p on C(X) by $p(g) = \mu(\overline{g})$. If $r \ge 0$, then L(rf) = p(rf), while if r < 0, then $0 = \overline{rf} - r\overline{f}$; $\le \overline{rf} + \overline{(-rf)} = \overline{rf} - r\overline{f}$, and hence $L(rf) = \mu(r\overline{f}) \le \mu(\overline{rf}) = p(rf)$. Thus, $L \le p$ on Rf, and therefore (by the Hahn-Banach theorem), there exists an extension L' of L to C(X) such that $L' \le p$. If $g \le 0$, then $\overline{g} \le 0$, so $L'(g) \le p(g) = \mu(\overline{g}) \le 0$. It follows that $L' \ge 0$ and hence there exists a nonnegative measure ν on X such that $L'(g) = \nu(g)$ for each g in C(X). If g is convex, then -g is concave and $-g = \overline{-g}$, so $\nu(-g) \le p(-g) = \mu(\overline{-g}) = \mu(-g)$, i.e., $\mu < \nu$. Since μ is

maximal, we must have $\mu = \nu$, and therefore $\mu(f) = \nu(f) = L(f) = \mu(\overline{f})$, which completes the proof.

As we will see later (Proposition 9.3) the converse to the above result is true. More importantly, note that the proposition implies the following: If μ is a maximal measure, then μ is supported by $\{x: \overline{f}(x) = f(x)\}$, for each f in C. As shown by Proposition 3.1, each of these sets contains the extreme points of X. If C contained a strictly convex function f_0 , we would have (as in Choquet's theorem) ex $X = \{x : \overline{f}_0(x) = f_0(x)\}$, and the proof would be complete. Hervé [22] has shown, however, that the existence of a strictly convex continuous function on $\ X$ implies that X is metrizable. About the best we can do in the nonmetrizable case is prove that ex X is the intersection of allthe sets of the form $\{x: \hat{f}(x) = f(x)\}$. If $f(x) = f(x) \in \mathcal{F}_{x}$ is the form f(x) $\overline{I}(x) = I(x)$ for each f in C, and if $x = \frac{1}{2}(y = z)$, y, $z = i\pi A$. then $f(y) + f(z) \ge 2f(x) = 2\overline{f}(x) \ge \overline{f}(y) + \overline{f}(z) \ge f(y) + f(z)$, i.e., 2f(x) = f(y) + f(z) for each f in C. It follows that the same equality holds for any f in -C, hence for each element of C-C. Since the latter subspace is dense in C(X), we must have x = y = z, i.e., x is an extreme point of X.

To show that any maximal measure μ vanishes on the Baire sets which are disjoint from ex X, it suffices to show that $\mu(D)=0$ if D is a compact G_δ set which is disjoint from ex X. (This is a consequence of regularity: If B is a Baire set and μ is a nonnegative regular Borel measure, then $\mu(B)=\sup\{\mu(D)\colon D\subset B,\, D \text{ a compact } G_\delta\}$.) It will be helpful later if we merely assume that D is a compact subset of a G_δ

set which is disjoint from ex X. To show that $\mu(D)=0$, we first use Urysohn's lemma to choose a nondecreasing sequence $\{f_n\}$ of continuous functions on X with $-1 \le f_n \le 0$, $f_n(D)=-1$ and $\lim f_n(x)=0$ if $x \in x$. We then show that if μ is maximal, then $\lim \mu(f_n)=0$; it is immediate from this that $\mu(D)=0$. To obtain this "limit" result requires two slightly technical lemmas. The first of these is quite interesting, since it reduces the desired result to Choquet's theorem for metrizable X, using an idea due to Meyer. (More precisely, we will use the fact that for each x in X, there exists $\mu \sim \mathcal{E}_x$ which is supported by ex X. Since it is not generally true that every f in A can be extended to an element of E^* , this is formally stronger than the stated version of Choquet's theorem. See Proposition 4.5)

LEMMA 4.3. Suppose that $\{f_n\}$ is a bounded sequence of concave upper semicontinuous functions on X, with $\liminf f_n(x) \ge 0$ for each x in ex X. Then $\liminf f_n(x) \ge 0$ for each x in X.

Proof. Assume first that X is metrizable. If x is in X, choose a probability measure $\mu \sim \mathcal{E}_x$ which is supported by ex X. By hypothesis, $\lim\inf f_n \geq 0$ a.e. μ , so by Fatou's lemma, $\lim\inf \mu(f_n) \geq 0$. Since each f_n is concave and upper semicontinuous, the proof of Proposition 3.1 shows that $f_n = \overline{f_n}$, so that $f_n(x) = \inf\{h(x) \colon h \in A, h \geq f_n\} = \inf\{\mu(h) \colon h \in A, h \geq f_n\} \geq \mu(f_n)$. Thus, $\liminf\inf f_n(x) \geq 0$ im $\inf\{\mu(f_n)\} \geq 0$. Turning to the general case, suppose x

is in X, and for each n choose h_n in A such that $h_n \ge f_n$ and $h_n(x) < f_n(x) + n^{-1}$. Let R^N be the countable product of lines and define $\phi: X \to \mathbb{R}^N$ by $\phi(y) = \{h_n(y)\}$. The function ϕ is affine and continuous, so $X' = \phi(X)$ is a compact convex subset of the metrizable space R^N . Let π_n be the usual "n-th coordinate" projection of R^N onto R; if y is in X, then $\pi_n(\phi y) = h_n(y)$. If x' is in X', the set $\phi^{-1}(x')$ is compact and convex in X; by the Krein-Milman theorem it has an extreme point y. Assuming that x' is in ex X', a simple argument shows that y is in ex X. Since $\pi_n(x') = h_n(y) \ge$ $\geq f_n(y)$, we have $\lim \inf \pi_n(x') \geq \lim \inf f_n(y) \geq 0$, for each x' in ex X'. The functions π_n are affine and continuous on the metrizable set X', so from the first part of this proof we conclude that $\lim \inf \pi_n(x') \ge 0$ for each x' in X'. Taking $x' = \phi(x)$, we obtain $0 \le \lim \inf \pi_n(\phi x) = \lim \inf h_n(x) =$ = $\lim \inf f_n(x)$, which completes the proof.

LEMMA 4.4. If μ is a maximal measure on X, and if $\{f_n\}$ is a nondecreasing sequence in C(X) such that $-1 \le f_n \le 0$ ($n = 1, 2, \ldots$) and $\lim f_n(x) = 0$ for each x in ex X, then $\lim \mu(f_n) = 0$.

Proof. Consider the sequence $\{\overline{f_n}\}$ of concave upper semicontinuous functions. Since $-1 \le f_n \le \overline{f_n} \le 0$, we have $\lim \overline{f_n}(x) = 0$ if x is in ex X; in addition, the sequence $\{\overline{f_n}\}$ is also nondecreasing (and bounded above by zero), so that $\lim \overline{f_n}(x)$ exists for each x in X. It follows from Lemma 4.3 that $\lim \overline{f_n}(x) = 0$ for each x in X. From the Lebesgue

bounded convergence theorem it follows that $\lim \mu(\overline{f}_n) = 0$; from Proposition 4.2 we have $\mu(\overline{f}_n) = \mu(f_n)$, which completes the proof.

Thus, we have shown that any maximal measure on X vanishes on the Baire subsets of $X \sim ex X$. We have also shown something slightly different: A maximal measure μ vanishes on any G_{δ} subset of $X \sim ex X$. (Indeed, we showed that $\mu(D) = 0$ if D is any compact subset of such a set.) This is important, since it shows, in particular, that a maximal measure is supported by any closed set which contains ex X, and hence the Choquet-Bishop-de Leeuw theorem generalizes the Krein-Milman theorem.

In this connection, an example from [6] is worth citing: There exists a compact convex subset X of a locally convex space, with the following two properties: (a) The extreme points of X form a Borel set. (b) There is a maximal measure μ on X such that $\mu(\operatorname{ex} X) = 0$. [This example is formulated in terms of the setup we give in Section 6. The ordering of Bishop and de Leeuw is defined by $\lambda(f^2) \geq \mu(f^2)$ whenever f is affine and continuous on X; since f^2 is convex, it follows that a maximal measure in their sense is maximal in the present sense.]

We next formulate the Choquet-Bishop-de Leeuw theorem in a manner which can perhaps be more convenient for applications.

THEOREM (Bishop-de Leeuw). Suppose that X is a compact convex subset of a locally convex space, and denote by S the σ -ring of subsets of X which is generated by ex X and

the Baire sets. Then for each point x_0 in X there exists a nonnegative measure μ on S with $\mu(X)=1$ such that μ represents x_0 and $\mu(\operatorname{ex} X)=1$.

Proof. By the Choquet-Bishop-de Leeuw theorem there exists a Borel measure λ which represents x_0 and which vanishes on the Baire subsets of $X \sim \operatorname{ex} X$. We need only extend λ to a nonnegative measure μ on δ and show that $\mu(\operatorname{ex} X) = 1$. To do this, observe that any set δ in δ is of the form $[B_1 \cap \operatorname{ex} X] \cup [B_2 \cap (X \sim \operatorname{ex} X)]$, where B_1 and B_2 are Baire sets. If we let $\mu(\delta) = \lambda(B_1)$, then μ is well defined and $\mu(\operatorname{ex} X) = \lambda(X) = 1$.

As we remarked earlier, not every function in A is of the form $x \to f(x) + r$, f in E^* , r in R. Consider the following example:

Let E be the Hilbert space ℓ^2 in its weak topology, let X be the set of sequences $x = \{x_n\}$ such that $|x_n| \le 2^{-n}$ and define f on X by $f(x) = \sum x_n$. Then f is in A and f(0) = 0, but there is no point y in ℓ^2 such that f(x) = (x, y) for all x in X.

This example shows that the subspace $M = E^*|_X + R$ of C(X) may be a proper subspace of A. Nevertheless, the two notions " $\mu \sim \mathcal{E}_x$ " and " μ represents x" (for a measure μ on X and a point x in X) coincide, as the following proposition implies.

PROPOSITION 4.5. The subspace M (defined above) is uniformly dense in the closed subspace A of affine continuous

functions on X.

Proof. It is evident that the space A is uniformly closed. Suppose that $g \in A$ and $g \in A$ and g

5. Application to Rainwater's theorem

Let Y be a compact Hausdorff space and suppose that f, f_n $(n=1,2,3,\ldots)$ are functions in C(Y). A classical theorem states that $\{f_n\}$ converges weakly to f if and only if the sequence $\{f_n\}$ is uniformly bounded and $\lim f_n(y) = f(y)$ for each f in f. If we recall that the extreme points of the unit ball f of f of f are the functionals of the form $f \to f$ then this result is seen to be a special case of the following theorem.

THEOREM (Rainwater [31]). Let E be a normed linear space and suppose that x, x_n (n = 1, 2, 3, ...) are elements of E. Then the sequence $\{x_n\}$ converges weakly to x if and only if $\{x_n\}$ is bounded and $\lim_{n \to \infty} f(x_n) = f(x)$ for each extreme point f of the unit ball U of E*.

Proof. Let Q denote the natural isometry of E into E^{**} . If $\{x_n\}$ converges weakly to x, then $(Qx_n)(f)$ is bounded for each f in E^* , so that the uniform boundedness theorem asserts that $\{Qx_n\}$, hence $\{x_n\}$, is bounded in norm. To prove the converse, suppose that $\{Qx_n\}$ is bounded and that $f(x_n) = (Qx_n)(f) \rightarrow (Qx)(f) = f(x)$ for each f in ex U, and that g is an arbitrary element of U. It suffices to show that

 $(Qx_n)(g) o (Qx)(g)$. Now, in the weak* topology on E^* , U is compact (and convex) so by the Bishop-de Leeuw theorem there exists a σ -ring S of subsets of U (with ex $U \in S$) and a probability measure μ on S such that $\mu(U \sim \operatorname{ex} U) = 0$ and such that $L(g) = \int L d\mu$ for each weak* continuous affine function L on U. In particular, $(Qx_n)(g) = \int Qx_n d\mu$ and $(Qx)(g) = \int Qx d\mu$. Furthermore, $\{Qx_n\}$ converges to Qx on U a.e. μ , so by the Lebesgue bounded convergence theorem $\int Qx_n d\mu \to \int Qx d\mu$, and the proof is complete.

6. A new setting: The Choquet boundary

In the Introduction, the Riesz representation theorem was reformulated as a representation theorem of the Choquet type. Although the conclusion of the Riesz theorem is quite sharp (for each element of the convex set X under consideration there exists a unique representing measure supported by ex X), the hypotheses restrict its application to a very special class of compact convex sets. In what follows we will (among other things) describe a related family of sets which appears to be only slightly larger than that involved in the Riesz theorem, but which actually "contains" all the sets which interest us, in the sense that every compact convex subset of a locally convex space is affinely homeomorphic to a member of the family.

Throughout this section, Y will denote a compact Hausdorff space, and $C_c(Y)$ will denote the space of all continuous complex-valued functions on Y, with supremum norm. (We continue to denote the space of real valued continuous functions on Y by C(Y).)

Definition. Suppose that M is a linear subspace (not necessarily closed) of C(Y) (or of $C_c(Y)$) and that $1 \in M$. Denote by K(M) the set of all L in M^* such that $L(1) = 1 = \|L\|$.

If we consider M^* in its weak* topology, then K(M) is a nonempty compact convex subset of a locally convex space, and the results from preceding sections are applicable. Note that the Riesz theorem dealt with the set K(C(Y)).

Recall that a space E over the complex field may be considered as a real vector space E_r by restricting scalar multiplication to real numbers, and that there is a natural isomorphism between $(E_r)^*$ and the real space of real parts of functionals in E^* . Using this device, one may verify that all the foregoing propositions and theorems are valid for complex spaces. There are several reasons for doing this (one of which will become apparent later); the chief one is that many of the spaces which are of interest to analysts are spaces of complex valued functions. In order to make full use of these theorems, it is necessary to have descriptions of the extreme points of K(M). There is not a great deal to be said in the general case, but (as will be shown later) for the case when M is a subalgebra of $C_c(Y)$, Bishop and Bishop-de Leeuw have obtained useful and interesting characterizations of ex K(M).

Since we will consider the real and complex cases simultaneously, it will be of help to recall one form of the Riesz representation theorem for $C_c(Y)^*$: If L is in $C_c(Y)^*$, then there exist nonnegative regular Borel measures μ_1, μ_2, μ_3 and μ_4 on Y such that the measure $\mu = \mu_1 - \mu_2 + i (\mu_3 - \mu_4)$ represents L and the total variation $\|\mu\|$ of μ equals $\|L\|$. If $L(1) = 1 = \|L\|$, then $L \ge 0$ (that is, $Lf \ge 0$ whenever $f \ge 0$) and hence $\mu = \mu_1 \ge 0$. [A simple proof of the above

assertion about L goes as follows: If $f \geq 0$, let D be any closed disc in the complex plane which contains the bounded set f(Y); assume D has center α and radius r > 0. Then $\|f - \alpha\| \leq r$ so $r \geq |L(f - \alpha)| = |L(f) - \alpha|$, i.e., $Lf \in D$. Thus, Lf is in the closed convex hull of f(Y) (which is the intersection of all such discs) and since f(Y) is contained in the nonnegative real axis, we have $Lf \geq 0$.] It follows that even in the complex case, the functionals in K(M) may be represented by probability measures on Y; indeed, if $L \in K(M)$, then it may be extended to an element of $K(C_c(Y))$ by the (complex form of the) Hahn-Banach theorem. By the Riesz theorem there exists a complex measure μ on Y such that $L(f) = \int_Y f \ d\mu$ for each f in M. It follows from the previous remarks that μ is a probability measure.

Definition. If y is in Y, let ϕy be the element of K(M) defined by $(\phi y)(f) = f(y)$, f in M. Note that ϕ is continuous.

If M separates points of Y, then ϕ is one-to-one, and hence is a homeomorphism, embedding Y as a compact subset of K(M). If $L \in K(M)$ and μ is a measure on Y such that $L(f) = \mu(f)$ for f in M, then we can "carry" μ to a measure μ on K(M) in the obvious way: $\mu' = \mu \circ \phi^{-1}$. Since M is the conjugate space to M^* (in its weak* topology), it follows easily that μ' represents L.

LEMMA 6.1. Suppose that M is a subspace of C(Y) (or of $C_c(Y)$) and that $1 \in M$. Then K(M) equals the weak*

closed convex hull of $\phi(Y)$.

Proof. If the above assertion is false, then there exists f in M such that $\sup \{(\operatorname{Re} f)(y) \colon y \in Y\} <$ $<\sup \{\operatorname{Re} L(f) \colon L \in K(M)\} \subseteq \sup \{\operatorname{Re} L(f) \colon L \in C(X)^*, \|L\| =$ $=1\} = \|\operatorname{Re} f\|$. We may assume (by adding a positive constant to f) that $\operatorname{Re} f \supseteq 0$; the first term then becomes $\|\operatorname{Re} f\|$ and we have a contradiction.

Definition. Suppose that M is a linear subspace of C(Y) (or of $C_c(Y)$) and that $1 \in M$. Let B(M) be the set of all y in Y for which ϕy is an extreme point of K(M). We call B(M) the Choquet boundary for M.

The reason for introducing this notion is apparent: An element L in K(M) is an extreme point of K(M) if and only if $L = \phi y$ for some y in B(M). [The "if" part of this assertion comes from the definition of B(M); on the other hand, Lemma 6.1 and Milman's theorem (Section 1) imply that $\exp K(M) \subset \phi(Y)$.] We have the following "intrinsic" characterization of B(M) in terms of measures on Y, at least for subspaces M which separate the points of Y.

PROPOSITION 6.2. Suppose that M is a subspace of C(Y) (or of $C_c(Y)$) which separates the points of Y and contains the constant functions. Then y is in the Choquet boundary B(M) of M if and only if $\mu = \mathcal{E}_y$ is the only probability measure on Y such that $f(y) = \int_Y f \ d\mu$ for each f in M.

Proof. Suppose that $y \in B(M)$ and suppose that for some

Sec. 6

measure μ on Y, $f(y) = \int f \, d\mu$ for each f in M. Then the measure $\mu' = \mu \circ \phi^{-1}$ is defined on (the Borel subsets of) K(M), and the above relation means that $\mu' \sim \varepsilon_{\phi y} = \varepsilon_y \circ \phi^{-1}$. Since $\phi y \in \operatorname{ex} K(M)$, Proposition 1.4 implies $\mu \circ \phi^{-1} = \varepsilon_y \circ \phi^{-1}$, and since ϕ is a homeomorphism we have $\mu = \varepsilon_y$. Conversely, suppose $y \notin B(M)$, so that $\phi y \notin \operatorname{ex} K(M)$. Then there exist distinct functionals in K(M), and hence distinct measures μ_1 and μ_2 on Y which represent them, such that $(\phi y)(f) = \frac{1}{2}\mu_1(f) + \frac{1}{2}\mu_2(f)$ for each f in M. Let $\mu = \frac{1}{2}\mu_1 + \frac{1}{2}\mu_2$; then $\mu(f) = f(y)$ for each f in M, although $\mu \neq \varepsilon_y$. (Indeed, suppose $\varepsilon_y = \mu = \frac{1}{2}\mu_1 + \frac{1}{2}\mu_2$. Since μ_1 and μ_2 are distinct, $\mu_1 \neq \varepsilon_y$ and hence $\mu_1 \{y\} < 1$. It follows that $\mu\{y\} < 1$, i.e., $\mu \neq \varepsilon_y$.)

(The above characterization is actually the *definition* of the Choquet boundary used by most authors. If one wishes to use this definition for subspaces M which do not separate points, a more complicated version is necessary [6, 18].) This proposition makes it evident that when M is all of C(Y) or $C_c(Y)$, we have $\phi(Y) = \exp K(M)$; equivalently, B(M) = Y. An example where $B(M) \neq Y$ may be constructed as follows: Let Y = [0, 1] and let $M = \{f \in C(Y): f(\frac{1}{2}) = \frac{1}{2}f(0) + \frac{1}{2}f(1)\}$. Then $B(M) = Y \sim \{\frac{1}{2}\}$. [Clearly, $\frac{1}{2} \notin B(M)$. If $x \neq \frac{1}{2}$ and $\mu(f) = f(x)$ for each f in M, then by choosing functions in M which "peak" at x, it can be seen that $\mu = \mathcal{E}_x$.]

Definition. Suppose that M is a subspace of C(Y) or of $C_c(Y)$ and suppose $1 \in M$. A subset B of Y is said to be a boundary for M if for each f in M there exists a

point x in B such that $|f(x)| = ||f|| (= \sup \{|f(y)| : y \in Y\})$. If there is a smallest closed boundary for M (i.e., a closed boundary which is contained in every closed boundary), it is called the $\check{S}ilov$ boundary for M. (For some illuminating examples, see the end of Section 8.)

PROPOSITION 6.3. Suppose that M is a subspace of C(Y) (or $C_c(Y)$) with $1 \in M$. If $f \in M$, then there exists y in the Choquet boundary B(M) such that |f(y)| = ||f||, i.e., B(M) is a boundary for M.

