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~OGIC: The Theory of Formal Inference 





[ I ] 

rruth{unctions 

:ntroduction 

The term "logic", understood as designating the general theory of 
:xact reasoning, has traditionally been used as a covering term for quite 
lifferent subject matters: inductive, or probable, inference, and a special 
:ind of deductive inference. Aristotle (385-322 B.C. ), the great Greek 
,hilosopher, was the first to investigate inferences of the latter kind, 
nferences in which, to employ his description, "certain things being stated, 
:omething other than what is stated follows of necessity from their being 
:o". The theory Aristotle developed extended to, but not beyond, the 
·equirements of immediate inference and the syllogism, i.e., it covered 
leductive inferences made from single statements and inferences drawn 
rom pairs of statements of certain kinds. This initial flowering of logic 
\'as followed by a dormancy of some two thousand years; and when, about 
L hundred years ago, logic again sprang to life, it developed enormously 
n the direction of generality and system, with the result that syllogistic 
loctrine came to occupy only a minor place in it. In its latest develop­
nents logic was seen to be linked to mathematics, and even thought 
;o be the foundation on which the system of mathematics rests. Thus the 
mience which first began with what Aristotle called "Analytics" (some 
mndreds of years later given the designation "logic" by Alexander of 
\phrodisias) has no,v undergone a development which ranks it as a mathe­
natical discipline. 

In this introduction to logic we shall confine ourselves to what is 
:alled formal logic, as distinct from that branch of the subject which 
nvestigates probable inference. And we shall begin, quite unhistorically, 
;vith the most general part of logic and move on to more specific parts, 
;vithin which the syllogism finds a much humbler place than with the 
tncients. We turn immediately to a description of the kind of deductive 
.nfcrcnces that formal logic investigates. Aristotle's description of de­
:luctive inferences, intended only to cover that restricted class which he 
.nvestigated, is even too wide for the whole class of inferences with which 
.ogic deals. Inferences in which, according to Aristotle, "something . . . 
follows of necessity", constitute all possible deductive inferences, whereas 

l 



2 TRUTH-FUNCTIONS 

the deductive inferences which are the subject matter of formal logic are 
only a subclass of these. To illustrate the distinction between non-formal 
and formal deductive inferences, consider, as an instance of the former, the 
deduction of "a has 12 edges" from "a is a cube". Given that a is a cube 
it follows of necessity that a has 12 edges. To assent to the given necessi­
tates admission of the consequence; one cannot c_on~istently admit the 
premise while denying that a has 12 edges. This i_nf erence, which is 
effected by means of the pair of concepts, cube a~1d having 12 edges, stands 
in sharp contrast to the inference from the premise 

. If a is a cube, a has 12 edges 
to the concluS1on If a does not have 12 edges, a is not a cube. 

The difference may be made perspicuous by replacing the concepts cube 
and having 12 edges by pairs of brackets in each inference: 

Premise: a is ( 
Premise: If a is ( 
a is not ( ). 

), Conclusion: a is [ J; 
), then a is [ J, Conclusion: If a is not [ ], then 

The first inference is effected solely in virtue of the particular concepts cube 
and having 12 edges. It would, obviously, not hold for every pair of con­
cepts. For example, given that a is blue we are not entitled to infer 
that a is square. But the second inference holds for all possible pairs of 
concepts, regardless even of whether the statements in which they figure 
are relevant to each other. Thus, from the statement, "If it is snowing in 
Alaska, butter is a medium of exchange in Tibet", we may validly infer the 
statement, "If butter is not a medium of exchange in Tibet, it is not snowing 
in Alaska". The transition from one statement to the other is effected in 
virtue of their formal relations to each other. W c pause to remark the 
even more striking difference between all these deductive inferences and 
the inference from "Sirens are sounding" to "There is fire". In this in­
ference the premise docs no more than lend a degree of probability to the 
conclusion and does not necessitate it; the assertion of the premise together 
with the denial of the conclusion is a possible truth. 

In logic methods are devised for calculating new statements from 
given_statemen~s solely by refcre!1ce to thei~ f?rms, or, to put it differently, 
techmques are mvented for testmg the vahdity of formal inferences. To 
explain this description of logic, it is required to distinguish between the 
Jorm of a statement and its material content. The notion of form in abstrac­
tion from content is intuitively grasped when one sees what is common to 
"If the figure is a cube, then it has 12 edges" and "If Jones is a Mexican 
then he is soft-spoken". Once the subject matter of the two statements ~ 
disregarded, what is left is a bare schema exhibiting how the constituent 
statements are related. Provisionally we may say that the form of a 
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statement is what remains when the constituents have been replaced by 
variables, the same constituents by the same variables and different 
constituents by different variables. The role of blanks enclosed by pairs 
of brackets in the expressions above is that of variables. The resultant 
expressions are said to consist solely of formal terms, the variables them­
selves counting as formal terms. 

Formal Terms 

The units figuring in inferences are statements, which are characterized 
by the property of being either true or false, or of having a truth-value. 
By virtue of the formal terms occurring in statements, logic provides a 
means of calculating the truth-value of a statement from that of the given 
statement. The expression "formal term" is defined here ostensively, that 
is, by giving a list of terms to which it applies. We introduce as our first 
formal terms variables "p", "q", "r", ... , whose range of values consists 
of statements. Next introduced are two formal terms of a different kind: 
"or", for which the symbol "v" is used, and "not", for which the symbol 
",...,," is used. These will be classed together as operators and assigned 
special names: "v" will be called disjunction and ",.._,,, will be called nega­
tion. The expression 

is read "p is false" or, alternatively, "not-p". A statement of the form 
",...,p" will be true if "p" is false, and false if "p" is true; and ",...,(,...,p)", 
the negation of ",...,p", amounts simply to "p". It is obvious that ",.._," 
can operate on a statement no part of which is a statement, whereas "v" 
requires at least two statements for its operation. Both terms can of 
course operate on statements which are themselves made up of statements. 

In ordinary English "or" is used to mean "one or the other". In 
some instances of its use it is understood to present mutually exclusive 
alternatives, while in other instances the condition of exclusiveness is 
understood not to hold, i.e., it sometimes means "one or the other but not 
both" and sometimes "one or the other or both". In logic convenience 
dictates its use in the nonexclusive sense, to mean that at least one of the 
stated alternatives is the case. Thus, 

pvq 

may be read "at least one, p, q, is true", and taken as neither specifying 
which of the two is true nor whether both are true. It is to be noted that 
"v" has some of the properties of the arithmetic operators "+" and " X" : 
it is commutative, that is, the order of the disjuncts "p" and "q" is imma­
terial, so that there is no need to distinguish between "p v q" and "q v p". 
It is associative, that is, "p v (q v r )" and "(p v q) v r" both amount simply 



4 TRUTH-FUN'CTIONS •• "x + . 1 • t as it is in 
to "p v q v r", since internal grouping is immatcna , JUS" ,, differs {ro1n 

y + z" and "x X y X z". In one important respect v thing as 
either "+" or "X" namely in that "p v p" comes to the same 

' ' • • h "x" "p" \\'hereas "x + x" and "x X x" arc not identical wit ' • t' n is ' ' f unctua io 
In addition to variables and operators some means O P . shall use 
. F h' urpose we • h 

reqmrcd for the expression of logical form. 4 or t 18 P . r 11 start wit 
either dots or brackets or a combination of the two. "' c sha nvenience 
b . t'on when co 
rackets and shall mtroducc the dot form of punctua 1 

requires it. The list of formal terms now consists of 

Statement variables: p, q, r, • • • 
Negation: ,-...J 
Disjunction: v 
Punctuation: ( , ) i l , 1; etc. vnri~ 

. . bl are the onlY V ri~ 
It lS to be remarked that although statement vana es d •n 1Orric, 1l ts 
bl 1 es use i I:) xncn 

a es as yet at our disposal, they are not the on Y on mselves sto.te e us 
ables which replace parts of statements that ure not the 1• t will eri.c1,bl t\1e 

·n b · d f l to the is of • w1 c mtro uced later, and the addition o t 1cse d in tcrJll5 0ut 
to formulate rules of inference which cannot be formulate paratus s~t thC 
present logical material. Part I will be confined to the alp ped first 15• ,en 
b Th' · f l • to be deve O ,, is grv { a ove. 1s 1s to say that the part o og1c 1 f nctioll ts o 

so-called theory of truth-functions. The name "trut i- u ·ing nll po.fl· ,.ve 
Ppress • h 1"' 

to those statement-forms (1) which result from stl . bl of wh10 
l aria es 

statements which are not formal terms, (2) tie v •110 tbC 
statements exclusively as their values. . ossible to gt 

By means of the formal terms now at hand it 15 P 
logical forms of many statements, for exumple, ~r "s)1· 

,-.,p V ,-.,[ q V ( 
p V "-'q, "-'(,..._,p V q), ,..._,p V q V r, 

The 11tatements 

and 

Either he studies or he does not pass the exaJll r it 
• fl, 0 

t j\frlC 
. in £!1S 

It is not the case that either it does not rain ,rbe 

pours ·r forJllS· ,ill be 
)" as tbel It " ·bits 

have respectively "p v ,..._,q" and ",-...J(,-...JP v q forn18• e"b1 0 , ' • der are 1 ere s ft 
reader can find statements of which the rem::nn . used 1 sioJl tl-

h 10tat1on ,pres 
noted how much more perspicuously t e 1 1 1a.st e" 
l . 1 . l T use t 1e r 
og1ca form than does ordinary Enghs 1. 0 ,,iiov 
illustration, the English reading is: • trtle or ''q'' 1S ·ther 

Either "p" is false, or else it is false that ci 
or s" is true. 



DISJUNCTIVE ARGUMENTS 5 

Disjunctive Arguments 

On exhibiting the logical stmcture of statements in the compact 
statement-forms the newly introduced symbolism permits, it becomes a 
simple matter to calculate the truth-values of statements from given 
statements by reference exclusively to their forms. For example, given 
that a statement of the form "p v q" is true and also that ",...,q" is trne, 
we are entitled to infer that "p" is true. The inference of "p" from "p v q" 
together with ",-...,q" is a calculation, such as Leibniz (1646-1716) envisioned 
for inclusion in his "calculus ratiocinatur". This inference-calculation, 
and others similar to it, may be represented by arranging premises and 
conclusion as follows: 

(1) p v q 
,..._,q 

p 

To illustrate: Suppose a detective has discovered that either Jones or 
Smith is implicated in a certain fraud, and finally determines that Smith 
is not implicated. He can correctly infer that Jones is implicated. On 
the other hand, given "p v q" and "q", he is justified in inferring nothing 
as to the truth-value of "p". For since the fact that at least one of the 
men is implicated in the fraud does not exclude their both being implicated, 
the discovery that Smith is implicated allows no inference as to whether 
Jones is or is not implicated. This shows up clearly in the schema 

(2) p V q 
_q __ 

? 

Elaborations on schemata (I) and (2) may be multiplied. For example, 
given as true that one of three scientific hypotheses explains a phenomenon, 
and also that one of them is false, it can be inferred that either one of the 
other two hypotheses is true: 

(la) p V q V r 
,..._,q 

pvr 

If, however, we are given "p v q v r", ",..._,q", and also "r", nothing with 
regard to the truth-value of ''p" can be inferred: 

(2a) p v q v r 
,...,q, r 

? 
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Again, if the truth-value of "p v q" is initially unknown, then given that 
"q" is true we may validly infer "p v q", and given ",.._,q" we may infer 
"p V ,.._,q''; 

(3) q (3a) rvq --, ----
pvq p V ,.._,q 

But from ",..._,q", "p v q" is not formally inferrible: 

Conjunction 

(4) rvq 

? 

Let us turn to the following more complex form of inference: 

(5) '"'-'['"'-'(P V q) V '"'-'(r V q)] 
"'P V '"'-'T 

q 

For a concrete instance of this logical schema make the following replace­
ments: for "p", "I speak the truth", for "q", "I suffer", for "r", "I lie". 
The first premise then reads: "It is not the case either that it is false that 
I speak the truth or suffer, or false that I lie or suffer". 

The formulation of this inference-schema is more complicated than 
it need be, and it can be re-expressed more simply, with a consequent 
economy of reasoning, by introducing a further formal term. This is the 
familiar "and", which is symbolized by "." and called conjunction. The 
expression 

p. q, 

read "p and q", is to the effect that "p" and "q" are jointly true. Like 
"p v q", "p. q" is commutative and associative, and "p. p" comes to the 
same thing as "p". By contrast with "p v q", which is true when either 
disjunct is true and false only when both disjuncts are false, "p . q" is 
false if either conjunct is false, and true only when both conjuncts are 
true.* Despite this difference in the two operators, what makes it possible 
to simplify the complex form of inference (5) is the fact that "p. q" is 
completely definable in terms of "v" and ",..._,". This fact implies that 
the introduction of the new term actually adds no material over and above 
what we already have in the list of formal terms. What can be said by 
'means of"." can be said by means of "v" and",..._,". Thus if we begin, as 

• We speak of "p v q" and "p. q" being true, which is improper, as these are not 
statements. The expressions " 'p v q' is true", " 'p . q' is true" are to be understood as 
being short for "a statement of the form p v q (p . q) is true". 
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we have begun, ,,ith "v" and",...__,", the symbol"." may be introduced by 
definition: 

p. q = Df. "-'("-'P V ,..._,q). 

To say it is false that either "p" is false or "q" is false obviously comes to 
the same thing as saying that both "p" and "q" are true: "neither not-p 
nor not-q" amounts to "both p and q". 

If we had begun with"." and",....,.,,", the symbol "v" might in analogous 
fashion have been introduced by definition: 

p V q = Df. ,..._,(,_,p. "-'q). 

To say it is false that both "p" and "q" are false is the same as to say 
that at least one, "p", "q", is true. The expressions on either side of the 
symbol "= Df.", which ushers in the definition, may replace each other 
as desired. Thus, the statement "Both 3 and 5 are odd" is interchangeable 
with the statement "It is false that either 3 is not odd or 5 is not odd"; 
and "Either Jones is reading or he is writing" with "It is false that Jones 
is both not reading and not writing". The simplification in our inference­
schema (5) above, made possible by the introduction of".", is now obvious. 
The first line of ( 5), ""-'[ ,..._, (p v q) v ,..._, (r v q)]", can now be replaced by 
"(p v q) . (r v q)", analogously to the replacement of ",....,("-'P v "-'q)" by 
"p. q". The inference-form (5) becomes 

(p V q) . (r V q) 
,..._,p v,..._,r 

q 

and is easily seen to be valid. 
The possibility of replacing the conjunction "p . q" by the negation 

of a disjunction, and the disjunction "p v q" by the negation of a con­
junction, suggests a general rule for transforming other conjunctions and 
disjunctions, for example, 

p. ,-...,q, 
into into 

Conversely, it suggests a rule for expressing the result of the operation 
negation upon a disjunction or conjunction. Calling the statement-forms 
connected within the brackets by "v" or "." the arguments, we can for­
mulate the two rules* in the following way: 

(A) the negation of a disjunction is the conjunction of the negated 
arguments; 

(B) the negation of a conjunction is the disjunction of the negated 
arguments. 

• After the rules formulated for analogous class-formulae by Augustus De Morgan 
(1806-1871 ). 
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. f f -mal reasoning (1) 

It is of some interest to see how t~; P,~eces ~' ,,°1with entire neglect 
through (5) can be restated in terms of ,_, and • , 

of "v": 

(l') ,.._,(,_,p . ,_,q) (2') ,-,(,-,p. ,-,q) 

,-...,q q 
? 

p 

(la') ,_, ( ,-...,p • ,_,q . "-'T) (2a') ,_,(,..._,P. ,_,q. ,-,r) 

,_,q ,-,q. r 

,..._,(.....,p . ,_,r) '? 

(3') q (3a') "-'Q 
, ,_, (,-,p . q) ,..._,(,_,p . .....,q) 

(4') (5') 
) ,_, (,-,r . ,-,q) 

,..._,q ,_, (,-,p . ,-...,q • 
--, ,..._,(p. r) 

? 
q 

Implication and Equivalence ,, '' both terrns, • 
It is convenient and psychologically simpler to use • obvious on 

and "v", than to confine ourselves to only one of these, as is0,rne sort of 
comparing the various formulations of (5). In fact, the 5 ch dcfin1J.b~~ 

'd . d. . . f tl , terrns ea d ,,,-, • cons1 erat1on 1ctates the mtroduction of two ur 1er ' ,, ,, 11n . 
by means of "v" and ",...._," and of course alternatively by ,, • and ''equi~-' . b '':J '... ,, ,, is 
These are "if ... then - - -", or "implies", symbolized Y,, . which P 
alence", symbolized by "= ". The expression "p :J q ' 111 

called the antecedent and "q" the consequent, is defined 

•rnplicll,­
·der the i 

We justify the definition by means of an example. Consi 
t• " 1ve statements, expressed in the form "If p then q , 

p :) q = Df. ,_,p V q. 

If b . • is likelY 
uymg power diminishes a depression 

If the switch is depressed, ~he light will collle on. 

These say precisely what is said by 
. is likelY 

Either buying power does not diminish or a depression 0 n. 
E. h ·u collle 

it er the switch is not depressed or the light Wl ea.PS 

. . x ressed bY rn 
The defirution of "equivalence" is most naturally e p 

of the defined terms":)" and ".": 

p = q = Df. (p:) q) · (q:) p). 
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For example, that "a is an even prime" is equivalent to "a = 2" is the 
same as the fact that "a is an even prime" both implies and is implied 
by "a = 2": if a is an even prime, a = 2, and if a = 2, a is an even prime. 
The symbol"=" could, as might be expected, be defined in terms of",-...," 
and "v", in terms of ",..._,,, and ".", or in terms of ",.._,II and ":> 11 • It is of 
some interest to see what the defining expression in each case is: 

"-'["-'("-'p V q) V ,..._,(,..._,q V p)] 
,...., (p . ,..._,q) . ,..._, ( q . "'P) 
,....,[(p => q) => "'(q => p)]. 

When two statements are equivalent, or mutually imply each other, 
either is said to be both a necessary and sufficient condition for the other. 
Any statement "p11 is a sufficient condition for "q" when "p :> q11 • And 
it is a necessary condition when ""'P :> "-'q", or, what comes to the same 
thing, when "q :> p". (For "q :> p" becomes ""'q v p11 , which can be 
seen to be ",....,p :> ,..._,q".) To return to the example above, a's being an 
even prime is a sufficient condition for the truth of "a = 2". It is also a 
necessary condition: Only if a is an even prime is a = 2, so that if a is 
not an even prime "a = 2" must be false. In general, the sufficient and 
necessary conditions for the truth of a statement "q" are not the same. 
For example, "a is equilateral" is sufficient for the truth of "a is isosceles", 
but not necessary; whereas "a is an even number between 2 and 7" is 
necessary but not sufficient for the truth of "a = 411 • Only when there 
is an equivalence between "p" and "q" do both conditions hold. It will 
be recognized that transformations of formulas by means of the negation 
rules given above produce equivalents. 

