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1. Definitions and summary.

1.1. Let B = A[z] be the ring of polynomials over a ring A. If p, g ¢ R, then
p oqe R, where (p o q) (z) = p(e(2)). The compositicn operation, denoted
by o, has these properties:

cn (f+ g oh=foh+goh
(2 (fgy oh = (foh(goh) (f,g. hel0)
(3 fo(goh) = ({fog oh

We use this faet as the point of departure for defining #n abstract algebraic
structure with three binary operations:

DEFINITION. R is 2 composition ring if it is 1 commutative ring, not necessarily
with 1, and a binary operation ois defined in I satisfying axioms C1, C2, and C3.
If It contains an identity for the operation o, we shall denote it by 1.

DEFINITION. ¢ is o constant if ¢ of =cforall fel. If N is any subsct of I,
the st of ull constants in N is called the foundation of N, and is denoted by
Found N. '

A composition ring is essentially the same as the “tri-operational algebra’
treated by Menger, Mannos, et al. However, they used a different notwtion™ -
and slightly different axioms. Menger assumed for his tri-operational algebra
that it contains an identity 7, that I 5 1, and that 1 is a constant. He also
tacitly assumed that the algebra was an integral domain. Mannos dispensed
with these restrictive assumptions, and also climinated the assumption that the
ring was commutative and with unity clement, to obtain what he called & 7-0
algebra. A composition ring with identity and in which 1 is a constant he called
a 7"*-0 algebra.

1.2. Eramples of composition rings.

1. R is any commutative ring, and o is defined by r o5 = 0 forall r, s € k.
In this case we shall call R a null composition ring.

2. It is any commutative ring, and c is defined by r ¢ s = 7 for all r, s e It.
Then the foundation of R is K. In this case we shall call B a constant composi-
tion ring. A composition ring is called trivial if it is constant or null.

3. Let K be a commutative ring. Let R = K* (the ring of all functions
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608 IRVING ADLER

K — K). idefine o as composition of functions. Then R isa composition ring
with foundution identified with K in the obvious way.

4 1st K be o commutative ring with 1. Let R = Klz] (ring of polynomials
over K). Define 5 as composition of polynomials. Then /¢ is a composition
ring with foundarion K, and with identity clement z.

5. Iat K¢ e the ring of continuous real-valued functions on the real line,

with composition defined us in 3.

6. fat ¢ be the ring of (' real-valued functions on the real Line, with compo-
~ition defined as in 3.

7 lat It e the ring of entire analytic functions, with composition defined
as in 3.

8. Lot I be any Boolean ring. Define by ros =rs.

1.2, Summary.  What fcllows is divided into four sections. §2 presents some
elementary properties of composition rings. §3 begins \\:nt-h the question, **Can
every  non-zero commutative ring be given & 1.1()11-“'.1\'1:11 (-<'mlbnsilion ring
Srueture™ The question i3 answered in ll-u.- affirmative. We first detine o

<pecial Kind of composition ring structure which we call llult)m.ur.plnc_ We show
*1hat CVEPY BOn-zero commutative ring can he given 1 anr'l\'ml automorphie
. We identify o elass of rings which can have onlv

composition ring structure. : |
Fing structures.  Some propertes of automorphic

anomorphic composition
Strnetnres are eaplored

In §1 we examine simple compr . o e I
N. We find that they are Wl l\'l)l.l.nl'])‘?h" to ':‘"“l’“""“’_“.f“."l.lllgs of 1\; Among
thems Wee pick outn special set of partition rings. .”| I\. lhfl]lllnn_.)‘\.‘. ““‘d that, the
partition Fings aecount for all l!n.- (‘il‘ILl[)nhl!lull .\l'l n;ltn:a' of K, .\.\ here K is
intinite, we introdnee ‘_“l"'l"ﬂ.\' m ‘l\. , _i“"l -‘Ah'l'“ that s composition subring
of KN s u‘p:u'tiliuu ring, if :uu.l 4‘ml_‘.' .If it is t'lu:v( - W i

I § we deal with composition Hng v.\'tvnnmn:s. ‘( ‘lmlm ¢ n ""h"mnlngy

. ‘., of ,..,,nlx»ilin.n ring cxtensions analogous to the (:uh.unml«.gy theories
theor: i of groups, associative  algebras, and  Lic algebras, "
for “\..“.."S":“_:: O -0 is an extension of Q by N, we require that there be an
0- : :\. .. -’. ., ,i,', s () I such that fu = identity. l"ur.(-ue-h such mapping we
additive MAPPICE and ¢, that measure the deviation of the apping

i W tw inetions, @ )
introduce two fr R . " - s« that the set of all equivalene
from simple hehavier The main result is tha ivalence elasee

£ by A is in one-to-one correspondence with the set of al) cquiv

mition rings whose foundation is o given field

of oxtensions o s

lence classes of pairs (¢, ¥).

2. Elementary properties.

o 1. Unless 2 is explicitly dc!i{md, it h
wi:I.l foundation K. A composition subrir

los nder composition. . . | ' |
(l(:;{;:. ‘;-ollowing conclusions follow immediately from the axioms: 0 K 1t

/ hen f ¢ K if and only if
- K forall j e R. ]f!eR..t 100 =
gj}fcll\. ltfhcalinof:K if and only if il.-re exists ¢ € K such that ¢ is not, o rfo
4 ' ze

assumed that R is a composition ring
g of R is defined as a subring that ::
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divisor. K is a composition subring of 2. If R is a composition subring of a
composition ring R’ having foundation K’, then K C K’. For fixed r, p ¢ R,
ifros = pforall se R, then pe K.

2.2 The composition ring structure of a composition ring is determined by a
monoid of ring endomorphismas. This fact is expressed in the following proposi-

tion:
If R is a composition ring, and the functions ¢, : R — R
are defined by ¢,(x) = T oY for all z, y e B, then the family (¢,) .z has thesc proper-
ties: (1) cach ¢, is a ring endomorphism of It; (2) Pouiwy = Guby for all z, y ¢ R.

'ng, and (¢.)secr 18 G family of ring endomorphisms

Conversely, if I¢ is a commulatire vt
2), then if we define © byzoy = ¢,(r), Risa compostition

of R satisfying condition (2

ring.
IF'or a given composition ring 2, we shall call (¢,)..s the family of ¢ndomor-

phisms belonging to .

ProrosirioN 1.

