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PREFACE 

rw-.c:_:,_-;. ell -'ll, lllflr.: '-·~ J.:::.•.;r.s:c:.al ;::'.l.n.!.fi..'ld !!Ld have clven d2.rect j:rc._•f's 

J.r· x:::.'l'.ic-:.~. Tne ;:.:u,:I'clc!s lr; ques:.:cr: n:us: Le loc:1lly dll'f'e.·:::~'I'Phic 

r.: •:·:.e cons :d~:rs the i!: Ll··:r·t. :::ar•i:\:·ld cous :s t.ill,_; or :ill absolu: ely cor!-

· . .:::.~u.s f"'-~J,s w: [·~·,11 ~ i\1 \-1.::n square .:.r.tet:rabl-2 first derivat.ive. Ac-

i•lar.: f'._lds, T:p:.:logy, V~l. 2 (1">63), pp. 29?-34C; a:1d .:.n S. Smale, r.torse 

TL•~<:·l'Y 'll!d a •.. ··n-l.:.n~a!' Gt.?I.eraliza :.lor. of the Dirichlt!t Pr•oblem, AlUmls 

Ti.·: jjc;· · per•lc-d~c:ty ·J:ecPer::s ·..:ere -::•.:.,·::.al.!.y l:.srlred by i\lors·~ 

LL·:· r·y ( S-::e r•lr r: IV) . E \-l•cVC!'' !!.•'1"'0 ele!::·.•:. tar'Y Pl'c'ol's' wnich d,· !:Ct. ir:-

volv·~ i4l'rse tll'~~.-ry ut all, l.'lV•3 recer.·.ly t-eer •• :.:ve!1. See r-1. A'.iyuh ar:d 

R. B-~·.:., 0:: u-.e Perlc,d.iclt.y Theore:n fr.r Co;;.plex Vector bundles, Acv1 

Al.~ebras and 3ot.t. Periodicity, 'i'opolot:-:y,., (19t-::0-66), pJ::. 3'11-35-?. 

in d.:ffer<:::.:.iul Lopolo;.:y by s. Sn:alc, A. i-lallac.::, m:d others, includ.:.ng 

~ proof oi' ;.he 6e:.erallzed p.__.::.care hypothesis .:.:. J:.:.,;h d.:.n;cnsl.ons. I 

have :..ried to descr.:.ue son:e 01' t.his Wcl"'t: l1.~. Lec·_tlr·:s L'·I~ :..L0~ h-c..:·l'crd.:s!:: 

theorem, notes by L. Slebenmann and J. Scndow, Pr~llcetc-li University Press, 

.L-3 L r:.e Lake thls opp<_;rlnni ty t.; clarify , .. ·c te1•::1 wnicl: may cause cor:­

rusL.r,. In §12 I use the wcPd "energy" for the .:!ltct~rul 

v 



vi PREFACE 

1 2 
E s r]UJ 

d:. 
rj r 

0 

E'.long a path w(t). V. Arnol'd poir:ts out to me that. :r.s.t!".er;,r:·_iclr~:.:.; rcr 

the pas~ 200 years have called E the "ac tlcn" lntecra :;_. Yr:ls d lscro?~ancy 

ir. :;ermir.ology is caused by the fact. th'i':. the inv:.:ra.i. can t·-, lJ•:.erJ.rP~.ed, 

in :er:ns cf a physical model, ln m'Jr~· :..har, cr:e ·.-r•1y. 

Think of' a particle P ·,;hich moves aloq~ a surf'lce i-1 dur.!.n,_; tJ·,e time 

interval 0 < t < 1. .!.'J act: XI of' t.h"l particle duril1i3 this t.ir.:~ l:.::.erval 

is defined to be a certain constant times the ir:tegral ~· If' no forces 

act on P (except for t.r,e constrainir .. _: !'orces wl.lcL hvld it within l•i), t.her; 

:.he "prir.clple of least actlor.'' asser·.s that E will b-:;; :nir . .:.r..ized •,;ithin 

the class of all pa-:.hs ~oinin;~ w(o) :c w(1), "lr 'lt least til'> t th·:: first 

variation of E will be zero. Hence P must traverse a geodesic. 

But a quite dlfferer.t physical model .!.s poss.:tle. Think of a rubber 

band >Thich is stretched betvreen t·,;o po.:nts r:;,f a slippery curved surface. 

If the band is described fJarar::-::tric•i.!.ly by tl-.r; r;;quation X ~ w( t), ~ ~ L 

5 1, ther, t.he pc.".er.t.lal er.er . .:;J· l'l.r:s.:.r.,~ frr:.m tenslvr• wlll be propor'.icnlil 

:~o our .i.nt.egral E (a·. least tc. a firs'. order uf approximation)· For ar, 

equilibriu::-. posi tic:. t!".:!.s 0nsr.;y rr.ust be minimized, 'lnd hence :he rubber 

taLd will descrioe a ,:~r:desic. 

The :ex:. which frJllo•,;s is :dF.:r.:.lcal ·,;i:..J. tha:. · !' :.lle l'lrs·- prir.t.ir,_; 

excer'- fer~ few c .. rr<:;cticJns. I "'-Jr: grateful to v. Arr.c:·l'rl, D. EpsteiG 

'3-r,d 'tl. :=:-. Hous•:,.:,r:, Jr. J'or poir:tin;~ c.ut currect.i.ons. 

Lcs Angeies, June 1968. 
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PART I 

NON-DEGENERATE St·lOOTH FUNCTIONS ON A i·lANIFOlD. 

§1. Introduction. 

In this section we lvill illustrate by a specific example the situ­

ation that we will investigate later for arbitrary manifolds. Let us con­

sider a torus f.l, tangent to the plane V, as indicated in Diagram 1. 

s 

Diagram 1. 

Let f: ~l-R (R always denotes the real numbers) be the height 

above the V plane, and let r,f- be the set of all points x E ~~ such that 

f(x) ~ a. Then the follmving things are true: 

( 1 ) If a< o = f(p), then Ma is vacuous. 

(2) If f(p) < a < f( q)' then ~f is homeomorphic to a 2-cell. 

( 3) . If f(q) < a < f(r), then ~ is homeomorphic to a cylinder: 

0 
( !, ) If f(r) <a< f(s), then r,f- is homeomorphic to a compact 

manifold of genus one having a circle as boundary: 



2 I. NON-DEGENERATE FUNCTIONS 

(5) If f(s) < a, then Ma is the ~ull torus. 

In order to describe the change in 1-la as a passes throug.l-t one 

of the points f(p),f(q),f(r) ,f(s) it is convenient to consi~er homotopy 

type rather than homeomorphism type. In terms of homoto~y types: 

( 1) - ( ~) is the operation of attaching a ')-cell. For as fap as 

homotopy type is concerned, the space 1-la, f(p) < a < f(q), cannot be '11s­

tinguished from a o-cell: 

Here ",.," means "is of the same homotopy type as." 

(2)- (3) is the operation of ~ttaching q 1-cell: 

(3)- (4) is again the operation of attaching a 1-cell: 

(h)- (5) is the operation of attaching a ,-cell. 

The precise definition of "attaching a k-cell" can be given as 

~allows. Let Y be any topological space, and let 

be the k-cell consisting of all vectors in Euclidean k-space with length ~ 1 . 
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The boundary 

ek (x € Rk : llxll = 1] 

will be denoted by sk-1. If g: sk-1 -Y is a contim10us map then 

(Y with a k-cell attached by g) is obtained by first taking the topologi­

cal sum (= disjoint union) of Y and ek, and then identifying each 

x t: sk-1 with g(x) € Y. To ta!.a care of the case k = o let e0 be a 

point and let e0 = s-1 be vacuous, so that y with a 0-cell attached is 

just the union of Y and a disjoint point. 

As one might expect, the points p,q,r and s at which the homo­

topy type of ~ changes, have a simple characterization in terms of f. 

They are the critical points of the function. If we choose any coordinate 

system (x,y) near these points, then the derivatives %:£ and %f are 

both zero. At p we can choose (x,y) so that 

that f = constant -x" - y2 , and at q and r 

. 2 
f = x' + y , at s so 

so that f = constant + 

~ 2 
Note that the X - y . numbel' of minus signs in the expression for f at 

each point is the dimension of the cell we must attach to go from ~ to 

Mb , where a < f(point) < b. Our first theorems will generalize these 

facts for any differentiable function on a manifold. 

REFERENCES 

For further information on Morse Theory, the following sources are 

extremely useful. 

M. Morse, "The calculus of variations in the large," American 

Mathematical Society, New York, 1934. 

H. Seifert and W. Threlfall, "Variationsrechnung 1m Grossen," 

published in the United States by Chelsea, New York, 1951. 

R. Bott, The stable homotopy of the classical groups, Annals of 

Mathematics, Vol. 70 (1959), pp. 313-337. 

R. Bott, Morse Theory and its application to homotopy theory, 

Lecture notes by A. van de Ven (mimeographed), University of 

Bonn, 1960. 



4 I. NON-DEGENERATE FUNCTIONS 

§2. Definitions and Lemmas. 

The words "smooth" and "differentiable" will be used interchange­

ably to mean differentiable of class C00
• The tangent space of a smooth 

manifold M at a point p will be denoted by T~. If g: 1-i- N is a 

smooth map with g(p) = q, then the induced linear map of tangent spaces 

will be denoted by g.: ™p - TNq. 

Now let f be a smooth real valued function on a manifold M. A 

point p £ M is called a critical point of f if the induced map 

f*: T~ -T Rf(p) is zero. If we choose a local coordinate system 

(x1 , .•• ,xn) in a neighborhood U of p this means that 

The real number f(p) is called a critical value of f. 

We denote by ~ the set of all points x £ M such that f(x) < a. 

If a is not a critical value of f then it follows from the implicit 

function theorem that ~ is a smooth manifold-with-boundary. The boundary 

f- 1 (a) is a smooth submanifold of M. 

A critical point p is called non-degenerate if and only if the 

matrix 

is non-singular. It can be checked directly that non-degeneracy does not 

depend on the coordinate system. This will follow also from the following 

intrinsic definition. 

If p is a critical point of f we define a symmetric bilinear 

functional f** 

then v and w 

on ™p' called the Hessian of f at p. If v,w £ 

have extensions v and w to vector fields. We let 
T~ 
* 

f**(v,w) = vp(w(f)), where vp is, of course, just v. We must show that 

this is symmetric and well-defined. It is symmetric because 

where 

* Here w( f) 

is the Poisson bracket of "' v and and where [v,w] (f) = 0 
p 

denotes the directional derivative of f in the direction w. 
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since has p as a critical point. 

Therefore r.... is s:y-:r:metric. It is now clearly well-defined since 

of v, while vp(w( n) = v(w( f)) is independent of the extension 

wp(v(f)) is independent of w. 

If (x1 , ... ,xn) is a local coordinate system and v =La.~~ . 
l Clxl P 

•-: = Lb. 
j 
~~ we can take ~ = L b.i. ~ where bJ. now denotes a con-
ClxJ P - ClxJ 

stant function. Then 

r .... (v,w) = v(w(fl)(p) 

so the matrix ( -,2~ ) 
0 l (p) 

Clx1Clxj 
represents the bilinear function f,.,. with 

respect to the basis ~~ --"-1 Clx' P' · · · ' Clxn P 

He can now talk about the index and the nullity of the bilinear 

functional f** on T~. The index of a bilinear functional H, on a vec­

tor space V, is defined to be the maximal dimension of a subspace of V 

on which H is negative definite; the nullity is the dimension of the null­

space, i.e., the subspace consisting of all v E V such that H(v,w) = o 

for every w E V. The point p is obviously a non-degenerate critical 

point of r if and only if r.... on T~ has nullity equal to o. The 

index of on T~ will be referred to simply as the index of f at p. 

The Lemma of Morse shows that the behaviour of r at p can be completely 

described by this index. Before stating this lemma we first prove the 

following: 

LEMMA. ? .1. 

borhood V 
Let f be a c~ function in a convex neigh­
of o in Rn, with f(O) = o. Then 

f(x1, ... ,~) = I xigi(x1 , ... ,~) 
1=1 

for some suitable C~ functions ~ defined in V, with 
(lf 

gi(O) = dx (0). 
i 

PROOF: 

f(x 1 , ••• ,~) = / 

0 

1n 
df(tx1, ... , t~) J '\ df 
---~rr--__.:;:.... dt = L d'Xi (tx1, ... , t~) ·xi dt . 

0 i=1 
1 

Therefore we can let =f 
0 

(lf 
oxi (tx1 , ..• ,txn) dt. 
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LEMMA 2 .2 (Lemma of Morse) . Let p be a non-degenerate 
critical point for f. Then there is a local coordinate 
system (y1 , ... ,~) in a neighborhood U of p with 
yi(p) = o for all i and such that the identity 

f = f(p) _ <Y,>2- ... _ cl·>2 + <Y~+,>2 + ... + <~>2 

holds throughout U, where ~ is the lndex of f at P· 

PROOF: We first show that if there is any such expression for f, 

then ~ must be the index of f at p. For any coordinate system 

( z 1 , ..• , zn) , if 

f(q) = f(p) _ (z,(q))2- .•. _ (zA(q))2 + (zA+1(q))2 + •.. + (zn(q))2 

then we have 

if i 

if i 

otherwise 

which shows that the matrix representing f** with respect to the basis 

Alp·····....£__ I is ~z ~zn P 

-2 

-2 
2 

2 

Therefore there is a subspace of T~ of dimension A where f** is nega­

tive definite, and a subspace V of dimension n-A where f** is positive 
definite. If there were a subspace of T~ of dimension greater than 

on which f** were negative definite then this subspace would intersect V, 

which is clearly impossible. Therefore A is the index of f**" 

We now show that a suitable coordinate system (y1 , •.. ,~) exists. 

Obviously we can assume that p is the origin of Rn and that f(p) = f(O) 

By 2.1 we can write 

for (x1, .•• ,~) in some neighborhood of o. Since o is assumed to be a 

critical point: 

0 . 
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Therefore, applying 2.1 to the gj we have 

for certain smooth functions hij" It follows that 

f(x 1 , ••• ,~) I xixjhij (x 1, ... ,~) . 
i,j=l 

7 

\ole can assume that 1 
hji' since we can write fiij = 2<~j+ hji), 

and then have fiij = fiji and f E xixjfiij . t>loreover the matrix (fiij (O)) 

( 1 o2 f ) is equal to 2 1 j(o) , ox ox and hence is non-singular. 

There is a non-singular transformation of the coordinate functions 

which gives us the desired expression for f, in a perhaps smaller neigh­

borhood of o. To see this we just imitate the usual diagonalization proof 

for quadratic forms. (See for example, Birkhoff and MacLane, "A survey of 

modern algebra," p. 271 . ) The key step can be described as follows. 

Suppose by induction that there exist coordinates u1·····~ in 

a neighborhood u1 of 0 so that 

f (u1)2 ~ 2 l uiujHij(u1, ... ,~) = + ~ (ur-1) + 
i,j~r 

throughout u,; where the matrices (~j (u1, ... ,un)) are symmetric. After 

a linear change in the last n-r+l coordinates we may assu:ne that 1\.r(o) I 

Let g(u1, ... ,~) denote the square root of 11\.r(u1 , ••• ,~) 1. This will 

be a smooth, non-zero function of u1, ... ,~ throughout some smaller neigh­

borhood U2 C U1 of o. Now introduce new coordinates v1, ..• ,vn by 

for i I r 

vr(u1, ... ,un) = g(u1, ... ,~)[~ + L uiHir(u,, ... ,~)/}\.r(u1, ... ,~)J. 
i> r 

It follows from the inverse function theorem that v1, ... ,vn will serve as 

coordinate functions within some sufficiently small neighborhood U3 of o. 

It is easily verified that f can be expressed as 

f = 

0. 
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throughout U 3. This completes the induction; and proves Lermna 2.?. 

COROLLARY 2.3 Non-degenerate critical points are isolated. 

Examples of degenerate critical points (for functions on R and 

R2) are given below, together with pictures of their graphs. 

(a) f(x) = x 3. The origin 

is a degenerate critical point. The origin is a degenerate, and 

non-isolated, critical point. 

(c) f(x,y) = x 3 - 3xy2 =Real part of (x + iy)3. 

(o.o) is a degenerate critical point (a "monkey saddle"). 
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(d) f(x,y) = x 2 The set of critical points, all of which 

are degenerate, is the x axis, which is a sub-manifold of R 2 • 

(e) f(x,y) = x 2y 2 • The set of critical points, all of which are 

degenerate, consists of the union of the x and y axis, which is 

not even a sub-manifold of R2 . 

We conclude this section with a discussion of 1-parameter groups of 

diffeomorphisms. The reader is referred to K. Nomizu, "LiP. Groups and Differ­

ential Geometry," for more details. 

A 1-parameter group of diffeomorphisms of a manifold M is a C~ 

map 

cp:RxM-M 
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such that 

1 ) for each t E: R the map lilt: M - M defined by 

'ilt(q) = rp(t,q) is a diffeomorphism of l-1 onto itself, 

2) for all t,s E: R we have lllt+s = !llt • 'Ps 

Given a !-parameter group <p of diffeomorphisms of M we define 

a vector field X on M as follows. For every smooth real valued function 

f let 
lim f(rph(q)) - f(q) 

h- 0 h 

This vector field X is said to generate the group <p. 

LEMMA 2.4. A smooth vector field on M which vanishes 
outside of a compact set K C M generates a unique 1-
parameter group of diffeomorphisms of M. 

PROOF: Given any smooth curve 

t - c(t) E: M 

it is convenient to define the velocity vector 

de 
Cff E: ™c(t) 

by the identity ~(f) lim fc(t+h)-fc(t) 
h- 0 h (Compare §e.) Now let rp 

be a 1-parameter group of diffeomorphisms, generated by the vector field X. 

Then for each fixed q the curve 

satisfies the differential equation 
drpt(q) 
~ 

with initial condition ~p0 (q) = q. This is true since 

lim f(<pt+h(q)) - f(q,t(q)) 
h-o h 

where p = rpt(q). But it is well known that such a differential equation, 

locally, has a unique solution which depends smoothly on the initial condi­

tion. (Compare Graves, "The Theory of Functions of Real Variables," p. 166. 

Note that, in terms of local coordinates u1 , ... ,un, the differential equa-
dui i 1 n tion takes on the more familiar form: en;= x (u , •.. ,~ ), i = 1, ... ,n.) 
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Thus for each point of 1-1 there exists a neighborhood U and a 

number E > o so that the differential equation 

dcpt(q) 
----ere- = xcpt(q)' cpo(q) = q 

has a unique smooth solution for q E U, ltl <E. 

11 

The compact set K can be covered by a finite number of such 

neighborhoods U. Let E0 > o denote the smallest of the corresponding 

numbers E. Setting cpt(q) = q for q ~ K, it follows that this differen­

tial equation has a unique solution cpt(q) for ltl < E0 and for all 

q E M. This solution is smooth as a function of both variables. Further­

more, it is clear that cpt+s = cpt • cps providing that ltl, lsl,lt+sl < E0 . 

Therefore each such cpt is a diffeomorphism. 

It only remains to define cpt for ltl ~ E0 . Any number t can 

be expressed as a multiple of E0 /2 plus a remainder r with lrl < E0 /2 

If t = k(E0 /2) + r with k L o, set 

• erE /2 • cpr 
0 

where the transformation cpE 12 is iterated k times. If k < 0 
0 

only necessary to replace m by m iterated -k times. 
"'E 0 /2 "'-E 0 /2 

is defined for all values of t. It is not difficult to verify that 

it is 

Thus 

well defined, smooth, and satisfies the condition cpt+s = cpt • cps · This 

completes the proof of Lemma 2.4 

cpt 

is 

REMARK: The hypothesis that X vanishes outside of a compact set 

cannot be omitted. For example let M be the open unit interval (0,1) C R, 

and let X be the standard vector field ~ on M. Then X does not 

generate any 1-parameter group of diffeomorphisms of M. 
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§3. Homotopy Type in Terms of Critical Values. 

Throughout this section, if f is a real valued function on a 

manifold M, we let 

1tf = r- 1 (- oo,al = (p f M: f(p) ~a) . 

THEOREt~ 3.1. Let f be a smooth real valued function 
on a manifold M. Let a < b and suppose that the set 

-1 [ 
f a, b), consisting of all P £ M with a ~ f(p) ~ b, 
is compact and contains no critical points of f. Then . .a I b 
M- is diffeomorphic to M Furthermore, ~ is a de-
format~on retract of Mb, so that the inclusion map 
~- M is a homotopy equivalence. 

The idea of the proof is to push r~b down to ~ along the orthogo­

nal trajectories or the hypersurfaces f =constant. (Compare Diagram 2.) 

Diagram 2. 

Choose a Riemannian metric on M; and let <X, Y > denote the 

inner product of two tangent vectors, as determined by this metric. The 

gradient of f is the vector field grad f on M which is characterized 

by the identity* 

(X, grad f) = X( f) 

(= directional derivative of f along X) for any vector field X. This 

vector field grad f vanishes precisely at the critical points of f. If 

* In classical notation, in terms of local coordinates 
gradient has components r gij ~ 

j Cluj 

1 n u , .•• ,u J the 
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c: R ..... 1·; is a curve with velocity vector ~ note the identity 

< de grad ,. > = d( f• c) 
;:'ft I • --:fr"" 

let p: !·I ..... R be a sr:Jooth function which is equal to 

1 I <grad f, grad f > throughout the ccmpact set r-1 [a, b]; and which vanishes 

outside of a compact neighborhood of this set. Then the vector field X, 

defined by 

xq = p(q) (grad f)q 

satisfies the conditions of Lemma 2. ;, • Hence X generates a 1-parameter 

group of diffeomorphisms 

lilt: M ..... M. 

For fixed q t: M consider the function t-+ f(lllt(q)). If lllt(q) 

lies in the set f- 1[a,bl, then 

<X, grad f) + 1. 

Thus the correspondence 

is linear with derivative +1 as long as f(lllt(q)) lies between a and b. 

Now consider the diffeomorphism ~b-a: M-M. Clearly this carries 

rf' diffeomorphically onto Mb. This proves the first half of 3. 1. 

Define a 1-parameter family of maps 

rt: Mb ..... Mb 

by 

rt(q) = J q l '~>t( a-f( q)) ( q) 

if f(q) 5_ a 

if a 5_ f(q) 5_ b 

Then r 0 is the identity, and r 1 is a retraction from Mb to ~. Hence 

~ is a deformation retract of Mb. This completes the proof. 

REMARK: The condition that f- 1[a,bl is compact cannot be omitted. 

For example Diagram 3 indicates a situation in which this set is not compact. 

The manifold M does not contain the point p. Clearly ~ is not a de­

formation retract of Mb. 
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Diagram 3. 

THEOREM 3. 2. Let f: M- R be a smooth function, and let 
p be a non-degenerate critical point \Ti th index A· Set­
ting f(p) = c, suppose that f- 1 rc-E,C+El is compact, 
and contains no critical point of f other then p, for 
some E > o. Then, for all sufficiently small E, the set 
r-tC+E has the homotopy type of Mc-E with a A-cell attached· 

The idea of the proof of this theorem is indicated in Diagram 11 • 

for the special case of the height function on a torus. The region 

is heavily shaded. \ole will introduce a new function F: r-t - R which 

coincides with the height function f except that F < f in a small neigh­

borhood of p. Thus the region F- 1 (-~,c-E] will consist of Mc-E to­

gether with a region H near p. In Diagram 4, H is the horizontally 

shaded region. 

Diagram 4. 
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Choosing a suitable cell eACH, a direct argument (i.e., push­

ing in along the horizontal lines) 1•ill shm; that Mc-Eu eA is a deformation 

retract of !·le-E u H. Finally, by applying 3.1 to the frmction F and the 

region F-1 [c-E,C+E) 1•e 1•ill see that r.f-E u H is a deformation retract 

of HC+E. This will complete the proof. 

Choose a coordinate system 1 n 
u ' ... ,u in a neighborhood u of p 

so that the identity 

f = c _ (u1)2- ... _ (uA)2 + (uA+1)2+ ... + (un)2 

holds throughout U. Thus the critical point p will have coordinates 

••• = 

Choose E > o sufficiently small so that 

(1) The region f- 1[c-E,C+El is compact and contains no critical 

points other than p. 

(2) The image of U rmder the diffeomorphic imbedding 

1 n (u , ... ,u ): u-Rn 

contains the closed ball. 

((u1 , ... ,un): L: (ui) 2 .$_ 2El 

Now define eA to be the set of points in U Hith 

The resulting situation is illustrated schematically in Diagram '5. 

(u•, .. , 1 u>.)- axis 

f: c f=c+E f: c + E f : c 

Diagram 5. 
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The coordinate lines represent the planes u~+ 1 0 ancl 

u 1 • • • = u~ = o respectively; the circle represents the bourYiary of the 

ball of radius ..Jig; and the hyperbolas represent the hypersur:'accs f- 1 (c-E) 

and f- 1(c+E). The region Mc-E is heavily shaded; the region f- 1 [c-E,cl 

is heavily dotted; and the region f- 1[c,c+El is lightly dotte'l. The hori­

zontal dark line through p represents the cell e~ 

Note that e~ n Mc-E is precisely the boundary . ~ 
e ' so that 

is attached to Mc-E as required. He must prove that r~c-Eu e~ is a de­

formation retract of MC+E. 

Construct a new smooth function F: r~ - R as follows. Let 

be a C~ function satisfying the conditions 

~(0) ) E 

~(r) 0 for r ~ 2E 

-1< ~'(r).$_0 forall r, 

where ~ 1 ( r) = ~ Now let F coincide with f outside of the coordjnate 
neighborhood U, and let 

F = f- ~{(u1)2+ ... +(u~)2 + 2(u~+1)2+ ... +2(un)2) 

within this coordinate neighborhood. It is easily verified that F is a 

well defined smooth function throughout M. 

It is convenient to define two functions 

by 

••• + 

+ ••• 

Then f c - ~ + ~; so that: 

F(q) = c- ~(q) + ~(q) - ~{~(q) + 2~(q)) 

for all q € U. 

ASSERTION 1. The region F- 1 (-~,C+E) coincides with the region 
Mc+E = f-1<- 1 ~,C+E . 

PROOF: Outside of the ellipsoid ~ + 2~ 5. 2E the functions f and 
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F coincide. Hithin this ellipsoid we have 

This completes the proof. 

ASSERTION 2. The critical points of F are the same as those of 

PROOF: Note that 

Since 

-1 - ~·(~+21)) < 0 

dF dF d• dF d =or' +Oii "~ 

1 7 

where the covectors d~ and d'l are simultaneously zero only at the origin, 

it follows that F has no critical points in U other than the origin. 

Now consider the region F- 1 [c-E,C+El. By Assertion 1 together 

with the inequality F ~ f we see that 

F- 1 ( C-E, C+E ] ( f- 1 ( C-E, C+E ] 

Therefore this region is compact. It can contain no critical points of F 

except possibly p. But 

F(p) = c - ~ ( 0) ( c - E 

Hence F- 1[c-E,C+E] contains no critical points. Together with 3.1 this 

proves the following. 

ASSERTION 3. The region F- 1 (-~,c-El is a deformation retract of 

MC+E. 

It will be convenient to denote this region F- 1 (-~,c-El by 

Mc-E u H; where H denotes the closure of F- 1 (-~,c-El - Mc-E . 

REMARK: In the terminology of Smale, the region Mc-E u H is 

described as with a "handle" attached. It follows from Theorem 3. 1 

that the manifold-with-boundary Mc-E u H is diffeomorphic to MC+E. This 

fact is important in Smale's theory of differentiable manifolds. (Compare 

s. Smale, Generalized Poincare's conjecture in dimensions greater than four, 

Annals of Mathematics, Vol. 74 (1961), pp. 391-406.) 
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Now consider the cell e>.. consisting of all points :J. ·..ri th 

~(q) ~ e:, ')(q) = 0. 

Note that e>.. is contained in thP "lmndle" H. In fact, since CIF < o, 
":if 

we have 

F(q) ~ F(p) < c-e: 

but f(q) ~ c-e: for q E e>... 

Diagram 6. 

The present situation is illustrated in Diagram 6. The region 
Mc-e: 

is heavily shaded; the handle H is shaded with vertical arrows; 

and the region F- 1[c-e:,c+e:) is dotted. 

ASSERTION 4. Mc-e: u e>.. is a deformation retract of Mc-e: u H. 

PROOF A d f c-e: c-e: H i : e ormation retraction rt: M u H - M u s 

indicated schematically by the vertical arrows in Diagram 6. More precisely 

let rt be the identity outside of U; and define rt within U as fol­

lows. It in necessary to distinguish three cases as indicated in Diagram 7. 

CASE 1 . \oli thin the region ~ e: let rt correspond to the trans-
!'ormation 

(u1, ... ,un) ( 1 >..t>..+1 tn) 
- U I • • • 1 U I U 1 • • • I U • 
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~E2 
Diagram 7. 