Negation of Mixed Functions 

It is useful at this point to note that the rules for negating disjunctions 
and for negating conjunctions may be extended to cover functions invoh·ing 
mixtures of the two operators, e.g., 

,....,[p v ,..._,(q. r. s)] = (,..._,p. q. r. s), 

and also to functions involving other operators as well. By transforming 
d • • • l • l " 11 "v" a 1d " 11 , .. e obta1·n a negate express10n mto one mvo vmg on y . , , 1 "' ,, • 

an expression to which the original rules apply: 

"-'{P :> [q = (r. s)]l = ,...__,{,..._,p v [(""q v (r. s)). (""(r. s) v q)]} 
= p . ~[( ,_,q v (r . s)) . ( ,_, (r . s) v q)] 
= p. [,_,(,.._,q v (r. s)) v ,_,(,....,(r. s) v q)] 
= p . [ (q . ( ,_,r v ,...__,s)) v (r • s • ""q)] 
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Properties of Implication d d 
h u h (5) are stan ar -

The pieces of reasoning on formal terms, (l) t ~o _g f ' or rules of, 
ized forms which can be summed up into prescriptions . or,orie argument 
. d • th rule denying inference. Thus, (1) may be summe up m e ' t· (2) can be 
of a disjunction necessitates affirming the remaining argume~ f erence to the 
summed up in the rule, affirming one argument allows 7:0 in On the basis 

f ' l' ation other. Comparable rules can be formulated or imp ic • • 
of the following two inference-schemata 

(6) p-:) q (7) p -:J q 
p ,..._,q 
--, q ,..._,p 

d of denying th~ 
we can formulate the rules of affirming the antecedent an z · t ·on ,,iecessi-

. . d t ., n imp ica i • consequent, respectively: affirming the antece en OJ a implication 
tates affirming the consequent denying the consequent of £an soning a.re 

. . ' b f rms o rea ,, necessitates denying the antecedent. That the a ove O . t "r.JP v q , 
• t'fi d • • " ' q" in ° · us Jus i e appears rmmediately on transforming _P . .-/ The faUacio 
whereupon both reduce to cases of denying a dISJunct. 
forms of reasoning, 

p -:J q 
~ 

p -:J q 
q --, 

"'q p d retnise 
correspond to inferences from disjunctions in which the seffico~ 0 f condi­
affi dis' f a su cie • 'tl..,. rms one Junct. Each form of argument con uses , ,, •5 ilhC1 J 

t• f e'P 1 • ion or the truth of "q" with a necessary one: In each cas . therw15e, 
t k ut 1t O • s a en to he the only condition for "q" 's truth. Or to P function 
" '"" " • 'd • • f these h t P .J q IS 1 entified with "q -:J p". Transformation ° d't'ons t a 
• t d' • • h on 1 1 e m O 18Junct1ons together with an examination of t e c U the5 

k h b t not n '' ma : ~ac false and that make each true will show t a,, d ''q :J P 
conclitions are the same as would be required if "p -:J q an ~ q'' 11,od 

• ' "p ./ d were equivalent. This test will show that by contrast, 1,;.,ct· 11,Jl 
"......, '"" " " ' me t =•t>' _,,Q 

this q.;;: "'P ' q :::> p" and ""'P :::> "'q"' do come to the sa Other f o~ll"' 
eans that each can be validly inferred from the other. f iftl.P}lclV 

of valid inference t· h • • • opertY 0 . , res mg on t e so-called transitivity pr 
t1on, are 

(8) p -:) q (9) p-:) q 
q -:) T ,.._,r -:) ,...,q -, 
P :::> r "'T :::> ,..._,p . 9,Jld 

In (8) the f the other, r 
th . consequent of one premise is the antecedent O •ts if(lP i~ 

ca:• samle 18 ~rue of (9) when one of the premises is replaced bY 1 

iona eqmvalent. 



APPLICATIONS 11 

In cases where the truth-value of "p =:> q" is unknown, it is interesting 
to note which conditions allow us to calculate its truth-values: 

q ,..,_,p ,..,_,p. q 
--, 
p => q 

, 
p => q 

I 

p => q 

It may seem odd that an "if ... then - - -" statement should be true under 
the conditions (1) that its consequent is true and (2) that its antecedent 
is false. That "p =:> q" is true under these conditions is made evident by 
transforming it into ",....,p v q", as is also the fact that "p =:> q" is false under 
the single condition "p . ,..._,q". An extension of the first two calculations 
above can be made to "chain" implications such as "p ::> [q ::> (r ::> s)]" 
in which the sign of implication in each case governs the expression succeed­
ing it. Suppose the truth-value of "p ::> [q :> (r ::> s)]" is unknown. 
Given that the final consequent "s" is true, or that any antecedent is 
false, the truth of the chain implication follows: 

s -------, 
p ::> [q ::> (r ::> s)] p =:> [q :> (r :> s)] 

I 

,..._,q 
__;:__ ______ I 

p ::> [q :> (r :> s)] 
"'T 

p ::> [q :> (r ::> s)] 

Applications 

Problems which, "ithout the apparatus developed so far, would present 
considerable difficulties can now be dealt with simply. Consider the 
following, of which the schema appears alongside: 

(1) It is the case both that if I drink 
coffee, then if I count sheep, I do not 
fall asleep, and also that if I do not 
drink coffee I am not nervous 

(2) I am nervous 
(3) I count sheep 
Do I fall asleep? 

8 

q 

? 

The conjunction of "s" with ",....,p ::> ,..._,s" yields "p", by the rule of deny­
ing the consequent and "p" together with "p ::> (q ::> ,..._,r)" yields 

' • d t F "' ·" "q ::> ,...,r", by the rule of affirmmg the antece en . •rom q ..J ,..._,r 
conjoined with "q" we derive the answer to the question, namely, that I 
do not fall asleep. 

p 

p ::> (q ::> ,..,_,r) 
p 

q => ,..,_,T 

q 

"'T 
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Consider the following, more complicated, problem. 

(1) If either it is false that Jones did not ,Yitness the collision or Smith w~s 
wearing his spectacles when he saw the collision, then if Coe ,~as_t _c 
driver of the stolen truck, then if the third witness ,yas not rntinu­
dated, the judge was bribed 

(2) If the third witness was not intimidated, Coe was the driver of the 
stolen truck 

(3) The judge was not bribed 
(4) The third witness was not intimidated 
Was Smith wearing his spectacles when he saw the collision? 

The schema for these premises is: 

(1) ("-'"-'P v q) :) [r:) ("-'S:) u)} 
(2) "-'S :) T 

(3) "'U 
(4) "'8. 

Th • • • of (3) au<l e con3unct1on of (2) and (4) yields "r" and the conjunction . • 
(4) falsifies the consequent of "r:) ("-'s ':) u)". Hence the conJunc~1fio1: 
of (2) (3) d (4) f l • . I .• it fals1 e .'. , ~n a s1fies the consequent of (1), masmuc 1 <18 f (1), 
the dts)lmction ",_,r vs vu". Thus the falsity of the antecedent 0 h·s it 
namely """( )" cl From t 1 
f ll , """'P v q , or ",,..._,p . ,...._,q", can be inferre • llisioll, 
0 ows that Sm1"th , • . the co \\as not wearmg his spectacles when he saw • 

T • "-'8 , "-'U 

r .....,lr:) (""8 :) u)]' 

( ....... ,...,p v q) :) [r ::) (""8 ::) u)] 
""(r ::) ( ""8 :) u)] 

,...,,p. ,.._,q 

Formal Validit 
Y and Tautologous Functions 

The problem of d . . . 1 the con-
sequences of giv evismg methods for calculating formal Y h ds for 
determining wh e~ statements is the same as that of devising met 1 °ting a. 
consequence B ;. ler a fon~al inference is valid. That is, calcu a.A. :J ]3 
is formally vauJ 0 In_ a premise A is the same as determining tha_t forma.l 
properties. som'e ~~~h~t B does follow from A in virtue of their rnatter 
what statement cttons of the form A :) B are such that no . bleS 
f s are sub t" t d t var1a 

o A and B, the resul . s 1 ute for the component statemen . other 
truth-functions t 18 a true statement. This is also the case w1thf ,.11 .. construct d 1 . ar "" e so ely from the logical matenals so 
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nounced, i.e., from statement variables and other operators than "::)". 
Such forms are called tautologies. An obvious example is 

No matter what statements are substituted for "p" and "q", the result 
will be a statement which is true, and furthermore, true in virtue of its 
form. Another obvious tautology is "p v ""P". Somewhat more compli­
cated tautologies are 

(p . q) ::) (p V q)' (,.._,p. q) ::> q. 

If in each of the two preceding problems the given and the derived answer 
are connected as antecedent and consequent, a still more complex tautology 
results: 

[(1). (2). (3)1 ::> ,...,,r, [(1). (2). (3). (4)1::) "-'q, 

Truth-tables 

The problem of determining whether B follows formally from A now 
reduces to the problem of devising a method for determining whether 
A ::) B is a tautology. For this purpose the so-called matrix method or 
method of truth-tables has been invented. This method is a schematic 
device for correlating the truth-values of the component statements, 
called truth-conditions, with the truth-value they determine the statement 
to have. ·writing T and F for "true" and "false", the truth-conditions 
are given in a compact array of combinations of T's and F's together 
with the correlated truth-values of the statement. These are presented 
in the form of a table in which the truth-conditions arc listed on the 
left and the correlated truth-values under the statement on the right. 
Thus the trnth-tablcs for 11 "'P", "p v q", "p . q", "p ::) q", and "p = q" 
arc: 

'L q "'P, p Vq, p. q, p::) q, 71 = q 

T T F T T T T 
T F T F F F 
F T T T F T F 
F F F F T T 

The truth-conditions for ",....,__,p" arc two, v,hich in the above table are re­
peated. They are the T, F entries under "p": ",..._,p" is false when "p" is 
true and true when "p" is false. Inasmuch as the remaining functions 
involve two variables the truth-values of which arc independent of eaC'h 
other, the columns on the left must list these truth-values in all possible 
combinations. There arc four such combinations, each of which is a 
condition under which the given function is either true or false. 
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The next two tables call for some comment. 

(1) p \ 'V"-'P (2) LL\ (p. q) :> (p::) q) 
-T T T T T T T 

T F F T T F F 
F T F T T 
F F F T T 

. ll ossible conditions: 
The first table shows that "p v ,....,p" IS true under a P ·h n it is false. 
"p is true or p is false" is true when "p" is true and als~, "v :_,p" always 
And as T and F exhaust "p" ,s possible truth-values, P ade £or 

1 en ts are Ill gives rise to a true statement no matter what rep acem ( :) q)" also 
"p,,. The second table shows that the function "(p • q) :) p ,, the two 
• h " ,, nd "p :> q , b 
1S a tautology. The subcolumns beneat P • q a h lues of eac 
components of the tautologous formula, exhibit the trut -va bsidiarY set 
under the same conditions, and from these, looked on as a _su iroplication 
of truth-conditions, the column of T,s beneath the main uch as the 
connecting the constituent functions can be calculated. Inas~ q" with 
table shows no truth-value combination T for the antecede~t 1{s • which is 
F for the consequent "p ::) q", "(p . q) ::) (p ::) q),, alw~ys ~, ' 
to say that "p ::) q,, is a formally valid consequence of P • q • t uth-table 

On the other hand, "(p v q) ::) q" is not a tautology. The r alculated 
for it shows this, and at the same time shows why "q,, cannot be c 
from "p v <j': 

L q (p V q)::) q 

T T T TT 
T F T FF 
F T T 
F F T ditioJlS· 

The truth-value of the formula is not truth for all of its trut~-~;, under 
And the fact that both T and F under "q" are associated wit when 
" ,, • d" th-values b P V q m 1cates that "q,, can have either of two tru d 11ot c 
"p v q" is true. This is to say that "q" need not be true, and nee th-value 
false wh " ,, • • " ,, ,s tru , en P V q l.S true, or that nothing regardmg q 
can be calculated from the truth of "p v q". \lJ. tbo.t 

A truth-function might have been defined as the kind of forIJ1.Ubt9,ined 
has a truth-table, one such that the truth-value of the stateroents ho truth­
by substitutions on its variables is determined uniquely b~ : f:r01nla5 

v~l~es of the substitution statements. The class of truth-£ unctio f jocoil­
d~vides into three subclasses the class of tautologies, the class O tioll iS 
S1Ste?t functions, and the class of contingent functions. A fuocothersi 
~ontm~ent if it is true for some of its truth-conditions and false for 1·f it is 
mcons1Ste t if • • l gollS f ls n it is false for all its truth-conditions; tau to O y is a,tl 
a e for none. It will be evident that the negation of a tautolog 
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inconsistent function, and of an inconsistent function a tautology. It will 
be evident also that the negation of a contingent function is a contingent 
function which is true for those conditions for which the original function is 
false and false for those for which the original function is true. The matrix 
method is a procedure for deciding to which class a truth-function belongs. 
The reader may gain practice in its use by applying the method to the 
following: "q:) (p v q)", "q. ("-'P. "-'q)", "(p:) q):) (q:) p)", "(p • 
""q):) (,...._,p:) q)", "p V (q. "-'q)", "p. (q:) q)". 

Application of Truth-tables to Problems 

The class of tautologous formulas are among those traditionally called 
laws of logic. Laws of logic are statement-forms having universal validity, 
and any inference which conforms to a law of logic is formally valid. It 
will be instructive to sec how the matrLx method can be used to decide 
whether an inference conforms to a lav.· of logic, and is valid, or fails to 
conform to a law of logic, and is not valid. It turns out that this method 
can be used to solve problems like those on pages 11-12. In writing a truth­
table it must be kept in mind that the number of truth-value combinations 
of n variables is 2n. Note that the truth-conditions for functions con­
structed on two or more variables can be written in a regular way, the rule 
for which may be gathered from an inspection of the tables applied to the 
following problems. 

(a) Given: (1) If you are a true animal lover, then if you like mice, you 
do not like cats. 

Can the following be validly inf erred? 

(2) If you like cats, then if you like mice, you are not a true 
animal lover 

(3) If you do not like mice, then if you are a true animal lover, 
you do not like cats. 

The truth-table which gives the answer to the first question is: 

p_ ..!L r (p:) (q:) ,_,r)]:) [r:) (q:) "-'P )] 

T T T T 
T T F T 
T F T T 
T F F T 
F T T T 
F T F T 
F F T T 
F F F T 
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h t (2) can be validly We see that (1) ::> (2) is a tautology, and hence t [ ::> ( ::> ,.._,p )]" is a 
inferred from (1). The formula "[p ::> (q :::> ,.._,r)] ::> r q 

law of logic. h d ucstion is: 
The truth-table which gives the answer to t e secon q 

'L...L r 
T T T 
T T F 
T F T 
T F F 
F T T 
F T F 

[p ::> (q :::> "'r)) ::> [,.._,q ::> (p :::> r)] 
T 
T 
T 
F 

F F T 
F F F 

• • not necessary To determine that (3) cannot validly be inferred from ( 1) it 18 th condition, 
to determine the truth-Yalue of (1) ::> (3) beyond the four of logic. 
The formula "[p ::> (q :::> .......,r)] ::> [,..,_,q:, (p :::> r)]" is not a aw 

t grUillble (b) Given: (1) If Smith is happy, then if he works he does no 
(2) Smith is happy 
(3) He does not grumble. 

What can be inferred as to whether Smith works? 

• the usual It is not necessary to write the truth-table for this problem in iditions 
A f truth-cOJ way. curtailed version consisting of tho array O • of stnte-

t th • h h h • unction d oge er wit t e correlated truth-value T for t, c conJ cglcctc , 
ments suffices for the solution of the problem. Tho F's may be_ n ction is 
since the problem is to determine what follows when tho conJun 
true. For the answer we go back into the truth-conditions: 

P q r [p::)(q::),..,_,r)).p.r 
TTT 
T T F 
T F T T T T 
T F F 
F T T 
F T F 
F F T 
F F F 

W . h the con­• e s~e that the third truth-condition is the only one for whic " ,, to bC 
l";'ct,o~ 01 (1), (2), and (3) is true, and this condition shows t ~toloilY• 
a so. hus the formula 11 { [p ::> ( q ::) ,..,_,r)] . p . r} :, ,.._,q" is a a. or a law of logic. 
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The Axiomatic Method 

There is a further method for selecting from the total class of truth­
f unction formulas those which are laws of logic. This is the axiomatic 
method, which introduces order and system into logic. Roughly speaking, 
the introduction of this method stands to the material of the preceding 
sections as Euclid's Elements stood to geometry in ancient Greece. \Ve 
have so far noted a few of the laws of logic for calculating conclusions 
from premises. The axiomatic method is an exact procedure for deducing 
new laws of logic from premises which are themselves laws of logic. This 
method makes the order of their occurrence their order of deduction within 
a system. A most important advantage of the axiomatic method over the 
matrix method for deciding which statement-forms arc laws of logic is that 
the latter method can only determine this for laws which are truth-functions, 
whereas the axiomatic method does this and more. From suitable premises 
it yields laws which are not truth-functions, i.e., laws which are con­
structed on variables the replacements of which are not statements. An 
example is the logical law which is exemplified by "If not all perfect 
numbers are not odd, then some perfect numbers are odd". 

The Concept of a Logistic System 

In order to develop in a clear-cut way the axiomatic method for 
deriving truth-function laws, it is required to introduce the reader to the 
general notion of a logistic system. To put it briefly, a logistic system 
may be described as an artificial language which, in contrast to natural 
languages, lists separately its primitive symbols and its defined symbols, 
lays down rules for deciding which sequences of symbols are to count as 
syntactically correct sentences, and stipulates what is to constitute a 
correct derivation or proof. The rules and stipulations in every case must 
be effective, that is, be such that a merely mechanical procedure, without 
reference to the meanings of the symbols, leaves it undebatable whether a 
sequence of symbols is properly formed and whether a proof is correct. 

The vocabulary of the truth-function calculus will consist of an 
indefinite list of variables "p", "q", "r", ... ; the operators ",.,.,," and 
"v"; and brackets " (", ")". The term "formula" ~ill mean any combina­
tion of these. Some combinations will be merely ill-formed sequences of 
terms, e.g., "v p", "q ,.,.,,", and hence a syntax or grammar for the logistic 
system is required to settle which combinations are to count as correctly 
formed sentences, or as well! ormed formulas. The language needed to 
discuss this minimal language is called the meta-language. Here it is 
ordinary English together with the syntactical variables II A", "B", etc., 
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I • t we set out the rules for 
which take wellf ormed formulas as values. 11 1 . tl syntax for 
the logistic system. These include formation rules, i.eb 1\ e class of 
the system, the following being sufficient to generate t e en ir 

wellf ormed formulas. 

A variable alone is wellf ormed 
If A is wellformed ,.._,(A) is wellformed d 

' ) • • llf rme • 1f A and Bare wellformed, (A) v (B is we 0 

. . . ·t. ·t'bl bv the above rules or 
No formula 1S wellformed unless It is co?s I ~c 1 c ~ It should be 
is definitionally replaceable by one which IS wellfoI med. . Id state-

} th t they yie noted that although wellf ormed formulas are sue 1 a 11 ,, "r" .. 
• bl "· " q ' ' • ments upon substitution of statements for the varia es P '. less combi-

in expressions which are values of A, B, ... , and never ?1eantgeference to 
nations of symbols, the formation rules are set out w1thou r 

meanings. fi "tionallY intro--
Starting from our primitive symbols and two de m tion rules 

duced symbols "." and "::)", it is readily seen that the forma 
secure that the following formulas are wellf ormed: 

,..._,(p), {"'(p)] v (q), (p) ::) (q), (p). (q).. b the 

] l " derived Y d The formulas "["'(P)1 v (q)" and ",....,![......,(p)] v {,..,_,(q) are,, are obtnine 
use of the second and third rules and " (p) :) ( q)", '' (p) • ( q) . d' ate wba.t 
f ' • t lll IC • rom these formulas by definition The role of brackets is O press10Il 
• 11 d h • t of the ex 
lS ca e t e scope of the operator, i.e., the part or par s . e nega.tes, 
which the operator governs. In "{,....,(p )] v (q)", 11 ,,....,11 governs, 1• ·:,,..,[ (p) v 
"( )" hil " " • d "( )" In of P , w e v governs, 1.e., disjoins, "[,....,(p)l" an q • he scope 
(q)]" the scope of ",.,.,," is the disjunction "(p) v (q)", and. t t be well' 
"v" is "(p )", "(q)". Without brackets a formula ma.Y fail t 00f ''r" in 
~?rmed; thus, it is impossible to say what is the anteceden 11 dispense 
~ ::) q::) r" • However, for typographical simplicity we s~a le vnria.ble 

wit~ brackets within wellformed formulas if A stands for a sUlg cssioO of 
or Its negation; and except where",....,," prefaces a bracketed exPrf nowing 
more than one variable we shall replace brackets by dots. The -~ e,cteod 
are the conventions for the use of dots: the scope of an operator "'1 ::> • r''' 
backward or forward past a lesser number of dots as in ''p :J q,; pots 
and up to a gr t b ' , r • sa • s • oP' ea er num er of dots as in "p :) q , ...J • • d to c 
~s~d to _punctuate will extend past ~n equal number of dots use · oiP -«ill 
Jom as m "p ...._ ,, ed to conJ 11,d 
b '. • ._J • q • r • And the scope of a single dot us r'' re 

e wider than th t f • ''p :J q, ' 11, :) , a O any unpunctuated operator, as ID 
P q and 'r' are both true" Jlla,tioP 

rul AmongSt ~vellformed form~las constructed according to the f ::1ogou5• 
es, some will be t' d me tau inst Th 1 . t· con mgent, some inconsistent, an so f the 

1 e og;hic sy~tem to be set out consists solely of formuln.s ;. covering 
c ass. e axiomatization of this class is accomplished by is 
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a small number of tautological formulas from which by the use of certain 
rules of inference all the remaining tautologies can be derived, and only 
those. Whitehead and Russell's famous Principia Mathematica takes five 
formulas for its axioms, one of which was proved to be redundant and is 
omitted here. These, instead of being stated exclusively in terms of ",....," 
and "v", are stated with the help of":)", which is introduced by definition. 
They are 

pvp.:).p 
q.:).pvq 
pvq.:).qvp 
q :) r . :) : p v q . :) . p v r. 

