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1. Definitions and summary.

L.1. Let B = A[z] be the ring of polynomials over a ring A. If p, ¢ ¢ R, then
P oqe X, where (p o q) (x) = p(e(x)). The composition operation, denoted
by o, has these properties:

n (f+@oh=foh+ goh
(2 (fg)y oh = (foh)goh) f, 9. he i)
3 fo(goh) == (_]Oyloh

We use this fuct as the point of departure for defining vn abstract algebraic
structure with three binary operations:

DerINITION, R is a composition ring if it is 1 commutative ring, not necessarily
with 1, and a binary operation o is defined in 2 satisfying axioms C1, C2, and C3.
If 12 contains an identity for the operation o, we shall denote it by 1.

DrrINtTioN. cisaconstantif ¢ o f = ¢forall fe ¢, If N is any subset of I,
the set of all constants in N is called the foundation of N, and is denoted by
Found V. '

A composition ring is cssentially the same as the “tri-operational algebra’
treated by Menger, Mannos, et al.  However, they used a different ndtation— -
and slightly different axioms. Menger assumed for his tri-operational algebra
that it contains an identity [, that 7 # 1, and that 1 is a constant. He also
tacitly assumed that the algebra was an integral domain. Mannos dispensed
with these restrictive assumptions, and also climinated the assumption that the
ring was commutative and with unity clement, to obtain what he called a 7-0
algebra. A composition ring with identity and in which 1 is a constant he called

a 7*-0 algebra.

1.2. Examples of composition rings.

1. R is any commutative ring, and o is defined by r o s
In this case we shall call 22 a null composition ring.

2. J¢ is any commutative ring, and cis defined by r ¢ s = r for all 7, s ¢ .
Then the foundation of R is /2. In this case we shall call R a constant composi-
tion ring. A composition ring is called triial if it is constant or null.

3. Let K be a commutative ring. Let R = K* (the ring of all functions

Oforall r, se 2.
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608 IRVING ADLER

K — K). Define o ay composition of functions. Then R is a composition ring
with foundution identified with K in the obvious way-.

4. 1ot K be a commutative ring with 1. Let ® = K[z] {ring of polynomials
over K. Define > as composition of polynomials. Then R is & composition
ring with foundarion K, and with identity clement z.

5. 1ot It be the ring of continuous real-valued functions on the real line,
with composition defined as in 3.

6. Lat I be the ring of ('~ real-valued functions on the real Ine, with compo-
sition defined as in 3.

7. lat K¢ b the ring of entire analytic functions, with composition defined
asin 3.

8. lat £ be any Boolean ring. Define by r o8 =rs.

1.2, Summary.  What fcllows is divided into four sections. §2 presents some
elementary properties of composition rings. §:3 begins \\:lt!l the question, “*Can
cvery nhot-zero  commmitative ring be given o l.l()ll-il"l\'l:ll m'nm]msilion ring
\”.”".,,,r,.ﬂ"' The question is answered in ll'm affirmative. . We first detine o
speeeil kind of composition ring structure which _“"' call ""’"'""”:I"’”C- We show
Jon-ZeTo commutative ring can be given i non-trivial automorph;ie
We identify o elss of rings which can have ol
Some properties of :mtmnnl‘phfv

*that everva
composition ring structure.
an-omorphic composition ring struetures.
atrnetuges are explored N . o

In $1 we examine stmple compaosition rings \\lm.'s'v. fmuulu}mu S given field

\\"c- find that they are dlisonorphic to (:mn]msnm'ln.suy-r.m,_r.s of K% Among

k ot special set of partition rings. 1f 1\‘ 15 h“”,._.:\“ find thas the
partition rings aceount for all ':",' "".llll""'!"’ll Sl,lml‘mlls of K, .\"'hm-e K is
infinite, we introduce @ l‘npnlug’\' in .l\' , .:nul ‘\.h‘;“ that & composition subring
of K5 is a partition riny if :un! fml;.' .If it 1? 1'Iu.:u - N

In § we deal with composition ‘nng v.\tvn.smn:s.t N 1 ;.. ¢ n “"h”mnlogy
. ‘., of ‘.‘,,,.l,‘,,nin.n l‘ill].', vxh-nsmnf» :lll:llng()ll.\ o the co l.(ml()lhgy u"-‘Ol'i(-s
theor) ) dons  of  Eroups, associntive  algebras,  and o Lie algebras, It
for ('\v“;'l-\;‘:li:f.' Q -0isan extension of Q by .V, we require that thepe be an

'0 ai :\'('—l;l:ll‘)l)illl! aw: () —» R such that fu = identity. l“()r..vu?h such mapping we
addity . fu‘nvii()"-*' ¢ and ¢, that measure the deviation of {he Mapping

o The main result is that the set of all equivalenee Cl:m.\‘o%;

e-to-one correspondence with the set of 4 Cquiv;l‘_

K.

thest We pie

introduce
from simple bhehavior. T
of extensions of Q by N isinon
lence classes of pairs (¢, ¥)-

rties.
2. Elementary prope _ o . o )
o 1. Unless K is explicitly defined, it is assumed that B is a compositjo, ring

ith foundation I. A composilion subring of IZ 18 defined as o subring that o
with ¢

, sition. )
closed uncer SO i immediately from the axioms: g , 5
The following conclusions follow 1 hon f ¢ K if and only if fto 8'2

- KforalljeR. 1f[e R,.t i
i]ftll\' It:‘ ca\énof : K if and only if it.-rc exists ¢ € K such that ¢ ig p,
€ ’

If

Otr a mro






COMPOSITION RINGS 609

divisor. K is a composition subring of R. If R is a composition subring of a

composition ring R’ having foundation K’, then K C K’. Ior fixedr, p ¢ R,

ifros = pforallse R, then pe K.
2.2. The composition ring structure of a composition ring is determined by a

monoid of ring endomorphisms. This fact is expressed in the following proposi-

tion:
Prorosirioxn 1. If R is a composition ring, and the functions ¢, : B — R
are defined by ¢,(x) = z oy for all x, y e B, then the family (¢,) .. has these proper-
ties: (1) each ¢, ts a ring endomorphism of R; (2) ¢e,cy = ¢u, Jor all r, y ¢ R.
Conversely, if IR is a commutatir ¢ ring, and (¢.)..r 18 a family of ring endomorphisms
of R satisfying condition (2), then if we definc o by z oy = ¢,(x), It is a composition

ring.
For a given composition ring 72, we shall call (¢,)..s the family of ¢ndomor-

phisms belonging to 2.
93 DEFINITION. Let 2 be o composition ring, and N be a subset of R,

N is ealled o composition ideal of R if the following three conditions are satistied:

(1) N is an ideal of /2.
(I2) noreNforallne Nand re I
(13) Ifr, s telk, and r — se N, thentor —toselV.
DerFINITION. A composition ring R is simple if it does not have o composition
ideal different from (0) and /2, and I¢ > (0).

