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l'ruth-functions

ntroduction

The term ‘“logic”’, understood as designating the general theory of
xact reasoning, has traditionally been used as a covering term for quite
lifferent subject matters: inductive, or probable, inference, and a special
tind of deductive inference. Aristotle (385-322 B.C.), the great Greek
»hilosopher, was the first to investigate inferences of the latter kind,
nferences in which, to employ his deseription, “certain things being stated,
oomething other than what is stated follows of necessity from their being
0", The theory Aristotle developed extended to, but not beyond, the
equirements of immediate inference and the syllogism, i.e., it covered
leductive inferences made from single statements and inferences drawn
rom pairs of statements of certain kinds. This initial flowering of logic
vas followed by a dormancy of some two thousand years; and when, about
v hundred years ago, logic again sprang to life, it developed enormously
n the direction of generality and system, with the result that syllogistic
loctrine came to occupy only a minor place in it. In its latest develop-
nents logic was seen to be linked to mathematics, and even thought
'0 be the foundation on which the system of mathematics rests. Thus the
icience which first began with what Aristotle called “Analytics” (some
wndreds of years later given the designation “logic” by Alexander of
Aphrodisias) has now undergone a development which ranks it as a mathe-
natical discipline,

In this introduction to logic we shall confine ourselves to what is
called formal logic, as distinct from that branch of the subject which
nvestigates probable inference. And we shall begin, quite unhistorically,
vith the most general part of logic and move on to more specific parts,
vithin which the syllogism finds a much humbler place than with the
incients. We turn immediately to a description of the kind of deductive
nferences that formal logic investigates. Aristotle’s description of de-
luctive inferences, intended only to cover that restricted class which he
nvestigated, is even too wide for the whole class of inferences with which
ogic deals. Inferences in which, according to Aristotle, “something . . .
‘ollows of necessity’’, constitute all possible deductive inferences, whereas

1



2 TRUTH-FUNCTIONS

the deductive inferences which are the subject matter of formal logic are
only a subclass of these. To illustrate the distinction between non-formal
and formal deductive inferences, consider, as an instance of the former, the
deduction of “a has 12 edges’’ from “a is a cube”. Given that a is a cube
it follows of necessity that a has 12 edges. To assent to the given necessi-
tates admission of the consequence; one cannot consistently admit the
premise while denying that a has 12 edges. This inference, which is
effected by means of the pair of concepts, cube and having 12 edges, stands

in sharp contrast to the inference from the premise

to the conclusio If a is a cube, a has 12 edges
o the conc D 1f ¢ does not have 12 edges, a is not a cube.

The difference may be made perspicuous by replacing the concepts cube.
and having 12 edges by pairs of brackets in each inference: ¢

Premise: a is ( ), Conclusion: a is [ 1;
Premise: If ¢ is ( ), then a is [ ], Conclusion: If a is not | ], then

a is not ( ).

The first inference is effected solely in virtue of the particular concepts cub
and having 12 edges. It would, obviously, not hold for every pair of e
cepts. For example, given that a is blue we are not entitled to .cc;n-
that a is square. But the second inference holds for all possible aim e;
concepts, regardless even of whether the statements in which the}Ir) ﬁrS N
are relevant to each other. Thus, from the statement, “If it is snow; i
Alaska, butter is a medium of exchange in Tibet”, we may validly inf ngtllln
statement, “If butter is not a medium of exchange in Tibet, it is not, sngfv. e
i‘f Alaska”. The transition from one statement to the other ig effect dl’}g
virtue of their formal relations to each other. We pause to rema.clf 111n
even more striking difference between all these deductive inferen s an
the inference from ‘‘Sirens are sounding” to “There is fire” I cc}a}s o d
ference the premise does no more than lend a degree of prob;mb‘]'ll His In-
conclusion and does not necessitate it; the assertion of the prem'l o e
with the denial of the conclusion is a possible truth. i5¢ together
In logic methods are devised for calculatin
given statements solely by reference to their forms,go:e;:; ;ﬁtiiné?gts from
techniques are invented for testing the validity of forma] infere orentys
explain this description of logic, it is required to distinguish b : ?eS- 2o
f?rm of a statement and its material content. The notion of form (i}n“;}:‘:; e
‘t‘lon from content is intuitively grasped when one sees what is com on to
If the figure is a cube, then it has 12 edges” and “If Jones is a Mm(?n "
then he is soft-spoken”. Once the subject matter of the two state ex1§ar.1,
disregarded, what is left is a bare schema exhibiting how the co mte? S 18
statements are related. Provisionally we may say that the fc:i-s;lzz z?n:



FORMAL TERMS 3

statement is what remains when the constituents have been replaced by
variables, the same constituents by the same variables and different
constituents by different variables. The role of blanks enclosed by pairs
of brackets in the expressions above is that of variables. The resultant
expressions are said to consist solely of formal terms, the variables them-
selves counting as formal terms.

Formal Terms

The units figuring in inferences are statements, which are characterized
by the property of being either true or false, or of having a truth-value.
By virtue of the formal terms occurring in statements, logic provides a
means of calculating the truth-value of a statement from that of the given
statement. The expression “formal term” is defined here ostensively, that
is, by giving a list of terms to which it applies. We introduce as our first
formal terms variables “p”, “¢”, “r”, ..., whose range of values consists
of statements. Next introduced are two formal terms of a different kind:
“or”’, for which the symbol “v” is used, and “not”, for which the symbol
“~" is used. These will be classed together as operators and assigned
special names: “v”’ will be called disjunction and “~”’ will be called nega-

tion. The expression
~p

is read “p is false” or, alternatively, “not-p”’. A statement of the form
“~~p’ will be true if “p’’ is false, and false if “p” is true; and “~(~p)”,
the negation of “~p’’, amounts simply to “p”. It is obvious that “~"
can operate on a statement no part of which is a statement, whereas “v”
requires at least two statements for its operation. Both terms can of
course operate on statements which are themselves made up of statements.

In ordinary English “or” is used to mean ‘“‘one or the other’”. In
some instances of its use it is understood to present mutually exclusive
alternatives, while in other instances the condition of exclusiveness is
understood not to hold, i.e., it sometimes means “one or the other but not
both” and sometimes “‘one or the other or both”. In logic convenience
dictates its use in the nonexclusive sense, to mean that at least one of the
stated alternatives is the case. Thus,

Pve

may be read “‘at least one, p, g, is true”, and taken as neither specifying
which of the two is true nor whether both are true. It is to be noted that
ty” has some of the properties of the arithmetic operators “+4’" and “X”:
it is commutative, that is, the order of the disjuncts “p” and ““¢” is imma-
terial, so that there is no need to distinguish between ‘“p v ¢’’ and ‘g v p”.

It is associative, that is, “p v (g v r)” and “(p v ¢) v 7"’ both amount simply
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{9 . .
;°+ I;,"’ Zl r\: (;‘"‘,‘ ;L;ce mtef,nal grouping is immaterial, just 28 it is in “fx*o‘;
withor “+7 or ’z,/ Xz I{‘l one important respeet "V differs 1T
o or “X”, namely, in that “p v p’’ comes to the same thing as
p”, whereas “z + z”’ and “z X z’’ arc not identical with e .
tuation 1

requiI:(]; da(f]:)]:tzﬁn to variables and operators SOme means of punc e use
e o' ‘f)z lc:\presswn of logical form. For this purpose we Sli wit
brackets andrl rilc_kets or a combination of the two- We shall StMnience
requires i sha ].lﬂtroducc the dot form of punctuation when conve
quires it. The list of formal terms now consists of
Statement variables: Dy QT
Negation: ~
Disjunction: v
Punctuation: (,); L,1; ete
. “
It is to be remarked that although statement variables Me.t’hz:;cy z’rﬁ‘
e ,ment?

a .
agz: ?\Shye}tl, at our disposal, they are not the only ones us€ .
ich replace parts of statements that arc no¢ themselves 5° yjo us

‘t‘;)ﬂ;ob‘c introduced later, and the addition of thes will enao
prescl:tu;l&t'e rulos of ?nference which cannot be form
ogical material. Part I will be confined to

e to the list.
ulated 10 ter ot oub

the apparat Mig the

ab 38 i
so-oc‘:]ai dThls is to say that the part of logic O pe develoP® . ive
ed theory of truth-functions. The name “tl'uf'h‘funct'lm | ports 02
aV

Zi’a:hose Statemem"forms (1) which result from SUPP"GSS'mg ﬂ.vhich b
atements which are not formal terms, (2) the varia Jes of ¥ e
’ t
e

sta,teglcnts exclusively as their values. e tO giv
logicalyf means of the formal terms now at hand it 18 pos sible
orms of many statements, for example, )
~Y r v s '
pv~g  ~(~pvgq), ~PVIVT NPV"“W(N
The ntatements
. Either he studies or he does not pass the exam it
.g OF
. . gast A
It is not the case that either it does not rain 1 »
pours T
ms-

thcil‘ for wiu pe
1S It 7 its

e formd=: re exhl
he B a8

)H as

have, respectively, “p \YJ Nq” and o (Np v4a
der ar

reader can find statements of which the remain sl

?ot.ed how much more perspicuously the not@ jon useex l.essw

.oglcal ff)rm than does ordinary English. To use h r

illust ration, the English reading is: r p0"
ther * o js B0° °

Either “p” is false, or else it is false that el
or 8 is true.
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Disjunctive Arguments

On exhibiting the logical structure of statements in the compact
statement-forms the newly introduced symbolism permits, it becomes a
simple matter to calculate the truth-values of statements from given
statements by reference exclusively to their forms. Ior example, given
that a statement of the form “p v ¢” is true and also that “~gq” is true,
we are entitled to infer that “p’’ is true. The inference of ‘‘p” from “p v ¢”’
together with “~¢” is a calculation, such as Leibniz (1646-1716) envisioned
for inclusion in his “calculus ratiocinatur’”. This inference-calculation,
and others similar to it, may be represented by arranging premises and
conclusion as follows:

1) pvg
~q
P

To illustrate: Suppose a detective has discovered that either Jones or
Smith is implicated in a certain fraud, and finally determines that Smith
is not implicated. He can correctly infer that Jones ¢s implicated. On
the other hand, given “p v ¢” and “q”, he is justified in inferring nothing
as to the truth-value of “p”. For since the fact that at least one of the
men is implicated in the fraud does not exclude their both being implicated,
the discovery that Smith is implicated allows no inference as to whether
Jones is or is not implicated. This shows up clearly in the schema

(@ pvg
q

?

Elaborations on schemata (1) and (2) may be multiplied. For example,
given as true that one of three scientific hypotheses explams‘a phenomenon,
and also that one of them is false, it can be inferred that either one of the

other two hypotheses is true:

(la) pvaqvr

~q

Y4 vr
If, however, we are given “pv gvr”’, “~yq", and also “p” nothing with
regard to the truth-value of *‘p” can be inferred:

(2a) pvgvr
~qr
?
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Again, if the truth-value of “p v ¢” is initially unknown, then given that
“q” is true we may validly infer “p v ¢”, and given “~¢” we may infer
“p v Ng”:
@g ~ (Ba)rg ]
pPVva pVvV~q
But from “~q”, “p v ¢”’ is not formally inferrible:

) ~aq,
?

Conjunction

Let us turn to the following more complex form of inference:

(5) ~~(pvag)v~(rvag)l
~pV ~r

q

For a concrete instance of this logical schema make the following replace-
ments: for “p”, “I speak the truth”, for “¢”, “I suffer”’, for “r”’, “I lie".
The first premise then reads: “It is not the case either that it is false that
I speak the truth or suffer, or false that I lie or suffer’’.

The formulation of this inference-schema is more complicated than
it need be, and it can be re-expressed more simply, with a consequent
economy of reasoning, by introducing a further formal term. This is the
familiar “and”, which is symbolized by *“.” and called conjunction. The
expression

P-9

read “p and ¢”, is to the effect that “p’’ and “¢” are jointly true. Like
“pvq”, “p.q’ is commutative and associative, and “p . p’’ comes to the
same thing as “p”. By contrast with “p v ¢”’, which is true when either
disjunct is true and false only when both disjuncts are false, “p.q” is
false if either conjunct is false, and true only when both conjuncts are
true.* Despite this difference in the two operators, what makes it possible
to simplify the complex form of inference (5) is the fact that “p. ¢’ is
completely definable in terms of “v”’ and ‘“~'. This fact implies that
the introduction of the new term actually adds no material over and above
what we already have in the list of formal terms. What can be said by
‘means of “.” can be said by means of “v’’ and “~’. Thus if we begin, as

* We speak of “pv¢” and “p.¢"” being true, which is improper, as these are not
stgtemcnts. The expressions ““ ‘p v ¢’ is true’”’, *“ ‘p . ¢’ is true” are to be understood as
being short for “a statement of the form p v ¢ (p . g) is true'.
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we have begun, with “v”’ and “~7’, the symbol *“.”” may be introduced by
definition:
p.gq = Df. ~(~pv~q).

To say it is false that either “p’ is false or “q” is false obviously comes to
the same thing as saying that both “p’’ and “¢”’ are true: “neither not-p
nor not-¢”’ amounts to “both p and ¢”.

If we had begun with “.” and “~”’, the symbol “v’’ might in analogous
fashion have been introduced by definition:

pVvq = Df. ~(~p.~q).

To say it is false that both “p’’ and *“¢” are false is the same as to say
that at least one, “p’’, ““q”, is true. The expressions on either side of the
symbol “= Df.”, which ushers in the definition, may replace each other
as desired. Thus, the statement “Both 3 and 5 are odd” is interchangeable
with the statement “It is false that either 3 is not odd or 5 is not odd”’;
and “Either Jones is reading or he is writing”” with “It is false that Jones
is both not reading and not writing”’. The simplification in our inference-
schema (5) above, made possible by the introduction of “.”, is now obvious.
The first line of (5), “~[~(pVvqg) v~(rvq)]’, can now be replaced by
“(pvgq).(rvgqg)”, analogously to the replacement of “~(~p v ~yq)” by
“p.q”. The inference-form (5) becomes

(pve).(rvg)
~pVr~r
q
and is easily seen to be valid.

The possibility of replacing the conjunction “p . ¢’ by the negation
of a disjunction, and the disjunction “p v ¢”’ by the negation of a con-
junction, suggests a general rule for transforming other conjunctions and
disjunctions, for example,

_ p.~q, ~pV~q
into into

~(~pVvq) ~(p-9-
Conversely, it suggests a rule for expressing the result of the operation
negation upon a disjunction or conjunction. Calling the statement-forms
connected within the brackets by “v’ or “.” the arguments, we can for-
mulate the two rules* in the following way:

(A) the negation of a disjunction is the conjunction of the negated

arguments;

(B) the negation of a conjunction is the disjunction of the negated

arguments.

* After the rules formulated for analogous class-formulas by Augustus De Morgan
(1806-1871).
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Tt is of some interest to see how the pieces of formal reasoning m
through (5) can be restated in terms of “~" and “.”, with entire neglect
Of “VN:

@) ~(~p.~9 @) ~(~p.~9
_~ e
P ?
(la') N(Np .~q. Nr) (23') N(NP . ~q - NT)
~q ~q.T ,
N(Np . NT) 3 ______—/—_—_—?
@ ¢ | (3a) __~4
~(~p . ~q) ~(~p- 0
@) ~g &) ~(p .~ T ~0)
! ~p.n
q

Implication and Equivalence

It i i . . mS
is convenient and psychologically simpler t0 US® both tle;lvio&s 0

[11V12)

221(:1p:ri1,1 th;:l to C?ﬂﬁne ourselves to only one of thesé; as 18 0 e sort of
consid g the various formulations of (5). In fach the sam ofinable
N eration ‘c‘hctates the introduction of two further germs, €2 w~
Tb}’};:eans ‘?-f v’ and “~", and of course alternatively PY ‘
alenci’&’lres vxlrfxt','l.- then - - -, or “implies”, symbolized bY K Lieh 4P is

lled th ymbolized by “=". The expression “P Og "
o e antecedent and “‘¢g” the consequent, 18 defined

pDqg=Df.~pvg

We justi -
ti \?e]:1;8ttlfy the definition by means of an example. Conside
atements, expressed in the form “If p then 7"

g buying,. power diminishes, a depression is likely
the switch is depressed, the light will come O

These say precisely what is said by

. _ o
Ié;g;er btl:ymg- power does not diminish or & depression is 1ike y

er the switch is not depressed or the light will come o
mes?®

Th o
of th de definition of “equivalence” is most paturally expresse
e eﬁned terms uD,, and .

p=g¢=Di @D @2P
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For example, that “a is an even prime” is equivalent to “a = 2" is the
same as the fact that “g is an even prime” both implies and is implied
by “a = 2":if a is an even prime, a = 2, and if @ = 2, a is an even prime.
The symbol “="" could, as might be expected, be defined in terms of “~"
and “v”, in terms of “~” and “.”, or in terms of “~" and “D". It is of
some interest to see what the defining expression in each case is:

~[~(~pvqg)v~(~gvp)]
~(@.~q).~(q.~p)
~[(»Dq) D ~(g Do)l

When two statements are equivalent, or mutually imply each other,
either is said to be both a necessary and sufficient condition for the other.
Any statement “p” is a sufficient condition for “¢”” when “p D ¢’. And
it is a necessary condition when ““~p D ~4g”, or, what comes to the same
thing, when “g D p”. (For “g D p” becomes “~qv p”, which can be
seen to be “~p D ~q”.) To return to the example above, a’s being an
even prime is a sufficient condition for the truth of “a = 2”. Tt is also a
necessary condition: Only if @ is an even prime is ¢ = 2, so that if a is
not an even prime ‘“a = 2" must be false. In general, the sufficient and
necessary conditions for the truth of a statement “¢” are not the same.
For example, “a is equilateral” is sufficient for the truth of “a is isosceles”,
but not necessary; whereas “a is an cven number between 2 and 7 is
necessary but not sufficient for the truth of “a = 4. Only when there
is an equivalence between “p” and “gq” do both conditions hold. It will
be recognized that transformations of formulas by means of the negation
rules given above produce equivalents.

Negation of Mixed Functions

It is useful at this point to note that the rules for negating disjunctions
and for negating conjunctions may be extended to cover functions involving
mixtures of the two operators, e.g.,

~pv~(g.r.8)]=(~p.q.7.5),

and also to functions involving other operators as well. By transforming

.. : . 9 .
a negated expression into one involving only “.”, “v”, and “~"’ we obtain
an expression to which the original rules apply:

~f~pV[(~gV (r.s)) . (~(r.s)val}
p.~[(~gqv(r.s)).(~(.s)vq)l
p.[~(~qv (r.s)v~(~(.s)vq)]
p.[(g. (~rve~s)v(r.s.~q)]

~{pDlg= (r.9)l}

e mom
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Properties of Implication

rd-
The pieces of reasoning on formal terms, (1) throu.gh (5), are Stﬁﬁg: of,
ized forms which can be summed up into prescriptions for, of arqument
inference. Thus, (1) may be summed up in the rule, denying ?"fz) ian be
of a disjunction necessitales affirming the remaining argume’ft' ence 10 the
summed up in the rule, affirming one argument allo}vs no znfg the basis
other. Comparable rules can be formulated for implication. ©n '
of the following two inference-schemata

®pDg (M P4

P ~4

q ~p

Y0 the

we can formulate the rules of affirming the antecedent fmd 2 ! "i;:y;egess{'
consequent, respectively: affirming the antecedent of an Zmphcan‘mplication
tates affirming the consequent, denying the consequent of an zsoning a
necessitates denying the antecedent. That the above forms o‘f rea‘ D "
justified appears immediately on transforming “‘p D¢’ into i

g fallaciou’
whereupon both reduce to cases of denying a disjunct- The
forms of reasoning,

’

POg PO4q
Np q

) _—
correspond to inferences from disjunctions in which the Secfifi‘en ondi-
a_fﬁrms one disjunct. Each form of argument confuses 3 5477, is illicitly
tion for the truth of “g" with a necessary one: In each case P

her‘vise’
taken to be the only condition for “g” s truth. Or to Pub . Ofunc o
PO ¢" is identified with gD p”. Transformation of thes?tions that
into disjunctions together with an examination of the con¢!

a
make each false and that make each true will show that not "

- «“ P
conditions are the same, as would be required if “p 2 7' and "9 and
were equivalent.