The reader may verify by the matrix method that these are all tautolo­
gies, true for any "p", "q", "r". Theorems, all of which are tautologies, 
are deduced from these by means of two rules of inference within the 
logistic system. As in the case of the formation rules for wellf ormed 
formulas, these transformation rules are in the meta-language. They are: 

I From A, the result of substituting B for each occurrence of the same 
variable in A may be inferred (rule of substitution) 

II From A and A:) B, B may be inferred (rule of modus ponens). 

The Propositional Calculus 

The system for deriving tautologies as set out above is often called the 
propositional calculus. Various alternative sets of axioms have been 
discovered which serve the same purpose as the Principia set, and, as is 
to be expected, formulas which are axioms in one system appear as theorems 
in the others, the totality of tautologies thus being the same in each 
system. One such set, from the Polish logician, J. Lukasiewicz, to be 
presented at some length here, consists of three axioms stated solely in 
terms of ",..,_," and ":)". The rules for the formation of ,vellformed 
formulas using ",....," and "v" are easily restated for ",...,," and ":)", and 
"v" is definitionally introduced: 

(A) v (B) = Df. ,.,_,(A) :) (B). 

The rules of logistic inference are the same as those given above, and their 
use to deduce theorems will be explained shortly. The axiom set is 

(1) p :) q . ::> : q ::> r . ::> . p ::> r 

(2) ,....,p :) p . :) . p 

(3) p . :) . ,...,,p :) q 

We proceed now to explain and illustrate the use of the two rules of 
inference for deriving theorems. The rule of substitution, I, is justified by 
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the fact that a formula's being tautologous is equivalent to its holding for 
any values of its variables, no matter what their form is. Thus, for example, 
"p . ::> . ,...,,p ::) q" holds for negatfre statements, implicative statements, 
disjunctions. This means that the forms of such statements may be sub­
stituted for the variables to yield new theorems. It is co1n-enient to write 
proofs in a set form. The theorem to be proved is stated first, and the 
demonstration is set out below it. A substitution made on a variable, 

say "p" for "q" in a formula A, is indicated by writing "A, ~]". The re­

sult of the substitution immediately follows the bracket. We proceed to 
demonstrate theorems (4) and (5). 

(4) ,...,,p. ::> . ,...,,,...,,p ::> q 

,...,p] (3), p ,...,,p . ::) . ,...,,,...,,p ::) q 

(5) p . ::> : ,-..,,p . ::> . p ::> q 

(3), P ~ q] P . ::> : "'P • ::> · P ::> q 

Two conditions are placed on substitutions, which if violated give 
illegitimate results. Substitutions, several of which may be made simul­
taneously, are on variables alone. The same substitution must be made 
for the same variable throughout. Replacement of one complex expression 
by another is allowed only when they are definitionally identical. For 
example, "p v q", which is by definition the same as '',,.._,p:) q", can replace 
",...,p :) q" in (3) to yield 

(6) p . :) . p V q 

But definitional replacement can be made only of implicative forms having 
an antecedent prefaced by at least one negation sign, e.g., 11 ,-..,,,-..,,p ::> q" b?" 
""'P v q", but not "p ::> q" by ",_,p v q". Unlike substitution on van­
ables, replacements of this sort need not be made for every occurrence of 
the expression to be replaced. This is permissible because the interchange 
of definitional identities merely yields an expression which says the same 
thing in different terms. 

(7) p . ::) . r,.,p ::> p 

(8) p V p . ::) . p 

(2), Df.] p v p . ::> . p 

(9) p . :) . p V p 

Formulas (4) through (9) arc the first theorems in the system, derived by 
rule I and the definition. \Ve now illustrate the use of rule II, modus 
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poncns, which allows us to detach a consequent from an implication whose 
antecedent is an axiom or a proved theorem. 

(IO) p ::> p 
(1) ,...,_,p ::> q' p_] 

' q r 
p . ::> . ,...,_,p ::> q : ::> : . ,...,_,p ::> q. ::> . p : ::> . p ::> p (a) 

(3), (a), II] ,.._,P ::> q. ::> . JJ : ::> . p ::> p (b) 

(b), ~] ,...,,p:) p. :) . p : :) • p ::> p (c) 

(c), (2), II] p ::> p 

(11) p V ,...,,p 

(10), ,...,,:] ,...,,p ::> "'P 

(a), Df.] p v "'P 

(12) "'P :) P • :) • "'P :) q 

(1), ,...,,p:) p' P.J 
p q 

(a) 

,...,,p :) p . :) • p : ::> : . P ::> r . ::> : "'P ::> p . ::> . r (a) 

(2), (a), II] p ::> r. ::> : ,..._,p ::> p.:). r (b) 

,..._,p:) q] 
(b), r P • ::> . ,..._,P ::> q : ::> : ,..._,P ::> P • ::> . ,..._,P ::> q (c) 

(3), (c), II] ,..._,P ::> p . ::> . "'P :) q 

Of the theorems that follow, a number are stated ,vithout proof. 
Their proof will provide an exercise for the reader, and in some cases hints 
as to procedure are given. 

(13) p V p . ::> . p V q 

(14) ,..._,p ::> q . ::> . ,..._,q ::> q : ::> : p . ::> . ,..._,q ::> q 
HINT: In (1) put ,..._,p ::> q for q, ,..._,q ::> q for r, and use (3) 

(15) ,..._,q :) ,..._,p . ::> : p . ::> . ,..._,q ::> q 
HINT: In (1) put ,..._,q:) ,..._,p for p, ,..._,p:) q. :) . ,..._,q:) q for q, 

p . :) . ,..._,q :) q for r 
In (1) put ,..._,q for p, ,..._,p for q, q for r. Use II, then (14) 

(16) ,..._,q ::> ,..._,p . ::> : . ,..._,q:) q. :) . q : ::> . p ::> q 
HINT: In (1) put ,..._,q:) ,...,,p for p, p. ::> . ,...,,q:) q for q, ,..._,q ::> q. 

:) . q : :) . p :) q for r. Use (15) and II 
In (1) put ,..._,q:) q for q, q for r 
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(17) q. :::, : . _,q :) q . :::, . q : :, . p :, q 

HINT: In (1) put q forp, _,q:::, "'P forq ,...., . :::, :) 
for r. Use (3), II, (16) ' '1 :> '1 • :::, • q • • P 

(18) p. :::, : _,q:::, q. :::, . q 
HINT: In (17) put _,q:::, q.:::, . q for q 

In (2) put q for p, use II 
In (2) put ,...,q:::, q •:::, • q for p, use II 

(19) _,q:::, q. :::, • q : :, • P :) q : • :) : --(p :> q) . :> . p :::, q 
mNT: In (1) put ,...,(p:, q) for p, ,....,q:) q. :, . q for q, p :::, q for 

In (18) put ,...,(p :, q) for p, use II 

(20) _,q :::, q . ::, . q : :, . p :::, q : . :, . p :::, q 
mNT: In (1) put ,...,q :) q. :) . q : :) . p :) q for p, ,-..,(p ::) q) · : 

• p :::, q for q, p :::, q for r. Use (19) and II 
In (2) put p :) q for p 

(21) q . :) . P :::, q 

(1) - I ___,:::..=,....:..,__--=_. _ ___,;. __ I 
q _,q :::, q . :::, . q : :, . p :::, q p ::, q] 

Ip q T 

(17) . :) : . (20) . ::, : q . ::, . p :::, q (a 
(17), (20), (a), II twice] q.:) . p:) q 

(22) q . :) . p V q 

(23) _,q:) _,p · ::, · P :) q 

,_,q ::> ,_,p ,_,q ::> q • ::> • q ; ::> • p :::, q I p ::> q] 
(1), p , q r 

(16) . ::, . (20) :::, (23) (a 
(16), (20), (a), II twice] _,q ::> --p . ::> . p ::) q 

(24) ~ . ::, . p ::, q 
,_,p r,Jq ::, r,Jp 

(1) I - I ----=----=-- ' 
p q 

r,Jp . ::, . r,Jq ::, ,_,p : ::> : . ( 
,_,q ::> ,_,p . ::> . P ::> q : ::> : ,_,p . ::> . p :::, q a. 

r,Jq r,Jp] -(21) - I - r-.Jp • ::, ',_,q ..J p 
I p q 

(23), (a), (b), II twice] ,_,p • ::> • P ::> q 

(25) p ::) q . :) . p : ::) · P 

(21), P ::, q ~::, • P , ~] P • ::J : • P ::, q • ::, • P = :) . p (a: 
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(1), !l., p:) q] q.::). p :::> q : :::> : • P:) q • :::> • r::) • q:) r (b) 
p q 

(21), (b), II] p:::, q. :::> . r : :::> • q:) r (c) 

( C)' p :) q • :) • p ' -eJ 
q r 

P . :) : P :::, q . :::, . P : . :) . P : : :) : • P :) q • :) • P : :) • P (d) 
(a), (d), II] p:) q. :::> • P : :) • P 

(26) ,_,,_,p :) p 

(1), ,_,p , p :::, q] 
p q 

,_,p . :) . p :::, q : :) : . p :) q . :) . r : :) . ,_,p ::> r (a) 
(24), (a), II] p:::, q. ::) . r : :::> • ,_,p ::> r (b) 

(b), ,_,P, E, '!!.] "'P:::, p.:) • p : ::> • "'"'P ::> p (c) 
p q r 

(2), (c), II] ,_,,_,p :) P 

(27) ,_,p V p 

(28) ,_,,_,q . :) . p :) q 

(1), ,_,p ' p :) q] 
p q 

,_,p . ::, . p ::, q : :) : . p :) q . ::> . r : :) . ,_,p ::> r (a) 
(24), (a), II] p ::, q. :) . r : ::> . ,_,p ::> r (b) 

(b), ,_,q' ,_,P' P ::, q] 
p q r 

,_,q :) ,_,p . :) • p :) q : ::) : ,_,,_,q • ::) • p ::) q ( C) 
(23), (c), II] ,_,,_,q . :::> . p :) q 

(29) ,_,(p:) q) . :::> . p 

(1) ,_,p, p :) q] 
' p q 

,_,p . :::, . p :::, q : ::, : . p ::> q . :) . r : ::> . ,_,p ::> r (a) 
(24), (a), II] p :::> q. ::) . r : :) . ,_,p ::> r (b) 

(b) p :::, q ' P. , -eJ 
, p q r 

P :) q. :) . P : :::, . P : . ::, : ,_,(p ::, q) . ::, . P (c) 
(25), (c), II] ,_,(p ::, q) . :::, . p 

(30) p ::) q . :) , P : :) . q ::) p 
mNT: In (1) put p ::> q. ::, . p for p, p for q, q:) p for r. Use (25), 

(21) 
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(31) p . :::> . p :::> q : ::> . p :::> q 
HINT: In (1) put p ::> q for q, q for r 

In (25) put p :::> q for p 
In (1) put p . ::> . p ::> q for p, p ::> q . :::> . q : :::> . p ::> q for 

q, p :::> q for r 

(32) p . :::> : p :::> q . :::> . q 
mNT: In (1) put p ::> q for p, p for q, q for r 

In (31) put p :::> q for p 
In (1) put p ::> q. ::> . p for p, p :::> q. :::> : p :::> q. :::> . q for 

q, p ::) q . ::) . q for T 

In (21) put p :::> q for p, p for q 
In (1) put p :::> q. ::> . p for q, p :::> q . :::> . q for r 

(33) p . ::> . q ::> r : ::> : q . :::> . p :::> r 

(1) p ::> q • ::> • q] 
' q 

p . ::> : P ::> q . ::> . q : . ::> : : p :::> q . :::> . q : :::> . r : . ::> . p ::> r (a) 
(a), (32), II] p ::> q. ::>. q : ::>. r : . ::>. p :::> r (b) 

q r p :::> r] . . . ---. (c) (b), - , - , -- q :::> r . :::> . r . ::> . p :::> r .. ::> . q . :::> . p _J r 
p q T 

(1), q ~ r] p . :::> . q :::> r : ::> : . q :::> r . ::> . r : ::> . p :::> r (d) 

p.:).q:)r q::)r.:).r::).p::)r q.::).p:)r] 
(1)1 --------- I-------- I ----

p q T 

(d) . ::> : : (c) . ::> : . p . ::> . q :::> r . ::> : q . :::> . p ::> r (e) 
(d), (c), (e), II twice] p . :::> . q ::> r : ::> : q . :::> . p :::> r 

(34) q :) T • :) : p :) q . :) . p :) T 

(33), p :::> q, q ::> r, P ::> r] p :::> q. :::> : q :::> r . ::> . p :::> r : . ::> : · 
p q T 

q::)r.:::> :p::)q.::).p:)r (a) 

(I), (a), II] q :::> r. :::> : p :::> q. ::> . p :::> r 

(35) q:) T • :) : p V q. :) . p VT 

"'P ] • (34), p, Df. q ::> r. ::> . p v q. ::> . p v r 

(a) 
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(26), (a), II] q:) ,...,P . :) . ,...,,...,q:) ,...,P 

q :) ,...,p ,...,,...,q :) ,...,p p :) ,...,q] 
(34), -- , ----, '----

p q r 

25 

(b) 

,..,,,...,q :) ,...,p . :) . p :) ,.._,q : :) : . q :) ,...,p . :) . ,.._,,...,q :) ,...,p : 
:) : q :) ,...,p . :) . p :) ,...,q (c) 

,.._,q] (23), q ,..,,,...,q :) ,.._,p . :) . p :) ,...,q (d) 

(d), (c), II] q:) ,...,P. :) . r-J,.._,q:) ,...,P : :) : q:) ,.._,P . :) . 
p:) ,-.Jg (e) 

(b), (e), II] q:) ,...,p. :) . p:) --q 

(37) p :) ,.._,,_p 

HINT: Use (36), (10) 

(38) p :) q. :) . ,...,q:) ,...,p 

(34), ,.._,,.._,;] q:) ,...,,.._,q. :) : p :) q. :) . p :) ,.._,,..,,q 

(37), (a), II] p :) q. :) . p :) ,.._,,..._,q 

(36), r-Jq , '!!.] p :) ,..,,,.._,q . :) . ,...,q :) ,...,p 
p q 

(a) 

(b) 

(c) 

p :) q p :) ,..._,,_q ,...,q :) ,...,p] . . 
(!),--,---,--- (b) .:) .. (c) .:) .p:)q. 

P q r :) . ,...,q :) ,...,P (d) 

(b), (c), II twice] p:) q. :::> . ,...,q:) ,...,p 

,...,p :) q ,...,p :) ,.._,,...,q _,...,-=-q_:)_,...,_~--=-] 
(1), ---- ' ----' 

p q r 

(b) . :) : . (c) . :) : ""P :) q . :) . ,_,q:) """"P (f) 
(b), (c), II] ""P :) q. :::> . "-'q:) ,..,,,_,p (g) 
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(1), --- ' ____ ___;;_ ' _::____:_ 
,.._,p :::> q ,.._,q :::> ,.._,,.._,p ,.._,q :::> p] 

p q r 

(g) · ::> : . (e) . ::> : ""'P ::> q • ::> · ,.._,q :::> p (h) 
(h), (g), (e), II twice] ~ ::) q . ::) . ,.._,q ::) p 

( 40) p :::> ,.._,p . ::) . "'P 

(34), : , ,.._,p :::> p, '!!] ,.._,p :::> p . ::) . p : ::> : . r . ::) . ......,p ::> p : 
P q r ::> . r ::) p (a) 

(2), (a), II] r. ::> . ,.._,p ::> p : ::> . r ::> p (b) 

,.._,p p :::> ,.._,p] (b) I - I ;;;___...;;... p :::> "'P . ::> . ,.._,,_,p ::) ,.._,p : ::> : p ::) ~ . 
p r ::) . "'P (c) 

,.._,p] (38), q p :::> ......,P . ::> . ......,,.._,P ::> ~ (d) 

(d), (c), II] p ::) "'P . :::> . ,.._,P 

(41) p V q. ::) . q V p 
(39), Df.] p V q. :) . q V p 

Properties of the Postulate Set 

With the last theorem, together with theorems (8), (22), and (35), 
we have proved or have indicated the proofs of all the postulates of the 
calculus of Principia Mathematica. And it is in fact the case that the 
latter postulates are adequate for proof of those of the present system. 
Our proofs might have been simplified if we had first derived from the two 
rules of inference a further rule, the so-called deduction theorem. But such 
a derivation lies beyond the scope of this introduction to logic. The 
proofs of two important properties of the set of postulates, namely, that it 
is consistent and complete, cannot be gone into here either. To prove 
consistency of the present set is to show that there is no wellf ormed formula 
A such that both A and ,..._,A are provable. To prove completeness is 
to show that any wellformed formula A is either itself a theorem or its 
addition renders the set inconsistent. Showing this is equivalent to demon­
strating that the postulates are adequate for the derivation of every 
tautology, including those expressed in terms of "." and "= ", once these 
symbols are introduced by definitions. The two meta-theorems, that every 
tautology is a theorem and that every theorem is a tautology, together 
with the fact that in the matrix method we have an effective procedure for 
deciding in the case of every truth-function whether it is a tautology, 
provides us with a solution of the so-called decision problem. This is the 
problem of finding an effective procedure for deciding whether any given 
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formula is a theorem of the system. In the case of the logistic system we 
call attention to in Part II this problem cannot be solved. Another, 
relatively unimportant, property of our present set is that it is independent, 
that is, that no postulate is derivable from any combination of the others. 

EXERCISES 

I. Re-express each of the following (a) in terms of "v" and ",....,,', (b) in terms of "." 
and "~", (c) in terms of ":::)" and "~": 

p a (q :::) r), ~p:::) [~q. (rvs)]. 

2. Carry out the indicated process of negating until no negation sign remains outside 
any pair of brackets: 

~[~p:::) (~r. t)), ~( (p):::) [(q a r) v ~s)I. ~(p:::) [(q. ~r):::) (s:::) ~t))I. 

3. Show which of the following are equivalent and which are not: 

(p. q) :::) r, (p. ~r):::) ~q, ( ~p :::) q) :::) r, r:::) (~p. ~q). 

4. Express the exclusive sense of "or" in terms of"~", "v", and".", and in terms of 
"~" and "v" only. 

5. (a) Given: 1. If it is true both that Diogenes is a cynic and does not like human 
beings or else true that he likes to call attention to himself, then he 
is an irritating person 

2. If he docs not like to call attention to himself, then his search for an 
honest man is not a sham 

3. He is not an irritating person. 
What, if anything, can be inferred (1) as to whether his search for an honest 
man is a sham, (2) as to whether he is a cynic? 

(b) Given: 1. If Francis Bacon wrote "Hamlet", then if Shakespeare was a great 
intellectual, he was the author of "New Atlantis" 

2. If Shakespeare was a great intellectual, then he had deep insight into 
human nature and he was not given to fanciful speculations about 
utopias 

3. If Shakespeare had deep insight into human nature, he was not the 
author of "New Atlantis" 

4. Shakespeare was a great intellectual. 
Question: Did Francis Bacon write "Hamlet"? 

(c) Given: 1. Either Demetrius, Gregory, or Stepan stole the necklace 
2. If Gregory stole the necklace, then if Lady Mayfair was at the 

masked ball, then Gregory's beautiful accomplice was also there 
3. If Gregory's beautiful accomplice was at the masked ball, Inspector 

Bull saw her 
4. If Lady Mayfair was at the masked ball, then Inspector Bull was 

present and watchful 
5. If Inspector Bull was present and watchful, he did not see Gregory's 

beautiful accomplice 
6. Lady Mayfair was at the masked ball 
7. If Inspector Bull was present and watchful, Demetrius did not steal 

the necklace. 
Question: Who stole the necklace? 
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6. Which of the following nre valid, and which nre invalid? 

p:::) (q:::) r) 
p. ~r 

~q 

(p ::) q) ::) (r. 8) ~ ::) ( q ::) "'7") 
r 

pv~qvr p 

(p V ~q) V (r = 8) 

~p.q 

~rV8 

~[(p = ~q). (r. a)) 
p.~q 

~r 

7. Give the truth tables for 

(p:::) q) :) (p :) (~q :) r)), p. ~[q :) (r:::) q)), p v ~[q:::) (r:::) q)), 

~I (p = ~q) ""'ICP:::) ~q). (~p:::) q))I. 