A 
Thus r 1 is the identity and r 0 maps the entire region into e . The 

fact that each rt maps F- 1(-oo,c-El into itself, follmrs from the in-

equality * > o. 
CASE 2. Hi thin the region E < 

the transformation 

< '1 + E let rt correspond to 

( 1 n 1 \ A+ 1 n) u , ... ,u) - (u , ... ,u ,stu , ... ,stu 

where the number st E [o,1 1 is defined by 

st = t + (1-t)((~-E)/'1) 1 /2 

Thus r 1 is again the identity, and r 0 maps the entire region into the 
1 i 

hyper surface f- ( c-E). The reader should verify that the functions stu 

re;:Jain continuous as E, '1 - o. Note that this definition coincides 

vri th that of Case when = E • 

MC-E) 
CASE · . Hi thin the region '1 + E ~ ~ (i.e. , within let 

rt be the identity. This coincides with the preceeding definition when 

e = '1 + E. 

This completes the proof that ~f-Eu eA is a deformation retract 

of F- 1(-oo,C+E]. Together with Assertion 1 it completes the proof of 

Theorem · .2. 

REMARK More generally suppose that there are k non-degenerate 

critical points p 1, ... ,pk with indices A1, ... ,Ak in f- 1(c). Then a 
C-E A1 Ak 

similar proof shows that MC+E has the homotopy type of M u e u ... u e 
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REMARK ., • 4. A simple modification of the proof o:' 3 .. ? shows that 

the set Me is also a deformation retract of !4c+e:. In fact ;.:c ls a 

deformation retract of F- 1 ( -oo,c), which is a deformation !'10-tract a:· l·lc+e:. 

(Compare Diagram 8.) Combining this fact with 3.2 we see easily that 

Mc-e: u e>.. is a deformation retract of !4c:. 

Diagram 8: Me is heavily shaded, and -1 F r c, c+e: 1 is rlotted. 

THEOREM 3.5. If f is a differentiable function on a manifold 
M with no degenerate critical points, and if each Ma is 
compact, then M has the homotopy type of a CW-complex, with 
one cell of dimension >.. for each critical point of index >... 

(For the definition of CW-complex see J. H. c. Whitehead, Combin­

atorial Homotopy I, Bulletin of the American Mathematical Society, Vol. 55, 
(1949), pp. 213-245.) 

The proof will be based on two lemmas concerning a topological 
space X with a cell attached. 

LEMMA 3.6. (Whitehead) let cpo and cpl be homotopic maps 
from the sphere e>.. to x. Then the identity map of X ex-
tends to a homotopy equivalence 

k:X u e >.. -x u e>.. 
cpo cpl 
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PROOF: Define k by the formulas 

k(x) = X for X t: X 

k(tu) 2tu for 1 •:\. 
0 5. t 5. 2• u t: e 

k(tu) c:>2-2t (u) for 1 < t < 2- - 1 I u t: ek 

Here ~t denotes the homotopy between c:>o and cp 1; and tu denotes the 

product of the scalar t with the unit vector u. A corresponding map 

e: X u ek - X u ek 
Clll Cllo 

21 

is defined by similar formulas. It is now not difficult to verify that the 

compositions kf and fk are homotopic to the respective identity maps. 

Thus k is a homotopy equivalence. 

For further details the reader is referred to, Lemma 5 of J. H. C. 

Whitehead, On Simply Connected 4-Dimensional Polyhedra, Commentarii Math. 

Helvetici, Vol. 22 (1949), pp. 48-92. 

LEMMA 3.7. Let ~: e:\.- X be an attaching map. Any 

homotopy equivalence f: X - Y extends to a homotopy 
equivalence 

:\. :\. 
F : X u~ e - Y "'f~ e • 

PROOF: (Following an unpublished paper by P.Hilton.) Define F 

by the conditions 

I FIX 

Fie:\. 

f 

identity 

Let g: Y -X be a homotopy inverse to f and define 

G: y "' ek -X u ek 

f~ gf~ 

by the corresponding conditions GIY g, Gle:\. identity. 

Since gf~ is homotopic to ~. it follows from 3.6 that there is 

a homotopy equivalence 

k: X "' 
gf~ 

We will first prove that the composition 

kGF: X u e:\. -X u ek 
~ ~ 

is homotopic to the identity map. 

..;;>f>L~.:Y\01_,.,. 

~,~~, 1\ \ ~: 
,._- .... \J 

r· 

Sl?..-1/ 
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Let ht be a homotopy between gf and the identity. 

specific definitions of k, G, and F, note that 

kGF(x) = gf(x) for x e: X, 

kGF(tu) 2tu for'o 1 
~ t ~ 2• u e: •A. e 

kGF(tu) h2-2tq>(u) for}~ t ~ 1 ' u e: ·A. e 

The required homotopy 

is now defined by the formula 

qT(x) hT(x) for X e: X ' 
2 ( t ( 1+T qT(tu) tu for 0 m - ----"2 

Using the 

u e: 
• A. 
e 

·A. qT(tu) h2-2t+Tq>(u) for 1+T ( 
~- t < 1' u e: e 

Therefore F has a left homotopy inverse. 

The proof that F is a homotopy equivalence will now be purely 

formal, based on the following. 

ASSERTION. If a map F has a left homotopy inverse L and a 

right homotopy inverse R, then F is a homotopy equivalence; and 

R (or L) is a 2-sided homotopy inverse. 

PROOF: The relations 

LF ~ identity, FR ~ identity, 
imply that 

L ~ L(FR) (LF)R ~ R. 
Consequently 

RF ~ LF ~ identity , 

which proves that R is a 2-sided inverse. 

The proof of Lemma 3.7 can now be completed as follows. The rela-
tion 

kGF ~ identity 

asserts that F has a left homotopy inverse; and a similar proof shows that 

G has a left homotopy inverse. 

Step 1. Since k(GF) ~identity, and k is known to have a left 

inverse, it follows that (GF)k ~identity. 
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Step 2. Since G(Fk) ~identity, and G is known to have a left 

inverse, it follows that (Fk)G ~identity. 

23 

Step 3. Since F(kG) ~ identity, and F has kG as left inverse 

also, it follows that F is a homotopy equivalence. This completes the 

proof of 3.7. 

PROOF OF THEOREM 3.5. Let c1 < c2 < c 3 < ... be the critical 

values of f: M -R. The sequence (cil has no cluster point since each 

~ is compact. The set ~ is vacuous for a< c 1 • Suppose 

a I c 1 ,c2,c 3,... and that ~~a is of the homotopy _type of a C\o/"-complex. 

Let c be the smallest ci >a. By Theorems '.1, 3.2, and 3.3, MC+E has 

h Mc-Eu e~ 1 u ••• u e~j(c) the omotopy type of for certain maps ~,, ... ,~j(c) 
~, ~j(c) 

when E is small enough, and there is a homotopy equivalence h: Mc-E- ~­

He have assumed that there is a homotopy equivalence h': ~ - K, where K 

is a C\o/"-complex. 

a map 

Then K 

type as 

Then each h' 0 h 0 cpj is homotopic by cellular approximation to 

~, 
u e 

*1 

~ 

wj: e j - (~j-1)- skeleton of K. 

u ••• u e~j(c) is a C\of-complex, and has the same homotopy 

* j( c) 

by Lemmas 3.6, 3.7. 

By induction it follows that each ~· has the homotopy type of a 

C\o/"-complex. If M is compact this completes the proof. If M is not com­

pact, but all critical points lie in one of the compact sets ~' then a 

proof similar to that of Theorem 3.1 shows that the set ~ is a deformation 

retract of M, so the proof is again complete. 

If there are infinitely many critical points then the above con­

struction gives us an infinite sequence of homotopy equivalences 

M 
a, c M 

a2 a3 
C M C ••• 

~ t ~ 
K1 c K2 C K3 C ••• 

K denote the union of the Ki in the 

direct limit topology, i.e., the finest possible compatible topology, and 

each extending the previous one. Let 
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let g: M - K be the limit map. Then g induces isomorphisms of homotopy 

groups in all dimensions. We need only apply Theorem 1 of Combinatorial 

homotopy I to conclude that g is a homotopy equivalence. [vnlltehead's 

theorem states that if M and K are both dominated by crT-complexes, then 

any map M - K which induces isomorphisms of homotopy groups is a homotopy 

equivalence. Certainly K is dominated by itself. To prove that M is 

dominated by a CW-complex it is only necessary to consider M as a retract 

of tubular neighborhood in some Euclidean space.) This completes the proof 

of Theorem 3. 5. 

REMARK. We have also proved that each ~ has the homotopy type 

of a finite CW-complex, with one cell of dimension A for each critical 

point of index A in ~- This is true even if a is a critical value. 

(Compare Remark 3.4.) 
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§4. Exa.~ples. 

As an application o!' the theorems of § 3 \ve shall prove: 

THEOREI~ 4.1 (Reeb) . If 1-1 is a compact manifold and f 

is a differentiable function on I~ with only two critical 
points, both of which are non-:iegenerate, then l\1 is 
homeomorphic to a sphere. 

PROOF: This follows from Theorem 3.1 together with the Lemma of 

Norse (§2,2). The two critical points must be the minimwn and maximwn 

points. Say that f(p) = 0 is the mimimwn and f(q) = 1 is the maximwn. 

If E is small enough then the sets ME = f- 1 !o ,El and r- 1 ( 1-E, 1) are 

closed n-cells by §2.2. But ME is homeomorphic to 111 1-E by §3. 1. Thus 

1\1 is the union of two closed n-cells, M 1 -E and f- 1 [ 1 -E, 1 1, matched 

along their common boundary. It is now easy to construct a homeomorphism 

between M and Sn. 

2'5 

REMARK 1. The theorem remains tl'ue even if the critical points are 

degenerate. However, the proof ls more difficult. (Compare ~iilnor, Differ­

ential topolo~_;y, in "Lectures on 1\!odern Mathematics II," ed. by T. L: _Saaty 

(Hiley, 1964), pp. 165-183; Theorem 1'; or R. Rosen, A 1-real< form of the 

star conjecLure for manifolds, Abstract 570-28, Notices Amer. Math Soc., 

Vol. 7 (1960), p. 380; Lemma 1.) 

REMARK 2. It is not true that M must be diffeomorphic to sn with 

it3 usual differentiable structure.(Compare: Milnor, On manifolds homeomor­

phic to the 7-sphere, Annals of Mathematics, Vol. 64 (1956), pp. 399-405. 

In this paper a 7-sphere with a non-standard differentiable structure is 

proved to be topologically s7 by finding a function on it with two non-
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degenerate critical points.) 

As another application of the previous theorems we not8 that lf an 

n-manifold has a non-degenerate function on it with cr.ly threE: cr.:.t:cal 

points then they have index o, n and n/2 (by Polr.care duality), ~nd the 

manifold has the homotopy type of an n/2-sphere wlt:.h an n-cell att:.aciled · 

See J. Eells and N. Kuiper, r<!anifolds which are like proj ec t:.i ve planes, 

Inst. des Hautes Etudes Sci., Publ. Math. 1.4, 1.962. Such a f'uncticr• exist:.s 

for example on t:.he real or complex projective plane. 

Let CPn be complex projective n-space. He •rill think oi' CPn as 

equivalence classes of (n+1)-tuples (z0 , ••• ,zn) of complex nwnbers, with 

Elzjl 2 = 1. Denote the equivalence class of (z0 , ••• ,zn) by (z0 :z, :. ·· :z11l· 

Define a real valued function f on CP n by the irlenti ty 

f ( zo : z 1 : ... : zn) = L c j I z j I 2 

where co,c 1, ... ,cn are distinct real constants. 

In order to determine the critical points of f, consiJer the 
following local coordinate 

with z0 I o, and set 

Then 

are 

system. Let uo 

lz0 I 
zj 

= xj + zo 

x1 ,y1' ... ,xn,yn: 

be the set of' 

iyj 

uo -R 
the required coordinate functions, mapping uo diffeomorphically onto 

the open unit 

so that 

ball in n 2n. Clearly 

lzjl 2 = X 2 2 
I z0 12 - l. (x/ j + Yj 1 

n 

f = c0 + L (cj - c0 )(x/ + y/) 
j:1 

+ Yj 2) 

throughout the coordinate neighborhood u0 • Thus the only critical pcint of 

f within U0 lies at the center point 

P0 = (1:o:o: ... :o) 

of the coordinate system. At this point r is non-degenerate: ann has 

index equal to twice the number of' j With 

Similarly one can consider other coordinate systems centered at the 
;:;cints 

p 
1 ( o: 1 : o: ... : o) , ... , Pn = ( o: 0: ••• : o: 1 ) • 
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It follows that p0 ,p 1 , ••• ,pn are the only critical points of f. The 

index of f at pk is equal to twice the number of j with 

Thus every possible even index between o and 2n occurs exactly once. 

By Theorem 3 . 5 : 

CPn has the homotopy type of a CW-complex of the form 

e0 u e 2 u e 4 u ... u e 2n 

It follows that the integral homology groups of CPn are given by 

for i = o,2,4, ... ,2n 
for other values of i 
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§5. The Morse Inequalities. 

In r~orse 's original treatment of this subject, Theorem 1. 5 was not 

available. The relationship between the topology of l~ and the critical 

points of a real valued function on M were described instead in terms of 

a collection of inequalities. This section will describe this original 

point of vie~r. 

DEFINITION: Let s be a function from certain pairs of spaces to 

the integers. S is subadditive if whenever XJ YJ Z we have S(X,Z) .S. 

S(X,Y) + S(Y,Z). If equality holds, s is called additive. 

As an example, given any field F as coefficient group, let 

~th Betti number of (X,Y) 

rank over F of H~(X,Y;F) 

for any pair (X,Y) such that this rank is finite. R~ is subadditive, as 

is easily seen by examining the following portion of the exact sequence for 
(X,Y,Z): 

· · ·- H~(Y,Z)- ~(X,Z)- ~(X,Y)- ... 

The Euler characteristic x(X,Y) is additive, where X(X,Y) 
L (-1)~ R~(X,Y). 

~~ 5. 1 · Let S be subadditive and let X0 C •.. c ~· 
Then S(X X ) < ~ S(X X ) If s is additive then n' 0 - i' i 1 • equality holds.i=l -

PROOF: 

the case n = 2 

Induction on n. For n = 1, equality holds trivially and 

is the definition of [sub] additivity. 

If the result is true for S(X X ) n - 1 , then n- 1 , 0 

Therefore S(Xn,Xo) < S(X X ) 
- n-1' o 

is true for n. 
+ S(Xn,xn-1) .S. ~ S(Xi,xi-1) 

1 

n-1 
.S. L S(Xi,x1 _1) · 

1 

and the result 

(1) 

S(X) . Taking x0 = 0 in Lemma 5. 1 , we have 

S(Xn) .S. I S(Xi,xi-1) 

~orith equality if S is additive. 
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Let !ol be a co:npact manifold and f a differentiable function 

on r.: ·with isolated, non-degenerate, critical points. Let a 1 < ... < ak 
ai ak 

be such that N contains exactly i critical points, and M = M. 

Then 
ai ai 1 ai 1 L ai 1 

H* ( M , !·I - ) = H* (!-I - v e \ M - ) 

Applying (1) to 3 

where ~i is the index of the 

critical point, 
~ ~ 

~(e i,e i) by excision, 

{ O
coefficient group in dimension ~i 

otherwise. 
a a 

!4 ° C ... C M k = M with S R~ we have 

k a a 
< 'i\ R (M i !o1i- 1) = C,; - L k , "' 

i=1 

where C~ denotes the number of critical points of index ~. Applying this 

formula to the case S = x we have 

k 
X(M) 2 

i=1 

Thus we have proven: 

( ?) 

( 3) 

argument. 

THEOREM 5.? (Heak Morse Inequalities). 
number of critical points of index ~ 

fold lol then 

R~(M) 5 c~ , and 

If C~ denotes the 
on the compact mani-

r c -n ~ R~ c M) = r c -n ~ c~ 
Slightly sharper inequalities can be proven by the following 

LEMMA 5.3. The function s~ is subadditive, where 

S~(X,Y) = R~(X,Y) - R~_ 1 (X,Y) + R~-?(X,Y) - +···~ R0 (X,Y) 

PROOF: Given an exact sequence 

.L,. A..L. B ..1.... C .k... ...... -D-o 

of vector spaces note that the rank of the homomorphism h plus the rank 

of i is equal to the rank of A. Therefore, 
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rank h rank A - rank i 

rank A - rank B + rank j 

rank A - rank B + rank C - rank k 

rank A - rank B + rank C - + ... :!: rank D 

Hence the last expression is ~ o. Now consider the homology exact sequence 

of a triple X ) y ) z. Applying this computation to the homomorphism 

d 
Hk+l(X,Y) - ~(Y,Z) 

we see that 

rank Cl = Rk(Y,Z) - Rk(X,Z) + Rk(X,Y) - Rk_1(Y,Z) + ... ~ 0 

Collecting terms, this means that 

which completes the proof. 

Applying this subadditive function Sk to the spaces 

" C M a, C M a 2 C ••• C M ak 

we obtain the Morse inequalities: 

k a a 
Sk(lvl) ~ L Sk(M i,M i-1) 

1=1 
ck- ck_, +- ... +co 

or 

These inequalities are definitely sharper than the previous ones. 

In fact, adding (4k) and (4k_1), one obtains (2k); and comparing (4k) 

with (4k_1) for k > n one obtains the equality (3). 

As an illustration of the use of the Morse inequalities, suppose 

Ck+l = o. Then Rk+l must also be zero. 

and (4k+ 1 ), we see that 

Rk- Rk-1 +-···:!: Ro 

Comparing the inequalities 

Now suppose that Ck-l is also zero. Then Rk-l = o, and a similar argu­

:-::Ient shows that 

ck-2- ck-3 +- ... +co 
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Subtracting this from the equality above we obtain the following: 

COROLLARY 5.4. If C~+ 1 

R~+ 1 = R~_ 1 = o. 

o then R~ C~ and 

31 

(Of course this would also follow from Theorem ).5.) Note that 

this corollary enables us to find the homology groups of complex projective 

space (see §4) without making use of Theorem 3.5. 
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§6. Manifolds in Euclidean Space. 

Although we have so far considered, on a manifold, only ~unctions 

which have no degenerate critical points, we have not yet even shoHn that 

such functions always exist. In this section we will construct many func­

tions with no degenerate critical points, on any manifoli embeciried in Rn. 

In fact, if for fixed p ERn define the function ~: 1,1 ..... R by ~(q) 

It will turn out that for almost all p, the function ~ has 

only non-degenerate critical points. 

Let M C Rn be a manifold of dimension k < n, cJif'f'erc:nti!!bly em-
bedded in Rn. Let N n C M x R be defined by 

N = ((q,v): q EM, v perpendicular to 14 at q). 

It is not difficult to show that N is an n-dimensional manifold 

differentiably embedded in R2n. (N is the total space of the normal 

vector bundle of M.) 

Let E: N-Rn be E(q,v) q + v. (E is the "endpoint" map.) 

E(q,v) 

DEFINITION. 
e ERn is a focal point of (M,q) ;rith multiplicity 

if 1.1 e = q + v where (q,v) E N and the Jacobian of ( q, v) has E at 
nullity 1.1 > 0. The point e will be called a focal point of M if e 
a focal point of (M,q) for some q E M. 

Intuitively, a focal point of M is a point in Rn where nearby 
normals intersect. 

We will use the following theorem, which we will not prove. 

is 
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THEOREi·I 6. 1 ( Sard) . ! f l·!1 and !~I? are differentiable 
:::ar>..lfcl:is having a countable basis, of the same dimension, 
an:: f: f.l 1 ..... 1·L, is of class c1 , then the image of the 
set o:" critical pcints has measure o in Jll:>. 

A critical point of f is a point where the Jacobian of f is 

singula1•. For a p•oof see Je Rham, "Varietes Differentiables," Hermann, 

Paris, 1955, p. 10. 

COROLLARY 6. :>. Fm• almost all x e: Rn, the point x is 
not a focal point o:~ l•l. 
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PROOF: He have just seen that N is an n-manifold. The point x 

is a focal point iff x is in the !wAge of the set of critical points of 

E: N ..... Rn. Therefore the set of focal points has measure o. 

For a better understanding of the concept of focal point, it is con­

venient to introduce the "second fundamental form" of a manifold in Euclidean 

space. He will not attempt to give an invariant definition; but will make 

use of a fixed local coordinate system. 
1 k n Let u , ... ,u be coordinates for a region of the manifold M CR. 

Then the inclusion map from M to Rn determines n smooth functions 

1 k 1 k x1(u , ... ,u ), ... ,xn(u , ... ,u) 

..... 1 k) -These functions will be written briefly as x(u , ... ,u where x = 
(x1, ... ,~). To be consistent the point q e: M C Rn will now be denoted by 

q. 
The first fundamental form associated with the coordinate system is 

defined to be the symmetric matrix of real valued functions 

The second fundamental form on the other hand, is a symmetric matrix ("fij) 

of vector valued functions. 
0~ It is defined as follows. The vector ~ at a point of M 

ou ou 
can 

be expressed as the sum of a vector tangent to M and a vector normal to M. 
~ 0~ Define rij to be the normal component of ~ 

- ou ou v which is normal to M at q the matrix 

Given any unit vector 

(-v. ~-x ) 
ou1ouj 
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can be called the "second fundamental form of M at q in the direction 
-II v. 

It will simplify the discussion to assume that the coordinates 

have been chosen to that evaluated at -q, is the identity matrix. 

1 f h ix ( -v -;t) Then the eigenva ues o t e matr · ~ij are called the principal 

curvatures K1, ... ,~ of r-1 at q -in the normal direction v. The re-
-1 K_-:1 ciprocals K1 , ... ,-~ of these principal curvatures are called the princi-

pal radii of curvature. Of course it may happen that the matrix (v · 7ij) 

is singular. In this case one or more of the K1 will be zero; and hence 

the corresponding radii K-1 
i will not be defined. 

Now consider the normal line t. consisting of all q + tv, where 

v is a fixed unit vector orthogonal to r-1 at q . 

LE!-1MA 6 • ~ • The focal points of ( M ,q) along are pre-
cisely the points q + Ki1 v, where 5. i 5. k,_ Ki 1 o. 
Thus there are at most, k focal points of (l-1,q) along 
t., each being counted with its proper multiplicity. 

PROOF: Choose n-k vector fi ld - ( 1 k) - ( 1 uk) e s w1 u , ... ,u , ... ,wn-k u , ... , 

along the rranifold so that w1, ... ,wn-k are unit vectors which are orthogo-

nal to each other and to M. He can introduce coordinates 

t 1 , ... , tn-k) on the manifold N C lvl x Rn 

t n-k) correspond to the point 
as follovrs. Let 

1 k (u , ... ,u , 

1 k 1 (u , ... ,u ,t , ... , 

n-k 
r-<, k I \xu, ... ,u), taw(u, k)) ~~ a , · ·. ,u € , 

Then the function 

gives rise to the correspondence 

-( 1 k 1 n-k u , ... ,u ,t , ... ,t ) ~ - 1 k x(u, ... ,u) + '\ a- 1 k ;_t wa(u , ... ,u) , 
...J 

with fartial derivatives 

cie ;>,"X I rx ;:'jwrx 
4ui ?.lui 

+ t ~ 
rx dU~ 

oe -
~til wll 

Taking the inner products of these n-vectors with the linearly independent 
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vectors ox ox - -oul····· ouk' wl, ... ,wn-k we will obtain an nxn matrix whose 

rank equals the rank of the Jacobian of E at the corresponding point. 

This nxn matrix clearly has tte following form 

ox ox 
( oui . ouj 

0 

:lx ) 
ouj 

identity 
matrix 
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Thus the nullity is ~qual t.o t.n.: nullity of ti~c upper left hand clock. t;sir.;_; 

the ldentity 

0 0 
= ou1 + 

we see that this upper left hand block is just the matrix 

Thus: 

( gij - '\ ta wa . -rij ) 
a 

ASSERTION 6.4. q + tv is a focal point of (M,Ci) with multiplicity 

~ if and only if the matrix 

(*) (gij - tv . -rij) 

is singular, with nullity ~. 

Now suppose that 

lar if and only if { is 

more the multiplicity ~ 

(gij) is the identity matrix. Then (*) is singu­

an eigenvalue of the matrix (v . fij l Further-
1 is equal to the crultiplicity of ~ as eigenvalue. 

This completes the proof of Lemma 6.3. 

Now for fixed p ! Rn let us study the function 

llp= f: 1'<1 - R 

where - - -p + p p 

vle have 

Thus f has a critical point at q if and only if - -q - p is normal to i\~ 

at q 
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The second partial derivatives at a critical point are gi•ren by 

( "_.x "'_.x ~x (_. -+)) 2 o o +~· x-p 
ou1 . ~ ()u-'-()uJ 

-Setting p x +tv, as in the proof of Lemma 6.3, this becomes 

Therefore: 

LEMMA 6. 5. The point q € t4 is a degenerate critical point 
of f = I£ if a~d only if p is a focal point of (!4,q). 
The nullity of q as critical point is equal to the multi­
plicity of p as focal point. 

Combining this result with Corollary 6.? to Sar9's theorem, we 

immediately obtain: 

THEOREM 6. 6. For almost all p € Rn (all but a set of 
measure o) the function 

~: M-+R 

has no degenerate critical points. 

This theorem has several interesting consequences. 

COROLLARY 6.7. On any manifold M there exists a dif­
ferentiable function, with no degenerate critical points, 
for which each ~ is compact. 

PROOF: This follows from Theorem 6.6 and the fact that an n-dimen­

sional manifold M can be embedded differentiably as. a closed subset of 

R2n+ 1 (see Whitney, Geometric Integration Theory, p. 113) · 

APPLICATION 1. A differentiable manifold has the homotopy type of 

a CW-complex. This follows from the above corollary and Theorem 3.5. 

APPLICATION 2. On a compact manifold M there is a vector field 

X such that the sum of the indices of the critical points of X equals 

X(M), the Euler characteristic of M. This can be seen as follows: for 

any differentiable function f on M we have x(M) = L (-1)~ C~ where C~ 

is the number of critical points with index ~. But (-1)~ is the index of 

the vector field grad f at a point where f has index ~. 
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It follows that the swn of the indices of any vector field on N 

is equal to X(N) because this sum is a topological invariant (see Steen­

rod, "The Topology of Fibre Bundles," §39.7). 

The preceding corollary can be sharpened as follows. Let k ~ o 

be an integer and let K C N be a compact set. 

COROLLARY 6.8. Any bounded smooth function f: M-+ R can 
be uniformly approximated by a smooth function g which 
has no degenerate critical points. Furthermore g can be 
chosen so that the i-th derivatives of g on the compact 
set K uniformly approximate the corresponding derivatives 
of f, for i < k. 

(Compare M. Morse, The critical points of a function of n vari­

ables, Transactions of the American Mathematical Society, Vol. 33 (1931), 

pp. 71 -91 . ) 

PROOF: Choose some imbedding h: !vi -Rn of M as a bounded sub­

set of some euclidean space so that the first coordinate h1 is precisely 

the given function f. Let c be a large nwnber. Choose a point 

P (-c+e:l'e:2, ... ,e:n) 

close to (-c,o, ... ,o) ERn so that the function Lp= M -+ R is non-

degenerate; and set 
LpCx) - c2 

2C 

Clearly 

g(x) 

g is non-degenerate. A short computation shows 

g(x) = f(x) + ! hi(x) 2/2c-! e:i~(x)/c +I 
1 1 1 

that 

Clearly, if c is large and the e:i are small, then g will approximate 

f as required. 

The above theory can also be used to describe the index of the 

function 

Lp= M -+ R 

at a critical point. 

LEMMA 6.9. (Index theorem for Lp·l The index of Lp 
at a non-degenerate critical point q E M is equal to 
the number of focal points of (M,q) which lie on the 
segment from q to p; each focal point being counted 
with its multiplicity. 
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An analogous statement in Part III (the Morse Index Theorem) will 

be of fundamental importance. 

PROOF: The index of the matrix 

( o2~ ) = 2(8j_J - tv . "'liJ) 
~ 

is equal to the number of negative eigenvalues. Asswning that ( Sj_j) is 

the identity matrix, this is equal to the number of eigenvalues of (v · 1'ij) 

which are ~ { Comparing this statement with 6.3, the conclusion follows. 
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§7. The Lefschetz Theorem on Hyperplane Sections. 

As an application of the ideas which have been developed, we will 

prove some results concerning the topology of algebraic varieties. These 

were originally proved by Lefschetz, using quite different arguments. The 

* present version is due to Andreotti and Frankel . 

THEOREM 7. 1 . If t-l C en is a non-singular affine alge­
braic variety in complex n-space with real dimension 2k, 
then 

for i > k. 

This is a consequence of the stronger: 

THEOREM 7.2. A complex analytic manifold M of complex 
dimension k, bianalytically embedded as a closed subset 
of en has the homotopy type of a k-dimensional CW-complex. 