. ¢ q
g DThls test will show that, by contrast, “p 2 g; and
~v ,\,p ’, [ q

: thin
) p” and u~p ») ~q”, do come to the same r forms
f}fns ‘il_eaflﬂ that each can be validly inferred from the other: Ot?impﬁca"
. valid inference, resting on the so-called transitivity property ©
tion, are
®»pD¢ 9 pDg

g ~r D ~q

pDr’ ~r D ~p nd
In (8) the con theti

. the O . 3

the same s ¢ Y::Cg;ent of one premise is the antecedent of : I

ts
: 9 . ce I
cational equivalent,( ) when one of the premises is repla
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In cases where the truth-value of “p O ¢” is unknown, it is interesting
to note which conditions allow us to calculate its truth-values:

¢ o~ ~pea P.~q
PDyq POy PDg ~(@Dygq)
It may seem odd that an “if . . . then - - -’ statement should be true under

the conditions (1) that its consequent is true and (2) that its antecedent
is false. That “p D ¢” is true under these conditions is made evident by
transforming it into “~p v ¢”, as is also the fact that “p D ¢” is false under
the single condition “p . ~q”. An extension of the first two calculations
above can be made to “chain” implications such as “p D g D (r D §)]”
in which the sign of implication in each case governs the expression succeed-
ing it. Suppose the truth-value of “p D¢ D (r D s)]” is unknown.
Given that the final consequent “s” is true, or that any antecedent is
false, the truth of the chain implication follows:

s ~p
pDlD D) pDlgD Ds)’
~q ~r

pOD DN pDlgD ¢ Ds)

Applications

Problems which, without the apparatus developed so far, would' present
considerable difficulties can now be dealt with simply. Consider the
following, of which the schema appears alongside:

(1) It is the case both that if I drink
coffee, then if I count sheep, I donot ~ ~p D ~s)
fall asleep, and also that if I do not P> @2~ (~p
drink coffee I am not nervous

(2) I am nervous s
(3) I count sheep q
Do I fall asleep? ?

The conjunction of “s” with “~p D ~s” yields “p”, by the rule of d.eny-
ing the consequent, and “p” together with “p D (¢ D ~r)" yields
“gD ~r", by the rule of affirming the antecedent. From “g D ~r”?
conjoined with “¢”’ we derive the answer to the question, namely, that I

do not fall aslecp.

~p D ~s pD (gD ~r) gD ~r
s P , q

(4 qJ~r ~T
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Consider the following, more complicated, problem.

. e . Smi ]

(1) If cither it is false that Jones did not witness the colhsmx} ot Sniiyt;‘zﬁc
wearing his spectacles when he saw the collision, then if Coe oy
driver of the stolen truck, then if the third witness was not 11
dated, the judge was bribed

. . of the
(2) If the third witness was not intimidated, Coe was the driver
stolen truck

(3) The judge was not bribed
(4) The third witness was not intimidated .
Was Smith wearing his spectacles when he saw the collision

The schema for these premises is:

(1) (~~pvg) DIrD (~sDu)
2) ~sDr

(3) ~u

(4) ~s.

: nd
The conjunction of (2) and (4) yiclds “7”, and the conjunction Of-(?n)c:ioxl
(4) falsifies the consequent of “r (~s D w)”. Hence the c()}]]lf Isifies
of (2), (3), and (4) falsifies the consequent of (1), inasmuch 28 it ﬁf (1)
the disjunction “~p y svu”, Thus the falsity of the antecedent (:,his it
namely, “~(~~pvg)" or “~p.~q”, can be inferred. From Jlision-
follows that Smith was not wearing his spectacles when he saw the 0

NSDT
~3s
—

r

T.~8 .~y

~[rD (~sD u)] !
(~~pvg)Dr D (~s D )]

~D . ~q
~rD (~sD u)]

~ Ao~y
(~~pvg) ~q

Formal Validity ang Tautologous Functions

con”
The problem of devising methods for calculating formally the

i for
322::‘(_132?“& EIVen statements is the same as that of devising meti;:g;g N
COHSequenci %ht?.ther a formal inference is valid. That is, calctz B
18 formauy vali Yom a premige A is the same as determining tbﬁa' form”'l
Properties, § 1d, or t,ha.t B does follow from A in virtue of their o er
what Stat;;m‘e ortne functions of the form A D B are such that n0 ables
of A and B tli:: Sl are s-ubstituted for the component statement Y:r e
tmth'funct,i(’ns ce::sltrlj 2 true statement. This is also the case W1

. T
cted solely from the logical materials 80 a

-
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nounced, ie., from statement variables and other operators than “D?”,
Such forms are called tautologies. An obvious example is

(@.~q) D (p.~q).

No matter what statements are substituted for “p"” and “4q"”, the result
will be a statement which is true, and furthermore, true in virtue of its
form. Another obvious tautology is “pv~p”. Somewhat more compli-
cated tautologies are

(D q) D (~g D ~p), P.-9D@vy, (~p.q9) Dy

If in each of the two preceding problems the given and the derived answer
are connected as antecedent and consequent, a still more complex tautology
results:

[(1).@). @D~  [1).(2).3). (@)D~

Truth-tables

The problem of determining whether B follows formally from A now
reduces to the problem of devising a method for determining whether
A DB is a tautology. TFor this purpose the so-called matriz method or
method of truth-tables has been invented. This method is a schematic
device for corrclating the truth-values of the component statements,
called truth-conditions, with the truth-value they determine the statement
to have. Writing T and F for “true” and “false”, the truth-conditions
are given in a compact array of combinations of T’s and F’s together
with the correlated truth-values of the statement. These are presented
in the form of a table in which the truth-conditions are listed on the
left and the correlated truth-values under the statement on the right.
Thus the truth-tables for “~p”, “pv ¢”, “p.¢”, “p D ¢", and “p = ¢’
are:

pla|~p, pve p.qg pDg  p=gq
T|T| F T T T T
T|F T F F F
FlT| T T F T F
F|F F T T T

The truth-conditions for “~p” are two, which in the above table are re-
peated. They are the T, I entries under “p”: “~p" is false when “p” is
true and true when “p” is false. Inasmuch as the remaining functions
involve two variables the truth-values of which are independent of each
other, the columns on the left must list these truth-values in all possible
combinations. There are four such combinations, cach of which is a

condition under which the given function is either true or false.
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The next two tables call for some comment.

@ p|pv~rp @ pla|@.0D@20
T| T T|t|{ T T T
F| T T|{r|] F T F

rlTl 7 T T

rlr| F T T

The first table shows that “p v ~p” is true under all possible com.iitionﬁ

0, o : 13 [TPRE I . 1 vhen it 18 false-
p is true or p is false” is true when “p” is true and also ¥ » glways

And as T and F exhaust “p”’s possible truth-values, “pv~p” B

. - r
gives rise to a true statement no matter what replacements ar¢ mageaflcs’o
“p”. The second table shows that the function “(p - 9D (P D9

i ) (o}
is a tautology. The subcolumns beneath “p .¢" and “P 24 ', the W
components of the tautologous formula, exhibit the truth-values ot
under the same conditions, and from these, looked on as & subsidiary

s .. lication
of truth-conditions, the column of T's beneath the main implicati

: . the
connecting the constituent functions can be calculated. Inasn‘mcb fswith
table shows no truth-value combination T for the antecedent “p-1q

F for the consequent “p D ¢”, “(p.q) D (p D 0)” always holds,

to say that “p D ¢” is a formally valid consequence of “P - g’

: -table
On the other hand, “(p v g) D ¢” is not a tautology- The truth Jated

for it shows this, and at the same time shows why “g” cannob be calet
from “P v qn:

ple | v Dy
T|IT| T TT
T|F| T FF
F|T T
FI|F T

ﬁ?l t’cr};lth'vf"llle of the formula is not truth for all of its h'uth.’cox’][‘ u
s o fact that both T and F under “g” are associated With * " on
“1; x ¢ indicates that “g” can have either of two gruth-values ‘;t be
falseq wf tl‘\‘l‘e- T,l,u§ 1s to say that “q” need not be true, and nee p-valué

» When “pv ¢” is true, or that nothing regarding “q” ’s brut?
can k: caleulated from the truth of “pvq’ hot
has a t:::l?.:f%rlmtmn might have been defined as the kind of formul® £ o4
by subStitut? e, one such that the truth-value of the statements ©
gy thelons on its variables is determined uniquely bY ¢ fe rm
divides into :Ersmut‘o“ statements. The class of truth-functio® ? inco?”
sitont oot ee subclasses, the class of tautologies, the class © tjon 18
contingent if %n.s, and the class of contingent functions. po thers;
Inconsistent le -l: true for some of its truth-conditions and false for (i) it 39
false for none, it is false for all its truth-conditions; tautoloBO"® .

It will be evident that the negation of & tautolod
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inconsistent function, and of an inconsistent function a tautology. It will
be evident also that the negation of a contingent function is a contingent
function which is true for those conditions for which the original function is
false and false for those for which the original function is true. The matrix
method is a procedure for deciding to which class a truth-function belongs.
The rcader may gain practice in its use by applying the method to the
following: “¢D (pv @), “g.(~p.~q)", “@D ¢ D (@@>Dp), “(p.
~0) D (~pD @), “pvig.-~9)", “p. @D 9"

Application of Truth-tables to Problems

The class of tautologous formulas are among those traditionally called
laws of logic. Laws of logic are statement-forms having universal validity,
and any inference which conforms to a law of logic is formally valid. It
will be instructive to see how the matrix method can be used to decide
whether an inference conforms to a law of logic, and is valid, or fails to
conform to a law of logic, and is not valid. It turns out that this method
can be used to solve problems like those on pages 11-12. In writing a truth-
table it must be kept in mind that the number of truth-value combinations
of n variables is 2*. Note that the truth-conditions for functions con-
structed on two or more variables can be written in a regular way, the rule
for which may be gathered from an inspection of the tables applied to the

following problems.

(a) Given: (1) If you are a true animal lover, then if you like mice, you
do not like cats.

Can the following be validly inferred?

(2) If you like cats, then if you like mice, you are not a true

animal lover )
(8) If you do not like mice, then if you are a true animal lover,

you do not like cats.

The truth-table which gives the answer to the first question is:
D @D~nNDrD @D ~p)

HEEEa s
HE e g R
HRESE S
HAaEEags
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idl
We see that (1) D (2) is a tautology, and hence that (2) can be validly

~ ” is al
inferred from (1). The formula “[p D (g D ~r)] D [r D (g D ~p)]
law of logic.

ion is:
The truth-table which gives the answer to the second question

PO @D~nD~gD D]

HRlHEH

AR
SROR N RO R N R

HaEaE g S

. ssary
To determine that (3) cannot validly be inferred from (1) it is not I:;:;ition-
to determine the truth-value of (1) O (3) beyond the fourth cf logic-
The formula “[p > @D~ D~ D (p D)) isnot alaw 0

ble
(b) Given: (1) If Smith is happy, then if he works he does not grum?
(2) Smith is happy
(3) He does not grumble.
at can be inferreq as to whether Smith works?

i sual
It is not necessa the u

Ty to write the truth-table for this problem 1n itions
WVay. A curtaileq version consisting of the array of trut.h-cox} L ate-
together with the correlated truth-value T for the conjunction O stods
Taents suffices for the solution of the problem. The I's may be. ncgtion i
>ince the problem i o determine what follows when the conjun¢

frue.  For the answer we go back into the truth-conditions:

Pilajr D @D~r)).p.r

T|IT]|T

T|IT|F

TIElT| T T T

T|IF|rp

FiT|T

FlT|p

FIFr|T

FIF|r
We see that the thi o ich the "
o e o

i ition shows ‘4 v
false. Thyg the f .« ue, and this condition ShOWS | utology’
or 8 law of Jogi, ormula “f[p > (4 > ~r)].p.r} D ~q" is 8
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The Axiomatic Method

There is a further method for selecting from the total class of truth-
function formulas those which are laws of logic. This is the axiomatic
method, which introduces order and system into logic. Roughly speaking,
the introduction of this method stands to the material of the preceding
sections as Euclid’s Elements stood to geometry in ancient Greece. We
have so far noted a few of the laws of logic for caleulating conclusions
from premises. The axiomatic method is an exact procedure for deducing
new laws of logic from premises which are themselves laws of logic. This
method makes the order of their occurrence their order of deduction within
a system. A most important advantage of the axiomatic method over the
matrix method for deciding which statement-forms are laws of logic is that
the latter method can only determine this for laws which are truth-functions,
whereas the axiomatic method does this and more. From suitable premises
it yields laws which are not truth-functions, i.e., laws which are con-
structed on variables the replacements of which are not statements. An
example is the logical law which is exemplified by “If not all perfect
numbers are not odd, then some perfect numbers are odd”.

The Concept of a Logistic System

In order to develop in a clear-cut way the axiomatic method for
deriving truth-function laws, it is required to introduce the reader to the
general notion of a logistic system. To put it briefly, a logistic system
may be described as an artificial language which, in contrast to natural
languages, lists separately its primitive symbols and its defined symbols,
lays down rules for deciding which sequences of symbols are to ct?unt as
syntactically correct sentences, and stipulates what is to constitute a
correct derivation or proof. The rules and stipulations in every case must
be effective, that is, be such that a merely mechanical procedure, without
reference to the meanings of the symbols, leaves it undebatable whether a
sequence of symbols is properly formed and whether a proof is correct.

The vocabulary of the truth-function calculus will consist of an
indefinite list of variables “p”, “¢”, “r”,...; the operators “~” fxnd
“v"; and brackets (", *“)”’. The term “formula” will mean any combina-
tion of these. Some combinations will be merely ill-formed sequences of
terms, e.g., “v p”, “g~"", and hence a syntax or grammar for the logistic
system is required to settle which combinations are to count as correctly
formed sentences, or as wellformed formulas. The language needed to
discuss this minimal language is called the meta-language. Iere it is
ordinary English together with the syntactical variables “A”, “B”, etc.,
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which take wellformed formulas as values. In it we set out the rules §0r
the logistic system. These include formation rules, i.e., the syntsx o;
the system, the following being sufficient to generate the entire class 0
wellformed formulas.

A variable alone is wellformed
If A is wellformed, ~(A) is wellformed
If A and B are wellformed, (A) v (B) is wellformed.

No formula is wellformed unless it is constructible by the above rullfls g;
is definitionally replaceable by one which is wellformed. It S hout te-
noted that although wellformed formulas are such that they 3“61(‘1‘ ; ®
ments upon substitution of statements for the variables “p, g’ T ,1b1—
in expressions which are values of A, B, . . ., and never meaningless ¢ 0
nations of symbols, the formation rules are set out without reference
meanings.

Starting from our primitive symbols and two definitionally
duced symbols “.” and “D”, it is readily scen that the formation
secure that the following formulas are wellformed:

~@), [~@lvi), @D, @ (9)-

. e
The formulas “{~ ()] v (5" and “~ ([~ ()] v [~(@)]}" 870 40TV A
use of the second and third rules, and “(p) D (g)"", “ @) - ( Q)" are obtaf:7 bat
from these formulas by definition. The role of brackets is t0 indicate ¥ sion
is c_alled the scope of the operator, i.e., the part or parts of the expresa s,
which the operator governs. Tn “[~()] v (¢)", “~" €0V £ Ty
(p?, , while “v?” governs, i.e., disjoins, “{~(p))” and “(2)"" In o e 0
‘(‘q),], .tl}? scope of “~" is the diSiun’ction “(p) v ()" and, the Sco}z
f;/rmxsd- (p)”, “(¢)”. Without brackets a formula may fail 80 T v in
“p De q’Dthﬁ,s’ 1t is impossible to say what is the antecedent ©

intro-
rules

enso

However, for t . S e shall disP
. HL0N ) ypographical simplicity We > riable
::til:sbrmke.ts within wellformed formulas if A stands for a SN va‘on of
more :1? Bation; and except where “~" prefaces a bracketed exPT 1lowing
are the ::nsgst};anafble we shall replace brackets by dots. : extend
10ns for ¢ . tor ”
backward or forward pa};: use of dots: the scope of an opera 5.1

8 lesser number of dots, as in “P 24"~ pots
24 {00 Bt mumber o doy v 9 2 42 7 = 0
join, agin « Cluste lel’extend past an equal number of dots usenjoin '
be wider thzx; th +.7". And the scope of a single dot used to ¢© pia read
“py g 0 at of any unpunctuated operator, as in “p24-

qo::nd " are both true”, ’ atio?
rules, Somfsivi‘l‘iegformeq formulas constructed according t0 the fiéﬂ:) ous-
The logistic syst, € contingent, some inconsistent, and some taute o last
class. The ay- em 1o be set out consists solely of formulas O ° oring

Xlomatization of this class is accomplished bY discO
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a small number of tautological formulas from which by the use of certain
rules of inference all the remaining tautologies can be derived, and only
those. Whitehead and Russell's famous Principia Mathematica takes five
formulas for its axioms, one of which was proved to be redundant and is
omitted here. These, instead of being stated exclusively in terms of “~"
and “v”, are stated with the help of “O”, which is introduced by definition.
They are

pPVp.D.p

g-2.pVvg

pPvVgqg.D.qVp

gOr.D:pvg.D.pVr.
The reader may verify by the matrix method that these are all tautolo-
gies, true for any “p”, “g”, “r"’. Theorems, all of which are tautologies,
are deduced from these by means of two rules of inference within the
logistic system. As in the case of the formation rules for wellformed
formulas, these transformation rules are in the meta-language. They are:

I From A, the result of substituting B for each occurrence of the same
variable in A may be inferred (rule of substitution)
IT From A and A D B, B may be inferred (rule of modus ponens).

The Propositional Calculus

The system for deriving tautologies as set out above is often called the
propositional calculus. Various alternative sets of axioms have been
discovered which serve the same purpose as the Principia set, and, as is
to be expected, formulas which are axioms in one system appear as theorems
in the others, the totality of tautologies thus being the same in each
system. One such set, from the Polish logician, J. Lukasiewicz, to be
presented at some length here, consists of three axioms stated solely in
terms of “~” and “D”. The rules for the formation of wellformed
formulas using “~" and “v" are easily restated for “~" and “2”, and
“Vv” is definitionally introduced:

(A) v (B) = Df. ~(A) D (B).