Lot 12 be a composition ring, and N be a subset of R.

2.3, DEFINITION.
lowing three conditions are satisfied:

N\ is ealled a composition ideal of I if the fol

(I NVisan ideal of 10.

nore N forallnedN and r

(13) Ifr,s te r,oand r — se N,
DEFINITION. A composition ring I is simple if it does not have @ composition

ideal different from (0) and 2, and I = (0).

If 72 and R’ are composition rings, & mapping [ 0 R — R’ is gy

!(’) + /("')v /(I‘S) = f(r)/(s), and l(l os) = f(r) 0/(8),

e 0.

I2)
thent or — t oseJV.

DErFINITION.
Jioomomorphism if f(r + %) =
for all r, 5 € I2. .

If Visa composition ideal in 72, we can define a composition ring structure for
/N in a natural way. ’I’h(.r expected p.roposmon.s relating homomorphisms,
composition ideals, and quotients :Ll:c'O:lSl!y cstu-bhshc(l. Ifop : R — R is a
surjective homomorphism of composition rings with kernel .V, and if K’ is the

foundation of R, then o™ '(K') = N + K. .
It is possible to define cartesian product and direct sum of composition rings.

‘T'hey are related in the usual way.

0.4, DeriNiTiON. Lot I be 2 composition ring with foundation K. Let C
ideal in K. let r e R. We say r is a residual element modulo C
denote by Rc the sct of all residual clements modulo (',

We find that Rc is an ideal in R and satisfies 12. In fact, B¢ is the largest
ideal of R satisfying 12 and the condition B¢ N K = C. We find, too, that if &/
is a composition ideal in R, and C = N N K, then C is an ideal in

K,and N C Re - o
If C is u given ideal in K, under what ¢
? The answer takes this fcrm: Thére

tion ideal of 12 that has C as its foundation . : t
el:?ists 4 composition ideal in R with foundation C if and only if a = b mod C

be any .
jfroKCC. We

onditions does there exist 2. composi-
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fora,b.xim‘jigro;z.'foblnodCfotdlrcR. If there exists a composition
idedwiu;fmmd;ﬁonc.thcn'dmhshrgutone,vil.ﬂc.amismanutone.
Inpuﬁculu,g.i..lwsylaoomposiﬁonided. Note that R, = R if and only

. edlmdmentnomechthatnoR-O'snuaiﬁaofR,
ideal in R. lfN.-Onndr.oc-r,ocforallcck.thenr.-r.. In par-
ﬁcuhr'if,o,_pfordlacR.thmr-pcK.
ummppin‘T:R-»R'ildeﬁnedbyT(r)=I'.Wheml,(.)=ro.for
sllocR.thenTiSlbomomo ism with kernel Nz .
Ifthemppin;V:R-—*K‘isdeﬁnedbyV(r)=a..whema,(o)=roofor

alloe K, then Viss homomorphism with kernel R -
and (C) is the ideal in B generated by C, then KN(C)=C.

If C is an ideal in K,

2.5. DEFINITION. A composition ring which is a field is called a composition
Jield.
* ProrOSITION 2. Let Rbea oompocitt'on ﬁcld with foundalton K. If K = {0, .
then R = K.

Proof. K # {0} jmplics that 1 e K 0« K. Define ¢o : R — K by
do(r) = r 00 forallre B. @0 is a surjective K-nng homqmorphism which is not

{o)) and therefore is an isomorphism. Since ¢o(c) = ¢ (o ¢ K),

0 (since K #
we sce that B = K

COROLLARY 1. Let R be a GOMpomhcm rtng with constant unity element and
foundation K. Letheaoompoailion idealin R. LetC = NN\ K. Then N is
ama:imal{dealilaﬂdoﬂlyifl)lz =N+ K,2)N = Rc¢ , and 3) C 18 a marimal

¢deal in K.

COROLLARY 2. Let1 e K and N be a composition ideal of R which 18 a maximul
ideal. Then the Jollounng conditions are equivalent: 1) K isa field; 2) N = R, ;
3)C =0; 4)R = NPK (dsrect sum of oomzfosmon subrings). ’

Some other related results arc: 1f R.is an 1nwgl‘ﬂ fiomain, thenl oy = O or
1forallye R. IfR contains an identity I, and if K is an infinite field, then 7 is

ndental over K. (If K is a finite field, I may be algebraic over K. For
example, if B = X and g denotes the number of elements of K, then I is a
root of z° — T = 0.) There is one and only one composition field that contains

an identity element; it is the prime field of characteristic 2, with composition

deﬁnedbyaob==ab.. . . .
I‘etheacompodnonndealin?Z.an_dtmppocethat1zK. If N is & maximal

.deal,t,heanoeSno i “t: o

i IfR = 1\.r+K,wlt.hNaoomponuonxdealmR,ande\K = 0, then: 1)

N-=R.;z)forr.t.tcR.ifrO‘aandroth.thenroc-=rot. Conversely,

ﬂroc,rotcxmplieﬂfoc-fot,thenfe-R.@K.
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- Automorphic composition rings.
n-zero commutative ring be given a non-trivial composition

1. Can every no
generally in many ways. We make use of

‘structure? We find that it can,
automorphisms of the ring to produce such structures.
i ing. The endomorphisms of R form a monoid rela-

composition, and the invertible elements of this munoid,
of R, form a group Aut R. Consider any subgroup
artition of R into orbits; for any y ¢ R the orbit of ¥
e set P, = {o®) :¢ ¢ @}. Of course, if z ¢ P, then P, = P, ; also I’; = {0}.
orbit /2 is said to be principal if, wheneverze P, ¢ e @, & > Id, then ¢(z) #= =,
t,is'ifforcveryle’the mppixngﬂ—»Pcarryingench¢cninw¢(x)isa
ction. When Q is the group {Id}, then every orbit is principal.