Which is tautologous, which contingent, nod which contradictory? 
8. Duality: The dual of a truth-function formula F is obtained by interchanging 

conjunction and disjunction throughout F, i.e., by replacing A . B everywhere 
by Av B and Av B by A. B. Thus, the dual of "~(p v q v ~r. ~s)" is 
"~(p. q. ~r. v. ~s)", the dual of "(p. ~q. v. r) v ~(~s. t)" is "(p v ~q. r) • 
~(~s v t)". The dual of "p :::) q" is "~p. q", of "p :::) q. :::) . r. s" is"~("']}. q) • 
rv s". 
State the duals of: 

p V ~(q. ~r. V, 8 :::) L), ~ . :) : q . a . r . s, q :::) r . :::) : p v q . :::) . p v r, 

Ia the negation of the dual of n tautology itself a tautology? 

'P :::) ~q . :::) . q :::) ~p, q :::) r . :::) : p :::) q . :::) . p :::) r. 

Is the negation of the dual of a contradiction itself n contradiction? 

p.r :p:::) ~r, ~(p. q. :::) . 'P :::) q). 



[ II ] 

Quantification 

Inferences which are made in terms of the ideas discussed in Part I 
do not exhaust all possible inferences. The following inferences will 
readily be seen to be formal, and they involve further terms not definable 
by our earlier terms. Given the premises 

If anyone is a gambler, then he likes to handle money 
and 

There is someone who is a gambler and is not avaricious, 

we may inf er the conclusion 

There is someone who is not avaricious but likes to handle money. 

And from the single premise, 

Some even numbers are less than every number greater than the 
smallest odd prime, 

we may infer 

It is not the case that for every even number x there is a number 
which is greater than the smallest odd prime and not greater than x. 

An examination of these two deductions makes it clear that their valid­
ity hinges on more than just the terms ".......,", ":)", etc. The terms 
"any", "every", "there is", "some" also play a role, and are terms which 
occur as parts of formal statement-forms, i.e., they are themselves for­
mal terms. In fact "every" and "some" were used in Part I, but not 
in an explicit way. Saying that "q. :) . p :) q" has universal validity 
and that ".......,q. :) . p:) q" does not are other ways of saying, without 
explicitly heralding the terms "every" and "some", that every substi­
tution on "p" and "q" in "q. :) . p :) q" yields a truth, and that some 
substitutions on ".......,q. :) . p :) q" do not yield truths. But there 
is an important difference between the use of these terms in connec­
tion with the statement-forms explicated in Part I and their use in the 
above two examples. In "for every p, q, q . :) . p :) q" and in "for some 
p, q, .......,q . :) . p :) q", "every" and "some" operate on terms within 

29 
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statement-forms which are themselves statement-forms, whereas in the 
above two examples the terms within the statement-forms on which they 
operate are not themselves statement-forms. Of these terms no mention 
either explicit or implicit has yet been made. How the operators "every", 
"any", "some", called quantifiers, function remains to be explained. 

The Universal Quantifier 

Compare the statements 

If Vladimir is a gambler, then Vladimir likes to handle money 
If anyone is a gambler, he likes to handle money. 

The difference between them is obviously one of generality. The second 
is a generalization of which the first is a concrete instance. How the two 
are related can best be seen by replacing the proper name in the first by 
a row of dots, to obtain 

If. . is a gambler, then ... likes to handle money. 

The components of this form, ". . . is a gambler", ". . . likes to handle 
money", are statement-forms, although not formal ones; and they are not 
truth-functions. If the non-formal terms "gambler" and "likes to handle 
money" are deleted, the result is a statement-form made up of statement­
forms the components of which are not statement-forms. In fact we have 
arrived at a kind of formula which uses two new and different types of 
variables, called individual variables and predicate or Junction al variables. 
The formula " ... is - - -" is a form possessed in common by a whole assem­
blage of statements: 

Vladimir is a gambler 
Jones is avaricious 
Pascal is a mystic. 

The standard convention for l"Cpresenting the form of these is to use the 
letters "x", "y", "z", ... as individual variables and "!" "g", "h", ... as 
functional variables. The formula " ... is ___ ,, become~ "x is J", which 
is written 

fx. 

Writing the form of "Vladimir is a gambler" as "fx" and of "Vladimir 
likes to handle money" as "gx", the form of "If Vladimir is a gambler, 
then Vladimir (is a person who) likes to handle money" becomes 

(1) fx::) gx. 
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The form of "If anyone is a gambler, then he likes to handle money" can 
now be seen to be a generalization on the same formula, (1), of which 
"If Vladimir is a gambler, he likes to handle money" is an instance or 
specification. The generalization is (1) prefaced by the so-called universal 
quantifier "(x )", and written 

(2) (x) (fx :::> gx). 

In (1) the variable "x" (and also "f" and "g") is not prefaced by a quan­
tifier and is said to be free. Given that "f" and "g" are fixed, substitutions 
made on "x" will yield a variety of statements. In (2), however, "x" is 
quantified and is said to be bound. No substitutions may be made on 
"x" when "x" is quantified. 

The statements of the following list are taken by logicians to be equiv­
alent in import to "If anyone is a gambler, he likes to handle money", 
and therefore are counted as exemplifying formula (2): 

For any x, if xis a gambler, x likes to handle money 
Every gambler likes to handle money 
Each gambler likes to handle money 
All gamblers like to handle money. 

The Existential Quantifier 

Consider the pair of statements 

Vladimir is a gambler 
There is at least one gambler. 

Again, as in the case of the first pair of statements, the difference between 
these two is one of generality: the first conveys more specific information 
than the second. Along with the second the following statements are 
taken by logicians to be equivalent in import: 

There is an x such that x is a gambler 
There exists at least one gambler 
Some x's are such that x is a gambler 
Someone is a gambler 
Gamblers exist 
There are gamblers. 

The form of each of these is 

There is an x such that fx, 
or equivalently, 

Some x's are such that fx. 
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Logicians replace both "there is an x" and "for some x's" by the symb< 
"(3x)", and give as the form of the above statements 

(3x)f.--c. 

All of them are restricted generalizations on the formal function "fx" 
of which "Vladimir is a gambler" is a concrete instance. "(3x)" is callee 
the existential quantifier. Like the universal quantifier, it binds the vari 
able "x" in any formula "fx" falling within its scope. 

It might be supposed that the formal function generalized by thE 
universal and existential quantifiers in "All .f's are g" and "Some f's an 
g" is in each case an implicative, or conditional. That is, it might be 
thought that the form of "Some gamblers are avaricious" is given by 
"(3x)(fx::) gx)", just as that of "All gamblers arc avaricious" is given 
by "(x) (fx ::) gx )". But this is a mistake. The formula "(3.i; )(f-r ::> gx) ", 
which says that there is an x such that if x is f, x is g, could be true if 
nothing were f. However, "Some gamblers are avaricious" states that 
there are gamblers, and it is thus to the effect that there is someone who 
is both a gambler and avaricious. Its form is rendered by 

(3x) (fx. gx). 

Just as in ordinary usage "and" has more than one sense (e.g., in "You 
steal and you will be arrested" it has the sense of "If you steal you will be 
arrested"), so the verb "are" has a number of senses, two of which are 
given by "::)" and ".". 

A statement to the effect that no f's are g denies that there is some­
thing which is both f and g, that is, it is the negation of "(3x)(f-r. gx)". 
Like "Some f's are g", it is also a generalization upon a conjunction: 

,..._,(3x) (fx. gx). 

The following statements are regarded by logicians as being synonymous, 
and hence as exemplifying ",_, (3x) (f x . gx)": 

No gamblers arc wealthy 
Nothing is a gambler and wealthy 
There does not exist an x such that x is a gambler and x is wealthy 
There are no gamblers who are wealthy 
Wealthy gamblers do not exist. 

It is to be noted that the scope of ",...._," in the above schema is the 
~ntire expression. The difference between "No gamblers are wealthy" and 

Some gamblers arc not wealthy" is that the scope of ",...._," in the second 
statement is merely "x is wealthy": 

(3x)(fx. ,...._,gx). 
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'urther, whereas the first denies the existence of a wealthy gambler, 
11e second asserts the existence of a non-wealthy gambler. In ordinary 
:nglish the scope of "not" is of ten ambiguous unless the context of the 
tatement is given. For example, "All women are not ambitious" is open 
o either of the two interpretations: "Not all women are ambitious" (i.e., 
'some are not ambitious") and "No women are ambitious". On the first 
nterpretation its form is given by the above formulation. On the second 
nterpretation its form is given by ",...._,(3x)(fx. gx)", and equally by 

(x) (fx::) ,..._,gx), 

:ead "all f's are non-g". It is intuitively obvious that "No women are 
1mbitious" and "All women are non-ambitious" say the same thing. 

The Categorical Statement-forms 

The four statement-forms, "All f's are g", "No f's are g", "Some f's 
are g", and "Some f's are not g", were treated as fundamental in traditional 
logic and were assigned special names supposedly descriptive of their logical 
features. They were customarily designated by the letters A, E, I, 0, 
the first two vowels in "affirmo" designating the "affirmative" forms, 
the two in "nego" designating the "negative" forms. 

A, universal affirmative (x)(fx ::> gx) 
E, universal negative ,..._, (3x) (fx . gx) 
I, particular affirmative (3x)(fx. gx) 
0, particular negative (3x)(fx. "-'gx). 

Statements of these four forms were called categorical, by which was 
meant that they unqualifiedly affirm or deny a predicate of a subject, 
although, as modern analysis shows, they arc not subject-predicate state­
ments. The I and O forms will be recognized as quantified conjunctions 
of terms. And the A is a universally quantified conditional, the relation 
between its terms being implication rather than predication. The E form 
of statement is most naturally read as the negation of a quantified con­
junction, but as will be shown later it can be rewritten as a quantified 
conditional. 

In connection with the A form of statement it is of some importance 
to see how the associated "only if ... " form of statement is to be written: 
"(x) (only if fx then gx)". When the A form "(x) (if fx then gx)" holds, 
"fx" is said to be a sufficient condition for "gx". In turn "gx" is said to 
be a necessary condition for "fx": "(x) (if "-'gX then "-'fX )". Hence to state 
that "fx" is a necessary condition for "gx" we write "(x) (if --fx then 
,..._,gx)"; and "(x) (only if fx then gx)", or "only f's are g", may be ex­
pressed in our notation 

(x) ( ,_,f x ::> "-'gX). 
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. ffi • t dition for ", To state that "fx" IS both a necessary and a su cien con 
for all values of "x", we write 

(x) (f x :::) gx . ,-...,J x :::) ,-...,gx), 

which becomes 
(x)(fx = gx). 

The Square of Opposition 
h t stand to eat 

Statements of the A, E, I, and O forms were thoug t O th square, 
other in a number of logical relations given by what was c~Ue~ e ch th£ 
opposition. A and E statements were considered contraries, i.e., s~ts wet 
they could be jointly false but not jointly true. I and O ~t~t~e true bu 
asserted to be subcontraries, i.e., such that they could be JOlD ybe contra 
not jointly false. The pairs, A and O, E and I, were taken to Fina.UY 
dietaries, which under all conditions have opposite truth~val~es. eant tba.l 
A was held to be superimplicant to I, and E to 0, by wlnch is xn e fa,ils to 
A implies I, and E implies 0, but that the converse in each cas 
hold. The traditional square was given in the form 

A contraries E 

FIGURE 1. 

. h f ollo"ring 
Of the various relations asserted to hold on this square, t e 

are of special importance: 

and 
(1) A= "'O, 

(2) A :::) I, E :::) 0. 
h tber, 

These two t f 1 . . ·th eac O t se s o re ations turn out to be inconsistent -Wl (1) tho. 
and lo f h • gs· d th c~ ~g t e source of the inconsistency shows two thin b t A. e.Il 
Ee traditional square is a composite of two squares, and (Z) ~ a l's 11,11d 

0 , statcments, taken as the contradictories of the corresP0nding 
s, can be jointly true. d :B 

It may t b • . h' k of A. 11,Il 
possibl b .' 0 egm with, be somewhat unnatural to t in ose that 
statem!nt emg true together. But it is entirely natural to sUPPh11,t there 

s of the I and O forms, that is, statements to the effect t 
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is something which is both f and g, and statements to the effect that there 
is something which is both f and not g, imply statements of the form 
"Something is f": I :::) (3x )fx, 0 ::) (3x )fx. For example, the statements 
"Some flowers are perennials" and "Some flowers are not perennials" 
both plainly imply that there are flowers. If, however, in conformity 
with (2), a statement of the A form is taken to imply a corresponding 
statement of the I form, and the same for E and 0, then by the truth­
function tautology "p ::) q . q ::) r : ::) . p ::) r", both A and E will imply 
"(3x)fx". We then have the following conjunction of implications: 

A::) (3x)fx. E:::) (3x)fx. I::) (3x)fx. 0::) (3x)fx. 

According to (1), at least one (in fact exactly two) of the antecedents of 
this set of implications will be true, and since "(3x )fx" is a consequent of 
each of the antecedents, it will have to be true. The argument can be 
written in the following form: 

A::) (3x)fx. E::) (3x)fx. I::) (3x)fx. 0::) (3x)fx 
A v E v I v 0 

(3x)fx 

It is not difficult to see that this consequence lands us in an absurdity. 
This is that any statement of the form "(3x )fx" is provable by logic 
~lone, and its denial ",..._,(3x)fx" disprovable by logic alone. For since it 
is a consequence of each of a pair of contradictory statements, one of 
which must be true it will have to be true under all possible conditions, 

I 

and its denial will have to be false under all possible conditions. It will 
be recognized, of course, that statements like "Ghosts exist" and "Some­
thing is a whale" can have either of two truth-values, and similarly for the 
statements "Ghosts do not exist" and "Nothing is a whale". If we take 
this fact into account and allow as logical sanity requires, that state­
ments of the form ",..._,(3x)fx" ~ould, possibly, be true, contradictions 
break out in the traditional square. By the truth-function tautology 
"p ::) q • ,....,q . ::) . ,_,p", we see that each of the following is valid: 

Hence, 

A ::) (3x )fx . ,.._, (3x )f x . ::) . ,..._, A 
E::) (3x)fx. ,..._,(3x)fx. ::) , ,.._,E. 

A ::) (3x )f x . E ::) (3x )f x . I ::) (3x )f x . 0 ::) (3x )fx 
,_, (3x )fx 
,...,A . ,_,E . ,_,J . ,_,Q 

The contradictions can perhaps be seen most clearly if ,.._,Q and ,.._, I are 
replaced by their equivalents, A and E, when the last line becomes 

,_,A . ,_,E . E . A. 
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It is evident that allowing the possibility of statements of thE 
",....,(3x)fx" being true entails a contradiction only if both sets of rel 
(1) and (2) hold for the same quadruplets of statements. If one 
set is dropped no contradiction results. The conjunction of ",..._,(: 
with (1) implies no contradiction unless (2) is added to the conjun 
and its conjunction with (2) implies no contradiction unless (1) is a 
This would seem to show that the traditional square is really a com] 
of two squares, one of which consists of the diagonals and the otl 
the sides. These when superimposed on each other generate a conti 
tion. 

Taken as the contradictory of 0, A does not imply I, and takt 
the superimplicant of I, it is not the contradictory of 0. Similarly J 
with respect to its related I and 0. Thus the A form that implies I ca 
be the same as the A form that is the contradictory of 0. The ,_,of 
to the effect that there does not exist something which is f and not g, 
not imply the corresponding I, although ,..._,0 conjoined with "(3x)fx" 
imply I. Consequently the A form which implies the I is a conjunc 
of the contradictory of 0 with "(3x )f x". The so-called A form thus t 
out to be a composite of two A forms: one the simple ,-,Q, the 101 
force of which is to deny existence, and the other, ,-...,0 in conjunction 1 

"(3x)fx". The same consideration applies to the composite E on 
square of opposition. In modern logic A is taken to be ,..._,o and E tc 
"'I, and what may be called the conjunctive A and E are assigned 
special code letters. 

Statements of the A, E, I, and 0 types can now be equivalei 
written in two ways: 

A, (x)(fx::) gx) ,_,Q, ,-,(3x)(fx. ,..._,gx) 
E, (x)(fx::) ,_,gx) ......... J, ,...,_,(3x)(fx. gx) 
I, (3x)(fx.gx) ""E, ,...,_,(x)(fx::),...,_,gx) 
0, (3x)(Jx. ""OX) ,_,A, ,-...,(x)(fx::) gx). 

That A and E can be true together is made plain by writing them in 1. 
""0 and ,..,_,I forms. The condition for their being jointly true is the falsi 
of "(3x)fx": if there is no f then there is no f which is not g, and also n, 

which is g. Thus each of the pair of statements, "No winged horses 11 

non-herbivorous", "No winged horses are herbivorous", is made _true .1 

the fact that there is no winged horse. In cases in which the conJunctii 
of an A and an E statement is felt to be unnatural, what undoubt~d 
happens is that what is understood but is unexpressed is treated ~s ~f 
were stated as part of the conjunction, namely, that (3x)fx. And_ if it 
felt to be strange to say "All the Cadillacs in my garage are solid go. 
because there are no Cadillacs in my garage", it is because the A statemei 
is interpreted to mean "There are Cadillacs in my garage and each 0 ~ 

is solid gold", instead of being interpreted to mean "There is nothing 1 
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garage which is both a Cadillac and is not solid gold". "\Vhen a dis­
ointed fisherman tells us, "All the barra~uda I caught I can put in 
vest pocket", we take him not to be makrng a false statement but to 
Lsserting something which is made true by a deplorable fact. 

me Quantificational Equivalences 
Reflection on the set of equivalences above shows that either one of the 

1bols "(x)", "(3x)" can be dispensed with. ·whatever can be expressed 
h the help of "(x)" and «,.._," can be expressed in terms of 11

,_,
11 and 

Ix)", and whatever can be expressed with the help of "(3x)" and u,_,11 

t be expressed in terms of ",.._," and "(x) "· The set of equivalences 

ow shows this: 

A, ,_, (3x) (fx . ,-,gx) . == • (x) (fx ::::> gx) 
E, ,_, (3x) (fx . gx) • == • (x) (fx ::::> '""gx) 
I, (3x) (fx. gx) • == • ,..._,(x) (fx ::::> ,_,gx) 
0, (3x) (fx. ,-,gx) . == • ,-...,(x) (fx :::::> gx). 

>W "(x)" is to be rewritten in terms of "(3x)" and",_," can easily be 
m from the equivalence, A == ,-.,Q: 

) (fx ::::> gx) . = . ,_,(3x) (fx. ,-.,gx) = . ,_,(3x) ,_, (fx ::::> gx) [i.e., ,_,(p ::::> q). = . p. ,_,qJ. 

~nee, 
Fl (x)( ) . == . ,-.,(3x) ,..._, ( ). 

pair of statements whose forms involve but one functional variable will 
ake this equivalence immediately obvious: 

Everything is material 
There docs not exist anything which is not material. 

How" (3x)" is to be construed in terms of" (x)" and",_," is to be seen 
om the equivalence, O = ,-,A: 

lx)(fx. ,..._,gx). == . "-'(x)(fx ::::> gx) 
= . "-'(x) ,_, (fx. ,_,gx) [i.e., P ::::> q. = . ,_,(p . ,_,q)J. 

[ence, 

F2 (3x)( ). 

'he following pair of statements illustrates this equivalence: 

Something is organic 
Not everything is non organic. 



38 QUANTIFICATION 

For convenient reference we list equivalences involving a change of qu 
tifier: 

Fl (x )fx . = . ,_, (3x) ,_, fx 
F2 (3x )f x . = . ,_, (x) ,_, f x 
F3 ,.._,(x)fx. = . (3x) ,.._, fx 
F4 "-'(3x)fx. = . (x) ,.._, fx. 

The Diagram.m.atic Method for Testing Inferences 

The above equivalences provide the means for making various inf4 
ences from single statement-forms. The validity of these inferences is ma 
perspicuous by the use of diagrams originated by the English logici: 
John Venn (1834-1883). Within overlapping circles the various compa1 
men ts represent the denotation of "f and g", "f and not g", "not f and {} 
i.e., all the things which make "fx . gx", "fx . "-'gx", etc., true when tl 
terms "!" and "g" are fixed. The fact that a function has no values 
represented by shading its compartment in the diagram; its having a val1 
is signified by placing a cross in its compartment; leaving the compartme1 
blank represents its being unknown whether or not the function h: 
values. To illustrate, the diagrammatic representation of 

""(3x) (fx . "-'OX) . (3x )fx is CD 
FIGURE 2. 