If 72 and R’ are composition rings, a mapping [ : I — I’ is 4

DEFINITION.
homomorphism if f(r + 8) = J(r) + f(s), f(rs) = [(P)f(s), and f(r os) = [(r) o f(s),

for all r, s € I?. . N

If \ is n composition ideal in /2, we can (lcfmc.u. composition ring structure for
a natural way. The expected propositions relating homomorphisms,
Is, and quotients arce casily cstablished. If ¢ : & — R’ ig 4
hism of composition rings with kernel .V, and if K’ is the

Ie/N in
composition idea
surjective homomorp ]
;uu‘:ldution of i/, theng™ '(R') = N + K. .

It is possible to define cartesian product and direct sum of composition rings,
‘They are related in thc usual way. -

92.4. DEFINITION. Iet R be a composition I:ing wmf foundation K. Let ¢
he any ideal in K. letre R Wesay risa r.cszdual clement modulo ¢
if r o K C C. We denote by Re the set of all residual clements modulo (',

We find that Rc is an ideal in 2 -a.nd satisfies I12. In fact, R is the largest
ideal of R satisfying I2 and the condition B¢ N K =’C. We find, too, that if &
js a composition ideal in R, and C = N M K, then C is an ideal in
A ’I:'u(l;liivuiiiiil ideal in K, under whu.t conditions does there ex.ist, a compqsi_
tion ideal of R that has C as its foundation? The answer takes this ff,-m; Thére
exists 4 composition ideal in R with foundation C if and only if @ = b mod C
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fora,be K imphiesr 0a ® r obmod Cforall 7 ¢ R. If there exists a o

)deulﬁw(mﬁwc.thcnﬂmhsbxgestone,viz.kc.andamanutom.

ixfnxmuht.&iad“yllmpodﬁonidoal. Note that Ry = R if and only
- Q.

Darinition. We call an element n of R such thatn o R = 0 a nullifier of R,
and denote the set of all nullifiers of R by N, . We find that N, is a composition
idealin R. If N = Oandr, 08 =r,0sforallseR, thenr, = ¢, . In par-
ticular, ifrog = pforallse R, thenr = pe K.

If the mapping 7 : B — R” is defined by 7'(r) = /. , where f,(s) = r o 4 for
all ¢ ¢ R, then T is a homomorphism with kernel N, .

If the mapping V : B — K” is defined by V(r) = ¢g. , where g,(0) = r o ¢ for
all 0 ¢ K, then V is a homomorphism with kernel R, .

If C is an ideal in KX, and (C) is the ideal in R generated by C, then KN(C) =(.

2.5. DeriniTION. A composition ring which is a field is called a composition

JSield.
* PuorositioN 2. Let R be a composition ficld with foundation K. If K {0},

then B = K.

Proof. K » {0} implies that l.c {{. 0 e K. Define ¢, : R — K by
@o(r) = roOforallreR. ¢ isa surjective K-m?g homc.omorphism which is not
0 (since K » {0}) and therefore is an isomorphism. Since ¢o(c) = ¢ (o ¢ K),

we see that R = K.

CororLLArRY 1. Let R be a oompocthon rma with constant unity element and
Joundation K. Let N bea oomposition ideal in R. LetC = N N K. Then N is
a mazximal ideal ifand only if 1) R = N + K, 2) N = RC-and3)Cixamaximaz

tdeal in K.
Ary 2. Let 1 e K and N be a composition ideal of R which is a maus:.

. !mzc?no;:en the following conditions are cquiuale_nt: 1) K is a field; 2) N :“;;ul
3)C = 0;4) R = N @ K (direct sum of composition subrings). ’

Some other related results arc: If R is an integral domain, then 1 o Y= 0or
1forallyeR. IfR contains an ident%ty I, and if K is an infinite field, then 7 ig
transcendental over K. (If K is a finite ficld, / may be algebraic over K. For
example, if B = K™, and ¢ denotes the number of elements of K, then 7 is a
rootof z* — z = 0.) There is one and only one wmp?giﬁon field that contas
an identity element; it is the prime field of characteristic 2, with compositimson

by a o b = ab. )
deiiz:ngeacompoeitionidealinR, and suppose that 1 ¢ K. If N is 8 maximg]
jdeal, then R does not contain an identity: o
IfR===1\,'+K,withNaoompoaitionldealmR.andNﬂKco'tbeml)
N..-.'R.;2)forr.l.tcR,ifrOilndroth.t.henro.=roL Conye .

ifros rote Kimpliesros = rot,then R = R, P K.






COMPOSBITION RINGS 611

3. Automorphic composition rings.

3.1. Can every non-zero commutative ring be given & non-trivi ses

ing structure? We find that it can, generalgly inglmany w:;;nv‘al mmm?
‘be automorphisms of the ring to produce such structures. e use o
. Let R be a commutative ring. The endomorphisms of R form a monoid rela-
-ave to the operation of composition, and the invertible elements of this monoid
-hat is the automorphisms of R, form a group Aut R. Consider any subgroux;
2 of Aut R. @ induces a partition of R into orbits; for any y ¢ R the orbit of y
s the set P, = {¢(y) : ¢ £ Q). Of course, if z ¢ P, then P, = P, ; also ’, = {0}.
An orbit s is said to be principal if, whenever z ¢ P, ¢ ¢ 2, ¢ 5= Id, then *(x) == z,
vhat is, if for every z ¢ P the mapping @ — P carrying each ¢ ¢ Q into ¢(z) is a
oijection. When 2 is the group {/d}, then every orbit is principal.

3.2 DeFINITION. A composition ring is said to be automorphio if every non-
zero endomorphism ¢, belonging to R (see 2.2) is a ring automorphism.

The following proposition is casily established with the help of the facts noted
in 3.1.