Proof. Let L_0 be any element of K(M) such that $|L_0(f)| = \|f\|$ (for instance, evaluation at some point where |f| attains its maximum) and let K_0 be the set of all L in K(M) such that $L(f) = L_0(f)$. The set K_0 is nonempty, weak* compact, and convex, hence it has an extreme point L_1 which is necessarily an extreme point of K(M). Hence $L_1 = \phi y$ for some y in B(M), and $|f(y)| = |L_1(f)| = |L_0(f)| = |f|$.

PROPOSITION 6.4. Suppose that M is a subspace of C(Y) or of $C_c(Y)$ which contains the constant functions and separates points of Y. Then the closure of the Choquet boundary is the Šilov boundary for M.

Proof. It follows from Proposition 6.3 that the closure of B(M) is a closed boundary for M. It remains to show that if B is a closed boundary for M, then $B(M) \subset B$ (and hence cl $B(M) \subset B$). Suppose not; then there exists y in $B(M) \sim B$ and hence a neighborhood U of y with $U \subset Y \sim B$. We will show that there exists f in M such that $\sup |f(Y \sim U)| <$

 $<\sup |f(U)|$; this will imply that B is not a boundary for M, a contradiction. The remainder of the proof is due (for the real case) to Choquet. Note that ϕy is an element of ex K(M) and that $\phi(U)$ is a (relative) weak* neighborhood of ϕy in $\phi(Y)$. Using the definition of the weak* topology and the fact that $1 \in M$, we can find f_1, \ldots, f_n in M and $\varepsilon > 0$ such that $\phi y \in \cap \{L : \text{Re } L(f_i) < \epsilon\} \cap \phi(Y) \subset \phi(U)$. Consider the compact convex sets $K_i = \{L: \text{Re } L(f_i) \geq \epsilon\} \cap K(M), i = 1, ..., n.$ The convex hull J of their union is again a compact convex subset of K(M), but does not contain the extreme point ϕy ; otherwise, ϕy would be a convex combination of elements L_i of K_i , i== 1,..., n. Since $\phi y \notin J$, we can apply the separation theorem to obtain a function f in M such that sup Re f(J) < $< \text{Re } (\phi y)(f)$. Since $\phi(Y) \sim \phi(U) \subset \bigcup K_i \subset J$, we have sup $(\text{Re } f)(Y \sim U) < \text{Re } f(y)$. By adding a sufficiently large positive constant to f we get the desired result.

We next show that every nonempty compact convex subset of a locally convex space is of the form K(M) (for suitable Y and M).

PROPOSITION 6.5. If X is a compact convex subset of a locally convex space, then there exists a separating subspace M of C(X), with $1 \in M$, such that X is affinely homeomorphic with K(M).

Proof. Let M be those functions in C(X) of the form g(x) = f(x) + r, where f is in E^* , r in R. Define ϕ from X to K(M) as before; it is easily checked that ϕ is affine.

To see that $\phi(X) = K(M)$, suppose that L is in K(M); by using the Hahn-Banach and Riesz theorems as above, we can find a measure μ on X such that $L(g) = \mu(g)$ for each g in M. By Proposition 1.1, μ has a unique resultant x in X; it follows that $\phi x = L$.

It follows from the foregoing discussion that we can carry problems concerning representing measures into the context of function spaces and Choquet boundaries. This latter setting has been aptly referred to as "the Bishop-de Leeuw setup." One advantage of the Bishop-de Leeuw setup is the relative ease with which examples may be constructed. [Another advantage is that it lends itself to the discussion of function algebras, which was Bishop's [5] original motivation for proving a special case of the Choquet theorem; see Section 8.]

We conclude this chapter with a form of the representation theorem which is due to Bishop and de Leeuw. In order to do this (and for later purposes) we observe that for separating subspaces M there is a suitable definition of $\lambda > \mu$ for measures λ and μ on Y, namely, define $\lambda > \mu$ to mean that $\lambda \circ \phi^{-1} > \mu \circ \phi^{-1}$. If we are given a measure μ on Y and we want a maximal measure λ with $\lambda > \mu$, we can choose a maximal measure λ' on K(M) with $\lambda' > \mu \circ \phi^{-1}$. In view of the remarks in Section 4 (prior to the Bishop-de Leeuw theorem), λ' is supported by the compact set $\phi(Y)$, hence is of the form $\lambda \circ \phi^{-1}$ for a (maximal) measure λ on Y such that $\lambda > \mu$. Furthermore, a set D is a compact G_{δ} in K(M) if and only if $D \cap \phi(Y)$ is a compact G_{δ} relative to $\phi(Y)$; it follows that

 λ vanishes on the Baire subsets of $Y \sim B(M)$.

THEOREM. Suppose that M is a subspace of C(Y) (or of $C_c(Y)$) which separates points and contains the constant functions. If $L \in M^*$, then there exists a complex measure μ on Y such that $L(f) = \int_Y f \ d\mu$ for each f in M and $\mu(S) = 0$ for any Baire set S in Y which is disjoint from the Choquet boundary for M.

Proof. By applying the Hahn-Banach and Riesz theorems, we may obtain a measure $\lambda = \lambda_1 - \lambda_2 + i(\lambda_3 - \lambda_4)$ on Y such that $L(f) = \lambda(f)$ for each f in M. For each i we can find a maximal measure μ_i on K(M) with $\mu_i > \lambda_i$. We know that μ_i vanishes on the Baire sets which are disjoint from B(M), and $\mu_i(f) = \lambda_i(f)$ for f in M. If we define $\mu = \mu_1 - \mu_2 + i(\mu_3 - \mu_4)$, we get a measure with the required properties.

7. Application of the Choquet boundary to resolvents

Let X be a compact Hausdorff space, and suppose that for each $\lambda > 0$ there is a linear transformation $R_{\lambda} \colon C(X) \to C(X)$ such that $R_{\lambda} \geq 0$ (i.e., $R_{\lambda} f \geq 0$ whenever $f \geq 0$) and $R_{\lambda} 1 = 1/\lambda$. We call the family of operators $R_{\lambda}(\lambda > 0)$ a resolvent if the following identity is valid for all $\lambda, \lambda' > 0$:

$$(*) R_{\lambda'} - R_{\lambda} = (\lambda - \lambda') R_{\lambda'} R_{\lambda}.$$

[Such families arise in the study of Markov processes. If $(T_t: t > 0)$ is a semigroup of Markov operators from C(X) into itself (i.e., $T_sT_t = T_{s+t}$, $T_t = 1$, $T_t \ge 0$), then under suitable conditions

$$(R_{\lambda}f)(x) = \int_0^{\infty} e^{-\lambda t} (T_t f)(x) dt \qquad (x \text{ in } X, \lambda > 0)$$

exists for all f in C(X) and defines a resolvent. Under certain hypotheses, every resolvent is obtainable in this way from a semigroup of Markov operators, and the content of this section is a convergence theorem related to the proof of this result.

(See the papers [27] and [32] for more detailed information on this subject.) None of the facts in this paragraph are needed to follow the exposition given below, which is due to Lion [27] and was originally shown us by Choquet.]

We first prove some elementary facts which follow easily from the definition of a resolvent.

- 1. For each $\lambda > 0$, R_{λ} is continuous and $\|R_{\lambda}\| = 1/\lambda$. Indeed, if $f \in C(X)$, then $\pm f \leq \|f\| \cdot 1$, hence $\pm R_{\lambda} f \leq \|f\| \cdot R_{\lambda} 1 = (1/\lambda) \|f\|$, so $\|R_{\lambda}\| \leq 1/\lambda$. But $R_{\lambda} 1 = 1/\lambda$.
- 2. For each λ and λ' , $R_{\lambda}R_{\lambda'}=R_{\lambda'}R_{\lambda}$. This is trivial if $\lambda=\lambda'$ and follows from (*) otherwise.
- 3. The operators R_{λ} have the same range. Given λ , let $M_{\lambda} = R_{\lambda} [C(X)]$ be the range of R_{λ} . For any λ and λ' , if $f \in C(X)$, then $R_{\lambda}f R_{\lambda'}f = (\lambda' \lambda)R_{\lambda}(R_{\lambda'}f)$, so $R_{\lambda'}f \in M_{\lambda}$. Thus, $M_{\lambda'} \subset M_{\lambda}$.

Let *M* denote the common range of the operators *R*.

Throughout the remainder of this section, we assume that *M*separates points of *X*. (Even if we did not assume this, it

would still be possible to formulate a suitable theorem analogous
to the one below, but the statement would be unnecessarily complicated.) The next theorem is essentially the same as one

originally proved by Ray [32], using a different method.

THEOREM. Suppose that X is a compact Hausdorff space, that $R_{\lambda}(\lambda > 0)$ is a resolvent on C(X), and that M is the common range of the operators R_{λ} .

1. If x is in the Choquet boundary B of M, then for all

f in C(X),

$$\lim_{\lambda\to\infty}\lambda(R_{\lambda}f)(x) = f(x).$$

2. If x is in X, there exists a regular Borel measure μ_x on X such that, for each f in C(X),

$$\lim_{\lambda\to\infty}\lambda(\mathsf{R}_\lambda f)(x) = \int_X f \ d\mu_x \ .$$

The measure μ_x is supported by B, in the sense that $\mu_x(A) = 0$ for any Baire set $A \subset X \sim B$.

3. If x is in X and the conclusion to (1) holds, then $x \in B$.

Proof. We first show that if g is in M, then $\|\lambda R_{\lambda} g - g\| \to 0$ as $\lambda \to \infty$. Indeed, we can write $g = R_1 f$ for some f in C(X), and hence $\lambda R_{\lambda} g - g = \lambda R_{\lambda} R_1 f - R_1 f = 1 \cdot R_{\lambda} R_1 f - R_{\lambda} f = R_{\lambda} (R_1 f - f)$. It follows that $\|\lambda R_{\lambda} g - g\| \le \|R_{\lambda}\| \|R_1 f - f\| \le (1/\lambda) \|R_1 f - f\| \to 0$. Suppose, now, that $x \in X$ and $\lambda > 0$. The functional defined on C(X) by $f \to \lambda (R_{\lambda} f)(x)$ is nonnegative on nonnegative functions and takes 1 into 1, hence there exists a probability measure $\mu_{x,\lambda}$ on X such that $\lambda (R_{\lambda} f)(x) = \int f d\mu_{x,\lambda}$ for each f in C(X). For each $\lambda_0 > 0$, let $A(\lambda_0, x)$ be the closure (in the weak* topology of C(X)*) of $\{\mu_{x,\lambda}: \lambda \ge \lambda_0\}$. For fixed x, the sets $A(\lambda_0, x)$ ($\lambda_0 > 0$) form a nested family of nonempty compact sets and hence have nonempty intersection A(x). We next show that if $\mu \in A(x)$, then $\mu \sim \varepsilon_x$, i.e., $\mu(g) = g(x)$ for each g in M. Indeed, given $\varepsilon > 0$, there exists $\lambda_0 > 0$ such that

 $|\lambda(R_{\lambda}g)(x) - g(x)| \leq ||\lambda R_{\lambda}g - g|| < \varepsilon/2 \text{ for } \lambda \geq \lambda_0.$ Since $\mu \in A(\lambda_0, x)$, every weak* neighborhood of μ contains a measure $\mu_{x,\lambda}$ for some $\lambda \geq \lambda_0$. In particular, then, $|\mu_{x,\lambda}(g) - \mu(g)| < \varepsilon/2$ for some $\lambda \geq \lambda_0$. It follows that $|\mu(g) - g(x)| < \varepsilon$ for all $\varepsilon > 0$.

Suppose, next, that $x \in X$. By the Choquet-Bishop-de Leeuw theorem there exists a maximal measure $\mu_x \sim \mathcal{E}_x$ on X. Given f in C(X) and $\lambda > 0$, let $g_\lambda = \lambda R_\lambda f$; then $g_\lambda \in M$ so that $g_\lambda(x) = \mu_x(g) = \int_X g \ d\mu_x$. Now $\|g_\lambda\| = \|\lambda R_\lambda f\| \le \lambda \|R_\lambda\| \cdot \|f\| = \|f\|$ and, for g in g in

It remains to show that $x \in B$ whenever $\lim \lambda(R_{\lambda}f)(x) = f(x)$

for all f in C(X). Suppose, then, that $\mu \sim \mathcal{E}_x$ (and hence $\mu > \mathcal{E}_x$); we must show that $\mu = \mathcal{E}_x$. The above proof that $\lim \lambda(R_\lambda f)(x) = \mu_x(f)$ is valid for any maximal measure μ_x such that $\mu_x \sim \mathcal{E}_x$. Thus, we can suppose that μ_x is a maximal measure satisfying $\mu_x > \mu$. Since $\mu_x(f) = \lim \lambda(R_\lambda f)(x) = f(x)$ for all f in C(X), we have $\mathcal{E}_x = \mu_x > \mu > \mathcal{E}_x$, and the proof is complete.

8. The Choquet boundary for function algebras

By a function algebra in $C_c(Y)$ (Y compact Hausdorff) we mean any closed subalgebra of $C_c(Y)$ which contains the constant functions and separates points of Y. For metrizable Y, the Choquet boundary of a function algebra A has a particularly simple description (Bishop [5]): It consists of the peak points for A, i.e., of those y in Y for which there exists a function f in A with the property that |f(x)| < |f(y)| if $x \neq y$. This result is a special case of a characterization (for arbitrary Y) due to Bishop and de Leeuw [6], which is the main theorem of this section.

Definition. Suppose that A is a function algebra in $C_c(Y)$ and that $y \in Y$. We say that y satisfies:

Condition I — if for any open neighborhood U of y and any $\varepsilon > 0$ there exists f in A such that $||f|| \le 1$, $||f(y)|| > 1 - \varepsilon$ and $||f|| \le \varepsilon$ in $Y \sim U$;

Condition II — if, whenever S is a G_{δ} containing y, there exists f in A such that |f(y)| = ||f|| and $\{x: |f(x)| = ||f||\} \subset S$.

THEOREM (Bishop-de Leeuw). Suppose that A is a function algebra in $C_c(Y)$ and that $y \in Y$. The following assertions

are equivalent:

- (1) y satisfies Condition I.
- (2) y satisfies Condition II.
- (3) y is in the Choquet boundary for A.

Before we prove this theorem, we need a simple lemma.

LEMMA 8.1 If M is a separating subspace of $C_c(Y)$, with 1 in M, then Re M (the space of real parts of functions in M) is a separating subspace of C(Y), and B(Re M) = B(M).

Proof. Use Proposition 6.2 and the fact that for a real measure μ on Y, $\mu(\text{Re } f) = (\text{Re } f)(y)$ for every f in M if and only if $\mu(f) = f(y)$ for every f in M.

We return to the proof of the theorem:

(3) implies (1). Suppose $y \in B(A) = B(\operatorname{Re} A)$, that U is an open neighborhood of y, and that $0 < \varepsilon < 1$. Choose a function g in C(Y) such that $0 \le g \le 1$, g(y) = 1 and g = 0 in $Y \sim U$. Denote the weak* compact convex set $K(\operatorname{Re} A) \subset (\operatorname{Re} A)^*$ by X and use Tietze's extension theorem to obtain f in C(X) such that $f = g \circ \phi^{-1}$ on $\phi(Y) \subset X$. Since $\phi y \in \operatorname{ex} X$, it follows from Proposition 3.1 that $\overline{(-f)}(\phi y) = (-f)(\phi y) = -g(y) = -1$. Now the space of continuous affine functions on X is (by Proposition 4.5) isomorphic to the uniform closure of the functions in $\operatorname{Re} A$, and therefore $\overline{(-f)}(\phi y) = \inf\{h(y) \colon h \in \operatorname{Re} A, h \ge -f\}$. It follows that there exists h_0 in $\operatorname{Re} A$ such that $h_0 \le g$ and $h_0(y) > \log(\delta - 1)/\log \delta$ (where $\delta = 1/\varepsilon$). Let $h = (\log \delta)(h_0 - 1)$; then $h \in \operatorname{Re} A$ and there exists k in $\operatorname{Re} A$ such that $h + ik \in A$. Since A is closed in $C_c(Y)$, the function

 $f_1 = \exp(h + ik)$ is in A. Since $|f_1| = e^h$, it follows easily that $|f_1| \le 1$, $|f_1(y)| > 1 - \varepsilon$ and $|f_1| \le \varepsilon$ in $Y \sim U$.

(1) implies (2) (Bishop). Suppose y satisfies condition I and that S is a G_{δ} set containing y. Let $\{V_n\}$ be a decreasing sequence of open sets with $S = \cap V_n$. We will construct a sequence $\{g_n\}$ of functions in A and a sequence of open sets $\{U_n\}$ in Y with the following properties:

(i)
$$\|g_{n+1} - g_n\| \le 2^{-n+1}$$

(ii)
$$\|g_n\| \le 3(1-2^{-n-1})$$

(iii)
$$g_n(y) = 3(1-2^{-n})$$

(iv)
$$|g_{n+1} - g_n| < 2^{-n-1}$$
 in $Y \sim U_n$

(v)
$$y \in U_n \subset V_n$$
.

Assume that we have done this. By (i), the sequence $\{g_n\}$ converges to a function g in A; (ii) and (iii) imply that $\|g\| = 3 = g(y)$. Finally, if $x \notin S$, then (v) implies that $x \in Y \sim V_n \subset Y \sim U_n$ for some n, and hence (writing $g = g_n + \sum_{k=n}^{\infty} (g_{k+1} - g_k)$) we have

$$|g(x)| \le ||g_n|| + \sum_{k=n}^{\infty} |g_{k+1}(x) - g_k(x)| <$$

$$< 3(1 - 2^{-n-1}) + \sum_{k=n}^{\infty} 2^{-k-1} < 3,$$

so that $\{x: |g(x)| = ||g||\} \subset S$, and therefore y satisfies Condition II.

We define the sequence $\{g_n\}$ by induction: Since $y \in V_1$,

Condition I implies that there exists f in A such that $||f|| \le 1$, $|f(y)| > \frac{3}{4}$ and $|f| \le \frac{1}{4}$ in $Y \sim V_1$. Let $g_1 = (\frac{3}{2})[f(y)]^{-1}f$. Since $|f(y)| > \frac{3}{4}$, $|g_1| \le \frac{3}{2} \cdot \frac{4}{3} = 2 < 3(1 - 2^{-2})$, so g_1 satisfies (ii). Also, $|g_1(y)| = \frac{3}{2} = 3(1 - 2^{-1})$, so g_1 satisfies all the relevant conditions. Suppose that g_1, g_2, \ldots, g_k and $U_{\, ext{1}},\ldots$, $U_{\, ext{k-1}}\,$ have been chosen to satisfy the above five conditions. Since $g_k(y) = 3(1 - 2^{-k})$, there is a neighborhood U of y such that $|g_k| < 3(1 - 2^{-k}) + 2^{-k-2}$ in U and hence in $U_k = U \cap V_k$. We can choose another function f in A such that $||f|| \le 1$, $|f(y)| > \frac{3}{4}$ and $|f| \le \frac{1}{4}$ in $Y \sim U_k$. Define $h = (3 \cdot 2^{-k-1}) [f(y)]^{-1} f$; then $h(y) = 3 \cdot 2^{-k-1}$ and $||h|| \le 2^{-k+1}$. Also, for x in $Y \sim U_k$, $|h(x)| < 2^{-k-1}$. Let $g_{k+1} = g_k + h$; properties (i), (iii), (iv), and (v) are immediate. To check (ii), suppose $x \in U_k$; then $|g_{k+1}(x)| \le |g_k(x)| + |h(x)| \le 3(1 - 2^{-k}) +$ $+2^{-k-2}+2^{-k+1}=3(1-2^{-k-2})$. On the other hand, if $x \in Y \sim U_k$, then $\|g_{k+1}(x)\| \le \|g_k\| + 2^{-k-1} \le 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k-1}) + 2^{-k-1} = 3 - 2^{-k} < 3(1 - 2^{-k}) + 2$ $< 3(1-2^{-k-2})$. This completes the induction.

(2) implies (3). Suppose that y satisfies Condition II. We will show that $\mu = \mathcal{E}_y$ is the only probability measure on Y such that $\mu(f) = f(y)$ for each f in A; from Proposition 6.2, we can conclude that $y \in B(A)$. Indeed, suppose that μ is such a measure; to see that $\mu(y) = 1$, it suffices to show that $\mu(S) = 1$ for any G_{δ} set which contains y. If S is such a set, choose f in A such that $y \in \{x: |f(x)| = ||f||\} \subset S$; then $||f|| = |f(y)| = |\mu(f)| \le \int_S |f| d\mu + \int_{Y \sim S} |f| d\mu \le ||f|| \mu(S) + \int_{Y \sim S} |f| d\mu$. If $\mu(Y \sim S) > 0$, then $\int_{Y \sim S} |f| d\mu < ||f|| \mu(Y \sim S)$, a contradiction which completes the proof.

Note that if Y is metrizable, then each point of Y is a G_{δ} , and the equivalence between (2) and (3) yields the following corollary.

COROLLARY 8.2 (Bishop [5]). If Y is metrizable and A is a function algebra in $C_c(Y)$, then the Choquet boundary for A coincides with the set of peak points for A.

There are two more descriptions of the Choquet boundary which follow easily from the above theorem.

COROLLARY 8.3. Suppose that A is a function algebra in $C_c(Y)$ and that $y \in Y$. The following assertions are equivalent:

- (1) y is in the Choquet boundary of A.
- (2) For each open set U containing y, there exists f in A such that |f(y)| = ||f|| and |f| < ||f|| in $Y \sim U$.
- (3) For each x in Y with $y \neq x$, there exists f in A such that |f(x)| < |f(y)| = ||f||.