The proof will be broken up into several steps. First consider a 

quadratic form in k complex variables 

( 1 k) '\' b zhzj Q.z, ... ,z =Lhj 
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If we substitute xh + iyh for and then take the real part of Q. we 

obtain a real quadratic form in 2k real variables: 

Q. ' ( 1 k 1 I<: '\ h h j j x , ... ,x ,y , ... ,y) =real part of Lbhj(x +iy )(x +iy) 

ASSERTION 1. If e is an eigenvalue of Q.' with multiplicity ~. 

then -e is also an eigenvalue with the same multiplicity ~· 

PROOF. The identity Q.(iz1 , ... ,izk) = -Q.(z1 , ... ,zk) shows that 

the quadratic form Q.' can be transformed into -Q.' by an orthogonal 

change of variables. Assertion 1 clearly follows. 

* Sees. Lefschetz, "L'analysis situs et la geometrie algebrique," Paris, 
1924; and A. Andreotti and T. Frankel, The Lefschetz theorem on hyperplane 
sections, Annals of Mathematics, Vol. 69 (1959), pp. 713-717. 
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Now consider a complex manifold 1·1 which is bianalyticall:r imbed­

ded as a subset of en. Let q be a point of l·l. 

ASSERTION 2. The focal points of (M,q) along any normal line 

occur in pairs which are situated symmetrically about q. 

In other words if q + tv is a focal point, then q - tv is a 

focal point with the same multiplicity. 

PROOF. 

borhood of q 

Choose complex coordinates z 1 , ... , zk for 1•1 in a neigh-

1 k M-en so that z (q) = ... = z (q) = o. The inclusion map 

determines n complex analytic functions 

1 k wa = wa(z , ... ,z ), a= 1, ••. ,n. 

Let v be a fixed unit vector which is orthogonal to M at q. Consider 

the Hermitian inner product 

I wa:va = I wa(z1, .•. ,zk)va 

of w and v. This can be expanded as a complex power series 

Lwa(z1, ... ,zk)va =constant+ Q.(z1, ... ,zk) +higher terms, 

where Q denotes a homogeneous quadratic function. (The linear terms van­

ish since v is orthogonal to M.) 

Now substitute xh + iyh for zh so as to obtain a real coordinate 

system for M; and consider the real inner product 

w • v = real part of "\ w v L a a 

This function has the real power series expansion 

Q. ' ( 1 k 1 k w · v = constant + x , ... ,x ,y , ... ,y ) + higher terms. 

Clearly the quadratic terms Q.' determine the second fundamental form of 

M at q in the normal direction v. By Assertion 1 the eigenvalues of 

Q' occur in equal and opposite pairs. Hence the focal points of (M,q) 

along the line through q and q + v also occur in symmetric pairs. This 

proves Assertion 2. 

We are now ready to prove 7.?. Choose a point peen so that the 

squared-distance function 
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~: 1·1- R 

has nc .-iegenerate critical points. Since 1<1 is a closed subset of en, it 

is clear that each set 

l·f = r.,p 1 [o,al 

is ccr:1pact. Now consider the index of at a critical point q. Accord-

ing to 6.9, this index is equal to the number of focal points of (M,q) 

which lie on the line segment from p to q. But there are at most 2k 

focal points along the full line through p and q; and these are distri­

bute:l. sy;rlnetrically about q. Hence at most k of them can lie between p 

and q. 

Thus the index of at q is < k. It follows that M has the 

homotopy type of a ~v-complex of dimension < k; which completes the proof 

of 7.?. 

COROLLARY 7.3 (Lefschetz). Let V be an algebraic variety 
of complex dimension k which lies in the complex projective 
space C P n. Let p be a hyperplane in CP n which contains 
the singular points (if any) of v. Then the inclusion map 

v n P- V 

induces isomorphisms of homology groups in dimensions less 
than k-1. Furthermore, the induced homomorphism 

Hk_ 1 (V n P;Z) ..... Hk_ 1 (V;Z) 

is onto. 

PROOF. Using the exact sequence of the pair (V,V n P) it is 

clearly sufficient to show that ~(V,V n P;Z) = o for r ~ k-1. But the 

Lefschetz duality theorem asserts that 

~(V,V n P;Z) ~ H2k-r(V -(V n P);Z) 

But V -(V n P) is a non-singular algebraic variety in the affine space 

CPn - P. Hence it follows from 7.? that the last group is zero for r < k-1 · 

This result can be sharpened as follows: 

THEOREM 7.4 (Lefschetz). Under the hypothesis of the 
preceding corollary, the relative homotopy group 
~r(V,V n P) is zero for r < k. 
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PROOF. The proof will be based on the hypothesis that some neigh­

borhood U of V n P can be deformed into V n P within V. This can be 

proved, for example, using the theorem that algebraic varieties can be tri­

angulated. 

where 

In place of the function ~: V - V n P ..... R we will use 

{ 
0 

f(x) = 
1 /~(x) 

for x £ V n P 

for x r/ P. 

f: v- R 

Since the critical points of ~ have index ~ k it follows that 

the critical points of f have index ~ 2k - k = k. The function f has 

no degenerate critical points with E ~ f < ~. Therefore V has the 

homotopy type of vE = f-1[o,E) with finitely many cells of dimension ~ k 

attached. 

Choose E small enough so that v£ C U. Let Ir denote the unit 

r-cube. Then every map of the pair (Ir,ir) into (V,V n P) can be deform­
ed into a map 

(Ir,Ir)- (v£ ,V n P) C (U,V n P) 

since r < k, and hence can be deformed into V n P. This completes the 
proof. 



PART II 

A RAPID COURSE IN RIEMANNIAN GEOMETRY 

§e. Covariant Differentiation 

The object of Part II will be to give a rapid outline of scme basic 

concepts of Riemannian geometry 11hich 1-lill be needed later. For more infer-

rr.ativr, u-.e r·eader should consult Non:izu, "Lie Groups and differential t;eo-

metry. Natli. Soc. Japan, 19~6; Helgasou, "Differential 1;eometr•y a1:d syn:­

metric spaces," Academic Press, 1962; Sternberg, "Lee tuJ•es ou differential 

geometry," Prentice-Hall, 196!1; or lE.llL,"Witz, ''Differential and Riemannian 

geometry," Academic Press, 1965. 

Let M be a smooth manifold. 

DEFINITION. An affine connection at a point p € l\l is a function 

which assigns to each tangent vector XP € T~ and to each vector field 

a new tangent vector 

y 

called the covariant deri va ti ve • of y in the direction xp. This is re-

quired to be bilinear as a function of xP 

f: M-+ R 

and Y. FW'thermore, if 

is a real valued function, and if fY denotes the vector field 

( fY) 1 

·then 1- is required to satisfy the irienti ty 

* Note that OW' X 1- Y coincides with Nomizu's 
tended to suggest that the differential operator 
y, 

~xY. The notation is in-
X acts on the vector field 
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(As usual, ~f denotes the directional derivative of f in the iirection 

Y-p.) 

A global affine connection (or briefly a connection) on ~~ is a 

function which assigns to each p € M an affine connection rp at p, 

satisfying the following smoothness condition. 

1) If X and Y are smooth vector fields on M then the vector 

field X r Y, defined by the identity 

must also be smooth. 

Note that: 

( 2) x f- y is bilinear as a function of X and y . 

(3) (fX) rY = f(X rY), 

(4) (X r (fY) = (Xf)Y + f(X 1- Y) . 

Conditions (1), (2), (3), (4) can be taken as the definition of 

a connection. 

In terms of local coordinates 1 n 
u , ... ,u defined on a coordinate 

neighborhood U C M, 

valued functions ri~ 

field ~ on U. 

the connection 1- is determined by smooth real 

Clu 
uniquely as 

on U, as follows. 

Then any vector field X 

Let Clk denote the vector 

on U can be expressed 

where the xk are real valued functions on U. In particular the vector 

field can be expressed as 

( 5) 

These functions rJj determine the 

In fact given vector fields X L xi<\ 

expand X 1- Y by the rules (2), (3), (4); 

( 6) X 1- y 

connection completely on U. 

and Y L yJ 2lj one can 

yielding the formula 
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stands for the real valued function 

Conversely, given any smooth real valued functions on U, 

one can define X ~ Y by the formula (6). The result clearly satisfies 

the conditions (1), (2), ( 3), (4), (5). 

Using the connection ~ one can define the covariant derivative of 

a vector field along a curve in l·l. First some definitions. 

A parametrized curve in ~I is a smooth function c from the real 

numbers to H. A vector field V along the curve c is a function which 

assigns to each t € R a tangent vector 

vt E ™c(t) 

This is required to be smooth in the following sense: For any smooth func­

tion f on M the correspondence 

t - Vtf 

should define a smooth function on R. 

As an example the velocity vector field ~ of the curve is the 

vector field along c which is defined by the rule 

Here d 
a.t: 

de d 
a.t: c* a.t: 

denotes the standard vector field on the real numbers, and 

denotes the homomorphism of tangent spaces induced by the map c. (Compare 

Diagra!Jl 9.) 

Diagram 9 
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Now suppose that M is provided with an affine connection. Then 

any vector field v along c determines a new vector field ~ along c 

called the covariant derivative of V. The operation 

v -

is characterized by the following three axioms. 

a) 

b) If 

c) If 

vt 

DV DW 
= or+or 

f is a smooth real valued function 

D(fV) df v fDV --o:r = ere + ere 
v is induced by a vector field y 

= yc(t) for each t, then DV is or 

on R 

on M, 

equal to 

then 

that is if 

de 1- y or 
(= the covariant derivative of y in the direction of the 

velocity vector of c) 

LEMMA8 1 Th i i V DV · • ere s one and only one opera t on - ere 
which satisfies these three conditions. 

PROOF: Choose a local coordinate system for M, and let 

u1 (t), .. ,un(t) denote the coordinates of the point c(t). The vector 

field V can be expressed uniquely in the form 

v = I 
where 1 n 

v , ... ,v are real valued functions on R (or an appropriate open 

subset of R), and o1 , ••• ,on are the standard vector fields on the co­

ordinate neighborhood. It follows from (a), (b), and (c) that 

~ I ( ~ o j + vj ~ 1- o j) 
j 

= 2: ( ~ + L ~ ri~ vj) ok 
k i,j 

Conversely, defining ~ by this formula, it is not difficult to verify 

that conditions (a), (b), and (c) are satisfied. 

A vector field V along c is said to be a parallel vector field 

if the covariant derivative ~ is identically zero. 
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LEloll>lA 8.?. Given a curve c and a tangent vector V 0 
at the point c(o), there is one and only one parallel 
vector field V along c which extends V0 • 

PROOF. The differential equations 

dui k j 
~ v 

""""Ci't: 'ij 0 

have solutions vk(t) which are uniquely determined by the initial values 

vk(o). Since these equations are linear, the solutions can be defined for 

all relevant values of t. (Compare Graves, "The Theory of Functions of 

Real Variables," p. 152.) 
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The vector Vt is said to be obtained from v0 by parallel trans­

lation along c. 

Now suppose that M is a Riemannian manifold. The inner product 

of two vectors ~' YP will be denoted by <xp, YP) 

DEFINITION. A connection r on M is compatible with the Rieman-

nian metric if parallel translation preserves inner products. In other words, 

for any parametrized curve c ar.d any pair P, P' of parallel vector fields 

along c, the inner product ( p, p • ) should be constant. 

LEMMA 8.3. 
the metric. 
Then 

Suppose that the connection is compatible with 
Let V, \-! be any two vector fielcts along c. 

PROOF: Choose parallel vector fields P1 , ... ,Pn along c which 

are orthonormal at one point of c and hence at every point of c. Then 

viPi and l wjPj respec­

function on R). It fol-

the given fields V and \-! can be expressed as I 
tively (where vi <v,Pi > is a real valued 

lows that (V,W) I viwi and that 

DV L dvi D\-! I dwj 
err """O"E pi, err or PJ 

Therefore 

(~,W) + <v,~) I ( ~ .?- + vi ~) & <v,w) , 

which completes the proof. 
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COROLLARY 8. 4. For any vector fields Y, Y' on r.J an: any 

vector ~ € T~: 

~ (Y,Y') (~ 1- Y,Yp) + (Yp,Xp ~ Y') . 

PROOF. Choose a curve c whose velocity vector at t 0 

and apply 8. 3. 

is 

DEFINITION 8.5. A connection 1- is called symmetric if it satis-

* fies the identity 

(X 1- Y) - (Y 1- X) [X,Yl . 

(As usual, [X,Yl denotes the poison bracket [X,Ylf = X(Yf) - Y(Xf) of 

two vector fields.) Applying this identity to the case X = ~i' Y = oj, 

since [oi,ojl = o one obtains the relation 

Conversely if 

verify that the connection 

borhood. 

o. 

then using formula (6) it is not difficult to 

1- is symmetric throughout the coordinate neigh-

LEMMA 8.6. (Fundamental lemma of Riemannian geometry.) 
A Riemannian manifold possesses one and only one sym­
metric connection which is compatible with its metric. 

(Compare Nomizu p. 76, Laugwitz p. 95.) 

PROOF of uniqueness. Applying 8.4 to the vector fields oi,oj,ok, 

and setting < oj,ok > 

0i gjk 

gjk one obtains the 1aen~ity 

< oi 1- aJ ,ak > + < oJ ,ai ~ ak > 
Permuting i,j, and k this gives three linear equations relating the 

* The following reformulation may (or may not) seem more intuitive. Define 
The "covariant second derivative" of a real valued function f along two 
vectors ~,Yp to be the expression 

~(Yf) - (~ 1- Y)f 

where Y denotes any vector field extending yp, It can be verified that 
this expression does not depend on the choice of y, (Compare the proof of 
Lemma 9.1 below.) Then the connection is symmetric if this second deriva­
tive is symmetric as a function of ~ and yp, 
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three -!uantl ties 

(There are only tlu•ee such quanti ties since 21 i 1- ~.i ."- 1 1- ~- • l These . ~ 

equations :an be solved uniquely; yieUing the first Christoffel identity 

1 
? (\gjk + ~jgik 

The left hand side of this ijentity is equal to ~ Multiplying 

by the inverse (gkf) of' the n:atrix (gfk) this yields the second Christof­

fel identity 

Thus the connection is uniquely determined by the metric. 
r Conversely, defining rij by this formula, one can verify that the 

resulting connection is symmetric and compatible with the metric. This 

completes the proof. 

An alternative characterization of symmetry will be very useful 

later. Consider a "parametrized surface" in M: that is a smooth function 

., 
s: R M. 

By a vector field V along s is meant a function which assigns to each 
., 

(x,y) E: R.. a tangent vector 

As examples, the two 

v(x,y) E: ™s(x,y) 

vector fields ~ and give rise to vee-

tor fields 

C'ls ann Cis 
dx 7Fj 

d 
s* Tx 

standard 
01 

and s* 7Fj along s. These will be denoted briefly by 

and called the "velocity vector fields" of s. 

DV 
dx and 

For any smooth vector field V along s the covariant derivatives 

DV are ne1.,r vector fields, constructed as follows. For each fixed Oy 

y0 , restricting V to the curve 

one obta.ins a vector fielrt along 

respect to x is defined to be 

this curve. 

( DV ) 
-:rx (x,yo) 

the entire parwnetrized surface s. 

Its covariant derivative with 

This defines ~ along 

As examples, we can form the two covariant derivatives of the two 
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vector fields as and as 
Ox dy The derivatives .;& * and ~ * are 

simply the acceleration vectors of suitable coordinate curves. However, 

the mixed derivatives .;&* and ~* cannot be described so simply. 

LEMMA 8.7. If 
D as the connection is symmetric then ax ay 

PROOF. Express both sides in terms of a local coordinate system, 

and compute. 
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§9. The Curvature Tensor 

The curvature tensor R of an affine connection ~ measures the 

extent to which the second covariant derivative oi ~ (oj ~ Z) is sym­

metric in i and j. Given vector fields X,Y,Z define a new vector field 

* R(X,Y)Z by the identity 

R(X,Y)Z -X ~ (Y ~ Z) + Y ~ (X ~ Z) + [X,Yl ~ Z 

LEMMA 9.1. The V3hte of R(X,Y)Z at a point p E ~1 

depends only on t.Jl,~ vectors XP,YP,ZP at this point 
p and not on thP.:P vall.les at nearby points. FurtheP­
more the correspondence 

Xp,Yp,zp - R(~,Yp)Zp 

from to T~ is tri-linear. 

Briefly, this lemma can be expressed by saying that R is a "tensor." 

PROOF: Clearly R(X,Y)Z is a tri-linear function of X,Y, and Z. 

If X is replaced by a multiple rx then the three terms -X ~ (Y ~ Z), 

Y ~(X~ Z), [X,Yl ~ Z are replaced respectively by 

i) - fX 1- (Y ~ Z) , 

ii) (Yf) (X ~ Z) + fY ~ (X ~ Z) 

iii) - (Yf) (X ~ Z) + f[X,Yl ~ Z 

Adding these three terms one obtains the identity 

R(fX,Y)Z fR(X,Y) Z 

Corresponding identities for Y and z are easily obtained by similar 

computations. 

Now suppose that X I Xidi' y > yioj and z > 
Then 

R(X,Y)Z > i j k 
'--

R(x oi,y oj)(z okl 

\ xiyjzk R(Cl Cl )~ I i' j k 

* 

k z Clk. 

Nomizu gives R the opposite sign. Our sign convention has the advan-
tage that (in the Riemannian case) the inner product < R( ~h' oi) ~ j, ?lk > 
ccinci·ies with the classical symbol Rhijk . 
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Evaluating this expression at p one obtains the formula 

(R(X,Y)Z)P = L xi(p)yj(p)zk(p)(RCoi,oJ)ok)p 

which depends only on the values of the functions xi,yJ,zk at p, and 

not on their values at nearby points. This completes the proof. 

Now consider a parametrized surface 

s: R2 - l~ 

Given any vector field V along s. one can apply the two covariant dif­

ferentiation operators ~ and ~ to V. In general these operators will 

not commute with each other. 

lEMMA 9.2. ( os os) 
R 'dx•"dy V 

PROOF: Express both sides in terms of a local coordinate system, 

and compute, making use of the identity 

[It is interesting to ask whether one can construct a vector field 

P along s which is parallel, in the sense that 

D Oxp 
D dyp o, 

and which has a given value p(o,o) at the origin. In general no such 

vector field exists. However, if the curvature tensor happens to be zero 

then P can be constructed as follows. Let P(x,o) be a parallel vector 

field along the x-axis, satisfying the given initial condition. For each 
fixed x0 let be a parallel vector field along the curve 

having the right value for y = o. 

Clearly ~ P is identically zero; 

Now the identity 

This defines P everywhere along s. 
D and Ox P is zero along the x-axis. 

D D D D ( os as ) eyoxP-Oxoyp R ox•oy p o 

implies that ~~ p = o. In other words, the vector field ~ P is 

parallel along the curves 
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Since ( i[ P)(x0 ,o) o, this implies that {k P is identically zero; 

and completes the proof that P is parallel along s. l 

Henceforth we will assume that l·l is a Riemannian manifold, pro­

vided with the unique symmetric connection which is compatible with its 

metric. In conclusion we will prove that the tensor R satisfies four 

symmetry relations. 

LEl-1!-lA. 9. 3. The curvature tensor of a Riemannian manifold 
satisfies: 
(1) R(X,Y)Z + R(Y,X)Z = o 
(2) R(X,Y)Z + R(Y,Z)X + R(Z,X)Y o 
( :') ( R(X,Y)Z,I.f) + ( R(X,Y)H,Z) o 
( 4) (R(X,Y) Z,l-1) = ( R(Z,H)X,Y) 

PROOF: The skew-symmetry relation (1) follows immediately from the 

definition of R. 

Since all three terms of (2) are tensors, it is sufficient to 

prove (2) when the bracket products [X,Y], [X,Zl and [Y,Z] are all 

zero. Under this hypothesis we must verify the identity 

- X 1- (Y 1- Z) + y 1- (X 1- Z) 

- y 1- (Z 1- X) + z 1- (Y 1- X) 

- z 1- (X 1- Y) + X 1- (Z 1- Y) 0 • 

But the symmetry of the connection implies that 

YI-Z-ZI-Y [Y,Zl 0 • 

Thus the upper left term cancels the lower right term. Similarly the re­

maining terms cancel in pairs. This proves (2). 

To prove (3) we must show that the expression (R(X,Y)Z,H) is 

skew-symmetric in Z and H. This is clearly equivalent to the assertion 

that 

(R(X,Y)Z,Z) o 

for all X,Y,Z. Again we may assume that [X,Yl 

(R(X,Y)Z,Z) is equal to 

o, so that 

( - X 1- (Y 1- Z) + Y t- (X 1- Z) , Z) 
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In other words we must prove that the expression 

< Y 1- (X 1- Z) ,z> 

is s~~etric in X and Y. 

Since [X,Yl o the expression YX < Z,Z > is s~'Tletric in X 

and Y. Since the connection is compatible with the metric, we have 

2 <x 1- z,z > 
hence 

YX (z,z> = 2 (Y 1-(X 1- Z),Z> + 2 (X 1- Z,Y 1- Z) 

But the right hand term is clearly symmetric in X and Y. Therefore 

(Y 1- (X 1-Z),Z> is symmetric in X andY; which proves property (3). 

Property (4) may be proved from (1), (2), and (3) as follows. 

<R (X, Y) Z, W> 

<RIY, Z)X,W> 

<RIX,W)Y,Z> 

Formula (2) asserts that the sum of the quantities at the vertices 

o:~ shaded triangle H is zero. Similarly (making use of ( 1) and ( ~)) the 

s~~ of the vertices of each of the other shaded triangles is zero. Adding 

these identities for the top two shaded triangles, and subtracting the 

~jentities for the bottom ones, this means that twice the top vertex minus 

t·,.;i:::e the bottom vertex is zero. This proves (4), and completes the proof. 
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§10. Geodesics and Completeness 

Let f·l be a connected Riemannian manifold. 

DEFINITION. A parametrized path 

-y: I -Ill, 
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where I denotes any interval of real numbers, is called a geodesic if the 

acceleration vector field ~ ~ is identically zero. Thus the velocity 

vector field ~ must be parallel along .,. If ., is a geodesic, then the 

identity 
~<~~~> 2 ( D dy dy > en; Qf;• en; 0 

shows that the length 11~11 < dy dy ) 1 /? of the velocity vector is Qf;t en; 
constant along .,. Introducing the arc-length function 

s(t) .\ ll~lldt + constant 

This statement can be rephrased as follows: The parameter t along a 

geodesic is a linear function of the arc-length. The parameter t is actu-

ally equal to the arc-length if and only if 11~11 1 • 

In terms of a local coordinate system with coordinates u1 , ••• ,un 

a curve t- 1 ( t) € M determines n smooth functions 
1 n u (t), ... ,u (t). 

The equation D dy 
crt crt for a geodesic then takes the form 

k 1 n dui duj 
r i j ( U I • • • I U ) ""'Q'f ""'Q'f 0 

The existence of geodesics depends, therefore, on the solutions of a certain 

system of second order differential equations. 

Here -u 

More generally consider any system of equations of the form 

stands for 

d2ti 
dt2 

( 1 n 
U I .. , 1 U ) 

"Fcli, ~) 

and F stands for an n-tuple of 

functions, all defined throughout some neighborhood U of a point 

c"' 
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EXISTENCE AND UNIQUENESS THEOREM 1 o. 1 . 
neighborhood H of the point (u1 ;v1) 
E > 0 so that, for each (uo,vo) £ H 
tial equation 

There exists a 
an::J a number 

the ~lifferen-

has a unique solution t - u( t) which is riefinecl fm• 

ltl < E, and satisfies the initial con~itions 

U(O) ~ (0) 

Furthermore, the solution depends smoothly on the in­
itial conditions. In other wor1s, the correspon'iencc 

(uo ;vo' t) - u( t) 

from H x (-e,E) to nn is a c"' function of all 
2n+1 variables. 

PROOF: Introducing the new variables this system of 

second order equations becomes a system of ::>n first order <?'].uations: 

I -v 

n 

The assertion then fellows from Graves, "Theory of Functions of Real vari­

ables," p. 166. (Compare our §2.4.) 

Applying this theorem to the differential equation for geo~1esics, 

one obtains the following. 

LEMMA 10.?. For every point p on a Riemannian 
0 

manifold M there exists a neighborhood U of P0 

and a number E > o so that: for each p £ U and 
each tangent vector v £ T~ with length < E 

there is a unique geodesic 

'v: (-?,?)- M 

satisfying the conditions 

P, v 

PROOF . If •re were ~ri lling to replace the interval ( - ::> , ") bY an 

arbitrarily small interval, then this statement would follow immediately 

from l:l.l. To be more precise; there exists a neighborhood U of p0 and 
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nLllllbers so that: for each p E U and each V E Tl'<~ lvith 

llv II < E 1 there is a unique geodesic 

satisfying the required initial c9nditions. 

To obtain the sharper statement it is only necessary to observe that 

the differential equation for geodesics has the following homogeneity pro­

perty. Let c be any constant. If the parametrized curve 

t - 'Y(t) 

is a geodesic, then the parametrized curve 

t - 7(ct) 

will also be a geodesic. 

Now suppose that E is smaller than e 1e 2 • Then if llvll < E and 

ltl < 2 note that 

Hence we can define 'Yv(t) to be 'Yv/e?(e 2t) . This proves 10.2. 

This following notation will be convenient. Let v E ™q be a 

tangent vector, and suppose that there exists a geodesic 

7: [o, 1) - M 

satisfying the conditions 

q, ~(0) v. 

Then the point 7(1) EM will be denoted by expq(v) and called the 

* exponential of the tangent vector v. The geodesic 'Y can thus be des-

cribed by the formula 

* The 
is the 
at the 

historical motivation for this terminology is the following. If M 
group of all n x n unitary matrices then the tangent space ™r 
identity can be identified with the space of n x n skew-Hermitian 

matrices. The function 

expi: ™I - M 
as defined above is then given by the exponential power series 

+ ••• 
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Lemma 10.2 says that expq(v) is defined providing that iiVil is small enough. 

In general, expq(v) is not defined for large vectors 

defined at all, expq(v) is always uniquely defined. 

v. However, if 

DEFINITION. The manifold N is geodesically complete if expq ( v) 

is defined for all q E M and all vectors v E ™q· This is clearly equiva­

lent to the following requirement: 

For every geodesic segment 10 : [a,bl - N it should be possible 

to extend "o to an infinite geodesic 

-y: R - M 

We will return to a study of completeness after proving some local results. 

Let TM be the tangent manifold of M, consisting of all pairs 

(p,v) with P E M, v E T~. We give T!~ the following Coo structure: 

if is a coordinate system in an open set U C Ivl then every 

tangent vector at q E U can be expressed uniquely as t 1 d1 + .•• + tndn' 

where di - ~I Then the functions u 1 , ••• ,un,t1 , .•• ,tn constitute 
- dU.i. q 

a coordinate system on the open set TU C TM. 

Lemma 10.2 says that for each p E M the map 

(q,v) - expq(v) 

is defined throughout a neighborhood V of the point (p,o) E TM. Further­

more this map is differentiable throughout V. 

Now consider the smooth function F: V - M x M defined by 
F(q,v) (q, expq(v)). We claim that the Jacobian of F at the point 

(p,O) is non-singular. In fact, denoting the induced coordinates on 

U x U C M x M by ( 1 n 1 n) ha u 1 , ••. , u 1 , u 2 , ••• , u 2 , we ve 

d 
dUl 

1 

d 
dUJ 

? 

Thus the Jacobian matrix of F at (p,o) 

hence is non-singular. 

;:, 
+ 

;,ui 
? 

has the form ( I 
0 

I ) ' 
I 

and 

It follows from the implicit function theorem that F maps some 

neighborhood V' of (p,o) E TM diffeomorphically onto some neighborhood 
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of (p,p) E 1·1 x 1·1. He may assume that the first neighborhood V' consists 

of all pairs (q,v) such that q belongs to a given neighborhood U' of 

p and such that llvll <E. Choose a smaller neighborhood H of p so that 

F(V 1 ) ) H x H. Then we have proven the following. 

~~ 10.3. For each p E M there exists a neighborhood 
H and a number E > o so that: 

( 1) Any two points of H are joined by a unique 
geodesic in M of length <E. 

(?) This geodesic depends smoothly upon 
points. (I.e., if t ..... expq 1 (tv), o < t < 1, 

geodesic joining q1 and q2 , then the pair 
T~l depends differentiably on (q 1 ,q2 ).) 

the two 
is the 

(q1 ,v) E 

(3) For each q E H the map expq maps the open 
E-ball in ™q diffeomorphically onto an open set 
uq ) H. 

REMARK. Hith more care it would be possible to choose H so that 

the geodesic joining any two of its points lies completely within H. Com­

pare J. H. C. Whitehead, Convex regions in the geometry of paths, Quarter­

ly Journal of Mathematics (Oxford) Vol. 3, (1932), pp. 33-42. 

Now let us study the relationship between geodesics and arc-length. 