A composition ring is said to be automorphio if every non-
belonging to R (see 2.2) is a ring automorphism.

tion is casily established with the help of the facts noted

to the operation of
, is the automorphisms
" Aut R. @ induces & P

.2 DEFINITION.
, endomorphism &, b
‘he following propost

. 1.

sonem 1. Let (®a)n be the jamily of endomorphisms belonging to a non-
jal fz):lomorphic composition ring R, and let & denole the set of all ¢, with y ¢ R
¢, = 0. Then Q 1S @ grovp, and there exists a nonempty set U of principal
its,.wilh (0] ¢ v, such that &, ¢ Q whenever Y € UPﬂJ P,and ¢, =0 whenever
\Ur.o P; for cach I’ © U there exists @ unique clement ar el such that ¢,(ar) = Y

every y e I’

vonversely, let R be any commulative Ting, Q be a group of automorphisms of R,

ot ) ] 0o} ¢, and (for each P e V) ap

’ onemply 8et of principal orbits with {0} )
;i,?,g,,ﬁm ofz;))../ y ¢ R define the mapping ¢, : I ——»-R as fo?lows: z.j y
lement of an orbit PP € U then ¢, 18 the clement of @ which carries a, into
e 50 men (d0)uun i8 the famsly of endomorphisms be-

; P then &, g
;]Ii:{g¢to < :lt:"_t,-ivial autonzorPILiG f:mnposition ring. L ‘
Chus, for a given commutative Ting R, the set of all non-trivia: automorphic
nposition ring structures is in one-to-one corrfzspondence with the set of
les (2, U (ay) pev) described above. (We can mcll.ldc the two trivial com-
i)ition r'ing.structurcs in this corn::spond_ence by allowing £ and U to be empty
I compositioﬂ ring) and by taking Q.= lI.d} and U to be thc. §ct of. all sets
} with z ¢ B (consmnt composition ring); in the null composition ring case
; not & group.) For any such §t,ruct.ure, we shall call a = (ap)rev the base of

_structure, and ap the base point of P.
A commutative ring is an automorphic ring if ecach

DEFI.\.HTION. . ]
o cndomorphisms is an automorphism.
nly composition ring structures an automorphic ring may

f an automorphic composition ring. )
1) The ring Z of rational integers; 2) The

e, n a positive integer; 4) Any

of its non-

ve are those O norf
Examples of aulomorphic rings: . .
d R of real pumbers; 3) Z/p", where pis & prim
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absolutely algebraic Geld (algebraic over a prime field); 5) An, i
algebrai
closed ficld of finite transcendence degree over & prime ﬁe’ald. y algebraioally
If 'R is the finite field Fye of characteristic p with p° clements, we can count all
possible composition rin ollows: Let a ¢ R be a primitive

g structures on R as{
(p° — Nth root of 1. R = [0,aa, - ,8" " = 1). Let¢ : R — R be defined
by z — z”. The group

of automorphisms of R is Aut K = {Id,¢,4% --- , ¢ '}

For every »'n, there cxists onc and only one subgroup @, of Aut R with order »
and generutor @7 1

i ymking¢,=0forallyck;2)The

e ]d. These composition ring structures
are possible: 1) The nt
constant structure obtained by taking ¢, = 1d for all y ¢ R; 3) Non-trivial
gtructures ugsing U = 8 subset of the sct of principal orbits under @, . They are
in onc-to-one comﬂpond(‘n('c “'ith the non—empty subsets of R — [0}. Hence
their number is o=t — 1 4) Non-trivial structures using © = a subset of the
sct of principal orbits under 2., for cach » > 1. The number of such structures
for fixed v i3
S (b)) =at+at -1

. r 14 v,

v-

the number of principal orbits under @, (or, what is the same thing,
f irreducible polynomials in F,...[z] of degree » and with highest

d is given by

where b, is
is the number o
cocflicient 1) ap

v, = p- _ Elpa/-. + ZI p-/'.v. -— e
e e

nct prime divisors of ». Therefore the

.. run through the disti
res on the finite field of characteristic

thm x, ., ¥2 0 .
ring structu

total number of composition
p with p° clements 18
42+ 2t »h — 1.

vin
>

3.3, Lot i be an sutomorphic ring with 1 whose only automorphism is the
identity. Then, applying the method of 3.2, we find that all possible composition
for R van be constructed with the aid of subsets of R as follows:
RthenO¢ S. Let Fs be the charn.cwr:

ing structures :
nLct:gS be any subsct of R such that if S & ’
Define £ ° Y = zFs(y)- This applies, for example, to Z,

<otic function of S. 4 2
:;;cprime fields, R, and the rngs Z/(p")-

3 Z/(m), where m is not & power o
ibiliti iti i tructure are com
The pOSSlblhtlcs of .coxr.xposmon ring s
following result, which 1s easy to prove.

PROPOBITION 3. LetRbea commutative nd L
of sdempo elements of B such that d.., = d.d,; then the formule z oy = zd,
defines 6 composition Ting struoture on R. If R = Z/(m), where m is any integer.
then every ocomposition ring structure on R is defined in this way.

f a prime, are not automorphic.
pletely described by the

ring with 1, and let (d,)yx be @ family
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In Z/(6), for example, we can take do = 0, d; = 3,d, =0,dy = 3,d, =0
Iy = 1; or we may take do = 0, d, = 3,d. = 4, ds = 3,d, = 0,ds ='3"thcrc'
re, of course, many other possibilities. ’

We observe that if N is any ideal of the ring R wec may defined, = Oor 1

ccording as y e Nor ¥y ¢ IV, and in the resulting composition ring N is a composi-

jon ideal. This composition ring is obviously automorphic, and is non-trivial

N is different from (0) and X.
3.4. Tueorem 2. Let R be a non-trivial automorphic composition ring with
ndletf: R— R beca surjective composttion

»mposition given by (2, U, (@r)r.v). a

ng homomorphism with R’ 5= {0}. Then R’ is also a non-tririal automorphic
ymposition ring. 1/ composition in R’ is given by (2, V', (a/)r-wv-) then:
l') /or ecach ye R' ¢, € Q i/ and Ollly l.f Drie € SZ'; (b) there 1¢ o !l’liquli surjeclire
oup homomorphism 1, : 94— ¥ such that [,(,) = @70 whenever y e R and ¢, e 9,
nd Ker f, = |¢|oc¢ Q ¢(r) —reKerf(xe R)}; (€) v = {[(’)| P eV}, and
, = f(as) for each P e

= 0,ye kR, thenx oy
= f(xr) o f(y) = & (JT)
That is, if ¢, = 0, then ¢,,) =

4
A%

Proof. 1) If @,
mt 0 = f(r o¥y)

— 0 for all x ¢ R. Applying f, we find
) = &, ('), since f is n surjective
2) Let NV be the kernel of f,

ymomorphism. t .
e Q x yelt. By property 12 of composition ideals, if £ =y mod N, then
r — y) e N, and consequently ¢(r) = &) mod N'. 3) Suppose ¢, ¢ 2, y e R,