The shaded part of the /-circle which lies outside the g-circle indicatE 
that there are no values of "Jx . "-'gx", and the cross in the remainin 
compartment of the /-circle indicates that "fx" has values. Inconsistenc 
between two statement-forms, e.g., between ""'(3x)fx" and "(3x)fx", i 
represented by a section that at the same time is shaded and has a crosi 
In order, therefore, that an inconsistency not show up on the diagrar 
when none in fact exists, the rule to follow in representing combination 
of universal and existential statements is to diagram the universal firs1 
In the example given, """(3x) (Ix. "-'gx)" is diagrammed first, the1 
"(3x )f x", else the cross might appear in a region which the representatio1 
of the first statement requires to be shaded. 

The fact that one statement-form implies another is shown by tb 
fac~ that in diagramming the first we automatically diagram the second 
This will be illustrated in the diagrams of inferences from the statement 
forms considered below. Since a number of the inferences involve nothin1 
more than transformations justified by equivalences between truth 
functions [e.g., between "fx. "-'OX" and """("-'gx :) ,-,Jx)"], commen1 
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ill be made only in those cases in which from a given statement-form 
further formula having a different quantifier is inferred. The double line 
meath a statement-form indicates that the formulas below it are inferences 
om it. 

(3x) (fx. gx) 

(3x)(gx .fx) 
(3x)"-'(gx :::) ,-..,Jx) 

.....,(x) (fx :::) .....,gx) 

~he third conclusion is justified by F2: 

OD 
FIGURE 3. 

(3x) (fx. gx) . = . .....,(x).....,(fx. gx) . = . .....,(x) (fx:::) .....,gx). 

~or example, given that there are swans that are black, we may conclude 
hat not everything is such that if it is a swan it is not black. 

(3x) (fx . ,.._,gx) 

(3x )( ,.._,gx . fx) 
(3x ),.._, ( ,.._,gx :::) ,.._,fx) 

"-'(x) (fx:::) gx) 

The third conclusion is justified by F2: 

FIGURE 4. 

(3x)(fx. ,.._,gx). =. ,.._,(x),.._,(fx. ,.._,gx). =. ,.._,(x)(Jx:::) gx). 

For example, given that some dogs are not terriers, we may conclude that 
not everything which is a dog is a terrier. 

(x) (fx :::) gx) 

(x) ( ,.._,gx :::) ,.._,f x) 

"-'(3x) ("-'gx. fx) 
FIGURE 5. 

The second conclusion is justified by Fl: 

(x) (fx:::) gx) . = . "-'(3x),....,(fx::) gx) . = . ,..._,(3x)(,....,gx. fx). 

For example, given that all men are mortal, we may conclude that there 
is nothing which is both immortal and a man. 

.....,(3x) (fx. gx) 

......,(3x)(gx .fx) 
(x) (gx ::) ......,f x) 
(x) (fx ::) ......,gx) 

co 
FIGURE 6, 
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The third conclusion is justified by F4: 

.....,(3x) (Jx. gx) . == . (x),....,(fx. gx) . = . (x) (fx ::> ,.._,gx). 

For example, given that no perfect numbers are odd, we may conclu 
that all perfect numbers are non-odd. 

Diagrams also make obvious the following inferences from a univerf 
generalization conjoined with an existential condition, in these cases fro 
the "composite" A and E to the corresponding I and 0: 

(x) (fx ::> gx) 
(3x)fx 
(3x) (fx. gx) 

(x) (f x ::> ,.._,gx) 
(3x)fx 
(3x) (f x . .....,gx) 

FIGURE 7. 

w 
FIGURE 8. 

The fact that an inference is invalid is reflected in the fact that dii 
gramming the premises does not at the same time diagram the conclusio1 

(x) (fx ::> gx) 
(3x)gx 
(3x) (Jx. gx) CD 

FIGURE 9. 

The diagram of the second premise specifies only that one or other of th 
two compartments "f and g", "not-f and g", has a cross, whereas th 
diagram of the conclusion specifies a cross in "f and g". The diagram c 
the conclusion adds something to the diagram of the premises; hence th 
conclusion cannot be read off from the diagram of the premises. Thi 
inference involves a fallacy analogous to that of affirming the consequen 
of "p ::> q" and deducing "p". 

Syllogistic Inference 

Inferences which consist in passing from a pair of A, E, I, 0 state 
ments having a. term in common to a third statement of one of these kind 
as their consequent are called syllogistic. A syllogism is defined as a1 

argument constituted of two premises and a conclusion so related to eacl 
other as to contain among them exactly three terms, "f", "g", "h", eacl 
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,erm appearing in two of the three statements. The following are examples 
,f syllogistic reasoning, together with the formal schema which each 
ixemplifies: 

(a) All logicians are intrigued by symbols 
All mathematicians are logicians 
All mathematicians are intrigued by symbols 

(b) No elephants are agile 
Some agile creatures are carnivorous 
Some carnivorous creatures are not elephants 

(x) (gx :::, hx) 
(x) (fx :::, gx) 

(x) (fx :::, hx) 

"'(3x) (hx. gx) 
(3x) (gx . fx) 

(3x) (fx . ,..,,hx) 

Both of these are valid pieces of reasoning. The first syllogism has the 
form which Aristotle designated as perfect, and its validity is obvious. 
The validity of the second is perhaps not so obvious, and for such argu­
ments rules have been formulated by means of which they can be tested. 

The terminology in which medieval logicians framed rules for testing 
syllogisms leaves much to be desired, presupposing as it does that the 
A, E, I, 0 forms of statement are of the subject-predicate kind, and that 
A and I are affirmative while E and O are negative. For one thing, analysis 
shows that the two terms "!" and "g" do not differ in their nature. The 
so-called subject and predicate of an I statement, for example, are both 
predicate terms, neither characterizing the other but both characterizing 
an individual. For another thing, there is better reason, terminologically, 
for describing A and E as negative, in that their sole force is to deny 
existence, and I and O as affirmative, in that they assert existence, than 
to classify them in the traditional fashion. Furthermore, syllogistic 
theory was developed to a degree of complication out of proportion to its 
importance for formal reasoning. Here we shall give the standard six rules 
without comment, and proceed to formulate a smaller set which lays down 
the necessary and sufficient conditions for syllogistic validity. An under­
standing of either set of rules requires an explanation of the notion of 
distribution. 

Distribution of Terms 

A term "f" is said to be distributed in a statement if all of its denota­
tion, i.e., all the values of "fx" which make "fx" true, arc referred to by 
the statement; otherwise it is said to be undistributed. Consider again 
the forms "All f is g", "No .f is g", "Some f is g", "Some f is not g". In the 
I and O statement-forms "!" is clearly undistributed, since not all the 
things to which "f" applies are referred to. In the A form "!" clearly is 
distributed. Since E can be equivalently expressed as "All f is non-g", 
"!" is also distributed in E. The distribution of "g" in the four forms is 
less obvious. We can argue that it is not distributed in A and I on the 
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ground that if it were then we could validly infer from each ".A.JI (J is f". 
For it is plain that if all of a term's denotntion is referred to by the given 
statement, then a statement again referring to all of its denotation is 
inferrible. However, from "All terriers arc dogs" it is not possible validly 
to infer "All dogs are terriers", nor from "Some men are factory employees" 
is it possible to infer ".All factory employees are men". The following 
equivalence shows that the I form distributes neither of its terms: 

(3x) (fx. gx) . = . ,..,_,(x) (gx:.) ,-....,Jx). 

Letting "f" and "g" stand for "man" and "factory employee", the formula 
on the right of the equivalence reads, "Not all factory employees are 
non-men". This clearly leaves "factory employees" undistributed. _A 
similar consideration shows both "/" and "g" in the E form to be dis­
tributed: 

,..,_,(3x) (fx. gx) . = . (x) (fx :.) ,..,_,gx) . = . (x) (gx:.) ,_,Jx). 

As for the 0, in asserting that some/ are not g, what is stated is that there 
is an f which is different from every g. Thus 0 distributes "g". To sum 
up the patterns of distribution: 

Syllogistic Rules 

D U 

All/ is g 
D D 

Nofisg 

u u 
Some f is g 

U D 

Some /is not g. 

The syllogistic rules as traditionally stated are the following: 

1. The middle term (the term common to the two premises) must be dis­
tributed at least once 

2. No term undistributed in the premises may be distributed in the con-
clusion 

3. If both premises are negative (EE, E0, or 00) no conclusion is possible 
4. If one premise is negative the conclusion must be negative 
5. If neither premise is negative the conclusion must be affirmative (A or I). 

To these rules, formulated by medieval logicians, has been added a further 
rule, 

6. If both premises are universal the conclusion cannot be particular 
(I or 0). 
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The rules we lay down form a set from which the above can be deduced. 
!'hey are: 

(1) The term common to the premises must be distributed exactly once 
(2) The distribution of the terms of the conclusion must be exactly as in 

the premises 
(3) At least one of the premises must be universal 
( 4-) The conclusion is particular if and only if one premise is particular. 

Examination of syllogisms (a) and (b) above shows that they conform to 
these four rules. If the conclusion of (a) is replaced by "All people in­
trigued by symbols are mathematicians", and the conclusion of (b) by 
"Some elephants are not carnivorous", the new syllogisms violate rule (2) 
and are invalid. 

Diagrammatic Testing 

A test for syllogistic validity which is quite independent of the use of 
rules is provided by Venn diagrams for three terms, represented by three 
intersecting circles. In addition to being an independent method for 
testing syllogisms, the diagrammatic technique makes perspicuous what 
conformity with, or violation of, one of the four rules comes to. By dia­
gramming syllogisms each of which satisfies three of the rules and violates 
the remaining rule we can illustrate both the rules test and the diagram 
test. In doing this it is shown also that the rules are independent, that is, 
that no rule is a consequence of any combination of the remaining rules. 
Independence of a rule R is established by exhibiting a syllogism which 
violates it while satisfying the other rules, and we shall choose our examples 
so as to exhibit independence. 

The validity of a syllogism is reflected in the diagram by the fact 
that the representation of the premises contains a possible representation 
of the conclusion. This is to say that the conclusion of a valid syllogism 
can be read off from the representation of the premises. Observing the 
rule of diagramming the universal premise first, the following syllogism 
is seen to conform to all four rules: 

All Algerians are religious 
Some Frenchmen are not religious 
Some Frenchmen are not Algerians 

(x) (hx ::, gx) 
(3x) (fx. ,.._,gx) 

(3x) (fx . ,.._,hx) 

FIGURE 10, 
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Each of the syllogisms below is iuv:.ilid, and violates one, a1 

one, of the four rules. The number of the syllogism will be the nw 
the rule it violates. 

(I) No politicians arc incorruptible 
No bankers arc incormptiblc 
No bankers arc politicians 

,_.(3x) (hx. gx) 
,_.(3x)(fx. gx) 

,_.(3x) (fx. /ix) 

FIGURE 

It will be observed that the region common to "/" and 11h11 is not_ sl 
as the conclusion requires. All rules except the first, ·which require 
the common term be distributed but once, are satisfied. 

(2) No pygmies arc educated 
Some pygmies arc warriors 
Some warriors arc educated 

,_.(3x) (gx. hx) 
(3x)(gx .fx) 

(3x) (Ix. /ix) 

FIGURE 

If the syllogisms were valid the diagram of the premises would sh 
cross in the section common to "!" and "h". It is clear that "Some 
not h" is a validly derivable conclusion. 

(3) Some night prowlers are lions 
Some carnivores are not lions 
Some carnivores are night prowlers 

(3x) (hx. g:c) 
(3x)(.f.1:. ,...._,gx) 
(3:c) (fx. h:c) 

FIGURE l 

The diagram of the first premise specifies a cross in either the sec 
"h" "g" common to "h", "g", and "f" or the section common to , . 1, 

"not-/11 , while the diagram of the second premise specifies a cross m ei 
the "f, not-g, h" compartment or the "f, not-g, not-h" compartn: 
The diagram of their conjunction therefore does not specify that ther 
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• ·th r th "f h t ,, compartment or the "f, h, g" compart-
)SS m e1 e e , , no -g . d es specify 
t, which the diagram of the conclusion ° • 

No boxers are old 
Some boxers are not successful 
No success£ ul people are old 

,-, (3x )(gx . hx) 
(3x) (gx . ,-Jx) 

,-, (3x) (fx . hx) 

h I 

FIGURE 14. 

It should be pointed out that the set (1) th~ough (4) eliminates two 
.binations which the traditional set of rules, without 6, allows, namely, 
) and AAI. Rules (1) and (2) together eli~inate all the ~AO_ and 
[ combinations. Let us see how they effect this for AAI combmatlons. 

{a) (x) (gx:) hx) (b) (x) (gx :) hx) 

(x) (fx:) gx) (x)(gx :) fx) 

(3x) (fx. hx) (3x) (fx. hx) 

(c) (x )(hx :) gx) (d) (x) (hx :) gx) 

(x )(gx ::) Jx) (x) (Ix::) gx) 

(3x) (Ix. hx) (3x)(fx. hx) 

ssical logicians considered the first three of these valid because they 
k all terms to have a denotation: an A statement was treated as a 
mposite" A, or a conjunction of a universal affirmative with an existen-
condition. On the present interpretation of A and E as ",.._,(3x)(fx. 

x)" and ""'(3x) (fx. gx)", it is clear that no existential statement may 
.nferred from any AA or AE premises. But by adjoining to the given set 
>remises appropriate existence assertions, the conclusions become valid, 
liagrams show. Thus, by conjoining" (3x)fx" to the premises of (a) the 
.clusion can be seen to follow: 

(x)(gx::) hx). (x)(fx::) gx) 
(3x)fx 
(3x) (fx . hx) 

1ilarly, conjoining "(3x)gx" with the premises of (b), and "(3x)hx" 
h the premises of (c), yields the given conclusion. Reinforcing a 
logism in this way has, in case (b), the effect of turning a syllogism 
: premises of which violate the distributive rule for the common term 
o a valid argument. If, for example, to the premises "All statesmen 
, incorruptible" and "All statesmen are wise" we add the statement 
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"There are states " 
corruptible''. men ' 
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In add·r 
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All wild azalea . 
S s a1 c casv to o-1•ow b t 

ome things arc casilv t.. b u not easy to transplant 
Tl ., rnnspfantcd iere ar th' . 

e mgs wluch arc either n . 
Its f • . ot wild or not azaleas • orm is given by 

(x)(fx. {IX._:) In: . ) 
If . . . • • • "'JX • (3:i:)/1: • _:) • (3x)( ....... fx v.-..,gx). 

ne exam tl . , me le> follO\rinn- sim 1 • . . . 
gis~, one premise quantifie; onl P0e mfeiences m which, unlike the syllo 
variable falling within ti Y ne of the occurrences of the individua 
shall be able to d., wl scope of the quantifier in the other premise, we 
• 1scover t ie form of ,J • h . . 
mg are a sample of such . 1 . " uc it is a special case. The follow• 
validity by the use of d. s~mp e 11~ferences .. All of tlwm may be tested fo1 
form first). mgiams (drngmmmmg, as usual, the non-existential 

(a) (x) (/x::) gx) 
(3x)Jx 
(3x)gx 

(d) (3:i:) (fx v gx) 
"-'(3x)fx 

(3x)gx 

r--.J(3.1:)Jx 

(e) (x)(J--c.gx) 
(3.i: )f.--c 

(3x)ux 

(c) (x)(j.--c-:)gx) 
(3:v )"-',q.-c 

,_,(.1:)/x, (3.-c),...,fx 

(f) (x) (fx -:J ux) 
(.--c)fx 
(x)g.v 

The ~xa~ple above_ is _seen to be a special case of (c). The universal 
premise IS a generalization on a function with a complex antecendent and 
consequent, and the existential premise is a generalization on a function 
which implies the falsity of that consequent. In effect, to say tl1at the 
example is a special case of (c) is to refer in an indirect way to the fact 
that in any valid inference-schema the substitution of unquantified func­
tions for ''fx" and "gx" will yield a valid result. 

The diagram of (c) shows that "(3x)"""f.1:" is a valid conclusion, but 
that ",...._,(3:r)f.--c" is not. It is instructive to note some further examples 
of invalid inference. In some cases the i1nralidity of the inference is obvious 
at a glance because of its analogy to an invalid trut.h-functionaJ sclicma; 
in other cases it revolves on an understanding of t.lw import of operators. 
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1.nd in all cases, of course, diagramming the premises provides a simple 
,nswer to questions of validity. The following are all invalid: 

a) (:r)(Jx:) gx) (~) (x)(fx :> gx) (-y) (x)(f-c :> gx) 
"-'(3x)J.t (3x),....,fx (3x)gx 
"'-'(3x)gx ' (3x)"-'gX -(3-x)-,Jx __ _ 

~o) (3 ) , x (fxvgx) (E) (3x)(fx:>gx) 
(3x)......,fx (3x)fx 
(3x )gx ' -(3-x-)g_x __ _ 

~xample (o) is most conveniently represented by using straight lines to 
diagram the denotation of the functions "fx v gx" and ""'fx". A line 
spanning two 01· more compartments will indicate that the function whose 
denotation is represented by the compartments has a value, lying in one 
or other of the spanned sections. Thus the diagram for the three state­
ment-forms is 

(ftj__ 
~-

FIGURE 15. 

The first premise is made true by having a value lying in any one of the 
three compartments spanned by the uppermost of the two lines, that is, in 
any one of the sections common to "!" and "not-g", "!" and "g", or "g" 
a~ld "not-j". The second premise is made true by having a value lying in 
either of the compartments spanned by the middle line, that is, in one 
of the sections common to "not-/" and "g" or "not-f" and "not-g". The 
representation of the conclusion requires a line spanning the compart1:11en~s 
:rnrnon to "g" and "!", and "g" and "not-/", since the conclus1?n 1s 
T acte true by a value lying in one or other compartment of t~e g-circle. 

_he conclusion, represented by the broken line, adds somethmg to the 
dia~ram of the premises and cannot be read off from it. Hence the con­
clusion is not validly inferrible. 
• . With the above groups of simple valid and invalid schemata at hand 
~t 18 Possible easily to determine the validity of the following more complex 
orms of inference: 

(x) (fx. :) . gx -:) Tix) (x) (f-c v gx. :) • hx) 
(3x) (gx . l"Vhx) _,...,~(c::..3x.:..:· )_h.-c-:--:-=:-~-

""' (3x )Jx (x),..._,(,-..,.,Jx :> gx) 

(x) (fx. :) . rvgx:) hx) 
(x)(gx.-:). kx. lx) 
(x)(fx. ,..._,hx.:). lx) 
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mNT: the functions generalized in the premises of the third example may 
be transformed in accordance with the truth-function equivalence 
"p . ::> . q ::> r : = : p . ,....,, . ::> . ,....,q", and the conclusion derived from the 
transformed premises in accordance with the principle "p ::> q . q ::> r . 
::> . p ::> r". 

An examination of the valid forms (a) through (f), together with the 
general principle that A. B. ::> . C is equivalent to A. ::> . B ::> C, 
reveals interesting possibilities of distributing quantifiers throughout a 
statement-form, and suggests others. Using the principle to transform 
(a), "(x)(fx ::> gx). (3x)fx. ::>. (3x)gx", into 

(a') (x) (fx ::> gx) . ::> : (3x )f x . ::> . (3x )gx, 

quantifiers having relatively restricted scope are distributed throughout 
the formula "fx ::> gx". Similarly, (f) when so transformed yields 

(f') (x) (fx ::> gx) . ::> : (x)fx . ::> . (x)gx. 

The character of these statement-forms is analogous to that of a tautology: 
the implications hold for all values of the (free) functional variables. The 
difference is that we can no longer use anything so simple as a truth-table 
to exhibit their validity. 

It is to be remarked that with regard to neither (a') nor (f') does 
the converse implication hold. This is perhaps obvious in the case of (a'). 
It is made clear in the case of (f') by the consideration that a statement 
of the form ",....,(x)fx" makes "(x)fx. ::>. (x)gx" true while leaving the 
truth-value of "(x)(fx ::> gx)" undetermined. Another example of an 
implication which holds without its converse being true is 

(3x)(fx. gx). ::> : (3x)fx. (3x)gx. 