The rules of logistic inference are the same as those given gbove, a.nd their
use to deduce theorems will be explained shortly. The axiom set is

M pDg.D:gDr.D.pDr
@) ~pDp.D.p

@) »p.D.~pDg

We proceed now to explain and illustrate the use of the? two }-ules of
inference for deriving theorems. The rule of substitution, I, is justified by
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the fact that a formula’s being tautologous is equivalent to its holding for
any values of its variables, no matter what their form is. Thus, for example,
“p.D.~p D q" holds for negative statements, implicative statements,
disjunctions. This means that the forms of such statements may be sub-
stituted for the variables to yield new theorems. It is convenient to write
proofs in a set form. The theorem to be proved is stated first, and the
demonstration is set out below it. A substitution made on a variable,

say “p” for “g” in a formula A, is indicated by writing “A, S]”. The re-

sult of the substitution immediately follows the bracket. We proceed to
demonstrate theorems (4) and (3).

4) ~p.D.~~pDgq
3), l;] ~p.D.~~pIyq

GB)p.D:i~p.D.pD4¢
®), ”—:q)—q] p.D:i~p.D.pDyg

Two conditions are placed on substitutions, which if violated give
illegitimate results. Substitutions, several of which may be made simul-
taneously, are on variables alone. The same substitution must be made
for the same variable throughout. Replacement of one complex expression
by another is allowed only when they are definitionally identical. For
example, “p v ¢”’, which is by definition the same as ““~p D ¢’’, can replace
“~p D ¢’ in (3) to yield

6)p.D-.pvg

But definitional replacement can be made only of implicative forms having
an antecedent prefaced by at least one negation sign, e.g., “~~p D ¢’ by
“~pvg”, but not “p D ¢” by “~pvg’. TUnlike substitution on var-
ables, replacements of this sort need not be made for every occurrence 0
the expression to be replaced. This is permissible because the interchange
of definitional identities merely yields an expression which says the same
thing in different terms.

MNp.D.~pDp

@) pvp.D.p

(2), Dflpvp.D.P
9 p.DO.pvp

Formulas (4) through (9) are the first theorems in the system derived by
rule I and the definition. We now illustrate the use of rule 1I, modus
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ponens, which allows us to detach a consequent from an implication whose
antecedent is an axiom or a proved theorem.

(10) pDp

1y, P24 qu 7:]
P.D.-~P2q:D:.~p2¢q.D.p:D.pDp (a)

3), @),1I] ~pDqg.D.p:D.pDp (b)
(b),z—;:l ~pDPp.D.p:D.PIP (c)
(), 2,1I] pDp

(11) pv~p
(10, l’;] ~p D ~p @)

(a), Df.] pv~p
12y ~pDp-D.~pDg

~pDp p]
1), ———
M 2 q
~pDp.D.p:D:.pIDr.Di~pDp.D.r (a)
2), (a), 11] pDr-D:~pr-D.r (b)

(b), qu] P.D.~pDq:D:i~pIp.D.~pIyq (e)
3), (), II] ~pDp.D.~pDyg

Of the theorems that follow, a number are stated without proof.
Their proof will provide an exercise for the reader, and in some cases hints
as to procedure are given.

(13) pvp.D.pvy

14) ~pDqg.D.~qDq:D:p.D.~Dyg
HINT: In (1) put ~p D ¢ for ¢, ~q D ¢ for r, and use (3)

(15) ~¢D~p.D:p.D.~qDq
HINT: In (1) put ~g D ~p for p, ~pDgqg.D.~qD q for g,
p.D.~qgDqforr
In (1) put ~q for p, ~p for g, g for . Use II, then (14)

16) ~¢g D ~p.D:.~¢2q.D.q:D.pD4q
HINT: In (1) put ~¢g D ~pforp, p.D.~qgDqforq ~qgDgq.
D.9:D.pDgforr. Use (15) and II
In (1) put ~g D g for g, g forr

ol € 0F Any\
e \\0\
, v§/ A\—L \U d
(2:' v\ e \u’/‘
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17 ¢.> :I-A(Jq)Dq.D.q:D.qu
HINT: In (1) put ¢ forp, ~¢ D ~p¢ )
forr. Use (3), II, (16) plorg, ~Dq.D.q: D022

(18) p.D:~¢Dq.D.q
HINT: In (17)put~q3q.3.qforq
In (2) put ¢ for p, use II
In (2) puthDq.D.qforp, use IT

(19) ~¢Dg¢g.D.¢:D.pDgqg:.D ~PDg.D .pDg
HINT: In (1) put ~(p D q) for p, ~¢2q.D.qforq p D qfor
In (18) put ~(p D ¢q) for p, use II

(20) ~¢DO¢.D.¢:D.pD¢g:.D.pDyg
HNT: In (1) put ~¢D¢.D.¢:D.pDg for p, ~P D) -
.pDgforg pDgforr. Use (19) and II
In (2) put p D gforp

@l) ¢.D.pDgq
(1)’g,~qu.D.q:D.qu,qu]
p q r
(17).D:.(20).D :¢g.D.pDg (8
(17), (20), (a), IT twice] ¢.D.pDg
22) ¢g.D.pvg

(23) ~¢qD~p.D.PpDg
(1),~qD~p,~qu-D.q:D-qu,qu]
4 q r
(16).D.(20) D (23) (a
(16), (20), (a), Il twice] ~gD ~p.D.pDg

(24) ~p.D.pDygq
(1)’_~_p,~q3~p, qu]
y q T
~p.D.~gD~p:D . ‘
~gD~p.D.pDg:Di~p.D.pDg (&

(21),-“'—;':%] ~p.D.~qDp (.
(23), (a), (b), II twice] ~p.D.-.p D¢

25) pDg.D.p:D-p
(21),2—M’§] p.D:pDq.D.p:D.D (a.
4
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(1),2,7’_3‘7] g.D.-pDa:2 1.p2D¢-D.7:D.¢gDr (b)
p q

@1), ), 1] pDg.D-7:2-927 (c)
(c)rquq.D'p’l’z—_)]
p.D:qu.D.p:.D-p::D:-qu-D-p:D.p (d)
(), (), 1] pDg.D-P:2-P
(26) ~~pDop
m, 2,221
P q
~p.D.pDQg:D:PDg-D.1:D.~pDr (a)
(24), (@), 11] pDg.D-T:D-~PT (b)
(b),N_p'z_),z_)] NPDP-D-Z’:D'NNPDP (c)
P qgr
(2), (), II] ~~pDp
(27) ~pvp
(28) ~~q.D.pDg
), =2, 221
P g
~p.3.p3q:3:.qu.D.r:D,NPD,. (a)
(24), (@), II] pDg.D.T1:D.~pOT (b)
(b) :'_Q,N_p,___pgq]
p g T

~ND~P.D.pDg:D i~~qg.D.pDg (c)
(23), (), II] ~~qg.D.PpDgq

29) ~pDO@.-DO.p

(1)_~_p’p:)q]
" p g
~p.D.pDg:D:.pDg.D.r:D.~pDr (a)
(24), @), I1] pDg.D.r:D.~pDr (b)
1’_3_‘1,?_’,2]
(b), g

pDq¢g.D.p:D.p:.D:i~pPDg.-D.p (c)
(25), (), 1I] ~(@Dq).D.p
B0) pD¢g-DO-P:D.¢Dp

HINT: In((l)) putp Dqg.D .pforp, pforgq gD pforr. Use (25),
21
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B p.D.pD¢:D.pDg
"HINT: In (1) put p D ¢ for ¢, g for r
In (25) put p D ¢ for p
In (1) put p.D.pDgforp, pDg-D-q:D.pDgq for
g,pDgforr

32)p.D:pDg-D-.q
HINT: In (1) put p D ¢ for p, p for q, q for r
In (31) put p D g for p
In (1) put pDg.D.pforp, pDg.D:pDg.D.qfor
¢&Pp2Dg.D.qforr
In (21) put p D g for p, p for q
In(D)putpDg.D.pforg,pDqg.D.qforr

33)p.D.¢gDr:D:¢g.D.pDr

(1)’p3qq-3-q:|
p.D:ipDg.D.¢:.D:1:pDg.D.qg:D.r:.D.pDr ()
(3)1(32)1111 qu-D-q:D.T:.D.pDT (b)
(b)’g’g,p:)r] ¢gDr.D.r:D.pDr:.D:q¢.D.pDr (¢)
(1),%] p.D.¢gDr:D:.qDr.D.r:D.pDr (d)
) p.D.q'_')r’qu.:).r:D.pDr,q.D.pDr]

) p q r

@ .D::).D:.p.D.¢gDr.D:g.D.pDr (&)
d), (c), (e), Il twice] p.D.¢Dr:D:q.D.pD7

B4) ¢gDr.D:pDqg.D.pDr
qu,qu’pDr:l pDq.D:gDr.D.pDri.D

P q r
¢gDr.D:pDg.D.pDr (8
), @), ¢Dr.D:pDqg.D.pDr

(33),

35) ¢gDr.D:pvgqg.D.pVvr
(34),%,Df.] qDT.:) Zqu.D,pvr

(36) gD ~p.D.pD~q

(1),25,:2] NNqu.D:qDNP.D.NNqDNP (a)
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(26), (@), II] ¢D~p.D.~~qgD ~p (b)
34), g ~p ’ ~~g D ~p PO ~q:|

H

q r
~NNGDAP. D PIDNEID gD~ D ~~g D ~D
D:qgDO~p.D.pD~gq (c)

(23), :%] ~~g D ~pL.D DD ~g d)
d), ©),II] ¢gD~p.D.~~qD~p:DigD~p.D.
pO~gq (e)

(b), (), II] gD ~p.D.pD~q

B7) pD~~p
miNT: Use (36), (10)

B8) pDg.D.~¢D~p
(34),~—~z] g ~~¢.D:pDqg.D.pD~r~yg (a)
@7, @), 1] pDg.D.pD~~q (b)
(36>,~—f,,’—;] pD gD .~qgD ~p @)

() .D:.(e) . D:pDyq.

o qu,pD~~q,~qD~p]
D.~gD~p (d)

P q T
(b), (c), Il twice] pDg.D.~qgD ~p

39 ~pDg.D.~qDp

(34),:2:~~3:| gD ~~g. D i~pDg.D.~pD~~gq (a)
@7, @), II] ~pDg.D.~pD~~yq (b)
(36)’1;’:%] ~p D ~~g.D .~ D ~~p (c)
(34),—'1“,:5’—7”»’-’] ~~pDP.D imgD ~~p.

p T D.~¢Dp ()
(26), (d), 1] ~gD~~p.D.~¢Dp (e)
(1), Nqu’Np Dq~~q’~q Dr~~p:|

) .D:.() . D:i~pDg.D.~qD~~p (f)
(), (), II] ~pDg.D.~qgD ~~p ()
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(1)’ Nqu’ Nqu\INp’ NqD p]
D q r
8 -D:.(e).D:~pDg.D.~qDp (h)
(h), (g), (e), Il twice] ~pDg.D.~gDp

40) pD~p.D.~p

(34),5,%,%"] ~pDp.D.p:D:r.D.~pDp: @

J.rDOp (a

@2), @), r.OD.~pDp:D.rDp (b)
(b),ﬂ’:%l”] PD~p.D.~~pD~p:iDipD~p.

P D.~p ()

(38),:3)] PO~P.D.~~pD~p (@)

d), (), II] pD~p.D.~p

(41) pvg.D.qvp
(39), Df] pvg.D.qvp

Properties of the Postulate Set

With the last theorem, together with theorems (8), (22), and (35),
we have proved or have indicated the proofs of all the postulates of the
calculus of Principia Mathematica. And it is in fact the case that the
latter postulates are adequate for proof of those of the present system.
Our proofs might have been simplified if we had first derived from the two
rules of inference a further rule, the so-called deduction theorem. But such
a derivation lies beyond the scope of this introduction to logic. The
proofs of two important properties of the set of postulates, namely, that it
is conststent and complete, cannot be gone into here either. To prove
consistency of the present set is to show that there is no wellformed formul.a
A such that both A and ~A are provable. To prove completeness 18
to show that any wellformed formula A is either itself a theorem or its
addition renders the set inconsistent. Showing this is equivalent to demon-
strating that the postulates are adequate for the derivation of every
tautology, including those expressed in terms of “.” and ‘“‘=’’, once these
symbols are introduced by definitions. The two meta-theorems, that every
tautology is a theorem and that every theorem is a tautology, together
with the fact that in the matrix method we have an effective procedure for
deciding in the case of every truth-function whether it is a tautology,
provides us with a solution of the so-called decision problem. This is the
problem of finding an effective procedure for deciding whether any given



EXERCISES 27

formula is a theorem of the system. In the case of the logistic system we
call attention to in Part II this problem cannot be solved. Another,
relatively unimportant, property of our present set is that it is tndependent,
that is, that no postulate is derivable from any combination of the others.

EXERCISES

1. Re-express each of the following (a) in terms of “v” and “~"’, (b) in terms of “.”
and “~", (¢) in terms of “D" and “~"’:

p=(¢gDr), ~p D [~q.(rvs)]

2. Carry out the indicated process of negating until no negation sign remains outside
any pair of brackets:

~Se~p D ()], ~le)Dllg=r)vasll. ~f{pDlg. ~r) D (8D~}

3. Show which of the following are equivalent and which are not:

(p.9) D, (p.~r) D~y (~pDgq)Dr, rD (~p.~q).

4. Express the exclusive sense of “or’”’ in terms of ‘“~, “v”, and “.”, and in terms of
“~" and ‘“v” only.

5. (a) Given: 1. If it is true both that Diogenes is a cynic and does not like human
beings or else true that he likes to call attention to himself, then he
is an irritating person

2. If he does not like to call attention to himself, then his search for an
honest man is not a sham

3. He is not an irritating person.

What, if anything, can be inferred (1) as to whether his search for an honest
man is a sham, (2) as to whether he is a cynic?
(b) Given: 1. If Francis Bacon wrote “Hamlet”, then if Shakespeare was a great
intellectual, he was the author of “New Atlantis”

2. If Shakespeare was a great intellectual, then he had deep insight into
human nature and he was not given to fanciful speculations about
utopias

3. If Shakespeare had deep insight into human nature, he was not the
author of “New Atlantis”

4. Shakespeare was a great intellectual.

Question: Did Francis Bacon write “Hamlet”?
(c) Given: 1. Either Demetrius, Gregory, or Stepan stole the necklace

2. If Gregory stole the necklace, then if Lady Mayfair was at the
masked ball, then Gregory’s beautiful accomplice was also there

3. If Gregory’s beautiful accomplice was at the masked ball, Inspector
Bull saw her

4. If Lady Mayfair was at the masked ball, then Inspector Bull was
present and watchful

5. If Inspector Bull was present and watchful, he did not see Gregory’s
beautiful accomplice

6. Lady Mayfair was at the masked ball

7. If Inspector Bull was present and watchful, Demetrius did not steal
the necklace.

Question: Who stole the necklace?
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6. Which of the following are valid, and which are invalid?

7

TRUTH-FUNCTIONS

PpD@>Dr) (»2Dq)D(r.s) ~p D (g D ~r1)
p.~T ~s r
~q ’ PV~qVT ’ P ’
(pv~g)Vv (r =3s) ~[(p = ~q). (r.s))
~p.q p.~q
~TVS ’ ~r

Give the truth tables for

D9 DlpD(~gDr)), p.~lgD (Dyq) pv~Ilg D (r Dy
~l{p=~q)=[(p D ~q). (~p DI}

Which is tautologous, which contingent, and which contradictory?

8. Duality: The dual of a truth-function formula F is obtained by interchanging

conjunction and disjunction throughout F, i.e., by replacing A .B everywhere
by AvB and AvB by A.B. Thus, the dual of “~(pv gV ~r.~s)" i8
“~(p.q.~r.V.~s)" thedualof “(p. ~q.v.7) v ~(~s.t)"is“(pv~g.7).
~(~svt)”. Thedualof “p Dg”is“~p.g”,of “p Dqg.D.r.s"is“~(~p. q).
rvs’,

State the duals of:

pve~(g.~r.v.8D1), ~p.D:iq.=.r.s gDr.D:pvqg.D.pvr.

Is the negation of the dual of a tautology itself a tautology?
pD~g.D.9D~p, gDr.D:pDg.D.pDr.

Is the negation of the dual of a contradiction itself a contradiction?

p.r:ipD~r, ~(p.q.-D.pDg).
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Quantification

Inferences which are made in terms of the ideas discussed in Part I
do not exhaust all possible inferences. The following inferences will

readily be seen to be formal, and they involve further terms not definable
by our earlier terms. Given the premises

If anyone is a gambler, then he likes to handle money
and

There is someone who is a gambler and is not avaricious,

we may infer the conclusion

There is someone who is not avaricious but likes to handle money.

And from the single premise,

Some even numbers are less than every number greater than the
smallest odd prime,

we may infer

It is not the case that for every even number z there is a number
which is greater than the smallest odd prime and not greater than .

An examination of these two deductions makes it clear that their valid-
ity hinges on more than just the terms “~’’, “D’, etc. The terms
“any”, “every”’, “there is”, “some’’ also play a role, and are terms which
occur as parts of formal statement-forms, i.e., they are themselves for-
mal terms. In fact “every” and ‘“‘some’” were used in Part I, but not
in an explicit way. Saying that “q. D .p D ¢’ has universal validity
and that “~g.D .p D ¢” does not are other ways of saying, without
explicitly heralding the terms “every” and ‘‘some’, that every substi-
tution on “p” and *“g” in “g. D .p D ¢” yields a truth, and that some
substitutions on “~q.D.p D¢’ do not yield truths. DBut there
is an important difference between the use of these terms in connec-
tion with the statement-forms explicated in Part I and their use in the
above two examples. In “for every p, ¢, ¢. D .p D ¢" and in ‘“for some
D,q~q.D.pD¢Qq", “cvery” and ‘“some’” operate on terms within
29
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statement-forms which are themselves statement-forms, whereas in the
above two examples the terms within the statement-forms on which they
operate are not themselves statement-forms. Of these terms no mention
either explicit or implicit has yet been made. How the operators “every”’,

“any”, “some”, called quantifiers, function remains to be explained.

The Universal Quantifier

Compare the statements

If Vladimir is a gambler, then Vladimir likes to handle money
If anyone is a gambler, he likes to handle money.

The difference between them is obviously one of generality. The second
is a generalization of which the first is a concrete instance. How the two
are related can best be seen by replacing the proper name in the first by
a row of dots, to obtain

If. .isa gambler, then. .. likes to handle money.

The components of this form, “... is a gambler”, “. .. likes to handle
money”, are statement-forms, although not formal ones; and they are not
truth-functions. If the non-formal terms “gambler”” and “likes to handle
money” are deleted, the result is a statement-form made up of statement-
forms the components of which are not statement-forms. In fact we have
arrived at a kind of formula which uses two new and different types of
variables, called éndividual variables and predicate or functional variables.
The formula “. . . is - - -”” is a form possessed in common by & whole assem-
blage of statements:

Vladimir is a gambler
Jones is avaricious
Pascal is a mystic.