THEOREM 1 o. 4. Let H and E be as in Lemma 1 o. 3. Let 

7: [O, 1] ..... M 

be the geodesic of length < E joining two points of W, 
and let 

m: [0,1]-+M 

be any other piecewise smooth path joining the same two 
points. Then· 

1 1 

s ll~lldt ~ _\ ll~lldt 
0 0 

where equality can hold only if the point set m(lo,1]) 
coincides with 7(lo,1]). 

Thus 7 is the shortest path joining its end points. 

The proof will be based on two lemmas. Let q = 7(0) and let Uq 

be as in 10.3. 
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LEMMA 1 o. 5. In Uq, the geodesics through 
the orthogonal trajectories of hypersurfaces 

q are 

llvll = constant} . 

PROOF: Let t- v(t) denote any curve in ™q with llv(t)ll 

We must show that the corresponding curves 

t- expq(r0 v(t)) 

in Uq, where o < r 0 < E, are orthogonal to the radial geodesics 

r- expq(rv(t0 )) 

In terms of the parametrized surface f given by 

f(r,t) 

we must prove that 

for all (r,t). 

Now 

o <of of> 
Or Or'dE 

expq(rv(t)), o ~ r < E 

n of of> 
= <Or Or'crt + 

The first expression on the right is zero since the curves 

r-f(r,t) 

are geodesics. The second expression is equal to 

<of n of 
or•crr or> 1 o of of> 

= 2 err <ar•Tr 0 

1 • 

since llv( t) II 1 • <of of> 
Therefore the quantity or'dE is indepen-

dent of r. But for r = o we have 

f(o,t) = expq(o) = q 
hence of( o t) dE ' = o. Therefore (of of) is identically zero, which com­

or•ire 
pletes the proof. 

Now consider any piecewise smooth curve 

m: [a bl - U - (q) • 
' q 

Each point m( t) can be expressed uniquely in the form expq(r(t)v(t)) 

0 < r(t) < E, and llv(t) II = 1, v(t) € ™q· 

LEMMA 10.6. The length (b lldmll dt is greater than or 
.)a <IT 

equal to lr(b) - r(a) I, where equality holds only if the 
function r(t) is monotone, and the function v(t) is constant. 

with 
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Thus the shortest path joining two concentric spherical shells 

around q is a radial geodesic. 
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PROOF: Let f(r,t) expq(rv(t)), so that w(t) f(r(t),t) . 

Then 

Since the two vectors on the right are mutually orthogonal, and since 

1!M11 1 , this gives 

1~112 = lr'(t) 12 + ii-MII2 ~ lr'(t) 12 

where equality holds only if -M o; hence only if ~ o. Thus 

b b 

S l~lldt ~ S lr'(t) ldt ~ lr(b)- r(a) I 
a a 

where equality holds only if r(t) is monotone and v(t) is constant. 

This completes the proof. 

The proof of Theorem 10.4 is now straightforward. Consider any 

piecewise smooth path w from q to a point 

where o < r < c, llvll 1 . Then for any o > o the path w must con-

tain a segment joining the spherical shell of radius o to the spherical 

shell of radius r, and lying between these two shells. The length of this 

segment will be ~ r - o; hence letting 0 tend to o the length of ru 

will be ~ r. If w([0,1)) does not coincide with 7 ([0,1)), then we 

easily obtain a strict inequality. This completes the proof of 10.4. 

An important consequence of Theorem 10.4 is the following. 

COROLlARY 1 o. 7. Suppose that a path ru: [ o, ~ 1 - M, para­
metrized by arc-length, has length less than or equal to 
the length of any other path from ru(o) to w(~). Then w 
is a geodesic. 

PROOF: Consider any segment of ru lying within an open set W, as 

above, and having length <c. This segment must be a geodesic by Theorem 

10.4. Hence the entire path ru is a geodesic. 

DEFINITION. A geodesic r: [a,b) - M will be called minimal if 
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its length is less than or equal to the length of any other piecewise smooth 

path joining its endpoints. 

Theorem 10.4 asserts that any sufficiently small segment of a 

geodesic is minimal. On the other hand a long geodesic may not be minimal. 

For example we will see shortly that a great circle arc on the unit sphere 

is a geodesic. If such an arc has length greater than ~, it is certainly 

not minimal. 

In general, minimal geodesics are not unique. For example two anti­

podal points on a unit sphere are joined by infinitely many minimal geodesics. 

However, the following assertion is true. 

Define the distance o(p,q) between two points p,q £ M to be the 

greatest lower bound for the arc-lengths of piecewise smooth paths joining 

these points. This clearly makes M into a metric space. It follows 

easily from 10.4 that this metric is compatible with the usual topology of M. 

COROLlARY 10.8. 
a number B ) 0 

Given a compact set K C M 
so that any two points of 

there exists 
K with dis-

tance less than B are joined by a unique geodesic of 
length less than B. Furthermore this geodesic is minimal; 
and depends differentiably on its endpoints. 

PROOF. Cover K by open sets \-Tet, as in 1 o. 3, and let B be 

small enough so that any two points in K with distance less than 5 lie 

in a common Wet. This completes the proof. 

Recall that the manifold M is geodesically complete if every geo­

desic segment can be extended indifinitely. 

* 

THEOREM 10.9 (Hopf and Rinow*). If M is geodesically 
complete, then any two points can be joined by a minimal 
geodesic. 

PROOF. Given p,q £ M with distance r > o, choose a neighborhood 

as in Lemma 1 o . 3 . Let S C Up denote a spherical shell of radius 5 ( E 

Compare p. 341 of G. de Rham, sur la r~ductibilite d'un espace de 
Riemann, Commentarii Math. Helvetici, Vol. ?6 (195?); as well as H. Hopf and 
W. Rinow, Ueber den Begriff der·vollstandigen differentialgeometrischen Flache, 
Commentarii,Vol. , (19~1), pp. 209-225. 
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about p. Since S is compact, there exists a point 

llv\1 1' 

on S for which the distance to q is minimized. \·/e will prove that 

expp(rv) q. 

This implies that the geodesic segment t r(t) o .5_ t .5_ r, 

is actually a minimal geodesic from p to q. 

The proof will amount to showing that a point which moves along the 

geodesic ,. must get closer and closer to q. In fact for each t € [o,rl 

we will prove that 

p(r(t) ,q) r-t 

This identity, for t = r, will complete the proof. 

First we will show that the equality (1 0 ) is true. Since every 

path from p to q must pass through S, we have 

p(p,q) =Min (p(p,s) + p(s,q)) = o + p(p0 ,q) 
S€S 

Therefore p(p0 ,q) = r- o. Since p0 = r(o), this prqves (1 0 ). 

Let t 0 € [o,rl denote the supremum of those numbers t for which 

(1t) is true. Then by continuity the equality 

If t 0 < r we will obtain a contradiction. Let 

(1t ) is true also. 
0 

S' denote a small spheri-

cal shell of radius o' about the point r(t0); and let p~ € S' be a 

point of S' with minimum distance from q. (Compare Diagram 10.) Then 

hence 

( 2) 

p(r(t0 J,q) =Min (p(r(t0),s) + p(s,q)) = o' + p(p0,q) 
s € S' 

We claim that p' 
0 is equal to ,. (to + o ') . In fact the triangle 

inequality states that 

p(p,po) ~ p(p,q) - p(po,q) =to+ 01 

(making use of (2)). But a path of length precisely t 0 + o' from p to 

p0 is obtained by following ,. from p to r(t0), and then following 

a minimal geodesic from r(t0) to p0. Since this broke~ geodesic has 

minimal length, it follows from Corollary 10.7 that it is an (unbroken) 
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geodesic, and hence coincides with 1· 

( 1 t +o ') 
0 

Thus 7 (t0 + o') = p0. Now the equality (2) becomes 

This contradicts the definition of t 0 ; and completes the proof. 

Diagram 10. 

As a consequence one has the following. 

COROLLARY 10.10. If M is geodesically complete then 
every bounded subset of M has compact closure. Con­
sequently M is complete as a metric space (i.e., every 
Cauchy sequence converges). 

PROOF. If XC M has diameter d then for any P £ X the map 

expp: ~- M maps the disk of radius d in T~ onto a compact subset 

of M which (making use of Theorem 10.9) contains x. Hence the closure 
of X is compact. 

Conversely, if M is complete as a metric space, then it is not 

difficult, using Lemma 10.3, to prove that M is geodesically complete. 

For d.etails the reader is referred to Hopf and Rinow. Henceforth we will 

not distinguish between geodesic completeness and metric completeness, but 

will refer simply to a complete Riemannian manifold. 
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FA!ULIAR EXAMPLES OF GEODESICS. In Euclidean n-space, Rn, with 

the usual coordinate system x1 , ••• ,xn and the usual Riemannian metric 
k dx1 ·3 jx1 + ••• + dxn ® ~ we have r ij o and the equations for a geo-

desic 7, given by t- cx,(t), ... ,xn(t) become 
2 

d xi 
= 0 

dt~ 

whose solutions are the straight lines. This could also have been seen as 

follows: it is easy to show that the formula for arc length 

coincides with the usual definition of ar~ length as the least upper bound 

of the lengths of inscribed polygons; from this definition it is clear that 

straight lines have minimal length, and are therefore geodesics. 

The geodesics on sn are precisely the great circles, that is, the 

intersections of sn with the planes through the center of sn. 

PROOF. Reflection through a plane E2 is an isometry I: Sn- Sn 

whose fixed point set is c = sn n E2• Let x and y be two points of C 

with a unique geodesic C' of minimal length between them. Then, since I 

is an isometry, the curve I(C') is a geodesic of the same length as 0' 

between I(x) = x and I(y) = y. Therefore C' = I(C'). This implies that 

0 I ( 0, 

Finally, since there is a great circle through any point of Sn in 

any given direction, these are all the geodesics. 

Antipodal points on the sphere have a continium of geodesics of 

minimal length between them. All other pairs of points have a unique geo­

desic of minimal length between them, but an infinite family of non-minimal 

geodesics, depending on how many times the geodesic goes around the sphere 

and in which direction it starts. 

By the same reasoning every meridian line on a surface of revolution 

is a geodesic. 

The geodesics on a right circular cylinder Z are the generating 

lines, the circles cut by planes perpendicular to the generating lines, and 
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the helices en Z.. 

PROOF: If L is a generating line of z then we can set up an 
isometry I: Z - L - R 2 by rolling z onto R2: 

-, 
ir--

f'l I 
I 
I 

L I 
I 
I ,. - -... L ..... 

The geOdesics on Z 
2 are just the images under 

in R · Two Points on z 
of the straight lines 

have infinitely many geodesics between them. 



PART III 

THE CALCULUS OF VARIATIONS APPLIED TO GEODESICS 

§11. The Path Space of a Smooth Manifold. 

Let M be a smooth manifold and let p and q be two (not neces­

sarily distinct) points of M. By a piecewise smooth path from p to q 

will be meant a map w: [o,1) - M such that 

1) there exists a subdivision o = t 0 < t 1 < ..• < tk 

[0,1) so that each wl[ti-1'til is differentiable of class em; 

2) w(O) = p and m( 1) q. 

of 

The set of all piecewise smooth paths from p to q in M will be denoted 

by n(M;p,q), or briefly by n(M) or n. 

Later (in §16) n will be given the structure of a topological 

space, but for the moment this will not be necessary. We will think of n 

as being something like an "infinite dimensional ma.nH'old." To start the 

analogy we make the following definition. 

By the tangent space of n at a path w will be meant the vector 

space consisting of all piecewise smooth vector fields W along w for 

which \-1(0) = o and W(1) = o. The notation Tnw will be used for this 

vector space. 

If F is a real valued function on n it is natural to ask what 

F*: Tnw -TRF(w) , 

the induced map on the tangent space, should mean. When F is a function 

which is smooth in the usual sense, on a smooth manifold M, we can define 

T~ -TRF(p) as follows. Given X r:: T~ choose a smooth path 

u - a(u) in M, which is defined for -e < u < e , so that 

a(o) P, da(O) cru: X 
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Then F*(X) is equal to d(F£~(u)) lu=O' multiplied by the basis vector 

( ~ )F(p) € TRF(p) 

In order to carry out an analog9us construction for F: n - R, 

the following concept is needed. 

DEFINITION. A variation of m (keeping endpoints fixed) is & 

function 
a: (-e,e)- n, 

for some e > o, such that 

1) ii(O) m 

2) there is a subdivision o 

cf [0,1) so that the map 

a: ( -e ,e) X [o,1)- M 

defined by a(u, t) ii(u) ( t) is c"' on each strip ( -e, e) X [ ti-1 'til' 

i = 1' ... ,k. 

Since each ii(u) belongs to n = n(M;p,q), note that: 

3) a(u,o) = p, a(u, 1) = q for all u € ( -e, e) 

We will use either a or to refer to the variation. More 

generally if, in the above definition, (-e,e) is replaced by a neighbor­

hood rr of o in Rn, then a (or ii) is called an n-pararneter varia­

tion of m. 

Now ii may be considered as a "smooth path" in n. Its "velocity 

vector" ~(o) € Tnw is defined to be the vector field W along w given 
by 

oa( o t) 
du ' 

Clearly W € Tnw. This vector field w is also called the variation ~­

tor field associated with the variation a. 

Given any W € Tnw note that there exists a variation 

a: (-e,e) - n which satisfies the conditions ii(o) = w, ~(o) W. 

In fact one can set 

ii(u)(t) 

By analogy with the definition given above, if F is a real valued 
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function on o, we attempt to define 

F*: TOw -+ TRF(w) 

as follows. Given H £ Tow choose a variation a: (-e:,e:) - o with 

a(o) = w, 

and set F *(H) equal to d(F(a(u)) j multiplied by the tangent vector du U=O 

( ~ ) Of course without hypothesis on F 
u" F(w)' 

there is no guarantee that 

this derivative will exist, or will be independent of the choice of a. 
He will not investigate what conditions F must satisfy in order for F* 

to have these properties. He have indicated how F* might be defined only 

to motivate the following. 

DEFINITION. A path w is a critical path for a function 

F: o-R if and only if dF(a(u))l is zero for every variation a of 
du U=O 

w. 

EXAMPLE. If F 

derivatives dF(a(u)) 
du 

takes on its minimum at a path 

are all defined, then clearly w0 

and if the 

is a critical path. 
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§12. The Energy of a Path. 

Suppose now that 14 is a Riemannian manifold. The length of a vee-
~ < v,v > . For wE n define the 

tor v E T~ will be denoted by llv II 
energy of w from a to b (where o ~a< b ~ 1) as 

b 2 

.\ \\~\\ dt 
a 

We will write E 
1 for E0 . 

This can be compared with the arc-length from a to b given by 

b 

5 \\~\\dt 
a 

as follows. Applying Schwarz's inequality 

b 2 b b ( 5 fgdt) ~ ( 5 f 2dt)( 5 g2dt) 
a a a 

with f(t) and g( t) = \\~\\ we see that 

(L~) 2 ~ (b - a)E~ 
where equality holds if and only if g is constant; that is if and only if 

the parameter t · ti 1 lS proper ona to arc-length. 

Now suppose that there exists a minimal geodesic 1 from p w(O) 

to q w(1). Then 

Here the equality L( 1 ) 2 L(w) 2 can hold only if w is also a minimal 

geodesic, possibly reparametrized. (C ) on the other hand ompare §10.7. 

the equal~ty L("') 2 E( ) t i tional ~ ~ w can hold only if the parame er s proper 

to arc-length along w. This proves that E(,.) < E(w) unless w is alsO 

a minimal geodesic. In other words: 

LEMMA 1 2. 1 . Let M be a complete Riemannian manifold 
and let p,q € M have distance d. Then the energy 

function 
E: n(M;p,q) - R 
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takes on its minimum d? precisely on the set of minimal 
geodesics from p to q. 

He lVill nolV see lVhich paths m € n are critical paths for the 

energy function E. 
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Let rr: (-E,E) - n be a variation of m, and let Ht ¥u(o,t) 

be the associated variation vector field. Furthermore, let: 

dw 
crt; 

D dw 
crt; crt; 

velocity vector of w , 

acceleration vector of w , 

discontinuity in the velocity vector at t, 

lVhere o < t < 1 

o for all but a finite number of values of t.. 

THEOREM 1?.? (First variation 

~ dE(a(u)) j is equal to 
:> au U=O 

-L < Ht• 6 tv> 
t 

formula). The derivative 

PROOF: According to Lemma ~.3, lYe have 

o ( ocr 2\a > ? < D ocr ocr > du Clt•Cit = . du Clt•Cit . 

Therefore 
1 1 

dE(a(u)) d \ < oa oa > dt ?.\ ( D Cia oa > dt du au . Clt•Cit ClU Cit, rn:: 
0 0 

By Lemma 8.7 we can substitute D oa for D Cia in this last formula. Cit du Ou Cit 
Choose 0 = t 0 < t 1 ( .. ·< tk = 1 so that a is differentiable 

each strip ( -E, E) x [ ti_1 , ti J. Then we can "integrate by parts" on 

[ti_ 1 ,til, as follows. The identity 

o ( oa ocr ) = ( D ()a (\a ) ( ()a D (\a ) 
0I dil, err en: au •err + au, err C~t 

implies that 
t . 

• \
• l < D Cia oa 

Cit Tu•Cit > dt 

on 
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Adding up the corresponding formulas for i = 1 , .•. ,k; and using the fact 

that %cr = o for t = o or 1, this gives 

1 dE(ii(u)) 
2 du 

k-1 

- I < 
i=1 

oa oa 
Ou' ~t Of: 

1 

1 

>- ,) < 
0 

ocx D oa > dt 
Ou' Of: Of: 

Setting Q o, we now obtain the required formula 

1 dE • ii ( 0) 
2 ---em-

This completes the proof. 

1 

-L < vT .~tv > - S < H ,A> dt 
t 0 

dE • ii(O) Intuitively, the first term in the expression for au shows 

that varying the path CD in the direction of decreasing "kink," tends to 

decrease E; see Diagram 11. 

CX(E, ti) 
.,.,.,._,.,. ................. - -..... .,, -....... 

/~/ ....... , 
/~ ....... , 

/ ' 
/ ' 

/ ' 
/ ' / 

/ - ) ' / path cx(E with ' 
1 smaller energy ' 

I \ 

Diagram 11. 

The second term shows that varying the curve in the direction of its 

acceleration vector ~ (~) t 
u~ u~ ends to reduce E. 

Recall that the path CD E n is called a geodesic if and only if 

CD is C~ on the whole interval [o,1J, and the acceleration vector ~(~) 
of CD is identically zero along CD. 

COROLLARY 12.3. The path CD is a critical point for the 
function E if and only if CD is a geodesic. 
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PROOF: Clearly a geodesic is a critical point. Let w be a 

critical point. There is a variation o::' w \,rith lv(t) = f(t)A(t) where 

f(t) is positive except that it vanishes at the ti. Then 
1 

~ ~(0) -Y f(t) < A(t) ,A(t) > dt. 
0 
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This is zero if and only if A(t) = o for all t. Hence each wl [ti,ti+ll 

is a geodesic. 

..!_ dE(O) 
2 au 

Now pick a var·iation such that H(ti) = L\ V. Then 

= - L <6t V,6t V > If this is zero th~n all 6tV 
i i 

are o, and 

w is differentiable of class even at the points Now it follows 

from the uniqueness theorem for differential equations that w is c~ 

everywhere: thus w is an unbroken geodesic. 
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§13. The Hessian of the Energy Function at a Critical Path. 

Continuing with the analogy developed in the preceding section, we 

now vrish to define a bilinear functional 

Tn x Tn ., ., -R 

when ., is a critical point of the function E, i.e., a geodesic. This 

bilinear functional will be called the Hessian of E at .,. 

If f is a real valued function on a manifold M with critical 

point p, then the Hessian 

-R 

can be defined as follows. Given x1,x2 £ T~ choose a smooth map 

(u1 ,u2) - a(u1 ,u2) defined on a neighborhood of (o,o) in R 2 , with 
values in r~. so that 

o:(o,o) P, 
Then 

ocr 
du (0,0) 

1 
x1, 

o2f(a(u1,u2)) I 
ou1 ou2 (0,0) 

This suggests defining E** as follows. Given vector fields H 1 'W 2 £ Tn., 
choose a 2-parameter variation 

a: Ux [0,1] -M, 
where U is a neighborhood of so that 

a(o,o,t) ., (t)' oa 
~ (o,o,t) W2( t) dil (o,o,t) = w1 ( t)' 1 2 (Compare §11 .) Then the Hessian E**(W1 ,W2) will be defined to be the 

second partial derivative 

o2E( a( u 1 , u 2) > I 
ou1 ou2 (o,o) 

where a(u1,u2) € n denotes the path ii(u1,u2)(t) a(u1,u?.,t) ThiS 

second jerivative will be written briefly as o2E (o,o) . 
du1du2 

The following theorem is needed to prove that E** is well defined. 
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THEORE!-113.1 (Secondvariationformula). let a: U-+0 
be a 2-parameter variation of the geodesic ~ with 
variation vector fields 

a a 
Hi = au (o,o) 

i 
i = 1 '2 

Then the second derivative 

€ TO~, 

, o2E 
2 ou;ou; (o,o) of the energy 

function is equal to 

where V denotes the velocity vector field and where 

DH1 
denotes the jump in en; at one of its finitely many 
points of discontinuity in the open unit interval. 

According to 12.2 we have 
1 -f < t2,6t ~ > - ~ < t2, ~ ~ > dt 

Therefore 

1 o2E -I < D (Ia (Ia ) L ( oa D 6 oa 
2 au, du2 du1 du ' 6t at" - du 'du tat" 

t 2 t 2 1 
1 1 
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> 

- .\ ( D oa D oa 
du du ' at" at" > dt S oa - <ou, D D oa ) 

ou,Ot"Ot" 
0 1 2 0 2 

let us evaluate this expression for (u1,u2) = (o,o). Since ~ = ii(o,o) is 

an unbroken geodesic, we have 

6 oa 
tat" o, 

so that the first and third terms are zero. 

Rearranging the second term, we obtain 

( 1 3. 2) 

In order to interchange the two operators D 
ou, 

bring in the curvature formula, 

D D V D D R( oa (Ia )v ou, at" - at" ou, v O't"' ou, 

0 ' 

1 

.\ < w 2' -&, ~ v > d t 
0 

and D we need to 
at" 

R(v,w, )V 

dt. 
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D D D oa this yields 
Together with the identity Otiv ot" Ou1 

aT: vr1 , 
1 

( 1 3. 3) D D V 
n9-r1 

+ R(V,vT1 )V ou, ot" dt2 
Substituting this expression into (13.2) this completes the proof 

o2E 
COROLLARY 13.4. The expression E**(H1 ,H2) = ~(a ,a) 

1 2 

is a well defined symmetric and bilinear function of H1 

of 1 3 · 1 • 

and H2. 

PROOF: The second variation formula shows that 
2 o E (o o) ou;ou; I 

depends only on the variation vector fields \oT1 and H2, 

E**(W1,H2) is well defined. This formula also shows that 

The symmetry property 

so that 

is bilinear 

is not at all obvious from the second variation 

immediately from the symmetry property o2E 

formula; but does follow 

o2E 
au,au2 

(fu2 au1 

R"""''"'K 1 3 5 Th ) of the bilinear pairing ·=·""' · . e diagonal terms E** (H, H 

can be described in terms of a 1-parameter variation of 7 · 
In fact 

where -
a: (-E,E)- n denotes any variation of with variation vector 

da field au<o) equal to H. To prove this identitY it is only necessary to 

introduce the t wo parameter variation 

i3(u 1 ,u2) 

and to note that 

oil da 
Oui : du I 

As an application of this remark, we have the following. 

LEMMA 1 3. 6. If r is a minimal geodesic from P to q 
then the bilinear pairing E** is positive semi-definite. 
Hence the index ~ of E i ** s zero. 

PROOF: The inequality E(a(u)) ~ E(r) E(ii{O)) implies t:tJB.t 

evaluated at u = o, is~ a. Hence E**(H,H) ~ 0 for all W. 
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§ 11,. Jacobi Fields: The Null Space of E.,..,. 

A vector field J along a geodesic y is called a Jacobi field 

f it satisfies the Jacobi differential equation 

here V This is a linear, second order differential equation. 

'7'7 

t can be put in a more familiar form by choosing orthonormal parallel vee­

or fields p 1 , ••• ,Pn along 7 . Then setting J(t) = [ fi(t)Pi(t), the 

quation becomes 

o, i 1 , .•• , n; 

here a} = < R (V, P j) V, Pi> . 1 Thus the Jacobi equation has 2n linearly 

ndependent solutions, each of which can be defined throughout 7· The 

olutions are all C~-differentiable. A given Jacobi field J is com­

letely determined by its initial conditions: 

J(o)' W<o) E ™7(0) 

Let p 

ith a I b. 

7(a) and q = 7(b) be two points on the geodesic 7, 

DEFINITION. p and q * are conjugate along 7 if there exists a 

on-zero Jacobi field J alon~ 7 which vanishes for t = a and t = b. 

he multiplicity of p and q as conjugate points is equal to the dimen­

ion of the vector space consisting of all such Jacobi fields. 

Now let 7 be a geodesic in n 

pace of the Hessian 

n(M;p,q). Recall that the null-

E.,.*: Tn 7 x Tn 7~R 

s the vector space consisting of those w1 E Tn 7 such that E**(W1 ,W2) 

If 7 has self-intersections then this definition becomes ambiguous. 
ne should rather say that the parameter values e and b are conjugate 
ith respect to 7· 

0 
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for all H2 . The nullity v of E** is equal to the dimension of this 

null space. E** is degenerate if v > o. 

THEOREM 14.1. A vector field H1 £ Tn 7 belongs to the 
null space of E** if and only if \·T 1 is a Jacobi field. 
Hence E** is degenerate if and only if the end points 
p and q are conjugate along 7· The nullity of E** is 
equal to the multiplicity of p and q as conjugate points. 

PROOF: (Compare the proof of 12.3.) If J is a Jacobi field which 

vanishes at p and q, then J certainly belongs to 

variation formula (§13.1) states that 

L (\oT2(t),o) 
t 

Hence J belongs to the null space. 

Tn . 
7 

dt 

The second 

0 

Conversely, suppose that H1 belongs to the null space of E**" 

Choose a subdivision o = t 0 < t 1 < ... ( tk = 1 of [o,11 so that 

W11[ti_,.ti1 is smooth for each 1. Let f: [o,11 - [o,11 be a smooth 

function which vanishes for the parameter values t 0 ,t1 , ... ,tk and is 

positive otherwise; and let 

Then 

D~T 
\oT2(t) = f(t)(--::{ + R(V,H1 >v\ 

dt 

1 ~ 112 - ~E**<w,.w2 > = L o + S f( t) ,p~, + R(V ,\or1 )V dt 
0 ~ 

Since this is zero, it follows that H I [t t 1 
1 i-1' i each i. 

I 
Now let \oT2 e Tn 

7 

i 1,2, ... ,k-1. Then 

is a Jacobi field for 

for 

k-1 2 1 

= L IIAt ~II + 5 0 dt = 0 
i=l i 0 mr, 

Hence ---ar; has no jumps. But a solution w1 
completely determined by the vectors w (t ) 

1 i 
lows that the k Jacobi fields \oT 1 [ t t 1 

1 i-1 1 i I 

of 

and 

i 

the Jacobi equation is 
ow, 
(J't'""" ( t i ) . Thus it fol-

= 1 I • • • I k, fit together 

to give a Jacobi field W1 Which is c=-differentiable throughout the 
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entire unit interval. This completes the proof of 14.1. 

It follows that the nullity v of E** is always finite. For 

there are only finitely many linearly independent Jacobi fields along 7 • 
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REMARK 1 4. 2. Actually the nullity v satisfies o .5. v < n. Since 

the space of Jacobi fields which vanish for t = o has dimension 

precisely n, it is clear that v .5. n. We will construct one 

example of a Jacobi field which vanishes for t = o, but not for 

t 1 . This will imply that v < n. In fact let J t = tV t where 

V ~ denotes the velocity vector field. Then 

(Since ~ = o), 

DJ 
Ci"E 

2 
hence D J 

dt2 
0 since R is skew symmetric 

v 

0. Furthermore R(V,J)V = tR(V,V)V 

in the first two variables. Thus 

J satisfies the Jacobi equation. Since J 0 = o, J 1 ~ o, this 

completes the proof. 

EXAMPLE 1 . Suppose that M is "flat" in the sense that the curva­

ture tensor is identically zero. Then the Jacobi equation becomes 
D2J i 
~ = o. Setting J(t) = E f (t)Pi(t) where Pi are parallel, 
dt 2 i 
this becomes d f 2 = o. Evidently a Jacobi field along 7 can have 

dt 
at most one zero. Thus there are no conjugate points, and E** is 

non-degenerate. 

EXAMPLE 2. Suppose that p and q are antipodal points on the 

unit sphere and let 7 be a great circle arc from p to q. 

Then we will see that p and q are conjugate with multiplicity 

n-1. Thus in this example the nullity v of E** takes its 

largest possible value. The proof will depend on the following 

discussion. 