Proof. By the theorem, (1) is equivalent to Condition II, so it will suffice to show that (2) and (3) are equivalent to Condition II. Since any open set U is a G_{δ} , Condition II implies (2), and (2) trivially implies (3). To see that (3) implies Condition II, suppose that $\{U_n\}$ is a nested sequence of open sets and that $y \in \cap U_n$. For each n we will find f_n in A such that $\|f_n\| = 1 = f_n(y)$ and $\|f_n\| < 1$ in $Y \sim U_n$. Once this is done, the function $f = \sum 2^{-n} f_n$ will satisfy the properties of Condition II. Suppose, then, that $n \ge 1$ and that $x \in Y \sim U_n$. By (3), there exists f_x in A such that $f_x(y) = 1 = \|f_x\|$ and $|f_x| < 1$ in a neighborhood V_x of x. By compactness of $Y \sim U_n$

we can choose a finite number f_{x_1}, \ldots, f_{x_k} of such functions for which V_{x_1}, \ldots, V_{x_k} cover $Y \sim U_n$. The function $f_n = k^{-1} \sum f_{x_i}$ then has the required properties.

The Choquet boundary can be a proper subset of the Šilov boundary, as shown by the following example: Let Y be the unit circle $\{z\colon |z|=1\}$ in the complex plane, and let A_1 be those functions in $C_c(Y)$ which are restrictions of functions f which are analytic in |z|<1, continuous in $|z|\leq 1$ and which satisfy f(0)=f(1). It follows from the maximum modulus principle for analytic functions that every point of Y except 1 is a peak point for A_1 ; since Y is metrizable, this shows that $B(A_1)=Y\sim\{1\}$, while the Šilov boundary for A_1 is Y.

We give a related example which is the motivation for the term "boundary:" Let $Y=\{z\colon |z|\le 1\}$ and let A_2 be the set of all functions in $C_c(Y)$ which are analytic in |z|<1. Then the Choquet boundary coincides with the Šilov boundary and these equal the boundary $\{z\colon |z|=1\}$ of Y.

Finally, let $Y = \{z: |z| = 1\}$ and let A_3 be the restrictions to Y of the functions in A_2 ; then the Choquet and Šilov boundaries equal Y (so this can happen for proper subalgebras of $C_c(Y)$.)

For a description of Bishop's application of the foregoing material to an approximation problem for functions in the complex plane, see Section 14.

It is not generally true that the peak points and the Choquet boundary coincide (in the metrizable case) for linear subspaces M of $C_{\rm c}(Y)$ which are not algebras. For instance, let Y be

the subset of the plane consisting of the convex hull of two disjoint circles, and let M be the complex valued affine functions on Y. The four tangent points to the circles are in the Choquet boundary, but are not peak points — a fact most easily seen by considering Re M. Nevertheless, the peak points for M are always dense in the Choquet boundary for M, a fact which is a corollary to the following classical result concerning Banach spaces. By a smooth point of the unit sphere of a Banach space E, we mean a point x, ||x|| = 1, for which there is a unique f in E^* such that ||f|| = 1 = f(x).

PROPOSITION 8.4 (S. Mazur). Let E be a separable real (or complex) Banach space and let $S = \{x: ||x|| = 1\}$ denote the unit sphere of E. Then the smooth points of S form a dense G_{δ} subset of S.

Proof. In the case of a complex space, we will consider it as a real space (in the usual way); the set of smooth points (which we denote by sm S) is unchanged. We will show that sm S is a countable intersection of dense open subsets of S; since S is a complete metric space, the Baire category theorem will yield the desired conclusion. Let $\{x_n\}$ be a dense sequence in S. For positive integers m and n, let D_{mn} be those x in S such that $f(x_n) - g(x_n) < m^{-1}$ whenever f, g in E^* satisfy ||f|| = f(x) = 1 = g(x) = ||g||. It is easily verified that if $x \in S \sim \text{sm } S$, then $x \notin D_{mn}$ for some m and n, hence sm $S = \bigcap D_{mn}$. To see that $S \sim D_{mn}$ is closed in S, suppose that $y_k \in S \sim D_{mn}$ and $y_k \to y$. Choose functions f_k , g_k of

norm one such that $f_k(y_k) = 1 = g_k(y_k)$ and $f_k(x_n) - g_k(x_n) \ge$ $\geq m^{-1}$, $k = 1, 2, 3, \ldots$ It follows easily from the weak* compactness of the unit ball of E^* that $y \in S \sim D_{mn}$. It remains to show that each set D_{mn} is dense in S. Suppose not; then for some m and n we can choose y in S and $\delta > 0$ such that $||x-y|| < \delta$ and ||x|| = 1 imply $x \notin D_{mn}$. Let $y_1 = y$ and choose f_1 , g_1 in E^* such that $f_1(y_1) = ||f_1|| = 1 = ||g_1|| =$ $= g_1(y_1)$ and $f_1(x_n) \ge m^{-1} + g_1(x_n)$. We will proceed by induction to define a sequence $\{y_k\}$ in S and corresponding functionals f_k , g_k of norm one such that $\|y_1 - y_k\| < (1 - 2^{-k})\delta$, $f_k(y_k) = 1 = g_k(y_k)$ and $f_k(x_n) \ge k m^{-1} + g_1(x_n)$. Since $f_k(x_n) \leq 1$, this will lead to a contradiction. Suppose we have chosen y_k which has the above properties. We define $y_{k+1} =$ $= (y_k + \alpha x_n) / \|y_k + \alpha x_n\|$, where $\alpha > 0$ is chosen to be small enough to insure that $\|y_k - y_{k+1}\| < 2^{-k-1}\delta$. Thus, $\|y_{k+1}\| = 1$ and $\|y_1 - y_{k+1}\| < (1 - 2^{-k})\delta + \|y_k - y_{k+1}\| < (1 - 2^{-k-1})\delta < \delta.$ It follows that $y_{k+1} \notin D_{mn}$, so there exist f_{k+1} , g_{k+1} of norm one such that $f_{k+1}(y_{k+1}) = 1 = g_{k+1}(y_{k+1})$ and $f_{k+1}(x_n) \ge 1$ $\geq m^{-1} + g_{k+1}(x_n)$. Now,

$$1 = \|y_{k+1}\| \ge f_k(y_{k+1}) = [1 + \alpha f_k(x_n)] / \|y_k + \alpha x_n\|.$$

Since $g_{k+1}(y_{k+1}) = 1 \ge g_{k+1}(y_k)$, we have

$$\|y_k + \alpha x_n\| = g_{k+1} (y_k + \alpha x_n) \le 1 + \alpha g_{k+1} (x_n).$$

These facts combine to show that $f_k(x_n) \leq g_{k+1}(x_n)$, so that $f_{k+1}(x_n) \geq m^{-1} + g_{k+1}(x_n) \geq m^{-1} + f_k(x_n) \geq (k+1)m^{-1} + g_1(x_n)$, and the proof is complete.

COROLLARY 8.5. Suppose that Y is a compact metrizable space and that M is a uniformly closed separating subspace of $C_c(Y)$ (or of C(Y)) which contains the constant functions. Then the peak points for M are dense in the Choquet boundary for M.

Proof. Let P be those points y in Y such that $f(y) = \|f\|$ for some smooth point f of the unit sphere of M. It is immediate that every point of P is a peak point for M, and P will be dense in B(M) if $\phi(P)$ is weak* dense in $\exp(K(M))$. This latter will be true (by Milman's theorem in Section 1) if K(M) is the weak* closed convex hull of $\phi(P)$. If it were not, we could choose g in M, $\|g\| = 1$, such that $\sup \operatorname{Re} g(P) < 0$ sup $\operatorname{Re} g(K(M))$. Since the smooth points are uniformly dense in the unit sphere of M, there would exist a smooth point f satisfying this same inequality. For such a function f, however, the left side is $\|f\|$ and the right side is at most $\|f\|$, a contradiction.

9. Uniqueness of representing measures

The question of uniqueness of representing measures is a natural one, both in applications and in the theory itself. As always, one must specify clearly the context within which uniqueness is being asserted. What we would like most is a theorem which characterizes those compact convex X with the property that to each point there exists a unique measure that represents the point and is supported by the extreme points of X. Choquet has proved such a theorem for metrizable X, but there is no satisfactory result in the general case. On the other hand, Choquet and Meyer have characterized those X with the property that to each point there corresponds a unique maximal measure which represents the point. Since maximal measures are "supported" by the extreme points, it would seem that this answers the question, but the fact that "supported" is taken in an approximate sense makes a considerable difference. An example by Mokobodzki will show that uniqueness of maximal representing measures does not imply uniqueness of representing measures which vanish on Baire subsets of $X \sim \text{ex } X$.

In this section, then, we return to the study of a compact convex set X in a real locally convex space E. As before, we denote by $A[\mathbb{C}]$ the affine [convex] continuous functions on X.

For our present purposes, it will be convenient to assume that X is contained in a closed hyperplane which misses the origin—this will be assumed throughout this section. [There is no generality lost in making this assumption, since we may embed E as the hyperplane $E \times \{1\}$ in $E \times R$ (product topology); the image $X \times \{1\}$ of X is affinely homeomorphic with X.] The main reason for doing this is that the question of uniqueness is most naturally studied when X is the base of a convex cone P, i.e., when there is a convex cone P (with vertex at the origin) such that $y \in P$ if and only if there exists a unique $a \ge 0$ and x in X such that y = ax. If X is contained in a hyperplane which misses the origin, then this is certainly the case; take $P = \widetilde{X}$, where $\widetilde{X} = \{ax : a \ge 0, x \in X\}$ is the cone generated by X.

Now, recall that a cone P in E induces a translation invariant partial ordering on E: $x \ge y$ if and only if $x - y \in P$. If P has a base X, then $P \cap (-P) = \{0\}$, so that $x \ge y$ and $y \ge x$ imply x = y. Furthermore, if x and y are in the subspace P - P generated by P, then there exists z in P such that $z \ge x$ and $z \ge y$, i.e., x and y have an $upper\ bound$ in P - P. We say that z is the least upper bound for x and y if $z \le w$ whenever $w \ge x$ and $w \ge y$, and we denote this least upper bound by $x \vee y$. If a convex set X is the base of a cone X, we call X a simplex if the space X - X is a lattice in the ordering induced by X (that is, if each pair x,y in X - X has a least upper bound $x \vee y$ in X - X). Equivalently, X - X is a lattice if and only if each pair x,y has a lattice lower

bound (definition obvious), which is denoted by $x \wedge y$; we have $x \wedge y = -(-x \vee -y)$. Finally, note that $\widetilde{X} - \widetilde{X}$ is a vector lattice if (and only if) \widetilde{X} is a lattice. [Indeed, suppose that each pair x,y in \widetilde{X} has a greatest lower bound $x \wedge y$ in \widetilde{X} . If $x = x_1 - x_2$ and $y = y_1 - y_2$ are elements of $\widetilde{X} - \widetilde{X}$, let $z = (x_1 + y_2) \wedge (y_1 + x_2) - (x_2 + y_2)$; we will show that z is the greatest lower bound in $\widetilde{X} - \widetilde{X}$ of x and y. Since $x - z = (x_1 + y_2) - (y_1 + x_2) \wedge (x_1 + y_2)$ we have $x \geq z$ and (similarly) $y \geq z$. If $w = w_1 - w_2 \in \widetilde{X} - \widetilde{X}$ and $x \geq w$, $y \geq w$, we must show that $z \geq w$. The first two inequalities imply that $x_1 + y_2 + w_2 \geq x_2 + y_2 + w_1$ and $x_2 + y_1 + w_2 \geq x_2 + y_2 + w_1$. From Lemma 9.1 (i) (below) we conclude that $z - w = (y_1 + x_2 + w_2) \wedge (x_1 + y_2 + w_2) - (x_2 + y_2 + w_1) \geq 0$.]

It is easy to verify that being a simplex is an "intrinsic" property of X, that is, if X is contained in a hyperplane which misses the origin in E, if X_1 is similarly situated in E_1 , and if there exists a one-to-one affine map of X onto X_1 , then this map may be extended in the obvious way to a one-to-one, additive, order-preserving map which carries \widetilde{X} onto \widetilde{X}_1 , so that one of these cones is a lattice if and only if the other is a lattice. At the end of this section we will show that the above definition of a simplex coincides with the usual one in case X is finite dimensional.

The main result of this section is the theorem that each point of X is represented by a *unique* maximal measure if and only if X is a simplex. This result, together with a number of equivalent formulations, is due to G. Choquet and P. Meyer [15], and

our proofs follow theirs. Choquet's original uniqueness theorem for metrizable X is an easy corollary.

Let us formulate the uniqueness portion of the Riesz representation theorem in terms of simplexes. Suppose that Y is a compact Hausdorff space and let X be the compact convex set of all probability measures on Y. As we noted in the Introduction, the Riesz theorem can be formulated as follows: To each point of X there exists a unique representing measure which is supported by ex $X = \phi(Y)$. The uniqueness assertion can be considered to be a consequence of the fact that X is a simplex, i.e., that the cone of all nonnegative measures on Y has the set X of probability measures as a base and is a lattice in the usual ordering. [We will not prove this well-known fact, but we recall one way of defining the greatest lower bound $\lambda \wedge \mu$ of two nonnegative measures λ and μ . Let $\nu = \lambda + \mu$; then both λ and μ are absolutely continuous with respect to ν , hence have Radon-Nikodym derivatives f and g, respectively. Let $h = \min (f, g)$ (this is defined a.e. ν), and let $\lambda \wedge \mu = h\nu$.]

We need one important technical result concerning lattices, the "decomposition lemma," which is assertion (iii) in the following lemma.

LEMMA 9.1. Suppose that V is a vector lattice.

- (i) $(x+z) \wedge (y+z) = (x \wedge y) + z$ for each x, y, z in V.
- (ii) If $x \ge 0$, $y \ge 0$ and $z \ge 0$, then $(x + y) \land z \le (x \land z) + (y \land z)$.
- (iii) If $\{x_i: i \in I\}$ and $\{y_j: j \in J\}$ are finite sequences of nonnegative elements of V, and if $\sum_{i \in I} x_i = \sum_{i \in J} y_i$, then

bound (definition obvious), which is denoted by $x \land y$; we have $x \land y = -(-x \lor -y)$. Finally, note that $\widetilde{X} - \widetilde{X}$ is a vector lattice if (and only if) \widetilde{X} is a lattice. [Indeed, suppose that each pair x,y in \widetilde{X} has a greatest lower bound $x \land y$ in \widetilde{X} . If $x = x_1 - x_2$ and $y = y_1 - y_2$ are elements of $\widetilde{X} - \widetilde{X}$, let $z = (x_1 + y_2) \land (y_1 + x_2) - (x_2 + y_2)$; we will show that z is the greatest lower bound in $\widetilde{X} - \widetilde{X}$ of x and y. Since $x - z = (x_1 + y_2) - (y_1 + x_2) \land (x_1 + y_2)$ we have $x \ge z$ and (similarly) $y \ge z$. If $w = w_1 - w_2 \in \widetilde{X} - \widetilde{X}$ and $x \ge w$, $y \ge w$, we must show that $z \ge w$. The first two inequalities imply that $x_1 + y_2 + w_2 \ge x_2 + y_2 + w_1$ and $x_2 + y_1 + w_2 \ge x_2 + y_2 + w_1$. From Lemma 9.1 (i) (below) we conclude that $z - w = (y_1 + x_2 + w_2) \land (x_1 + y_2 + w_2) - (x_2 + y_2 + w_1) \ge 0$.]

It is easy to verify that being a simplex is an "intrinsic" property of X, that is, if X is contained in a hyperplane which misses the origin in E, if X_1 is similarly situated in E_1 , and if there exists a one-to-one affine map of X onto X_1 , then this map may be extended in the obvious way to a one-to-one, additive, order-preserving map which carries \widetilde{X} onto \widetilde{X}_1 , so that one of these cones is a lattice if and only if the other is a lattice. At the end of this section we will show that the above definition of a simplex coincides with the usual one in case X is finite dimensional.

The main result of this section is the theorem that each point of X is represented by a *unique* maximal measure if and only if X is a simplex. This result, together with a number of equivalent formulations, is due to G. Choquet and P. Meyer [15], and

our proofs follow theirs. Choquet's original uniqueness theorem for metrizable X is an easy corollary.

Let us formulate the uniqueness portion of the Riesz representation theorem in terms of simplexes. Suppose that Y is a compact Hausdorff space and let X be the compact convex set of all probability measures on Y. As we noted in the Introduction, the Riesz theorem can be formulated as follows: To each point of X there exists a unique representing measure which is supported by ex $X = \phi(Y)$. The uniqueness assertion can be considered to be a consequence of the fact that X is a simplex, i.e., that the cone of all nonnegative measures on Y has the set X of probability measures as a base and is a lattice in the usual ordering. [We will not prove this well-known fact, but we recall one way of defining the greatest lower bound $\lambda \wedge \mu$ of two nonnegative measures λ and μ . Let $\nu = \lambda + \mu$; then both λ and μ are absolutely continuous with respect to ν , hence have Radon-Nikodym derivatives f and g, respectively. Let $h = \min(f, g)$ (this is defined a.e. ν), and let $\lambda \wedge \mu = h\nu$.

We need one important technical result concerning lattices, the "decomposition lemma," which is assertion (iii) in the following lemma.

LEMMA 9.1. Suppose that V is a vector lattice.

- (i) $(x+z) \wedge (y+z) = (x \wedge y) + z$ for each x, y, z in V.
- (ii) If $x \ge 0$, $y \ge 0$ and $z \ge 0$, then $(x + y) \land z \le (x \land z) + (y \land z)$.
- (iii) If $\{x_i: i \in I\}$ and $\{y_j: j \in J\}$ are finite sequences of nonnegative elements of V, and if $\sum_{i \in I} x_i = \sum_{j \in J} y_j$, then

there exist $z_{ij} \ge 0$, (i, j) in $I \times J$, such that $x_i = \sum_{j \in J} z_{ij}$ (i in I) and $y_i = \sum_{i \in I} z_{ij}$ (j in J).

The fact that the partial ordering in V is translation invariant yields an immediate proof of (i). To see (ii), let $u = (x + y) \land z$, so that $u \le x + y$ and $u \le z$. Since $0 \le x$, $u \le x + z$, and hence $u \le (x + y) \land (x + z) = x + (y \land z)$. On the other hand, $y \wedge z \ge 0$, so $u \le z + (y \wedge z)$, and therefore $u \leq [x + (y \land z)] \land [z + (y \land z)] = (x \land z) + (y \land z)$. To prove (iii) (the decomposition lemma), it is not difficult to use induction on the number of elements in I and in J in order to reduce the proof to the case $I = J = \{1, 2\}$. To prove this case, suppose $x_1 + x_2 = y_1 + y_2$ (all elements nonnegative) and let $z_{11} = x_1 \land y_1$, $z_{12} - x_1 - z_{11}$, and $z_{21} = y_1 - z_{11}$. These z_{ij} are nonnegative, and $z_{12} \wedge z_{21} = (x_1 - z_{11}) \wedge (y_1 - z_{11}) =$ $= (x_1 \land y_1) - z_{11} = 0$ (by (i)). Furthermore, $z_{12} + x_2 = x_1 + x_2$ $+ x_2 - z_{11} = y_1 + y_2 - z_{11} = z_{21} + y_2$; it remains to show that $z_{22} = x_2 - z_{21} = y_2 - z_{12}$ is nonnegative. But $z_{21} \le z_{21} + y_2 =$ $= z_{12} + x_2$, so $z_{21} = z_{21} \land (z_{12} + x_2) \leq (z_{21} \land z_{12}) + (z_{21} \land x_2) =$ = $z_{21} \wedge x_2$; therefore $z_{21} \leq x_2$, and hence $z_{22} \geq 0$.

The last part of the next lemma is a consequence of a theorem from integration theory; since we use it again, we include a proof.

LEMMA 9.2. If $f \in C(X)$, let $G = \{g : g \in -C \text{ and } g \ge f\}$. Then $\overline{f} = \inf \{g : g \in G\}$, G is directed (downward) by \ge , and $\mu(\overline{f}) = \inf \{\mu(g) : g \in G\}$ for any measure μ on X.

Proof. Since $A \subset -C$, we have

 $\inf \{g: g \in G\} \subseteq \inf \{h: h \in A, h \supseteq f\} = \overline{f} \subseteq \inf \{h: h \in A, h \supseteq g\} = \overline{f} \subseteq \bigcap \{h: h \supseteq g\} = \overline{f} \subseteq$ $=\overline{g}=g$, for any g in G. Taking the infimum on the right gives the first assertion. Since the minimum of two functions in G is a function in G, this set is directed downward; i.e., if $g_1, g_2 \in G$, there exists g in G with $g \leq g_1, g \leq g_2$. To prove the last assertion, let $\beta = \inf \{ \mu(g) : g \in G \}$; we must show that $\mu(\overline{f}) = \beta$. Choose a sequence $\{g_n\}$ from G such that $\mu(g_n) \to \beta$. Since G is directed downward, we can assume that the sequence $\{g_n\}$ is monotonically decreasing, and hence converges pointwise to a (Borel measurable and bounded) function f', with $f' \ge \overline{f}$. From the monotone convergence theorem, $\mu(f') = \beta$, and we will show that $\mu(f'-\overline{f})=0$. If not, then $\{x: f'(x)>\overline{f}(x)\}$ has positive measure, and hence there is a real number r and $\varepsilon > 0$ such that $\{x: \overline{f}(x) < r - \varepsilon, f'(x) > r\}$ has positive measure. This latter set contains a compact set K of positive measure, and for each point x in K there is a function g in G such that $g(x) < r - \varepsilon$. By compactness, we can find functions g'_1, g'_2, \ldots, g'_m in G such that for each x in K, there is a function g'_i with $g'_i(x) < r - \varepsilon$. Let f_k in G be less than or equal to the minimum of g_k, g'_1, \ldots, g'_m ; then on K, we have $f_k < r - \varepsilon < f' - \varepsilon \le g_k - \varepsilon$, while $f_k \le g_k$ on $X \sim K$. Thus, $\beta \leq \mu(f_k) \leq \mu(g_k) - \varepsilon \mu(K)$ for each k, which leads to a contradiction.