The standard convention for representing the form of these is to use the

({2 3 3xre .
letterg “.’E”, uyu’ 2%, ...as 1nleldllal variables and “f”, Mgn, “h”, - as
funct.lonal variables. The formula “. . js .__» pecomes “z is f”, which
18 written
fz,

. Writing the form of “Vladimir is a gambler ag “fz" and of “Vladimir
likes to handle money” as “gz”, the form of “If Vladimir is a gambler,
then Vladimir (is a person who) likes to handle money’’ becomes

@) fz D ga.
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The form of “If anyone is a gambler, then he likes to handle money”’ can
now be seen to be a generalization on the same formula, (1), of which
“If Vladimir is a gambler, he likes to handle money’” is an instance or

specification. The generalization is (1) prefaced by the so-called universal
quantifier ““(z)”’, and written

2) @) (fz D g).

In (1) the variable “z” (and also *“f”’ and *g’’) is not prefaced by a quan-
tifier and is said to be free. Given that ‘“f”’ and “g” are fixed, substitutions
made on ‘“z’ will yield a variety of statements. In (2), however, ‘“z” is
quantified and is said to be bound. No substitutions may be made on
“z" when “z” is quantified.

The statements of the following list are taken by logicians to be equiv-

alent in import to “If anyone is a gambler, he likes to handle money”,
and therefore are counted as exemplifying formula (2):

For any z, if x is a gambler, z likes to handle money
Every gambler likes to handle money

Each gambler likes to handle money

All gamblers like to handle money.

The Existential Quantifier

Consider the pair of statements

Vladimir is a gambler
There is at least one gambler.

Again, as in the case of the first pair of statements, the difference between
these two is one of generality: the first conveys more specific information
than the second. Along with the second the following statements are
taken by logicians to be equivalent in import:

There is an z such that z is a gambler
There exists at least one gambler
Some z’s are such that x is a gambler
Someone is a gambler

Gamblers exist

There are gamblers.

The form of each of these is

There is an z such that fz,
or equivalently,

Some z's are such that fz.
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Logicians replace both ‘““there is an z”’ and ‘““for some z’s” by the symbc
“(3dz)”, and give as the form of the above statements

(Jz)fx.

All of them are restricted generalizations on the formal function “fz”
of which “Vladimir is a gambler’’ is a concrete instance. “(3x)” is callec
the existential quantifier. Like the universal quantifier, it binds the vari
able “z” in any formula “‘fz”’ falling within its scope.

It might be supposed that the formal function generalized by the
universal and existential quantifiers in “All f’s are ¢’ and “Some f’s are
g9” is in each case an implicative, or conditional. That is, it might be
thought that the form of “Some gamblers are avaricious” is given by
“(3Az)(fz D gz)”, just as that of “All gamblers are avaricious” is given
by “(z)(fr D gz)”. But this is a mistake. The formula “(3z) (fx D gz)”,
which says that there is an z such that if z is f, = is g, could be true if
nothing were f. However, “Some gamblers are avaricious’” states that
there are gamblers, and it is thus to the effect that there is someone who
is both a gambler and avaricious. Its form is rendered by

(3z) (fz . gz).

Just as in ordinary usage “and” has more than one sense (e.g., in “You
steal and you will be arrested” it has the sense of “If you steal you will be
arrested”), so the verb “are” has a number of senses, two of which are
given by ((Dn and ¢“.”.

A statement to the effect that no f’s are g denies that there is some-
thing which is both f and g, that is, it is the negation of “(dx)(fx . gz)’.
Like “Some f’s are g”, it is also a generalization upon a conjunction:

~(3z) (fz . gx).

The following statements are regarded by logicians as being synonymous,
and hence as exemplifying “~ (3z) (fz . gz)”’:

No gamblers are wealthy

Nothing is a gambler and wealthy

There does not exist an = such that z is a gambler and z is wealthy
There are no gamblers who are wealthy

Wealthy gamblers do not exist.

It is to be noted that the scope of “~ in the above schema is the

intlre expression. The difference between “No gamblers are wealthy” and

Some gamblers are not wealthy’” is that the scope of ““~ in the second
statement ig merely “z is wealthy’’:

(3z) (fz . ~gz).
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'urther, whereas the first denies the existence of a wealthy gambler,
ne second asserts the existence of a non-wealthy gambler. In ordinary
‘nglish the scope of “not’” is often ambiguous unless the context of the
tatement is given. IFor example, ‘“All women are not ambitious” is open
o either of the two interpretations: “Not all women are ambitious” (i.e.,
‘some are not ambitious”) and “No women are ambitious”’. On the first
nterpretation its form is given by the above formulation. On the second
nterpretation its form is given by “~(3z)(fz.gz)”, and equally by

(z) (fz D ~qgx),

ead “all f’s are non-g”. It is intuitively obvious that “No women are
ambitious” and “All women are non-ambitious’” say the same thing.

The Categorical Statement-forms

The four statement-forms, “All f’s are ¢, “No f’s are ¢g”’, “Some f’s
are ¢’’, and “Some f’s are not ¢g'’, were treated as fundamental in traditional
logic and were assigned special names supposedly descriptive of their logical
features. They were customarily designated by the letters A, E, I, O,
the first two vowels in “affirmo” designating the ‘“‘affirmative’” forms,

the two in ‘“nego’” designating the ‘““negative” forms.

A, universal affirmative (z) (fx D gz)
E, universal negative ~(3z)(fz . gx)
1, particular affirmative (3z) (fz . gx)
O, particular negative (Az) (fx . ~gz).

Statements of these four forms were called categorical, by which was
meant that they unqualifiedly affirm or deny a predicate of a subject,
although, as modern analysis shows, they are not subject-predicate state-
ments. The I and O forms will be recognized as quantified conjunctions
of terms. And the A is a universally quantified conditional, the relation
between its terms being implication rather than predication. The E form
of statement is most naturally read as the negation of a quantified con-
junction, but as will be shown later it can be rewritten as a quantified
conditional.

In connection with the A form of statement it is of some importance
to see how the associated “only if . . .”” form of statement is to be written:
“(z) (onmly if fz then gz)””. When the A form “(z) (if fx then gz)” holds,
“fz” is said to be a sufficient condition for “gz”. In turn “gz” is said to
be a necessary condition for “fz’: “(z) (if ~gz then ~fz)”. Hence to state
that ‘“fz” is a necessary condition for “gz” we write “(z) (if ~fz then
~gz)”; and “(z) (only if fz then gz)”, or “only f’s are g”’, may be ex-
pressed in our notation

(@) (~fz D ~gz).
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3 ition for
To state that “fz”’ is both a necessary and 2 sufficient condition
for all values of “z”, we write

(z)(fz D gz . ~fx D ~gx);
which becomes

() (fz = g2)-

The Square of Opposition

to e

Statements of the A, E, I, and O forms were thought togt;‘;dsquaren
other in a number of logical relations given by what was cz}lle - L0 b th
opposition. A and E statements were considered conirartes, l'e.r’nents wel
they could be jointly false but not jointly true. Iand O s,t%tily true
asserted to be subcontraries, i.e., such that they could be ]Omto pe contrd
not jointly false. The pairs, A and O, E and I, were taken 5. Tinally
dictories, which under all conditions have opposite tmth'.val‘-le ;;;eant that
A was held to be superimplicant to I, and E to O, by }vhwhhlscase fails t0
A implies I, and E implies O, but that the converse in €26
hold. The traditional square was given in the form

A contraries E

-« implies

\4
G
-
2
)
S
o
~
A~
o
@
<— jmplies

I subcontraries O

FIGURE 1.

. following
Of the various relations asserted to hold on this square: the
are of special importance:

1) A=~0, E=~1
and

(2 ADI, EDO.

1 each
Th;se tw? sets of relations turn out to be inconsistent W“jh Z‘
2‘;‘ locating the source of the inconsistency shows tw0 thmgt];at A snd
¢ traditional square is a composite of two squares, and (2)
E stateme

o nts, taken as the contradictories of the corresponding
5, can be jointly trye, ¢ A and B
Doss-\fl may., to begin with, be somewhat unnatural to think © 0se that
statl Y being true together. But it is entirely natural tO sup&at ther®

ements of the I and O forms, that is, statements to the effect
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is something which is both f and g, and statements to the effect that there
is something which is both f and not g, imply statements of the form
“Something is ’: I D (3z)fz, 0 D (Iz)fz. For example, the statements
“Some flowers are perennials” and “Some flowers are not perennials”
both plainly imply that there are flowers. If, however, in conformity
with (2), a statement of the A form is taken to imply a corresponding
statement of the I form, and the same for E and O, then by the truth-
function tautology “p D ¢. g2Or:D.pDr”, both A and E will imply
“(3z)fz”. We then have the following conjunction of implications:

AD @Ax)fz. ED Ax)fz. 1D (Iz)fz.0 D (Iz)fz.

According to (1), at least one (in fact exactly two) of the antecedents of
this set of implications will be true, and since *(3z)fz” is a consequent of
each of the antecedents, it will have to be true. The argument can be
written in the following form:

AD Ax)fz.ED Az)fz. 1D (3z)fz.0 D (Az)fz
A v E v I Y 0]

(3x)fzx

It is not difficult to see that this consequence lands us in an absurdity.
his is that any statement of the form “(3z)fz” is provable by logic
alone, and itg denial “~(3z)fz" disprovable by logic alone. For since it
is a consequence of each of a pair of contradictory statements, one of
which must be true, it will have to be true under all possible conditions,
and its denial will have to be false under all possible conditions. It will
be recognized, of course, that statements like “Ghosts exist” and “Some-
thing is a whale” can have either of two truth-values, and similarly for the
Statements “Ghosts do not exist” and “Nothing is a whale”. If we take
this fact into account and allow, as logical sanity requires, that.st.ate-
ments of the form “~(3z)fz” could, possibly, be true, contradictions
break out in the traditional square. By the truth-function. tautology
“pDg. ~g.D .~p"”, we see that cach of the following is valid:

AD Ax)fz.~@@zx)fz. D .~A
ED (Iz)fr.~@Gz)fz. D .~E.

Hence,
AD Tz)fz.ED Az)fr. 1D (Jz)fz.0D (3z)fz
~ (o) _
~A~E.~LL~O
The contradictions can perhaps be seen most clearly 1f ~0 and ~I are
replaced by their equivalents, A and E, when the last line becomes

~A.~E.E.A.
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It is evident that allowing the possibility of statements of the
“~(3z)fz” being true entails a contradiction only if both sets of rel
(1) and (2) hold for the same quadruplets of statements. If one
set is dropped no contradiction results. The conjunction of “‘~(:
with (1) implies no contradiction unless (2) is added to the conjun
and its conjunction with (2) implies no contradiction unless (1) is a
This would seem to show that the traditional square is really a com;
of two squares, one of which consists of the diagonals and the ott
the sides. These when superimposed on each other generate a conti
tion.

Taken as the contradictory of O, A does not imply I, and take
the superimplicant of I, it is not the contradictory of O. Similarly 1
with respect to its related I and O. Thus the A form that implies I ca
be the same as the A form that is the contradictory of O. The ~O f
to the effect that there does not exist something which is f and not g,
not imply the corresponding I, although ~O conjoined with *“(3z)fz”
imply I. Consequently the A form which implies the I is a conjunc
of the contradictory of O with *“(3x)fz””. The so-called A form thus t
out to be a composite of two A forms: one the simple ~O, the lof
force of which is to deny existence, and the other, ~O in conjunction
“(3z)fz”. The same consideration applies to the composite E on
square of opposition. In modern logic A is taken to be ~O and E t
~I, and what may be called the conjunctive A and E are assigned
special code letters.

Statements of the A, E, I, and O types can now be equivaler
written in two ways:

A, (@)(fz D gx) ~0, ~(3z)(fz . ~gz)
E, @)(fr D ~gz) ~I, ~(3z)(Jzr.gx)

I, (3z)(fz.gx) ~E, ~(z)(fr D ~gz)
O, (3z)(fz . ~gz) ~A, ~(z)(fz D g2)-

That A and E can be true together is made plain by writing them in {
~0 and ~I forms. The condition for their being jointly true is the falsi
of “(3z)fz”: if there is no f then there is no f which is not g, and also n
which is g. Thus each of the pair of statements, “No winged horses 2
non-herbivorous”, “No winged horses are herbivorous”, is made _true .1
the fact that there is no winged horse. In cases in which the conjunctl
of an A and an E statement is felt to be unnatural, what undoubtgtfl
happens is that what is understood but is unexpressed is treated as’

were stated as part of the conjunction, namely, that (3z)fz. And_‘f 1t
felt to be strange to say “All the Cadillacs in my garage are solid go
because there are no Cadillacs in my garage”, it is because the A statemel
is interpreted to mean “There are Cadillacs in my garage a.nd eac_h or
is solid gold”, instead of being interpreted to mean ‘‘There is nothing 1
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adillac and is not solid gold”. When a dis-
ointed fisherman tells us, «All the barracfuda. I caught I can put in
vest pocket”’, we take him not to be making a false statement but to
\sserting something which is made true by a deplorable fact.

garage which is both a C

me Quantificational Equivalences

Reflection on the set of equivalences al.30ve shows that either one of the
1bols “(z)”’, “(3z)” can be dispensed with. Whatever can be expressed
h the help of “(z)” and «~."" can be .GXPressed in terms of “~" and
lz)”’, and whatever can be expressed with the help of “(3z)” and “~"
. be expressed in terms of “~" and “(z)”. The set of equivalences

ow shows this:

. (@) (frDgx)

(z) (fx D ~gx)
.~ (z)(fxr D ~ygz)
. ~(x)(fr D gx).

A, ~(3z)(fz . ~9%) -
E, ~@3z)(fz- gﬂ:)
I, (z)(fz.9%)
0, (3z)(fz.~g%) -

yw ““(z)” is to be rewritten in terms of “(3z)” and “~" can easily be

o

;n from the equiva]ence’ A= ~Q0:

Y(fz D gr) - = . ~(3z) (fz . ~4%)

~Az) ~ (fz D gx) ie,~@PDgq).=.p.~ql

ance,

F1l (@)( ).=.-~@)~C ).

pair of statements whose forms involve but one functional variable will
ake this equivalence immediately obvious:

Everything is material
There does not exist anything which is not material.

How “(3z)” is to be construed in terms of “(z)”” and “~" is to be seen
om the equivalence, O = ~A:

I2) (fz . ~gz) . = . ~(z) (fz D g7)
. ~(z) ~ (fz . ~gx) ie,pDg.=.~(.~9)

lence,

F2  @@x)( ).=.~@)~( ).
‘he following pair of statements illustrates this equivalence:

Something is organic
Not everything is nonorganic.
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For convenient reference we list equivalences involving a change of qu
tifier:

F1 @)fz.=.~z) ~fz

F2 Ax)fz.=.~(x) ~fz

F3 ~(@)fr.=.3z) ~fz

F4 ~@zx)fzr.=. (x) ~ fz.

The Diagrammatic Method for Testing Inferences

The above equivalences provide the means for making various infi
ences from single statement-forms. The validity of these inferences is ma
perspicuous by the use of diagrams originated by the English logici:
John Venn (1834-1883). Within overlapping circles the various compai
ments represent the denotation of “f and g”’, “f and not ¢”’, “not fand g
i.e., all the things which make “fz . gz”, “fr . ~gz’’, etc., true when tl
terms “f” and ‘“4g” are fixed. The fact that a function has no values
represented by shading its compartment in the diagram; its having a vah
is signified by placing a cross in its compartment; leaving the compartme:
blank represents its being unknown whether or not the function h:
values. To illustrate, the diagrammatic representation of

~@3z)(fx . ~gz) . (Az)fz is

FIGURE 2.

The shaded part of the f-circle which lies outside the g-circle indicate
that there are no values of ‘“fx . ~gz”, and the cross in the remainin
compartment of the f-circle indicates that ‘“fz’’ has values. Inconsistenc
between two statement-forms, e.g., between “~(3z)fz”’ and “(3z)fz”, |
represented by a section that at the same time is shaded and has a cros:
In order, therefore, that an inconsistency not show up on the diagrar
when none in fact exists, the rule to follow in representing combination
of universal and existential statements is to diagram the universal first
In the example given, “~(3z)(fz.~gz)" is diagrammed first, the
“(3z)fz", else the cross might appear in a region which the representatiol
of the first statement requires to be shaded.

The fact that one statement-form implies another is shown by th
facf: that in diagramming the first we automatically diagram the second
This will be illustrated in the diagrams of inferences from the statement
forms considered below. Since a number of the inferences involve nothiny
more than transformations justified by equivalences between truth
functions le.g., between ‘“fr.~gz” and ‘“~(~gz D ~jfz)"”], commen
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ill be made only in those cases in which from a given statement-form
further formula having a different quantifier is inferred. The double line
:neath a statement-form indicates that the formulas below it are inferences

om it.
(3z) (fz . g2) f~>cs
(3z) (gz . fx)
(Azx)~(gz D ~fz)
~(z)(fx D ~gz)
“he third conclusion is justified by F2:

Ax)(fz . gz) . = . ~(@)~(fr . gz) . = . ~(2)(fr D ~g2).

for example, given that there are swans that are black, we may conclude
hat not everything is such that if it is a swan it is not black.

(32) (fz . ~g2) >
(3z) (~gz . fz) x
(Az)~(~gz D ~fz)
~(z)(fx D gz) FIGURE 4.
The third conclusion is justified by F2:

) (fz . ~gz) . = . ~(2)~(fr . ~gz) . = . ~(2)(fz D g7).

For example, given that some dogs are not terriers, we may conclude that
not everything which is a dog is a terrier.

f g
(z) (fx D gx)

(@) (~gz D ~fx)

~(3z) (~gz . fz)

FIGURE 5.

FIGURE 3.

The second conclusion is justified by F1:
@) (fr Dgx). = . ~@x)~(fr D gx) . = . ~(3z) (~ygz . f2).

For example, given that all men are mortal, we may conclude that there
is nothing which is both immortal and a man.

~(3z)(fz . gx)
~(3z) (gz . fz)
(z) (gz D ~fx)

() (fz D ~yx) FIGURE 6.
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The third conclusion is justified by F4:
~@@z)(fz.gz) . = . (@)~(fz.gz) . = . (2)(fx D ~ygz).

For example, given that no perfect numbers are odd, we may conclu
that all perfect numbers are non-odd.

Diagrams also make obvious the following inferences from a univers
generalization conjoined with an existential condition, in these cases fro
the “composite’’ A and E to the corresponding I and O:

(z)(fz D gz)
(3x)fz
(3z) (fz . gz)

(z) (fz D ~qgz)
(3z) fx
(3z) (fr . ~gz)

FIGURE 8.

Th.e fact that an inference is invalid is reflected in the fact that di
gramming the premises does not at the same time diagram the conclusio:

f g
(=) (fx D gz)
(3z)gz
(3z) (fx . gz)
FIGURE 9.

The diagram of the second premise specifies only that one or other of th
two compartments “f and ¢”, “not-f and ¢”, has a cross, whereas th
diagram of the conclusion specifies a cross in “f and ¢”’. The diagram c
the con.clusion adds something to the diagram of the premises; hence th
conclusion cannot be read off from the diagram of the premises. Thi

inference involves a fallacy analogous to that of affirming the consequen
of “p D ¢” and deducing “p”.