The consequent is made true if there are two things, one having the pr~p­
erty f and the other the property g, whereas the former requires the exist­
ence of something having both properties. Formulas within each of 
the following pairs, however, are equivalent: "(3x) (Ix v gx)" and 
"(3x)fx v (3x)gx", "(x)(fx. gx)" and "(x)fx. (x)gx". The set of infer­
ence rules for distributing quantifiers is given here for convenient reference: 

F5 (x)(fx ::> gx). ::> : (3x)fx. ::>. (3x)gx 
F6 (x)(fx ::> gx). ::> : (x)fx.::). (x)gx 
F7 (3x) (fx . gx) . ::> : (3x )f x . (3x )gx 
F8 (3x)(Jx v gx). = : (3x)fx. v. (3x)gx 
F9 (x)(fx. gx). = : (x)fx. (x)gx. 

Formation Rules 

So far we have proceeded informally in our exposition of valid infer­
ences involving quantified statement-forms, without any attempt at doing 
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what is requisite for ordering the material in a deductive system. In order 
t.u construct. a system for the deduction of valid quantified formulas we 
should need to state explicitly the syntax of the extension of language 
ushered in by individual variables, functional variables, and quantifica­
tion symbols, and lay down the axioms from which these formulas are 
derived. Such an undertaking lies beyond the limits of the present work. 
However, we shall give an account of the formation rules operative in one 
such system, the so-called functional calculus of first order, so as to introduce 
the reader to forms not so far considered. Among these are functions of 
more than one argument, such as "J(x,y)", "f(x,y,z)", examples of which 
are "x is next to y", "x gives y to z". The functional calculus of first. 
order, which quantifies only individual variables, contains the proposi­
tional calculus as a part, so that the formation rules of the latter are in­
cluded among its rules. It has in addition the following: 

If c is a functional variable of n arguments and if a1, a2, •.• , an are 
individual variables, then c(a1, a2 , ... , an) is wellformed 

If A is wellformed and a is an individual variable (a)A is wellformed. 

It is plain from these rules that "fx", "(x)fx", "f(x,y)", 
"(x)[(3y)f(x,y)]" are all wellformed formulas (the existential quantifier 
being definitionally introduced). But in addition to these, as the rules 
indicate, the following count as wellformed: 

(x)p, (3x)p, (x) (p:) Jx). 

It might seem odd to include such expressions as these when "p" does not 
contain the variable "x". For it is natural to suppose that a quantifier 
can have in its scope only components which refer back to it, i.e., only 
components containing a variable duplicating that inside the quantifier 
symbol. Actually, however, it is of some importance, in manipulating 
quantified expressions, to be able to shift the scope of a quantifier to 
include such components. And it is also useful to be able to do this when 
expressing the forms of some statements of ordinary discourse. To illus­
trate, consider the two pairs of equivalents, 

and 

Someone is such that if the authorities enact a new law he will be fined* 
If the authorities enact a new law someone will be fined, 

Everyone is such that if the game is lost he loses money* 
If the game is lost everyone loses money. 

The first member of each pair of equivalents is a generalization having 
within its scope a statement whose form is "p", where "p" contains no 
individual variable associated with the quantification symbol. In the 
second member of each pair that statement is removed from the scope of 

* The meaning here is clear although expressed in unidiomatic English. 



50 
th QUANTIFICATION 
. e generalization E . " 
IS expressed • h • qmvalence of form b t 

m t e confinement Jormulas e ,veen the paired statements 

FIO (3x) (p -::J fx). = : 
Fll (x) (p-::; Jx) = . P • -::J • (3:c)Jx 

where "p" is d • - • P • -::J • (x)fx 
what un erstood to contain n ' 

more surprising equivalences are o free occurrences of ":c". Some-

F12 (.1:) (Ix.:, p) = . (3 ) 
F13 (3:c)(Jx-::; ) • - : x i/x.-::;. p 

• P • - • (:c )fx . -::J 
An mstance of F12 is th . • p. 

e pair of statements 
Everyone is such that z'f I t· 

b b k le rps off th r e ro en up c po ice, the narcotics ring will 
If someone tips off the pol' h 

ice, t en the narc t. . 
Other useful eq · 1 . 0 ics rmg will be broken up. 
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occurs are 8 t m the scope of the quantifier 

:14 (3:c)(J:c. p). =. p. (3:c)f:c 
15 (x) (f:c. p) . = . (x)f:c. p. 

N-placed Predicates 

Functions involving more than one argument symbolized by "f(:c )" 
''f(x,y,z)"~ etc., are e~sentfa~ for exhibiting the fdrms of many stateU:!nt; 
whose logwal connections with each other we wish to set out. Monadi 

r, t' tlf. 11 " 11 t • f t' f • C , unc 10ns 1 x , {JY , e c., i.e., unc ions o a smgle argument, turn out to 
be inadequate for exhibiting the logical structure common to "6 is greater 
than 5", and "10 is less than 13 11, and to "4 is between 3 and 8" and "point a 
is between points band c", and also for distinguishing these pairs from each 
other. These statements involve what are called relative terms, and are 
structurally more complex than the sort of statements we have studied 
up to the present. Their analysis brings to light functions of more than 
one argument. Investigation of these functions and of the statement.­
forms resulting from quantification of the individual variables in them will 
enable us to justify forms of inference which otherwise we could not. For 
example, consider the logically connected statements 

Every man has a father 
Every man has one and the same father. 

Inspection shows that from the second the first can be inferred, but that 
the second cannot validly be inferred from the first. If we are confined : 0 

the notation developed so far, the form of the first will be represented Y 
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'.' (3:)(fx::) gx)" and the form of the second by "(x) (fx::) hx)", where "gx" 
1s mterpreted as "x has a father" and "hx" as "x has one and the same 
father". Neither the validity of the one inference nor the invalidity of the 
other is apparent from this way of writing them. The case is similar with 
regard to the pair of statements "All squares are rectangles" and "The 
diagonal of a square is the diagonal of a rectangle". If these statements 
have their forms represented respectively by "(x) (fx ::) gx)" and 
"(x)(hx ::)jx)", no connection between them is visible nor is there any 
suggestion that the second can be inferred from the first. 

In order to make the validity of such inferences apparent, some sort 
of formal distinctions must be made between the statements figuring in 
them. And within the quantified statements a distinction must be made 
between the kinds of function quantified. The possibility of quantified 
expressions themselves falling within the scope of a quantifier is already 
present in such a formula as "(x )(p ::) fx) ". Replacing "p" by "(3y )gy" 
to obtain "(x )[ (3y )gy . ::) . fx]" we have the form of the statement "Every­
one is such that if there are terrorists he is frightened". Here the two 
quantifiers bind the variables of two monadic functions. It is often the 
case, however, that what is requisite to exhibit the form of a statement 
is a formula all of whose quantifiers operate on the variables of a single 
function of several arguments. The formation rules permit as well formed 
such an expression as "(x)[(3y)f(x,y)]", which differs from the form of 
the above example in the type of function to which the quantifiers refer. 
Without the possibility of framing such formulas we should be without 
the means of expressing the forms of the many logically complex state­
ments which occur in mathematics, e.g., the definition of a continuous 
function. We have now to consider these more complex formulas. 

It is natural to think of "fx'·', "gy", etc., as the forms of statements 
which grammatically are subject-predicate, e.g., "Jones is miserly". The 
name one-place predicate is sometimes given the predicate occurring in 
such a form as "x is miserly". By freeing one's mind of grammatical 
considerations one can interpret "predicate" in an extended sense to cover 
,vhat is asserted of "x" in such an expression as "x will visit the mother 
of x unless the vacation of xis canceled". It is but a short step to extending 
the notion of a predicate to what is asserted of a number of terms taken 
all together or in subgroups, as in "If x blackballs y then z will sever rela­
tions with x". Such an expression can be regarded as the form of a state­
ment containing a several-placed predicate, or relatianal predicate, and two 
or more names. On freeing it and similar forms of their non-formal terms 
we have the formulas "f(x,y)", "f(x,y,z)", etc., denoting functions of more 
than one argument-dyadic, triadic, ... , n-adic functions. With these at 
hand, we can explicitly distinguish the respects in which the following 
differ formally from each other: "White sits between Jones and Smith", 
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" J • S • tl , • • " "'''!11· te · ones 1s m1 1 s \\"Orst enemy", ".Jones 1s lus own worst c1wmy , 
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Each of the equivalent formulas gives equally its form. The first says that 
for each thing x, no matter what y is chosen, x wars against y; and the 
second, that for each thing y, no matter what x is chosen, x wars against y. 
The following consideration makes their synonymy evident. The assump­
tion that the universe contains a finite number of things, say a, b, c, to­
gether with the universally quantified statement-form "(x )fx", implies 
the conjunction "fa. fb. Jc". The same assumption together with the 
existentially quantified statement-form "(3x )fx" implies the disjunction 
"fa v fb v Jc". Hence conjoining this assumption to "(x)(y)f(x,y)" yields 
the expansion 

(y)f(a,y) . (y)f(b,y) . (y)f(c,y), 

which in turn expands into 

f(a,a) .f(a,b) .f(a,c) :f(b,a) .f(b,b) .f(b,c) :f(c,a) .f(c,b) .f(c,c). 

It is clear that "(y)(x)f(x,y)" would have the same expansion and hence 
is equivalent to the original. 

The same sort of consideration will show that 

(3x)(3y)f(x,y). =. (3y)(3x)f(x,y), 

each equivalent serving equally to give the form of "someone loves some­
one". Both members of the equivalence can be expanded into the same 
disjunction, as disjunction, like conjunction, is associative and commutative. 

More interesting questions concerning the relation of quantified 
formulas to each other arise when the formulas involve more than one type 
of quantifier, the same in each but different in scope. It will be useful to 
elucidate the formal differences between the statements of the following 
list, some of which are differences in the scopes of different quantifiers. 

(1) Every man is husband of every woman 
(2) Some man is husband of some woman 
(3) Every man is husband of some woman 
(4) Some woman has every man as husband 
(5) Every woman has some man as husband 
(6) Some man is husband of every woman 
(7) No man is husband of any woman 
(8) No man is husband of every woman 
(9) Some man is husband of every woman who has a child. 

In order to simplify comparison of these statements with respect to form, 
we shall for the moment understand the field of variation of "x" to be 
men and of "y" to be women. With this simplification, and letting "f(x,y)" 
stand for "x is husband of y", the forms of the first two are 

(1) (x)(y)f(x,y), (2) (3x)(3y)f(x,y). 
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".Jones is Smith's worst enemy", "Jones is his own worst enemy", "\Yhitc 
is thrifty". The first statement is an instance of "h(z,x,y)", the second of 
"f(x,y)", the third of "f(x,x)", and the last of "gz". The notational dis­
tinctions between "f(x,y)" and "f(y,x)" and between "h(x,y,z)" and 
"h(z,x,y)" reflect the difference in what is called the "sense" of the relation. 
The dyadic functions "x is enemy of y" and "y is enemy of x" arc dis­
tinguished notationally by the reversal of "x" and "y" in the first pair of 
formulas above, and "x is between y and z" and "z is between x and y" are 
distinguished by the order of the variables in the second pair. 

It is possible from here to proceed in our analysis beyond statement­
forms such as "(x)[3y)gy.:) .fx]" and "(3x)fx.:). (3x)gx", to state­
ment-forms which are like these in involving more than one element 
of generality but diff crent from them in quantifying each of the variables 
of an n-adic function. The following are some of the statement-forms 
which can be constructed, and whose relations to each other need to be 
examined: 

(x)(y)f(x,y) 
(y) (x)f(x,y), 

(x)(3y)f(x,y) 
(3y) (x)J(x,y) 
(x)(3y)J(y,x), 

(3x) (3y)f(x,y) 
(3y) (3x)f(x,y), 

,..._, (x) (3y )f (x,y) 
(x)......,(3y)J(x,y) 
(3x) (y)J(x,y), 

(x) (3y) (z)f(x,y,z) 
(3x) (y) (z)f(x,y,z) 
(3x) (y) (3z)f(x,y,z}. 

The conventions with regard to the scope of the quantifiers in such multi­
quantified formulas are: (1) the quantifier in the outermost position has 
the widest scope; (2) the scope of each succeeding quantifier extends past 
the expression succeeding it. 

It has already been seen how changing the distribution of quan­
tifiers can affect the import of a quantified exprnssion. The formula 
"(3x }(fx . gx )" means something different from "(3x )Jx . (3x )gx", the 
first implying the second, but not conversely. A shift in the scope of a 
quantifier _o!ten results in_ a formula which ~eithe1· implies nor is implied 
by the or1gmal. Hence m order to determme the implication relations 
between various quantified statement-forms, it is necessary t b . . .o o serve 
carefully the_ scopes of their quantifie_rs. If an adequate set of postulates 
for the function al calculus had been given here the vali'd f 1 h , ormu as we ave 
selected for study would all be provable in the syst I d 1 f 

d• • t· 11 h · em. n efau t o procec mg ax1oma 1ca y we s all illustrate the stat f . 
• 1 l"d • 1· • ement- orms occurrmg m severa va 1 imp 1cations or equivalences w'th th • . 
implications or equivalences intuitively obvio' 1 e aim of makmg the 

C 'd h ~ ons1 er t e statement "All war again t ll" 
s a , and the equivalence 

(x)(y)f(x,y) • = . (y)(x)J(x,y). 
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Each of the equivalent formulas gives equally its form. The first says that 
for each thing x, no matter what y is chosen, x wars against y; and the 
second, that for each thing y, no matter what x is chosen, x wars against y. 
The following consideration makes their synonymy evident. The assump­
tion that the universe contains a finite number of things, say a, b, c, to­
gether with the universally quantified statement-form "(x)fx", implies 
the conjunction "fa .fb .Jc". The same assumption together with the 
existentially quantified statement-form "(3x)fx" implies the disjunction 
"fa v fb v Jc". Hence conjoining this assumption to "(x)(y)f(x,y)" yields 
the expansion 

(y)f(a,y). (y)f(b,y). (y)f(c,y), 

which in turn expands into 

f(a,a) .j(a,b) .j(a,c) :j(b,a) .f(b,b) .f(b,c) :f(c,a) .f(c,b) .f(c,c). 

It is clear that "(y )(x )f (x,y )" would have the same expansion and hence 
is equivalent to the original. 

The same sort of consideration will show that 

(3x)(3y)f(x,y). =. (3y)(3x)f(x,y), 

each equivalent serving equally to give the form of "someone loves some­
one". Both members of the equivalence can be expanded into the same 
disjunction, as disjunction, like conjunction, is associative and commutative. 

More interesting questions concerning the relation of quantified 
formulas to each other arise when the formulas involve more than one type 
of quantifier, the same in each but different in scope. It will be useful to 
elucidate the formal differences between the statements of the following 
list, some of which arc differences in the scopes of different quantifiers. 

(1) Every man is husband of every woman 
(2) Some man is husband of some woman 
(3) Every man is husband of some woman 
( 4) Some woman has every man as husband 
(5) Every woman has some man as husband 
(6) Some man is husband of every woman 
(7) No man is husband of any woman 
(8) No man is husband of every woman 
(9) Some man is husband of every woman who bas a child. 

In order to simplify comparison of these statements with respect to form, 
we shall for the moment understand the field of variation of "x" to be 
men and of "y" to be women. With this simplification, and letting ''f(x,y)" 
stand for "x is husband of y", the forms of the first two are 

(1) (x) (y)j(x,y), (2) (3x) (3y)f(x,y). 
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It should be noted in passing that Fl and F2 give us the p6ssibility of 
rewriting (1) as 

and also as 

and of rewriting (2) as 

and also as 

"'(3x),_,(y)f(x,y) 

"'(3x) (3y),_,f(x,y), 

,_, (x ),_, (3y )J (x,y) 

"-'(X) (y ),_,f (x,y). 

The first expressions of these two pairs have, respectively, the readings 

There is no man such that not every woman has him as husband 
Not every man is such that there is no woman whose husband he is. 

Consider now the two pairs of statements (3), (4), and (5), (6). The 
formulas corresponding to the first pair are 

(3) (x)(3y)f(x,y), (4) (3y) (x)f(x,y), 

and the formulas corresponding to the second pair are 

(5) (y) (3x)f(x,y), (6) (3x)(y)f(x,y). 

Between the members of these pairs the same relation obtains, so it will 
suffice to point out the relation in one pair only. Statement (3) is to 
the effect that for each chosen man x there is a woman y such that x is 
husband of y. Different choices of x may be associated with different 
choices of y. That is, when the existential quantifier lies within the scope 
of a universal quantifier it has the force of "some one or other, not neces­
sarily the same one". Statement (4), on the other hand, asserts that 
some fixed woman y is such that every x is her husband. Thus, when the 
existential quantifier has a universal quantifier within its scope, it has the 
force of "some one and the same". It is obvious that (3) is a consequence 
of (4): If some one woman has every man as husband, then every man is 
husband to some woman or other. But the converse does not hold. What 
is implied by the conjunction of the assumption that the universe consists 
of a limited number of men a, b, c, and of women d, e with (3) d l 

• h ( ) ill xh"b" l l h • I • ' an a so wit 4 w e 1 1t c ear y t e1r re ation. "(x)(3y)f(x,y)" expands into 

(3y)f(a,y). (3y)f(b,y). (3y)f(c,y), 

and this in turn becomes 

I f(a,d) v f(a,e) .f(b,d) v f(b,e) .f(c,d) v f(c,e). 

And formula "(3y)(x)f(x,y)" first becomes 

(x)f(x,d) v (x)f(x,e), 
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and this expands into 

II f(a,d) .f(b,d) .f(c,d). v .f(a,e) .J(b,e) .f(c,e). 

Every condition making the disjunction II true makes I true. But I is 
made true by "f(a,e) .f(b,d) .f(c,e)", which is insufficient to make II 
true. Thus, although (4) implies (3), (3) does not imply (4). This means 
that different quantifiers cannot be shifted within a formula to yield an 
equivalent formula. 

The forms of (7) and (8), which are the contradictories of (2) and 
(6), are 

(7) ,..._,(3x)(3y)f(x,y), (8) ,..._,(3x) (y)f(x,y). 

The scope of ",-..," in each of these is the entire formula, and each differs 
in import from an expression in which the negation is shifted inward 
to the function, e.g., the difference between (7) and the formula 
"(3x) (3y ),-..,J(x,y )" is that the latter is the form of "Some man is such 
that there is a woman to whom he is not husband". And this, in fact, is 
the contradictory of (1), "Every man is husband of every women". 

Inasmuch as there are equivalent ways of expressing a given quantified 
formula, it is not always apparent that two formulas are contradictories. 
There is a simple rule of thumb for finding the contradictory of a given 
formula, namely, replace each universal quantifier by an existential quantifier, 
each existential quantifier by a universal quantifier, and negate the function 
which all the quantifiers pref ace. This, to be sure, requires that all distinct 
quantifiers either stand at the beginning of a formula or be immediately 
preceded only by other quantifiers or by negation signs. Formulas (3) 
and (4), whose quantifiers are so placed, have the following contradictories, 
derived in accordance with this rule: 

(41) (y) (3x),....,,f(x,y). 

These, in order, have the readings: "Some man is such that in the case of 
every ,voman he is not her husband", "For every woman there is a man 
who is not her husband". The correctness of the rule of thumb is evident 
on transforming the negations of (3) and (4) in accordance with F3 and F4: 

(31) "-'(X)(3y)f(x,y). =. (3x),....,(3y)f(x,y). =. (3x)(y),....,,f(x,y) 

(4') ,..._,(3y)(x)f(x,y). =. (y),...,,(x)f(x,y). =. (y)(3x),-,J(x,y). 

The rewriting of quantified statement-forms in such a way that all 
of their quantifiers, in uninterrupted array, preface an n-adic formula A 
containing no quantifiers needs to be considered next. Statement (9), 
"Some man is husband of every woman who has a child", lends itself to 
a simple analysis. This asserts that 

(3x)[x is a man. (y)(y is a woman.:) • 
(3z)(z is child of y::) xis husband of y))]. 
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er to come out with all its . . 
use of a variant of Fl5 quantifiers m such an array we first make , 

(y) (f y • p) . = . p . (y )Jy, 
to place "x i " • ' s a man ' m which "l ,, d .. 
of '(y) "· \\' c th us obtain Y oes not occur free, within the scope 

(3x) (y)[x is a man . (y is a "·oman.:) . 

(3z) (z is a child of y _=:) x is husb,and of y))]. A variant on F 10 , 

(3z) (p _=:) fz) • = • P .=:) (3z)Jz, 

allmrn us to place "y is a woman" in wl . h " ,, 
the scope of "(3z)", and we obtahl • uc z does not occur free, wit11in 

(3x)(y)[.-r is a man. (3z)(y is a n·oman.:). 

z is child of Y .=:)xis husband of y)]. 
Again, by use of a variant on F14 , 

(3z) (fz. p) . = . p. (3z)Jz, 

"x is " • 1 • a man is Paced within the scope of" (3z)", with the result 

(3x) (y) (3z)[x is a man. (y i"s a woman.:) . 

z -is child of y:) xis husband of y)]. 