As an application of this lemma, we prove the converse to Proposition 4.2, obtaining a useful characterization of maximal measures.

PROPOSITION 9.3 (Mokobodzki). A nonnegative measure μ on X is maximal if and only if $\mu(f) = \mu(\overline{f})$ for each continuous convex function f on X. Equivalently, μ is maximal if and only if $\mu(f) = \mu(\overline{f})$ for each f in C(X).

Proof. In view of Proposition 4.2, we need only show that if $\mu(f) = \mu(\overline{f})$ for each f in C, then μ is maximal. Choose a maximal measure λ with $\lambda > \mu$. Then for f in C, $\lambda(\overline{f}) = \lambda(f) \ge \mu(f) = \mu(\overline{f})$. If $g \in -C$, then $\lambda(g) \le \mu(g)$, so (by Lemma 9.2) $\lambda(\overline{f}) = \inf \{\lambda(g): g \in -C, g \ge f\} \le \inf \{\mu(g): g \in -C, g \ge f\} = \mu(\overline{f})$. It follows that $\lambda(f) = \mu(f)$ for each f in C; since C - C is dense in C(X), $\lambda = \mu$ and hence μ is maximal.

We will apply this result shortly to obtain an important fact about the set of all maximal measures. First, however, we present an elementary lemma concerning vector lattices. Suppose that P_1 and P_2 are cones in a vector space E, with $P_1 \subset P_2$. Denote the induced partial orderings by \leq_1 and \leq_2 , respectively. We say that P_1 is an hereditary subcone of P_2 if $y \in P_1$, $x \in P_2$, and $x \leq_2 y$ imply $x \in P_1$.

LEMMA 9.4. If P_2 is a lattice (in the ordering \leq_2) and P_1 is an hereditary subcone of P_2 , then P_1 is a lattice (in the ordering \leq_1).

Proof. Suppose that x,y are in P_1 , and let z be their greatest lower bound in P_2 . Then $z \leq_2 x$, so $z \in P_1$, and we will to show that if $w \leq_1 x$ and $w \leq_1 y$, then $w \leq_1 z$, so that z is the greatest lower bound in P_1 . Since $P_1 \subset P_2$, we see that $w \leq_2 x$ and $w \leq_2 y$, hence $0 \leq_2 w \leq_2 z$. It follows that

 $z-w\in P_2$ and that $z-w\leqq_2 z$; by the hereditary property, $z-w\in P_1$, so that $w\leqq_1 z$.

PROPOSITION 9.5. The set Q of all nonnegative maximal measures on X is a subcone of the cone P of all nonnegative measures on X. The convex set $Q_1 = \{\mu \colon \mu \in Q, \, \mu(X) = 1\}$ is a base for Q, and Q_1 is a simplex.

Proof. Suppose that λ and μ are maximal measures; by Proposition 9.3, $(\lambda + \mu)(f) = (\lambda + \mu)(\overline{f})$ for each continuous convex function f on X, so $\lambda + \mu$ is maximal. Similarly, $r\mu$ is maximal if $\mu \in Q$ and $r \geq 0$. Since Q_1 is the intersection of Q with the probability measures, it is clearly a base for Q. To see that Q_1 is a simplex, we must show that Q is a lattice in its natural ordering. By the previous lemma (and the fact that P is a lattice) we need only show that Q is hereditary in P. Suppose, then, that $0 \leq \lambda \leq \mu$ and that $\mu \in Q$. Let λ_1 be a maximal measure with $\lambda_1 > \lambda$. Then $\lambda_1 + (\mu - \lambda) > \lambda + (\mu - \lambda) = \mu$; since μ is maximal, we have $\mu = \lambda_1 + \mu - \lambda$, so that $\lambda = \lambda_1 \in Q$.

We now know that Q_1 is a simplex; furthermore, we have an affine function from Q_1 onto X defined by $\mu \to r(\mu)$, where $x = r(\mu)$ is the resultant of μ in X. (It is easily checked that this function is affine, and Lemma 4.1 asserts that it is onto; the question of continuity is considered in Proposition 9.10.) It follows that X itself will be a simplex if this function is one-to-one, i.e., if to each x in X there exists a unique maximal measure μ with $\mu \sim \mathcal{E}_x$. This is the assertion "(5) implies

(1)" of the Choquet-Meyer uniqueness theorem.

THEOREM (Choquet-Meyer). Suppose that X is a nonempty compact convex subset of a locally convex space E. The following assertions are equivalent:

- (1) X is a simplex.
- (2) For each convex f in C(X), the function \overline{f} is affine on X.
- (3) If μ is a maximal measure on X with resultant x, and if f is a convex function in C(X), then $\overline{f}(x) = \mu(f)$.
 - (4) For each convex f and g in C(X), $\overline{f+g} = \overline{f} + \overline{g}$.
- (5) For each x in X there is a unique maximal measure μ_x such that $\mu_x \sim \varepsilon_x$.

To prove that (1) implies (2), we need to sharpen Proposition 3.1 a bit; recall that it asserts that for x in X and f in C(X), $\overline{f}(x) = \sup \{\mu(f): \mu \sim \varepsilon_x\}$.

LEMMA 9.6. If $f \in C(X)$, then for each x in X, $\overline{f}(x) = \sup \{\mu(f): \mu \text{ is a discrete measure and } \mu \sim \varepsilon_x \}$.

Proof. By a "discrete measure" we mean, of course, a measure which is a finite convex combination of measures of the form \mathcal{E}_y . It follows from Proposition 3.1 that we need only show the following: Given f in C(X), x in X, $\mu \sim \mathcal{E}_x$, and $\varepsilon > 0$, there exists a discrete measure λ such that $\lambda \sim \mathcal{E}_x$ and $\mu(f) - \lambda(f) < \varepsilon$. To this end, cover X by a finite number of closed convex neighborhoods U_i such that $|f(y) - f(z)| < \varepsilon$ whenever $y, z \in U_i \cap X$. Let $V_1 = U_1 \cap X$ and let $V_i = (U_i \cap X) \sim (V_1 \cup \ldots \cup V_{i-1})$ for i > 1. Then the V_i are

Sec. 9

pairwise disjoint Borel subsets of X and for those i such that $\mu(V_i) \neq 0$ we can obtain probability measures λ_i on V_i by defining $\lambda_i(B) = \mu(V_i)^{-1} \ \mu(B \cap V_i)$ (B a Borel subset of X). Let x_i be the resultant of λ_i ; since V_i is a subset of the compact convex set $U_i \cap X$, the latter must contain x_i . Define $\lambda = \sum \mu(V_i) \mathcal{E}_{x_i}$. If h is a continuous affine function on X, then $\lambda(h) = \sum \mu(V_i) \lambda_i(h) = \sum \int_{V_i} h \ d\mu = \mu(h) = h(x)$, so $\lambda \sim \mathcal{E}_x$. Furthermore, $\mu(f) - \lambda(f) = \sum \left[\int_{V_i} f \ d\mu - \mu(V_i) f(x_i) \right] = \sum \int_{V_i} \left[f - f(x_i) \right] \ d\mu < \sum \mu(V_i) = \mathcal{E}$, and the proof is complete.

Proof that (1) implies (2): Suppose that $x_1, x_2 \in X$, $\alpha_1, \alpha_2 > 0, \alpha_1 + \alpha_2 = 1$, and $f \in C$. Let $z = \alpha_1 x_1 + \alpha_2 x_2$; we want to show that $\overline{f}(z) = \alpha_1 \overline{f}(x_1) + \alpha_2 \overline{f}(x_2)$. Since \overline{f} is concave, it suffices to show that it is also convex. By Lemma 9.6, we have $f(z) = \sup \{ \mu(f) : \mu \text{ is discrete and } \mu \sim z \}$. Suppose that μ is discrete and $\mu \sim \varepsilon_z$; then there exist numbers $\beta_i \ge 0$ and a finite sequence y_j in $X(j \in J)$ such that $\Sigma \beta_i = 1$ and $\mu = \Sigma \beta_i \varepsilon_{y_i}$, i.e., $\alpha_1 x_1 + \alpha_2 x_2 = z = \Sigma \beta_i y_i$. By applying the decomposition lemma 9.1 to the elements $\alpha_i x_i$, $\beta_j y_j$ of \widetilde{X} , we can choose z'_{ij} in \widetilde{X} such that $\alpha_i x_i = \sum_{j \in J} z'_{ij} \ (i = 1, 2)$ and $\beta_j y_j = z'_{1j} + z'_{2j} \ (j \in J)$. Each $z'_{ij} = \gamma_{ij} z_{ij} (\gamma_{ij} \ge 0, z_{ij} \in X)$, and hence $x_i = \sum_J \alpha_i^{-1} \gamma_{ij} z_{ij}$ is a convex combination of elements of X. (Use the fact that $X \subset L^{-1}(r)$ for some L in E^* , $r \neq 0$, to see that the coefficients have sum equal to 1.) It follows that for i = 1, 2, the right side represents a discrete measure $\mu_i \sim \varepsilon_{x_i}$, and therefore $\overline{f}(x_i) \ge \mu_i(f) = \sum_{j \in i} \gamma_{ij} f(z_{ij})$. On the other hand, $\mu(f) = \sum \beta_j f(y_j)$ and for each j,

$$\begin{split} &f(y_j) = f(\beta_j^{-1} \gamma_{1j} z_{1j} + \beta_j^{-1} \gamma_{2j} z_{2j}) \leqq \beta_j^{-1} \gamma_{1j} f(z_{1j}) + \\ &+ \beta_j^{-1} \gamma_{2j} f(z_{2j}), \text{ so } \mu(f) \leqq \alpha_1 \mu_1(f) + \alpha_2 \mu_2(f) \leqq \alpha_1 \overline{f}(x_1) + \\ &+ \alpha_2 \overline{f}(x_2). \quad \text{Taking the supremum over all discrete} \quad \mu \sim \mathcal{E}_z \\ &\text{gives the desired conclusion.} \end{split}$$

Proof that (2) implies (3): If μ is maximal and $f \in C$, then $\mu(f) = \mu(\overline{f})$. Since \overline{f} is affine and upper semicontinuous, Lemma 9.7 (below) implies that if $\mu \sim \varepsilon_x$, then $\mu(\overline{f}) = \overline{f}(x)$.

LEMMA 9.7. Suppose that f is an affine upper (or lower) semicontinuous function on X and that $\mu \sim \varepsilon_x$. Then $\mu(f) = f(x)$.

It suffices to prove that the family H of all h in A such that h > f is directed downward and that $f = \inf \{h: h \in H\}$. Indeed, if this be true, then (just as in the proof of Lemma 9.2) we have $\mu(f) = \inf \{ \mu(h) : h \in H \}$ for any μ ; in particular, if $\mu \sim \varepsilon_x$, then $\mu(f) = \inf \{h(x): h \in H\} =$ = f(x). It remains, then, to prove the assertion about H. To see that H is directed downward, suppose that $h_1 > f$ and $h_2 > f$ (h_i in A); we want h in A such that h > f and $h \leqq h_1$, h_2 . To this end, define subsets J, J_1 , and J_2 of $E \times R$ as follows: $J = \{(x, r): x \in X, r \leq f(x)\}, J_i = \{(x, r): x \in X, r \leq x\}$ $r = h_i(x)$. Since f is affine and upper semicontinuous, J is closed and convex, while the continuity of $\,h_{\,i}\,$ implies $\,J_{i}\,$ is compact. Furthermore, J is disjoint from the convex hull J_3 of $J_1 \, \cup \, J_2$, and J_3 is compact. By the separation theorem, (applied to 0 and the closed convex "difference set" $J_{
m 3}-J$) there exists a continuous linear functional $\,L\,$ on $\,E imes R\,$ such

that $\sup L(J) < \inf L(J_3) = a$. The function h defined on X by L(x,h(x)) = a will do what is needed. A similar (but much simpler) argument shows that $f = \inf \{h: h \in H\}$. Finally, if f is affine and lower semicontinuous, we can apply what we have just proved to -f.

Proof that (3) implies (4): Suppose that $f, g \in C$ and that $x \in X$. Choose a maximal measure $\mu \sim \mathcal{E}_x$; from (3) we get $\overline{f+g}(x) = \mu(f+g) = \mu(f) + \mu(g) = \overline{f}(x) + \overline{g}(x)$.

Proof that (4) implies (5): Suppose that $x \in X$ and consider the functional defined for f in C by $f \to \overline{f}(x)$. This is positive-homogeneous, and (4) implies that it is additive. From this it follows that $m(f-g) = \overline{f}(x) - \overline{g}(x)$ defines a linear functional m on the subspace C-C, and property (c) of upper envelopes (Section 3) shows that $|m(f-g)| \leq ||f-g||$. Thus, m is uniformly continuous on the dense subspace C-C of C(X) and hence has a unique extension to a continuous linear functional of norm 1 on C(X). Since m(1) = 1, this functional is given by a probability measure, which we denote by μ_X . Since, for f in C, we have $\mu_X(f) = m(f) = \overline{f}(x)$, Proposition 3.1 implies that $\mu_X(f) = \sup \{\mu(f) \colon \mu \sim \mathcal{E}_X\}$, i.e., $\mu_X > \mu$ whenever $\mu \sim \mathcal{E}_X$. It follows that μ_X is the unique maximal measure which represents x.

We consider next the problem of uniqueness of representing measures which are supported by the extreme points. The following easy corollary to Proposition 9.3 will enable us to prove Choquet's original uniqueness theorem for metrizable X.

COROLLARY 9.8. If μ is a nonnegative measure on X which vanishes on every compact subset of $X \sim \operatorname{ex} X$, then μ is maximal. In particular, if μ is supported by $\operatorname{ex} X$, then μ is maximal.

Proof. It is immediate from the hypothesis that μ vanishes on every F_{σ} subset of $X \sim \operatorname{ex} X$, hence is supported by every G_{δ} containing $\operatorname{ex} X$. In particular, then, it is supported by every set of the form $\{x\colon f(x)=\overline{f}(x)\}$, f in C(X). Thus, $\mu(f)=\mu(\overline{f})$ for f in C(X), and Proposition 9.3 implies that μ is maximal.

As the example of Mokobodzki (below) will show, we cannot weaken the hypothesis in this corollary to " μ vanishes on the compact Baire subsets of $X \sim \operatorname{ex} X$."

COROLLARY 9.9. If X is a simplex and if ex X is a Baire set, or is an F_{σ} set, then for each x in X there exists a unique measure μ such that $\mu \sim \mathcal{E}_{x}$ and $\mu(\text{ex }X) = 1$.

Proof. By the Choquet-Meyer theorem, there exists a unique maximal measure μ such that $\mu \sim \varepsilon_x$. From Section 4 we know that $\mu(\operatorname{ex} X) = 1$. Suppose that $\lambda \sim \varepsilon_x$ and $\lambda(\operatorname{ex} X) = 1$; it follows from Corollary 9.8 that λ is maximal, and hence $\lambda = \mu$.

THEOREM (Choquet). Suppose that X is a compact convex metrizable subset of a locally convex space. Then X is a simplex if and only if for each x in X there exists a unique measure μ which represents x and is supported by the extreme points of X.

Proof. It was shown in Section 3 that for metrizable X there exists a (strictly convex) continuous function f on X such that $\operatorname{ex} X = \{x \colon \overline{f}(x) = f(x)\}$. Suppose that X is a simplex; then the previous remark shows that $\operatorname{ex} X$ is a Baire set and Corollary 9.9 yields uniqueness. Conversely, suppose that to each x in X there corresponds a unique measure $\mu_X \sim \mathcal{E}_X$ with $\mu_X(\operatorname{ex} X) = 1$. We can conclude that X is a simplex if we show that for each x in X there is a unique maximal measure $\lambda \sim \mathcal{E}_X$. But if λ is maximal, then λ is supported by $\{x \colon \overline{f}(x) = f(x)\} = \operatorname{ex} X$, hence (by hypothesis) $\lambda = \mu_X$.

When X is a simplex, the resultant map $r: Q_1 \to X$ is one-to-one, hence has an inverse, the map $x \to \mu_x$. The following result investigates some of the properties of this function.

PROPOSITION 9.10. Suppose that X is a simplex. The function $x \to \mu_x$ is weak* Borel measurable (i.e., $x \to \mu_x(f)$ is a Borel function for each f in C(X)) and affine. It is continuous if and only if ex X is closed.

Proof. The function $x \to \mu_x$ is the inverse of the resultant map r; since Q_1 is convex and r is affine, its inverse is affine. By Proposition 1.1, r is continuous on Q_1 , hence its inverse would be continuous if Q_1 were compact. But if ex X is closed, then it follows from Corollary 9.8 and Section 4 that Q_1 equals the set of all probability measures on ex X, hence is weak* compact. Thus, $x \to \mu_x$ is continuous if ex X is closed. Conversely, suppose that $x \to \mu_x$ is continuous and suppose that x_0 is in the closure of ex X. Then there exists

a net x_{α} in ex X with $x_{\alpha} \to x_0$, and by Proposition 1.4, $\mu_{x_{\alpha}} = \mathcal{E}_{x_{\alpha}}$. Thus, $\mu_{x_0} = \lim \mu_{x_{\alpha}} = \lim \mathcal{E}_{x_{\alpha}} = \mathcal{E}_{x_0}$. Now, if $\mu \sim \mathcal{E}_{x_0}$, then $\mu > \mathcal{E}_{x_0}$, and (since μ_{x_0} is maximal), $\mathcal{E}_{x_0} = \mu_{x_0} > \mu > \mathcal{E}_{x_0}$, so that $\mu = \mathcal{E}_{x_0}$; by Proposition 1.4, again, we have $x_0 \in \operatorname{ex} X$, so ex X is closed. To see that $x \to \mu_x(f)$ is a Borel function for each f in C(X), note that for f in G we have $\mu_x(f) = \overline{f}(x)$, by part (3) of the uniqueness theorem. The right side is upper semicontinuous, hence Borel measurable, and it follows that $x \to \mu_x(f)$ is a Borel function whenever f is in the dense subspace C - C. Finally, if $f \in C(X)$ we can find a sequence in C - C converging uniformly to f, so that $x \to \mu_x(f)$ is a limit of a sequence of Borel functions, hence is a Borel function.

Bauer [3] has given several characterizations of those X which satisfy "X is a simplex and ex X is closed."

EXAMPLE (Mokobodzki)

There exists a compact convex set X with the following properties:

- (i) X is a simplex.
- (ii) ex X is a Borel set, but not a Baire set.
- (iii) There exists a point x in X with two representing measures μ and ν such that $\mu(X \sim \operatorname{ex} X) = 0$ and $\nu(X \sim \operatorname{ex} X) = 1$, but ν vanishes on every Baire subset of $X \sim \operatorname{ex} X$.

Proof. Let Y be a compact Hausdorff space containing a

point y_0 which is not a G_{δ} , and μ a nonatomic measure on Y. For example, we could take Y to be an uncountable product of unit intervals, y_0 any point in Y which does not have a countable neighborhood base, and μ the corresponding product of Lebesgue measure with itself. Let $M \subset C(Y)$ be the set of all f in C(Y) such that $f(y_0) = \int_Y f d\mu$. We first show that M separates points of Y. Suppose that λ_1 and λ_2 are probability measures on Y, with $\lambda_1(f) = \lambda_2(f)$ for all f in M. (We will soon take λ_1 and λ_2 to be point masses.) Thus, $(\lambda_1 - \lambda_2)(f) = 0$ whenever $f \in C(X)$ and $(\mu - \varepsilon_{y_0})(f) = 0$, so that these functionals are necessarily proportional, i.e., there exists a real number r such that

(1)
$$\lambda_1 - \lambda_2 = r(\mu - \varepsilon_{y_0}).$$

Since μ has no atoms, it follows from (1) that λ_1 and λ_2 cannot be distinct point masses, i.e., M separates points of Y. Furthermore, if $y \neq y_0$, then y is in the Choquet boundary B(M) of M. Indeed, if $\lambda \sim \mathbb{E}_y$, take $\lambda_1 = \lambda$, $\lambda_2 = \mathbb{E}_y$ in (1) and apply both sides to $\{y\}$, getting $\lambda_1(\{y\}) - 1 = 0$, so $\lambda = \mathbb{E}_y$. On the other hand, y_0 has two representing measures (μ and \mathbb{E}_{y_0}), so we can conclude that $B(M) = Y \sim \{y_0\}$. We let X = K(M); from Section 6 we know that ex $X = \phi(B(M)) = \phi(Y) \sim \{\phi(y_0)\}$ and that every maximal measure on X is supported by the compact set $\phi(Y)$, hence can be identified with a measure on Y. (We will use the same symbol for a measure on X which is supported by $\phi(Y)$ and for the corresponds

ing measure on Y.) Let Q_1 be the set of all maximal probability measures on X; then a probability measure λ is in Q_1 if and only if $\lambda(\operatorname{ex} X)=1$. Indeed, the latter property implies that λ is maximal, by Corollary 9.8. Suppose, on the other hand, that λ is maximal but that $\lambda(\operatorname{ex} X)<1$; since λ is supported by $\phi(Y)$, we must have $\alpha=\lambda(\{y_0\})>0$. Let $\lambda_1=(\lambda-\alpha \varepsilon_{y_0})+a\mu$; since each term of this sum is nonnegative, $\lambda_1\geqq0$. Since $\mu\sim \varepsilon_{y_0}$, we have $\mu>\varepsilon_{y_0}$ and therefore $\lambda_1>\lambda$. Clearly, $\lambda_1\neq\lambda$, so λ is not maximal, a contradiction.