Let a be a 1-parameter variation of 7 , not necessarily keeping 

the endpoints fixed, such that each a(u) is a geodesic. That is, let 

a: ( -e:, e:) x [ 0, 1 ] - M 

be a C~ map such that a(o,t) 7(t), and such that each a(u) (given 

by a(u)(t) a(u,t)l is a geodesic. 
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LEMlolA 1 4. 3. If a is such a variation of 
geodesics, then the variation vector field 
is a Jacobi field along 7· 

7 through 
~a ) H(t) = orr<o, t 

PROOF: If a is a variation of 7 
D ocr 

through geodesics, then at d£ 

is identically zero. Hence 

0 
D D ()a 

Ou "Cre "Cre 

D2 ()a 
ot2 orr + 

R( ()a ()a ) ocr 
d£• orr ot 

(Compare §13.3.) Therefore the variation vector field ~ is a Jacobi 

field. 

Thus one way of obtaining Jacobi fields is to move geodesics around. 

Now let us return to the example of two antipodal points on a unit 

n-sphere. Rotating the sphere, keeping P and q fixed, the variation 

vector field along the geodesic 7 will be a Jacobi field vanishing at p 

and q. Rotating in n-1 different directions one obtains n-1 linearly 

independent Jacobi fields. Thus p and q are conjugate along 7 wi~h 

multiplicity n-1. 
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LENNA 1 4. h • Every Jacobi field along a geodesic r: [ o, 1 1 - M 
may be obtainej by a variation of r through geodesics. 

ill 

PROOF: Choose a neighborhood U of r(o) so that any two points 

of U are joined by a unique minimal geodesic which depends differentiably 

on the endpoints. Suppose that r ( t) € U for o 5_ t 5_ o. He will first 

construct a Jacobi field H along rl [O,ol with arbitrarily prescribed 

values at t = o and t = &. Choose a curve a: (-E,E) - U so that 

a(o) = r(O) and so that ~(o) is any prescribed vector in ™r(O)' 

Similarly choose b: (-E,E) - U with b(O) = r(o) and ~(o) arbitrary. 

Now define the variation 

a: ( -E , E) X [ 0 , o 1 - ~1 

by letting a(u): [O,o1 -N be the unique minimal geodesic from a(u) 

) - oa to b(u . Then the formula t ou(O,t) defines a Jacobi field with the 

given end conditions. 

Any Jacobi field along rl[o,o1 can be obtained in this way: If 

t(rl denotes ~he vector space of all Jacobi fields H along r, then the 

formula H (H(O), H(o)) defines a linear map 

f : 'I ( 'Y ) - ™r ( o) x ™r ( o) 

He have just shown that f is onto. Since both vector spaces have the same 

dimension 2n it follows that f is an isomorphism. I.e., a Jacobi field 

is determined by its values at r(o) and r(o). (More generally a Jacobi 

field is determined by its values at any two non-conjugate points.) There­

fore the above construction yields all possible Jacobi fields along 

rl[o,ol. 

The restriction of a(u) to the interval [o,o1 is not essential. 

If u is sufficiently small then, using the compactness of [o,11, a(u) 

can be extended to a geodesic defined over the entire unit interval [o,11. 

This yields a variation through geodesics: 

a 1 : ( -E 1 , E 1 ) x [ o, 1 1 - M 

with any given Jacobi field as variation vector. 

REMARK 14. '5. This argument shmrs that in any such neighborhood U 

the Jacobi fields along a geodesic segment in u are uniquely determined 
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by their values at the endpoints of the geodesic. 

(-5,5) 

')' ( 0) 

')'(0) 

REMARK 14.6. The proof shows also, that there is a neighborhood 

of o so that if t € (-5,5) then ')'(t) is not conjugate to 

along '1'· We will see in §15.2 that the set of conjugate points to 

along the entire geodesic ')' has no cluster points. 
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§15. The Index Theorem. 

The index A of the Hessian 

Tn xTn-R 
7 7 

is defined to be the maximum dimension of a subspace of Tn7 on which E** 

is negative definite. He will prove the following. 

THEOREM 15.1 {Morse). The index A of E** is equal 
to the number of points 7{t), with o < t < 1, such 
that 7{t) is conjugate to 7{0) along 7; each such 
conjugate point being counted with its multiplicity. 
This index A is always finite*. 

As an immediate consequence one has: 

COROLLARY 1 5.?. A geodesic se8111ent 7: [ o, 1 1 .... 1\1 can 
contain only finitely many points which are conjugate 
to 7{0) along 7· 

In order to prove 15.1 we will first make an estimate for A by 

splitting the vector space Tn 7 into two mutually orthogonal subspaces, on 

one of which E** is positive definite. 

Each point 7{t) is contained in an open set U such that any two 

points of U are joined by a unique minimal geodesic which depends differ­

entiably on the endpoints. {See §10.) Choose a subdivision 

o = t 0 < t 1 < ... < tk = 1 of the unit interval which is sufficiently fine 

so that each segment 7[ti_1,til lies within such an open set U; and so 

that each 7l[ti_1,til is minimal. 

Let Tn 7{t0,t1,t2, ... ,tk) C Tn7 be the vector space consisting of 

all vector fields \of along 7 such that 

1) HI [ti_1,til is a Jacobi field along 7 1 [ti_1,til for each i; 

2) \o/ vanishes at the endpoints t = o, t = 1 . 

Thus Tn 7{t0,t1, ... ,tk) is a finite dimensional vector space consisting of 

broken Jacobi fields along 7· 

* For generalization of this result see: H. Ambrose, The index theorem in 
Riemannian geometry, Annals of Mathematics, Vol. 73 {1961), pp. 49-86. 
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be the vector space consisting of all vector fields Let T' C Tn 7 

for which W(t0 ) = o, = o, 

LEMMA 15.3. The vector space Tn7 splits as the direct 
sum Tn 7(t0 ,t1, ... ,tk) ~ T'. T~ese two subspaces are 
mutually perpendicular with respect to the inner product 
E**' Furthermore, E** restricted to T' is positive 
definite. 

= 0. 

PROOF: Given any vector field v1 E Tn 7 let \·11 denote the unique 

"broken Jacobi field" in Tn 7(t0 ,t11 ... ,tk) such that v11(ti) = H(ti) for 

i = o,1, ... ,k. It follows from §14.5 that H1 exists and is unique. 

Clearly W- H1 belongs to T'. Thus the two subspaces, Tn7(t0 ,t1 , ... ,tk) 

and T' generate Tn 7, and have only the zero vector field in common. 

If W1 belongs to Tn7(t0 ,t11 ... ,tk) and H2 belongs to T', 

then the second variation formula (13.1) takes the form 

"\ DV1 1 

- L (H2 (t) ,6t ~ > - .) <H2 ,o > dt 
t 0 

0 • 

Thus the two subspaces are mutually perpendicular with respect to E**' 

For any W E Tn the Hessian E** (H, W) can be interpreted as the 
2 7 -

second derivative dE ; a (O); vrhere a: (-E,E)- n is any variation of 
du 

7 with variation vector field ~(o) equal to w. (Compare 13.5.) If 

W belongs to T' then we may assume that a is chosen so as to leave the 

points 7(t0),7(t1), ... ,7(tk) fixed. In other words we may assume that 

a(u)(ti) 7(ti) for i = O,l, ... ,k. 

Proof that E**(V1,W) L 0 for w E T'. Each a(u) E n is a piece­

Wise smooth path from 1 (o) to 7ct1) to 7ct2) to ... to 7(1). But 

each 7l[ti_1,til is a minimal geodesic, and therefore has smaller energy 

than any other path between its endpoints. This proves that 

Therefore the second derivative, evaluated at u = o, must be L o. 

Proof that E**(W,W) > o for w E T', w # o. Suppose that 

E**(H,W) were equal to o. Then w would lie in the null space of E**' 

In fact for any w1 E Tn 7(t0,t1, ... ,tk) we have already seen that 

E** (W 1 , vl) o. For any \-12 E T' the inequality 
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for all values of c implies that E**C\of::,\of) = o. Thus W lies in the 

null space. But the null space of E** consists of Jacobi fields. Since 

T' contains no Jacobi fields other than zero, this implies that W = o. 

Thus the quadratic form E** is positive definite on T'. This 

completes the proof of 15.3. 

An immediate consequence is the following: 

LEI<!MA 1 5. 4. The index (or the nullity) of E** is equal 
to the index (or nullity) of E** restricted to the space 
Tn 7 (t0,t1, ... ,tk) of broken Jacobi fields. In particular 
(since Tn 7 (t0,t1, ... ,tk) is a finite dimensional vector 
space) the index ~ is always finite. 

The proof is straightforward. 
Let 7T denote the restriction of 7 to the interval [O,T). 

Thus 7T: [O,T)-+ M is a geodesic from 7(0) to 7(T). Let ~(T) denote 

the index of the Hessian ( E~ )** which is associated with this geodesic. 

Thus ~(1) is the index which we are actually trying to compute. First 

note that: 

ASSERTION (1). ~(T) is a monotone function of T. 

For if T < T' then there exists a ~(T) dimensional space '9' of 

vector fields along 7T which vanish at 7 (o) and 7 (T) such that the 

Hessian ( E~ )** is nesative definite on this vector space. Each vector 

field in •:J' extends to a vector field along 7 T, which vanishes identically 

between 7(T) and 7(T'). Thus we obtain a ~(T) dimensional vector space 

of fields along 7T 1 on which ( E~' )** is negative definite. Hence 

~(T) ~ ~(T 1 ), 

ASSERTION (2). ~(T) = 0 for small values of T. 

For if T is sufficiently small then 7T is a minimal geodesic, 

hence ~(T) = o by Lemma 13.6. 

Now let us examine the discontinuities of the function ~(T). First 

note that ~(T) is continuous from the left: 

ASSERTION (3). For all sufficiently small E > o we have 

~c T). 
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PROOF. According to 15.3 the number A(1) can be interpreted as 

the index of a quadratic form on a finite dimensional vector space 

Tn7 (t0 ,t1, ... ,tk). We may assume that the subdivision is chosen so that 

say ti < -r < ti+ 1 . Then the index A(T) can be interpreted as the index 

of a corresponding quadratic form HT on a corresponding vector space of 

broken Jacobi fields along 7-r· This vector space is to be constructed 

using the subdivision o < t 1 < t 2 ( ... < ti < -r of [o,-r). Since a 

broken Jacobi field is uniquely determined by its values at the break points 

7(ti), this vector space is isomorphic to the direct sum 

Note that this vector space L is independent of -r. Evidently the quad­

ratic form HT on L varies continuously vTith -r. 

Now HT is negative definite on a subspace ·~' C L of dimension 

A(T). For all -r' sufficiently close to -r it follows that HT, is 

negative definite on ':J'. Therefore A(T') ~ A(T). But if -r' = -r - E < -r 

then '\ole also have A{-r-E) ~ A{-r) by Assertion 1. Hence A(T-E) = A(T). 

ASSERTION ( 4) . Let v be the nullity of the Hessian ) ...... 
Then for all sufficiently small E > o vie have 

A(T+E) A ( T) + v 

Thus the function A(t) jumps by v when the variable t passes 

a conjugate point of multiplicity v; and is continuous otherwise. Clearly 

this assertion will complete the proof of the index theorem. 

PROOF that A(T+E) ( A{-r) + v • Let and be as in the proof 

of Assertion 3. Since dim L = ni we see that HT is positive definite on 

some subspace •:P• C L of dimension ni _ q T) _ v. For all T' sufficient-

ly close to T, it follows that is positive definite on Hence 

A(-r') ~dim L:- dim':'"=· A(T) + v 

PROOF that A(T+E) ~ A(T) + v. Let 1-1 1, ... ,HA(T} be A{T) vector 

~ieljs ~l~ng 7-r' v~nishing at the endpoints, such that the matrix 

( E~) (H.,H.)) 
"' ...... l J 
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is negative definite. Let J 1 , ..• ,Jv be v linearly independent Jacobi 

fields along ~,, also vanishing at the endpoints. Note that the v 

vectors 
DJ 
~(T) € Tl\(-r) 
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are linearly independent. Hence it is possible to choose v vector fields 

x1 , ••. ,Xv along ~T+E, vanishi!lb at the endpoints of rt + E, so that 

( DJh ) 
(- (-r), Xk(T) ) 

dt 

is equal to the v x v identity matrix. Extend the vector fields Hi and 

Jh over ~T+E by setting these fields equal to o for T ~ t ~ T +E. 

Using the second variation formula we see easily that 

(Kronecker delta). 

Now let c be a small number, and consider the ~(T) + v vector fields 

-1 -1 l·r1, ... ,H>..(-r)' c J 1 - c x, ... , c Jv- c xv 

along ., T+E. \.fe claim that these vector fields span a vector space of 

dimension q-r) + v on which the quadl'atic form ( E~+E)** is negative 

definite. In fact the matrix of ( E~+E)** with respect to this basis is 

** c A ) 

-4 I + c? B 

where A and B are fixed matrices. If c is sufficiently small, this 

compound matrix is certainly negative definite. This proves Assertion ( 4) · 

The index thc:orem 15.1 clearly follows from the Assertions ( 2), ( 3), 
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§16. A Firdte Dimensional Approximation to oc 

Let M be a connected Riemannian manifold and let p and q be 

two (not necessarily distinct) points of r~. The set o = O(r·l;p,q) of 

piecewise C~ paths from p to q can be topologized as follows. Let P 

denote the topological metric on r~ coming from its Riemann metric. Given 

m, m' En with arc-lengths s(t), s'(t) respectively, define the distance 

d(m,m') 

(The last term is added on so that the energy function, 

a 

will be a continuous function from o to the real numbers.) This metric 

induces the required topology on n. 

Given c > o let nc denote the closed subset E-1 ( [ o, c l) C n 

and let Int nc denote the open subset E-1([o,c)) (where E = E~: n- R 

is the energy function). We will study the topology of nc by construct­

ing a finite dimensional approximation to it. 

val. 

m: 

Choose some subdivision o = t 0 < t 1 ( ... < tk = 1 of the unit inter-
Let 

[ 0 1 1 l 
n (to' t1 ' ... 'tk) 

- M SUCh that 

be the subspace of n consisting of paths 

1 ) 

2) 

Finally we 

m(o) = P and (1) m = q ' 

rul[ti_1,ti) is a geodesic 

define the subspaces 

for each i 1 1 ••• 1 k. 

n (to' t1 ' ... 'tk) c 

Int n(t0,t1, ... ,tk)c 

nc n n(t0,t1, ... ,tk) 

(Int nc) n n(t0 , ... ,tk) 

LEMMA 1-6. 1 . Let M be a complete Riemannian manifold; 
and let c be a fixed positive number such that nc ~ 0. 
Then for all sufficiently fine subdivisions (t0 ,t1 , ... ,tk) 
of [ O, 1 l the set Int n ( t 0 , t·1 , ... , tk) c can be given the 
structure of a smooth finite dimensional manifold in a 
natural way. 
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PROOF: Let S denote the ball 

(x f. r.I : o(x,p) .$_../C) 

Note that every path w f. nc lies within this subset S C M. This follows 

from the inequality L2 .$_ E.$_ c 

Since M is complete, S is a compact set. Hence by 10.8 there 

exists e > o so that whenever x, y f. S and o(x,y) < E there is a 

unique geodesic from x to y of length < e; and so that this geodesic 

depends differentiably on x and y. 

Choose the subdivision (t0,t1, ... ,tk) of [o,1) so that each 

difference ti - ti-l is less than e 2/c. Then for each broken geodesic 

w f. n(t0,t1, ... ,tk)c 

we have 

Thus the geodesic wl[ti_1,til is uniquely and differentiably determined by 

the two end points. 

The broken geodesic w is uniquely determined by the (k-1)-tuple 

w(t1), w(t2), ... ,w(tk_1) f. M x M x ... x M. 

Evidently this correspondence 

w - (wCt1), ..• ,w(tk-l)) 

defines a homeomorphism between Int n(t0,t1, ... ,tk)c and a certain open 

subset of the (k-1)-fold product M x ..• x M. Taking over the differentiable 

structure from this product, this completes the proof of 16.1. 

To shorten the notation, let us denote this manifold 

Int n(t0,t1, ••• ,tk)c of broken geodesics by B. Let 

E': B -R 

denote the restriction to B of the energy function E n -R. 
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THEOREM 16.2. This function E 1 : B - R is smooth. 
Furthermore, for each a< c the set Ba = (E 1)-1[o,a] 
is compact, and is a deformation retract* of the cor­
responding set na. The critical points of E 1 are 
precisely the same as the critical points of E in 
Int nc: namely the unbroken geodesics from p to q 
of length less than ~. The index [or the nullity] 
of the Hessian E1** at each such critical point r 
is equal to the index [ or the nullity l of E** at r. 

Thus the finite dimensional manifold B provides a faithful model 

for the infinite dimensional path space Int nc. As an immediate conse­

quence we have the following basic result. 

THEOREM 1 6. 3. Let M be a complete Riemannian manifold 
and let p,q € M be two points which are not conjugate 
along any geodesic of length < .fa. Then na has the 
homotopy type of a finite cvr-~omplex, with one cell of 
dimension ~ for each geodesic in na at which E** 
has index ~. 

(In particular it is asserted that na contains only finitely many 

geodesics.) 

PROOF. This follows from 16.2 together with §3.5. 

PROOF of 16.2. Since the broken geodesic w £ B depends smoothly 

on the (k-1)-tuple 

w(t1),w(t2), ... ,w(tk_ 1) € M x .•. x M 

it is clear that the energy E1(w) also depends smoothly on this 

tuple. In fact we have the explicit formula 

E 1 (w) 

Similarly B i~self is a deformation retract of Int nc. 

( k-1)-
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For a< c the set Ba is homeomorphic to the set of all (k-1)­

(p1, ... ,pk_1) € S x S x ••• x S such that 

k 

L p(pi-1 ,pi) 2 /(ti - ti-1) ~ a 
1=1 

(Here it is to be understood that p0 = p, pk = q.) As a closed subset 

of a compact set, this is certainly compact. 
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A retraction r: Int nc - B is defined as follows. Let r(CD) 

denote the unique broken geodesic in B such that each r(CD) ![ti_1,ti1 is 

a geodesic of length < E from CD(ti_1) to CD(ti). The inequality 

implies 

p(p,CD(t)) 2 ~ (L CD)2 ~E CD< C 

that CD[0,11 C S. Hence the 
2 

p(CD(ti_ 1),CD(ti)) ~ (ti-

implies that r(CD) can be so defined. 

Clearly E(r(CD)) ~ E(CD) <c. This retraction r fits into a 1-

pararneter family of maps 

r : Int nc - Int nc u 

as follows. For ti_ 1 ~ u ~ ti let 

ru(CD) I [o,ti_1 1 

ru(CD) I [ti_1 u1 
' 

r(CD) I [o, ti-l 1 

minimal geodesic from CD(ti_1) to CD(u) , 

CD I [ u, 1 l . 

Then r 0 is the identity map of Int nc, and r 1 = r. It is easily veri­

fied that ru(CD) is continuous as a function of both variables. This proves 

that B is a deformation retract of Int nc. 

Since E(ru(CD)) ~ E(CD) it is clear that each Ba is also a defor­

mation retract of na. 

Every geodesic is also a broken geodesic, so it is clear that every 

"critical point" of E in Int nc automatically lies in the submanifold B. 

Using the l'irst variation formula (§12.2) it is clear that the critical 

points of E' are precisely the unbroken geodesics. 

Consider the tangent space TB to the manifold B at a geodesic 
r 

r. This 1-rill be identified 1-rith the space Tn.,(t0,t1, ... ,tk) of broken 
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Jacobi fields along 1 , as described in §15. This identification can be 

justified as follows. Let 

a: (-E,E) -B 

be any variation of 1 through broken geodesics. Then the corresponding 

variation vector field ~(o,t) along 1 is clearly a broken Jacobi field. 

(Compare §14.3) 

Now the statement that the index (or the nullity) of E** at 1 

is equal to the index (or nullity) of E!* at 1 is an immediate conse­

quence of Lemma 15.4. This completes the proof of 16.2. 

REMARK. As one consequence of this theorem we obtain an altern~tive 

proof of the existence of a minimal geodesic joining two given points p,q 

of a complete manifold. For if na(p,q) is non-vacuous, then the corres­

ponding set Ba will be compact and non-vacuous. Hence the continuous 

function E': Ba-R will take on its minimum at some point 1 € Ba. This 

1 will be the required minimal geodesic. 
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§17. The Topology of the Full Path Space. 

Let i·i te a Riemannian manifold with Riemann metric g, and let 

0 be the induced topological metric. Let p and q be two (not neces­

sarily distinct) points of l-1. 

In homotopy theory one studies the space n* of all continuous 

paths 

w: [O, 1) - l\1 

from p to q, in the compact open topology. This topology can also be 

described as that induced by the metric 

d*(w,w') !·lax 
t o(w(t) ,w' (t)) 

On the other hand we have been studying the space n of piecewise c= 
paths from p to q with the metric 

d(w,w') [ 
1 2 i 

d*(w,w') + 5 ( ~- ~')- dt] 
0 

Since d ~ d* the natural map 

i: n - n* 

is continuous. 

THEORFM 17.1. This natural map i is a homotopy equiva­
lence between n qnd n~. 
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[Added June 196'-l. The followl.ne I:roof is based on suggestions by 

w. B. Houston, Jr., who has poir,ted out tllat m1 original proof of 17.1 was 

incorrcc t. 'rhe ori!_';inal proof m~.de use or an alleged homotopy inverse 

.,. -> n which in fact was not even con tinu::>us. ) 

PROOF: We will use the fact tl~at. every point of M has an open 

r,ei~hbcrhood N which is "c;eodesically convex" in t.he sense that any two 

poir,ts of N are joined by '.1 unique minimal ~eodesic which lies completely 

within N and depends differential•ly on the endpoints. (This result is due 

to J. H. C. Whitehead. See for example Bishop and Crittenden, "Geometry of 
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mar.:!.fclds," p. 246; Helgason, ''Differential geometry and symmetric spaces, 

p. 53; or Hic~s, "IIotes on differential geometry," p. 1.34.) 

Choose a covering of M by such gecdesically convex open sets i'lo: • 

Subdividir>...g the ir~terval [O,l.] into 2k equal :mbir.tervals [ (j-l.)/2k,j/2.i<:], 

le:. :.;. denote the set of all continuous paths w from p to q which sa.t­

isf'":r :.he fcllmring condition: the image under w of each subinterval 

[ (j-l.)/2k,j/2k] should be contained in one of the sets 1:" of the covering. 

Clearly each ~ is an open subset of the space r.• of all paths from 

p :.o q, and clearly n• is the ur1ion of the sequence -:-f' open subsets 

~(C12(rl3( ... 

Similarly the correspr,nding sets 

are open subsets of n with urrion equal to n. 
'tie will f'irst show that the t 1 na ura map 

( 1 I n,) : n. _, n• 
r. l{ :.<: 

:.s a hom'Jtopy equivalence. F h · · or each w ~ r,;. let h(w) E '\ be t e oroKen 
""'"O"'S ~ c wl- 'cr. " · · · · k ·--- - - .~ ... · -c::.r.claes 'trith u;. for the parameter values " = J/2 • 

· - ~ • 1 • 2 • • · • • 2'- • and which _; s · h \t1tArt',ed 1 ate a m1nimal .~ecdesic within eac - - •· • 

Th.!.s ccnstructlc,n defines a rur:ction 

h : :-{ _, r...,_ ' 
t:: ~ 

.:.s r.c~ difficult tc. •;erify that 
h is cc,ntinuous · 

Jus•~ as ir. tJ·,e proof of' 1.6.2 on page 91., it can be verified that the 

::::.:::pes.:. ·.icr. (i I nt::) " .t is homotopic to the ide.:-JtitY map of ~ and that the 

::.::.psi :1:.:. h < ( i I'\:) is homotopic to the identity map cf r'k. ThiS proves 

·.:·.•;: : I:-.,: is a l".crr.o:.opy equivalence . 

• __, :::nclude the proof of 1.7 .1. di u ""'-we appeal to the Appen x. sing~ 

<;::.;:l·c: 1 --- ;·'l·:I~ 149 note that tr,e space n is the homotopy direct limit of 

·.;.·" s-:oq·.;-::::.·>c· .i' subsets ~. SL'nilarly note that :-i* .:s ·~J·,e heme tory direct 
. ·~ .... 

·' -· 
Z""'~'-'';;r.ce r.f subsets 'k. 1'beref'ore, Theoren• A (pase lS··) shows 

.:.s a Lc.-!'!'.o:.opy equivalence. This completes the proof. 
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It is knm:n that the s:~;ace has the homotopy type of a CH-

complex. (See Nilnor, On SJ:aces having the homotopy type of A CH-complex, 

Trans. A::1er. !·lath. Soc., Vel. 90 (19.,9), pp. <72-2f.O.) Therefore 

COROLLARY 1-:.2. n has the homotopy type of a C\·T­

complex. 

This statenent can be sharpened as follO\vs. 

THEOREI·l 1 7. ~. ( Fund9r.lental theorem of Norse Theory.) 

Let 111 be a complete Riemannian na.nifold, and let 

p,~ E M be two points which gre not conjugate along 
any geodesic. Then >l(l·l;p,q) (or n*(!•l;p,q)) has the 

homotopy type of" a countable C'.-T-complex which contains 

one cell of dimension >.. for each geodesic f'rom :t:: 

to q of index >... 

The pruo:' is analogous to that of , . "'. Choose a sequence 

of real numbers which are not critical values of the 

energy function E, so that each interval (ai_ 1 ,ai) contains precisely 

one critical value. Consiier the sequence 

a 0 a 1 a.-
n C n c n · C 

:-:here :·H3: may asswne that !l 
ac 

is vacuous. It follO\,'S from 1 6. 2 together 

with ' -, and , that each n ai 
has the --.·' 

ai-1 
:dth .7 hor.JOtopy type v" n a 

finite nwnber of cells attache~: one >..-cell for each geodesic o:' in.:':ex >.. 

-1 
in E (ai_ 1 ,ai). No•.,·, just as in the rroo:' of '."', one constructs a se-

quE:nce K0 C K1 C K2 C . . . c:' CH-co:nplexes 1;ith cells of the require:1 

'iescription, 9.11-: 3. sequence 
a, _ a1 

!l ~ !l c ,9.2 c .. 
1 1 1 

K) C K1 C K? c 

of homotopy equivalences. Letting !': n- K be the direct limit rr~pping, 

it is cle'3.r that induces isomorphisms o:' homotopy groups in all dimen-

slcns. Since n is kno· . .;n to have the homctory type of a C1.-r-complex (17.2l 

l t fellows from Hhi tehead 1 s theorem that r is g homoto:~;y equivalencP · This 

c•Jr~:r-letes the p'c.Jf. [For a different proof, not using 17.2, seeP· 140 ·] 

EXAMPLE. The path space of the srhere sn. Suppose that P and ~ 

are Lwo non-conjugate j:·cints on That is, suppose that q I J:,p 1 

·.-~here J: 1 -Jenotes the antipo:le of p. Then there gre ~enwnerably many 
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geodesics 7 0 ,7 1,7 2 , ..• from P 

short great circle arc from p 

to 

to q; 

q, as follmrs. Let 'lenote the 

let y1 denote the long great 

circle arc pq'p'q; let denote the arc pqp'q'pq; The 

subscript k denotes the number of times that p or p' occurs in the 

interior of yk. 

The index ~(yk) = ~ 1 + •.• + ~k is equal to 

or P' in the interior is conjugate to 
of the points p 

k(n-1), since each 

p with multi-
plicity n-1. Therefore we have: 

COROLLARy 17.4. The loop space n(Sn) has the homotopy 
type or a CW-complex with one cell each in the dimensions 
o, n-1 , 2 ( n-1 ) , 3 ( n-1 ) , ... 

For n > 2 the homology of n(Sn) can be computed immediately 
from this information. Si n 1 gy in infinite-nee n(s ) has non-trivial homo 0 

ly many dimensions, we can conclude: 

COROLLARy 1 7 · 5 · Let M have the homotopy type of 
for n > 2 · Then any two non-conjugate points of 
joined by infinitely many geodesics. 

sn, 

M are 

This follows since the homotopy type of n*(M) (and hence of 

n(M)) depends only on the homotopy type of M. There must be at least one 

geodesic in n(M) with index o, at least one with index n-1, 2(n-1), 
3(n-1), and so on. 
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RE1·1.A.RK. J.lore generally if 1•1 is any complete manifold which is 

not contractible then any t•.;o non-conjugate points of M are joined by 

infinitely many geo:1esics. Compare p. 484 of J. P. Serre, Homologie 

singuliere ses espaces fibres, Annals of Math. 54 (1951), pp. 425-505. 
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As another application of 17.4, one can give a proof of the Freuden­

thal suspension theorem. (Compare §22.:.) 



·~ 

98 III. CALCULUS OF VARIATIONS 

§.1 8. Existence of Non-Conjugate Points. 

Theorem 17.3 gives a good description of the space n(M;p,q) pro­

viding that the points p and q are not conjugate to each other along any 

geodesic. This section will justify this result by showing that such non­

conjugate points always exist. 