’. There cxists x ¢ I such

exists ze R such that f(z) = 2
/(l/) = /(2) = .”, ‘)r¢/(|’l(/("‘)) = 2’- 'rh(‘m-

= ¢, (s") where r', s’ ¢ i’. Since

d let 2’ ¢ . There

at roy = ¢, (r) = 2 Then f(r)

e Gy, 15 surjective. Suppose ¢, r') =
s e I? such that r’ = [(r), s = f(s). Then f(r) of(y) =

5 surjective, there existr,
Then ¢,(r) = &,(s) mod N. Applying ¢,

D o f(y), or [(r° y) = [f(s ¢ y). a ; APE
d the result of (2) above, we !l:l\'(‘ 7:‘_=_:. N n'u')d N,and r = & Fherefore,
b, € 2, By I ring automorphi=m. I'hen 27 is automorphic, and a) is estab-

Ly e e I8 Then x oy = x o y: forall r e R,

hed.  4) Suppose @~ by, ' a Ahe :
d f(x) o f(y)) = f(x) 2 f(y2)- Since [ is surjective, this means that ¢,,,, (&) =
oo (x’) for all e R, and therefore ¢/ == Driver - He'nco, if we (]f-fino fo : Q2o
fo(},) = Srom s fo is well defined. It. is easy to verify that /. is a surjective
up homomorphism, and that ¢ £ 2 is In the kernel of f, if and only if ¢(x) =

nod N (x ¢ I?). The proof of (¢) is dircct.
{. Simple composition rings.
1.1. ProposITION 3. Let K be a non-zero commautative ring with unity ele-
2t. Then () X ;s a simple composition ring with constant unity element,
ing foundation K; (b) Every simple composition ring with constant unity
nent, having foundation K, is K-isomorphic to a composition subring of K*;
A neoessary and sufficient condition that every composition subring of K™ with
ndation K be simple 18 that K be o Sreld.-

obvious that S is a composition ring with

>roof. 8) Let S = K. 1Itis
hat 1 ¢ K. Suppose N is a composition ideal in S different

ndation K, and t
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from (0) and S. Then 1 ¢ N. K is the foundati ‘
¥ . . tion of 8.
xfn;ol.’v. If C » (0), there exists a 0 » 0,02 C. htaclgcaimefouﬁ
1@ 4+ 0 # a. MMMI:Smmhthstfoa=OAnd[o( o=
Therefore f o (a+¢)—f ©a=1 ¢ N, a contradiction. If C=(0 st =
.cb(;nuu‘:iicﬁon_ mtxﬁm K‘iﬁﬁmpk‘ )r Nclgo-(o)'
R be a simple qomposit.ion ring with foundation X Then
:bceompodtiouidedﬂ.uejtber(O)orR. smoelcx,loxmf:‘ﬁw
¥R, and R, ¥ R. The!ﬁomko-(0).de:R—»K‘(deﬁneéin24)izr:

K-monomorphism.
¢) Let K be a field, and suppose R is a compositi i

!{ C R C K* = S. If N is a composition idealofk.mzox’;;ngf;:mh du::
ml}.mxdsoNf\K = 0orK. ENNK =K,thenleN and)t:fnl R
NN K = (0), then NCR,C S, = 0. Consequently R isshx;ple -
I K is not a field, let K = K1), where I is the identity element of
K*. K C r C K* It is easily verified that for every ideal C of X, (C) is a
composition ideal of & with foundation C. Heuce R is not simple.

* 4.2 If W is any partition of K, that is, any disjoint set of nonempty subsets
of K whase union i8 K, then the functions f ¢ K* which are constant on each

clement of ¥ obviously form a composition subring of K* having foundation
K; we denote this composition ring by T'x . By a partition ring (with founda-
tion K) we shall mean any composition ring Tw with W a partition of K. It is

is a refincment of a partition W of K then T'w C Tw- and

obvious that if W’
= K is the smallest partition ring with founda-

conversely; in particular, Tk
tion K, and Tiiateem) = K" is the biggest,
C R C K, the relation

composition ring with K
on K, and therefore induces a partition

Conversely, if 12 18 any
denote this partition of K by W(R).

J(x) = {(y) (f e ) isan equivalence z ~ y
of K (the set of equivalence classes); we
Obviously R C T'wm -

Prorosicion 4. Let K bea finite field. The mapping R —» W(R) of the set of all
composition rings between K and K*™ into the sct of ¢!l partilions of K, and the
the opposite direction, are bijective and inverse Lo eack other.
’ A-

mapping W — T'w in
be s composition ring between Kand K. let A,, ---
eA, (1 <1< n). Foreach

Proof. Let R
ements of W(R), and select an a;
h f.(a) # fi(ad; then the function

be the distinct el )
¢ = 1 there cxists an fi ¢ R wit :
— fu@))/ITis (u(a) — f.(a)) isin R and

o = H:-z /s
iy =1 G=1

lo (= 1.

Similarly there exist functions g ¢ R (2 < 1 < n) such that

gi(a) = {l @ =1,
0 (¢ ).
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For any f e Ty, then f = 1., f(a:)g: ¢ R, 80 that Tway, = R. Thus the
mapping R — W (R) followed by the mapping W — T'w is the identity mapping
of the set of composition rings between K and K*. As the composite in the
opposite order is obviously the identity mapping of the set of partitions of X R
the result follows.

Propositiox 5. Let K be any commutative ring wnlh unity element. For eqoh
element ¢ of the group of composition ring automorph.tsma of K* the restriotion
@0 of ¢ to K 1s an element of the group of ring aulomorphisnis of K, Gfld the mapping
& —> ¢o 18 an isomorphism of the former group onto the latlef If R 13 any compogs.-
ion ring with K C K& C K", then every composition ring monomorphism of R ingy
K* is the restriction of a unique composition ring automorphism of K*,

Proof. It is clear that the mapping ¢ — o isa homor.norphism, It is syr.

jective because for any ring automorphism F of K lt.hcne 18 & composition ring
automorphism ¢ of K* detined by ¢(f) = F of o F™' for all f ¢ K" and ¢, = F.
It is casily shown that if ¢ is a composition ring monomorpl.nsln of R into g«
such that y restricted to K coincides with ¢, , then ¢ = ¢ restricted to R, Hence
@ — ¢a 15 one-to-one.
If K is a finite field, then the number of K-isomorphism, classes
foundation K is equal to the number of Purtitiongs
hism classcs of such composition rings is on, to
of partitions of K, two parlitions being cquiraleng
her by an automorphism of K.

of the preceding Propositions
f n distinct clements jg Oasil};

ProrositioN 6.
of simple composition Tings with
of K, and the number of isomorp
the number of cquivalence classes
if one of them is carrie o into the ot

Proof.  This is an immediate consequence
The number of partitions I, of a finite set lO
computed from the well-known recursion formula

P'”l = i (1;‘)[)' , Po = 1.