Syllogistic Inference

Infere.nces which consist in passing from a pair of A, E, I, O state
ments .ha.vmg a term in common to a third statement of one of these kind
as their consequent are called syllogistic. A syllogism is defined as ai
argument constituted of two premises and a coneclusion so related to eacl
other as to contain among them exactly three terms, “f7, “g”, “h”, eacl
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erm appearing in two of the three statements. The following are examples
f syllogistic reasoning, together with the formal schema which each
sxemplifies:

(a) All logicians are intrigued by symbols () (gx D hx)
All mathematicians are logicians () (fz D gx)
All mathematicians are intrigued by symbols (=) (fz D hz)

(b) No elephants are agile ~(3z) (hz . gz)
Some agile creatures are carnivorous (Ax) (gz . fx)
Some carnivorous creatures are not elephants (3z) (fx . ~hzx)

Both of these are valid pieces of reasoning. The first syllogism has the
form which Aristotle designated as perfect, and its validity is obvious.
The validity of the second is perhaps not so obvious, and for such argu-
ments rules have been formulated by means of which they can be tested.

The terminology in which medieval logicians framed rules for testing
syllogisms leaves much to be desired, presupposing as it does that the
A, E, I, O forms of statement are of the subject-predicate kind, and that
A and I are affirmative while E and O are negative. For one thing, analysis
shows that the two terms “/”’ and “g’’ do not differ in their nature. The
so-called subject and predicate of an I statement, for example, are both
predicate terms, neither characterizing the other but both characterizing
an tndividual. Tor another thing, there is better reason, terminologically,
for describing A and E as negative, in that their sole force is to deny
existence, and I and O as affirmative, in that they assert existence, than
to classify them in the traditional fashion. Furthermore, syllogistic
theory was developed to a degree of complication out of proportion to its
importance for formal reasoning. Here we shall give the standard six rules
without comment, and proceed to formulate a smaller set which lays down
the necessary and sufficient conditions for syllogistic validity. An under-
standing of either set of rules requires an explanation of the notion of
distribution.

Distribution of Terms

A term “f” is said to be distributed in a statement if all of its denota-
tion, i.e., all the values of “fz’’ which make “fz" true, are referred to by
the statement; otherwise it is said to be undistributed. Consider again
the forms “All f is ¢”, “No f is ¢”’, “Some f is g”’, “Some f is not ¢”’. In the
I and O statement-forms “f” is clearly undistributed, since not all the
things to which “f”’ applies are referred to. In the A form “f” clearly is
distributed. Since E can be equivalently expressed as “All f is non-g”,
“f" is also distributed in E. The distribution of “g” in the four forms is
less obvious. We can argue that it is not distributed in A and I on the
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ground that if it were then we could validly infer from each “All gisf".
For it is plain that if all of a term’s denotation is referred to by the given
statement, then a statement again referring to all of its denotation is
inferrible. However, from “All terriers are dogs” it is not possible validly
to infer “All dogs are terriers”, nor from “Some men are factory employet?s”
is it possible to infer “All factory employees are men’”. The following
equivalence shows that the I form distributes neither of its terms:

3z)(fr.gz) . = . ~()(9x D ~fx).

Letting “/”’ and “g” stand for “man’’ and “factory employee”, the formula
on the right of the equivalence reads, “Not all factory employees aj‘:
non-men’’. This clearly leaves “factory employces” undistributed. )
similar consideration shows both “f” and “g” in the E form to be dis-
tributed:

~@@Az)(fr.gz) . = . () (fz D ~gz) . = . () (gz D ~fz).

As for the O, in asserting that some f are not g, what i's statefi‘ 1,5; that t:s:'ﬁ
is an f which is different from every g. Thus O distributes “g". To
up the patterns of distribution:

D U
Allfisg
D D
Nofisg
U U
Some fis g
U D
Some fis not g.

Syllogistic Rules
The syllogistic rules as traditionally stated are the following:

1. The middle term (the term common to the two premises) must be d

tributed at least once . on-
2. No term undistributed in the premises may be distributed in the c

clusion . .
3. If both premises are negative (EE, EO, or O0) no conclusion is possible
4. If one premise is negative the conclusion must be negative
5. If neither premise is negative the conclusion must be affirmative (A or I )-

To these rules, formulated by medieval logicians, has been added 2 further
rule,

is-

6. If both premises are universal the conclusion cannot be particular
(I or O).
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The rules we lay down form a set from which the above can be deduced.
They are:

(1) The term common to the premises must be distributed exactly once

(2) The distribution of the terms of the conclusion must be exactly as in
the premises

(3) At least onc of the premises must be universal

(4) The conclusion is particular if and only if one premise is particular.

Examination of syllogisms (a) and (b) above shows that they conform to
these four rules. If the conclusion of (a) is replaced by ‘“All people in-
trigued by symbols are mathematicians”, and the conclusion of (b) by
“Some elephants are not carnivorous”, the new syllogisms violate rule (2)
and are invalid.

Diagrammatic Testing

A test for syllogistic validity which is quite independent of the use of
rules is provided by Venn diagrams for three terms, represented by three
intersecting circles. In addition to being an independent method for
testing syllogisms, the diagrammatic technique makes perspicuous what
conformity with, or violation of, one of the four rules comes to. By dia-
gramming syllogisms each of which satisfies three of the rules and violates
the remaining rule we can illustrate both the rules test and the diagram
test. In doing this it is shown also that the rules are independent, that is,
that no rule is a consequence of any combination of the remaining rules.
Independence of a rule R is established by exhibiting a syllogism which
violates it while satisfying the other rules, and we shall choose our examples
so as to exhibit independence.

The validity of a syllogism is reflected in the diagram by the fact
that the representation of the premises contains a possible representation
of the conclusion. This is to say that the conclusion of a valid syllogism
can be read off from the representation of the premises. Observing the
rule of diagramming the universal premise first, the following syllogism
is seen to conform to all four rules:

h f
All Algerians are religious (z) (hx D gx) X
Some Frenchmen are not religious (3z) (fz . ~gzx)
Some Frenchmen are not Algerians (3z) (fx . ~hz) £

FIGURE 10.
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Each of the syllogisms below is invalid, and violates one, a1

one, of t!le four rules. The number of the syllogism will be the nw
the rule it violates.

(1) No politicians are incorruptible ~(3z) (hz . gz)
No bankers are incorruptible ~(3z)(fz . gx)
No bankers are politicians ~(3z)(fzx . hz)

FIGURE

It will be observed that the region common to “f”’ and “A” is not sl

as the conclusion requires. All rules except the first, which require
the common term be distributed but once, are satisfied.

h
(2) No pygmies are educated ~(3z)(gx . hx) N
Some pygmies are warriors (3z) (9z . fx)
Some warriors are educated (3z) (fz . hx)
FIGURE
ould sb

If the syllogisms were valid the diagram of the premises W »
cross in the section common to “f” and “h”. It is clear that Some
not k’’ is a validly derivable conclusion.

(3) Some night prowlers are lions (3z) (hz . gx)
Some carnivores are not lions (Azx) (fx . ~gz)

Some carnivores are night prowlers Az) (fz . hx)

FIGURE |

The diagram of the first premise specifies a cross in either the 5:3‘
common to “h”, “g”, and “f”’ or the section common to “p, ‘.‘9’ ’
“not~f”’, while the diagram of the second premise specifies a €ross in ¢
the “f, not-g, ” compartment or the “f, not-g, not-h’’ COMPAItI
The diagram of their conjunction thercfore does not specify that ther
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” compartment or the “f, h, g” compart-

. M [{3
s>ss in either the “f, h, not-g usion does specify.

t, which the diagram of the concl

h f
No boxers are old ~(g$; EH-’C . hjj)'x)
Some boxers are not successful (d=z) (gz - -
No successful people are old ~(3z) (fz . hz) X g
FIGURE 14.

It should be pointed out that the set (1) thl:ough (4) eliminates two
binations which the traditional set of rules, \}rlt!lout 6, allows, namely,
) and AAL Rules (1) and (2) together ehrpmate all the EAO.and
[ combinations. Let us see how they effect this for AAI combinations.

(a) (x)(gz D hx) ®) (@) (gx D hx)

(x) (fz D g%) (z) (gz D fz)
(Az) (fx . hx) Ax) (fz . hx)
(c) (z)(hz D gx) @@ ()(hzx D gzx)
: (:3 Egz D fx) (z) (fz D gx)
3z) (fz . hx) (3z) (fx . hx)

ssical logicians considered the first three of these valid because they
k all terms to have a denotation: an A statement was treated as a
mposite” A, or a conjunction of a universal affirmative with an existen-
condition. On the present interpretation of A and E as “~(3z)(fz .
x)” and “~(Jz) (fz . gx)”, it is clear that no existential statement may
nferred from any AA or AE premises. But by adjoining to the given set
yremises appropriate existence assertions, the conclusions become valid,
liagrams show. Thus, by conjoining “‘ (3z)fz”’ to the premises of (a) the
.clusion can be seen to follow:

() (92 D hx) . (z) (fz D g=)
(Az)fz
(3z) (fz . hx)

ilarly, conjoining ‘‘(3x)gz’’ with the premises of (b), and “‘(Iz)hz”
h the premises of (¢), yields the given conclusion. Reinforcing a
logism in this way has, in case (b), the effect of turning a syllogism
: premises of which violate the distributive rule for the common term
o a valid argument. If, for example, to the premises “All statesmen
; incorruptible’” and ‘“All statesmen are wise’’ we add the statement
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“There are
Statesmep we idlv : .
corruptjble”_ s m&y Vahdlj Infel' l‘some wWise people are |

Some things are easily transplante
There are things which a

Its form js given by

gism, one pPremise quantifies only one of . )
variable falling withip the scope of the quantifier in the other premise, “'

ich it is a special case. The follow-
All of them may be te.sted f:Ol

validity by the use of diagrams (diagrammin ,

form first).

@ @) (fz> gx) (b) 3(:z:) (fx D gz) (e) (3(:1:)) (j::qu gz)
(3z)fx ~(3z)gx ) )~y ,
(3-:)01’ ’ ~(Jz)fx ~(x)fz, (Jz)~fx

@ @) (frver)  (0) @)(fr. ga) ® (2)(fz D gz)
~(3z)fz (Jx)fx (x)fz

(3z)gz (3z)gz (z)gx
The universal

. ial case of (c).
The example above is seen to be a special ¢ ( antecendont and

i lex
.. alization on a function with a comp .
1s a generalization N . . n a function
premw:jentc ai d the existential premise is a generalization o
conseq ,

he
m : In cffect, to say that t
ich i i alsity of that conscqucpt. 2 cff , » ‘
which i P fies thza?ézlsg’ of (¢) is to refer in an indirect way gf)jetc;";utzg.
cramplo is 2 Zﬁf}c i:vlferencc-schema the substitution of unquan

that in any v.

o id result.
“gz”’ will yield a valid resu 6. ) ion, but
tons 11?1‘ ;[x” zﬁldofg?c) ‘s‘ho‘.‘)’,s that *“(3z)~fx” is a valid conclusio
The diagra.

rther examples
.. ive to note some furt ‘ |
YR t. Itis mstruct.ne 0| inference is obvious
that “’,V (:3.7,),[.1: . n?n some cases the mvahdn?y of the }nfe;fignal schema;
of invalid inference. of its analogy to an invalid t]-ut.l'f- ur:)r-t of operators
at a glance bcf;;m'l:solves on an understanding of the imp
in other cases it 1
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ind in all cases, of course, diagramming the premises provides a simple
nswer to questions of validity. The following are all invalid:

@) @) (fxrDgr) B) (@) (fz D gz) (v) (@) (fzDgx)

~ () fx (Fx)~fz (Iz)gz ,
~(Ix)gx ’ (Fz)~gz ’ (Fz)fx
) (A=) (fz v gz) (& @x)(fz D gx)
(3z)~fx (3x)fz .
(Fx)gx ’ (3x)gz

E‘:xamp]e (8) is most conveniently represented by using straight lines to
diagram the denotation of the functions “frvgz” and “~fz”’. A line
Spanning two or more compartments will indicate that the function whose
denotation is represented by the compartments has a value, lying in one
or other of the spanned sections. Thus the diagram for the three state-
ment-forms is

FIGURE 15.

The firgt Premise is made true by having a value lying in any one of tl.le
three compartments spanned by the uppermost of the two lines, that is, in
ANy one of the sections common to “f” and “not-g”, “f” and “g”, or “g
and “not-f”, The second premise is made true by having a value lying in
Cither of the compartments spanned by the middle line, that is, in one
of the Sections common to “not-f”’ and “g” or “not-f”’ and “not-¢g”’. The
“ePresentation of the conclusion requires a line spanning the compartments
Common ¢4 “g" and “f”, and “g” and “not-f”, since the conclusu.)n is
made true by a value lying in one or other compartment of tl}e g-circle.
.he conclusion, represented by the broken line, adds something to the
'48ram of the premises and cannot be read off from it. Hence the con-
cusion is not validly inferrible. ‘ hand
. With the ahove groups of simple valid and invalid schemata at han !
118 possible easily to determine the validity of the following more complex

Orms of inference:

()(fx.D.gz D hx) @) (fzvgz.D .hz)
(3z) (g . ~hz) ~(Jz)hx
~(3x)fz ’ (z)~(~fx D g)

@) (fz.D . ~gz D ha)
@) gz . D . kz . Ix)
@) (fx . ~hz. D . lx)
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HINT: the functions generalized in the premises of the third example may
be transformed in accordance with the truth-function equivalence

“p.D.qDr:=:p.~r.D.~q",and the conclusion derived from the
transformed premises in accordance with the principle “p Dg¢.q¢Dr.
D.pDr.

An examination of the valid forms (a) through (f), together with the
general principle that A.B.D .C is equivalent to A.D.B DC(,
reveals interesting possibilities of distributing quantifiers throughout a
statement-form, and suggests others. Using the principle to transform

(a), “()(fzr D gz) . (3x)fr . D . (Jz)gz”’, into
(@) @ (fx Dgz).D : Az)fz.D . (Az)gz,

quantifiers having relatively restricted scope are distributed throughout
the formula “fz D gz”. Similarly, (f) when so transformed yields

) @(rDgz).D : (@)fz.D. (z)gz.

The character of these statement-forms is analogous to that of a tautology:
the implications hold for all values of the (free) functional variables. The
difference is that we can no longer use anything so simple as a truth-table
to exhibit their validity.

It is to be remarked that with regard to neither (a’) nor (f’) does
the converse implication hold. This is perhaps obvious in the case of (a’).
It is made clear in the case of (f’) by the consideration that a statement
of the form “~(z)fz” makes “(z)fz. D . (z)gz’’ true while leaving the
truth-value of “(z)(fz D gz)” undctermined. Another example of an
implication which holds without its converse being true is

3z)(fx . gz) . D : Fx)fxr . (Az)gz.

The consequent is made true if there are two things, one having the prop-
erty f and the other the property g, whereas the former requires the exist-
ence of something having both properties. Formulas within each of
the following pairs, however, are equivalent: “(Az) (fz v gz)” and
“(Az)fz v (3Az)gz”, “(z)(fz . g)” and “(z)fx . (z)gz”. The set of infer-
ence rules for distributing quantifiers is given here for convenient reference:

F5 @) (frDgz).D : Az)fx.D . (Iz)gz
F6 ()(frDgx).D :(@)fx.D. (x)gz
7 3z)(fz . gz) . DO : (Az)fz . (Az)gx

F8 Az)(fzvgr) . = : (Azx)fz.v. (Az)gz
F9 @)(fx.gz) . = : (x)fz . (z)gz.

Formation Rules

So far we have proceeded informally in our exposition of valid infer-
ences involving quantified statement-forms, without any attempt at doing
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what is requisite for ordering the material in a deductive system. In order
to construct a system for the deduction of valid quantified formulas we
should need to state explicitly the syntax of the extension of language
ushered in by individual variables, functional variables, and quantifica-
tion symbols, and lay down the axioms from which these formulas are
derived. Such an undertaking lies beyond the limits of the present work.
IHowever, we shall give an account of the formation rules operative in one
such system, the so-called functional calculus of first order, so as to introduce
the reader to forms not so far considered. Among these are functions of
more than one argument, such as “f(zx,y)"”, “f(x,y,2)"’, examples of which
are “z is next to ¥, “x gives ¥ to 2”’. The functional calculus of first
order, which quantifies only individual variables, contains the proposi-
tional calculus as a part, so that the formation rules of the latter are in-
cluded among its rules. It has in addition the following:

If ¢ is a functional variable of » arguments and if ay, as, . . ., a, are
individual variables, then c(ay, aq, . . ., a,) is wellformed
If A is wellformed and a is an individual variable (a)A is wellformed.

It is plain from these rules that ‘“fz”, “(2)fz”, “f(z,y)”,
“@)[(Ay)f(z,y)]” are all wellformed formulas (the existential quantifier
being definitionally introduced). But in addition to these, as the rules
indicate, the following count as wellformed:

@)p,  @)p, (@) (p D fr).

It might seem odd to include such expressions as these when “p” does not
contain the variable “z”. Tor it is natural to suppose that a quantifier
can have in its scope only components which refer back to it, i.e., only
components containing a variable duplicating that inside the quantifier
symbol. Actually, however, it is of some importance, in manipulating
quantified expressions, to be able to shift the scope of a quantifier to
include such components. And it is also useful to be able to do this when
expressing the forms of some statements of ordinary discourse. To illus-
trate, consider the two pairs of equivalents,

Someone is such that if the authorities cnact a new law he will be fined*
If the authorities enact a new law someone will be fined,
and
Everyone is such that if the game is lost he loses money*
If the game is lost everyone loses money.

The first member of each pair of equivalents is a generalization having
within its scope a statement whose form is “p’”’, where “p” contains no
individual variable associated with the quantification symbol. In the
second member of each pair that statement is removed from the scope of

* The meaning here is clear although expressed in unidiomatic English.
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the generalization. Rgy;
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whose logical connections with each other we wish to set out.

9y, ete., i.e., functions of a single argument, turn out to
H

tions ‘‘fz . :
Ilel'zcladequa{;;e ;”or exhibiting the logical structure commoxc; é‘,?’ “6 dls‘lg"?aier
i ““4 is between 3 an and “point a

7 “10 is less than 13”, and to 41.s bive ‘

.t han 5, y andoints b and ¢”, and a’lso for distinguishing thgse pairs from each
o e’i’t;lgse statements involve what are called relative terms, and are

other. f statements we have studied
complex than the sort o s .
e ronont ThIZir analysis brings to light functions of more than

D e o z;isen?nvesti«ration of these functions and of the' statemelyl‘:-l-
fort argun;tin . from qu,';mtiﬁcation of the individual variables in them 1";11'
fOPTEIS rgzuto jfstify forms of inference which otherwise we could not. Fo
::I::m:Ie, consider the logically connected statements

1«

Every man has a father
Every man has one and the same father. .
i but tha
Inspection shows that from the second the first can be inferred, ito

i i : : If we are confiné
alidly be inferred from the first. ' 1 by
t}: ; 59‘201:3);?:‘23;1’)6(1 s}; far, the form of the first will be represente
the nota
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“(@)(fz O gz)” and the form of the second by “(z)(fz D hz)”, where “gz”
is interpreted as “z has a father” and “hz” as “z has one and the same
father”. Neither the validity of the one inference nor the invalidity of the
other is apparent from this way of writing them. The case is similar with
regard to the pair of statements “All squares are rectangles” and “The
diagonal of a square is the diagonal of a rectangle”. If these statements
have their forms represented respectively by “(z)(fz D gz)” and
“(z)(hz D jz)”, no connection between them is visible nor is there any
suggestion that the second can be inferred from the first.