Now, we know that the resultant map r is affine from Q_1 onto X; if we show that it is one-to-one, we can conclude that X (like Q_1) is a simplex. But if $r(\lambda_1) = r(\lambda_2)$, then (by definition) $\lambda_1(f) = \lambda_2(f)$ for f in M, so that equation (1) applies to these two measures. Since each necessarily vanishes on $\{y_0\}$, we conclude that r=0 and hence $\lambda_1=\lambda_2$. It remains, then, to prove the assertions (ii) and (iii). Let $x = \phi(y_0), \ \nu = \varepsilon_{\phi(y_0)}$ and consider μ as a measure on X. It is clear that μ and ν represent x, that $\mu(X \sim \text{ex } X) =$ $=\mu(X\sim\phi(Y))=0$, and that $\nu(X\sim \mathrm{ex}\ X)=1$. If ν were positive on a Baire subset of $X \sim \operatorname{ex} X$, then it would be positive on some compact G_{δ} subset D of $X \sim \operatorname{ex} X$, and therefore $\phi(y_0)$ would be in D. But $D \cap \phi(Y) = {\phi(y_0)}$ would then be a G_{δ} relative to $\phi(Y)$, contradicting the fact that $\{y_0\}$ is not a G_{δ} set. Thus, u vanishes on every Baire subset of $X \sim \text{ex } X$, and if ex X were a Baire set, then $\nu(X \sim \text{ex } X)$ would equal zero.

We conclude this section with a proof that the definition of "simplex" coincides with the usual one for finite dimensional spaces.

PROPOSITION 9.11. Suppose that the space $\widetilde{X} - \widetilde{X}$ spanned by X has finite dimension n. Then X is a simplex if and only if it is the convex hull of n linearly independent points. Equivalently, X has exactly n extreme points.

Proof. We can assume without loss of generality that $E = \widetilde{X} - \widetilde{X}$. Suppose that X has exactly n extreme points x_1, x_2, \ldots, x_n ; since X is the convex hull of its extreme points and since X generates the n-dimensional space E, these points must be linearly independent, and hence they form a basis for E. Choose a basis f_1, \ldots, f_n for E* such that $f_i(x_i) = \delta_{ii}$. The map $T: E \to R^n$ defined by $Tx = (f_1(x), \ldots, f_n(x_i))$ $f_n(x)$) is linear, one-to-one and onto, and carries x, onto the i-th "unit vector" in \mathbb{R}^n . Thus, TX is the convex hull of the n unit vectors in \mathbb{R}^n and \widetilde{TX} is the cone of nonnegative elements in \mathbb{R}^n . This cone induces a lattice ordering in \mathbb{R}^n , so TX is a simplex; it follows that X itself is a simplex. To finish the proof, suppose that X is a simplex and note that Xis the convex hull of its extreme points. Since X generates E, it must have at least n extreme points; we will show that it has exactly n extreme points. Suppose that the points y_1, y_2, \dots, y_{n+1} are distinct extreme points of E. Since E is n-dimensional, there exist numbers a_i , not all zero, such that $\sum \alpha_i y_i = 0$. Partition the integers from 1 through n+1

into the sets P and N, where $i \in P$ if $\alpha_i \geq 0$, $i \in N$ otherwise. Then if $\alpha = \sum_P \alpha_i$, we have $\alpha > 0$ and (since f(X) = 1 for some f in E^*) $\sum_{\alpha_i} \alpha_i = 0$ so $\alpha = -\sum_N \alpha_i$. Finally, let $\alpha_i = \sum_P \alpha_i \alpha_i = \sum_N (-\alpha_i)^{-1} \alpha_i \gamma_i$. Since these are convex combinations, we have represented an element $\alpha_i = \sum_P \alpha_i = \sum_N (-\alpha_i)^{-1} \alpha_i \gamma_i$. It follows from Choquet's uniqueness theorem that $\alpha_i = \sum_P \alpha_i = \sum_N (-\alpha_i)^{-1} \alpha_i \gamma_i$ is not a simplex. (This last step may be proved in a more elementary way by using the decomposition lemma and the fact that the points $\alpha_i = \sum_P \alpha_i = \sum_P \alpha_i$ are extreme.)

Application to invariant and ergodic measures

Let S be a set, δ a σ -ring of subsets of S, and $\mathcal I$ a family of measurable functions from S into δ , i.e., for each T in $\mathcal I$ we have

$$T: S \to S$$
 and $T^{-1}A \in S$ whenever $A \in S$.

A nonnegative finite measure μ on δ is said to be *invariant* (or $\mathcal T$ -invariant) if

$$\mu(T^{-1}A) = \mu(A)$$
 for each T in \mathcal{I} and A in \mathcal{S} .

There are many theorems in the literature which state that, under suitable hypotheses on S, S and S, every invariant probability measure on S has a unique representation as an "integral average" of ergodic measures on S (definition below). In 1956, Choquet [12] observed that his representation theorem could be used to prove a fairly general theorem of this type. More recently, S, Feldman [21] has given an elementary measure theoretic description of the extreme points of the set of invariant probability measures which illuminates this result (and the generalization obtained via the Choquet-Bishop-de Leeuw theorem). We treat the measure theoretic aspect first.

Suppose that μ is a measure on δ . An element A of δ is said to be invariant $(\text{mod }\mu)$, if $\mu(A \Delta T^{-1}A) = 0$ for each T in \mathcal{T} . [By $A \Delta B$ we mean the symmetric difference $(A \sim B) \cup (B \sim A)$.] The family of all such sets will be denoted by $\delta_{\mu}(\mathcal{T})$, or more simply by δ_{μ} . It is easily seen that δ_{μ} is a sub- σ -ring of δ . We call an invariant measure μ ergodic if $\mu(A) = 0$ or $\mu(A) = 1$ for each A in δ_{μ} . [There are other definitions of "ergodic" in the literature; ours is motivated by Proposition 10.4 below. We will discuss this again at the end of the section.]

Now, the set of all invariant nonnegative finite measures on S forms a convex cone P, which generates the linear space P-P. Furthermore, the convex set X of invariant probability measures is a base for P. We have, of course, defined no topology on P-P; we will do this later. First, we show that P-P is a lattice and that the extreme points of X are the ergodic measures. To this end we prove a basic lemma (due originally to Feldman, although the present elementary proof is attributed by him to M. Sion).

LEMMA 10.1. Suppose that μ and ν are measures on \mathbb{S} , that μ is invariant, and that ν is absolutely continuous with respect to μ (with $d\nu/d\mu=f$, say). Then ν is invariant if and only if $f=f\circ T$ a.e. μ for all T in \mathbb{S} .

Proof. If $f = f \circ T$ a.e. μ for all T in \mathcal{I} , and if $A \in \mathcal{S}$, then for each such T,

$$\nu(T^{-1}A) = \int_{T^{-1}(A)} f \, d\mu = \int_{T^{-1}A} f \circ T \, d\mu =$$

$$= \int_{A} f \, d(\mu \circ T^{-1}) = \int_{A} f \, d\mu = \nu(A).$$

To prove the converse, suppose $\nu \circ T^{-1} = \nu$ for some T in \mathcal{F} . Given a real number r, let $A = \{x \colon f(x) \le r\}$, let $B = T^{-1}A \sim A$ and let $C = A \sim T^{-1}A$. Then f - r > 0 on B so $\nu(B) - r\mu(B) = \int_B (f - r) \, d\mu \ge 0$ and we have equality if and only if $\mu(B) = 0$. Moreover, $\nu(C) = \int_C f \, d\mu \le r\mu(C)$. Now, $\nu(B) = \nu(T^{-1}A) - \nu(T^{-1}A \cap A) = \nu(A) - \nu(T^{-1}A \cap A) = \nu(C)$, and similarly, $\mu(B) = \mu(C)$. Thus, $\nu(B) \ge r \mu(B) = r \mu(C) \ge \nu(C) = \nu(B)$, so equality holds throughout. It follows that $\mu(B) = 0$ and $\mu(C) = 0$. Thus, for any r, $\{x \colon f(x) \le r\}$ and $T^{-1}\{x \colon f(x) \le r\} = \{y \colon f(Ty) \le r\}$ differ only by a set of μ -measure zero. Suppose, now, that g and h are real valued functions. Then (taking all unions over the countable dense set of rational numbers r) we have

$$\{x: g(x) > h(x)\} = \bigcup \{x: g(x) > r \ge h(x)\} =$$

$$= \bigcup \{x: r \ge h(x)\} \sim \{x: r \ge g(x)\}\}$$

By applying this identity to g = f, $h = f \circ T$, we see that $f \le f \circ T$ a.e. μ , and by interchanging f and $f \circ T$ we conclude the proof.

COROLLARY 10.2. If μ and ν are invariant measures

and $\mu = \nu$ on $S_{\mu+\nu}$, then $\mu = \nu$ on S.

Proof. Let $f=d\mu/d(\mu+\nu)$, $g=d\nu/d(\mu+\nu)$. We will have $\mu(A)=\nu(A)$ for all A in δ if $\int_A f d(\mu+\nu)=$ $=\int_A g d(\mu+\nu)$ for all such A, i.e., if f=g a.e. $(\mu+\nu)$. Now f and g are δ -measurable functions on S, and, in fact, they are $\delta_{\mu+\nu}$ measurable. Indeed, if $T\in\mathcal{T}$, then since μ,ν and $\mu+\nu$ are invariant, Lemma 10.1 implies that $f\circ T=f$ and $g\circ T=g$ a.e. $(\mu+\nu)$. If f is a real number and $f=(-\infty,r)$, then $f^{-1}(f)$ and $f=(-\infty,r)$ then $f^{-1}(f)$ and $f=(-\infty,r)$ measure zero (their symmetric difference is a subset of $f=(-\infty,r)$ measure zero (their symmetric difference is a subset of $f=(-\infty,r)$ and hence $f=(-\infty,r)$ for $f=(-\infty,r)$ and $f=(-\infty,r)$ for $f=(-\infty,r)$ and hence $f=(-\infty,r)$ for $f=(-\infty,r)$ then $f=(-\infty,r)$ and hence $f=(-\infty,r)$ for $f=(-\infty,r)$ and hence $f=(-\infty,r)$ for $f=(-\infty,r)$ for $f=(-\infty,r)$ and hence $f=(-\infty,r)$ for $f=(-\infty,r)$ for $f=(-\infty,r)$ for $f=(-\infty,r)$ and hence $f=(-\infty,r)$ for $f=(-\infty,r)$ for $f=(-\infty,r)$ and hence $f=(-\infty,r)$ for $f=(-\infty,r)$ for $f=(-\infty,r)$ and hence $f=(-\infty,r)$ for $f=(-\infty,r)$ for $f=(-\infty,r)$ for $f=(-\infty,r)$ and hence $f=(-\infty,r)$ for $f=(-\infty,r)$

PROPOSITION 10.3. The cone of all finite nonnegative invariant measures on S is a lattice (in its own ordering).

Proof. In order to show that P is a lattice in its own ordering, it suffices to produce a greatest lower bound in P for any two nonnegative invariant measures μ and ν . Let f and g be defined as in Corollary 10.2; we have $f = f \circ T$ and $g = g \circ T$ a.e. $(\mu + \nu)$ for all T in \mathcal{T} , hence $(f \wedge g) \circ T = f \wedge g$ a.e. $(\mu + \nu)$. Since the usual greatest lower bound $\mu \wedge \nu$ for two nonnegative measures is defined by $\mu \wedge \nu = (f \wedge g) (\mu + \nu)$, Lemma 10.1 implies that $\mu \wedge \nu$ is invariant. It follows easily that $\mu \wedge \nu$ is the greatest lower

bound of μ and ν in the ordering induced by P, so P is a lattice.

PROPOSITION 10.4. Suppose that μ is a member of the set X of all invariant probability measures on δ . Then μ is an extreme point of X if and only if μ is ergodic.

Proof. Suppose that μ is an invariant probability measure and that $0 < \mu(A) < 1$ for some A in δ_{μ} . Define $\mu_1(B) = \mu(B \cap A)/\mu(A)$ and $\mu_2(B) = \mu(B \sim A)/[1-\mu(A)]$; then $\mu_1 \neq \mu$, $\mu = \mu(A)\mu_1 + (1-\mu(A))\mu_2$, each μ_i is a probability measure, and moreover, each μ_i is invariant. [This uses the facts that μ is invariant and that $A \Delta T^{-1}A$ has μ measure zero, together with the identity

$$C_1 \cap (C_2 \triangle C_3) = (C_1 \cap C_2) \triangle (C_1 \cap C_3).$$

To prove the converse, suppose $\mu(A)=0$ or $\mu(A)=1$ for each A in δ_{μ} , and suppose $2\mu=\mu_1+\mu_2$, where μ_1,μ_2 are invariant probability measures. It follows easily that $\mu_i=\mu$ on $\delta_{\mu}\supset \delta_{\mu+\mu_i}$, hence $\mu_i=\mu$ on δ , by Corollary 10.2.

In order to apply the above results to obtain a representation theorem, we must define a locally convex topology on P-P under which the convex set X of invariant probability measures is compact. We will use (as does Feldman) the method described by Choquet in [12].

Let S be a compact Hausdorff space, δ the σ -algebra of Baire subsets of S and let $\mathcal T$ be any family of continuous maps T of S into itself. Each T is measurable; indeed,

since T^{-1} carries the collection of compact G_{δ} subsets of Sinto itself. δ is contained in the σ -algebra of all A such that $T^{-1}A \in \mathcal{S}$. The space of all finite signed Baire measures on \mathcal{S} can be identified with the dual space $C(S)^*$ of C(S). We will restrict ourselves to the weak* topology on C(S)*. It is not difficult to show that for each T in \mathcal{I} , the induced map $\mu \rightarrow \mu \circ T^{-1}$ is a continuous linear transformation of $C(S)^*$ into itself which carries the compact convex set K of probability measures into itself. The set X of invariant probability measures is, of course, precisely the set of common fixed points for the family of affine transformations of K into itself induced by \mathcal{I} . Since the induced maps are continuous, X will be closed and therefore compact. We need additional hypotheses to insure that X will be nonempty. The Markov-Kakutani fixed-point theorem shows, for instance, that X will be nonempty if the family ${\mathfrak I}$ (hence the set of induced maps) is commutative under the operation of composition. More generally, X will be nonempty if the semigroup generated by $\mathcal T$ admits a left-invariant mean (Day [16]). Once we know that X is nonempty, then we know that it has extreme points and the existence and uniqueness theorems apply to yield the following result.

THEOREM. If S is a compact Hausdorff space, \mathcal{T} a family of continuous functions from S into S, then to each element μ of the set X of \mathcal{T} -invariant probability Baire measures on S there exists a probability measure m on the Baire subsets of X such that

$$\mu(f) = \int_X f \, dm$$
 for each f in $C(S)$

and m(B) = 0 for each Baire subset B of X which contains no ergodic measures. If the ergodic measures form a Baire subset or G_{δ} subset of X (e.g., if S is metrizable), then the measure m is unique.

If the extreme points of X were closed in X, then one could replace the Choquet-Bishop-de Leeuw theorem by the Krein-Milman theorem in proving the above result. To see that this need not be the case, we reproduce an example due to Choquet [12].

EXAMPLE

Let I=[0,1] and let J be the circle, which we represent as the line R (mod 1). Let ϕ be any continuous nonconstant function from I into R and define T from $S=I\times J$ into itself by $T(x,y)=(x,y+\phi(x))$. Then S is a compact Hausdorff space, T is a homeomorphism of S onto itself, and the extreme points of the set X of T-invariant probability measures on S do not form a closed subset of X. We will sketch a proof of this fact for the special case $\phi(x)=x$. For each $n\geq 1$, let μ_n be the measure which assigns mass n^{-1} to each of the n points $(n^{-1},kn^{-1}), k=0,1,2,\ldots,n-1$. Then μ_n is an extreme point of X and the sequence $\{\mu_n\}$ converges in the weak* topology to Lebesgue measure μ on $\{0\}\times J$. Since $\phi(0)=0$, every probability measure on $\{0\}\times J$ is in X, so μ is certainly not extreme in this set.

There are at least two other definitions of "ergodic measure" in the literature. One of these simply defines the ergodic measures to be the extreme points of the set of invariant probability measures; this, of course, requires further work if one is to relate the notion to its origins. Another definition goes as follows: An invariant probability measure μ is ergodic if $\mu(A) = 0$ or $\mu(A) = 1$ for each A in $\delta_0 = \{A: A = T^{-1}A \text{ for }$ each T in \mathcal{I} }. Since $\delta_0 \subset \delta_\mu$, any measure ergodic in our sense is ergodic in this sense. The two notions clearly coincide if for each A in \mathbb{S}_{μ} there exists B in \mathbb{S}_{0} such that $\mu(A \ \Delta \ B) = 0$. This occurs, for instance, if \Im consists of a single function $\,T\,$ (or equals the semigroup generated by $\,T)\,-\,$ simply let $B = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} T^{-k}A$. More general hypotheses on ${\mathfrak I}$ which guarantee the equivalence of the two notions are given by Farrell [20; Cor. 1, Theorem 3] and Varadarajan [34; Lemma 3.3]. The following simple example, due to Farrell, shows that they are not always the same.

EXAMPLE

Let $S=[0,1]\times[0,1]$, let S be the Baire subsets of S and let $\mathcal{T}=\{T_1,T_2\}$, where $T_1(x_1,x_2)=(x_1,x_1)$, $T_2(x_1,x_2)=(x_2,x_2)$. Then T_1,T_2 are continuous maps of S onto the diagonal D of S, and S_0 consists of S and the empty set. For any subset A of S, $(A \Delta T_i^{-1}A) \cap D$ is empty; it follows that any measure μ with support in D is invariant and $S_{\mu}=S$. (In fact, every invariant measure has support in D.) Thus, every such measure takes only the values S0 and S1 on S3,

but the point masses on D are the only ones which are ergodic in our sense. It is interesting to note that the (noncommutative) semigroup generated by $\mathcal T$ is simply $\mathcal T$ itself.

11. A method for extending the representation theorems: Caps

The representation theorems which we dealt with in earlier sections were for elements of a compact convex set. As noted in Section 9, any such set can be regarded as a base for a closed convex cone, so these results lead in a natural way to representation theorems for the elements of a closed convex cone which admits a compact base. It is natural to wonder whether it is possible to obtain such theorems for a more general class of cones, but there seems to be no completely satisfactory result of this nature. There are, however, two lines of approach, both due to Choquet, which are of interest. One of these involves a more general notion of measure ("conical measure"), which is outlined in [14]. The other approach involves replacing the notion of "base" by that of "cap"; this makes it possible to extend the scope of the representation theorems. This section will be devoted to the latter approach. Throughout the section, we consider only proper cones K, i.e., $K \cap (-K) = \{0\}.$

In using the term "representation theorem" we mean, of course, more than the mere existence of measures which represent points; we require that, in some sense, these measures be supported by the extreme points. In the case of a convex cone, there is at most *one* extreme point, and we must introduce the notion of *extreme ray*.

Definition. A ray ρ of a convex cone K is a set of the form $R^+x = \{\lambda x \colon \lambda \geq 0\}$, where $x \in K$, $x \neq 0$. Since $R^+x = R^+y$ if $y = \lambda x$, $\lambda > 0$, any nonzero element of ρ may be said to generate ρ .

A ray ρ of K is said to be an extreme ray of K if whenever $x \in \rho$ and $x = \lambda y + (1 - \lambda)z$, $(y, z \in K)$, then $y, z \in \rho$. We denote by exr K the union of the extreme rays of K; this set has the following useful descriptions:

Suppose $x \in K$; then $x \in \text{exr } K$ if and only if x = y + z $(y, z \in K)$ implies $y, z \in R^+x$.

Suppose that \leq denotes the partial ordering induced by K on the linear space K-K. An element x of K is in exp K if and only if $y=\lambda x$ (for some $\lambda \geq 0$) whenever $0 \leq y \leq x$.

If K has a base B (so that B is a convex set with $0 \notin B$ and each ray of K intersects B in exactly one point), then ρ is an extreme ray of K if and only if ρ intersects B in an extreme point of B. Thus, $\exp B = B \cap \exp K$.