THeoreMm 1. Let (¢4)..r be the family of endomorphisms belonging to a non-
trivial automorphic composition ring R, and let Q denote the set of all ¢, with y ¢ R
and ¢, = 0. Then @ is a group, and there exists a nonempty set U of principal
orbits, with {0} ¢ U, such that ¢, ¢ Q whencver y e Up.v P_and ¢, = 0 whenever
7 ¢ \Up.v 17; for cach I’ € U there exists a unique clement ar ¢ I’ such that ¢, (ap) = y
for every y e I’. . ) )

Conversely, let B be any commutative ring, .Q be a group of automorphisms of R,
U be any nonempty set of principal orbits with {0} ¢, and (for each P e V) ap
be an element of P. For each y & R define the mapping ¢, : & — R as follows: if y
's an element of an orbit P € U then ¢, 1s the .Cleﬂlen‘ Of: Q which carries a, into
;i Yy Ur.ww P then ¢, = 0. Then (qs,),',..,, 18 the family of endomorphisms be-
onging to a non-trivial automorphic composition ring. o

Thus, for a given commutative ring 72, the set of all non-trivial automorphic
omposition ring structures is in onec-to-one corrfespondencc with the set of
riples (2, U, (a,) rev) described above. (We can mch.xde the two trivial com-
Josition ring structurcs in this correspondpnce by allowing @ and U to be empty
aull composition ring) and by taking 9.= { {d } and U to be the sct of all sets
z} with z e R (constant composition ring); in the null composition ring case
'js not a group.) For any such structure, we shall call @ = (ap)p.v the base of

Je structure, and ap the base point of P.
DEeFINITION. A commutative ring is an aulomorphic ring if each of its non-

ro endomorphisms is an automorphism.
It is clear that the only composition ring structures an automorphic ring may

,ve are those of an automorphic composition ring.
Ezamples of automorphic rings: 1) The ring Z of rational integers; 2) The

.1d R of real numbers; 3) Z/p", where p is a prime, 7 a positive integer; 4) Any
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absolutely algebraic ficld (algebraic over a prime field ; 5 i
closed ficld of finite tranacendence degree ove‘:' a prime ﬁ)eld.) A2y algebraically
If R is the finite field F,. of characteristic p with P" clements, we can count all
possible composition ring structures on R as follows: Let a ¢ R be a primitive
(P. - l)th mtof 1. R = ’01 a, a’o Tt 'a’--l = l,’ Iﬂt¢:R—’R bedeﬁned
by £ — z”. Thc group of automorphisms of R is Aut R = {Id, ¢, 4° ... ¢'}.

For every »'n, there exists one and only one subgroup 2, of Aut R with order »
2. = Aut R; @, = Id. These composition ring structures

and generator ¢v°.

are possible: 1) The null structure obtained by taking ¢, = Oforally e R; 2) The
constant structurc obtained by taking ¢, = Id for all y ¢ R; 3) Non-trivial
structurcs using ‘U = a subset of the sct of principal orbits under @, . They are
in one-to-one correspondence with the non-empty subsets of R — {0}. Hence
their number is 27" — 1; 4) Non-trivial structures using U = a subset of the
sct of principal orbits under 2, , {or ecach » > 1. The number of such structures

for fixed o is

5_", (‘;), = (1 4+ —1

A r=1

where b, is the number of principal orbits under 2, (or, what is the same thing,
is the number of irreducible polynomials in F,...[z] of degree » and with highest

cocflicient 1) and is given by
y”' = pu - Epn/'. + Z p-/'.v. -

vl .7l
v, <wWgy

where x, , ¥, - -+ TUN through the distinct prime divisors of ». Therefore the
total numbeér of composition ring structures on the finite field of characteristic

p with p° clements is
14277+ [+ — 1.

rin
»>)

3.3. Let R be an automorphic ring with 1 whose only automorphism is the
n, applying the method of 3.2, we find that all possible composition
for R can be constructed with the aid of subsets of R as follows:

bset of R such that if S ¢ I then0¢ S. Let Fs be the character-
This applies, for example, to z,

identity. The

ring structures
S be any su

Lot > §S. Definez oy = zFs(y).

istic function o i 2
tl,;e prime fields, R, and the rings Z/(p").
where m is not a power of a prime, are not automorphic.

The rings Z/(m)v o o
The possibilitics of .con}poaltxon ring structure are completely described by the
following result, which is easy to prove.

ProposiTioN 3. Let R be a commutative ring with 1, and let (d,),.x be a family
of idempotent elements of R such that d.,, = d.d,; then the formulc z oy = zq,
defines a composition ring structure on K. !I R = Z/(m), where m s any inleger,
then every composition ring structure on R is defined in this way.
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In Z/(6), for example, we can take do =0,d, = 3,d, = 0,dy = 3. d, = (
ds = 1; or we may takedo = 0,d, = 3,d, = 4,ds = 3,d, = 0, ds '3-‘then
are, of course, many other possibilitics. ’

We _Observe that if N is any ideal of the ring R we may define d, = 0 or 1
a..ccot:dmg as y ¢ N or y ¢ N, and in the resulting composition ring N is a composi-
_txon ideal. This composition ring is obviously automorphic, and is non-trivial
if N is different from (0) and R.

3.4. Tueorem 2. Let IR be a non-trivial automorphic composition ring with

composition given by (2, U, (@p)pev), and let f : R — R’ be a surjective composttion
Then R’ s also a non-trivial automorphic

ring homomorphism with R’ = {0]).
If composition in R’ is giren by (', V', (a@/.)p..v.) then:

composition ring.
(2) for cach y ¢ R, ¢, € 2 if and only if ¢,.,, € ¥'; (b) there s 2 vnique surjective

group homomorphism |, : @— Q' such that f,(¢,) = @,(,» whenever ye R and ¢, ¢ Q,
and Ker f, = ¢ |¢p e, ¢(x) — xeKerf(zeR)}; (c) V' = {f(F)| P eV}, and

aspy = f(ap) for each I’ € V.
Proof. 1)If¢, = 0, ye R, thenr oy = Oforallre R. Applying f, we find
that 0 = f(r o y) = f(&) 2 f(¥) = ¢/, (J(x)) = ¢, (R'), since | is a surjective
homomorphism. That is, if ¢, = 0, then¢,,, = 0. 2) Let &V be the kernel of f,
@€ Q r, yelt. By property I2 of composition ideals, if £ = y mod N, then
(. — y) e N, and consequently ¢(r) = ¢(y) mod N. 3) Suppose ¢, ¢ Q, y ¢ R,
and let 22 ¢ /2'. There exists z € I such that f(z) = 2’. There cxists r ¢ K such
that r oy = ¢,(xr) = 2. Then f(x) ~fup = f(z) = 2, 0r ¢, (f(r)) = 2’. Therce-
fore ¢..,, is surjective.  Suppose ¢, (r') &0 (8) where r', s € . Since
[ is surjective, there exist r, s € R such that v’ = f(r), s’ = f(s). Then f(r) of(y) =