In order to make the validity of such inferences apparent, some sort
of formal distinctions must be made between the statements figuring in
them. And within the quantified statements a distinction must be made
between the kinds of function quantified. The possibility of quantified
expressions themselves falling within the scope of a quantifier is already
present in such a formula as “(z)(p D fz)”’. Replacing “p” by “(Iy)gy”
to obtain “(z)[(Jy)gy . D . fz]” we have the form of the statement “Every-
one is such that if there are terrorists he is frightened”. Here the two
quantifiers bind the variables of two monadic functions. It is often the
case, however, that what is requisite to exhibit the form of a statement
is a formula all of whose quantifiers operate on the variables of a single
function of several arguments. The formation rules permit as wellformed
such an expression as “(z)[(3y)f(z,y)]”, which differs from the form of
the above example in the type of function to which the quantifiers refer.
Without the possibility of framing such formulas we should be without
the means of expressing the forms of the many logically complex state-
ments which occur in mathematics, e.g., the definition of a continuous
function. We have now to consider these more complex formulas.

It is natural to think of “fz’', “gy”, etc., as the forms of statements
which grammatically are subject-predicate, e.g., “Jones is miserly”. The
name one-place predicate is sometimes given the predicate occurring in
such a form as “z is miserly”. By freeing one’s mind of grammatical
considerations one can interpret “predicate’ in an extended sense to cover
what is asserted of “z’’ in such an expression as “z will visit the mother
of z unless the vacation of z is canceled”. It is but a short step to extending
the notion of a predicate to what is asserted of a number of terms taken
all together or in subgroups, as in “If = blackballs y then z will sever rela-
tions with z”’. Such an expression can be regarded as the form of a state-
ment containing a several-placed predicate, or relational predicate, and two
or more names. On freeing it and similar forms of their non-formal terms
we have the formulas “f(z,y)", “f(z,y,2)”, etc., denoting functions of more
than one argument—dyadic, triadic, . . ., n-adic functions. With these at
hand, we can explicitly distinguish the respects in which the following
differ formally from each other: “White sits between Jones and Smith”,
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“Jones is Smith’s worst enemy”’, “Jones is his own worst cnemy”’, “White
is thrifty”. The first statement is an instance of “k(z.z,y)"', the second of
) (x,gj)”, the third of “f(z,z)”, and the last of “gz”’. The notational dis-
:‘,‘mctlons between “f(z,y)” and “f(y,x)” and between “h(zyz)" 20

h(z,z,y)"” reflect the difference in what is called the “gense”’ of the relat-lo.n'
'I.‘he dyadic functions “z is enemy of y’’ and ‘y is enemy of " Mc.dls_
tinguished notationally by the reversal of “z”’ and “y” in the first PAT o
formulas above, and “z is between y and 2"’ and “z is between 2 and "’ 81
distinguished by the order of the variables in the second pair. ent-
It is possible from here to proceed in our analysis beyond state®t
forms such as “(z)[3y)gy . D . fx]” and “(A)fr. O - (3x)g2" *

ment-forms which are like these in involving more than oneé sables
h of the var?®

of generality but different from them in quantifying €a¢ ¢-for
of an m-adic function. The following are some of the statemend ”
which can be constructed, and whose relations t0 each other n€®
examined:

(=) W) (zy) (3z) Qy)f (z.y)

@) (2)f (z,y), (Ay) 3x)f (=,¥),

@@ zy) ~@) Ay (=) (@) (Ay) (&) (5:y7)

G Wfey Gy  EOEEN,

(=) 3y (y,z), (32) W)/ (=.9), @) ) @3N 1t}

mult™”

. . 1 X i uc
The conventions with regard to the scope of the qu‘m“ﬁels i # jtion bo
he outermos

quant'iﬁed formulas are: (1) the quantifier in t r ex
t}l:e widest scope; (2) the scope of each succeeding quantifi .
the expression succeeding it jon of &
. . ¢ ibution mul®
It has already been seen how changing the dls’f-ll:“t formd
tifiers can affect the impor antified exPresSN gu)er -
g e import, (_)f a qu ‘1 from 3;,;)fx.(3-’)g of
) x.g:c) means something different Irom — Ar e ¢
first 1r_nply1ng the second, but not conversely- Splftl-l g nor i gjons
quantifier often results in a formula which neither ll?]p e ation o ér"c
by the original. Hence in order to determine the implic ry o
between various quantified statement-forms, it is nocos 0°
Fzsif;\lﬂlg the scopes of their quantifiers. If an adcquﬂ_-g formul®® ot 0
e : . . 1 &
Se]ectedu;lctlonal calculus had been given hgle, the Vf} tem. dof
| for study would all be provable 1 the SYS™ " rorms 0°, g th°
proceeding axiomatically we shall illustrate the stateme® " © ¢ mak

in several valid implications or equivalences, ¥ ith the
anlications or equivalences intuitively ODVISFE Ly and
llﬂ[)h(’lll(l or eqnival intuitively 0‘“}0“: nd th
: . ) 51 S '
Consider the statement GALL war agauns

(x)()f (xy) - = (y)(x)f(x»y)-
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Each of the equivalent formulas gives equally its form. The first says that
for each thing x, no matter what y is chosen, z wars against y; and the
sccond, that for each thing y, no matter what x is chosen, & wars against y.
The following consideration makes their synonymy evident. The assump-
tion that the universe contains a finite number of things, say q, b, c, to-
gether with the universally quantified statement-form *(z)fz”, implies
the conjunction “fa.fb.fc’’. The same assumption together with the
existentially quantified statement-form “(3z)fz” implies the disjunction
“fav fbv fc”. Hence conjoining this assumption to “(z)(y)f(z,y)” yields

the expansion
W (ay) - @f ) - W ey),
which in turn expands into
f(a,a) . f(a,b) - flac) :f(B,a) . f(b,D) . f(bse) : f(c,a) . fle,b) - flese).

It is clear that “(y)(2)f(z,y)”’ would have the same expansion and hence

is equivalent to the original.
The same sort of consideration will show that

Fz) F)f () - = . Ay) Q=)f (z,y),

each equivalent serving cqually to give the form of “someone loves some-
one”’. Both members of the equivalence can be expanded into the same
disjunction, as disjunction, like conjunction, is associative and commutative.
More interesting questions concerning the relation of quantified
formulas to each other arise when the formulas involve more than one type
of quantifier, the same in each but different in scope. It will be useful to
elucidate the formal differences between the statements of the following
list, some of which are differences in the scopes of different quantifiers.

(1) Every man is husband of every woman

(2) Some man is husband of some woman

(3) Every man is husband of some woman

(4) Some woman has every man as husband

(5) Every woman has some man as husband

(6) Some man is husband of every woman

(7) No man is husband of any woman

(8) No man is husband of every woman

(9) Some man is husband of every woman who has a child.

In order to simplify comparison of these statements with respect to form,
we shall for the moment understand the field of variation of “z” to be
men and of “y"’ to be women. With this simplification, and letting “f (z,y)”
stand for “z is husband of 3, the forms of the first two are

Q) @@y, @ @)y



52 QUANTIFICATION

“Jones is Smith’s worst enemy”, “Jones is his own worst enemy”, “IWhite
is thrifty”’. The first statement is an instance of “h(z,x,y)”, the second of
“f(z,4)", the third of “f(z,z)"”, and the last of “gz"’. The notational dis-
tinctions between “f(z,y)” and “f(y,z)"” and between “A(z,y,2)” and
“h(z,z,y)" reflect the difference in what is called the ‘““sense” of the relation.
The dyadic functions “z is enemy of y” and “y is enemy of z” are dis-
tinguished notationally by the reversal of “z’’ and “y” in the first pair of
formulas above, and “z is between y and 2”” and “z is between x and "’ are
distinguished by the order of the variables in the second pair.

It is possible from here to proceed in our analysis beyond statement-
forms such as “(x)[Iy)gy . D .f2]” and “(Fx)fxr. D . (Az)gz’”’, to state-
ment-forms which are like these in involving more than one clement
of generality but different from them in quantifying each of the variables
of an n-adic function. The following are some of the statement-forms

which can be constructed, and whose relations to each other need to be
examined:

(=) W)f (zy) (3=) An)f (=)
@) @)f (=), (Fy) Az)f (z,y),

(=) Ay)f (z,y) ~(z) (3y)f (z,y) (=) Ay) @) (z,y,2)
Ay) (@)f (z,y) (@)~ Q) (z,y) (32) () (2)f (z,y,2)
(=) @Av)f (y,2), (3z) W) (z,y), (3z) () T2)f (z,y,2)-

The conventions with regard to the scope of the quantifiers in such multi-
quantified formulas are: (1) the quantifier in the outermost position has
the widest scope; (2) the scope of each succeeding quantifier extends past
the expression succeeding it.

It has already been seen how changing the distribution of quan-
tifiers can affect the import of a quantified expression. The formula
“(3z)(fx . gx)” means something different from “(Ix)fz. (Ir)gz”, the
first ir.nplying the seconfl, but not conv?rscly.’ A S!’lift in the scope of a
quantifier .often results in a formula which neither implies nor is implied
by the original. Hence in order to determine the implication relations
between various quantified statement-forms, it is necessary to obscrve
carefully the scopes of their quantifiers. If an adequate set of b]
for the functional calculus had b . _ set of postulates
or the functional calculus had been given here, the valig

°T¢, alid formulas we have
selected for study would all be provable in the system. In default of
procecding axiomatically we shall illustrate the statemel‘lt;f _h c au‘ o
in several valid implications or equivalences, wit}, the aj orms occurring
implications or equivalences intuitively obvi(’)us wim of making the

Consider the statement “All war against .alln

» and the equivalence

@Wf(zy) . =. @) (@) (z,y).
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Each of the equivalent formulas gives equally its form. The first says that
for each thing z, no matter what y is chosen, z wars against y; and the
sccond, that for each thing y, no matter what z is chosen, = wars against y.
The following consideration makes their synonymy evident. The assump-
tion that the universe contains a finite number of things, say q, b, ¢, to-
gether with the universally quantified statement-form “(z)fz”’, implies
the conjunction “fa.fb.f¢’. The same assumption together with the
existentially quantified statement-form “(3z)fz” implies the disjunction
“fa v fbvfc”’. Hence conjoining this assumption to “(z)(y)f(z,y)” yields
the expansion

W) (ay) - @y - WSy,
which in turn expands into
f@,a) .f(a,b) . f(ac) :f(B,a) . f(BD) . f(be) :f(e,a) . fleb) - f(ce)-

It is clear that “(y)(z)f(z,y)” would have the same expansion and hence

is equivalent to the original.
The same sort of consideration will show that

3z) Qy)f(z,y) - = - Qy) E)f(z)y),

each equivalent serving equally to give the form of “someone loves some-
one”. Both members of the equivalence can be expanded into the same
disjunction, as disjunction, like conjunction, is associative and commutapve.
More interesting questions concerning the relation of quantified
formulas to each other arise when the formulas involve more than one type
of quantifier, the same in each but different in scope. It will be useful. to
elucidate the formal differences between the statements of the following
list, some of which are differences in the scopes of different quantifiers.

(1) Every man is husband of every woman
(2) Some man is husband of some woman
(3) Every man is husband of some woman
(4) Some woman has every man as husband
(5) Every woman has some man as husband
(6) Some man is husband of every woman
(7) No man is husband of any woman

(8) No man is husband of every woman

(9) Some man is husband of every woman w.

In order to simplify comparison of these statements w-ith. resp?
we shall for the moment understand the field of.varmtlon of 2 ©
men and of “y” to be women. With this simplification, and letting “f(z,y)

stand for “z is husband of 3, the forms of the first two are

1) @ ey), @ @)@f@).

ho has a child.

ct to form,
“2” to be
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It should be noted in passing that F1 and F2 give us the possibility of
rewriting (1) as

~ Az)~(y)f(z,y)
and also as

~(3z) Fy)~f(z,y),
and of rewriting (2) as

~(z)~y)f (z,y)
and also as

~(z) (Y)~f(z,y).

The first expressions of these two pairs have, respectively, the readings

There is no man such that not every woman has him as husband
Not every man is such that there is no woman whose husband he is.

Consider now the two pairs of statements (3), (4), and (5), (6). The
formulas corresponding to the first pair are

B) @Afzy), @) Qy)@)f(zy),

and the formulas corresponding to the second pair are

4) @ AA=)f(xy), (6) ()W) (z,y).

Between the members of these pairs the same relation obtains, so it will
suffice to point out the relation in one pair only. Statement (3) is to
the effect that for each chosen man z there is a woman y such that z is
husband of y. Different choices of z may be associated with different
choices of y. That is, when the existential quantifier lies within the scope
of a universal quantifier it has the force of “some one or other, not neces-
sarily the same one”. Statement (4), on the other hand, asserts that
some fixed woman y is such that every z is her husband. Thus, when the
existential quantifier has a universal quantifier within its scope, it has the
force of “some one and the same”. It is obvious that (3) is a consequence
of (4): If some one woman has every man as husband, then every man is
husband to some woman or other. But the converse does not hold. What
is implied by the conjunction of the assumption that the universe consists
of a limited number of men q, b, ¢, and of women d, e, with (3) and also
i ill exhibit clearly their relation. “(z)(3 ” .
with (4) w y =) 3)f (z,9)” expands into

Afay) . AiGy) . Ay (),

and this in turn becomes

I fad)vi(ae).f(bd) vie). Fed) v f(ce).
And formula “(Jy) (z)f(z,y)” first becomes

@ (@,d) v (z)f (z,e),
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and this expands into
I f(ad).f(,d).flc,d) .v.f(ae).f(be).f(ce).

Every condition making the disjunction II true makes I true. But I is
made true by “f(a,e) .f(bd) . f(c,e)”’, which is insufficient to make II
true. Thus, although (4) implies (3), (3) does not imply (4). This means
that different quantifiers cannot be shifted within a formula to yield an
equivalent formula.

The forms of (7) and (8), which are the contradictories of (2) and
(6), are
(7) ~@Ax) A (z,y),  (8) ~(Az) W)f(z.y)-
The scope of “~" in each of these is the entire formula, and each differs
in import from an expression in which the negation is shifted inward
to the function, e.g., the difference between (7) and the formula
“(Jz) (Jy)~f(x,y)" is that the latter is the form of “Some man is such
that there is a woman to whom he is not husband”. And this, in fact, is
the contradictory of (1), “Every man is husband of every women’.

Inasmuch as there are equivalent ways of expressing a given quantified
formula, it is not always apparent that two formulas are contradictories.
There is a simple rule of thumb for finding the contradictory of a given
formula, namely, replace each universal quantifier by an existential quantifier,
each existential quantifier by a universal quantifier, and negate the function
which all the quantifiers preface. This, to be sure, requires that all distinct
quantifiers either stand at the beginning of a formula or be immediately
preceded only by other quantifiers or by negation signs. Formulas (3)
and (4), whose quantifiers are so placed, have the following contradictories,
derived in accordance with this rule:

3 G)@~f@y), @) () Fz)~f(@y).

These, in order, have the readings: “Some man is such that in the case of
every woman he is not her husband”, “For every woman there is a man
who is not her husband”. The correctness of the rule of thumb is evident
on transforming the negations of (3) and (4) in accordance with F'3 and F4:

@) ~(@)ANf@y) . = . A~ @y) - = - (F2) @)~/ ()

@) ~@y) @) @) . = . @~ @Y) - = - @) (3~ @)

The rewriting of quantified statement-forms in such a way that all
of their quantifiers, in uninterrupted array, preface an n-adic formula A

containing no quantifiers needs to be considered nexfs. Stutemgnt 9),
“Some man is husband of every woman who has a child”, lends itself to

a simple analysis. This asserts that

3 : ) i oman.D .
(Iz)[zisaman. (y)(yisa w (o3 (2 i child of y D o is husband of 1))
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In order to come out with al] jts quantifiers in such an array we first make

use of a variant of Fis,

W (fy.p).=.p. )y,
"’ does not oceur free, within the scope

€«

to place “z is g man”, in which y

of “(y)”. We thus obtain

(3%) (¥)[z is a man - (v is a woman . D.
(32) (z is a child of ¥ D z is husband of y))].

A variant on I'10,

F)p D). = -2 D (32)fz,

“yisa woman”, in which ¢ does not occur free, within

allows us to place
» and we obtain

the scope of ““(3z)”

(3z) (y)[z is a man . (32) (y is a woman . D.
2 is child of y D z is husband of y)].

Again, by use of a variant on F14,

(32)(fz.p) . =.p. (),
“z is a man” is placed within the scope of “(3z)””, with the result

32) (y) (32)[z is a man . (y s a woman . D .

3@ @) 2z is child of y D z is husband of y)].
The italicized part, which is of the form A.D.BDGCis cquivafsmtl;}’r
g “mz

given in the form A . B. D . C. Using this equivalence, ’and I,?ttfin e
b
stand for “z is a man”’, “wy” for “y is a woman”’, “g(z,y)" for “z is child o

) , t
y”, and “f(z,y)” for “z is husband of »”, the form of the whole can be se

t
e (3z) (y) 3z)[mz 1wy . g(z,y) . D . flz,9)].

idi ; lex of the two inferences with which
e Val'ldtlfgd3£ofih§a?2;zeld(}grml?e justified with the help of the present
Pa{'t I was ml the i;lference, namely, from ‘“Some even nun‘lbef‘s are less
pBical materta ,b . r greater than the smallest odd prime.” tq “It is not the
e o ef egfren number z there is a number which is greater t.hax?
case that for C‘ZICU -ime and is not greater than z”. Letting “ex” stand for
the‘ smallest od P;)l r’’, and “y > a” for “y is a number greater than the
- llsleaslt1 cfc‘l,gnp?ilrlnn;”,e th’e form of the first can be expressed as
sma

(Az)lex. W)y > a.D .z <y)]

e @) @)lex- > a.D .2 <yl
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The form of the second is
~(@)Ay)lex. D .y > a.~(z < y)]

Transformation of the first by F1 and F2 yields the second as its equivalent.
Hence the validity of inferring one from the other is assured.

Definite Descriptions

Before leaving the topic of multiply quantified formulas, something
should be said of the forms of statements involving phrases which are
similar to yct different from proper names, phrases called definite descrip-
tions. A definite description is an expression of the form “the so-and-so”,

for example, “the discoverer of quaternions’, “the even prime”. The con-

vention in logic is to write ““(:2)”’ for ‘‘the object such that”, so that these
examples become
(«x) (x is discoverer of quaternions), (x) (z is even . x is prime).