Definition. If K is a closed convex cone, a nonempty subset C of K is called a cap of K provided C is compact, convex, and $K \sim C$ is convex.

If K has a compact base B, for instance, then for any $r \ge 0$ the set [0, r] $B = \{\lambda x : 0 \le \lambda \le r, x \in B\}$ is a cap of K.

If C is a cap of K such that $K = \bigcup_{n=1}^{\infty} nC$, then C is called a *universal cap* of K. (Thus, if K has a compact base B, then C = [0,1] B is a universal cap of K.) Note that any cap of K necessarily contains 0, and if K_1 is a closed subcone of K and C is a cap of K, then $C \cap K_1$ is a cap of K_1 . The usefulness of this notion comes from the following fact.

PROPOSITION 11.1. If C is a cap of the closed convex cone K and x is an extreme point of C, then x lies on an extreme ray of K.

Proof. Suppose that $x=\frac{1}{2}y+\frac{1}{2}z$, where $y,z\in K\sim R^+x$. Since $K\sim C$ is a convex, at least one of these points, say y, is in C. Since C is compact and $y\neq 0$, $1\leq \lambda_0=\max\{\lambda\colon \lambda y\in C\}<\infty$. If $\lambda>\lambda_0$, then $\lambda y\notin C$ and [letting $z_\lambda=\lambda(2\lambda-1)^{-1}z$] we have $x=\lambda'(\lambda y)+(1-\lambda')z_\lambda$, where $0<\lambda'=(2\lambda)^{-1}<1$. Since $K\sim C$ is convex and $\lambda y\in K\sim C$, we must have $z_\lambda\in C$ for each $\lambda>\lambda_0$. It follows that $z_{\lambda_0}\in C$ and hence $x=\lambda'_0(\lambda_0 y)+(1-\lambda'_0)z_{\lambda_0}$ is not an extreme point of C.

This proof shows that if $y, z \in K$ and $\frac{1}{2}y + \frac{1}{2}z \in C$, then $y, z \in R^+C$. The following useful fact is an immediate consequence of this remark: If C is a cap of the cone K, and if $y, z \in K$, $y + z \in R^+C$, then $y, z \in R^+C$.

The above proposition leads immediately to an extension of the Krein-Milman theorem.

THEOREM (Choquet). Suppose that K is a closed convex cone in a locally convex space and that K is the union of its

caps. Then K is the closed convex hull of its extreme rays.

At this point we could also state an integral representation theorem for the elements of such cones, but we will postpone this until we have given an alternative description of caps—a description which is extremely useful in constructing the examples which will follow.

PROPOSITION 11.2. Suppose that K is a closed convex cone. A subset C of K is a cap of K if and only if C is compact and $C = \{x: x \in K \text{ and } p(x) \leq 1\}$, where p is an extended real valued function on K with the following properties:

- (i) p is lower semicontinuous and $0 \le p \le \infty$;
- (ii) p is additive and positive-homogeneous.

 The cap C is universal if and only if p is finite valued.

homogeneity of p and the definition of a universal cap.

In order to see how to formulate the Choquet-Bishop-de Leeuw theorem for a cone K (in a locally convex space E) which is the union of its caps, let us first see how it is formulated for a cone with a base. Suppose, then, that K has a base B and that $x \in K$, $x \neq 0$. Since any positive multiple of a base is a base, we can assume that $x \in B$. It follows that x is the resultant of a maximal measure μ on B, and this measure is unique if B is a simplex. Now, $B = \{y \colon y \in K \text{ and } f(y) = 1\}$, where f is a continuous linear functional on E. Thus, f is continuous, additive, and positive homogeneous on K, and C = [0,1] $B = \{y \colon y \in K, f(y) \leqq 1\}$ is a cap containing x. If B is metrizable, then μ is supported by the extreme points of B; otherwise, it is supported by ex B in the sense defined in Section 4. An analogous result is valid if K is the union of its caps.

THEOREM. Suppose that K is a closed convex cone which is the union of its caps, and that $x \in K$, $x \neq 0$. Then there exists a cap $C = \{y: y \in K, p(y) \leq 1\}$ such that $x \in C_1 = \{y: y \in K, p(y) = 1\}$. Furthermore, ex $C \sim \{0\} \subset C_1$, and any probability measure μ on C which represents x is supported by C_1 . If μ is a maximal measure, then μ is supported (in an appropriate sense) by the nonzero extreme points of C.

Proof. Since K is the union of its caps, $x \in C = \{y: y \in K, p(y) \le 1\}$ for some appropriate p. If p(x) = 0, then the compact set C would contain the ray R^+x , so we can

assume p(x) > 0. By choosing a positive multiple of p, if necessary, we can assume p(x) = 1. Suppose that $y \in \operatorname{ex} C$, $y \neq 0$. Then $1 \geq p(y) > 0$, and $y = p(y) \lfloor y/p(y) \rfloor + \lfloor 1-p(y) \rfloor \cdot 0$, so p(y) = 1. If $\mu \sim \mathcal{E}_x$ is a probability measure on C, we can apply Lemma 9.7 to conclude that $\mu(p) = p(x) = 1$. Let $A = \{y \colon y \in C, p(y) < 1\}$; since p is lower semicontinuous, this is a Baire set, and if $\mu(A) > 0$, then $1 = \mu(p) = \int p \, d\mu = \int_A p \, d\mu + \int_{C_1} p \, d\mu < \mu(A) + \mu(C_1) = \mu(C) = 1$, a contradiction which shows that $\mu(C_1) = 1$. The assertion concerning maximal measures is immediate.

We now give an example which will show, among other things, that the set C_1 above need not be compact (and hence is not a base).

EXAMPLE

Let K be the convex cone of all nonnegative sequences in the space ℓ_1 of absolutely summable real sequences. Topologize K by the weak topology induced on ℓ_1 as the dual of the space c_0 (of all real sequences which converge to 0). Then K is closed, does not have a compact base, and is not metrizable, but it has a metrizable universal cap.

Indeed, it is clear that K is closed since it is the polar set of the set of nonnegative sequences in c_0 : $K = \{y = \{y_n\}: \sum y_n x_n \ge 0 \text{ whenever } x_n \to 0, x_n \ge 0\}.$ If K had a compact base B, then there would exist a weak* closed

hyperplane H such that $B = H \cap K$. Thus, there would exist

 $z = \{z_n\} \in c_0$ with $(z, x) = \sum z_n x_n > 0$ for every $x \in K$, $x \neq 0$, such that $B = \{x: x \in K \text{ and } (z, x) = 1\}$ is compact. But the first property shows that $z_n > 0$ for all n, and hence $x^{n} = (0, 0, ..., 0, z_{n}^{-1}, 0, 0, ...) \in B$. Since $z_{n} \to 0$, this sequence is unbounded and hence B cannot be compact. To construct a universal cap for K, define p on K by p(x) = $= \sum x_n$. Then $C = \{x: x \in K, p(x) \le 1\}$ is compact (since it is the intersection with K of the weak* compact unit ball of ℓ_1). Since p is positive-homogeneous, $\{x: x \in K, p(x) \leq r\}$ is compact for all r > 0, so p is lower-semicontinuous, and it is clearly additive. Since the unit ball of the dual of a separable normed linear space is always metrizable in the weak* topology, we see that C is metrizable. Finally, suppose K were metrizable. Since ℓ_1 is weak* complete and K is closed, we could conclude that K is of second category in itself. But $K = \bigcup n C$, and C is closed and has empty interior relative to K. (For instance, if $x \in C$, then $x + a_n \in K \sim C$ and is weak* convergent to x, where a_n is the element of ℓ_1 which equals 2 at n and equals 0 elsewhere.)

Later, we will give an example of a cone which does not have a universal cap, but which is nevertheless the union of its caps. It is easy to construct closed cones with no nontrivial caps: Take a cone K generated by a base B, where B is a bounded closed convex set without extreme points. Then K has no extreme rays, hence no caps (other than $\{0\}$).

The following result gives some information concerning uniqueness of maximal measures on caps.

PROPOSITION 11.3. If the cone K is a lattice and if C is a cap of K, then C is a simplex. Conversely, if each point of K is contained in a cap of K which is a simplex, then K is a lattice.

A cap C of a cone K is a simplex if and only if the cone C_0 generated by $C \times \{1\}$ in $E \times R$ is a lattice. If we write $C = \{x: x \in K \text{ and } p(x) \leq 1\}$ (for the appropriate additive functional p), then the cone C_0 may be described as follows: $x_0 = (x, r) \in C_0$ if and only if $x_0 = (0, 0)$ or r > 0and $r^{-1}x_0 = (x/r, 1) \in C \times \{1\}$. This latter assertion means, of course, that $x/r \in C$, i.e., $x \in K$ and $p(x) \leq r$. It follows that $x_0 \ge 0$ if and only if $x \in K$ and $p(x) \le r$. Assume, now, that K is a lattice; we must show that C_0 is a lattice. If $x_0 = (x, r)$, $y_0 = (y, s)$ are in C_0 , let $z = x \wedge y$ in K. Since $x - z \in K$, we have $p(x) = p(x - z) + p(z) \le r$, so $p(z) \leq r - p(x - z)$; similarly, $p(z) \leq s - p(y - z)$. It follows that if q is the minimum of r - p(x - z) and s - p(y - z), then $z_0 = (z, q) \in C_0$, and we need only show that $z_0 = x_0 \wedge y_0$. It is immediate from the definition of q that $p(x-z) \leq r-q$, so $x_0 \ge z_0$; similarly, $y_0 \ge z_0$. It remains to show that if $w_0 = (w, t) \in C_0$, $x_0 \ge w_0$ and $y_0 \ge w_0$, then $z_0 \ge w_0$. The first two inequalities mean that $p(x - w) \le r - t$ and $p(y-w) \leq s-t$. Since p(x-w) = p(x-z) + p(z-w), we conclude that $p(z-w) \leq r - p(x-z) - t$; similarly, $p(z-w) \le s - p(y-z) - t$, and hence $p(z-w) \le q - t$, which is equivalent to $z_0 \ge w_0$.

In order to prove the partial converse, suppose that each

point of K is contained in a cap which is a simplex. It suffices to show that if $x, y \in K$, then $x \land y \in K$. Choose a cap C of K which is a simplex and which contains the element x + y. As noted after the proof of Proposition 11.1, this implies that x and y are in R^+C ; hence p(x) and p(y) are finite. Let $x_0 = (x, p(x))$, $y_0 = (y, p(y))$; then x_0, y_0 are in C_0 , and by hypothesis $x_0 \land y_0$ exists in C_0 . Denote this element by $z_0 = (z, r)$; then $z \in K$, and we will show that $z = x \land y$. Since $z_0 \le x_0$ and $z_0 \le y_0$, we have x - z, $y - z \in K$. It remains to show that if $w \in K$ and x - w, $y - w \in K$, then $z - w \in K$. Since $x = (x - w) + w \in R^+C$, we have x - w and w in R^+C ; similarly, $y - w \in R^+C$. If we let $w_0 = (w, p(w))$, then $x_0 \ge w_0$ and $y_0 \ge w_0$. It follows that $z_0 \ge w_0$ and hence $z - w \in K$, which completes the proof.

The remaining important question concerning caps is the following: Is there a reasonably large class of cones which are unions of their caps? This question has led Choquet [14] to investigate, in considerable depth and detail, the class of weakly complete cones. We restrict ourselves here to proving two results which exhibit two major classes of "well-capped" cones.

PROPOSITION 11.4. Suppose that $K_n \subset E_n$ is a sequence of convex cones, each of which is the union of its caps. Then the same is true of any closed subcone of the product $K = \prod K_n \subset E = \prod E_n$. (In particular, any closed subcone of the countable product of R^+ with itself is the union of its caps.)

Proof. Since the intersection of a cap with a closed sub-

cone of K is a cap of the subcone, we need only show that Kis the union of its caps. For this, it suffices to show that if C_n is a cap of K_n , n = 1, 2, 3, ..., then there exists a cap Cof K with $\Pi C_n \subset C$. For each n there exists a lower semicontinuous, additive, positive-homogeneous nonnegative functional p_n on K_n such that $C_n = \{x_n : x_n \in K_n, p_n(x_n) \le 1\}$. Define p on K by $p(x) = \sum 2^{-n} p_n(x_n)$. It is easily verified that p is also an extended real-valued nonnegative function which is additive and positive homogeneous. If ϕ_n is the projection of E onto E_n , then p is the increasing limit of the lower semicontinuous functions $\sum_{n=1}^{N} 2^{-n} p_n \circ \phi_n$, hence is lower semicontinuous. Thus, if $C = \{x: x \in K, p(x) \leq 1\}$, then C is closed in E. Furthermore, if $x \in C$, then $p_n(x_n) \leq 2^n$ for each n, so $C \subset \Pi 2^n C_n$, which is compact. Finally, if $x \in \prod C_n$, then $p_n(x_n) \le 1$ for each n, hence $p(x) \le 1$ so $x \in C$ and the proof is complete.

If Y is a locally compact Hausdorff space, $C_{\infty}(Y)$ denotes the space (no topology) of all continuous real-valued functions on Y which have compact support. The space M(Y) of all signed measures on Y which are finite on compact sets is in duality (in the obvious way) with $C_{\infty}(Y)$; we will consider M(Y) in the weak topology induced by $C_{\infty}(Y)$. The following result was shown to us by Y. A. Meyer.

PROPOSITION 11.5. Suppose that Y is a locally compact, σ -compact Hausdorff space and that K is a weakly closed sub-

cone of the cone of all nonnegative measures in M(Y). Then K is the union of its caps.

Since Y is a countable union of compact sets, we can write $Y = \bigcup Y_n$, where Y_n is compact and $Y_n \subset \operatorname{int} Y_{n+1}$ for each n. Choose f_n in $C_{\infty}(Y)$ such that $0 \le f_n \le 1$, $f_n = 1$ on Y_n , $f_n = 0$ on $Y \sim \text{int } Y_{n+1}$. Suppose now, that $\mu_0 \in K$, $\mu_0 \neq 0$; we will construct a cap C which contains μ_0 . Choose a sequence $\{a_n\}$ such that $a_n > 0$ and $\sum a_n \mu_0(f_n) = 1$. Since the sequence of nonnegative numbers $\{\mu_0(f_n)\}\$ is nondecreasing (and eventually positive), the series $\sum a_n$ is convergent. For μ in K, let $p(\mu) = \sum a_n \mu(f_n)$. As a function on K, p is nonnegative, additive and positivehomogeneous. Let $C = \{\mu : \mu \in K \text{ and } p(\mu) \leq 1\}$. We will show that C is weakly compact and that p is lower semicontinuous; this will prove that C is a cap. To this end, define $g_n = \sum_{k=1}^n a_k f_k$ and let $f = \sum a_n f_n = \lim g_n$. The function fis strictly positive and it is continuous, since on int Y_{n+1} , $f = g_n + \sum_{k=n+1}^{\infty} a_k$. Furthermore, if $g \in C_{\infty}(Y)$, then g = 0in $Y \sim \text{int } Y_{n+1}$ for some n, so there exists a number b(g) > 0 such that $|g| \le b(g)f$. If $\mu \in K$, then (since $g_n \nearrow f$) $\mu(f) = \lim \mu(g_n) = \lim \sum_{k=1}^n a_k \mu(f_k) = p(\mu)$. Thus, if $\mu \in C$, then for any g in $C_{\infty}(Y)$ we have $\pm \mu(g) \leq b(g) \mu(f) \leq b(g)$. It follows that $C \subset P = \prod\{[-b(g), b(g)]: g \in C_{\infty}(Y)\};$ since P is compact in the product topology (which coincides with the weak topology on C) it suffices to show that C is closed in P. It is immediate that any element in the pointwise closure of C is a

nonnegative linear functional on $C_{\infty}(Y)$, and hence is a measure. Thus, we need only show that C is closed in K. This follows from the fact that p is the increasing limit of the continuous functions on K defined by $\mu \to \mu(g_n)$ and hence is lower semi-continuous.

We now exhibit an example of a cone which is the union of its caps, but does not have a universal cap.

EXAMPLE

Let s be the space of all real sequences in the product topology and let $E = s^*$ be the dual space of s. As is well known, $\,E\,$ can be considered to be the space of all finitely nonzero sequences, with the correspondence defined by $(a,x) = \sum a_n x_n$, $a \in s$, $x \in E$. Topologize E by the weak* topology defined by s and let K be the closed convex cone of all nonnegative elements of E. If $x \in K$, we can define a cap C containing x as follows: Let $I = \{k: x_k = 0\}$, $J = \{k: x_k > 0\}$, and suppose that J has n elements. Let Cbe those y in K such that $y_k = 0$ for k in I and $\sum_{k \in J} y_k x_k^{-1} \leq n$. It is straightforward to verify that C is convex, $K \sim C$ is convex and $x \in C$. Furthermore, C is a subset of the finite dimensional subspace of E consisting of all ysuch that y = 0 on I. If $y \in C$, then $0 \le y_k \le n x_k$ for $k \in J$; it follows that C is bounded (and closed) hence compact.

To see that K does not have a universal cap, suppose that

 $C=\{x\colon x\in K,\, p\,(x)\leqq 1\}$ were such an object, for a suitable function p. Denote by δ_n the sequence which is 0 except in the n-th place, where it is 1. Since C is universal, $p(\delta_n)<\infty$, and since C is compact, $p(\delta_n)>0$. Let $a=\{np\,(\delta_n)\}\in s$ and $x^n=p\,(\delta_n)^{-1}\,\delta_n\in C$; then $(a,x^n)=n$, so C is not weak* compact, a contradiction.

We conclude this section with a result which gives topological criterion for a cone to have a compact base.

PROPOSITION 11.6. Suppose that K is a closed convex cone in a locally convex space E such that $K \cap (-K) = \{0\}$. Then K has a compact base if and only if K is locally compact.

Proof. If K has a compact base B, then $B = K \cap \{x \colon f(x) = 1\}$ for some f in E^* such that f(x) > 0 for $x \neq 0$ in K. The sets [0,n] $B = K \cap \{x \colon f(x) \leq n\}$, $n = 1, 2, 3, \ldots$ are compact, have nonempty interior (relative to K), and their union is K; it follows that K is locally compact. On the other hand, suppose that K is locally compact. Then there exists a convex neighborhood U of 0 such that $U \cap K$ is compact. Let F be the intersection of K with the boundary of U and let U be the closed convex hull of U. Since $U \cap K$ is compact (and convex), the same is true of U. By Milman's theorem (see Section 1), the extreme points of U are contained in U; since $U \cap K$ and $U \cap K$ and $U \cap K$ is conclude that $U \cap K$ is compact (see Section 1), the extreme points of U are contained in U; since $U \cap K$ and $U \cap K$ is conclude that $U \cap K$ is

 $2b = \inf f(J) > 0$. It follows that $B = f^{-1}(b) \cap K$ is a base for K and is compact, since it is contained in [0, 1]J.

12. A different method for extending the representation theorems

When we say that a probability measure μ on a compact convex set X "represents" a point x of X, we mean, of course, that $\mu(f) = f(x)$ for each continuous affine function f on X. One way of extending the representation theorems would be to show that this latter equality holds for a larger class of of functions. For instance, Proposition 9.7 showed that it holds for upper semicontinuous (or lower semicontinuous) affine functions. In this section we will show that it holds for the affine functions of first Baire class, i.e., those affine functions which are the pointwise limit of a sequence of continuous (but not necessarily affine) functions on X.

THEOREM (Choquet [13]). If X is a compact convex subset of a locally convex space E and if μ is a probability measure on X with resultant x, then $\mu(f) = f(x)$ for each affine function f of first Baire class on X.

The proof which follows uses a weaker property than that stated in the hypotheses, namely, we need only assume the following:

(1) The function f is affine, Borel measurable, and the

restriction of f to any compact subset of X has at least one point of continuity.

If f is the limit of a sequence of continuous functions, it is certainly Borel measurable, and its restriction to any compact subset of X is again of first Baire class. A classical consequence of the Baire category theorem asserts that a function of first Baire class has a dense set of points of continuity, so (1) follows from the original hypotheses on f. In order to know that f is integrable with respect to μ , it suffices to prove that if a function f satisfies (1), then it is bounded. Let f be a point of continuity of f, and suppose that f is not bounded. Since f is compact, we can find a net f and a point f in f such that f is unbounded. Choose an open neighborhood f of f such that f is bounded on f and choose f of f such that f is bounded on f and choose f of f such that f is bounded on f and choose f of f such that f is bounded on f and choose f of f such that f is bounded on f and choose f of f such that f is bounded on f and choose f of f such that f is bounded on f and choose f of f such that f is bounded on f and choose f of f such that f is bounded on f and choose f of f such that f is bounded on f and choose f of f such that f is bounded on f and choose f of f such that f is bounded on f and choose f of f such that f is bounded on f and choose f of f such that f is bounded on f and choose f of f such that f is bounded on f and choose f of f such that f is bounded on f and choose f of f such that f is a bounded on f and choose f is a contradiction.

We next introduce some notation for the oscillation of f: If $A \subset X$, let $Of(A) = \sup f(A) - \inf f(A)$, and for x in X, let $O_x f = \inf \{Of(U) \colon U \text{ open, } x \in U\}$.

LEMMA 12.1. If μ is a nonnegative measure on X and $\epsilon>0$, then there exists a sequence $\{\lambda_n\}$ of nonnegative measures on X, supported by pairwise disjoint subsets S_n of X, such that $\mu=\sum \lambda_n$ and $Of(K_n)<\epsilon$ for each n, where K_n is the closed convex hull of S_n .