Then ¢,(r) = ¢,(s) mod N. Applying ¢,

f(s) © f(y), or f(r oy) = J(s cu).

and the result of (2) above, we have r = s mod N, and r* = & ‘Therefore,

if @, € Q. @, is a ring automorphism. Then R’ is nutomorphie, and 1) is estab-
i y2edlt. Thenx oy, = x oy, forall » ¢ R,

lished. 1) Suppose ¢, = @, ! i phe ;
and f(x) o f(y)) = [(x) 2 [(y2)- Since f is surjective, this means that ¢,,.,(z’) =
Hence, if we define f, : Q—q

@S0 (X’) forallz’ e R, and therefore ¢,.,., = Driver .
by fo(®,) = &7 » Ju is well defined. It is easy to verify that f, is a surjective

group homomorphism, and that ¢ e @ is. in the kernel of f, if and only if ¢(x) =
zmod N (z ¢ B). The proof of (c¢) is dirccet.

4. Simple composition rings.

4.1. PnoposrtioN 3. Let K be a non-zero commutative ring with unity ele-
ment. Then (3) K*™ is a simple composition ring with constant unity el .
waving foundation K; (b) Every simple composition ring with constant unity
lement, having foundation K, 18 K:isomorphzo lo a composition subring of K*;
rc) A necessary and mﬂioient condition that every oompoajﬁon subrz'ng Of KX with
oundation K be simple 18 that K be a Sreld.

Proof. a) Let 8 = K~ It is obvious that S is a composition ring with
oundation K, and that 1 ¢ K. Suppose V is a composition ideal in S different
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from (0) and S. Then 1 ¢ N. KX is the foundation of S. I.et(,;be da-
ton of N. 1f C »# (0), there exists : pytya

& contradiction. Therefore K* is simple,
5) Let R be & simple composition ring with foundation K ang | t K. Then
¢K,10K = 1. Therefore

the composition ideal R, is either (0) or B. Since 1
1YR,, and R, # R. Therefore R, = (0), and V:R—»K'(deﬁnedin2.4)isu

K-monomorphism.
¢) Let X be a field, and suppoee R i8 a composition ring such that
KCRcCK*=S. IfNiaacompoaitionidealofR.thean‘\Kissnideal
in K, andso N N K = (0) or K. If NN K = K, then leN,and N = R.

UNNK < (0),then NCR,C S, = 0. Consequently R is simple.
where 7 is the identity element of

If K is not a field, let B = K1),
K* K Cc r c K* Itis easily verified that for every ide.al Cof K, (C)isa
not simple.

composition ideal of 2 with foundation C. Heuce R is
* 4.2, If W is any partition of K, that is, any disjoint set of nonempty subsets

of K whose union is K, then the functions f ¢ K* which are constant on each
clement of 1 obviously form a composition subring of'l'( hfWing _foundatxon
K; we denote this composition ring by T, . By a partition ring (with found{s-
tion K) we shall mean any composition ring Tw with W a partition of K. It is
obvious that if 1’ is & refincment of a partition W of K then Ty C Tw- and
conversely; in particular, 7;”:. 71 If is the smallest partition ring with founda-
i ~ .. = K" is the biggest, i ) .

“O&i&‘zzﬁ;’u;; ”lt Ai.:s any composition ring with K C R C (Iix‘, the rerltz;:,;:z
1(x) = {(y) {f e R) is an eauivalence £ ~ y on K, and f,hcrefo‘r;(f in 1}%}2 1;) pa,W(,R)
of K (the set of equivalence classes); we denote this partition o y .

Obviously R C T'wn - WR) of the et of al
P ROPOS . Let K be a finite field. The mapping R - W o set o

. noa:’tc:'i;”r::g: between K and K* into the sct of ‘_?-'1 Paﬂ’f’m of K, and the
;o;np];:.ng W — Ty in the opposite direction, are bijective and tnverse lo eack other.
cee, A

iti i ; d K*. Let A,
y ) be a composition ring between K an ) ,
be[]:oo/d'jstil:ctt flements of W(R), and sclect an a, e A, (1 < ¥ < n). For each
i ;é e1 there cxists an fi ¢ R with f,(a,) # f.(a;); then the function

g = H:-z fi — fa(ai))/n:uz (f:(a)) — ].(a.:)) is in R and

gi(a) = {l G=1,
0 (1.

Similarly there exist functions g; ¢ R (2 < ¢ < n) such that

gia) = {l ¢ =2
0 (¢ » 3.
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For any f e TW(R) then f = E.‘." I(a‘)g( e Rv 80 t'hat T'(.) = R' Thl.l.s the
mapping B — W (R) followed by the mapping W — Ty is the identity mapping
of the set of composition rings between K and K*. As the composite in the
opposite order is obviously the identity mapping of the set of partitions of X,
the result follows.

ProrositTion 5. Let K be any commutative ring with unity element. For eagh
element ¢ of the group of composition ring automorph.isms of K* the restriotion
%o of ¢ to K 1s an clement of the group of ring aulomorphisnis of K, atzd the ma ing
¢ — ¢o 18 an isomorphism of the former group onto the Iatter IfR 43 any compog;..
tion ring with K C I C K", then every composition ring monomorphism of R tnto
K* i3 the restriction of a unique composition ring automorphism of K*,

Proof. 1t is clear that the mapping ¢ — ¢, is a homor}lofphism. It is gyr.
jective because for any ring automorphism F of K_ lthcre 13 a coznpodtion ring
automorphism ¢ of K* defined by ¢(f) = F o f o F™" for all f ‘,K »and ¢y = F.
It is casily shown that if ¢ is a composition ring monomorphism of R into g«

such that  restricted to K coincides with ¢, , then ¢ = ¢ restricted to R, Hence
@ — ¢ 15 one-to-one.