For the finite fields with 2, 3})4, 5 ; ?7r ?) elem;:nltfomspccu"ely we have P, - 2,
__-")=r)_—;52,.,=7'.=-, . . .

Palf_ Ka '131 a: ﬁnilb:'plr;mc field with characteristic P, 130';1‘;‘;2}“:::1 Otfhsnmple com.
sition rings with foundation K reduces to K-xsomollt?K isla s ¢ Dumbg, of

Do hism classes of such rings is equal to P, . ! hinite fielq with

momorlzs where n is not prime, then the number of lsomor:plnsm classeg of sy n

e]emclils lcss](;;mn })n . For cxample, if K is t,he. field with 4 .el.ement,s. Wh?l

;l)ng: 15. the number of isomorphism classes of simple composition Tingg ve
. '

foundatibn K is 1l.

4.3. We have scen that if K is a finite field, every composition subriy, g of

containing k is a partitior ring.. This property distingulshclzs (fiinlte f.ields from .
other non-zero commutative rings with unity elell}ent- n eed,.lf K n al]
field, so that K contains & non-zero clement a which has no reciprocy) ot g

we let W be some partition of K into two sets J, J',and if f, {’ denote u‘le 'c}{::d i
Tac

-
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ristic f\mc?'mnn of J, J’ resp‘ect.ively. then K + Kaf + Kaf’ is ily to
- & composition subring of K which is not a partition ring. On the other hand,
K is infinite, the set of all functions f ¢ K* with finite range is a composition
bring of K* which is not a partition ring. post
To generalize Proposition 4 to infinite fields we introduce a topol ; x
t F be the Bt of all finite subsets of K. For any A ¢ F, and a‘:; (;gz I‘{“‘Kle;
""!K’]A:g’. IﬁtO:‘O ‘AeF Ay o ’
- A 4.0 - eF,ge K°}. Then 1
fu: for a topology on K*. The topology is Hausdorff, and with 0.18;11 olgegx;r
becomes a topological composition ring. (That is, addition mult.iplig:tion
d composition are all continuous tions. , ’ ,
X C K®by £, opcrations.) We denote the ciosure of any

roREM 3. Let K be a field. Then (a) for every partition W of K the partition

g Tw taclosed; () if It 18 any composition ring between K and K* then R = Tocn -

I'roo). ) 1fge Tw ,thereexistsnset J e Wanda, beJ suc

t A - la, b}, and let h ¢ K* be defined by h(a) = g(a), hIZJ)h{: g(zzb) #'Iq;;b).
» is 1t neighborhood of g that does not meet Ty . 9(®). en
by lat I be given and let fe Ty, . We must show that every neighborhood
of { interwets I, that is, that for every finite subset A of K there exists an
, 1¢ which coincides with fon 4. Now, we may write 4 = 4, U ... U 4
cre ench A, is a subset of n set B, ¢ W) and B, = B, when i - y
a. v, (1 < ¢ < n). Justasin the proof of Proposition 4 we find functior;’s’

-, ¢a v I such that

1 (=, < ,.. , o
g.a) = {“ (i j, Setting /= ;lj(a.)g,-

'

see that 7 e I and f’ coincides with fon A.

5. Extensions.
5.1. We find it convenient to introduce a new operation that may be defined
any composition ring:

DeFINITION.  Jat B be a composition ring with foundation K. We define a
wry operation in ¢, (r, 8) — r* 8as follows:r#s =ros — r c0. The opera-
n * has these properties:
r+s)*t =r+*t+s=*! (r,s,teR);
c*s = 0, tce K,seR);
N is a composition ideal in R, thenr*neN,(reR,neN).

We state immediately the hypotheses and main result of this section:
Given: Two composition rings N, Q with NN = 0, NN* N = 0, and two

erations of Q on N

1. (q' n)_"qn- 2. (9- ﬂ)-—’ﬂ cgq, .
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s}, .
bl&ct to the following conditions:

;~ N is a @-module with respect to the first operation;

(n " " °0e=no0y, (n+n;) og=n,09+n: 09, (noq)og=no(q og),
1om) 0g =m o (n09);
=2, (gin) °q2 = (¢ ©¢;)(n o q).

rinblﬁmm'no.\‘. An ertension of Q by N is an exact sequence of compeosition
& homomorphisms 0 — N % R -5 Q — 0 such that

. g(f(rn) = rgn), g o f(r)) = gln) or
n(! such that there exists an additive mapping u : Q — R for which f(u(q)) = q.
18 extension i8 equivalent to an extension 0 — N &5 R’ L5, Q — 0 if there exists
Compgsition ring homomorphism h : R — R’ such that the diagram is commuta-

:::\’e; h must then be an isomorphism. £(Q, N) denotes the sct of equivalence
A8seg of extensions of Q by N

Derinition.  S(Q, N) is the sct of all pairs (¢, ¥) such that:

¢ : Q°* X N — N, ¢ is additive in the first argument,
¥ : Q° — N, ¢ is additive in each argument, ¢ is symmetric, and

¢)) gy © g2y QM) — () , 92023, n20qs + &(g2, g3, 1))
+ (g1 ,92,m) 0 gy = 0,
2 aW(gs, 99 — ¥@aa, @) + V(@ B3) — 3¢9, 0) = 0O,
3) (g © 99z » 05 1) — $(0:02 , @5 ,n) + (g2 © ¢a)(qs , g5 , M)
=¥(@,30)°06—¥@og,qogq).

The pairs (¢, ¥), (¢, ¥) £ SQ@, N) are equivalent if there exists an additive
mappingb: Q— N such that

(@ &q ;9,0 = &', q,nt b(gz)) — bl © q2) + b(g) o qa,
5 ¥(q, e = V(a0 + aidlg) — blang) + ¢:b(a).
S*(Q, N) denotes the set of cquivalence classes of S(Q, N).