Proof. We will show that if ν is any nonnegative measure

on X, then there is a Borel set B of positive ν measure such that $Of(K) < \varepsilon$, where K is the closed convex hull of B. Assume, for the moment, that this had been done, and let Z be the collection of all sets M of nonnegative measures on X with the following three properties: (i) Each λ in M is the restriction of μ to a Borel subset S_{λ} of positive μ measure. (ii) If K_{λ} is the closed convex hull of S_{λ} , then $Of(K_{\lambda}) < \varepsilon$. (iii) If $\lambda, \lambda' \in M$ and $\lambda \neq \lambda'$, then $S_{\lambda}, S_{\lambda'}$ are disjoint.

The collection $\,Z\,$ is nonempty-simply take $\,
u\,$ (above) to be μ and let $M = {\lambda}$, where λ is the restriction of μ to Band $S_{\lambda} = B$. If we partially order Z by inclusion, then it is easily verified that Z is an "inductive" partially ordered set, so Zorn's lemma is applicable and there necessarily exists a maximal element M_0 in Z. Since the sets S_{λ} ($\lambda \in M_0$) are pairwise disjoint and of positive $\,\mu\,$ measure, the set $\,M_{\,0}\,$ is countable; say $M_0 = \{\lambda_n\}$. It follows from the Lebesgue dominated convergence theorem, say, that the series $\sum \lambda_n$ converges to the restriction λ of μ to $\bigcup S_n$, where $S_n = S_{\lambda_n}$. If $\mu \neq \lambda = \sum \lambda_n$, then we can apply the "induction step" (above) to $\nu = \mu - \lambda$, obtaining a Borel set B of positive ν measure (hence of positive μ measure) such that $Of(K) < \varepsilon$, where Kis the closed convex hull of B. Since we can certainly assume that B is disjoint from $\cup S_n$, we are led to a contradiction of the maximality of M_0 .

It remains, then, to prove the induction step. Given ν , f and $\varepsilon>0$, let S be the closed support of ν (i.e., the complement of the union of all open sets of ν measure zero) and

let I be the closed convex hull of S. Denote the restriction of f to I by g, and let $Y = \{x : x \in J, O_x g \ge \varepsilon\}$. The set Y is closed (for any real valued function g) and from the fact that g is affine it follows that Y is convex. Since g has at least one point of continuity in J, the set $J \sim Y$ is nonempty. If $S \subset Y$, then we would have $J \subset Y$; consequently, $S \sim Y$ is nonempty. From the definition of S it follows that any neighborhood of any point of $S \sim Y$ has positive measure. Since Y is closed and E is locally convex, we can choose a closed convex neighborhood of some point of $S \sim Y$ which misses Y. and hence there exists a compact convex subset V of $J \sim Y$ of positive ν measure; clearly, $O_x g < \varepsilon$ for x in V. Now, since f is bounded, the function g is bounded and hence we can write V as a finite union of convex sets V_k for which $Og(V_k) < \varepsilon$. (For instance, finitely many sets of the form $\{x: x \in V, (n-1)\varepsilon \le 2g(x) < n\varepsilon\}, n \text{ an integer, will cover } V.$ At least one of these sets $\,V_{\,k}\,$ has positive $\,
u\,$ measure, and by regularity it must contain a compact set $\,J_{0}\,$ of positive $\,
u\,$ measure. Let K be the closed convex hull of J_0 ; clearly $K \subset V$, so $O_x g < \varepsilon$ for x in K. In fact, to complete the proof we need only show that $3\varepsilon \ge Og(K)$ [= Of(K)]. Let J_1 be the convex hull of J_0 ; then $J_1 \subset V_k$, so $Og(J_1) < \epsilon$. If x, y are in K(i.e., in the closure of J_1), then there exist neighborhoods (in J) U_x , U_y of x, y, respectively, for which $Og(U_x) < \varepsilon$, $Og(U_v) < \varepsilon$. It follows from the triangle inequality that $|g(x) - g(y)| < 3\varepsilon$, and the proof of the lemma is complete.

We now finish the proof of the theorem. Suppose that

 $\mu \sim \mathcal{E}_x$, that f satisfies (1), and that $\epsilon > 0$. By the lemma, we can choose measures $\mu_1, \mu_2, \ldots, \mu_n$ and λ with disjoint supports such that $\|\lambda\| < \epsilon$, $\mu = \sum \mu_k + \lambda$, and the support of μ_k is contained in a compact convex set K_k for which (Of) $(K_k) < \epsilon$. Let $\lambda_k = \mu_k / \|\mu_k\|$ and let x_k be the resultant of λ_k . It follows that $x_k \in K_k$ and hence $f(x_k) - \epsilon \leq \lambda_k (f) \leq \epsilon \leq f(x_k) + \epsilon$ for each k. Thus, $|\mu_k(f) - \|\mu_k\| |f(x_k)| \leq \epsilon \|\mu_k\|$ for each k. Let k0 be the resultant of k1 considering the formula of k2 considering the formula of k3 considering the formula of k4 considering the formula of k5 considering the formula of k6 considering the

$$\begin{aligned} |\mu(f) - f(x)| &= |\sum [\mu_{k}(f) - ||\mu_{k}|| \ f(x_{k})] + \lambda(f) - ||\lambda|| \ f(y)| \leq \\ &\leq \varepsilon \sum ||\mu_{k}|| + |\lambda(f) - ||\lambda|| \ f(y)| \leq \\ &\leq \varepsilon + 2 ||\lambda|| \ \sup |f| < \varepsilon \ (1 + 2 \ \sup |f|). \end{aligned}$$

Since this holds for each $\varepsilon > 0$, $\mu(f) = f(x)$.

Choquet [13] has given an example which shows that the above theorem fails for an affine function of second Baire class (i.e., the pointwise limit of a sequence of functions of first Baire class). We will describe the example, but omit the proof that the function is of second Baire class.

EXAMPLE

Let X be the compact convex set of all probability Borel measures μ on [0,1]. Each measure μ in X admits the

Lebesgue decomposition into its absolutely continuous and singular parts (with respect to Lebesgue measure), and we let $f(\mu)$ be the norm of the singular part of μ . It is easily checked that f is a bounded affine function on X. If μ is an extreme point of X, then μ is a point mass and $f(\mu) = 1$; consequently, f = 1 on the image in X of [0,1]. Let λ be Lebesgue measure on [0,1]; then $f(\lambda) = 0$. On the other hand, λ can be carried to a measure ν on X; then ν is supported by the extreme points of X and its resultant in X is λ . But $\nu(f) = 1 \neq f(\lambda)$.

13. Orderings and dilations of measures

If X is a compact convex subset of a locally convex space E, and if μ , λ are nonnegative measures on X, we have defined $\mu > \lambda$ to mean that $\mu(f) \geq \lambda(f)$ for each continuous convex function f on X. For finite dimensional spaces E, this ordering has long been of interest in statistics; it is used to define "comparison of experiments." A characterization in terms of dilations (defined below) has been given by Hardy, Littlewood, and Polya for one dimensional spaces, and by Blackwell [7], C. Stein, and S. Sherman for finite dimensional spaces. The general case has been proved by P. Cartier [10], based in part on the work of Fell and Meyer; this is the proof we present below. An entirely different approach has been carried out by Strassen [33].

There is another ordering, denoted by $\mu >> \lambda$, which was introduced by Loomis [28] in the course of his proof of the Choquet-Meyer uniqueness theorem, and which is of interest in connection with the theory of group representations. The second main result of this section is the proof that $\mu >> \lambda$ if and only if $\mu > \lambda$.

We will let P_1 denote the set of all regular Borel probability measures on X. A mapping $x \to T_x$ from X into P_1 .

is called a dilation if

- (1) The measure T_x represents x, for each x in X.
- (2) For each f in C(X), the real valued function $X \to T_X(f)$ is Borel measurable.

There is a natural extension of T to a map from P_1 into P_1 , defined as follows: If $\lambda \in P_1$, let $T\lambda$ be the measure obtained (via the Riesz theorem) from the bounded linear functional defined by

(*)
$$(T\lambda) (f) = \int_X T_x(f) d\lambda(x), \qquad f \in C(X).$$

Since $T_y \sim \mathcal{E}_y$ for all y, taking $\lambda = \mathcal{E}_x$ in (*) shows that $T(\mathcal{E}_x) = T_x$, so that (modulo the homeomorphism $x \to \mathcal{E}_x$) this is a genuine extension; it, too, is called a dilation. We can picture the measure T_x as "spreading out" or "dilating" the unit mass at x. Condition (2) says that this should be done in a reasonable way as we change from one point to another, and (*) says that $T\lambda$ is the measure obtained by taking the λ -average of these individual dilations. It is not surprising, then, that $T\lambda$ should have its support "closer" to the extreme points of X than does λ :

If
$$\mu = T \lambda$$
, then $\mu > \lambda$.

Indeed, suppose that f is a continuous convex function X. Since $T_x \sim \mathcal{E}_x$, we have $T_x > \mathcal{E}_x$, so that $T_x(f) \geq f(x)$ for all x. It is immediate from (*) that $\mu(f) = (T\lambda)(f) \geq \int f d\lambda = \lambda(f)$. The main result of this section is the converse assertion, under the hypothesis that X be metrizable. THEOREM (Hardy-Littlewood-Polya-Blackwell-Stein-Sherman-Cartier). Suppose that X is a compact metrizable convex subset of a locally convex space and that μ and λ are regular Borel probability measures on X. Then $\mu > \lambda$ if and only if there exists a dilation T such that $\mu = T\lambda$.

The proof of this theorem depends on a general result of Cartier (which does not use metrizability), together with a classical result on the disintegration of measures.

With X as above, we consider the space $F = C(X)^* \times C(X)^*$, using the product of the weak* topology with itself. Thus, F is a locally convex space, and every continuous linear functional L on F is of the form

$$L(\alpha, \beta) = \alpha(f) - \beta(g), \quad (\alpha, \beta) \in F$$

for some pair of functions f,g in C(X). Throughout this section we will be interested in two particular subsets J and K of F, defined as follows:

$$K = \{ (\lambda, \mu) : \lambda \ge 0, \ \mu \ge 0 \text{ and } \mu > \lambda \},$$

$$J = \{ (\varepsilon_x, \nu) : x \in X, \ \nu \sim \varepsilon_x \}.$$

It is easily verified that K is a closed convex cone in F. Since $\nu \sim \mathcal{E}_x$ implies $\nu > \mathcal{E}_x$, we see that $J \subset K$; furthermore, J is compact (since the map $\nu \to$ (resultant of ν) is continuous from P_1 into X, and J is homeomorphic to its graph). Since a convex combination of point masses is not a point mass the set J is not convex. Its closed convex hull, B, however, is a compact base for K. Indeed, J is a subset of the intersec-

The following proposition is now an immediate consequence of Proposition 1.2.

PROPOSITION 13.1 (Cartier). An element (λ, μ) of F is in K if and only if there exists a nonnegative measure on J which represents (λ, μ) .

We now return to the proof of the theorem itself. Assume, then, that X is metrizable and that $\mu > \lambda$. By the above proposition, there exists a nonnegative measure m' on J such that $\int_J L \ dm' = L(\lambda, \mu)$ for each L in F^* . This means that for each (f,g) in $C(X) \times C(X)$,

$$\lambda(f) - \mu(g) = \int_{I} [f(x) - \nu(g)] dm'(\varepsilon_x, \nu).$$

Let $S = \{(x, \nu): x \in X, \nu \in P_1, \nu \sim \mathcal{E}_x\}$. Since the function $(\mathcal{E}_x, \nu) \to (x, \nu)$ from J onto S is a homeomorphism, we can carry m' to a measure m on S. By alternately choosing g = 0, f = 0 in the above equation, we see that for all f, g in C(X),

(a)
$$\lambda(f) = \int_{S} f(x) dm(x, \nu),$$

(b)
$$\mu(g) = \int_{S} \nu(g) \ dm \ (x, \nu).$$

Equation (a) shows that m is a probability measure on S which is carried onto λ under the natural projection of $X \times P_1$ onto X.

We now state a special case of the theorem on disintegration of measures [9, p. 58].

Suppose that Y and X are compact metrizable spaces, that ϕ is a continuous function from Y onto X, and that m is a nonnegative measure on Y. Let $\lambda = m \circ \phi^{-1}$ denote the image of m under the function ϕ . Then there exists a function $x \to \lambda_x$ from X into the probability measures on Y, with the following properties:

- (i) For each h in C(Y), the function $x \to \lambda_x(h)$ is Borel measurable.
- (ii) For each x in X, the support of λ_x is contained in $\phi^{-1}(x)$.
 - (iii) For each h in C(Y), $m(h) = \int_X \lambda_x(h) d\lambda(x)$.

We apply this result as follows: Let $Y = S \subset X \times P_1$, let ϕ be the natural projection of S onto X, and let m and λ be the measures introduced previously. Then, as we have noted,

(a) implies that $\lambda = m \circ \phi^{-1}$, so there exists $x \to \lambda_x$ from X into the probability measures on S, satisfying the above three properties. We let T_x be the resultant in P_1 of the image of λ_x under the natural projection of S onto P_1 . It remains to prove that T_x satisfies the properties (1) and (2) which define dilations, and that $\mu = T\lambda$. The fact that T_x is the resultant in P_1 of the image of λ_x means that for each f in C(X),

(**)
$$T_x(f) = \int_{S} \nu(f) \, d\lambda_x(y, \nu).$$

Since (y, ν) in S implies $\nu \sim \varepsilon_y$, we see that for continuous affine functions f, this becomes

$$T_x(f) = \int_S f(y) d\lambda_x (y, \nu).$$

We know that λ_x is supported by $\phi^{-1}(x) = \{(x, \nu) : \nu \sim \mathcal{E}_x\}$, and hence $T_x(f) = f(x)$, i.e., T_x represents x. Property (2) of dilations follows from (**) and property (i). Finally, to show that $\mu = T\lambda$, we must verify that for g in C(X),

$$\mu(g) = (T\lambda)(g) = \int_{Y} T_{x}(g) d\lambda(x).$$

By (**), $T_x(g) = \int_S \nu(g) d\lambda_x(y, \nu)$. Since $h(y, \nu) = \nu(g)$ defines a function h in C(S), (iii) implies that

$$\int_{S} \nu(g) dm(y, \nu) = \int_{X} (\int_{S} \nu(g) d\lambda_{x}(y, \nu)) d\lambda(x) =$$

$$= \int_{X} T_{x}(g) d\lambda(x).$$

From (b), we see that the left side equals $\mu(g)$, and the proof is complete.

We next define the ordering $\mu >> \lambda$ of Loomis [28]. (Actu-

ally, Loomis considers several orderings; the present one is his "strong" ordering.)

Definition. If μ is a nonnegative measure on X, a subdivision of μ is a finite set $\{\mu_i\}$ of nonnegative measures on X such that $\mu = \sum \mu_i$. We say that $\mu >> \lambda$ if for each subdivision $\{\lambda_i\}$ of λ there exists a subdivision $\{\mu_i\}$ of μ such that $\mu_i \sim \lambda_i$ for each i. (For other descriptions of this ordering and its relation to group representations, see [29] and [28].)

In the following theorem, X and J are the same as in Proposition 13.1 of Cartier. Note that X is not assumed to be metrizable.

THEOREM (Cartier-Fell-Meyer [10]). If λ and μ are nonnegative measures on X, then the following assertions are equivalent:

- (a) $\mu > \lambda$.
- (b) There exists a nonnegative measure m on J which represents (λ, μ) .
- (c) $\mu \gg \lambda$.

Proof. Proposition 13.1 shows that (a) implies (b). Suppose that (b) holds, and let $\{\lambda_i\}$ be any subdivision of λ . By means of the Radon-Nikodym theorem we can choose nonnegative Borel measurable functions $\{f_i\}$ on X such that $\lambda_i = f_i \lambda$ and $\sum f_i = 1$. Define Borel functions $\{g_i\}$ on J by $g_i (\mathcal{E}_x, \nu) = f_i(x)$ for each (\mathcal{E}_x, ν) in J, and let $m_i = g_i m$. By Proposition 13.1 again, each measure m_i has a resultant (ν_i, μ_i) in

the cone K. If we use the definition of this assertion (and if we carry the measure m to the set S defined after Proposition 13.1) we see that

$$\nu_i(f) = \int_{S} f(x) f_i(x) dm(x, \nu), \text{ for } f \text{ in } C(X).$$

Similarly, since m represents (λ, μ) , we deduce that

$$\lambda(f) = \int_{S} f(x) dm(x, \nu)$$
, for f in $C(X)$.

As we noted earlier, this means that $\lambda = m \circ \pi^{-1}$, where π is the natural projection of $S \subset X \times P_1$ onto X. Since the f_i are bounded Borel functions, it follows that $\lambda(ff_i) = (m \circ \pi^{-1})(ff_i)$ for each f in C(X), $i = 1, 2, \ldots, n$. Now, for each f in C(X) and each i, we have

 $\int_{S} (ff_{i} \circ \pi)(x, \nu) \ dm(x, \nu) = \int_{X} (ff_{i})(x) \ d(m \circ \pi^{-1})(x),$ so that $\nu_{i}(f) = \int_{S} ff_{i} \ dm = \lambda(ff_{i}) = \lambda_{i}(f),$ i.e., $\nu_{i} = \lambda_{i}.$ But $(\lambda_{i}, \mu_{i}) \in K$ implies $\mu_{i} \sim \lambda_{i}$, and $m = \sum m_{i}$ implies $\mu = \sum \mu_{i}$, so $\mu >> \lambda$.

It remains to show that (c) implies (a). Suppose, then, that $\mu >> \lambda$ and that f is a continuous convex function on X; we want to show that $\mu(f) \ge \lambda(f)$.

Given $\varepsilon > 0$, we can carry out the same construction as was used in the proof of Lemma 9.6 to write X as a disjoint union of Borel sets V_1, V_2, \ldots, V_n such that the restriction λ_i of λ to V_i is nonzero and, letting x_i be the resultant in X of $\lambda_i/\lambda_i(X), |f(x)-f(x_i)|<\varepsilon$ for each x in V_i . Thus, $\lambda=\Sigma\lambda_i$, and therefore we can choose measures μ_i such that $\mu=\Sigma\mu_i$ and $\mu_i\sim\lambda_i$. The latter implies that $\mu_i(X)=\lambda_i(X)=\lambda_i(V_i)$ and

that x_i is the resultant of $\mu_i/\mu_i(X)$. Since f is convex, $\mu_i(f)/\mu_i(X) \geq f(x_i)$, and consequently $\mu(f) = \sum \mu_i(f) \geq \sum \lambda_i(V_i) f(x_i)$. On the other hand, $f \leq f(x_i) + \epsilon$ on V_i , so that $\lambda_i(f) \leq \lambda(V_i) [f(x_i) + \epsilon]$, and hence

$$\lambda(f) = \sum \lambda_i(f) \leq \sum \lambda_i(V_i) \ f(x_i) + \varepsilon \lambda(X) \leq \mu(f) + \varepsilon \lambda(X).$$

Since this is true for any $\varepsilon > 0$, we conclude that $\mu > \lambda$, and the proof is complete.

We conclude this section with an interesting proposition concerning dilations and maximal measures.

PROPOSITION 13.2 (Meyer [29]). Suppose that X is metrizable, that λ is a nonnegative measure on X, and that μ is a maximal measure, with $\mu > \lambda$. Let T be a dilation such that $T\lambda = \mu$. Then T_x is maximal, almost everywhere (λ) .

Proof. Recall from Proposition 9.3 that a measure μ is maximal if and only if $\mu(f) = \mu(\overline{f})$ for every f in C(X). Let $\{f_n\}$ be a countable dense subset of C(X); then for each n, $0 = \mu(\overline{f_n} - f_n) = \int_X T_x(\overline{f_n} - f_n) \, d\lambda(x)$. Now, $\overline{f_n} - f_n \geq 0$, so we have $T_x(\overline{f_n} - f_n) = 0$ a.e. λ , for each n. It follows that for all n, $T_x(f_n) = T_x(f_n)$ a.e. λ . Since (Section 3) the map $f \to \overline{f}$ is uniformly continuous, we conclude that for almost all x, $T_x(f) = T_x(\overline{f})$ for each f in C(X), and hence T_x is maximal a.e. λ .

14. Suggestions for further reading

Much of the material in these notes (other than the applications) is contained in the outline presented by Choquet [14] at the 1962 International Congress of Mathematicians, and the paper [15] by Choquet and Meyer gives an elegant and very concise treatment of the main parts of the theory. Bauer's lecture notes [4] contain a detailed development which starts from the very beginning, using (as do Choquet and Meyer) his "potential theoretic" approach to the existence of extreme points via semicontinuous functions on a compact space [1]. Finally, Chapter XI of Meyer's book [29] covers a great deal of ground. He shows, among other things, that the entire subject of maximal measures may be viewed as a special case of an abstract "theory of balayage."

The rest of this section will be devoted to brief descriptions of related topics which have been omitted from the body of these notes.