Prorosiriox 6. If K is a finite ficld, then fhc number 0$~18mbzrrphz’sm clagseg
of simple composition rings with foundation K 1s cq,zllal to om't?:’:n er of Partition
of K, and the number of isomorphism classes of suc. comaprtitiuns 'Z?igs 18 equal ¢,
the number of cquivalence classes of partitions of K, t“”:’. pn of K NG equivalen,
if one of them is carricd into the other by an automorpis? )

: ; e cedin -
Proof. This is an immediate consequence of th(‘;'s{)i':ct olefn Pl‘opf)smons.
The number of partitions I’, of a finite set of n di -icments jg casily
computed from the well-known recursion formula

P"” = i (7:-)1’. , Po = 1.

For the finite ficlds with 2. 3, 4, 5, 7 or 8 elements respectively we have p 2,
P, = 5, Py = 15, P’ = 52, Py = 877, Py = 4,110. hism of

sIf Kisa ﬁnit,c'primc field with characteristic p, m'ﬁf;’;ﬁ and (;hmmple com.
position rings with foundation K reduces :.otoK;)lsomfi;PK‘ o it (;i nll:lmber of
; hism classes of such rings is equa > . eld wigy,
32::2:3:5 l:'hc:e n is not prime, then the number of isomorphism clyg, n

%S of syc},
rings is less than P, . Yor cxamp

le, if K is the field with 4 .el'emem,s' whi|
P. — 15, the number of isomorphism classes of simple compositiop Ting, lle
4 - \d

S With

foundation K is 11. o . } - .
04,3. We have seen that if K i8 a finite field, every composition subf'lng

containing k is a partition rmg This property distingumh}}sgnite ﬁcldg fr
other non-zero commutative rings with unity element. Indeed, jf g . y
field, 80 that K contains 8 non-zero element a which has no TeCiprogg) O

we let W be some partition of K into two sets J, J', and if £, " denote the ;::::d if
Tac.
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teristic functions of J, J’ respectively, then K + Kaf + Kaf’ is easily seen
o . h » a, 1

besa ¢:'0t.npos;unon subring of K* which is not a partition ring. (;nl:he ot.!-:'er ham;o
if K is infinite, the set of all functions f ¢ K* with finite range is a oomposit.ior;
subring of K* which is not a partition ring.

To generalize Proposition 4 to infinite fields we introdu x

¢ s ce a i

Let F be the st of all finite subsets of K. For any A ¢ F, o opology WK -
O,,= e K" f|A = gL. Leto = {O,,:AeF,ge K*}. The.n.og" o
l)f\:l: for a topology on K*. The topology is Hausdorff, and with tln;s an open
K lbecnmos. a topological composition ring. (That is, addition mmﬁpt:i)g::;:,?
and composition are all continuous i ‘e « : ’
e b opcrations.) We denote the ciosure of any

THREOREM 3. Lot K be a field. Then (a) for every partition W - .
ring T w taclosed; (b) if It 18 any compostition ring between K and K:{hlznu;’g P‘;'ﬂmon
=L wm -

Proo). w)1fgeTw,thereexistsaset JelWanda,bed su
. h , ch t}

Iat A - la, b}, and let he K* be defined by h(a) = g(a), h(b)m_—t g(? > 9(b)-
(A pisn neighborhood of g that does not meet Tw . 9(b). Then

b) lat 22 be given and let f € T'wry, . We must show that every nei ood
0., of f intercets R, that is, that for every finite subset A of (;?t::;ghlz;fs
f* ¢ It which coincides with fon A, Now, we may write 4 = A4, U e () :n
where each A, is a subset of o set B, « W(lR) and B, = B,l when 7 = j-'
It a, e 4, (1 < 7 < n. Just as in the proof of Proposition 4 we find jons
-, g. v I such that nd functions

1 (= D s C
g.ta) = {u (i = j). Setting [ = ?;.f(a')g‘

gy

we see that f7e I and f’ ~oincides with f on A.

5. Extensions.
5.1. We find it convenient to introduce a new operation that may be defined
in any composition ring:

I1«t R be a composition ring with foundation K. We define a

DEFINITION.
(r.s) —r* sasfollows:r* 8 =ro8 —r 0c0. The opera

binary operat ion in 7¢,
tion * has these properties:

(r+s)st =re+t+s=*t (r,s,teR);
c*s = 0, ce K,seR);
if N is a composition ideal in R, thenr * n e N, (reR,neN).

We state immediately the hypotheses and main result of this section:
Given: Two composition rings N, Q with NN = 0, N* N = 0, and two

operations of Q on N
1. (g, n) — an, 2. (q, n) —-nog, .
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sk,
blect to the following conditions:

; N is a @Q-module with respect to the first operation;
(n " " °0e=n0o0y, (n+n;) og=n, 09+n; 09, (noq)eg=no(q og),
‘1°":) og =m,0(n; 0q);
2. (gn) ° g2 = (¢ © ;)(n o o).

.nDErmrmo.\'. An extension of Q by N is an exact sequence of composition
€ homomorpbisms 0 — N -% R -4 Q — 0 such that

a g(n) = rgn), g o f(r)) = gln) or

'l%d 8uch that there exists an additive mapping u : Q — I for which f(u(q)) = q.
15 extension i8 equivalent to an extension 0 — N &5 R’ £, Q — 0 if there exists

Compgsition ring homomorphism h : R — R’ such that the diagram is commuta-

t“'e; h must then be an isomorphism. E(Q, N) denotes the sct of equivalence
Clasgeg of extensions of Q by N.

P
S

Derinimiox.  S(Q, N) is the set of all pairs (¢, ¥) such that:

& : Q> X N — N, ¢ is additive in the first argument,
¥ : Q° — N, ¢ is additive in each argument, ¥ is symmetric, and

(1) ¢gog, 0 ) — @, 009 .m20¢ +8(g, q,n))
+¢(¢1,0:,m) 0q, =0
(2) a¥(gs » 93) — ¥ (@G, g) + V(01 , @29) — ¢s¥(qr , @a) = O,
(3) (g oge(q:, a0 — (i, B 1) + (92 © ga)¥(q1 , g3 , M)
=¥(@,3)°06— ¥ °gq,qoq).

The pairs (& ¥), (¢', ¥') € S(Q, N) are equivalent if there exists an additive
mappingb: Q — N such that

@ &g, 02 ,n) = ¢'(qr, g2, + b(g2)) — b(g, © q2) + b(q) © ¢y ’
(5 'I:(QI ) Q2) = Vg, q) + q.b(q)) — b(g:q2) + g:-b(q).
S*(Q, N) denotes the set of cquivalence classes of S(Q, N).