THEOREM 4. I]O-—»N-—'-»R—'»Q—-»Dilaﬂwmmon.byNanduig
ohosen as above, then y = u(@) © (g(n) + u(g)) — u(q: © ¢1) 18 an element of
Ker { = Im g, and sois z = u(q.)u(gs) — u(q:2), 80 we may define $(q: , ¢: , n) =
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97" (v) and ¥(q, , 1) = g7 '(2); we then have (6,4 ¢ S0\ . If u is chosen differ-
ently, then (¢, ¥) 18 replaced by an equivalent pair. of Ui - =ter<ion is replaced by an
equiralent one, then (o, ¥) 18 replased by arccqpuivalent pove. Thus we hare a mapping
E(Q. N) — S*(Q. N ).

Converseiy, if (¢, V) r S(Q. N) and if we set It N X Q and detine additson,
multiplication, and compositioz tn I by the formulas .

(0) (nl ’ 'I:) + ("1 ) q-) = iny n. o.oq, + .
) (ny , q)(na , qa) = (e + reqe + Ylge, g qiq0),
8) (n, , $) olna, 4. - (n, o q: + &gy . g2 ,m), 7 © ql),

then R is a composition ring; and if we definc g : N — I, and f:R—Q by the
’mu&u g(n) = (ﬂ, 0), l(n- q) = q, then 0 — N = R £, () — 018 an em;a"m ol
Qly N;if (. ¥) 18 replaced by an equivalent pair in S(Q, N), then this extension is
replaced by an cquiralent extension. Thus we hare a mapping S*(Q, N) — E(Q, N).

These mappings E(Q. N) — S*(Q, N) and §*(Q, N) — E(Q, N) are inverse
{q each other (and therefore are bijectire).

5.2. P’roof. Supposc 0 — N % I¢ 1. Q — 0 is an extension of Q by N, and
u : Q — R is choscn 80 that u is additive and f(u(q)) = q. To simplify the ;lot,a.-
tion, we shall identify g(N) with N. We can verify dircctly that ¢ is additive in
the first argument, ¢ is additive in each argument, and ¢ is symmetric. Every
r ¢ I2 has n unique representation in the formn + u(9), (ne N, g e Q). ¢ and v
are related to multiplication and composition in R as follows:

(n, + u(_q,'))(nz + u(y;)) = n,q; + na.qy + "‘(91 » q:) + u(q,qz)_
(n, + u(q))) © (ny + u(qz)) = ny0oq: + ¢lq, , g2 ,m;) + u(qg, o qa).

9
(10)

Since multiplication in R is associative,
(s + u(g)) (s + u(@))]ms + u(gs)) = (i + u(g))[(ma + u(ga))(na + u(qy))].
Applying equation (9) re'pexiltedly, we find that ¢ satisfies equation (2). Since
composition in K is associative,
[y + u(g)) o (s + (D] © (m + u(g:)

= (n, + u(q)) o[ + u(g2)) © (ns + u(gy))].

equation (10) repeatedly we find that ¢ satisfies equation (1). Since

l 3 o _qe °
:o':gp’::ifion in R is right distributive with respect to multiplication,

[(n, + u(q)))(n; + u(ga)] o (ns + u(gs))

= [(r + u(gy) © (ns + u(@a)][®s + u(gw) o na + u(g))].
Applying (9) and (10), we find that (¢, y) satisfice equation (3). Consequently
(¢, ¥) ¢ (S(Q. N).

1
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If u’ is another additive mapping Q — R such that f(u’(g)) = ¢, then u’ de-

a pair (¢'.¥) e S(Q, N). Letr,,r,e R. Thenif ¢, =/(r,) and g, =7(rs),

we have r, = n, + u(g,) = n! + u'(q:), and 3 = n; + u(g:) = nj + u'(gs).

uation (9) expresses r,r, in terms of u and v. A similar equation expresses

iy in terms of u' and ¢’ Equating the two expressions, and dcnoting
(¥ — u’)(q) by b(g), we find that

V0, 0) = ¥(q, q) + qbgs) — b(gg2) + gab(q)).

Equation (10) expresses r, o r, in terms of u and ¢. A similar equation expresses
T or,in terms of 4’ and ¢’. Lquating the two expressions, we find that

80,72 ,m) = ¢'(qi, ¢;,n, + b(gz)) — blgy © gz) + b(q,) o q, .
Therefore (¢, ¥) is equivalent to @', ¢)-

Suppose 0 — N © R’ £ Q — 0 is another cxtension of Q by N equivalent to
0N R-LQ—0. (Scethe figure in 5.1.) Choosc 4’ as defined in 5.1, and
determine the pair (¢, ') as above. As before, we identify g(N) with N, and
9'(N) with N. Then h(n) = n, (n e N). For each n + u(@) e R, h(n + u(qg)) =
n’ + u'(g). Then from the fact that ¢ = f'h(n + u(g)) = f'(n’ + u’(g)) we find
that hu(q) — »'(9) = b(g) ¢ N where b is additive. Thenn’ = n + b(¢). Equat-
ing h{(n, + u(q.))(n2 + u(g,;))] with (n; + u’(g)))(ns + u’(¢a)), we find that ¢
and ¢’ satisfy (5). Equating h[(n, + u(g:)) © (n, + u(gs))] with (n] + u’(q,)) o
(n% + u'(¢:)) we find that ¢ and ¢’ satisfy (4). Therefore (¢, ¢) is equivalent to
(¢’, ¥'), and we have established that there is & mapping E(Q, N) — S*(Q, N).