1:he i~alicized part, which is of the form A . :) . B:) C, is equivalently 
given m the form A . B . :) . C. Using this equivalence, and letting "mx" 
stand for "xis a man", "wy" for "y is a woman", "g(z,y)" for "z is child of 
y", and ''f (x,y)" for "x is husband of y", the form of the whole can be set 
out as 

(3x)(y)(3z)[mx :wy.g(z,y). _=:) .f(x,y)]. 

The validity of the more complex of the two inferences with which 
Part II was introduced can readily be justified with the help of the present 
logical material, the inference, namely, from "Some even numbers are less 
than every number greater tlrn.n the smallest odd prime" to "It is not the 
case that for every even number x there is a number which is greater than 
the smallest odd prime and is not greater than .-c". Letting "ex" stand for 
"x is an even number", and "y > a" for "y is a number greater than the 
smallest odd prime", the form of the first can be expressed as 

(3x)[ex. (y)(y >a . .=:). x < y)J, 

or as 
(3x)(y)[ex. (y >a . .=:). x < y)J. 
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The form of the second is 

,.....,(x) (3y)[ex.:) . y > a. ,.....,(x < y)J. 
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Transformation of the first by Fl and F2 yields the second as its equivalent. 
Hence the validity of inferring one from the other is assured. 

Definite Descriptions 

Before leaving the topic of multiply quantified formulas, something 
shoul<l be said of the forms of statements involving phrases which are 
similar to yet different from proper names, phrases called definite descrip­
tions. A definite description is an expression of the form "the so-and-so", 
for example, "the discoverer of quaternions", "the even prime". The con­
vention in logic is to write "(,x)" for "the object such that", so that these 
examples become 

(ix) (xis discoverer of quaternions), (t:c)(x is even.xis prime). 

It is of considerable importance to be able to explicate the form of state­
ments in which definite descriptions occur as grammat.ical subjects, state­
ments such as "The prime number greater than 12 and less than 17 is 
unlucky", "The discoverer of quaternions was Irish". These have the 
form "the object having f has g", written "g( (t:c)f.-i:j". We leave aside 
the question here as to whether ordinary proper names such as "Socrates", 
"Eisenhower", "Pegasus" are in fact definite descriptions, and turn to a 
brief analysis of statements explicitly involving definite descriptions. To 
give the form of these it is necessary to introduce the notion of identz'.ty. 
This notion cannot be formalized in the functional calculus of first order, 
since it involves quantification of a functional variable, and only indh·idunl 
variables are quantified there. The usual definition of identity is 

x = y = Df. (f)(fx ==fy). 

That is, x is said to be identical with y when x and '!i have all their proper­
ties in common. 

To make explicit the distinction between "a so-and-so" nnd "the 
so-and-so" as these phrases occur in the expressions "an object having f 
has g" and1"the object having/ has g", it is required to distinguish between 
the two existential statement-forms 

There is an x such that f x and gx 
There is one and only one x such that f x and gx. 

The second differs from the first in asserting the uniqueness of the object 
to which f and g are attributed, i.e., in asserting that at least one and at 
most one object having f has g. The restriction of the function "fx • gx" 
to just one value is expressed with the help of "= ". How this term enters 
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mto the analysis of th ·t 
d J c s atcmcnt "Th • an uss Uia 11 1-, 1·., llJJ} /· 11 e prime number greater than 12 

., Uc~" C"11 IJe s f • • · " " een ram rewntmg 1t as 
(3.l")[x i~ prime. 12 < x < 17 ( )( • . 

• Y y 1s prime. 12 < y < 17. = . y = x) • 
x is unlucky]. 
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unlucky" expands I II . J one prime number x, 12 < x < 17, and x JS 
. • ·, w 1cn a its formal t d Tb ts a prime number . t • ' crms are ma e explicit, into " ere 
f x gi ca er than 12 and l th 1 t or every number y • . ess an 17 which is such t ia 
if , Y JS a prime number t h 7 

and only if y is identical ·"th gr~a er t an 12 and less than 1 
stand for "xis prime. 12 < / 1 ;,: and ~ JS11unlucky". By letting "fx" 
can be seen to be < 1 1 aucl gx for "xis unlucky", its form 

(3:r)(y)(Jx :fy. = .y = x :gx). 

~,t :·ill be cl~ar that no such statement-form can be inferred frorn 
<3 _) Ux • ~x) , _but that the converse implication does hold. The intro-

duction of 1dcnt11y en•thlcs t k • • • h . . ' ' • us o ma ·e cxphc1t forms of inference wh1c 
cannot ?e JUStlfied by formulas quantifying individual variables only The 
properties of " = ,, are form r d • 1 • • wh · h h . . ' a ize m t ie so-called calculus of equality, Ill 

• le sue vahd mfercnce schemata as the following are deduced: 

(x) (y) (f.-c. X = y.:) .fy) 
X = Z , y = Z , :) . X = y. 

EXERCISES 

1. Give the forms of the following, using quantifier11, variables, and tho operators 
u,..._.u, ":::>' 1, etc. 
(a) If all sages have beards, then no sages are unbearded. 
(b) If only diligent students pass, then no students who arc not diligent pass. 
(c) If there arc no unicorns, no unicorns are gentle. 
(d) Someone is such that if he falters, everyone loses courage. 
(e) St. Francis loves all anima s. 
(f) All who Jove St. Francis love every animal. 
(g) Every person who is either thrifty or prudent will, if he has money, refrain 

from speculating on the stock market. 
(h) I{ all doctors are benefactors, then if tl1erc are doctors, there are benefactors. 
(i) There is some point or other between any two points on a line. 
(j) There is some one and the same point between every pair of points. 
(k) Someone criticizes everybody to someone. 
(I) Everybody criticizes someone to somebody. 
(m) Somebody criticizes somebody to everyone. 

2. Write the negatives of the above in such a way that no negation sign prefaces a 
quantifier. 

3, Test the following syllogisms by the rules and by means of diagrams. Where more 
than one conclusion is given, state wl1ich, if either, is valid. 
(a) Some modern music is dissonant. No dissonant music is pleasing to the ear. 

Hence some modern music is not pleasing to the ear. 



EXERCISES 59 

(b) Some congressmen are not fine orators. Some fine orators are lovers of classical 
music. Hence some congressmen arc not lovers of classical music. 

(c) No lawyer is shy. All i:hy people are nervous. Therefore, (1) no nervous 
person is a lawyer, (2) some lawyers are not nervous. 

(d) Some speakers arc entertaining. Anyone who is a speaker is exhibitionistic. 
Hence, (1) some entertaining people are exhibitionistic, (2) some exhibitionistic 
people are not entertaining. 

(e) Not all senators are law-abiding. Law-abiding people are never apprehensive. 
Hence, (1) some senators are apprehensive, (2) some apprehensive people are 
not senators. 

4. (a) Given: 1. Anyone who plays roulette will, if he bets heavily, lose a lot of money 
and be unhappy 

2. Everyone plays roulette 
3. Someone is not unhappy. 

Question: Docs everyone bet heavily? 
(b) Given: 1. There is no one in the smart set who reads widely or keeps up 011 

current affairs 
2. Everyone with incomes above S10,000 is in the smart set 
3. If anyone fails to keep up on current affairs he should not vote. 

Question: Are there people with incomes above S10,000 who should not vote? 
S. Write the following so that all quantifiers stand in uninterrupted array before the 

function quantified. Find the contradictory of each result in terms of different 
quantifiers. 
(a) Some one number is less than all numbers greater than 1. 
(b) Everyone brings a gift to someone. 
(c) Everyone respects anyone who has written at least one book. 
(d) Some one person pays all commissions to everyone on the payroll. 
(e) Everyone buys something from all grocers. 
(f) Not everyone wills all his possessions to someone or other. 

6. Which of the following are valid, and which invalid? 
(a) (:r;)(f:r;. g:r;). ~(3x)f:r;. ::>. ~(3x)gx. 

(b) ~(3:r;)(/:r;. gx) . ~(x)gx. ::>. (3x)fx. 

(c) (:r;)(fx ::, gx). ~(x)gx. ::>. (:r) ~fx. 

(d) ~(:r:)(fx. p). a : (x)fx. ::>. ~p. 

(e) (x)(fx. gx). ::> : ~(3x)fx. ::>. ~(3:r;)gx. 
(f) (:r;)(f:r;. ::>. g:,; ::> /i:r;). (3x)(gx. ~hx). ::>. (3x)~/:r;. 

(g) (:r;) (Ix v gx. ::, . h:r;). ~(3x)hx. ::>. (x)~(~fx ::> gx). 

(h) (x)(f:r; ::> gx) . (x)(J:r; ::> ~h:r;). (3x)fx. ::> . (3x) (gx • ~h:r:). 

(i) (:r;)(f:r; v gx. ::>. h:r.. ~kx). (3x)g:r;. ::>. (3x)~kx. 
(j) (x)(f:r;. g:r;. ::>. hx v kx). (x)(kx ::> ~Jx). (x)(fx, gx) • ::> • (x)~h:r:. 

(k) (3x)(y)(3z)f(x,y,z). ::>. (y)~(3:r;)(3z)/(x,y,z). 

(l) (3x)(3y)(z)f(x,y,z) . ::>. ~(:r;)(y)(3z)~f(x,y,z). 

(m) (x)(3y) (3z)f(x,y,z). ::> . (3y)(x)(3z)f(x,y,z). 

(n) (3:r:)~(y)(z)f(:r;,y,z) . ::>. (3x)(3z)(3y)~/(x,y,z). 

(o) (:r;)(3y)(3z)f(:r:,y,z). ::>. ~(3x)~(3z)(3y)/(x,y,z). 

(p) (:r;) (3y) (3z)f(:r:,y,z). ::>. (x)~(z) (y)~f(x,y,z). 
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(b) Some congressmen are not fine orators. Some fine orators are lovers of classical 
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Hence, (1) some entertaining people are exhibitionistic, (2) some exhibitionistic 
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(e) Not all senators are law-abiding. Law-abiding people are never apprehensive. 
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Classes 

Class Membership and Class Inclusion 

The statement 
Archimedes is a geometer 

is an instance of the formula "f x", in which "/" is a predicate variable 
whose values are properties or attributes, and "x" is an individual variable 
which can be replaced by the proper names of individuals, pronouns, and 
demonstratives. The statement, thus, can be rephrased in the following 
way: 

Archimedes has the attribute of being a geometer. 

The statement has also a further rephrasing, one in which the expression 
"has the attribute of" gives way to the expression "belongs to the class of": 

Archimedes belongs to the class of geometers 
or 

Archimedes is a member of the class of geometers. 

Using the Greek letter "E" to mean "is a member of", and the expression 
"z(z is a geo~eter)" to mean "the z's such that z is a geometer", either of 
these can be written 

Archimedes E z(z is a geometer). 

By putting "x" in place of "Archimedes" and "/" in place of "geometer' 
we arrive at the formula 

XE z(fz), 

to the effect that x is a member of the things each of which has J. This 
in turn comes to the same thing ns saying that x is a member of the class 
of things each of which has J; and by letting t.he lower case letters "a" 
"b", "c", and so on, be class variables, "x E z(Jz)" becomes ' 

XE a. 

Th d• t "I'. " " " t • ti f t' l • us, correspon mg o ,x , gy , c c., m 1e unc 10na notation we have 
"x Ea", "y Eb", etc., in the class notation. 

60 



CLASS PRODUCTS AND SUMS 

In similar fashion the statement 

All geometers are mathematicians 

61 

has two equivalent renderings in English, one in terms of "property" or 
"attribute", the other in terms of "class" or "set" or "collection": 

If anything has the property of being a geometer, it has the property 
of being a mathematician, 

which exemplifies the formula "(x)(fx:) gx)"; and 

If anything is a member of the class of geometers, it is a member, or 
element, of the class of mathematicians, 

which exemplifies the formula "(x) (x E a :) x E b )". When every member 
of a class a is also a member of a class b, a is said to be included in b, the 
relation of class inclusion being symbolized by "C". The above formula 
thus goes into the class formula 

a Cb, 

and the inclusion relation is defined as 

Class Products and Sums 

A statement about objects which are members of a pair of classes 
a, b, is said to be about the logical product class, 

i(xEa.xEb). 

This is more compactly written in the form "a X b", or more simply as 
"ab". The operator symbol "X" for logical multiplication is defined as 

a X b = Df. x(x Ea. x Eb).* 

In the diagram it is represented by the compartment enclosed by the heavy 
lines. This is the compartment referred to by the formulas "(3x)(x E ab)" 
and ""'(3x)(x E ab)", formulas which will be recognized 
as the counterparts in class notation of the standard 
I and E statement-forms. 

A statement about objects which are members of 
either of a pair of classes a, b, is said to be about the 
logical sum class, 

• The symbol"("\" is sometimes used instead of "X". 

FIGURE 16. 
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defined as the number of the null class, each succeeding number as a ccrtafr 
kind of class of classes, the rational numbers as ordered pairs of integers, 
the real numbers as classes of rationals. Principi"a 1lf athcmatica is a monu­
ment to the thesis that the propositions of pure mathematics are derivable 
from propositions of logic. 

Classes and Categorical Statement-forms 

The four standard A, E, I, and O statement-forms expressed in the 
functional notation can now be reformulated in class terms in a number of 
different ways. The list below sums them up. 

In terms of "E" In terms of " =" In terms of "C" 

A, (x )(x E a :) x E b) a+b=l aCb 
,..,_, (3x) (x E a . x E b) ab= o 

E, (x) (x E a :) x E b) a+b=l aCb 
,..,_, (3x) (x E a . x E b) ab= 0 

I, (3x) (x E a . x E b) ab¢' 0 ,-,(a C 6) 

0, (3x)(x Ea. x d,) a6 ¢' o ,-,(a Cb) 

The case in which being a member of a class a is stated to be both a 
necessary and sufficient condition for being a member of b has the three 
representations 

a= b, a Cb. b Ca. 

Class Negation, Sums, Products 

. Recalling that the complement a of a given class a is the class of those 
thmgs which are not members of a, it is int.uitin?ly obdous tllat the negate 
of the compli>m('nt, a, is the original class a , 

a= a. 

If a is represented by a circle, then what lies outside the circle is the class 
of tl~ose things that are cl, and the class of those things that are a will lie 
outside the class ll, and be precisely a. 

FIGURE 18. 
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The complement of ab is ab, and is identical with the sum class a + b. 

The following chain of equations shows this: 

x(xEab) = x,..._,(xEab) = x,..._,(xEa.xEb) = x[,..._,(xEa) v,..._,(xEb)] 
= x (x E li v x E 6) = ll + 6. 

The diagrammatic representation of ab will be seen to be also the dia­
grammatic representation of ii + 6, the area ab outside the heavily outlined 
compartment ab (including the area outside the circles) 
being the same as ll + 6. Any x which falls outside the 
ab compartment is in a, 6, or ab, i.e., in the compart­
ment a+ 6. 

The complement of a + b is a + b, and is identical 
with the product class ab: 

a+ b = llb. 

GD 
FIGURE 19. 

This is similarly shown by the equation chain of formulas: 

x(x Ea+ b) = x ,..._,(x Ea+~) = x_,..._,(x Ea v x Eb)= x[ ,..._,(x rn). ,..._,(x Eb)] 
= x(xEiLXEb) = lib. 

The diagram for a + b is also the diagram for the class represented by the 
area outside that enclosed in heavy lines, i.e., the 
class which is neither a nor b, or ab. The equations 
"ab = a + ii" and "a + b = ab" are the so-called De 
Morgan theorems for the complements of class products 
and class sums. 

The following list of class equations requires no 
explanation. The first pair are the commutative laws for 

GD 
FIGURE 20. 

class multiplication and addition, the second pair the associative laws for 
class multiplication and addition, the third pair the laws of tautology: 

ab= ba 
a+b=b+a 

a(bc) = (ab)c 
a+ (b + c) = (a+ b) + c 

aXa=a 
a+ a= a. 

The next five equations are further examples of how class negation operates 
with respect to "+" and "X ". 

a+ 6 = ab 

llb=a+b 

a+a = aa 
(a + b )(cd) = a + b + cd = llb + c + d. 
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Distributive Laws 
It is important next to see how "+" and "X" operate with respecl 

to each other, ,vhen the scope of one falls within the scope of the other 
Given the premise 

(1) Something is a member of the class of things which are both swift and 
not winged and is also a member of the class of things which are eithe1 
carnivorous or both herbivorous and marsupial, 

are we entitled to infer the following: 

(2) Something is a member of the class of things which are either swift, 
not winged, and carnivorous, or swift, not winged, herbivorous, and 
marsupial. 

Letting "a" be the class of swift things, "b" the class of things which are 
winged, "c" the class of carnivores "d" the class of herbivores, and "e" 

I 

the class of marsupials, the premise becomes 

(3x)x E [ab(c + de)], 
and the conclusion, 

(3x)x E (abc + abde). 

An ,,\,~mmta.ry law of the lov.;ic: of dn.f!RCB enables us to establish the equation 

ab(c + de) = abc + abde, 

which justifies the inference of (2) from (1), since expressions equa~ed by 
a law of dasscs identify the same class and can replace each other many 

formula in which either occurs without changing the truth-va~ue_ of _the 
r,,rmulu.. Tlm lnw whir.h is used is one of the two la_ws of diStribution, 
t1w rule of distribution with respect to logical multiplication: 

a(b + c) = ab + ac. 

!f we_ diagr9:m t?-ese combinations of classes by means of three intersect­
mg crrcles 1t will easily be seen th t th ' a ey are represented by precisely 

6 
the sam~ part of. the diagram. This can perhaps be 
more easily seen if the formulas are rewritten in the 
form 

:f(x Ea· x Eb v x E c) = :f(x Ea. x Eb. v. x Ea. x E c). 

The remaining law th d. t "b • le • h 
lo · z add . . . ' e is ri ution ru wit respect to 

gica ition, 1s 

FIGURE 21. a+ br. = (a+ b)(a + c). 
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As in the preceding case, the part of the diagram which 
represents the formula to the left of the identity sign 
also represents the one on the right. The high-lighted 
part of the diagram clearly represents a + be. To see 
that it represents the right-hand product, diagram 
a + b and a + e separately and combine the diagrams 
to find their common part. Rewriting the identity in 
the form 

x(x Ea. x Ebe) = i(x Ea v x Eb. x Ea v x Ee) 
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FIGURE 22. 

shows that the two sides of the equation are represented by the same set 
of compartments. 

Valid Formulas for O and I 

The equations set down so far are laws of logic which cannot fail to 
yield true class statements, whatever substitutions for the class variables 
are made. They may be called valid class formulas, and the reader has 
undoubtedly already realized that the class of valid class formulas can be 
arranged in the form of a deductive system, comparable to the propositional 
calculus. A class calculus, or algebra of classes, will be constructed later, 
but for the present we shall continue to consider a number of class formulas 
informally and, for the most part, without regard to order. 

It has already been seen that the null class, if there is one, has no 
members: (x) ---(x E O). It is not so apparent that there cannot be more 
than one such class, i.e., that 

,_,(01 ~ 02), 

Let us suppose that there are two distinct null classes, 01 and 02, such that 
01 = all, 02 = bb; then 

all~ bb. 

This is to suppose that one of these classes has a member that the other 
lacks, which implies that one of them has a member: 

(3x) (x E all) v (3x) (x E bb). 

Since this is impossible, there can be at most one null class. It follows as 
a direct consequence that the logical product of any class and its comple­
ment is identical with the logical product of any other class and its comple­
ment. Thus the class of things that are both men and not men is identical 
with the class of things that are grasshoppers and also not grasshoppers. 

A similar line of reasoning shows that there cannot be more than one 
universal class: 
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Again, let us suppose that there are two distinct universal classes, 1i and lz, 
and let us identify 11 with a+ a, and 12 with b + b: 

a+ ll ;= b + b. 

By the definition of identity between classes it is clear that on this suppo­
sition one of these two classes must lack an element which the other has, 

(3x) "-'(XE a+ a) v (3x) "-'(XE b + b), 

and thus that the null class has a member: (3x) (x E all) v (3x) (x E bb). 
Hence, "-'(11 ;= b). An immediate consequence of this is that the logical 
sum of any class and its complement is identical with the logical sum of 
any other class and its complement. 