THEOREM 4. I]O—»N—'»R-in—v'OiaanammOIQ.byNandufs
chosen as above, then y = u(@) © (g(n) + u(@:)) — v(@ © q:) 18 an element of
Ker f = Im g, and s0 18z = u(g)u(g) — u(q:2), 80 we may define (g , ¢: , n) =

4
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9~ ) and ¥(q1 , 93) = g (@) we then have (p,4) ¢ S 0. N Jfus -n differ-
ently, then (¢, ¥) 18 replaced by an equiralent pair. if ti.. . #ten muz:s,-::zxs;:;?gz;
equiralent one, then (&, ¥) 18 replased by anccpuivalent e This we hare a mapping
E(Q. N) — S*(Q., N).

Converseiy, if (6. ¥) ¢ S(Q. N) and if we set I? N X Q and Jdetine addition
multiplication, and compositiv:cin I¢ by the formulas i '

(6) n, ,q)+ (ny, q:) = iny +F mooqn g
M (ny,q)ns,q2) = s+ neq + ¥lg, g quqn),
8 n, , ) ona, qs) ~ (nyoq, + ¢lqy . qz ,m), q, o q,),

then R is a composition ring; and if we definc g : N — I, and f :

[ormulan g(n) = (m, 0), f(n, q) = q, then0 — N % R L. Q— 0{8 aljt ;leQn'C?gﬂU;;

Q by N; if (. ¥) is replaced by an equivalent pair in S(Q, N), then this ertension 18

replaced by an cquivalent extension. Thus we have a mapping S*(Q, N) — E(Q, N)
These mappings E(@. N) — $*(Q. N) and 5%(Q, N) — E(Q, N) are inverse

{q each other (and therefore are bijectire).

5.2. Proof. Supposec 0 — N 5 K L, Q — 0 is an extension
u : Q — R is chosen 80 that u is additive and f(u(q)) = q. To Si;;l?f)l’){h]ev;]g::i
tion, we shall identify g(N) with N. We can verify directly that ¢ is additive i
the first argument, ¢ is additive in each argument, and ¢ is symmetric. Eve v
r ¢ I has a unique representation in the form n +- u(g), (ne N, g ¢ Q). -¢ and?pr
are related to multiplication and composition in R as follows:

(n, + u(_([,.))(": + “('12)) = n,q: + naq, + ',’(ql ’ ‘1:) + u(qlq?).
(n, + u(qy) © (n, + u(qz)) = ny 0q: + (g, g2 ,n3) + u(qg, o q2).

9)
10

Since multiplication in R is associative,
[y + w(@)( + u(g) s + u(gx)) = (n + u(@))[(n2 + u(ga))(na + u(gy))].
Applying equation (9) re.pet.atedly, we find that ¢ satisfies equation (2). Since
composition in B is associative,
(s + (@) © (s + u(@aD] © (2 + u(g:)
= (n, + u(q)) o [(n2 + u(g2)) © (ny + u(q,))].
lyi uation (10) repeatedly we find that ¢ satisfies equation (1). Si

:o‘::p{:i?i:: in R is right distributive with respect to multiplication, o
[ + w(@)mz + u(@))] o (ns + u(gs)

= [, + u(gy) © (ns + u(g@)]i(s + u(gw) © (s + u(ga))].

Applying (9) and (10), we find that (¢, ¥) satisfice equation (3). Consequently

(¢, ¥) & (S(@. N).
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If v’ is another additive mapping Q — R such that f(u’(g)) = g, then u’ de-
termines a pair (¢',¥') e S(Q, N). Letr,,r,eR. Thenif g,=/(r,) and gs=f(rs),
wehaver, = n, + u(gq) = n} + u'(q)), and 13 = s + u(g:) = nj + u'(gs)-

uation (9) expresses r,r, in terms of u and ¥. A similar equation expresses
Tiry in terms of u' and ', Equnting the two expressions, and denoting
(u — w')(g) by b(g), we find that

¥ (0,9 = ¥(q , q) + qblgs) — b(q:g:) + g.b(q).

Equation (10) expresses r, o r, in terms of u and ¢. A similar equation cxpresses
T or, in terms of u’ and ¢’. Equating the two expressions, we find that

¢(QI y 72 y M) = ¢'(91 y Q2 , 0y + b(q:)) - b(QI °q) + b(‘l-) ©q:.

Therefore (¢, ¥) is equivalent to (¢’, ¢').

Supposc 0 — N & R’ s Q — 0 is another extension of Q by A cquivalent to
O-NSRLQ—O0. (Scethe figurc in 5.1.) Choose u’ as defined in 5.1, and
determine the pair (¢', ¥') as above. As before, we identify g(V) with A, and
¢'(N) with N. Thenh(n) = n, (ne N). Foreachn + u(g) e R, h(n + u(q)) =
n’ 4+ u'(q). Then from the fact that ¢ = f/A(n + u(q)) = f'(n’ + u’(q)) we find
that hu(q) — u’(q) = b(g) ¢ N where b is additive. Thenn’ = n + b(g). Equat-
ing hl(n, + u(q,))(na + u(gy))] with (n! + u'(q\))(n} + u’(qg.)), we find that ¢
and ¢’ satisfy (5). Equating h[(n, + u(q.)) o (na + u(¢2))] with (n] + u’(q.)) ©
(n’ + u'(¢:)) we find that ¢ and ¢’ satisfy (4). Thercfore (¢, ¢) is equivalent to
(¢, ¢"), and we have established that there is a mapping E(Q, N) — S*(Q, N).