Conversely if (¢, ¥) € S(Q, N), and if we set B = N X Q with addition, multi-
plication and composition defined by (6), (7), and (8), it is casily verified that R
is a composition ring. If we defineg : N — Rand f : R — Q by g(n) = (n, 0),
f(n,q) = & then 0 — N <% R -5 Q — 0 is an exact sequence satisfying the condi-
tions g(f(r)n) = rg(n), g(n © (1)) = g(n) or. Morcover, if we define u : Q — R
by ¢ — (O q), then u is ndditivc.und /(u(q?) = q. ’ o

If we replace (¢, ¥) by an cquivalent pair (¢', ¢'), we obtain in the same way
an extension 0 — N &> R’ ©5 @ — 0. There exists an additive mapping b :Q — N
satisfying (4) and (5). Define h : R — R’ by h(n, ¢) = (n + b(q), ¢). Then the
figure in 5.1 is commUt—lgi\}'\‘;“ and h is a homomorphism. Hence we have a

ing S°(Q, N) — E@, V). .

m’ll‘): :;liw t(hnt the mapping S*(Q, N) — E(Q, N) is the inverse of the mapping
E(Q, N) — 8*(Q, N) we observe thaty = (0, q)) © ((.n., 0) + (0, gy)) - 0,9, o q,)
and z = (0, ¢)(0, g:) — (0. 91gs). (See the definitions of y and £ in 5.1.) It
follows 4t once that g™'(y) = ¢, and ¢7'(2) = ¥, and the composite mapping
8*(Q, N) — E(Q, N) — S*(Q, N) is the identity mapgxing. On the other hand,
if for a given extension we take ¢ = ¢g~'(y) and ¢ = g~ (2), and then, as above,
construct the extension using N' X Q and operations defined by (6), (7) and (8),
then the mapping & : n + u(g) — (n, @) isan mmorphm Hen9e the composite
mapping E(Q, N) — S*(Q, N) — E(Q, N) is the identity mapping.
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. DeriNiTION. An catension 0 - N % R 5 Q — 0 of Q by J\‘l is tnessential
if there exists a composition ring homomorphism u : Q — R such that fu =
identity.

If an hm:n’ma.l extcnsiop 0 — N % R -4 Q — 0is equivalent to an extension
9—.N L RL Q -0 Smth the commutative figure of 5.1), then Au : Q — R’
is a bomomorphmn and j'(hu) = identity. Hence all extensions equivalent
to an inessential extension are inessential.

Supposee an element P of 8*(Q, N) determines inessential extensions. C

, . h
any (¢, ¥) ¢ P, and construct the extension0 — N % R L Q—0 asodcscribc(:ioisz
5.1. Then it is an incssential extension, and the homomorphism u : Q — R takes
the form u(g) = (b(¢). ¢), where b is an additive mapping Q — N. From
(b(q), 9)(b(g5), q) — (b(9193). 9:9:) = (0, 0) and (b(q,). q.) o (b(9.), @a) —
(5(g, ©9:), 9, ©g5) = (0, 0) we find that C

an ’/(q' v q2) + G:b(g:) — blqigd) + ¢:b(qy) = O,
and .
A2 &(q , g2, b(ga)) — blq, 0 gz) + blq) oq. = O.

Conversely, if (¢, ¥) ¢ S(Q. N), and conditions (11) and (12) hold for some addi-
tive b : Q — N, and the extension 0 — N = R £, Q — 0 is constructed via the
formulas of 5.1, and u : Q — R is defined by u(q) = (b(q), g), then u is a homo-

morphism and fu = identity.
ProposiTION 7. (6, ¥) ¢ S(Q, N) determines an inessential extension of Q b,
N ifandonlyif ¢ and ¢ satisfy cquations (11) and (12) with some additive b : Q — VJ
5.3. We call an extension of Q by N special if there exists an additive mllppi.ng.
u : Q — R such that f(u(¢)) = q and u (Found Q) C Found R. Wec call a pair
(¢» W) L3 S(Q' N.) 8P¢-’ctal if ¢ ((.Found- Q) X Q X N) = 0. Itis ensily verified
that if an extension of Q by N is special and a u with the properties listed above
is used to construct ¢ = .a"(y) and ¢ = ¢~'(2), then (¢, ¥) is special. Conversely,
b )¢ S(Q, N) is special, and an extension 0 — N % £ % Q — 0 is constructed
vin (6), (9, (8) and the fom_}ulas for g and f in 5.1, then this extension is special.
If two extensions of Q by N are eqfnvulent, and one of them is special, then so
is the other. Consequently there is a one-to-one correspondence between the
subsct of S*(Q, N) whose elements contain at least one special (¢, ¥) and the
subset of E(Q, N) whose elements are the equivalence classes of special extensions
of Qby N. . .
fO—-NSR5HQ—O0isa special extension of Q by N constructed via (6),
N, (8), and the formulas for g and {in 5.1, then Found R = (Found N, Found Q).
5.4. The operation * in & composition ring is not, in general, left distributive
with respect to addition. This defect is partially remedied in a class of compo-
sition rings defined as follows:
DerInITION. Let R be a compositio
R s semi-distributive over N if r * (son
r+ (m+ n) =rem+ re*n, foralr,

n ring, and N a eomposition ideal in R.
—8o0) =r*(8on) —r=*(300), and

seRandm,neN.
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‘For the remainder of this section we modify the assumptions about Q and N
by imposing these additional requirements: There is a third operation of Q
on N, (g, n) — g * n subject to thesc conditions: (¢, + g.) *n = g, * n + ¢, * n,
9*(m +n) =goni+gen,, (no@)*n =g *(g:*n),(g.*n) og, =
*(nog,).

We also modify the definitions of 5.1 s follows: We require of an extension
of Q by N the additional property that g(f(r) * n) = r * g(n), and we require of
(. ¥) ¢ S(Q, N) that ¢(q, 0, n) — ¢(g, 0, 0) = ¢ * n. With these modified as-
Sumptions and definitions the theorem of 5.1 still holds. However, under these
conditions, an extension of Q by N is necessarily semi-distributive over g(N).

Der:nrrion. If N is a composition ideal in R, R is distributive over N if
re(m+4 s =ren-+resforall v, se Rand n ¢ N. An cxten-
8ion0 — N % R % Q — 0 of Q by N is distributive over N if R is distributive
over g(N). .

We shall determine the conditions under which there exist extensions of Q
by N that are distributive over N, and we identify these extensions. We shall
show that the set of equivalence classes of such extensions is in one-to-one
correspondence with a certain cohomology group which we now define.

DEeriNiTiON. Let C'(Q, N) be the group of all functions v, -+, @) of
¢ variables in Q with values in N, additive with respect to each variable. Define
8 by

(50(01 vt @) = @f(ga, o, Qi)

+ ‘E(“l)il(% y @Gyt Qo) (=D (g, - e 9.4, .