It should be pointed out that a special kind of restriction has to be 
imposed on the universal class: it must be confined to what may be called 
a logical universe of discourse. The formula "(x)x E l" is valid only so 
long as the range of "x" is limited to objects of the same logical type, which 
in the present case are individuals. The Theory of Logical Types cannot 
be gone into here; but to give a glimpse of its nature, were 1 not confined 
to objects of one logical kind, for example, were it allowed to have as 
members any class c and the elements of c as well, then 1 would become 
an illegitimate totality. That is, if e is a member of c then "e E 1" and 
"c El" are not both instances of "x E l". The range of "x" in "x e 1" is 
all individuals, not all possible objects. 

Several formulas concerning the classes O and 1 are in order at this 
point: 

aO = 0 
a+O=a 
al= a 
a+l=l. 

No more than a cursory examination of the first two f . ul . 
in order to be convinced that they are valid class for:~: as 18 necess~ry 
of the first equation ",-....,(aO = O)" to th ff h s. The negation 

' ' e e ect t at on f th 
has a member which the other lacks has th e O e two classes , e consequence 

(3x)(x ea. x E O) v (3x)(x e O), 

which in turn has the consequence 

(3x)x e O. 
The negation of the second " ( + 0 ' "' a - a)" h th - ' as e consequence 

h. h. ,..._,(x)(xea+o """ ) w 1c implies • -' • x ea , 

(3x)x ea v x E O. ,..._,(x ea). 
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Something which is a member either of a or of O and is not a member of 
a must be a member of O; and again we have the 
illegitimate consequence that (3x)x E O. 

A diagram will be sufficient to show that the second 
pair of equations, "al = a" and "a+ l = 1", are valid 
formulas. Let us represent 1 by a square, and any class 
a included in and distinct from 1 by a circle inside the 
square. The diagram shows the class al to be identical 
with a, and the class a + l to be identical with I. The 

FIGURE 23. 

common part of a and 1, their intersection, is a; and since no segment of a 
extends beyond I, their logical sum is I. In the trivial case where a is itself 
1, the two equations obviously hold. 

Laws of Absorption 

The next three formulas, called absorption formulas can also be seen 
to be valid class formulas from their diagrammatic repr:sentations: 

a+ab=a 
' a(a + b) = a 

ab+ ab= a. 

All are represented by the same part of the diagram. 

Reduction Problems 

FIGURE 24. 

It will be of some interest at this point, before the algebra of classes is 
erected, to do some elementary, informally conducted computing with 
classes. In accordance with the commutative laws (p. 65) we shall change 
the order of the terms in sums and products in any way we please; and as 
permitted by the associative laws (p. 65) we shall also rebracket sums and 
products (but not combinations of sums and products) in any way useful 
to the solution of a problem. Thus "a + be + d" may be changed to 
"a+ d + cb", and it may be bracketed as "(a+ be) + d" or as "a+ 
(be+ d)", but not as "(a+ b)(c + d)". 

Let the problem be to determine whether 

the class of people who are both blonde and tall or else blonde and not 
tall, and also either broad-shouldered or else broad-shouldered and 

loose-jointed 

is identical with 
the class of people who arc blonde and broad-shouldered. 
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Let "a" be the class of blonde people, "b" the class of tall people, "e" the 
class of broad-shouldered people, "d" the class of loose-jointed people. 
The problem is to discover whether 

(ab+ ab)(e + ed) = ae 

is a valid class formula. The two sums on the left of "=" contract, re­
spectively, into "a" and "e" by the third and first of the above laws of 
absorption, so that we have the identity 

ac = ac. 

The left-hand expression thus transforms into the one on the right, and 
the classes denoted are identical. 

In the next problems computations will be made without comment or 
reference back to valid formulas. Justification is left to the reader. Given 
the equation below, to show that it is valid by the process of reduction to 
an identity: 

a(b + c) + ac + bd +be+ bd + ac 

(ab + ac) + ac + bd + be + bd + ae = 
ab + (ac + ac) + (bd + bd) + be + ac = 
ab + ac + b + be + ac = 
(b + ba) + (ac + ac) + (b + be) = 
b+a+b = 
a+ (b + b) = 
a+b =a+b 

Problem: to reduce to an identity 

abc + be + a + cd + b + e + de = 1 

abc + (a+ b + e) + (be+ cd + de) = 
(abc + abc) + (be+ cd + de) = 
1 + (be + cd + de) = 
1 = 1 

Problem: to reduce to an identity 

The Antilogism 

a(ab + ab + ad) = o 
a(ll + ad) = 
ail 
0 =0 

We hark back briefly to syllogistic reasoning in order to acquaint the 
reader with a simplification in the test of syllogisms effected by means of 
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the equation and inequation class notation. A syllogism is valid if its 
conclusion follows from the premises; and the conclusion follows from the 
premises only if the negation of the conclusion is inconsistent with the 
premises. Thus a syllogism is valid only if negating its conclusion results 
in an inconsistent conjunction of statements. For example, on negating 
the conclusion of the syllogism 

All teachers are slave drivers 
All slave drivers are slothful 
All teachers arc slothful 

the result is the conjunction of the first two statements with "Some teachers 
are not slothful", a patently inconsistent conjunction. But negating the 
conclusion of the invalid syllogism 

All slave drivers are cruel 
All teachers are cruel 
Some slave drivers are teachers 

gives the conjunction of the premises with "No slave drivers are teachers", 
a triad of statements which is not inconsistent. A simple diagrammatic 
method of evaluating syllogisms suggests itself immediately. Instead of 
diagramming the syllogism we diagram the triad of statements obtained 
by negating the conclusion of the syllogism, and if the diagram has a 
"contradictory" compartment, i.e., a compartment which is both shaded 
and has a cross, the syllogism is valid, otherwise it is not valid. Letting 
a = teachers, b = slave drivers, c = slothful people, d = cruel people, the 
two diagrams are 

d 

FIGURE 25. 

The cross is made to span two compartments in order to indicate that one 

or the other is membered. . . . • 
This method is sufficient for testing any syllogism, but it is_ mstruc~ive 

to see what the conditions are to which a triad of equations and 1~eq_uations 
must conform in order to be an inconsistent set, or to be an antilo_gism. It 
is easily seen that every valid syllogism is equivalent to a syllog15m com-
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posed of three universals. That this is the case is guaranteed by the 
syllogistic rules (3) and (4) (p. 43) and the equivalence 

p . q . :) . r : = : p . ,...,,r . :) . ,...,,q : = : q . ,_,r . :) . r-Jp. 

Hence it is necessary only to discover the logical properties which all valid 
syllogisms of three universals have in common in order to formulate the 
necessary and sufficient conditions for syllogistic validity. Negating the 
conclusion of such a syllogism we obtain a triad composed of two univcrsa_ls 
and one particular, or two equations and one inequation, and only ,·ahd 
syllogisms correspond to such a triad. In order, therefore, for a triad of 
equations and inequations to form nn inconsistent set, (1) it must be 
composed of two equations and one inequation. This, however, is not 
sufficient. There are two further conditions, (2) the common term of the 
equations must occur as complements of each other, and (3) the terms of 
the inequation must occur exactly as they appear in the equations. C~n­
ditions (1) through (3) are both necessary and sufficient for a triad's being 
an antilogism, i.e., for a triad's being such that any two of the statements 
will imply the negative of the remaining one. The antilogistic procedure 
for testing a syllogism is to negate the given conclusion and see whether 
the resulting set answers to conditions (1) through (3). If it does, the set 
is an antilogism and the original syllogism is valid; otherwise the syllogism 
is invalid. Two syllogisms, one valid and one invalid, arc tested below by 

this method. 

(1) Rome Fr:mciscnns arc meditative 

1\'o hcwcum:erH arc meditative 
i~ome- Fn111ciHeUIIH arc not buccaneers 

ab~ O 
cb = O 
ac~ O 

ac == O. 
'l'hc negation of the conclusion is FIGURE 26. 

. f fi s (1) through (3) and is an antilogism. 
The triad obta~ned sa ,~s : . d the diagram bears this out. 
Yllo«ism is vahd, there ore, an 

s ~ ~·a~~ 

(2) All caRROwaries are ungainly 
. • . .,t·iir·c j8 a cassowary NO prdw•;tonc c1 c,~, , • ' . 

-N ·cl11·~·toric creature is ungamly 
O pl , '' ' 

ab= o 
ca== 0 -cb = 0 

The 

t ·o11 of the conclusion is 
The ncgu I 

cb ~ O. 
FJGOJ{E 27, 

·1 gisfll· 
d . not an anti o 

. ditions (2) and (3) ~n 18 

. d btained violates con . bears this out. 
The tria ~ is invalid and the diagram 
The syllogism 
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The Algebra of Classes 

"\Ye proceed to the construction of the deductive system of class 
formulas. It will be seen that some of the valid class formulas stated in 
the preceding sections are used as axioms of the system while others enter 
into the system as theorems. The axioms for the algebra, or calculus, of 
classes presented here arc formulated in terms of the operator symbols 
"X" and "-", the relation symbol "=", and the class variables "a", 
"b", "c", . . . . A number of conditions are imposed on the set K of classes 
which enter into the algebra. These conditions are usually counted as 
axioms of the algebra; but it seems preferable to think of them as pre­
suppositions of the algebraic system, instead of axioms, particularly since 
theorems arc not derived from them by the usual procedure of substituting 
on variables. They are 

Kt If ad{ and b d{, then a X b d{ 
K2 If a E I{, then a E I( 

K3 There arc at least two distinct classes in K. 

The algebra of classes rests on the logic of equality, comprised of the 
functional calculus of first order with added axioms for identity. Principles 
for deducing theorems in that calculus, among them the transformation 
rules of the propositional calculus which it contains as a part, automatically 
become rules of deduction in the algebra of classes. The properties of the 
relation of equality, or identity, which are developed in the logic of equality 
are presupposed by the algebra of classes. The following give three basic 
properties, and are in fact the axioms for one formulation of the logic of 

equality. 
El X = X 

E2 x=y.-:).y=x 
E3 x = y . y = z . :> . x = z. 

An examination of these will reassure the reader that he does not need to 
possess detailed knowledge of the logic of equality in order to be able to 
work with the algebra of classes. . 

\Vith Kl through K3 and El through E3 presupposed, the axioms are 

three in number: 
(I) a X b = b X a 
(2) (a X b) X c = a X (b X c) 
(3) (a X b) X (a X b) = a 

These arc an adaptation of postulates formulated by E. V. Huntington.* 
Note that no postulates for O and I arc included. The symbols "O" a11 <l 

* "Boolean Algebra. A Correction," Trans. Am. Math. Soc., vol. 35, P· 557, 1933• 
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"l" are definitionally introduced, and definitions are also given of "a + b" 
and of "a C b". 

(A) a + b = Df. a X 6 
(B) 0 = Df. a X a 
(C) l = Df. a""xli 
(D) a C b = Df. ab = a 

The rules for deducing class theorems are the following: 

Rl From A the result of substituting class expressions for each occur­
rence of the same class variable in A may be inferred 

R2 From A the result of replacing class expressions by their equivalents 
may be inf erred. 

Rule RI operates under the condition of completeness, that is to say. 
the same substitution must be made for all occurrences of a given variable 
in A. Rule R2 dispenses with this condition. The next two rules are 
modus ponens and the rule of inference called the Deduction Theorem. 

R3 From A and A:> B, B may be inferred 
R4 If from A1, A2 , ••• , An taken as hypotheses B is deducible, then 

Ai, A2 , ••• , An-1, An :> B may be inferred. 

The axioms are stated again for convenient reference and we proceed 
to proofs of theorems. To make the first three proofs easier to read super­
scripts are used to indicate the number of bars over a variable. 

(I) a X b = b X a 

(2) (a X b) X c = a X (b X c) 

(3) a X 5 X a X b = a 

(4) a x a = ax a 

(3), a for bJ 
(3), a for b, a for a] 
(I), i, ii, R2J 

(3), a for a, a for bJ 
(3), li for a, li for bJ 
(1), iv, v, R2] 

(1), (2), iii, vi, R2] 

a1 X a3 X a1 X a2 = a 

a2 X a3 X a2 X a2 = ll ---
a X a = [a1 X a3 X a 1 X a2J 

X [a2 X a3 X a2 X a2l 
a3 X a2 X a3 X a1 = a, 
a2 X a2 X a2 X a1 = a 

~--,:-

{j, X a = [a2 X a2 X a2 X a1] 

X [a3 X a2 X a3 X a1] 

aXil=aXll 

ii 

iii 

iv 
V 

vi 



(5) a= a 
(3), a for a, ll for bJ 
(3), a for bJ 
(4), i1 for aJ 
(1), i, ii, iii, R2J 

(6) a X a= b X b 
(3), 6 for bJ 
(3), ii fora, bforbJ 
(1), i, ii, R2J 

(3), b for a, a for b] 
iv, a for a] 
iv, b for b, lJ, for a] 
(1), v, vi, R2] 

(1), (2), iii, vii, R2J 

(7) O = a X a 
(I), li for b, Di.BJ 
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a3 X a2 X a3 X a1 = a, 
a1 X a3 X a1 X a2 = a 
a 1 X a2 = a2 X a3 

a=a 

a1 X b2 X a1 X b1 = a 
a2 X b2 X a2 X b1 = li --
a X ii = [a1 X b2 X a 1 X b1] 

X [a2 X b2 X a2 X b1J 
b1 X a1 X ~ = b 

b1 X a2 X b1 X a1 = b 

b2 X a2 X b2 X a1 = b 
[b1 X a2 X b1 X a 1J 

X [b2 X a2 X b2 X a 1] = b X b 
aXa=bXb 

0 = ii X a 
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l 

ll 

iii 

i 
ii 

iii 
iv 
V 

vi 

vii 

Conditions Kl and K2 assure the existence of a special element, aa, in K. 
Theorem (7) identifies this element as 0, which by (6) is shown to be unique. 

(8) o = I 
(5), a X ll for aJ 
i, Df.B] 

aXli=aXa 

O = a X a 
O=I ii, Df.CJ 

(9) 1 = 0 
(5), 0 for a] 
i, (8)J 
ii, (5)J 
iii, (5)J 

(IO) a+ a= l 
(9), Df.CJ 
(4), (1), iJ 
ii, Df.A, (9)J 

03 = o 
14 = 0 
12 = 0 
I = 0 

o = aXil 
O=aXa 
I=a+a 

i 
ll 

i 
ii 
iii 

1 

ii 

Theorems (11) through (19) are given without proof,_ some ~f them for 
their intrinsic interest and some for their usefulness m provtng further 
theorems. 
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(11) aXl=a 
' 

(12) aXa=a 
' 

(13) a+O=a 

(14) a+b=b+a 

(15) a+ a= a 

(16) a XO= 0 

(17) a+ 1 = 1 

(18) a+ ab= a 

' 

CLASSES 

a C 1 (By Df.D) 

a Ca (By Df.D) 

OCa 

(19) a(a + b) = a , a Ca+ b 

(20) ab Ca 
(2), a for b, b for c] 
(2), a for c] 
(1)] 
(12)] 
R2, i, iii, iv] 
(1), v, Df.D 

(a X a)b = a X (a X b) 
(a X b)a = a X (b X a) 
(a X b)a = a X (a X b) 
(a X a) X b = a X b 
a X b = a X (a X b) 
ab Ca 

(21) a+ (b X c) = (a+ b) X (a+ c) 

(22) a X (b + c) = (a X b) + (a X c) 

(23) a = ab + ao 
(11), b + 6 for 1, by (10)] 
i, (22), b for c] 

(2,t) (a+ b) X (a+ b) = a 

a= a X (b + b) 
a=ab+ab 

(3), [j for b] (a X b) X (a X b) = a 
i, Df.A] (a + b) X (a + b) = a 

i 
11 

iii 
iv 
V 

l 

The following illustrate the use of R4. An antecedent used as a hypothesis 
is indicated by "Hyp". 

(25) a = b . :) . ac = be 
(1), b for a, e for b] 
Hyp] 
H4, ii, (I)] 

be= eb 
ac = cb 
a=b.:).ae=be 

i 
ii 

When a substitution of one expression for another is made because an 
equivalence between them is assumed, the result B is not a theorem about 
classes but something true only hypothetically. I3ut provided B can be 
deduced from valid formulas in whieh substitution has been made in ac­
cordance with assumption A, R4 allows A :) B to be asserted as a theorem. 



(26) b = a . ::) . a = b 
(22), Hyp] 
(7), (1)] 
(13), (14)] 
(23), b for a, a for b] 
Hyp] 
(7)] 
(13), ba for a] 
(1 )] 
i, ii, R2] 
R4] 

EXERCISES 

a= all+ ab 
= o + ab 

a= ab 
b = ba + ba 

= ba + bb 
= 6a+o 
= 6a 

b = ab 
a=b 
b=a.::).a=b 

(27) a C b . b C a . ::> . a = b 
Hyp, by Df.D] a X b = a . b X a = b 
(l)] a X b = a. a X b = b 
R2] a= b 
R4] a C b . b C a . ::> . a = b 

The next proof illustrates the use of R3. 

(28) ll C a . ::) . a = l 
Hyp, Df.D] a X a = ii 
(7)] 0 = ii 
(26), 0 for b] 0 = ii. ::) . a = 0 
ii, iii, H3] a = O 
iv, (8)] a = l 
v, H4] ii Ca. ::) . a = 1 

EXERCISES 
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ii 

I 

ll 

lll 

iv 
V 

I. Rewrite the following statements with the help of"=" and "0", "=" and "1", "E'' 
and"::)", and "C", "-",and"~": 

No philanthropists arc chauvinists 
All patriots are f'inglc-mindcd 
Some pessimists arc not hypochondriacs 
Only odd numbers greater than 2 are prime 
All and only elephants have trunks 
There is a real root of x 2 = 4. 

2. Show informally thnt the following formulas are valid, and check by diagrams 
whenever possible. 

(1) a Ca+ 6 + c 
(2) ab Cb 

(3) a + be = a(b + c) 

(4) abc C 6 
(5) b C ab , ab C 6 
(6) a Cab 
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(7) a C 1 

(8) o Ca 
(9) a6(be + d) = aod 

CLASSES 

(10) a+ bed = (a + b)(a + e)(a + d) 

(11) a+ be+ de+ c + (a+ b)(a + e) = 1 

(12) a(b + e) + e + d + ej + ab + ec + ac = 1 

(13) abac + c +de+ a(b + e) = 1 

(14) a(b + e + d) + bd + abed + a6 + d = a + b + d 
(15) ab + eel + ab + de + a = a 

3. Apply the antilogistic test to the following an~ confirm by diagrams. 
(a) All professors arc nearsighted. All nearsighted people are timid. Hence all 

professors are timid. 
(b) NO vegetarians are boisterous. No refined people are boisterous. Therefore 

no refined people are vegetarians. 
(c) No ballerina. is a clown. Some clowns are not agile. Hence some ballerinas 

are agile. 
(d) All gazelles are graceful. Some graceful creatures are swift. Hence some 

gazelles are swift. 
(e) All college students adore logic and all who adore logic are not fickle. Hence 

no college student is fickle. 
(f) Some camels are not longlived. All dromedaries are camels. Hence some 

animals that are not longlived are dromedaries. 
(g) No buttercup has an odor. Some buttercups are Easter-egg yellow. Hence 

some things which have un odor are not Easter-egg yellow. 
(h) All horticulturists love dirt. Some lovers of dirt are not generous, Hence 

some horticulturists are generous. 
(i) All taxidermists are pessimists. All pessimists hate animals. Hence some 

taxidermists hate animals. 
4. (a) Prove (5), a = a, using (26) and (11 ). HINT: put ii X 1 for bin (26). 

(b) Prove (18), a+ ab= a, using (22), (17), (11). HINT: put 1 for b, b fore in (22 )_ 
(c) Prove (19), a X (a+ b) = a. HINT: Use (18), (15). 

(d) Prove a C e. ::> ab C ac. Use (2). 

(e) Prove a Cb. e Cd.::>. ac C bd. Use (1), (2). 
(f) Prove a6 = 0. ::>. ab = a. Use (23). 

(g) Prove ab = a. ::>. a6 = 0. Use (25), (2). 

(h) Prove 1 = (a + a)(b + 6). Use (10), (23). 

(i) Prove (a + b) (c + d) = (ac + be) + (ad + bd). Use (22), (21). 
(j) Prove a = a + ab + ac + ad. Use (18). 

(k) ab = 0. a ¢ 0. ::> . a6 ¢ 0. Use (23). 
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