Conversely if (¢, ¥) € S(Q, N), and if we set R = N X Q with addition, multi-
plication and composition defined by (6), (7), and (8), it is casily verified that R
is a composition ring. If we defineg : N — Rand f: R — Q by g(n) = (n, 0),
f(n, @) = @ then0 — N % R -4 Q — 0is an exact sequence satisfying the condi-
tions g(f(r)n) = rg(n), g(n o f(r)) = g(n) or. Moreover, if we defineu : Q — R
by ¢ — (0, q), then u is ndditivc.und l(u(q?) = q. o

If we replace (¢, ¥) by an equivalent pair (:p’, ¥v'), we .o.bt.um in the same way
an extension 0 = N > R’ £, Q — 0. There exists an additive mapping b :Q — N

(4) and (5). Define h : R — R’ by h(n, q) = (n + b(q), ¢). Then the

satisfyi . .
ﬁgumy‘il:;g 5.1 is commutative and h is a_homomorphism. Hence we have a

mapping S*(@. N) — E@, N). o .
" show that the mapping S*(Q, N) — E(Q, N) is the inverse of the mapping

E(Q, N) — S*(Q, N) we observe that y = 0,9 © ((.ﬂ.. 0) + (0, ¢»)) —(0,g: ©g5)
and z = (0, ¢.)(0, ¢s) — (0. @:g5). (Sce the definitions of y and zin 5.1.) It
follows &t once that g™'(y) = ¢, and g7'(2) = ¥, and. the composite mapping
5%(Q, N) — E(Q, N) — S*(Q, N) is the identity mapping. On the other hand,
if for & given extension we take ¢ = ¢~'(y) and ¥ = g” (2), and then, as above,
construct the extension using N X Q and operations deﬁned by (6), (7) and (8),
then the mapping A : n + u(g) — (n, ¢) isan momorplmm Hen.ce the composite
mapping E(Q, N) — S*(Q, N) — E(Q, N) is the identity mapping.
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DeriNiTioN. An catension 0 - N -5 R -5 Q — 0 of Q by N is inessential
if there exists a composition ring homomorphism u : Q — R such that fu =
identity.

If an incssential extension 0 — N % R -4 Q — 0 is equivalent to an extension
0 — N = R’ 2% Q —+ 0 (with the commutative figure of 5.1), then Au : Q — R’
is a bomomorphism and j'(hu) = identity. Hence all extensions equivalent
to an inesscntial extension are inessential.

Suppose an element P of S*(Q, N) determines incssential extensions. Choose
any (¢, ¥) ¢ P, and construct the extension 0 — N -2 R -4 Q — O as described in
5.1. Then it is an incssential extension, and the homomorphism u : Q — R takes
the form u(g) = (b(g), q), where b is an additive mapping Q — N. From
(b(g1). 9)(b(g5), g3) — (b(q.95). 9:92) = (O, 0) and (b(q.), ¢.) o (b(g.), ¢.) —
(b(q. © 1), g1 ©g3) = (0, 0) we find that

(11) ¥(g: , @) + Gib(g:) — blqigl) + ¢.b(g,) = O,
and .
(lz) (g, 9, b(gs)) — b(q, o ¢q2) + b(q,) oq, = 0.

Conversely, if (¢, ¥) ¢ S(Q. N), and conditions (11) and (12) hold for some addi-
tive b : Q — N, and the extension 0 — N -% R -4 Q@ — 0 is constructed via the
formulas of 5.1, and u : Q — R is defined by u(¢) = (b(q), ¢), then u is a homo-

morphism and fu = identity.

PropositioN 7. (¢, ¥) € S(Q, N) determines an inessential extension of Q by
N if and only if ¢ and ¢ satisfy cquations (11) and (12) with some additive b : Q — V.

5.3. We call an extension of Q by N special if there cxists an additive mapping
u : Q — R such that f(u(¢)) = q and u (Found Q) C Found R. Wc call a pair
(¢, ¥) £t S(Q, N) special if ¢ ((Found Q) X Q@ X N) = 0. It is easily verified
that if an extension of Q b)" N is special nzlld a u with the properties listed above
is used to construct ¢ = g '(y)and y = g (2), then (o, 1#),18 special. Conversely,
if (6, W) € S(Q. N) is special, and an extension 0 — NSR - Q — 0is constructed
vin (6), (), (8) and the formulas for g and f in 5.1, then this extension is special.
If two extensions of Q by N are eqfuvnlcnt, and one of them is special, then so
is the other. Consequently there is a on.e-to-one cormpond-ence between the
subsct of S*(Q, N) whoee elements contain Qat least one special (43, ¥) and the
subset of E(Q, N) whose elements are the equivalence classes of special extensions

by N. .
of Q by 2, Q — 0 is a special extonsion of @ by N constructed via (6),

If0O— N>R C
(7), (8), and the formulas for gand fin 5.1, then. Found. R = (Found N, Found Q).
5;.4. The operation * in a composition ring is not, in general, left distributive

with respect to addition. This defect is partially remedied in a class of compo-
sition rings defined as follows:

DerniTion.  Let R be a composition ring, and N & composition ideal in R.
R is semi-distributive over Nif r+ (son — §°0) = r* (som) — r#* (s 00), and
re(m +n) = r*m+r‘n,forallr,s¢Randm,ncN.
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‘For the remainder of this section we modify the assumptions about Q and N
by imposing these additional requirements: There is a third operation of @
on N, (g, n) — g * n subject to these conditions: (¢, + @) *n =g, *n + ¢, * n,
*(i+n) =q*ni+g*n, (@oq)*n=q*(@*n),(q*n) og, =
1 * (nog,).

We also modify the definitions of 5.1 es follows: We require of an extension
of Q by N the additional property that g(f(r) * n) = r * g(n), and we require of
(#. ¥) ¢ S(Q, N) that ¢(g, 0, n) — ¢(g, 0, 0) = ¢ * n. With these modified as-
sumptions and definitions the theorem of 5.1 still holds. However, under these
conditions, an extension of Q by N is necessarily semi-distributive over g(N).

Der:nrrion. If N is a composition ideal in R, R is distributive over N if
rem438) =resn+ resforallr, se Rand n ¢ N. An exten-
g8ion0 — N % R 4 Q — 0 of Q by N is distributive over N if R is distributive
over g(N). .

We shall determine the conditions under which there exist extensions of Q
by N that are distributive over N, and we identify these extensions. We shall
show that the set of equivalence classes of such extensions is in one-to-one
correspondence with a certain cohomology group which we now define.

DeriniTioN. Let C'(Q, N) be the group of all functions f(g, , --- , q,) of
¢ variables in Q with values in N, additive with respect to each variable. Define
é by

(5/)(01 y "y qul) = ql/(ql y " q.u)

+ E (“l)'/(% y Ty Q@i "0 qlol) + (—l)“l/(ql y T, q‘)q“' .
(2]
$ is a homomorphism, and 8 = 0. Let Z{(Q, N) be the second group of sym.
metric cocycles mod 5. ) .
Let D'(Q, N) be the group of all functions (g, , --- , q.) of ¢ variables in Q
with values in N that are additive in ¢, . Define A by

N, - v ) =@ *f(g@a, giar)
+ i:(—l)‘/(lh y "3 @i O Qi "t ql;l) +(=D""fq, -+, q) © Qeay .