=1
§ is a homomorphism, and § = 0. Let ZI(Q, N) be the second group of sym.-

metric cocycles mod 8. .
Let D*(Q, N) be the group of all functions f(g, , --- , q.) of ¢ variables in Q
with values in N that are additive in ¢, . Define A by

aNq, - :q“l) =q *flga, > Qier)
+ 'E(—l)‘,(ql y 3 Qi % Qiery " 04;1) + (—l)'“/(q, vttty Q) ° Qu., .

A is & homomorphism, and AA = 0. Let W*(Q, N) be the second group of

cocycles mod A. , , .
Let 8'(Q, N) be the set of pairs (F, ¥) e W'(Q, N) X Z((Q, N) which satisfy

(13) W@, q) 20 — ¥(q ©qs, 92 ° )
= (g2 0 g)F(qs , @) — F(019: , 9) + (91 © ¢:)F(qs , @).

§' is clearly a group. Let © = {(Ab, 8b) : b e D'(Q, N)}.






sopn £ o7 TAL

crist gxiensions of (3 by N that are distridutioe over N sf

Tuponsi §. Y&
and only +f

(14) (g2 © ) ® n, — (quga) *n + (.2 Gdiqy ® ) = 0,

tG: ,q:.q:lo;“¢N)~
, heydisiiis AT : : -
o rsiribiaiiney otar N, an cxlensiun of Q by N egquiralent

, . )
' [f there coigt extoomrons of G oy N A are deasahue
an clement I’ of S°(Q, N) determznes 4% routraleace cloos af fusis
¢ 10 e e Fle ey b
. Then (4D, 61{) e .S’((,?, A forall b ¢ QK and

of ¢quu'almcc classes u! such extenstons 1s 1i one-lom-ene correspeniense ¢
group S’'/e. Under this corregpondence the inrssential ertenaiong (hel ar¢ Ileh e

butive over N) correspond to the zero of the group.

Proof. 1) Suppose 0 — NS Q-—0 and 0 —s N 2= 100
w N, with commutative figurc a8 in 5.5, snd 7o
V\'ilh A

Ifan extengion of Qhy N i
(o it 18 also distributive over N.
tare over N,

exlensions if
and (F.¥) ¢ S'(Q, N).

and only if, jor cack (&, ¥) A
‘l"‘t"’ RN

2 ) - 13 ore
> i XN

equivalent extensions of @t

distributive over N. Leth(r) =T71" sy s Identify g(N) and ¢"(&)

Then A(n) = 1 forullneN. Since I is distributive over &,
""("+‘”):’°"+7‘«‘\‘—YOO, (r,sci(’,ntN').

Under h this cquation trunsforms to

roln 48 ron 41 os

{ Jt' is distributive over N.
mapping d of the set of functions on Q* X N with values in A

— r’ o0, (r',s"e R’ , ne N),

which implirs tha
2) We define o

into iteell Y
didlqy » 90 1)) = o(q 0z 1) — @, 93 ,0 — qu* 1

e Q- 0isan oxtension of @ by N, with u: Q — R defined s
s,ande =0 @ then ¢lgs » 2. 0) = 97" (w(@) o u(@s) — u(g 0q2))- 1 R is
jistributive over N, it is easily verified that d¢ = 0. Conversely, if dp = O,
quation (10) reduces to

(15) (n + u(g)) © (n, + u(ga)) =

10— &N

n, °']:+¢((h y 2 )O)
+ ¢ *na + ul@ © qs).

and m ¢ N. Using (15) we find

Lot r = m + u(@), 8 = ™ + u(gs)

thatre (m+8) =7°*M + r ¢ &, and hence R is distributive over N.

3) Let (¢, ¥) ¢ S(Q, N) such that d¢ = 0. In equation (3) take n = 0. By
uation (3) we find that Q and N must

subtracting the resulting equation from €q
(N) with N, (g1 , 82, 0) = u(g:) o ulgs) —

satiafy equation (14). If we identify ¢

u(g, 0 ¢n). If we write ¢%(qu , g) for &(qs » 91 » 0) ¢ D*(Q, N), and substitute
¢:(ql ,q)) + g ¢ nfore(@ , g, n) in equation (1) we find that A¢° = 0. Hence
¢ QN v ¢ C(Q, N) and s symmetric. Moreover, v satisfies equation (2)
which asserts that 8¢ = 0. Bubstituting (@1 » 92) + a1 * nfor (g1, 03+ ®) in
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cquation (3), and .

(i.)&é R e, . SPPlying (14). we find that (6%, ¥)
¢y Suppose Q and N ., ' satisfies (13). Th
d’(fj Q3 n) = Fq , ¢s) iﬁus:y (14). If (F, ¥) , e
11 is clear then that wo ha q: * n, then (¢, ¥) . 50 e S(Q, N), and we let
and the set of eleme ve 8 one-to-one correspo ,N),d¢ = 0,and F = °

5) We definc an :qtfxi(é' ¢) in S(Q, N) for whi:gencc between the set S(Q ;)
& ¥~ (¢1, ¥3)- (4,:, “:;‘;ce relation in S’(Q, N;#b;: (o'o '
sﬂtlﬂﬁed Eq\mtion (5) a;sel ~(¢’ ) 1f!1ndonlyif (H ’ ‘1) ~ (¢g ’ ¥) if
o — 62 = b, where b e D't('z that ¢, — ¢s = &b, omdeqmu-om (4) and (5) are

, N). Since (¢}, ¥1) ande?:‘,’a U;n) g)u:?ert.s that
' V2 y (13), s0

Jocs (8b, ).
Suppose (¢7 + ¥1) e S'(@Q. N
A . ! , N), and b i
assocmtcd with a mappi . is any el '
with the mapping u'iplpl:xgiru(- Q—R. letu = sznt: ofI‘hD @ N)" @1+ ) 35
e o and o0 t, , f’) « S(Q. N), and (4’; ) )en t.hc:;e is associa
L — ¢3 = Ab. It follows t;n'tt :.hc se(t? :)f :t;)u.i\ :lfore-
¢ of ralence
is in one-to-one

oVef. ¢| - 2
{ extensions of
Q by N that are distributive over N

classcs ©
nd(‘ncc \\'ith thc group S'/O

correspo
5) Suppose (¢, ¥) determines a
A . n extensi
[Squations (11) and . sion of Q by sa distri :
l on be in('sqpnf :3]) constitute n necessary 1-’111]:; t’h‘flﬁt 19 distributive over
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