POTENTIAL THEORY

Integral representation theorems play an important role in potential theory, and the Choquet theorem is of considerable

Unfortunately, its use in this regard is so deeply imbedded in the subject that it would require far more time and space than we are willing to spend in order to give an exposition which is even moderately self-contained. What we can do is sketch some facts concerning harmonic functions and show how one of the classical integral representation theorems may be viewed as an instance of the Choquet theorem. Further facts along these lines and a succinct account of the Martin boundary appear in Bauer's notes [4]. For connections with axiomatic potential theory, the reader should see the various papers on the subject which have appeared in recent years in *Annales de l'Institut Fourier (Grenoble*).

Let Ω be a bounded, connected, open subset of Euclidean n-space $(n \ge 2)$ and let H be the set of all functions $h \ge 0$ which are harmonic in Ω . Let E = H - H be the linear space generated by H, with the topology of uniform convergence on compact subsets of Ω . Then E is metrizable and H is a closed convex cone which induces a lattice ordering on E. Let x_0 be any point in Ω ; then $X = \{h: h \in H, h(x_0) = 1\}$ is a metrizable compact convex base for the cone H. By Choquet's existence and uniqueness theorems, then, to each u in H there exists a unique nonnegative measure μ on the extreme points h of X such that

$$u(x) = \int h(x) d\mu (h) \qquad (x \in \Omega).$$

In view of the characterization (Section 11) of extreme elements

of a cone, we see that h lies on an extreme ray of H if and only if $0 \le u \le h$, u harmonic, implies $u = \lambda h$ for some $\lambda \ge 0$. Because of this property, the extreme nonnegative harmonic functions are usually referred to as *minimal* harmonic functions.

In order for the above representation theorem to have any significance, of course, one must give a reasonably concrete description of the minimal harmonic functions. For instance, if Ω is the open ball of radius r>0 and center at the origin, and if $x_0=0$, then the extreme points come from the Poisson kernel; i.e., a function h in X is extreme if and only if $h=P_y$ for some y with $\|y\|=r$, where

$$P_{y}(x) = r^{n-2} \frac{r^{2} - \|x\|^{2}}{\|x - y\|^{n}}$$
 ($\|x\| < r$).

It is easily seen that the map $y \to P_y$ is a homeomorphism from the boundary of the sphere onto ex X, so that the latter is compact (and hence we could have used the Krein-Milman theorem theorem for the existence portion of above integral representation theorem). The final result, obtained by carrying μ to a measure on the boundary of the sphere, is Herglotz's theorem: If $u \in X$, there exists a unique probability measure μ on $\{y\colon \|y\|=r\}$ such that

(*)
$$u(x) = \int P_y(x) d\mu(y) \qquad (||x|| < r).$$

The above sketch apparently shows that the Herglotz theorem can be obtained as an application of the Krein-Milman theorem. The only proof we know, however, that ex X equals the set Y

of functions P_y uses the Herglotz theorem. [If (*) holds, then by Milman's theorem, ex X is contained in the closure of Y, and Y is closed. Since rotation of the sphere induces a one-to-one affine map of X onto itself, if one P_y is extreme, they all are. Since ex X is nonempty, we conclude that ex X = Y.] It would be interesting to have a proof that ex $X \subset Y$, which is as simple and elementary, say, as the proof of the corresponding result for Bernstein's theorem.

POSITIVE DEFINITE FUNCTIONS AND BOCHNER'S THEOREM

A complex valued function f on an Abelian group G is said to be positive definite if

$$\sum_{i,j=1}^{n} \lambda_i \lambda_j f(t_i - t_j) \ge 0$$

whenever t_1, \ldots, t_n are elements of G and $\lambda_1, \ldots, \lambda_n$ are complex numbers. It is easily seen that if f is positive definite, then f(0) is real and $|f(t)| \leq f(0)$ for all t in G. If a function f is a character of G (i.e., a homomorphism of G into the group of all complex numbers of modulus 1), then f is positive definite. Suppose that G is locally compact and let P be the cone of all continuous positive definite functions on G. Then P can be considered as a subset of the set K of those f in $L^{\infty}(G)$ which satisfy

$$\iint g(s+t) \overline{g(s)} f(t) ds dt \ge 0 (g \in L^1(G)).$$

In the weak* topology, K is closed and has a universal cap, consisting of those f in K with $\|f\| \le 1$. The nonzero extreme points of this cap are the (essentially) continuous characters X of G, and it follows that every continuous positive definite function f on G has the form

$$f(t) = \int X(t) d\mu(X)$$

for a nonnegative finite measure μ on the characters. This is a generalization of a classical theorem of Bochner (where G is the real line and each character is of the form $t \to e^{ixt}$ for some real x). Since the extreme points form a closed set, it can actually be proved by the Krein-Milman theorem. It is also possible to use the Stone-Weierstrass theorem to show that μ is uniquely determined by f.

This result has a close connection with group representations, since each continuous positive definite function on G defines, in a canonical way, a continuous unitary representation of G, and the characters correspond to the irreducible representations. The above integral representation essentially shows that every cyclic representation of G (and hence every representation of G) is a "direct integral" of irreducible representations. For further details, see [19] and [30].

It is worthwhile to sketch a simple result which can be used to show that the extreme points of the set K are the characters. The facts which are left unproved in what follows may be found in [30, §§ 10, 30] (where a "*-algebra" is called a "symmetric ring"). The proof of this result is essentially due to J. L. Kelley

and R. L. Vaught ["The positive cone in Banach algebras," $Trans. \ Amer. \ Math. \ Soc. \ 74 \ (1953), 44-55]$. It is applied, of course, to the commutative *-algebra obtained by adjoining the identity to the group algebra $L^1(G)$.

Suppose that A is a commutative *-algebra with identity e and continuous involution $x \to x^*$. Let K be the convex set of all linear functionals f on A which satisfy f(e) = 1 and $f(x^*x) \ge 0$ for all x in A. If f is an extreme point of K, then f(xy) = f(x)f(y) for all x, y in A.

Proof. Any element of A is a linear combination of elements of the form x^*x (consider the polarization identity $x = \frac{1}{4} \sum_{i=1}^4 \mathbb{E}_i^{-1}$ ($e + \mathbb{E}_i x$)* ($e + \mathbb{E}_i x$), where the \mathbb{E}_i 's are the fourth roots of unity); hence we may assume that x is of that form. We may also assume that $\|x^*x\| < 1$. Define the linear functional g on A by $g(y) = f(x^*xy)$. For any y,

$$g(y^*y) = f[(xy)^*(xy)] \ge 0$$

and

$$(f - g)(y^*y) = f[y^*y(e - x^*x)] = f(y^*y z^*z) \ge 0,$$

since $||x^*x|| < 1$ implies $e - x^*x = z^*z$, where

$$z^* = z = \sum_{n=0}^{\infty} {\binom{1/2}{n}} (-x^*x)^n \in A.$$

Thus, f = g + (f - g), where g and f - g are in the cone generated by K. Since f is extreme, we have $g = \lambda f$ for some

 $\lambda \ge 0$. From f(e) = 1 we conclude that $\lambda = g(e)$ and g(y) = g(e) f(y) for all y, i.e., $f(x^*xy) = f(x^*x) f(y)$ for all y, which completes the proof.

It is even easier to prove that every multiplicative element of K is extreme. Indeed, if 2f = g + h, g, h in K, it suffices to prove that g(x) = 0 = h(x) whenever f(x) = 0 (since f(e) = 1 = g(e) = h(e) and hence f = g = h). But if f(x) = 0, then $0 = 2f(x^*)f(x) = 2f(x^*x) = g(x^*x) + h(x^*x)$, so $g(x^*x) = 0 = h(x^*x)$. Furthermore, $|g(x)|^2 \le g(x^*x)$, so g(x) = 0 and (similarly) h(x) = 0.

APPLICATION OF CHOQUET BOUNDARIES AND FUNCTION ALGEBRAS TO APPROXIMATION THEORY

Bishop's [5] original result concerning a special case of the Choquet theorem in the context of function algebras (and his "peak point" description of the Choquet boundary in this case) was applied to a theorem concerning approximation of continuous complex valued functions on a compact subset of the plane by certain rational functions. We will give the statement of this theorem, and direct the reader to Wermer's monograph [35] for a survey of this and related results.

Let Y be a compact subset of the complex plane, with empty interior. Let A be the subalgebra of $C_c(Y)$ consisting of those continuous complex valued functions on Y which can be uniformly approximated on Y by rational functions which have poles in the complement of Y. It is easily verified that A is

uniformly closed, contains the constants, and separates points of Y. Let $B \subset Y$ be the Choquet boundary for A.

THEOREM (Bishop). The following assertions are equivalent:

- (i) $A = C_c(Y)$.
- (ii) $Y \sim B$ has two-dimensional Lebesgue measure zero.
- (iii) B = Y.

THE SUPPORT OF A MAXIMAL MEASURE

We know that if μ is a maximal probability measure on X, then $\mu(B) = 1$ whenever ex $X \subset B \subset X$ and B is a Baire set or an $\,F_{\sigma}\,$ set. This result can be extended to more general sets by means of a theorem of Choquet on abstract capacities. For instance, it is still true if B is a K-Suslin set (= Kanalytic set) (see [29] for a complete proof) or if B is a K-Borel set [4]; each of these classes of sets contains the Baire sets, and the K-Suslin sets form the largest family. (The only property of maximal measures used in the proof of either theorem is the fact that $\mu(B)=1$ if μ is maximal and B is an F_σ set containing ex X.) The K-Borel sets are the simplest to describe: They are the members of the smallest family which contains the compact sets and is closed under countable unions and countable intersections (but not necessarily closed under differences). The family, which need not be a σ -ring, lies between the Baire sets and the Borel sets. It is immediate that Corollary 9.9 on uniqueness can be sharpened to the following form: If X is a simplex and if $\operatorname{ex} X$ is a K-Suslin set, then for each x in X there exists a unique measure μ such that $\mu \sim \varepsilon_x$ and $\mu(\operatorname{ex} X) = 1$.

OTHER EXTENSIONS OF THE KREIN-MILMAN AND MINKOWSKI THEOREMS

As shown in Proposition 11.6, if a cone K in a locally convex space is closed, is locally compact, and contains no line, then K admits a compact base. Thus, local compactness makes it possible to extend the Krein-Milman theorem to (proper) cones, provided we replace "extreme points" by "extreme rays" in the statement of the theorem. (Of course, this is true even under the weaker hypothesis that K is the union of its caps.) What if we drop the hypothesis that K be a cone? Klee [26] has obtained two results in this direction, one which extends Minkowski's theorem on finite dimensional sets and one which extends the Krein-Milman theorem. We first require a definition.

An extreme ray of a convex set X is an open half-line $\rho \subset X$ with the property that the open segment]x,y[is contained in ρ whenever]x,y[$\subset X$ and]x,y[intersects ρ . A set is said to be *linearly closed* if its intersection with each line is closed. We let $\exp X$ denote the union of the extreme rays of X. Klee's results are the following:

If X is a locally compact closed convex subset of a locally convex space, and if X contains no line, then X is the closed convex hull of $ex X \cup exr X$.

If X is a linearly closed finite dimensional convex set which contains no line, then X is the convex hull of $ex X \cup exr X$.

Finally, we note that the following problem in this area is still open: If X is a nonempty compact convex subset of a Hausdorff topological vector space, does X have any extreme points? If so, is it the closed convex hull of its extreme points?

A TOPOLOGICAL PROPERTY OF THE SET OF EXTREME POINTS

As was shown in the Introduction, the set $ex\ X$ of extreme points of a compact convex subset X of a locally convex space will form a G_δ set if X is metrizable. In the general case, however, $ex\ X$ need not even be a Borel set. Nevertheless, Choquet has proved the following result: If X is a compact convex subset of a locally convex space, then $ex\ X$ is a Baire space in the induced topology. (Recall that a topological space T is a Baire space provided the intersection of any sequence of dense open subsets of T is dense in T.) This result has an interesting application to C^* -algebras, and its proof may be found in J. Dixmier [Les C^* -algèbres et leurs represéntations, Paris, 1964, p. 355].

Bibliography

- 1. Heinz Bauer, "Minimalstellen von Funktionen und Extremalpunkte," Archiv der Math. 9 (1958), 389-393.
- 2. _____, "Silovscher Rand und Dirichletsches Problem," Ann.
 Inst. Fourier (Grenoble) 11 (1961), 89-136.
- 3. _____, "Kennzeichnung kompakter Simplexe mit abgeschlossener Extremalpunktmenge," Archiv der Math. 14 (1963), 415-421.
- 4. _____, "Konvexität in topologischen Vektorräumen," lecture notes, University of Hamburg 1963/1964.
- 5. Errett Bishop, "A minimal boundary for function algebras," Pacific J. Math. 9 (1959), 629-642.
- 6. ____ and Karel de Leeuw, "The representation of linear functionals by measures on sets of extreme points," Ann. Inst. Fourier (Grenoble) 9 (1959), 305-331.
- David Blackwell, "Equivalent comparisons of experiments," Ann. Math. Stat. 24 (1953), 265-272.
- 8. F. F. Bonsall, "On the representation of points of a convex set,"

 J. London Math. Soc. 38 (1963), 332-334.
- 9. N. Bourbaki, Eléménts de Mathématique, Livre VI, Intégration, Ch. 6, "Integration Vectorielle," A. S. I. 1281, Hermann, Paris, 1959.
- P. Cartier, J. M. G. Fell and P. A. Meyer, "Comparaison des mesures portées par un ensemble convexe compact," Bull. Soc. Math. Fr. 92 (1964), 435-445.
- 11. Gustave Choquet, "Theory of capacities," Ann. Inst. Fourier (Grenoble) 5 (1955), 131-295.
- 12. ____, "Existance et unicité des representations intégrales au moyen des points extremaux dans les cônes convexes,"

 Séminaire Bourbaki (Dec. 1956), 139, 15 pp.
- 13. _____, "Remarques à propos de le démonstration de l'unicité de P. A. Meyer," Séminaire Brelot—Choquet—Deny (Theorie de Potentiel), 6 (1962), No. 8, 13 pp.
- 14. _____, "Les cônes convexes faiblement complets dans 1'Analyse," Proc. Intern. Congr. Mathematicians, Stockholm (1962), 317-330.
- 15. and Paul-André Meyer, "Existence et unicité des representations intégrals dans les convexes compacts quelconques,"

 Ann. Inst. Fourier (Grenoble) 13 (1963), 139-154.

- 16. M. M. Day, "Fixed-point theorems for compact convex sets," Illinois J. Math. 5 (1961), 585-590.
- 17. Nelson Dunford and Jacob T. Schwartz, Linear Operators, Part I, Interscience, New York-London, 1958.
- D. A. Edwards, "On the representation of certain functionals by measures on the Choquet boundary," Ann. Inst. Fourier (Grenoble) 13 (1963), 111-121.
- 19. R. E. Edwards, Functional Analysis, Holt, Rinehart and Winston, New York, 1965.
- 20. R. H. Farrell, "Representation of invariant measures," Illinois J. Math. 6 (1962), 447-467.
- 21. J. Feldman, "Representations of invariant measures," (1963) (dittoed notes, 17 pp.).
- Michel Hervé, "Sur les representations intégrales a l'aide des points extremaux dans un ensemble compact convexe metrisable," C. R. Acad. Sci. (Paris) 253 (1961), 366-368.
- J. Kelley, I. Namioka and co-authors, Linear Topological Spaces, Van Nostrand, Princeton, N. J., 1963.
- D. G. Kendall, "Extreme point methods in stochastic analysis,"
 Zeitschr. für Wahrscheinlichkeitstheorie 1 (1963), 295-300.
- 25. V. L. Klee, Jr., "Some new results on smoothness and rotundity in normed linear spaces," Math. Ann. 139 (1959), 51-63.
- 26. "Extremal structure of convex sets," Archiv der Math. 8 (1957), 234-240.
- 27. Georges Lion, "Familles résolventes et frontière de Choquet," C. R. Acad. Sci. (Paris) 259 (1964), 4460-4462.
- 28. L. H. Loomis, "Unique direct integral decompositions on convex sets," Amer. J. Math. 94 (1962), 509-526.
- 29. P. A. Meyer, Theory of Probability, Blaisdell, New York, 1965.
- 30. M. A. Naimark, Normed Rings, Noordhoff, Groningen, 1959.
- John Rainwater, "Weak convergence of bounded sequences," Proc. Amer. Math. Soc. 14 (1963), 999.
- 32. Daniel Ray, "Resolvents, transition functions, and strongly Markovian processes," Ann. Math 70 (1959), 43-72.
- 33. V. Strassen, "The existence of probability measures with given marginals," Ann. Math. Stat. 36 (1965), 423-439.
- V. S. Varadarajan, "Groups of automorphisms of Borel spaces," Trans. Amer. Math. Soc. 109 (1963), 191-220.

- 35. John Wermer, Banach Algebras and Analytic Functions, Advances in Math., Vol. 1, Fasc. 1, Academic Press, New York and London, 1961.
- 36. D. V. Widder, *The Laplace Transform*, Princeton University Press, Princeton, N. J., 1941.

Index of symbols

	Page
\boldsymbol{A}	18,24
B(M)	38
С	24
$C_{\infty}(Y)$	95
\overline{f}	18
K(M)	35
ϕ	37
<i>x</i> v <i>y</i>	59
~	21
>	24
>>	112

Index

Baire function, 100 set, 23	Choquet's uniqueness theorem, 70
space, 124 Barycenter, 2	Completely monotonic function, 11
Base (of a cone), 59 Bernstein's theorem, 11 Bishop-de Leeuw peak point theorem, 49 Bishop-de Leeuw representation theorem, 30 Bishop's approximation theorem, 122 Bochner's theorem, 118 Boundary, 39	Dilation, 107 Discrete measure, 66 Disintegration of measures, 110 Ergodic measure, 78
Choquet boundary, 38 Šilov boundary, 40	Extreme ray, 87, 123 Function, affine, 18
Cap, 87 Carathéodory's theorem, 10 Cartier-Fell-Meyer theorem, 112 Choquet boundary, 38 Choquet-Bishop-de Leeuw theorem, 24 Choquet-Meyer uniqueness theorem, 66 Choquet's theorem (metrizable case), 19	completely monotonic, 11 concave, 18 convex, 18 first Baire class, 100 infinitely divisible, 16 oscillation of, 101 positive definite, 118 second Baire class, 104 upper envelope of, 18 upper semicontinuous, 19 Function algebra, 49

Hereditary subcone, 64 Herglotz's theorem, 117 Oscillation (of a function), 101

Peak points, 49

Infinitely divisible function, 16 Potential theory, 115
Invariant measure, 77

K-Borel set, 122 Klee's theorems, 123 Krein-Milman theorem, 6

Lattice, 59
Least upper bound (in a lattice), 59

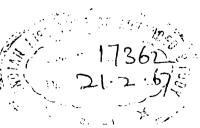
Markov operator, 44
Maximal measure, 25
Measure, discrete, 66
ergodic, 78
invariant, 77
maximal, 25
representing, 1
Milman's theorem, 8

Minkowski's theorem, 1

Ray (of a cone), 87
Representing measure, 1
Resolvent, 44
Resultant, 2
Riesz representation theorem,
3

Šilov boundary, 40 Simplex, 9,59 Smooth point, 55 Subdivision (of a measure), 112 Support of a measure, 2

Universal cap, 88
Upper envelope, 18
Upper semicontinuous function,
19



VAN NOSTRAND MATHEMATICAL STUDIES

VAN NOSTRAND MATHEMATICAL STUDIES are paperbacks focusing on the living and growing aspects of mathematics. They are not reprints, but original publications. They are intended to provide a setting for experimental, heuristic and informal writing in mathematics that may be research or may be exposition.

Under the editorship of Paul R. Halmos and Frederick W. Gehring, lecture notes, trial manuscripts, and other informal mathematical studies will be published in inexpensive, paperback format.

PAUL R. HALMOS graduated from the University of Illinois in 1934. He took his master's degree in 1935 and his doctorate in 1938, and stayed on for another year to teach at the University. He the spent three years at the Institute for Advanced Study, two of the as assistant to John von Neumann. He has returned to the Ir on two subsequent occasions, in 1947-48 as a Guggenham din 1957-58 on sabbatical leave. After teaching University for three years he joined the faculty of of Chicago in 1946; he is now professor of me University of Michigan.

FREDERICK W. GEHRING attende?

gan from 1943 to 1949, and received?

sity of Cambridge in 1952 after t!

spent the next three years r

Harvard University, and re

in 1955. From 1958-59 P

and Fulbright fellow at t!

following year war

nische Hochshu!

and the professor of mathematics

A VAN NOSTRAND MATHEMATICAL STUDY

under the general editorship of

PAUL R. HALMOS and FREDERICK W. GEHRING

The University of Michigan

About this book:

Appearing for the first time in book form are the main results centered about Choquet's integral representation theorem—an important recent chapter in functional analysis. This theorem has applications to analysis, probability, potential theory, and functional analysis; it will doubtless have further applications as it becomes better known. This readable book presupposes a knowledge of integration theory and elementary functional analysis, including the Krein-Milman theorem and the Riesz representation theorem.

The Author:

ROBERT R. PHELPS (Ph.D., University of Washington) is Associate Professor of Mathematics at the University of Washington. Previously, he was at the Institute for Advanced Study in Princeton and at the University of California Library MAS, Shimla American Mathematical Society P.

American Mathematical Society, Pr quent contributor to mathematics jo

517.5 P 516 L

00017362

D. VAN NOSTRAND COMPANY, INC.