A is & homomorphism, and Aa = 0. Let W'(Q, N) be the second group of

cocycles mod A. _ , . )
Let S'(Q, N) be the set of pairs (F, ¥) e W'(Q, N) X Z,(Q, N) which satisfy

(13) V(g ,9) 009 — ¥(qoqs,q° gs)
= (g2 © @)F(q1 » g) — F(919: , @) + (@1 © @:)F(qa , @),

S’ is clearly a group. Let © = {(Ab, 8b) : be DY(Q, N)}.
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coisl pzlensicne of (G by N that ; :

s A Y are distridutive over N ¢

N of

. Turomzs: 5. %:i..-
| and only sf

(14) (g1 09920 — (qi9:) o n + (4, = P s hy - 0,
‘¢ ) g2, GreQ,neN).
I an amml ?/ Q' hy "“’,'h‘\""”{""“-"“" vler N, an cxtension of Q by N equesalent
lolse also distribiitive oter N'. flhere eries votecioncoinn oy oy N RS nre JakeT

’ ] ) : . ’ . ‘ .~ ERE NS W VR TR V0 FF I3 SN ANy L
tire over Io,' an clement ',“ of 8%Q, N) deterinsncs an re
extensions if and ondy if, jor eack (o, ¥) € £, o - Jt.
and (f’. ¥) e S(Q, N). Then (4b, 6?.1) eSO N for all b 2 P (Q K and the ass
0/ (qml'almtc classes of such cxtenstons ts 11 one-to-cne COHTCTPENAERTE TR zhs
group S°/0. Under this correspondence the inrssential ertensions (Rei are &t

butive over N') correspond to the zero of the group.
Proof. 1) Suppose 0 — N -5 ¢ < Q@ -+ 0 und 0 —s N 22 ¢ 25 § —» 8 apae

equivalont extensions of @ by N, with commutative figure ag in 5.0, snd & i

distributive over N. let h(r) = r', (s}  s’. Identify g(N) and g’(N') with N

Then #(n) = n for Wl n e . Since I is distributive over ¥,

(r.selt,nneN).

S Iy

wwalcace céave ef euss:
y ] -

(770 B Sy R

P

re(n+8=rcn+4+rcs—ro0,

Under k this cquation transforus to

ron+4s&1r=ron-4ros —r ol (r',s"e R’ , nelN),

which implies that /¢’ is distributive over N
2) We define n mapping d of the set of functions on Q X N with values in A

into iteell by
d(ﬁ(’/l y G2, 7‘).) = ¢(ql y - ;") - ¢(QI y G2, O) - q *n.
Oo—N1I -y Q -+ 0 is an cxtension of @ by N, with u : Q — R defined us
in51 and¢ = ¢ (), thendle, ¢2. 0) = g7 (u(q)) o u(gs) — u(gr °42))- 1If R is
distributive over N, it is easily verified that d¢ = 0. Conversely, if d¢ = 0,

equation (10) reduces to

(15) (n, + u(g,)} o (n; + u(g) =m 09+ (g, ¢, 0)
+ ¢, *ny + u(g, o qy).

Let r = n, + u(®), 8 = n, + u(gs), and m ¢ N. Using (15) we find
thatr* (m + 8) = r* m + r + &, and hence R is distributive over V.

3) Let (¢, ¥) ¢ S(Q, N) such that d¢ = 0. In equation (3) take n = 0. By
subtracting the resulting equation from equation (3) we find that Q and N must
satisly equation (14). If we identify g(NV) with N, ¢(g: , g2, 0) = u(g:) o u(g,) —
'lo(m o). If we write ¢°(qg, , ¢,) for ¢(g: , ¢ » 0) e D*(Q, N), and substitute
¢(q1 . 0:) + g *nforé(q, , g, , n) in equation (1) we find that A¢° = 0. Hence

N) and is symmetric. Moreover, y satisfies equation (2)

WO N). veC'Q,
which asserts that 8¢ = 0. Subetituting ¢°(q: . ¢:) + g, * n for ¢(g: , ¢» » %) in
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cquation (3), and applys
(&5, ¥) e S(Q. N). PPlying (14), we find that (¢° .
o nose @ and N , ¥) satisfies (13). Thus
’ tisf)
#lg 9™ = Flg satisiy (14). If (F, ¢) e &
14 is clear then that "o g;)v:;q. * n, then (¢, ¥) e S(Q, N), fg __fV 2)' ::(;l ch It
and the sct of elements (¢ ﬂo;e:gmnc correspondence between th’e set S'(g ;,)
5) We define an °‘l“iVa'len¢e rel(zgi N) for which dg = 0. .
~ o !
(¢'.' ‘l:;?l (s %z) (¢, ¥) ~ (@2, ;:)l:; fm(io']ﬂ”) 'by (@ . ¥i) ~ (2, ¥a) if
g:usﬁ d. Equation (5) asserts that ¢, — y, = :b y if equations (4) and (5) are
¢ — ¢ = 4b, where b e D'(Q, N). Since (6° , and cquation (4) asserts that
docs (Ab, 61&0 " °, ¥ and (¢9 , ¥,) satisfy (13), so
Suppow P10 1) € S'(Q' N). and .
ciated with a mapping u : Q g bfe{m,y clement of D'(Q, N). (#: . ¥) is
e the mappIng u’ & puir (4, , ¥u) ¢ S(Q o (s pen thee is associa
over, Y1 — ¥» = &b, and #° — @0 = Ab. It fc l‘;" (2, ¥3) ~ (¢7 . ¥1). More-
classes of extensions of @ by N that u;'e di -to .'owg thut the sct of equivalence
con.cgpondcncc with the group S’/o. stributive over N is in onc-to-one
5) Suppose (¢, ¥) determines an i
Equations (1 1) and (12) constit?tf "1‘5::)[1 of Q by A that is distributive over
the extension be inessential.  (11) has thcc;':r(::ry and sufficient condition thz
form o — A(—b). Hence the set of inessential v = .6(_b)' and (12) has tin
over NV corresponds to the zero of S'/e. extensions that are distributive
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