Recall that a smooth map f: N- M between manifolds of the same 

dimension is critical at a point x £ N if the induced map 

f*: TNX- Tlo!f(x) 

of tangent spaces is not 1-1. We will apply this definition to the ex­

ponential map 

exp = expp: T~- M 

(He •rill assume that M is complete, so that exp is everywhere defined; 

although this assumption could easily be eliminated.) 

THEORE14 1 8 . 1 • 

the geodesic 
mapping exp 

The point exp v is conjugate to p along 
Yv from p to exp v if and only if the 
is critical at v. 

PROOF: Suppose that exp is critical at Then 
= 0 for some non-zero x T( 

£ ~)v, the tangent space at 
considered as a manifold. Le 

t u- v(u) be a path in T~ 

v to 

such that 
v(J) = v and dv( ) au 0 = X. Then the map 

is a varia~ion through geodesics of the 

Therefore the vector field W gi 

a defined by a(u,t) = exp tv(u) 

geodesic 7 given by t- exp tv. 
v 

ven by 
:".:!.el:: along 

o ( ) ) I is a Jacob: t- Ou(exp tv u u=o 

Yv. Obviously W(o) 

"1< 1 l = }uc exp v(u)) 1 
U=O 

?ut this field is not identically 

o. He also have 

exp dv(u)(O) 
* --a:u-

zero since 

~(0) D o au Ot (exp tv(u)) I 
(o,o) 

o. 

-F 0 

3c there is a non-trivial Jacobi field along 7v from p to exp v, 

·:a.:1.:!.sr~ng at these J:Oints; hence p and exp v are conjugate along 
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Now suppose that exp* is non-singular at v. Choose n independ­

ent vectors X1, ..• ,~ in T(T~)v. Then exp*(X1), ..• , exp*(~) are 

linearly independent. In ™-- choose paths u - v1 (u), ... ,u - vn(u) 
dv (u) P 

with vi(o) = v and ~(o) Xi 

Then a1, ... ,an, constructed as above, provide n Jacobi fields 

w,. ... ,Wn along 7v, vanishing at p. Since the 1-li(1) 

independent, no non-trivial linear combination of the Wi can vanish at 

exp v. Since n is the dimension of the space of Jacobi fields along 7v' 

which vanish at p, clearly no non-trivial Jacobi field along 7v vanishes 

at both p and exp v. This completes the proof. 

COROLLARY 18.2. Let p f M. Then for almost all q f M, 
p is not conjugate to q along any geodesic. 

PROOF. This follows immediately from 18.1 together with Sard's 

theorem ( § 6. 1 ) . 
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§19. Some Relations Between Topology and Curvature. 

This section will describe the behavior of geodesics in a manifold 

with "negative curvature" or with "positive curvature." 

let J 

so that 

LEMMA19.1. Supposethat (R(A,B)A,B) <o for 
every pair of vectors A,B in the tangent space 
Tl\ and for every p f. M. Then no two points of 
M are conjugate along any geodesic. 

PROOF. Let r be a geodesic 'vith velocity vector field 

be a Jacobi field along r. Then 

D2J 
R(V,J)V 0 

dt2 + 

< D2J 
,J) ( R(V,J)V,J > ~ o. 

dt2 

Therefore 

d DJ 
ut<ut 1 J) 

V; and 

Thus the function <~ , J) 
so if DJ _J_ 

is monotonically increasing, and strictly 
at r- o. 
If J vanishes both at 

< ~~ J> u~ also Vanishes at o 
throughout the interval [ o, t 0 1 . 

J(o) 
so that J 

is identically zero. 

o and at t 0 > o, then the function 

and t 0 , and hence must vanish identically 

This implies that 

DJ = dt(O) o, 

This completes the proof. 

REMARK. If A 

quantity <R(A,B)A,B) 
and B are orthogonal unit vectors at p then the 

is called the sectional curvature determined by 
A and B. 

It is equal to the Gaussian curvature of the surface 

spanned by the geodesics through p with velocity vectors in the subspace 

spanned by A and B. (See for example, I.augwitz "Differential-Geometrie," 
p. 101.) 
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[Intuitively the curvature of a nuL~fold can be described in terms 

of '' ':lptics" within the manifold as follows. Suppose that we think of the 

geodesics as being the paths of light rays. Consider an observer at p 

looking in the direction of the unit vector U towards a point q = exp(rU). 

A small line segment at q with length L, pointed in a direction corre­

sponding to the Wli t vector \-1 € Til\>, would appear to the observer as a 

line segment of length 

L( 1 + ::;.. ( R(U,H)U,H) + (terms involving higher powers of r)) 

Thus if sectional curvatures are negative then any object appears shorter 

than it really is. A small sphere of radius E at q would appear to be 
r2 r2 

an ellipsoid with principal radii E(1 + c;K1 + ... ), ... , E(1 + t)~ + ... ) 

where K1 ,K2, .•. ,~ denote the eigenvalues of the linear transformation 

W -+ R(U,W)U. Any small object of volume v would appear to have volume 

( r? ) v 1 + c;<K1 + K2 + ... + ~) +(higher terms) where K1 + ..• + ~ is equal 

to the "Ricci curvature" K(U,U), as defined later in this section.) 

Here are some familiar examples of complete manifolds with curva-

ture .s. 0: 

( 1 ) The Euclidean space with curvature o. 

( 2) The paraboloid z = x2 2 - y I with curvature < o. 
(3) The hyperboloid of rotation 2 

X + y 2 - z2 = 1' with curva-

ture < o. 
(4) The helicoid x cos z + y sin z = o, with curvature < o. 

(REMARK. In all of these examples the curvature takes values arbi­

trarily close too. Cf. N. V. Efimov, Impossibility of a complete surface 

in 3-space whose Gaussian curvature has a negative upper boWld, Soviet Math., 

Vol. 4 (1963), pp. 843-846.) 

A famous example of a manifold with everywhere negative sectional 

curvature is the pseudo-sphere 

z + z > 0 

~ith the Riemann metric induced from R3. Here the Gaussian curvature has 

the constant value -1 . 

No geodesic on this surface has conjugate points although two geo­

desics may intersect in more than one point. The pseudo-sphere gives a 
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non-Euclidean geometry, in which the sum of the angles of any triangle is 

< n radians. This manifold is not complete. In fact a theorem of Hilbert 

,....- ..... , 

states that no complete surface of constant negative curvature can be 

imbedded in R3 . (See Blaschke, ''Differential Geometric I," 3rd edn.' §96; 

or Efimov, ibid.) 

However, there do exist Riemannian manifolds 'Jf const'mt ne,~ative 

curvature vhich are complete. (See for example L;J.u,~;ll LZ, "Diffe:r,mtie>l 

and Riemannian ,;eometry," §12. 6. 2.) Such a manifold can ever. Le comp'lC t; 

for example, a surface of genus :::_ 2 • (Corr.pare Hilbert and Colu1-Vosse!J, 

"Georr,etry and the imagination," p. 259.) 

THEO~~ 19.? (Cartan*). Suppose that M is a simply 
connected, complete Riemannian manifold, and that the 
sectional cu.rvatu.re <R(A,B)A,B > is everyv1here < o. 
Then any two points of M are joined by a uniq~e geo­
desic. Furthermore, M is diffeomorphic to the 
Euclidean space Rn. 

PROOF: Since there are no conjugate points, it follmrs from the 

index theorem that every geodesic from P to q has index \ = o. Thus 

Theorem 17.3 asserts that the path space n(M;p,q) has the homotopy type 

of a O-dimensional CH-complex, •rith one vertex for each geodesic. 

The hypothesis that M is simply connected implies that n(M;p,q) 

is connected. Since a connected 0-dimensional ~r-complex must consist of 

a single point, it follm1s that there is precisely one geodesic from P to 

* See E. Car tan, "Lecons sur la Geometrie des Espaces de Riemann,'' paris, 
1926 and 1951. 
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Therefore, the exponential map expp: T~~ - ~~ is one-one and 

onto. But it follows from 13.1 that is non-critical ever~vhere; 

so that expp is locally a diffeomorphism. Combining these two facts, we 

see that expp is a global diffeomorphism. This completes the proof of 

19.2. 

~!ore generally, suppose that 1·! is not simply connected; but is 

complete and has sectional curvature ~ o. (For example M might be a 

flat torus s1 x s1 , or a compact surface of genus ~ 2 with constant 

negative curvature.) Then Theorem 19.2 applies to the universal covering 

space of ~L For it is clear that M inherits a Riemannian metric 

from M which is geodesically complete, and has sectional curvature ~ o. 

Given two points p,q E M, it follows that each homotopy class of 

paths from p to q contains precisely one geodesic. 

The fact that M is contractible puts strong restrictions on the 

topology of M. For example: 

COROLLARY 19.3. If M is complete with ~R(A,B)A,B) 

< o then the homotopy groups ~i(M) are zero for 
i > 1; and ~ 1 (M) contains no element of finite order 
other than the identity. 

PROOF: Clearly ~i(M) ~i (M) 0 for i > 1. Since "'" M is 

contractible the cohomology group Hknn can be identified with the co-

homology group Hk( ~ 1 nn) of the group ~ 1 (M) . (See for example pp. 200-

202 of S. T. Hu "Homotopy Theory," Academic Press, 1959.) Now suppose 

that ~ 1 (M) contains a non-trivial finite cyclic subgroup G. Then for a 

suitable covering space M of M we have ~ 1 (M) = G; hence 

0 for k > n 

But the cohomology groups of a finite cyclic group are non-trivial in arbi­

trarily high dimensions. This gives a contradiction; and completes the 

proof. 

Now we will consider manifolds with "positive curvature." Instead 

of considering the sectional curvature, one can obtain sharper results in 

this case by considering the Ricci tensor (sometines called the "mean curva­

ture tensor"). 
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DEFINITION. The Ricci tensor at a point p of' a Riemannian r:Jani-

fold M is a bilinear· pairing 

K: T~ x Tf>\> - R 

defined as follows. Let K(U1,u?) be the trace of the linear transforma­

tion 

H - R(U 1 ,H)U2 

from T~ to T~. (In classical terminology the tensor K is obtained 

from R by contraction.) It follows easily from §9.3 that K is symmetric: 

KCU,U2 ) = K(U2 ,u1). 

The Ricci tensor is related to sectional curvature as follows. Let 

u1,U2, ••. ,un be an orthonormal basis for the tangent space T~. 

ASSERTION. K(Un,Un) is equal to the sum of the sectional curva­

tures < R(Un,Ui)Un,Ui> for i = 1,2, •.• ,n-1. 

PROOF: By definition K(U u ) is equal to the trace of the matrix 
n' n 

( <R(Un,Ui)Un,Uj > ) Since the n-th diagonal term of this matrix is 

zero, we obtain a sum of n- 1 sectional curvatures, as asserted. 

THEOREM 19,4 (Myers*). Suppose that the Ricci curvature 
K satisfies 

for every Unit 
is a positive 
length > nr 
minimal. 

K(U,U) ~ (n-1)/r2 

vector u at every point of 
constant. Then every geodesic 
contains conjugate points; and 

M; where r 
on M of 
hence is not 

PROOF: Let 7: [ o, 1 J - M be a geodesic of length L. Choose 

parallel vector fields p1, ... ,Pn along 7 which are orthonormal at one 

point, and hence are orthonormal everywhere along 7. We may assume that 

Pn points along 7 , so that 

v d7 
at" = L Pn , and 0 

Let wi (t) (sin nt) Pi(t). Then 

* See S. B. Myers, Riemann manifolds with positive mean curvature, Duke 
Math. Journal, Vol. 8 (1941), pp. 401-404. 
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1 -s 
0 

51 
(sin nt) 2 (n 2 - L 2 < R(Pn,Pi)Pn,Pi ) ) dt. 

0 

Summing for i 1, ... ,n-1 we obtain 

1 n-1 
~ I E**(\-Ti,\·Ti) S (sin nt) 2 (<n-1)n 2 ~2 K(Pn,Pn>) dt 

0 

~ (n-1)/r2 and L > nr ' then this expression is 

< o. Hence E**(Hi 1 \oJ'i) < o for some i. This implies that the index of 

7 is positive, and hence, by the Index Theorem, that 1 contains conju­

gate points. 

It follows also that 7 is not a minimal geodesic. In fact if 

a: (-E,e:) - n is a variation with variation vector field \oJ'i then 

dE(a(u)) 
du = o, d2E(ii(u)) 

du2 
< 0 

for u = o. Hence E(ii(u)) < E(7) for small values of u ~ o. This com-

pletes the proof. 

EXAMPLE. If M is a sphere of radius r then every sectional 

curvature is equal to 1/r?. Hence K(U,U) takes the constant value 

(n-1)/r?. It follows from 19.4 that every geodesic of length > nr con­

tains conjugate points: a best possible result. 

COROLLARY 19.5. If M is complete, and K(U,U) ~ 
(n-1)/r? > o for all unit vectors U, then M is 
compact, with diameter ~ nr. 

PROOF. If p,q E M let 7 be a minimal geodesic from P to q. 

Then the length of 7 must be ~ nr. Therefore, all points have distance 

~ nr. Since closed bounded sets in a complete manifold are compact, it 

follows that M itself is compact. 

This corollary applies also to the universal covering space M of 

M. Since M is compact, it follows that the fundamental group n1(M) is 

finite. This assertion can be sharpened as follows. 
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THEOREM 19.6. If M 
Ricci tensor K of 
then the path space 
a CI-T-complex having 
dimension. 

is a compact manifold, and if the 
M is everywhere positive definite, 

n(M;p,q) has the homotopy type o~ 
only finitely many cells in each 

PROOF. Since the space consisting of all unit vectors U on M 

is compact, it follows that the continuous function K(U,U) > o takes on 

a minimum, which we can denote by (n- 1) /r2 > o. Then every geodesic 

7 € n(M;p,q) of length > nr has index ~ ~ 1. 

More generally consider a geodesic 7 of length > knr. Then a 
similar argument shows that 7 has index ~ ~ k. In fact for each 
i = 1, 2, ••• ,k one can construct a vector field xi along 7 which vanishes 
outside of the interval ( i-1 i ) and such that Eu(Xi,Xi) < 0. !{, 1{ , 
Clearly Eu(Xi,Xj) 0 for i "I j; so that x1, ... ,xk span a k-
dimensional subspace of Tn on ;rhich E** is negative definite. ., 

Now suppose that the points p and q are not conjugate along any 

geodesic. Then according to§ 16 . 3 there are only finitely many geodesics 

from p to q of length ~ knr. Hence there are only finitely many geo­

desics with index < k. Together with §17 . 3, this completes the proof. 

REMARK. I do not know whether or not this theorem remains true if 

M is allowed to be complete, but non-compact. The present proof certainly 

breaks down since, on a manifold such as the paraboloid z = x? + y?, the 
curvature K(U,U) will n t b 

0 e bounded away from zero. 

It would be interesting to know which manifolds can carry a metric 

so that all sectional curvatures are positive. An instructive example is 

of two spheres; with m,k ~ ?. 

manifold the Ricci tensor is everywhere positive definite. However, the 

provided by the product Sm X Sk 
For this 

sectional curvatures in certain directions (corresponding to flat tori 

S 1 x S 1 C sm x sk) are zero·. It is not known whether or not sm x sk can 

be remetrized so that all sectional curvatures are positive. The follO\ving 

partial result is known: If such a new metric exists, then it can not be 

invariant under the involution (x,y)- (-x,-y) of sm X sk. This follows 

from a theorem of Synge. (See J. L. Synge, on the connectivity of spaces 
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of positive curvatur'e, .i_uarterly Journal of l•lathematics (Oxford), Vol. 7 

(1936), pp. '16-'"0. 

For other theorems relating topology and curvature, the follmring 

sources are useful. 

K. Yano and S. Bochner, "Curvature and Betti Nwnbers," Annals 

Studies, No 3?, Princeton, 1953, 

S. S. Chern, On curvature and characteristic classes of a Riemann 

manifold, Abh. Math. Sem., Hamburg, Vol. ~o (1955), pp. 111-1~6. 

M. Berger, Sur certaines varietes Riemanniennes a courbure positive, 

Comptes Rendus Acad. Sci., Paris, Vol. ?47 (1958), pp. 1165-1168. 

S. I. Goldberg, "Curvature and Homology," Academic Press, 1962. 
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PART TV. 

APPLICATIONS TO LIE GROUPS AND ~~IC SPACES 

§?o. Syrrmetric Spaces. 

A s~I~etric space is a connected Riemannian manifold M such that, 

•r each p € M there is an isometry I . 
p" M M 1vr1ich leaves p fixed 

1d reverses geodesics through p, i.e., if 7 is a geodesic and 7(0) = p 

ten = 7(-t). 

LEMMA ::o. 1 

p = 7(0) 
Let 7 be a geodesic in M, and let 

and q 7(c). Then Iqip{7(t)) = 7(t + 2c) 
7(t) and 7(t + 2c) are defined). More­

preserves parallel vector fields along 7· 
(assuming 
over, Iqip 

PROOF: Let 7 1 (t) 7(t +c). Then 7' is a geodesic and 

( t + c) 7(t + 2C) • 

If the vector field V is parallel along 7 then IP*(V) is 

.rallel (since Ip 

'* V( t) -V( -t). 

is an isometry) and IP*V(o) = -V(O); therefore 

Therefore Iq* Ip*(V(t)) V(t + 2c). 

COROLLARY 20.2. M is complete. 

Since 20.1 shows that geodesics can be indefinitely extended. 

COROLLARY 20.3. Ip is unique. 

Since any point is joined to p by a geodesic. 

COROLLARY 20.4. 
f'ields along 7 
:field along 7· 

PROOF. I:f X 
>te that the quantity 

I:f U,V and W are parallel vector 
then R(U,V)W is also a parallel 

denotes a :fourth parallel vector field along 7, 
< R(U,V)W,X > iR constant along 7· In :fact, 
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given p = r(o), q = r(c), consider the isometry T 

carries p to q. Then 

by 20.1. Since T is an isometry, this quantity is equal to 

< R(UP,VP)HP'~> Thus <R(U,V)H,X) is constant for every parallel 

vector field X. It clearly follows that R(U,V)vf is parallel. 

Manifolds with the property of 20.4 are called locally symmetric. 

(A classical theorem, due to cartan states that a complete, simply connected 

locally symmetric manifold is actually symmetric.) 

In any locally symmetric manifold the Jacobi differential equations 

have simple explicit solutions. Let 7 : R - M be a geodesic in a local­

ly symmetric manifold. Let v = ~(o) be the velocity vector at p = r(o). 

Define a linear transformation 

by * Kv(H) R(V,vl)V. Let e 1 , ••• ,en denote the eigenvalues of 

THEOREM 20.5. The conjugate points to P along r 
are the points r(nk/Jei) where k is any non-zero 
integer, and ei is any positive eigenvalue of KV· 
The multiplicity of r(t) as a conjugate point is 
equal to the number of ei such that t is a mul­
tiple of n !.Jej_. 

PROOF: First observe that Kv is self-adjoint: 

This follows immediately from the symmetry relation 

< R(V,H)V' ,H') (R(V' ,H' )V,H) 

Therefore we may choose an orthonormal basis u,, ... ,Un for 

Kv· 

so that 

• .. rhere e 1, ... ,en are the eigenvalues. Extend the ui to vector fields 

along r by parallel translation. Then since M is locally symmetric, 

Kv should not be confused with the Ricci tensor of §19. 
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the condition 

remains true everywhere along 7· Any vector field W along 7 may be 

expressed uniquely as 

H(t) 

Then the Jacobi equation 

w1 (t)U1 (t) 

D2H 
dt2 + K,r(H) o takes the form 

d 2w L dt~ ui + L eiwiui o. 

Since the Ui are everywhere linearly independent this is equivalent to 

the system of n equations 

0 

He are interested in solutions that vanish at t = o. If ei > o then 

wi (t) ci sin CJei t), for some constant ci. 

Then the zeros of wi(t) are at the multiples of t = fl /Jej_ 
If ei = 0 then wi(t) = cit and if ei < o then 
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wi (t) = ci sinh ( JTEi"J t) for some constant ci. Thus if ei .5_ o, wi (t) 

vanishes only at t = o. This completes the proof of 20.5. 
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§21. Lie Groups as Symmetric Spaces. 

In this section we consider a Lie group G with a !Ue:nannlan metric 

which is invariant both under left translations 

and right translation, RT(a) aT. If G is conunutative such a metric 

certainly exists. If G is compact then such a metric can be constructed 

as follows: Let <:> be any Riemannian metric on G, and wt 11 denote 

the Haar measure on G. Then 11 is right and left invariant. Define a 

new inner product (( , >) on G by 

Then 

((V,W)) S (La*RT*(V), Ln*Rnn·n) d~-L(a) d~-L(T) 
GxG 

<<,>> is left and right invariant. 

LEl-1MA 21.1 If G is a Lie group with a left and right 
invariant metric, then G is a s~nmetric space. The 
reflection IT in any point T £ G is given by the 
formula IT(a) = Ta- 1T. 

PROOF: By hypothesis LT and RT are i3ometries. Define a map 

Ie: G - G by 

-1 a 

Then Ie*: TGe - TGe reverses the tangent space of e; so is certainly 

an isometry on this tangent space. Now the identity 

Ie Ra_1IeLa-1 

sho>rs that I T e : TG--> G -1 * a a 
is an isometry for any a £ G. Since 

reverses the tangent space at e, it reverses geodesics through e. 

Finally, defining IT(a) 
-1 

Ta-1T, the identity IT = RTieRT 

shows that each IT is an isometry which reverses geodesics through T. 

A 1 -parameter subgroup of G is a c"" homomorphism of R into 

G. It is vrell knovrn that a 1 -parameter subgroup of G is determined by 

its tangent vector at e. (Compare Cheval ley, "Theory of Lie Groups 1 " 

Princeton, 1946.) 
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LE!·ll·IA 21. ~. The geodesics ., in G with y(O) = e 
!:!1''.:: p•eclsely th·~ cne-ra.re.meter subgroups of G. 

FRCOF: 

map I.,(t)Ie 
,-(t)y(u) y( t) 

any integer 

Let y: R -a 
takes ,-(u) 

y{U + 2t). 

n. If t I /t" 

be a geodesic with y{O) =e. By Lemma 20.1 

into y(U + 2t). Now Iy{t)Ie(a) = y{t)a y(t) 

By induction it follows that y(nt) = y{t)n 

is raticnal so that t 1 n 1 t and t" = n"t 
I II 

for some t and some integers n 1 and n" then y{t' + t") = y{t)n +n = 

,-(t')y(t"). By continuity ,. is a homomorphism. 

Now let ., : R - G be a 1-parameter subgroup. Let ,. 1 be the 

geodesic through e such that the tangent vector of ,- 1 at e is the tan­

gent vector of ,. at e. He have just seen that ,. 1 is a 1-parameter sub­

group. Hence .,, = ,.. This completes the proof. 

A vector field X on a Lie group G is called left invariant if 

and only if (La)*(Xb) Xa·b for every a and b in G. If X and Y 

are left invariant then [X,Yl is also. The Lie algebra g of G is the 

vector space of all left invariant vector fields, made into an algebra by 

the bracket [ ). 

g is actually a Lie algebra because the Jacobi identity 

[[X,Yl,Zl + [[Y,Zl,Xl + [[Z,Xl,Yl o 

holds for all (not necessarily left invariant) vector fields X,Y and Z. 

THEOREM 21 . 3. Let G be a Lie group with a left and 
right invariant Riemannian metric. If X,Y,Z and W 

are left invariant vector fields on G then: 
a) <[X,Yl,z> <X,[Y,ZJ> 
b) R(X,Y)Z = ~ [[X,Yl,Zl 
c) < R(X,Y) Z,W> ~ ( [X,Y), [Z,Wl > 

PROOF: As in §8 we will use the notation x 1- y for the covariant 

derivative of Y in the direction x. For any left invariant X the iden­

tity 

is satisfled, since the integral curves of X are left translates of 1-

parameter subgroups, and therefore are geodesics. 
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Therefore 

(X + Y) 1- (X + Y) (X 1- X) + (X 1- Y) 

+ (Y 1- X) + (Y 1- Y) 

is zero; hence 

XI-Y+YI-X o. 

On the other hand 

XI-Y-YI-X [X, y) 

by §8.5. Adding these two equations we obtain: 

d) 2X 1- Y [X,Yl 

Now recall the identity 

(Y 1- X,Z) + (X,Y 1- Z > 
(See §8.4.) The left side of this equation is zero, since <x,z> is 

constant. Substituting formula (d) in this equation we obtain 

0 ( [Y,Xl ,Z) + <x, [Y,Zl > 
Finally, using the skew commutativity of [Y,Xl, we obtain the required 

* formula 

(a) < [X,Yl ,z > (X,[Y,Zl) 

By definition, R(X,Y)Z is equal to 

X 1- (Y 1- Z) + y 1- (X 1- Z) + [X, Y) 1- Z. 

S~bstituting formula (d), this becomes 

- {[X,[Y,Zll + {[Y,[X,Zll + ~[[X,Yl,Zl 

Using the Jacobi identity, this yields the required formula 

(b) R(X,Y)Z {[[X,Yl,Zl 

The formula (c) follows from (a) and (b) 

* It follows that the tri-linear function X,Y,Z - ([X,Yl,Z> is skew­
Sj"'L':letric in all three variables. Thus one obtains a left invariant diffe:r>­
er.tial 3-form on G, representing an element of the de Rham cohomology group 
~3 (G). In this way Cartan was able to prove that H3(G) ;, o if G is a 
::en-abelian compact connected Lie group. (See E. Cartan, "La Topologie des 
2s:;:,aces Representatives des Groupes de Lie," Paris, Hermann, 1936.) 
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COROLLARY 21 .4. The sectional curvature <R(X,Y)X,Y) = 
1 
r. < [X,Yl, [X,Yl > is always ~ o. Equality holds if and 
only if [X,Yl = o. 
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Recall that the center of a Lie algebra g is defined to be 

the set of X E g such that [X,Yl = o for all Y E g, 

COROLLARY 21.5. If G has a left and right invariant 
metric, and if the Lie algebra g has trivial center, 
then G is compact, with finite fundamental group. 

PROOF: This follows from Meyer's theorem (§19), Let X1 be any 

unit vector in g and extend to a orthonormal basis X1, ... ,~. The Ricci 

curvature 

K(X1 ,X1 ) 

n L <Rex, ,xi)x1,xi> 
1=1 

must be strictly positive, since rx,,xil ? 0 for some i. Furthermore 

K(X1,X1) is bounded away from zero, since the unit sphere in g is compact. 

Therefore, by Corollary 19.5, the manifold G is compact. 

This result can be sharpened slightly as follows. 

COROLLARY 21.6. A simply connected Lie group G with left 
and right invariant metric splits as a Cartesian product 
G' x Rk where G' is compact and Rk denotes the additive 
Lie group of some Euclidean space. Furthermore, the Lie 
algebra of G1 has trivial ~enter. 

Conversely it is clear that any such product G' x Rk possesses a 
left and right invariant metric. 

PROOF, Let be the center of the Lie algebra g and let 

g' (XE g :<X,C)= 0 for all CE cl 

be the orthogonal complement of c. Then g• is a Lie sub-algebra. For 

if X, Y E g' and C e c then 

< [X,Y] ,C ) = <x, [Y,Cl > = o; 

hence [X,Yl E g'. It follows that g splits as a direct sum g' EB c of 

Lie algebras. Hence G splits as a Cartesian product G 1 x G"; where G' 

is compact by 21.5 and G" is simply connected and abelian, hence isomorphic 
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to some Rk. (See Chevalley, "Theory of Lie Groups.") This completes the 

proof. 

THEOREM 21.7 (Bott). Let G be a compact, simply con­
nected Lie group. Then the loop space o(G) has the 
homotopy type of a ~i-complex with no odd ~imensional 
cells, and with only finitely many >..-cells for each 
even value of >... 

Thus the >..-th homology groups of o (G) is zero for >.. o-Jd, anri is 

free abelian of finite rank for >.. even. 

REMARK 1. This ~[-complex will always be infinite ~imensional. As 

an example, if G is the group s3 of unit quaternions, then we have seen 

that the homology group Hi o ( s3) is infinite cyclic fqr all even val•1es of i 

REMARK 2. This theorem remains true even for a non-compact group. 

In fact any connected Lie group contains a compact subgroup as deformation 

retract. (See K. Iwasawa, On some types of topological groups, Annals of 

Mathematics 50 (1 949), Theorem 6.) 

PROOF of 21.7. Choose two points p and q in G which are not 

conjugate along any geodesic. By Theorem 17.3, o(G;p,q) has the homotopy 

type of a ~i-complex with one cell of dimension >.. for each geodesic from 

P to q of index >... By §19.4 there are only finitely many >..-cells for 
each >... Thus it only remains to prove that the index >.. of a geodesic is 
always even. 