It is of considerable importance to be able to explicate the form of state-
ments in which definite deseriptions occur as grammatical subjects, state-
ments such as “The prime number greater than 12 and less than 17 is
unlucky”, “The discoverer of quaternions was Irish”. These have the
form “the object having f has ¢”, written “g{(w)fr}”. We leave aside
the question here as to whether ordinary proper names such as “Socrates”,
“Eisenhower”, “Pegasus” are in fact definite descriptions, and turn to a
brief analysis of statements explicitly involving definite descriptions. To
give the form of these it is nccessary to introduce the notion of identity.
This notion cannot be formalized in the functional calculus of first order,
since it involves quantification of a functional variable, and only individual
variables are quantified there. The usual definition of identity is

z =y = Df. ()(fz = Jy).
That is, « is said to be identical with y when z and y have all their proper-

ties in common. § .
To make explicit the distinction between “a so-and-so”’ and . the
so-and-so”, as these phrases occur in the expressions “an object having S

has g” and “the object having f has g”, it is required to distinguish between
the two existential statement-forms

There is an z such that fz and gz
There is one and only one z such that fx and gz.

The second differs from the first in asserting the uniqueness of the object
to which f and g are attributed, ie., in asserting that at Ieasi': on‘e‘ and a,’f,
most one object having f has g. The restriction of the func_tlon ‘fz . g

to just one value is expressed with the help of “="". How this term enters
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into the analys;
and less thay ‘;ils of the st}z}tement, “The prime number greater than 12
¢ 1s unlucky” can be seen from rewriting it as

3"‘ IS ‘1 ) ~ .
( .L)[.mspumc 2 << 7. (¥) (y is prime . 12 <y<l7.=.y=2)-
2 is unluckyl]-

That is, « fe

unhlc::;"’ Zi\;:g:; On,(; and only one prime number z, 12 < z < 17, and ¢ s

is a prime ‘numb;" w lcT] all its formal terms are made explicit, into “There

for every number 4 ng-l eater than 12 and less than 17 which is such that

if and only if » ; 1 ¥ 15 @ prime number greater than 12 and less than 17

stand f ‘;V iy 1s identical with z, and 7 js unlucky”. By letting /"
and for “z is prime . 12 < z < 17", and “gz”" for “z is 'unlucky”, its form

can be seen to be
) () (fz i fy . = .Y =z :gz).

It will be clear that no such statement-form can be inferred from

“(3x) (fz . gz)”, but that the converse implication does hold. The intro-
h

duction of identity enables us to make explicit forms of inference whic

ca:‘gnott!)e‘ just‘i‘ﬁec;l’ by formulas quantif ying individual variables only. The
properties of “="" are formalized in the so-called calculus of equality, in

which such valid inference schemata as the following are deduced:

@W(z.z2=y.D.fy)

T=z.y=z.D.x=1y.

EXERCISES
1. Give the forms of the following, using quantifiers, variables, and the operators

((~'7. llD!l' etc'
(a) If all sages have beards, then no sages are unbearded.
(b) If only diligent students pass, then no students who are not diligent pass.

(c) If there are no unicorns, no unicorns are gentle.
(d) Somcone is such that if he falters, everyone loses courage.

(e) St. Francis loves all anima s.
(f) All who love St. Francis love every animal.
(g) Every person who is either thrifty or prudent will, if he has money, refrain

from speculating on the stock market.
(h) If all doctors are benefactors, then if there are doctors, there are benefactors.

(i) There is some point or other between any two points on a line.
(j) There is some one and the same point between every pair of points.

(k) Someone criticizes everybody to someone.
(1) Everybody criticizes someone to somebody.
(m) Somebody criticizes somebody to everyone.

2. Write the negatives of the above in such a way that no negation sign prefaces 8

quantifier.
3. Test the following syllogisms by the rules and by means of diagrams. Where more

than one conclusion is given, state which, if either, is valid.
(a) Some modern musie is dissonant. No dissonant music is pleasing to the ear.

Hence some modern music is not pleasing to the ear.
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(b) Some congressmen are not finc orators. Some fine orators are lovers of classical
music. Hence some congressmen are not lovers of classical musie.

(¢) No lawyer is shy. All shy people are nervous. Therefore, (1) no nervous
person is a lawyer, (2) some lawyers are not nervous.

(d) Some speakers arc entertaining. Anyone who is a speaker is exhibitionistic.
Hence, (1) some entertaining people are exhibitionistic, (2) some exhibitionistic
people are not entertaining.

(e) Not all scnators are law-abiding. Law-abiding people are never apprehensive.
Hence, (1) some senators are apprehensive, (2) some apprehensive people are

not senators.

. (a) Given: 1. Anyone who plays roulette will, if he bets heavily, lose a lot of money

and be unhappy
2. Everyone plays roulette
3. Somcone is not unhappy.

Question: Does everyone bet heavily?
(b) Given: 1. There is no one in the smart set who reads widely or keeps up on

current affairs
2. Everyone with incomes above $10,000 is in the smart set
3. If anyone fails to keep up on current affairs he should not vote.
Question: Are there people with incomes above $10,000 who should not vote?

Write the following so that all quantifiers stand in uninterrupted array before the
function quantified. Find the contradictory of each result in terms of different

quantifiers.
(2) Some one number is less than all numbers greater than 1.

(b) Everyone brings a gift to someone.
(¢) Everyone respects anyone who has written at least one book.
(d) Some one person pays all commissions to everyone on the payroll.

(e) Everyone buys something from all grocers.
(f) Not everyone wills all his possessions to someone or other.

Which of the following are valid, and which invalid?

(a) @)(z.gz). ~Az)fz.D. ~(3z)gz.

(b) ~@z)(fz.gz). ~(=)gz . D . @)fz.

(€) @)z Dgz).~()gz.D. (x) ~fz.

d) ~@)(z.p).=:@)z.D.~p

(e) @)(z.gz).D :~@Ax)fz.D. ~(3z)gz.

) @Uz.D.g9z Dhz). Az)(gz .- ~hz). D . Bz)~fz.

&) @)(fzvgz.D.hz). ~@Ax)hz. D . (@)~ (~fz D gz)-

(h) (z)(fz D gz). (z)(fz D ~hz). BG2)fz. D . @2)(gz - ~hz).
i) @) (zvgr.D. hz.~kz). @)z . . (3z)~kz.

G) @Uz.gz.D . hzvkz). (@)(kz D ~fz). ()(fz . gz) . D . ()~hz.
(k) @Ez)@)@2)(@y2) . D . )~@2)@E2) (@y.2).

O @z)@) @ @p,2) - D . ~ () ) @)~ (@y2)-

(m) (z)@y)@2)(z,,2) . O . Ay) (z) @2)f (z,9:2)-

() @z)~@) ) (zyz2).D- 3z) @2) @y)~f @y:2)-

©) (2)@y)E)f@y2) . D . ~@z)~@2) @) (z:y.2)-

(p) (2)@y) @) (@w2)- D (@)~ (@) @)~ (zy:2)-
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Classes

Class Membership and Class Inclusion

The statement
Archimedes is a geometer

is an instance of the formula “fz”, in which “f” is a predicate variable
whose values are properties or attributes, and “z’’ is an individual variable
which can be replaced by the proper names of mdlviduals, pronouns, and
demonstratives. The statement, thus, can be rephrased in the following
way:

Archimedes has the attribute of being a geometer.

The statement has also a further rephrasing, one in which the expression
“has the attribute of”’ gives way to the expression ‘“belongs to the class of’’:

Archimedes belongs to the class of geometers
or
Archimedes is a member of the class of geometers.

Using the Greek letter “¢’’ to mean ‘“is a member of”’, and the expression
“2(zis a geometer)” to mean “the z’s such that z is a geometer”’, either of
these can be written

Archimedes € 2(z is a geometer).

By puttmg “z” in place of “Archimedes” and “f” in place of “gcometer’
we arrive at the formula

z e£(fz),

to the effect that z is a member of the things each of which has f. This
in turn comes to the same thing as saying that x is a member of the class
of thmgs each of which has f; and by letting the lower case letters “a”,
“p”, “c”, and so on, be class variables, “z ¢ 2(fz)”’ becomes

T €aq.

Thus corresponding to “fz”, “gy”’, etc., in the functional notation we have
, .
“zea’, “yeb”, ete., in the class notation.

60
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In similar fashion the statement
All geometers are mathematicians

has two equivalent renderings in English, one in terms of “property”’ or
“attribute’’, the other in terms of “class’ or “set” or “collection’’:

If anything has the property of being a geometer, it has the property
of being a mathematician,

which exemplifies the formula ““(z) (fx D g¢z)’’; and

If anything is a member of the class of geometers, it is a member, or
element, of the class of mathematicians,

which exemplifies the formula “(z)(z ea D z ¢b)””. When every member
of a class a is also a member of a class b, a is said to be included in b, the
relation of class inclusion being symbolized by “C”. The above formula
thus goes into the class formula

a Cb,
and the inclusion relation is defined as
aCb=Df (z)(zeaDzeb).

Class Products and Sums

A statement about objects which are members of a pair of classes
a, b, is said to be about the logical product class,

E(rea.xzeb).

This is more compactly written in the form “a X b”, or more simply as
“ab”. The operator symbol “X” for logical multiplication is defined as

aXb=Dfi(zea.xedb).*

In the diagram it is represented by the compartment enclosed by the heavy
lines. This is the compartment referred to by the formulas “(3z) (x € ab)”
and “~(3z) (z e ab)”’, formulas which will be recognized

as the counterparts in class notation of the standard a b
I and E statement-forms.
A statement about objects which are members of
either of a pair of classes a, b, is said to be about the
) v class
logical sum ) FIGURE 16.

Z(xeavzed),

* The symbol “N’’ is sometimes used instead of “X".
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defined as the number of the null class, each succeeding number as a certair
kind of class of classes, the rational numbers as ordered pairs of integers.
the real numbers as classes of rationals. Principia Mathematica is a monu-
ment to the thesis that the propositions of pure mathematics are derivable
from propositions of logic.

Classes and Categorical Statement-forms

The four standard A, E, I, and O statement-forms expressed in the
functional notation can now be reformulated in class terms in a number of
different ways. The list below sums them up.

In terms of “‘¢”’ In terms of “=" In terms of “C"
A, @)(xreaDzed) a+b=1 aChb
~(Jz)(xea.zeb) ab =
E, x)(zeaDzeb) a+b= aCh
~@z)(zea.zeb) ab=0
I, @z)(zea.zeb) ab = 0 ~(a Cb)
O, Az)(zea.zeb) ab # 0 ~(@Cb)

The case in which being a member of a class a is stated to be both a

necessary and sufficient condition for being a member of b has the three
representations

@) (wea=zeb), a=b aCb-DCE

Class Negation, Sums, Products

_ Recalling that the complement  of o given class @ is the class of those
things which are not members of a, it is intuitively obvious that the negate
of the complement, &, is the original class q,

ad = a.

If @ is represented by a circle, then what lies outside the circle is the class

of those things that are a, and the class of those things that are & will lie
outside the class @, and be precisely q.

Q)
|

FIGURE 18,
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The complement of ab is ab, and is identical with the sum class @ + .
ab=a-+b.
The following chain of equations shows this:

#(x eab) = £ ~(z eab) =di~(zea.zeb) =f[~(zea)v~(zed)
=gd(xedvzeb) =a-+b.

The diagrammatic representation of ab will be seen to be also the dia-
grammatic representation of @ + b, the area ab outside the heavily outlined
compartment ab (including the area outside the circles)

being the same as @ + b. Any « which falls outside the a b
ab compartment is in &, b, or @b, i.e., in the compart-
ment @ 4 b.

The complement of @ + b isa + 0, and is identical
with the product class ab:

a+ b = ab.

This is similarly shown by the equation chain of formulas:

FIGURE 19.

treatb)=2~(@eatb)=d~(@eavaed) =4[ ~(ea). ~(z ¢b)]
=g(xeda.xeb) = ab.

The diagram for a 4 b is also the diagram for the class represented by the
area outside that enclosed in heavy lines, ic., the

class which is neither a nor b, or @b. The equations @ b
“ab = @ + b” and “a + b = ab” are the so-called De
Morgan theorems for the complements of class products
and class sums.

The following list of class equations requires no
explanation. The first pair are the commutative laws for
class multiplication and addition, the second pair the associative laws for
class multiplication and addition, the third pair the lgws of tautology:

FIGURE 20.

ab = ba a(be) = (ab)e

aXa=a
a+b=b+a a+b+c)=(a+b)+¢

a+a=a.

The next five equations are further examples of how class negation operates
with respect to “4’’ and “X".

a+a=aa
(@+b)(cd) =a+b+cd =ab+é+ d
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Distributive Laws

It is important next to see how “+’” and ‘X’ operate with respect
to each other, when the scope of one falls within the scope of the other
Given the premise

(1) Something is a member of the class of things which are both swift. and
not winged and is also a member of the class of things which are either
carnivorous or both herbivorous and marsupial,

are we entitled to infer the following:

(2) Something is a member of the class of things. which are 'either sw1fl(:i,
not winged, and carnivorous, or swift, not winged, herbivorous, an
marsupial.

Letting “a” be the class of swift things, “b” the class of things which are
winged, “c” the class of carnivores, “d’’ the class of herbivores, and “e
the class of marsupials, the premise becomes

(Az)z € [ab(c + de)],
and the conclusion,
(3z)z e (abc + abde).

ish the equati
An dumnentary law of the logic of classes enables us to establis a on

ab(c + de) = abc + abde,

which justifies the inference of (2) from (1), since expressml:l sO:l;];a;:sd by
a law of classes identify the same class and can replace eac any

1 ing the truth-value of the
{ i i 1 vithout changing t fue
formula. m Whlch elther occurs v l.t o .
formula. The lnw which is used is onc of the two laws of dr nbutwn,

the rule of distribution with respect to logical multiplication:
ab + c) = ab + ac.
If we diagram these combinations of classes by means of three intersect-

ing circles, it will easily be seen that they are represented by precisely
the same part of the diagram. This can perhaps be

a b more easily seen if the formulas are rewritten in the
form
2(zea.zebvzec) = 2(zxea.zeb.Vv.Tea.zec).
Thg remair.ﬁ.ng law, the distribution rule with respect o
~ logical addition, is
FIGURE 2%. @+ be = (a+b)(a+c).
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As in the preceding case, the part of the diagram which a b
represents the formula to the left of the identity sign
also represents the one on the right. The high-lighted
part of the diagram clearly represents a + be. To see
that it represents the right-hand product, diagram
a + b and a + c separately and combine the diagrams
to find their common part. Rewriting the identity in
the form

c

FIGURE 22,

Z(rea.zebc) = £(zreavzeb.zeavzec)

shows that the two sides of the equation are represented by the same set
of compartments.

Valid Formulas for 0 and 1

The equations set down so far are laws of logic which cannot fail to
yield true class statements, whatever substitutions for the class variables
are made. They may be called valid class formulas, and the reader has
undoubtedly already realized that the class of valid class formulas can be
arranged in the form of a deductive system, comparable to the propositional
calculus. A class calculus, or algebra of classes, will be constructed later,
but for the present we shall continue to consider a number of class formulas
informally and, for the most part, without regard to order.

It has already been seen that the null class, if there is one, has no
members: (z) ~(z ¢0). It is not so apparent that there cannot be more
than one such class, i.e., that

~ (0, # 02).

Let us suppose that there are two distinct null classes, 0; and 0, such that
0, = a@, 0, = bb; then )
ad = bb.

This is to suppose that one of these classes has & member that the other
lacks, which implies that one of them has a member:

(3z) (x e ad) v (Az) (z € bd).

Since this is impossible, there can be at most one null class. It follows as
a direct consequence that the logical product of any class and its comple-
ment is identical with the logical product of any other class and its comple-
ment. Thus the class of things that are both men and not men is identical
with the class of things that are grasshoppers and also not grasshoppers.

A similar line of reasoning shows that there cannot be more than one
universal class:

~(1; # 1p).
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Again, let us suppose that there are two distinct universal classes, 1 and 1,
and let us identify 1; with ¢ 4+ @, and 1, with b + b:

a+a=b+b

By the definition of identity between classes it is clear that on this suppo-
sition one of these two classes must lack an element which the other has,

(Az) ~(zea + a) v (3z) ~(xeb + b),

and thus that the null class has a member: (3z)(z € a@) v (3z) (z € bd).
Hence, ~(1, 5 1,). An immediate consequence of this is that the logical
sum of any class and its complement is identical with the logical sum of
any other class and its complement.

Tt should be pointed out that a special kind of restriction has to be
imposed on the universal class: it must be confined to what may be called
a logical universe of discourse. The formula “(z)z e 1"’ is valid only.so
long as the range of “z” is limited to objects of the same logical type, which
in the present case are individuals. The Theory of Logical Types cannot
be gone into here; but to give a glimpse of its nature, were 1 not confined
to objects of one logical kind, for example, were it allowed to have as
members any class ¢ and the elements of ¢ as well, then 1 would become
an illegitimate totality. That is, if e is a member of ¢ then “e¢1” and
“c ¢1”” are not both instances of “z ¢1”. The range of “z” in “ze1” is
all individuals, not all possible objects.

Several formulas concerning the classes 0 and 1 are in order at this
point:

ad=0
a+0=a
al =a
a+1=1.

No more than a cursory examination of the first two formulas is necessar
in order to be convinced that they are valid class formulas, The t'ox};
of the first equation, “~(a0 = 0)”, to the eficet, that . negati

has a member which the other lacks, has the COnSequ(::]z :f the two classes

(Az)(zea.ze0)y () (z € 0),
which in turn has the consequence

(Az)z 0.
The negation of the second, “~@+0

=

a)”, has the consequence
which implies TR t0.5. a

(3x)xeavze0.~(xea).
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Something which is a member either of @ or of 0 and is not a member of
e must be a member of 0; and again we have the
illegitimate consequence that (3z)z € 0.

A diagram will be sufficient to show that the second !
pair of equations, “al = a”’ and “a + 1 = 17, are valid
formulas. Let us represent 1 by a square, and any class
a included in and distinct from 1 by a circle inside the
square. The diagram shows the class al to be identical  grouRE 23.
with a, and the class a + 1 to be identical with 1. The
common part of a and 1, their ?nfersection, is a; and since no segment of a
extends beyond 1, their logical sum is 1. In the trivial case where a is itself

1, the two equations obviously hold.

Laws of Absorption

The next three formulas, called absorption formulas, can also be seen
to be valid class formulas from their diagrammatic representations:

a+ab=a
‘ala+b)=a a b
ab + ab = a.
All are represented by the same part of the diagram.
FIGURE 24.

Reduction Problems

It will be of some interest at this point, before the algebra of leassc§ is
erected, to do some elementary, informally conducted computing with
classes. In accordance with the commutative laws (p. 65) we shall change
the order of the terms in sums and products in any way we please; and as

permitted by the associative laws (p. 65) we shall also rebracket sums and
s) in any way useful

products (but not combinations of sums and product
to the solution of a problem. Thus “a+ bc + d”’ may t:? changc‘a‘d to
“g +d + cb”, and it may be bracketed as “(a + be) + d” or as “a+

(be + d)”, but not as “(a + b)(c + d)”.
Let the problem be to determine whether

oth blonde and tall or else blonde and not

le who are b
the class of pcople w _shouldered or else broad-shouldered and

tall, and also cither broad
loose-jointed

is identical with
the class of people who are blonde and broad-shouldered.
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Let “a” be the class of blonde people, “b” the class of tall people, ““c’”’ the
class of broad-shouldered people, “d” the class of loose-jointed people.
The problem is to discover whether

(ab + ab)(c + ¢d) = ac

is a valid class formula. The two sums on the left of “=" contract, re-
spectively, into “a” and “c” by the third and first of the above laws of
absorption, so that we have the identity

ac = ac.