Consider a geodesic 1 starting at p with velocity vector 

v 

According to §20.5 the conjugate points of p on 1 are determined by the 

eigenvalues of the linear transformation 

defined by 

Kv(W) R(V,W)V ~[ [V,W), Vl 

Defining the adjoint homomorphism 

Ad V: P. - g 
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by 

A:l V(H) [V '' . .Jl 

;re have 

Kv = - ~ (Ad V) • U~o-: V) 

The linear transformation A:: V is ske1.:-synunetric; that is 

( Ad V(H) ,\·!' ) ( I.J,Ad V(H') ) 

This follo-,:s immediately frum the identity 21 .3a. Therefore 1ve can choose 

an orthonormal basis for (ij so that the matrix of Ad V takes the form 

) 
It follo• . .;s that the composite linear transformation (Ad V) • (Ad V) has 

matrix 

Therefore the non-zero eigenvalues of KV = -~(Ad V) 2 are positive, and 

occur in pairs. 

It follows from 20.5 that the conjugate points of p along 1 also 

0ccur in pairs. In other ;rords every conjugate point has even multiplicity. 

Together with the Index Theorem, this implies that the index ~ of any 

geodesic from p to q is even. This completes the proof. 
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§22. vlhole l~anifolds of llinimal Geodesics. 

So far we have used a path space n(M;p,q) base-l on t1-ro points 

p,q E l!J which are in "general position." However, Bott has pointed out 

that very useful results can be obtained by considering pairs P, q in some 

special position. As an example let 1~ be the unit sphere and 

let p,q be antipodal points. Then there are infinitely many minimal geo-

desics from p to q. In fact the space 
1!2 

n of minimal geodesics forms 

a smooth manifold of dimension n which can be identified 1-1i th the equator 
sn c sn+1. 

He •rill see that this space of minimal geodesics provides a 

p 

q 

r"airly good 
approximation to the entire 

loop space 

complete Riemannian manifold, 

o(p,q) = .Jd. 

Let I~ be a 

pcints '<rith distance 

s" 

n(Sn+1). 

and let p,q E M be two 

THEORE!4 22. 1 . 

P to 1 is a 
geodesic from 

homotopy group 

If the space 0d of minimal geodesics from 

topological manifold, and if every non-minimal 

P to q has index > then the re la ti ve 
d ),0' 

ni(n,n ) is zero fo; o 5 i < >..o. 

It follows that the 
inclusion homomorphism 

"i (nd) - "i(n) 
~s an isomorphism for 

i ~ >..o - 2. But it is '<Tell 1a1own that the homotopy 
gr:,up " In) . . hi 

i , lS lsomorp c to "i+1(M) for all values of i. (Compare 
S. T. Hu "Hom t Th " 

· ' ' 0 0 PY eory, Acade"'•c 1 1 1 · together ,,ri th 
"~ Press, 1959, P· ' 



§ 2 2. MANIFOlDS OF MINIMAL GEODESICS 

Thus we obtain: 

COROLLARY 22.2. \-lith the same hypotheses, "i(nd) is 

isomorphic to "i+ 1(M) for o ~ i ~ ~0 - 2. 
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Let us apply this corollary to the case of two antipodal points on 

the (n+1)-sphere. Evidently the hypotheses a.re satisfied with ~0 = 2n. 

For a.ny non-minimal geodesic must wind one and a half times around sn+ 1 ; 

and contain two conjugate points, each of multiplicity n, in its interior. 

This proves the following. 

COROU.ARY 22. ~. (The Freudenthal suspension theorem.) 
n hi -i+1(Sn+1) The homotopy group "i(S) is isomorp c to .. 

for i < 2n-2. 

Theorem 22.1 also implies that the homology groups of the loop 

space n are isomorphic to those of nd in dimensions ~ ~0 - 2. This 

fact follows from 22.1 together with the relative Hurewicz theorem. (See 

for example Hu, p. :o6. Compare also J. H. C. 1-lhi tehead, Combinatorial 

homoto;e:z: I, Theorem 2.) 

The rest of §22 will be devoted to the proof of Theorem 22.1. The 

proof •.;ill be based on the following lemma, which asserts that the condition 

"all critical points have index > ~ 0 " remains true lvhen a function is 

jiggled slightly. 

Let K be a compact subset of the Euclidean space Rn; let U be 

a neighborhoo~ of K; and let 

f: U ..... R 

be a smooth function such that all critical points of f in K have index 

~ >..'). 

LEMMA 22. 4. If g: U ..... R is any smooth function which 
is "close" to f, in the sense that 

(i,j = 1, ... ,n) 

uniformly throughout K, for some sufficiently small constant E, 

then all critical points of g in K have index ~ ~0 . 

(Note that f is allowed to have degenerate critical points. In 

the application, g Hill be a nearby function without degenerate critical 

points.) 
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PROOF of 22.4. The first derivatives of g are roughly described 

by the single real valued function 

on U; which vanishes precisely at the critical points of g. The second 

derivatives of g can be roughly described by n continuous functions 

1 en· eg, .•. ' g· U - R , 

as follows. Let 

e~(x) ~ e~(x) ~· .. ~ e~(x) 

denote the n eigenvalues of the matrix ( dX~:~j ) Thus a critical point 

X of g has index ~). if and only if the number e~(x) is negative. 

The continuity of the functions e~ follows from the fact that the 

* >..-th eigenvalue of a symmetric matrix depends continuously on the matrix . 

This can be proved, for example, usine the fact that the roots of' a complex 

polynomial of degree n vary continuously with the coefficient of the polY­

nomial . (Rouche' s theorem. ) 

Let 

Similarly let ·mf(x) 
).0 

and -ef (x). 

denote the larger of the two numbers and 

denote the larger of the corresponding numbers 

in K 

).0 
-eg (x) • 

kf(x) 

have 

index ~ >..0 

mf(x) > o 

The hypothesis that all critical points of f 
).0 

implies that -ef (x) > o whenever kf(x) = o. 

for all X E K. 

In other words 

Let li > o denote the minimum of mf on K. Now suppose that g 

is so close to f that 

(*) 

for all x E K. Then mg(x) will be positive for x E K; hence every 

critical point of g in K will have index ~ >..0 . 

* This statement can be sharpened as follows. Consider two nxn symmetric 
matrices. If corresponding entries of the two matrices differ by at most 
E, then c~rresponding eigenvalues differ by at most nE. This can be 
J::roved using Co~ant 's minimax definition of the >..-th eigenvalue. (See 
§1 of Courant, Uber die Abhangigkeit der Schwingungszahlen einer Membran .. ~. 
T!achr:!.chten, Koniglichen Gesellschaft der vfissenschaften zu Gottingen, Math, 
?hys. Klasse 1919, pp. ~55-~64.) 
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To complete the proof of 22.4, it is only necessary to show that 

the inequalities (*) will be satisfied providing that 

and e: 

1 :?1 

for sufficiently small e:. This follows by a uniform continuity argument 

which will be left to the reader (or by the footnote above). 

He will next prove an analogue of Theorem 22.1 for real valued 

functions on a manifold. 

Let f: M -+ R be a smooth real valued function with minimum o, 

such that each Me f- 1 [o,cl is compact. 

LEMMA 22.5. If the set 1-1° of minimal points is a manifold, 
and if every critical point in ~I - ~1° has index ~ ). 0 , 

then nr(M,M0 ) = o for o ~ r < ).0 . 

PROOF: First observe that M0 is a retract of some neighborhood 

U C M. In fact Hanner has proved that any manifold M0 is an absolute 

neighborhood retract. (See Theorem 3.3 of 0. Hanner, Some theorems on 

absolute neighborhood retracts, Arkiv for Matematik, Vol. 1 (1950), PP· 

389-408.) Replacing U by a smaller neighborhood if necessary, we may 
0 

assume that each point of U is joined to the corresponding point of M 

by a unique minimal geodesic. Thus u can be deformed into M0 within M. 

Let Ir denote the unit cube of dimension r < ).0 , and let 

h: (Ir,ir)-+ (M,M0 ) 

be any map. He must show that h is homotopic to a map h' with 

h'(Ir) C M0 • 

Let c be the maximum of f on h( Ir) . Let 35 > o be the mini­

mum of f on the set M - u. (The function f has a minimum on M - U 

since each subset Me - U is compact.) 

Now choose a smooth function 

g: MC+25-+ R 

which approximates f closely, but has no degenerate critical points. This 

is possible by §6.8. To be more precise the approximation should be so 

close that: 
(1) lf(x)-g(x)l<o 
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(2) The index of g at each critical point '"hich lies in the com­

pact set f- 1 [o,c+2ol is ~ ~0 -

It follows from Lemma 22.4 that any g ;rhich approximates f 

su:fficiently closely, the first and second derivatives also being approxi­

mated, will satisfy (2). In fact the compact set f- 1 [&,c+2ol can be 

covered by :finitely many compact set Ki• each of which lies in a coordi­

nate neighborhood. Lemma 22.4 can then be applied to each K1. 
The proof of 22.5 now proceeds as follmrs. The function g is 

smooth on the compact region g- 1 [25,C+5l C f- 1 [o,c+25l, and all critical 

~ ~0 • Hence the manifold points are non-degenerate, with index 

g- 1 (-~,c+ol has the homotopy type of 

~ ~0 attached. 

g- 1 (-~,25] with cells of dimension 

Now consider the map 

h: Ir,Ir - Mc,MO C g- 1 (-~,C+5l,M0 

Since r < ~o it follows that h is homotopic within -1 ( l 0 g -~, C+5 ,M to 
a map 

But this last pair is contained in 

M0 within M. It follows that h' 

(U,M0 ); and U can be deformed into 

is homotopic within (M,M0 ) to a map 
h": Ir,ir - Mo,Mo. This completes the proof of 22.5. 

The original theorem, 22. 1' now can be proved as follows. Clearly 
it is suf:ficient to prove that 

for arbitrarily large values of c. As in §16 the space contains 

a smooth manifold Int nc(t0 ,t 1 , ••• ,tk) as de:formation retract. The space 
nd f 

0 minimal geodesics is contained in this smooth manifold. 

The energy function E: n - R, >Then restricted to 
Int nc(t t 

o• 1•··-,tk), almost satisfies the hypothesis of 22.5. The only 

difficulty is that E(w) ranges over the interval d < E < c, instead of 

the required interval [o,~). To correct this, let 

F: [d,c) - [o,~) 

be any diffeomorphism. 
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Then 

satisfies the hypothesis of 22.5. Hence 

ni(Int nc(t0 , ... ,tk),nd) ~ ni(Int nc,nd) 

is zero for i < ~0 . This completes the proof. 
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§23. The Bott Periodicity Theorem for the Unitary Group. 

First a review of well known facts concerning the unitary group. 

Let en be the space of n-tuples of complex numbers, with the usual Her­

mitian inner product. The unitary group U(n) is defined to be the group 

of all linear transformations S: en -en which preserve this inner 

product. EqUivalently, using the matrix representation, U(n) is the 

group of all n x n complex matrices S such that S s* I; where s* 

denotes the conjugate transpose of s. 

For any n x n complex matrix A the exponential of A is defined 
by the 

conver@ent power series expansion 

The 
exp A = 

following properties 

(1) exp (A*) 

are easily verified: 

(exp A)*; exp (TAT- 1 ) 

( 2) If A and B commute then 

T(exp A)T- 1 • 

exp (A+ B) = (exp A)(exp B). In particular: 

( 3 ) ( exp A) ( exp -A) = I 
(4) The function exp maps a neighborhood of o in the space of 

n x n matrices diffeomorphically onto a neighborhood of I. 

lows If A is skew-Hermitian (that is if A + A* o), then it fol-
from ( 1) and is Ul1.1te.ry- (3) that exp A is unitary. Conversely if exp A 

it fo11' and A belongs to a sufficiently small neighborhood of o, then 

ows from (1), (3), and (4) that A+ A* o. From these facts one 
easily Proves that: 

(S) U(n) is a smooth submanifold of the space of n x n matrices: 

the tangent space TU( n) I can be identified with the space or 
( 6) 

n x n skew-Hermitian matrices. 
The ref 

the ore the Lie algebra g of U ( n) can also be identified with 
space of 

skew-Hermitian matrices. For any tangent vector at I extends 
uniquely to 

a left invariant vector field on U(n). Computation shows that 
the bracket 

product of left invariant vector fields corresponds to the 
product [A Bl 

' = AB - BA of matrices. 
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Since U(n) is com~act, it possesses a left and right invariant 

Riemannian metric. Note that the function 

exp: TU(n) I - U(n) 

1 25 

defined by exponentiation of matrices coincides with the function exp de­

fined (as in §10) by following geodesics on the resulting Riemannian mani­

fold. In fact for each skeH-Hermitian matrix A the correspondence 

t - exp(t A) 

defines a 1-parameter subgroup of U(n) (by Assertion ( 2) above); and 

hence defines a geodesic. 

A specific Riemannian metric on U(n) can be defined as follows. 

Given matrices A,B E o 
number 

let <A,B > denote the real part of the complex 

trace (AB*) L Aijtiij 
i,j 

Clearly this inner product is positive definite on o 
This inner product on o determines a unique left invariant 

Riemannian metric on U(n). To verify that the resulting metric is also 

right invariant, we must check that it is invariant under the adjoint 

action of U(n) on 0 . 

DEFINITION of the adjoint action. Each S € U(n) determines an 
inner automorphism 

X - S X s- 1 

of the group U ( n) . The induced linear mapping 

TU:n) I -TUn) I 

is called Ad(S). Thus Ad(S) is an automorphism of the Lie algebra of 
U(n). Using Assertion (1) above we obtain the explicit formula 

Ad(S)A SAS- 1 

for A E g, s E U(n). 

The inner product <A,B> is invariant under each such automorphism 

Ad(S) · In fact if A1 = Ad(S)A, B1 = Ad(S)B then the identity 

A1B1* SAS- 1 (SBS-1 )* = SAB*s-1 
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implies that * _,) trace (SAB S trace (AB*) 
trace (A1B1*) 

and hence that 

It follovrs that the corresponding left invariant metric on U(n) is also 

right invariant. 
Given A € g we know by ordinary matrix theory that there exists 

T € U(n) so that TAT-l is in diagonal form 

where the ai's are real. Also, given any S € U(n), there is a T € U(n) 

such that 

vrhere again the ai 1 s are real. Thus we see directly that exp: 11 - U(n) 

is onto. 

One may treat the special unitary group SU(n) in the same way. 

SU(n) is defined as the subgroup of U(n) consisting o:' matrices of de­

terminant 1. If exp is regarded as the ordinary exponential map of 

matrices, it is easy to show, using the diagonal form, that 

1et (exp A) etrace A 

Using this equation, one may show that g' , the Lie algebra of" SU(n) is 

the set of all matrices A such that A + A* o and trace A = o. 

In order to apply I•lo:>rse theory to the topology of" U(n) and SU(n), 

\·re begin by considering the set of all geodesics in U( n) from I to -I. 

:n other words, we look for all A € TU(n)I g such that P-Xp A -I. 

Suppose A is such a matrix; if ~t is not already in diagonal ~orm, let 

7 € U(n) be such that TAT- 1 is in 1iagonal f'orm. Then 

T(exp A)T-l T(-I)T-1 -T 
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so that we may as well assume that A is already in diagonal form 

A 

In this case, 

exp A 

so that exp A -I if and only if A has the form 

for some odd integers k 1 , ••• ,~. 

Since the length of the geodesic t- exp tA from t o to t 

is IAI = Jtr AA*, the length of the geodesic determined by A is 

1 :?7 

n Jk~ + ... + ~· Thus A determines a minimal geodesic if and only if each 

ki equals .:t. 1, and in that case, the length is 11 .Jri.. Now, regarding 

such an A as a linear map of en to en observe that A is completely 

determined by specifying Eigen(i11), the vector space consisting of all 

v £en such that Av = i11v; and Eigen(-i11), the space of all v £en 

such that Av = -i11v. Since en splits as the orthogonal sum Eigen(i1l) e 

Eigen(-i11), the matrix A is then completely determined by Eigen(i1l), 

which is an arbitrary subspace of en. Thus the space of all minimal geo­

desics in U(n) from I to -I may be identified with the space of all 

sub- vector -spaces of en. 

Unfortunately, this space is rather inconvenient to use since it 

has components of varying dimensions. This difficulty may be removed by 

replacing U(n) by SU(n) and setting n = 2m. In this case, all the 

above considerations remain valid. But the additional condition that 

a,+ ... + a 2m o with ai = .:t. 11 restricts Eigen(i11) to being an arbi-

trary m dimensional sub-vector-space of e 2m. This proves the following: 
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LEMMA 23.1. The space of minimal geodesics from I to -I 
in the special un1 tary group SU( 2m) is homeomorphic to the 
complex Grassmann manifold Gm(C2m), consisting of all m 
dimensional vector subspaces of C2m 

He will prove the following result at the end of this section. 

LEMMA 23.2. 
in SU( 2m) 

Every non-minimal geodesic from 
has index ?::_ 2m+ 2 . 

Combining these two lemmas with §22 we obtain: 

I to -I 

THEOREM 23.: (Batt). The inclusion map Gm(C2m) 
n(SU(2m); I,-I) induces isomorphisms of homotopy groups 
in dimensions < 2m. Hence 

11i Gm(C2m) _ 11i+ 1SU( 2m) 

for i .$_ 2m. 

On the other hand using standard methods of homotopy theory one 

obtains somewhat different isomorphisms. 

LEMMA 23.4. The group 11iGm(c2m) is isomorphic to 
11 i_ 1 U(m) for i .$_ 2m. Furthermore, 

11 i_ 1 U(m) ~ 11i_ 1 U(m+1) ~ 11i_ 1 U(m+2) _ 

for i .$. 2m; and 

for j ~ 1. 
11j U(m) ~ 11j SU(m) 

PROOF. First note that for each m there exists a fibration 

U(m) - U(m+ 1) - s 2m+ 1 

From the homotopy exact sequence 

_ s2m+1 . s2m+1 _ ... 
. . . 11i - 11i-1 U(m) - 11i-1 U(m+1) - !!i-1 

of this fibration we see that 

for i < 2m. 

(Compare Steenrod, "The Topology of Fibre Bundles," Princeton, 1951, p. 35 

and P· 90.) It follows that the inclusion homomorphisms 

ni-1 U(m) - - 11i U(m+2) -1 

are all isomorphisms for i < 2m. These mutually isomorphic groups are 
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called the (i-1)-st stable homotopy group of the unitary group. They will 

be denoted briefly by ni_ 1 U. 

The same exact sequence shows that, for i 2m+ 1 , the homomorphism 

n2m U(m} n2m U(m+1) ~ n2m U is onto. 

The complex Stiefel manifold is defined to be the coset space 

U(2m)/U(m). From the exact sequence of the fibration 

U(m) - U(2m) - U(2m) / U(m) 

we see that ni(U(2m)/ U(m)) o for 

The complex Grassmann manifold can be identified with 

the coset space U(2m)/ U(m) x U(m). (Compare Steenrod §7.) From the exact 

sequence of the fibration 

we see now that 

~ 
- ni_ 1 U(m) 

for i 5_ 2m. 

Finally, from the exact sequence of the fibration 

SU(m) - U(m) - s1 we see that njSU(m) ~ nj U(m) for j f: 1, This 

completes the proof of Lemma 23.4. 

Combining Lemma 23.4 with Theorem 23.3 we see that 

for 1 5. i 5. 2m. Thus we obtain: 

PERIODICITY THEOREM. ni- 1 U ~ ni+ 1 U for i ~ 1 . 

To evaluate these groups it is now sufficient to observe that U( 1) 

is a circle; so that 

no u n0 U( 1) 0 

n1 U n1 U(1) ~ z (infinite cyclic). 

As a check, since SU(2) is a 3-sphere, we have: 

n2 U n2 SU( 2) 0 

n3 U n3 SU(2) 9! z 
Thus we have proved the following result. 
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THEOREM 2;.5 (Bott). The stable homotopy groups ni U 
of the unitary groups are periodic with period 2. In 
fact the groups 

n0 U ~ n2 U ~ n4 U = ... 

are zero, and the groups 
n1 U ~ n3 U ~ n5 U-

are infinite cyclic. 

The rest of §23 will be concerned with the proof of Lemma 23.2. He 

must compute the index of any non-minimal geodesic from I to -I on 

SU(n), where n is even. Recall that the Lie algebra 

g 1 T(SU(n))I 

consists of all n x n skew-Hermitian matrices with trace zero. A given 

w~trix A E 0 1 corresponds to a geodesic from I to -I if and only if 

the eigenvalues of A have the form i~k,, ... ,i~~ where k 1 , ••• ,~ are 

odd integers vri th sum zero. 

We must find the conjugate points to I along the geodesic 

t ...... exp(tA) . 

According to Theorem 20.5 these will be determined by the positive eigen­

values of the linear transformation 

KA: g I ...... g I 

Hhere 

R(A,W)A ~ ([A,H),A] 

(Compare §21.7.) 

He may assume that A is the diagonal matrix 

(
irrk, \ 

·in~) 
If vT then a short computation shows 

that 

[A, H) 

hence 

[A,[A,H)) 
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KA(H) 

a basis for g' 

For each j < 
place, -1 in the 

consisting of eigenvectors of KA, as follows: 

the matrix EjR with +1 in the (jf)-th 

(fj)-th place and zeros elsewhere, is in g• 

and is an eigenvector corresponding to the eigenvalue 

2 2 -T< kj - k~) 
Similarly for each j < r the matrix EJ.C with +i in the 

(j~)-th place and +i in the (2j)-th place is an eigenvector, 
2 

2 also with eigenvalue ;-ckj - kf) 

3) Each diagonal rna trix in g ' is an eigenvector ,,i th eigenvalue o. 

Thus the non-zero eigenvalues of 
2 2 

KA are the numbers ..;-c kj - kr) 

with kj > kf. Each such eigenvalue is to be counted twice. 

Now consider the geodesic r(t) exp tA. Each eigenvalue 
lf2 

e = 11(kj - kf) 2 > o gives rise to a series of conjugate points along r 

corresponding to the values 

(See §20.5.) Substituting in the formula for e, this gives 

t 2 4 6 

The number of such values of t in the open interval (0,1) is evidently 
kj - kf 

equal to - 2 - 1. 

Now let us apply the Index Theorem. For each j, r with kj > kr 
n 2 2 we obtain two copiea of the eigenvalue Lf(kj _ kr) , and hence a contri-

bution of 

to the index. Adding over all j, f this gives the formula 

for the index of the geodesic 7 . 

As an example, if r is a minimal geodesic, then all of the kj 
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are equal to + 1 . Hence ~ = o, as was to be expected. 

Nmr consider a non-minimal geodesic. Let n = 2m. 

CASE 1. At least m+1 of the k1 •s are (say) negative. In this 

case at least one of the positive k1 must be ~ ~~. an-! we have 

( 3 - ( -1) - 2) 2(m+ 1) 

CASE 2. m of the ki are positive and m are negative but not 
all are :!: 1 . Then one is ~ 3 and one is < -3 so that 

m-1 m-1 
~~ I ( 3 - ( -1) - 2) + I ( 1 - ( -3) - 2) + ( 3 - (-3) - 2) 

4m > 2(m+1) 

Thus in either case we have ~ > 2m+2. This proves Lemma 23.2, 

and therefore completes the proof of the Theorem 23.3. 
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§ :c·... The FePie:iici ty Thecre:n for the Orthogonal Group. 

This se·::tlcn \,'ill c9.rry out an analogous stu:ly of the iterated loop 

sr.e.cc - •' t.lY· ~·rthcgcna.l group. However the treatment is rather sketchy, ani 

:T..!l.ny ic·t·.1ils •1r.c· lc·rt out. The ~oint or' view in this section \-ras suggeste.4 

ty t.L.;;, ['J.pc.:r ClllTurci r::Lduh;s by !·!. At.Cyai,, R. Bott, and A. Shapiro, 

'-ThieL r·::l·!: e:·s t.Le f.oericdlclty tlwcre:n ;.;it!: t!.e structure of certain Clifford 

al;_:;cLr·1:.;. (See 'L'opolow, Vol. 3, Supplement 1 (1964), pp. 3-38.) 

Consider the vector space Rn with the usual inner product. The 

orthogonal croup O(n) consists of all linear maps 

which preserve this inner product. Alternatively O(n) consists of all 

real n x n matrices T such that T T* I. This group O(n) can be 

considered as a smooth subgroup of the unitary group U(n); and therefore 

inherits a right and left invariant Riemannian metric. 

Novr suppose that n is even. 

DEFINITION. A complex struc"Cure J on Rn is a linear transfor­

nation J : Rn -Rn, belonging to the orthogonal group, lvhich satisfies 

the irle:ntl ty J 2 = -I. The space consisting of all such complex structures 

on Rn Hill be denoted by fi 1 ( n) , 

He lvill see presently (Lemma 21•.4) that n 1 (n) is a smooth sub­

manifold of the orthogonal group O(n). 

REMARK. Given some fixed J 1 € n 1 (n) let U(n/2) be the subgroup 

of' O(n) consisting of all orthogonal transformations ~Yhich commute ~Yith 

J 1 • Then n 1 (n) can be identifiecl with the quotient space O(n) /U(n/2) · 

i.El\1MA 24. 1 • The space of' minimal geodesics from I to -I 

on 0 ( n) is homeomorphic to the space n 1 ( n) of' complex 
structures on Rn. 

PROOF': The space O(n) can be identified with the group of n x n 

orthogonal rna trices. Its tangent space g = TO( n) I can be identified with 

the space of n x n skew-symmetric matrices. Any geodesic with 
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~(o) I can be written uniquely as 

~(t) exp (~t A) 

for some A E g. 

I.At n = 2m. Since A is skevr-symmetric, there exists an element 

T E O(n) so that 

· .. ;i th a 
1 'a2' ... 'am ;::_ o. A short computation shows that T(exp ~ A)T- 1 is 

equal to 

cos ~a, sin ~a, 0 0 

~a, cos ~a, 0 0 

0 0 cos ~a2 sin ~a2 

0 0 -sin ~a2 cos ~a2 

~hus exp(~A) is equal to teaer - -I if and only if a 1 ,a2 , ... ,~ are odd in o s. 
~he irmer product < b 2(a2 2 +a2) A,A> is easily seen to e , + a 2 + · · · ·m · 

Therefore the geodes~c I i if 
~ ~(t) = exp(~t A) from I to - s minimal 

an.-• only if 

If 
a, = a2 = ••• =am= 1. 

~ is minimal then 

( 0 1 
_, 0 0 1 

_, 0 

is a complex structure. 

... } -I 

Conversely, let J be any complex structure. Since J is orthogo­
;,al · .. ;e ha·Je 

J J* I 
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... 
where J denotes the transpose of J. Together lvith the identity 

J J = -I this implies that i" = -J. Thus J is skelv-symmetric. Hence 

-a o 1 • ( 
o a 1 ) 

for some and some T. No1.; the identity J 2 = -I implies 

that 

proof. 

a 1 = .•• = ~n = 1; and hence that exp nJ -I. This completes the 

l.EMr>\A 24. 2. Any non-minimal geodesic from I to -I 

in 0 (2m) has index :;::_ .-m- 2. 

The proof is sDnilar to that of 23.2. Suppose that the geodesic has 

the form t - exp(nt A) with 

A 

where a, 2:. a 2 2:. ... 2:. am > 0 

non-zero eic;envalues of the 

1 ) for each i < j 

2) for each i < j 

o a 1 

-a o 
1 o a 2 

are odd integers. Computation sho1vs that the 

linear transformation KA = 
1 

- 4 (Ad A) 2 are 

the nwnber (ai + aj) 2/ 4, and 

with ai ../. aj the nwnber (ai - aj)2/ 4 • 
r 

Each of these eigenvalues is to be counted twice. This leads to the formula 

For a minimal geodesic we have a 1 = a 2 = ••• = ~ = 1 so that 

~ o, as expected. For a non-minimal geodesic we have a 1 :;::_ 3i so that 

m 
~ > ') (3+1-2) ... o 2m - 2. 

This completes the proof. 

Now let us apply Theorem 22.1. The two lemmas above, together with 
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the statement that fi 1 (n) is a manifold imply the follO\•Ting. 

THEOREM 24.3 (Bott). The inclusion map il1(n)-:! O(n) 
induces isomorphisms of homotopy groups in -Hmensions 
< n-4. Hence 

for i ~ n-4. 

Now vre will iterate this procedure, studying the space of geodesics 

from J to -J in n1 (n); and so on. Assume that n is divisible by a 

high pmrer of 2. 

Let J 1 , ••• ,Jk_ 1 be fixed complex structures on Rn which anti-
commute * in the sense that 

JrJs + JsJr 0 

for r ~ s. Suppose that there exists at least one other complex structure 

J which anti-commutes with J J 
1 1 ••• 1 k- 1 • 

DEFINITION. Let fik(n) denote the set of all complex structures J 

on R n which anti-commute with the fixed structures J 1 , · · · 'J k-1 · 

Thus we have 

fik(n) C .nk_1 (n) C ••• C .n1 (n) C O(n) 

Clearly each .n k( n) is a compact set. To complete the definition it is 

natural to define .n0 (n) to be O(n) 

lEMMA 24.4. 

submanifold 

J£ to -J£ 
0 < £ < k. 