The left-hand expression thus transforms into the one on the right, and
the classes denoted are identical.

In the next problems computations will be made without comment or
reference back to valid formulas. Justification is left to the reader. Given

the equation below, to show that it is valid by the process of reduction t0
an idenlity:

a(® +¢) + ac + bd + be + bd + ac

(@b + aé) + aé + bd + be + bd + ac
ab + (ac + a¢) + (bd + bd) + be + ac
ab+4ai+ b+ bec + ac

(b + ba) + (a¢ + ac) + (b + be)
b4+a+bd

a+ (b+0b)

a+b

Problem: to reduce to an identity
abé +be+a+cd+b+c+de =1

abé + (@ + b+ ¢) + (be + cd + de)
(abe + abc) + (be + cd + de)
1 4 (be + cd + de)
1
Problem: to reduce to an identity

a(@ + ab + ad) =

]
)
+
o

| T |

a+bd

I
Pt

a(a@ + ad) =
ad =
0 =0
The Antilogism
We hark back briefly to syllogistic reasoning in order to acquaint the

reader with a simplification in the test of syllogisms effected by means of
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the equation and inequation class notation. A syllogism is valid if its
conclusion follows from the premises; and the conclusion follows from the
premises only if the negation of the conclusion is inconsistent with the
premises. Thus a syllogism is valid only if negating its conclusion results
in an inconsistent conjunction of statements. For example, on negating

the conclusion of the syllogism

All teachers are slave drivers
All slave drivers are slothful

All teachers are slothful

the result is the conjunction of the first two statements with “Some teachers
are not slothful”, a patently inconsistent conjunction. But negating the

conclusion of the invalid syllogism

All slave drivers are cruel
All teachers are cruel
Some slave drivers are teachers

gives the conjunction of the premises with “No slave drivers are teachers”,
a triad of statements which is not inconsistent. A simple diagrammatic
method of evaluating syllogisms suggests itself immediately. Instead of
diagramming the syllogism we diagram the triad of statements obtained
by negating the conclusion of the syllogism, and if the diagram has a
“contradictory’” compartment, i.e., a compartment which is both shaded
and has a cross, the syllogism is valid, otherwise it is not valid. Letting
a = teachers, b = slave drivers, ¢ = slothful people, d = cruel people, the

two diagrams are

FIGURE 25.

The cross is made to span two compartments in order to indicate that one

or the other is membered. . . )
This method is sufficient for testing any syllogism, but it is mstru:.tlve

to see what the conditions are to which a triad of equations and inequa 101;:

must conform in order to be an inconsistent set, or to be an antilogism.

is easily seen that every valid syllogism is equivalent to a syllogism com-
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is easily seen that every valid syllogism is equivalent to a syllogism com-
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posed of three universal

.. s. That this i .

syllo is is the case .

yllogistic rules (3) and (4) (p. 43) and the equivalellflsceg waranteed by (b

D.q.D.TI=ip.~r.D.~q:=:1q.~r.D.~p

Hence it is nece :

syllogisms of thsrzaérbl’lr?irivl;sta(,)lsdllf;?/‘eleirnﬂégr:) gical properties which o1 valid
necessary and : - mon in order to formulate the
Conclusi(})’n o s;:}fﬁafnser;}: c9nd1t10ns fo.r syllogistic validity. Negating the
and one particular 031’- 1? o oou (_)btam a triad composed of two universals
syllogisms correspc;nd towo eguahqns and one inequation, and only vali

equations and inequatio such a triad. In order, therefore, for a triad of
composed of two equatt'nS to form an inconsistent set, (1) it must be
cufficiont. There are t“}gr;s and onec 1.nequa.tion. This, however, is not
cquations must occur as ¢ urther conditions, (2) the common term of the
the inequation must oc " m'plement.s of each other, and (3) the terms ©

ditions (1) through (3)cz:lrle t;)kactly as th(’:y appear in the equations, CO]]-
an antilogism, i.e., for a tri (;)rt h necessary and sufficient for a triad’s being
will imply the neg,ative O?Zh § bem{; §u0h that any two of the statements
for testing a syllogism is ¢ e remaining one. The antilogistic procedure
the resulting set answers t ° neg%t? the given conclusion and see whether
is an antilogism and 1 ts to conditions (1) through (3). If it does, the set
e tavalid.  Taro syllo li(; r(: iginal syl}oglsm is valid; otherwise the syllogism
this method. gisms, one valid and one invalid, are tested below by

(1) Some Franciscans are meditative ab# 0
No huecaneers are meditative ch=0

Kome Franciscans arc not buccaneers aé #

‘'he negation of the conclusion 18

FIGURE 26.

isfies (1) through (3) and is an antilogism. The

The triad obtained sat
d the diagram bears this out.

syllogism is valid, therefore, an

-a b
———4
2) All cassowaries are ungainly ab=0 ‘
ahie " . 1y 1 ’ = 0
No pu:h)hl,ouc creature is a cassowary ca %
No prehist;oric creature is ungainly
4

he conclusion is

The negalion of 1 oot -

ot an antilogis™

i i iti 3) and is 1
.1 obtained violates conditions (2) and (3) ¢
e trind o d and the diagram bears this out.

The syllogism is invali
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The Algebra of Classes

We proceed to the construction of the deductive system of class
formulas. It will be seen that some of the valid class formulas stated in
the preceding sections are used as axioms of the system while others enter
into the system as theorems. The axioms for the algebra, or calculus, of
classes presented here arc formulated in terms of the operator symbols
“X” and “~”, the relation symbol “=", and the class variables “a”,
“p” 4" . ... A number of conditions are imposed on the set K of classes
which enter into the algebra. These conditions are usually counted as
axioms of the algebra; but it seems preferable to think of them as pre-
suppositions of the algebraic system, instead of axioms, particularly since
theorems are not derived from them by the usual procedure of substituting

on variables. They are

Kt IfaeKandbeK, thena X beK
K2 IfaekK thenadaeK
K3 There are at least two distinet classes in K.

The algebra of classes rests on the logic of equality, comprised of the
functional calculus of first order with added axioms for identity. Principles
for deducing theorems in that calculus, among them the transformation
rules of the propositional caleulus which it contains as a part, automatically
become rules of deduction in the algebra of classes. The propertics of the
relation of equality, or identity, which are developed in .the lqgic of equalit;y
are presupposed by the algebra of classes. The fo]lownEg give three l?asw
properties, and are in fact the axioms for one formulation of the logic of

equality.
El z==2
E2 z2=y.D.y=¢<
E3 z=y.y=2.20.8=2
eed to

An examination of these will reassure the reader that he does not nbl v
e

possess detailed knowledge of the logic of cquality in order to be a

work with the algebra of classes.
With K1 through X3 and E1 throug

three in number:

h E3 presupposed, the axioms are

1) aXb=bXa
2) (aXb)Xc=a><(ch)

@) (@axb) X @xb) =a
These are an adaptation of postulates formulated by E. V. Huntington.

’
Note that no postulates for 0 and 1 are included. The symbols “0” and
* “Boolean Algebra. A Correction,” Trans. Am. Math. Soc., vol. 35, p. 557, 1933.

*
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“1" are definitionally introduced, and definitions are also given of “a + b”
and of “@ C d".

(A) a+b=Df.axXb
(B) 0=Df.aXa
(C) 1=Df.aXa
D) aCb=Df.ab=gq

The rules for deducing class theorems are the following:

R1 From A the result of substituting class expressions for each occur-
rence of the same class variable in A may be inferred

R2 From A the result of replacing class expressions by their equivalents
may be inferred.

Rule R1 operates under the condition of completeness, that is to say.
the same substitution must be made for all occurrences of a given variable
in A. Rule R2 dispenses with this condition. The next two rules are
modus ponens and the rule of inference called the Deduction Theorem.

R3 From A and A D B, B may be inferred
R4 If from A,, A, ..., A, taken as hypotheses B is deducible, then
A, Ag ..., A, A, D B may be inferred.

The axioms are stated again for convenient reference and we proceed
to proofs of theorems. To make the first three proofs easier to read super-
scripts are used to indicate the number of bars over a variable.

1)aXb=bXa
2 (@Xb)Xc=aX ®dXc)

B)aXbXaXb=a
(4) aXa=aXad

(3), d for b] ' XadXa' Xal=a i
(3), & forb, afora] a*Xa®Xd*Xa®=a ii
1), i, ii, R2] aXa=[a'Xa®XaXd¥

X[a® Xa® XaXa? i

(3), dfora, aford] a®Xa®Xa®Xd =d iv
(3), afora, aford] a*Xa®*Xad’Xa =2 v
(1), iv, v, R2] @ Xa=[a?Xa®Xa%’Xal] .

vi

X [@® X a? X a® X a']
(1), (2),iii, vi, R2] aXa=aXaé
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B)a=oa
(), Gfora, aford] a*Xa®Xa®Xa =4 i
(3), a for b] a'Xa*Xa'Xat=a i
(4), @ for a] a' Xa®=a*Xd® iii
(1), i, ii, iii, R2] a=a

6) axa=bxb
(3), b for b] a' X2 Xa' X =g i
(3), afora, bford] XX aZXbl =a ii
(1), i, ii, R2] aXa=[a' Xb®Xa Xb'

X[a® X b2 Xa?Xb] i
(3),bfora,aford] b'Xa'Xb'Xa=0b iv

iv, @ for a] ' Xa* X Xa =b v
iv, b for b, @ for a] FXa*Xb*Xal=b vi
(1), v, vi, R2] [b' X a® X b! X a']

XIEXaEX ¥ Xa]=bxXb vi
(1), (2), iii, vii, R2] aXa=bXb
()0=aXa
(1),aforb,DfB] O0O=aXa

Conditions K1 and K2 assure the existence of a special element, aa, in K.
Theorem (7) identifies this element as 0, which by (6) is shown to be unique.

8 o0=1 .
(56),a X afora] aeXa=aXa !
i, Df.B] 0=aXa u
i, Df.C] 0=1
9)1=0 .
(5),0fora] 0°=10 l
i, (8)] 1#=0 1‘;
ii, (5)] 12=0
iii, (5)] 1=0
10) a+a=1 _ i
(9), D£.C] 0=aXa i
4), (1), 1] 0=aXa
l=a+2

ii, Df.A, (9)]

Theorems (11) through (19) are given without proof,.some qf thfem lil'or
their intrinsic interest and some for their usefulness in proving urther

theorems.
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A1) eX1=a , aC1l (ByDiD)
A2) aXa=a , aCa (ByDiD)

13) a+0=2a

4) a+b=b+a

15) a+a=a

16) aX0=0 , 0Ca
A7) a+1=1

(18) a4+ ab =a
19) a(a+b)=a , aCa+bd

(20) ab Ca
(2), a for b, b for c] (@ Xa)p =a X (aXDb) i
(2), afor c] (aXbla=aX (bXa) ii
(] (@ Xbla=2aX (aXb) ii
(12)] (@Xa)Xb=aXbd iv
R2, i, iii, iv] aXb=aX(aXDb) v
(1), v, D£.D abCa

(21) a4+ (b Xc) = (@a+b) X (a+c)
22) aX b4+c)=(aXb)+ (aXec)

(23) @ = ab + ab _
(11), b + b for 1, by (10)] a=aX ((®+b)
i, (22), b for c] a=ab -+ ab

24) @+ b)X (a+b)=a

3),5ford] (@Xb) X @xb)=a .
i, Df.A] @+8) X @+b)=a i

The following illustrate the use of R4. An antecedent used ag g hypothesis
is indicated by “Hyp”’.

25) a=b.D.ac=0bc
(1), b for a, ¢ for b] bec = cb i
Hyp] ac = cb i
R4, ii, (1)] ea=b.D.ac=be

When a substitution of one expression for another is made because an
equivalence between them is assumed, the result B is not a theorem about
classes but something truc only hypothctically. But provided B can be
deduced from valid formulas in which substitution has been made in ac-
cordance with assumption A, R4 allows A D B to be asserted as a theorem.
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20)b=a.D.a=0b
(22), Hypl a
(M), ()]
(13), (14)]
(23), b for a, a for b]
Hyp]
M1
(13), ba for a]
(1)]
i, ii, R2]
R4]

@27) aCb.bCa-D.a=b
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Hyp, by Df.D] aXb=a.bXa=b
1] aXb=a.aXb=2»
R2] a=

R4] aCb.bCa.D.a=b

The next proof illustrates the use of R3.

@28) aCa.D.a=1
Hyp, Df.D]
Q)

(26), 0 for 0]

[
S |
Il
[3]]

s

U
8
Il
ol

iii
iv
iv, (8)]
v, R4]

A8 o0oN
i
Q = ol

N
V)

8
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EXERCISES

1. Rewrite the following statements with the help of “="" and “0”, “="" and “1”, “¢”
8‘l]d l‘D’l, ﬂ.ﬂd llC”, (l_’l, ﬁ.ﬂd “N”:

No philanthropists are chauvinists

All patriots are single-minded

Some pessimists arc not hypochondriacs
Only odd numbers greater than 2 are prime
All and only elephants have trunks

There is a real root of z2 = 4.

2. Show informally that the following formulas are valid, and check by diagrams
whenever possible.

M aCa+b+e
) abCb

)G +bc=ab+ec)
4) abe C b
GybCa , abCh
6) a C ab
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7 aCl1

8)0Ca

9) ab(bc + d) = abd

(10) G + bed = (@ + b)(@ + c)(@ +d)

(11) a + bc +de +¢ + (@a+ba+ec)=1

(12) ab + o) +c+d+ef +ab+e +ac=1

(13) abac + ¢ +de +a(d +¢) =1

(14) ab +c+3d) +bd +abed +ab+d=a+b+d

(15) ab +cd +ab+dc+a=a

3. Apply the antilogistic test to the following and confirm by diagrams.

(a) All professors are nearsighted. All nearsighted people are timid. Hence all
professors are timid.

(b) No vegetarians are boisterous. No refined people are boisterous. Therefore
no refined people are vegetarians.

(¢) No ballerina is a clown. Some clowns are not agile.
are agile.

(d) All gazelles are graceful. Some graceful creatures are swift.
gazelles are swift.

(e) All college students adore logic and all who adore logic are not fickle. Hence
no college student is fickle.

(f) Some camels are not longlived. All dromedaries are camels.
animals that are not longlived are dromedaries.

(g) No buttercup has an odor. Some buttercups are Easter-egg yellow. Hence
some things which have an odor are not Easter-egg yellow.

(h) All horticulturists love dirt. Some lovers of dirt are not generous,

Hence some ballerinas

Hence some

Hence some

. ; He
some horticulturists are generous. nee

(i) All taxidermists are pessimists. All pessimists hate animals. Hence some
taxidermists hate animals.

4. (a) Prove (5), @ = a, using (26) and (11). HINT: put @ X 1 for b in (26).
(b) Prove (18), @ + ab = a, using (22), (17), (11). HINT: put1for b, b forcip (22).
(¢) Prove (19), a X (a + b) = a. wminT: Use (18), (15).

(d) ProveaC c.D abCac. Use (2).

() ProveaCb.cCd.D.acCbd. Use (1), (2).

(f) Proveab =0.D.ab = a. Use (23).

(&) Proveab =a.D.ab =0. Use (25), (2).

(b) Prove 1 = (a + a)(b + b). Use (10), (23).

(i) Prove (@ + b)(c + d) = (ac + bc) + (ad + bd). Use (22), (21).
(G) Provea = a + ab + ac + ad. Use (18).
(k)ab=0.a=0.D.ab=0. Use (23).



|

i s o

L 4 i s




I o




	2025_05_21_10_51_00_001
	2025_05_21_10_51_00_002
	2025_05_21_10_51_00_003
	2025_05_21_10_51_00_004
	2025_05_21_10_51_00_005
	2025_05_21_10_51_00_006
	2025_05_21_10_51_00_007
	2025_05_21_10_51_00_008
	2025_05_21_10_51_00_009
	2025_05_21_10_51_00_010
	2025_05_21_10_51_00_011
	2025_05_21_10_51_00_012
	2025_05_21_10_51_00_013
	2025_05_21_10_51_00_014
	2025_05_21_10_51_00_015
	2025_05_21_10_51_00_016
	2025_05_21_10_51_00_017
	2025_05_21_10_51_00_018
	2025_05_21_10_51_00_019
	2025_05_21_10_51_00_020
	2025_05_21_10_51_00_021
	2025_05_21_10_51_00_022
	2025_05_21_10_51_00_023
	2025_05_21_10_51_00_024
	2025_05_21_10_51_00_025
	2025_05_21_10_51_00_026
	2025_05_21_10_51_00_027
	2025_05_21_10_51_00_028
	2025_05_21_10_51_00_029
	2025_05_21_10_51_00_030
	2025_05_21_10_51_00_031
	2025_05_21_10_51_00_032
	2025_05_21_10_51_00_033
	2025_05_21_10_51_00_034
	2025_05_21_10_51_00_035
	2025_05_21_10_51_00_036
	2025_05_21_10_51_00_037
	2025_05_21_10_51_00_038
	2025_05_21_10_51_00_039
	2025_05_21_10_51_00_040
	2025_05_21_10_51_00_041
	2025_05_21_10_51_00_042
	2025_05_21_10_51_00_043
	2025_05_21_10_51_00_044
	2025_05_21_10_51_00_045
	2025_05_21_10_51_00_046
	2025_05_21_10_51_00_047
	2025_05_21_10_51_01_001
	2025_05_21_10_51_01_002
	2025_05_21_10_51_01_003
	2025_05_21_10_51_01_004
	2025_05_21_10_51_01_005
	2025_05_21_10_51_01_006
	2025_05_21_10_51_01_007
	2025_05_21_10_51_01_008
	2025_05_21_10_51_01_009
	2025_05_21_10_51_01_010
	2025_05_21_10_51_01_011
	2025_05_21_10_51_01_012
	2025_05_21_10_51_01_013
	2025_05_21_10_51_01_014
	2025_05_21_10_51_01_015
	2025_05_21_10_51_01_016
	2025_05_21_10_51_01_017
	2025_05_21_10_51_01_018
	2025_05_21_10_51_01_021
	2025_05_21_10_51_01_022
	2025_05_21_10_51_01_023
	2025_05_21_10_51_01_024
	2025_05_21_10_51_01_025
	2025_05_21_10_51_01_026 - Copy
	2025_05_21_10_51_01_026
	2025_05_21_10_51_01_027
	2025_05_21_10_51_01_028
	2025_05_21_10_51_01_031
	2025_05_21_10_51_01_032
	2025_05_21_10_51_01_033
	2025_05_21_10_51_01_034
	2025_05_21_10_51_01_035
	2025_05_21_10_51_01_036
	2025_05_21_10_51_01_039 - Copy
	2025_05_21_10_51_01_039
	2025_05_21_10_51_01_040 - Copy
	2025_05_21_10_51_01_040
	2025_05_21_10_51_01_041
	2025_05_21_10_51_01_042
	2025_05_21_10_51_01_043
	2025_05_21_10_51_01_044
	2025_05_21_10_51_01_045
	2025_05_21_10_51_01_046
	2025_05_21_10_51_01_047
	2025_05_21_10_51_01_048
	2025_05_21_10_51_01_049