** Each fik(n) is a smooth, totally geodesic 
of O{n). The space of minimal geodesics from 

in .n£(n) is homeomorphic to n£+1 (n) 1 for 

It follows that each component of nk(n) is a symmetric space. 

For the isometric reflection of O(n) in a point of nk(n) Will automati­

cally carry fik(n) to itself. 

* These structures make Rn into a module over a suitable Clifford algebra 

However, the Clifford algebras will be suppressed in the following presen­
tation. 

** 
A submanifold of a Riemannian manifold is called totally geodesic if 

each geodesic in the submanifold is also a geodesic in larger manifold· 
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PROOF of 24.4. Any point in O(n) close to the identity can be 

expressed uniquely in the form exp A, where A is a "small," skew­

symmetric matrix. Hence any point in O(n) close to the complex structure 

J can be expressed uniquely as J exp k; where again A is small and 

skew. 

ASSERTION 1 • J exp A is a complex structure if and only if A 

anti-commutes with J. 

PROOF: If A anti-commutes with J, then J-1 A J -A hence 

I exp(J- 1A J) exp A 

Therefore (J exp A) 2 -I. Conversely if (J exp A) 2 -I then the 

above computation shows that 

exp(J-1 A J) exp A I 

Since A is small, this implies that 

J- 1AJ -A 

so that A anti-commutes with J. 

ASSERTION 2. J exp A anti-commutes with the complex structures 

J 1 , ••• ,Jk_ 1 if and only if A commutes with J 1 , ••• ,Jk_1 • 

The proof is similar and straightforward. 

Note that Assertions and 2 both put linear conditions on A. 

Thus a neighborhood of J in fik(n) consists of all points J exp A where 

A ranges over all small matrices in a linear subspace of the Lie algebra ~· 

This clearly implies that nk(n) is a totally geodesic submanifold of 

O(n). 

Now choose a specific point Jk € nk(n), and assume that there 

exists a complex structure J which anti-commutes with J 1 , ... ,Jk. Setting 

J = J~ we see easily that A is also a complex structure which anti-

commutes with Jk. 

formula 

However, A comutes with J 1 , ... ,Jk_1 . Hence the 

t - Jk exp{rct A) 

defines a geodesic from Jk to -Jk in fik(n). Since this geodesic is 

minimal in O(n), it is certainly minimal in fik(n). 
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Conversely, let r be any minimal geodesic from Jk to in 

llk(n). Setting r(t) Jk exp(nt A), it follows from 24.1 that A is 

a complex structure, and from Assertions 1, 2 that A commut;es l·ri th 

J 1, ... ,Jk_ 1 and anti-commutes with Jk. It follows easily that J~ 

belongs to ilk+ 1 ( n) . This completes the proof of 24. 4. 

REI-1!\R!C. The point J~ E nk+ 1 (n) which corresponds to a given 

geodesic r has a very simple interpretation: it is the midpoint r(}l 

of the geodesic. 

In order to pass to a stable situation, note that llk(n) can be 

imbedded in ilk( n+n') as follows. Choose fixed anti-conunuting compleX 

structures Jj, ... ,Jk on Rn'. Then each J E nk(n) determines a complex 

structure J Gl Jk on Rn GlRn' which anti-commutes with Ja ·:11 J~ for 

~ = 1 1 ••• 1 k-1 . 

DEFINITION. Let nk denote the direct limit as of the 
spaces fik(n), ith 

w the direct limit topology. 
The space 0 _ n 

(I.e., the fine topology.) 

- o is called the infinite orthogonal group. 

give rise, in the limit, to inclusions 
nk+1 

It is not difficult to see that the inclusions nk+ 1 (n) - n !lk(n) 

THEOREM 24.5. For each k > o this limit map ilk+ 1 -
0 nk is a homotopy equival;nce. Thus we have isomorphisms 

nh 0 ~ llh-1 n1 ~ nh-2 n2 ~ ... = n1 !lh-1 

The proof will be given presently. 

for k 
Next we will give individual descriptions of the manifolds !lk(n) 

0,1,2, ... ,8. 

U 0 (n) is the orthogonal group. 

n 1 ( n) is the set of all complex structures on Rn · 

Gi ·ven a fixed n 
complex structure J 1 we may think of R as being a vector 

space cn/2 
over the complex numbers. 

U2(n) can be described as the set of "quaternionic structures" on 

the complex vector space cn/2 . Given a fixed J 2 E!l2 (n) we may thinX o:r 
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Cn/2 n/4 as being a vector space H over the quaternions H. let Sp(n/4) 

be the group of isometries of this vector space onto itself. Then .n 2 ( n) 

can be identif'ied with the quotient space U(n/2)/ Sp(n/4). 

Before going f'urther it will be convenient to set n = 1 6r. 

LEl·1I·L4. 21, • 6 - ( :) . The space .n ~ ( 1 6r) can be identified 

with the quaternionic Grassmann-manifold consisting of 
4r 

all ·1ua ternionic sub spaces of H . 

PROOF: Any complex structure J 3 £,n 3(16r) determines a splitting 

of H 4r = R16r into two mutually orthogonal subspaces V1 and V 2 as fol-

lows. Note that J 1J 2 J 3 is an orthogonal transformation \oTith square 

J 1J 2J 3J 1J?J 3 equal to +I. Hence the eigenvalues of J 1J 2J 3 are ! 1. 

Let V1 C R16r be the subspace on which J 1J 2J 3 equals + I; and let V 2 

be the crthogonal subspace on which it equals -I. Then clearly 

R 16r v 1 0 v 2 • Since J 1J 2J 3 commutes with J 1 and J 2 it is clear 

that both V 1 and V 2 are closed under the action of J 1 and J 2 • 

Conversely, given the splitting H 4r V 1 9 V 2 into mutually 

orthogonal quaternionic subspaces, we can define J 3 £ n3 (16r) by the 

identities 

! 
This proves Letruna ? II • (i - ( 3) • 

-J1J?Iv1 

J 1J 2 1V2 

The space .n 3 C 16r) is awkward in that it contains components of 

varying dimension. It is convenient to restrict attention to the component 

of largest dimension: namely the space of ?r-dimensional quaternionic sub­

spaces of H 4r. Hencef'orth, we will assume that J 3 has been chosen in 

this way, so that dim8 V 1 dim8 V: = :>r. 

LEMMA ;,'4. 6 - ( 1,) • The space .n4 ( 1 6r) can be identified 

with the set of all quaternionic isometries from v, to 
V • Thus .n 11 ( 1 6r) is diffeomorphic to the symplectic 
group Sp( 2r) . 

note that the product J 3J4 

maps v 1 

anti­

to V1 ) • 
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Since J 3J 4 commutes vTith J 1 and J 2 we see that 

is a quaternionic isomorphism. conversely, given any such isomorphism 

T: V
1 

-v2 it is easily seen that J 4 is uniquely determined by the 

identities: 

This proves 24.6- (4). 

\ 
J 4 IV, 

J 4\V2 

LEMMA 24.6- (5). The space n 5(16r) can be identified 

with the set of all vector spaces H C V 1 such that 
( 1) ''T i 1 d d J ( i H is a complex 

vector space) 
( 2) v 1 

s c ose un er 1 . e · , 

and 
splits as the orthogonal sum 

PROOF: 

commutes with 

note that the transformation 
Given J5 € n5(16r) 

J1J2J3 and has square +L 

itself; and determines a splitting of V1 

ThUs J 1J 4J 5 maps V1 into 

into two mutually orthogonal sub-

spaces. Let W C V1 be the subspace on which J 1J4J5 
coincides with + I. 

Since J2 anti-commutes with J J J 1 4 5' 
precisely the orthogonal subspace, on which J,J4J5 

it follOWS that J?W ( V1 

equals -I. 

is 

ClearlY 

J 1W = w. 
Conversely, given the subspace 

w it is not difficult to show that 

' 
J 5 is uniquely determined. 

REMARK. If U( 2r) C Sp( 2r) 

morphisms of v keeping '·' 1 w fixed, 

can be identified with n5(16r). 

denotes the group of quaternionic auto­

then the quotient space Sp( 2r) / U( 2r) 

LEMMA 24.6 - (6). The space n 6(l6r) can be identified 

with the set of all real sub spaces X C H such that W 

splits as the orthogonal sum X e J1X. 

PROOF. Given note that the transformation 
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splitting of H into two mutually orthogonal subspaces. Let X C W be the 

subspace on which J ?J 4J 6 equals +I. Then J 1X \fill be the orthogonal 

subspace on which it equals -I. 

Conversely, given XC H, it is not hard to see that J 6 is unique­

ly determined . 

REMARK. If 0 ( ?r) C U( 2r) denotes the group of complex automor­

phisms of H keeping X fixed, then the quotient space U( 2r) I 0( 2r) can 

be identifien with o 6( 16r). 

LE~A 24.6 - (7). The space o7(16r) can be identified 
with the real Grassmann manifold consisting of all real 
subspaces of X ~R2r. 

PROOF: Given J 7, anti-commuting with J 1, ... ,J6 note that 

J 1J 6J 7 commutes with J 1J 2J 3 , with J 1J 4J 5 , and with J 2J 4J 6; and has 

square +I. Thus J 1J 6J 7 determines a splitting of X into two mutually 

orthogonal subspaces: x 1 (where J 1J 6J 7 equals +I) and X2 (where 

J1J6J7 equals -I). Conversely, given X1 C X it can be shown that J 7 

is uniquely determined. 

This space o 7( 16r), like o3 ( 16r) , has components of varying dimen­

sion. Again we will restrict attention to the component of largest dimen­

sion, by assuming that 
dim x1 = dim x2 = r. 

Thus we obtain: 

ASSERTION. The largest component of o 7(16r) is diffeomorphic to 

the Grassmann manifold consisting of r-dimensional subspaces of R2r. 

LEMMA 24 . 6 - ( 8) . The spa::e 0 8 ( 1 6r) can be identified 
with the set of all real isometries from X1 to X2. 

PROOF. If J 8 E o8(16r) then the orthogonal transformation J~8 

commutes with J 1J 2J 3, J 1J 4J 5, and J 2J 4J 6; but anti-commutes with J 1J 6J 7. 

Hence J ~ 8 maps X 1 isomorphically onto x 2. Clearly this isomorphism 

determines J 8 uniquely. 

Thus we see that 0 8(16r) is diffeomorphic to the orthogonal 
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group* O(r). 

I..et us consider this diffeomorphism n8 ( 16r) - O(r), and pass to 

the limit as r - "'· It follows that n8 is homeomorphic to the infinite 

orthogonal group 0. Combining this fact with Theorem ?h. 5, we obtain the 

following. 

THEOREr4 24.7 (Bott). The infinite orthogonal group 0 has 
the same homotopy type as its own 8-th loop space. Hence 
the homotopy group rri 0 is isomorphic to rri+l3 0 for i ~ 0. 

If Sp =il 4 denotes the infinite symplectic group, then the above 

argument also shows that 0 has the homotopy type of the 4- fold loop space 

nnnn Sp, and that Sp has the homotopy type of the 1,- fold loop space 

nnnn 0. The actual homotopy groups can be tabulated as follmrs. 

i modulo 8 rri 0 rri Sp 
I 

0 z2 0 

z2 0 
2 0 0 

3 z z 
4 0 z2 

5 0 z2 
6 0 0 

7 z z 

The verification that these groups are correct will be left to the reader. 

(Note that Sp(l) is a 3-sphere, and that 50(3) is a projective 3-space. 

The remainder of this section will be concerned with the proof of 

Theorem 24.5. It is first necessary to prove an algebraic lemma. 

Consider a Euclidean vector space v with ~ti-commuting compleX 

structures J 1, ... ,Jk. 

* For k > 8 it can be shown that ilk(16r) is diffeomorphic to nk-B(r) · 

In fact any additional complex structures J J J on R 1 6r g1ve 
9' 10'···· k 

rise to anti-commuting complex structures J 8J 9 , J 8J 10 , J 8J 11, · · . ,J 8J k 

X1 ; and hence to an element of nk-e(r). However, for our Purposes it 

will be sufficient to stop with k = 8. 

on 
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DEFINITION. v is a r.;J.nirne.l ( J 1 , ... ,J k) -space if no proper, non­

trivial subsrace is closed under the action of J 1 , ... , and Jk. Two such 

minir.;al vectcr s;..a.ces are iscn:orphic if there is an isometry between them 

which co::::nuc:es "i th the action or· J 1 , .. · ,J k" 

LEf•lNA ?4.8 (Bott and Shapiro). For k?/ 3 (mod 4), any 

t•,.;o minimal ( J 1 , ... ,J k) vector spaces are isomorphic. 

The proof of ?4.8 follows that of 24.6. For k = 0,1, or 2 a 

minimal space is just a 1-dimensional vector space over the reals, the 

complex numbers or the quaternions. Clearly any two such are isomorphic. 

For k = 3 a minimal space is still a 1-dimensional vector space 

over the quaternions. However, there are two possibilities, according as 

J 3 is equal to +J 1J 2 or -J 1J 2 . This gives two non-isomorphic minimal 

spaces, both vri th dimension equal to 4. Call these H and H'. 

For k 1, a minimal space must be isomorphic to H EB H', with 

The dimension is equal to 8. 

For k 5,6 we obtain the srune minimal vector space H EB H'. The 

complex structures J 5 ,J 6 merely determine preferred complex or real sub­

spaces. For k = 7 we again obtain the same space, but there are two 

possibilities, according as J 7 is equal to +J 1J 2J 3J 1,J5J 6 or to 

-J1J2J3J4J 5J6. Thus in this case there are two non-isomorphic minimal 

vector spaces; call these L and L'. 

For k = 8 a minimal vector space must be isomorphic to L EB L', 
with J~8 mapping L onto L'. The dimension is equal to 16. 

For k > 8 it can be shown that the situation repeats more or less 

periodically. However, the cases k ~ 8 will suffice for our purposes. 

Let mk denote the dimension of a minimal (J 1, ... ,Jk)-vector space. 

From the above discussion we see that: 

mo 1 , m1 2, m2 = m3 = 4, 

m4 m5 = m6 m7 = 8, rna = 16. 

For k > 8 it can be shown that mk = 16mk_8 . 

REMARK. These numbers mk are closely connected with the problem 

of constructing linearly independent vector fields on spheres. Suppose for 

example that J 1 , ... ,Jk are anti-commuting complex structures on a vector 
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space v of dimension rmk. Here r can be any positive integer. Then 

for each unit vector u € v the k vectors J1u, J2u, ... ' Jku are perpen-

dicular to each other and to u. Thus we obtain k linearly independent 

vector fields on an (rmk-1)-sphere. For example we obtain vector 

fields on a ( 4r- 1) -sphere; 7 vector fields on an ( 13r-1) -sphere; 8 vector 

fields on a (16r-1)-sphere; and so on. These results are due to Hurwitz 

and Radon. (Compare B. Eckmann, Gruppentheoretischer Beweis des Satzes von 

Hurwitz-Radon ... , Commentarii r-tath. Helv. Vol. 15 (1943), pp. 0 58- 0 66.) J. 

F. Adams has recently proved that these estimates are best possible. 

PROOF of Theorem 24.5 for k ¢ 2 (mod 4) . He must study non­

minimal geodesics from J to -J in fik( n) . Recall that the tangent space 
of nk(n) at J consists of all matrices J A where 

1) A is skew 

2) A anti-commutes with J 
3) A commutes with J, ... ,Jk-1' 

Let T denote the vector space of all such matrices A. A given A t: T 

corresponds to a geodesic t- J exp (n~~) from J to -J if and only if 

its eigenvalues are all odd multiples of i. 

Each such A t: T determines a self-adjoint transformation 
T- T. 

is a totally geodesic submanifold of O(n), we 
can compute KA by the formula 

1 = --rr [A, [A,B]] 

just as before. He must construct same non-zero eigenvalues of KA so as 

t<:> obtain a lower bound for the index of the corresponding geodesic 

t - J exp( nt A) 

Split the vector space an as a direct sum M1 e M2 e ... ED Ms of 

mutually orthogonal subspaces which are closed and minimal under the action 

of J,, .•. ,Jk-1' J and A. Then the eigenvalues of A on Mh must be 
* all equal, except for sign. For otherwise Mh would split as a sum of 

* vle are dealing with the complex eigenvalues of a real, skew-symmetric 
transf'orrnation. Hence these eigenvalues are pure imaginary; and occur in 
conjugate pairs. 
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eigenspaces of A; and hence would not be minimal. Let ! iah be the two 

eigenvalues of Al!-lh; where a 1 , ... ,as are odd, positive integers. 

Now note that J 1 = ah.1JAlr·lh; is a complex structure on Mh which 

anti-cormmtes with J 1 , ... ,J1,_, and J. Thus f.1h is (J1 , ... ,Jk_,J,J')­

minirnal. Hence the dimension of l·lh is mk+l. Since k + 1 '1. 3 (mod 4) 

we see that !•11 , l'<i?, ••• , !>Is are mutually isomorphic . 

For each p~ir h,j with h ~ j we can construct an eigenvector 

B: Rn- Rn o:· the linear• tra:1sformation KA: T- T as follows. Let 

Bll·l~ be zero !"or r L h,j. Let Blf.lh be an isometry from I>lh to Mj 

whl·:~!1 s'J.tls:'ies the conditions 

for a= l, ... ,k-1; 

-JB and BJ 1 +JIB 

In other words B ll-!h is an lscrr.cl'phis:n from !>lh to :•1;; ·.;here the bar in­

dicates that vre have changed the sign of J on f.lj. Such an isomorphism 

exists by ::>l1.8. Finally let BlMj be the negative adjoint of BlMh. 

Proof that B belongs to the vector space T. Since 

< Bv,w) < v,- Bw> 

it is clear that B is skew-symmetric. It is also clear that BIMh com­

mutes with J 1 , ... ,Jk-l and anti-commutes with J. It follows easily that 

the negative adjoint BIMj also commutes with J 1 , ... ,Jk-l and anti­

commutes with J. Thus BET. 

\·le claim that B 

eigenvalue (ah + aj) 2 /4. 

is an eigenvector of corresponding to the 

For example if v E Mh then 
1 2 2 
~ ( -A B + 2ABA - BA ) v 

and a similar computation applies for v E Mj. 

M c Rn is given 
h Now let us count. The number of minimal spaces 

by s = n/mk+l. For at least one of these the integer ~ must be ~ 3. 

For otherwise He would have a minimal geodesic. This proves the following 

(always for k '1. 2 (mod 4)): 

ASSERTION. KA has at least s-1 eigenvalues which are 

~ (3+1) 2 /4 4. The integer s = n/mk+l tends to infinity with n. 
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Now consider the geodesic t - J exp( .rt A) . Each eigenvalue e 2 

of KA gives rise to conjugate points along this geodesic for 

t = -1 
e ' by 20.5. Thus if then one obtains at 

least one interior conjugate point. Applying the index theorem, this proves 
the following. 

ASSERTION. The index of a non-minimal geodesic from J to -J in 

nk(n) is ~ n/mk+1- 1. 

It follows that the inclusion map 

nk+1 (n) - 0 ~(n) 

induces isomorphisms of homotopy groups in dimensions .$. n/mk+ 1 - 3. This 

number tends to infinity with n. Therefore, passing to the direct limit 

as n- co, it follows that the inclusion map i : nk+ 1 - 0 ~ induces 

isomorphisms of homotopy groups in all dimensions. But it ~an be shown 

that both nk and .n. r '""-! lex There-+ 1 O --k: have the homotopy type o a ""' -comp · 

fore, by }lhitehead•s theorem, it follows that i is a homotopy equivalence. 

This Completes the proof of 24.5 providing that k t 2 (mod 4). 

PROOF or 24.5 for k = 2 (mod 4). The difficulty in this case may 

be ascribed to the fact that n (n) has an infinite cyclic fundamental 
k 

group. Thus O fik(n) has infinitely many components, while the approximat­
ing SUbspace fi ( n) 

k+1 has only finitely many. 

To describe the fundamental group .r 1~(n) we construct a map 

as follows. 

ture on Rn. 

defining 

:'or 

r : ~(n) - s 1 C C 

Let J 
1•···,Jk_1 be the fixed anti-commuting complex struc-

Make Rn into an (n/2 )-dimensional complex vector space by 

iv = J 1J 2 ... Jk_ 1v 
where 

i = ~1 £c. The condition 
that 12 = _, and tha 

' t J 1,J2, ... ,Jk_ 1 commute with i. 

k = 2 (mod 4) guarantees 

Choose a base po•nt h 
..._ J £ fik(n). For any J' £ fik(n) note that t e 

composition J- 1J' c J-1J, 
ommutes with 1. Thus is a unitary complex 

linear tr~sformation, and has a well defined complex determinant which will 
be jenote1 by f(J'). 
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Now consider a geo:iesic 

t - J exp( lftA) 

from J to -J in Ok(n). Since A. commutes with i = J 1J 2 • • • Jk_ 1 

(compare Assertion 2 in the proof of ;:4:4) we may think of A also as a 

complex linear transformation. In fact A is skew-Hermitian; hence the 

trace of A is a pure ir.Jaginary number. Now 

f(J exp(1ttA)) =determinant (exp(1ttA)) = e1ft trace A 

147 

Thus f maps the given geodesic into a closed loop on S1 which is com­

pletely determined by the trace of A. It follows that this trace is in­

variant ~der homotopy of the geodesic within the path space n(Ok(n);J,-J). 

The index ~ of this geodesic can be estimated as follows. As 

before split Rn into an orthogonal sum M1 e ... e ~ where each Mh 

is closed ~der the action of J 1 , ••• ,Jk_ 1 ,J, and A; and is minimal. 

Thus for each h, the complex linear transformation AIMh can have only 

one eigenvalue, say iah. For otherwise Mh would split into eigenspaces. 

Thus AIMh coincides with ahJ 1J 2 ... Jk_ 1 1Mh. Since Mh is minimal under 

the action of J 1 , ••• ,Jk_ 1 , and J; its complex dimension is mk/2. 

Therefore the trace of A is equal to i(a1+ ... +ar)mk/2. 

Now for each h ~ j an eigenvector B of the linear transforms-

tion 

B-~B 

can be constructed much as before. are (J 1, ... ,Jk-1 ,J)-

minimal it follows from 24.8 that there exists an isometry 

which commutes with J 1 , ••• ,Jk_ 1 and anti-commutes with J. Let BIMj be 

the negative adjoint of BIMh; and let BIM2 be zero for 

an easy computation shows that 

~ h,j. Then 

KAB (ah - aj) 2B/4 

Thus for each we obtain an eigenvalue 

Since each such eigenvalue makes a contribution of 

towards the index ~. we obtain the inequality 

_ aj)2/4 for KA. 

(ah- aj)/2- 1 



14E IV. APPLICATIONS 

Now let us restrict attention to some fixe-:1 cO::JJ:cnent o:· 1 nkr n) · 

That is let us look only at matrices A such that trac(" A = lcmk/;c where 

c is some constant integer. 

Thus the integers a 1 , ••• ar satisfy 

1) a, = a2 - - a = 1 {mod 2) ' {since .-..xr-< 11A) -n, 
r 

2) a, + ... + ar = c, and 

3) Max lahl ~ 3 (for a non-minimal geodesic). 
h 

Suppose for example that some ah is equal to -3. 

the positive ah and -q the sum of the negative 

Let p be the swn of 

Thus 

p - q c, p + 1 ~r 

hence 2p ~ r + c. Now 

n~ I (ah - aj - 2) > I (ah- (-3) - 3) p 

~ > aj ah > 0 

hence 4~ ~ 2p ~ r + c; where r = n/mk tends to infinity with n. It 

follows that the high d component of n ~(n) is approximated up to er an 

higher dimensions b n ( ) -Y the corresponding component of k+l n , as n = 
Passing to the di h om rect limit, we obtain a homotopy equivalence on eac c -

ponent. This completes the proof of 24.5. 



APPENDIX. T!IE ECI-:CTOFY TYFE OF A l\IONOTONE UNION 

The object of this appendix will be to give an alternative version 

for the final step in the proof of Theorem 17. 3 (the fundamental theorem 

of Morse theory). Given the subsets naO C na1 C na2 C ... of the path 

space n = n(M;p,q), and given the information that each nai has the 

homotopy type of a certain CH-complex, we wish to prove that the union n 

also has the homotopy type of a certain C1 .. !-complex. 

More generally consider a topological space X and a sequence 

X0 C X1 C X2 C ... of subspaces. To what extent is the homotopy type of 

X determined by the homotopy types of the Xi? 

It is convenient to consider the infinite union 

x~. = x0 x [ o, 1 1 u x1 x [ 1 , 21 u x2 x [ 2, 31 u 

This is to be topologized as a subset of X x R. 

DEFINITION. He will say that X is the homotopy direct limit of 

the sequence (Xi) if the projection map p : XE - X, defined by 

p(x,T) = x, is a homotopy equivalence. 

EXAMPLE 1 . Suppose that each point of X lies in the interior of 

some Xi, and that X is paracompact. Then using a partition of unity one 

can construct a map 

f: X- R 

so that f(x) ~ i+1 for x ¢ xi, and f(x) > 0 for all x. Now the corres­

pondence x- (x,f(x)) maps X homeomorphically onto a subset of XE which 

is clearly a deformation retract. Therefore p is a homotopy equivalence; 

and X is a homotopy direct limit. 

EXAMPLE 2. Let X be a CH-complex, and let the Xi be subcomplexes 

with union X. Since p : XE- X induces isomorphisms of homotopy groups 

in all dimensions, it follows from Whitehead's theorem that X is a homotopy 

direct limit. 
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EXAMPLE 3. The unit interval [0,1] is~ the homoto~y direct 

limit of the sequence of closed subsets [OJ v [1/i,1 1. 

The main result of this appendix is the following. 

THEOREM A. Suppose that x is the homotopy direct 
limit of (Xi) and y is the homotopy direct limit 
of (Yi). Let f: x- y be a map which carries each 
Xi into Yi by a homotopy equivalence. Then f 

itself is a homotopy equivalence. 

Assuming Theorem A, the alternative proof of Theorem 17.3 can be 

given as follows. Recall that we had constructed a commutative diagram 

a 0 a 1 
n c n 

a2 c n c ... 

1 l 1 
IS CK, CK2( 

of homotopy equivalences. Since 0 = U 0ai and K = u Ki are homotopy 

direct limits (compare Examples 1 and 2 above), it follows that the limit 
rr..a.pping n - K 

is also a homotopy equivalence. 

PROOF of Theorem A. Define fE : ~- YE by fE(x,t) = (f(x),t). 

It is clearly sufficient t is a homotopy equivalence. o prove that fE 

CASE 1 • Suppo se that X 
i = yi and that each map 

(obtained by restricting f) 
is homotopic to the identity. 

fE is a homotopy equi that 
Valence. 

fi : xi- Yi 

He must prove 

that 
REMARK. Under these conditions it would be natural to conjecture 

fE must actually be h 
omotopic to the identity. However counter-

examples can be given. 

For each n let 

~:~-~ 
be a one-parameter family of mappings, with ~ 
Define the homotopy 

identity. 
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as follows (where it is always to be understood that 0 ~ t ~ 1 , and 

n = 0,1,2, ... ). 

{ 
(~(x) ,n+2t) for 0 ~ t ~ t 

~(x,n+t) 
n (x) ,n+l) for t~t~i ( h( 3-4t)u 

( hn+ 1 (x) ,n+l) for i~t~l 
(4-)t)u 

Taking u = o this defines a map h0 : ~ - ~ which is clearly homotopic 

to fz. The mapping h1 : Xz- ~ on the other hand has the following 

properties: 

(x,n+2t) for o ~ t ~ t 
h1 (X, n+ t) E =<n+ l X ( n+ 1 ] for t ~ t ~ 1 

':fe ·..:111 shm: that any such map h1 is a homotopy equivalence. In fact a 

hc:noto:~=y inverse g : ~ - ~ can be defined by the formula 

- { 
(x,n+2t) 

g(x,n+t) - 3 
h1 (x,n"'"2 - t) 

0 < t < t 

This is Hell defined since 

h1 (x,n+tl = h1 ( x,n ... l) = (x,n+l) 

Proof that the composition h,g is homotopic to the identity map 

of x_. Note that 
L. 

{ 
(x,n+4t) 0 < t < ;} 

h1g(x,n+t) h1 (x,n+2t) ;}~ t ~ t 
3 t) t~ t < 1 h1 (x,n"'"2-

De fine a homotopy 
Ru Xz- Xz as follO\vS. For 0 ~ u ~ t let 

{ 
h1g(x,n+t) for 0 .$ t ~ (1-u)/2 

Ru(x,n+t) and for t+u ~ t ~ 1 

h1 (X,n+l-u) for ( 1 -u) /2 ~ t ~ t + u. 



1'5'2 

This is well defined since 

h1g(x,n+(1-u)/2) 

I:mr H0 is equal to h1 g and H~ is given by 

Clearly this is homotopic to the identity. 

Thus h1g is homotopic to the identity; and a completely analogous 

argument shm1s that gh1 is homotopic to the identity. This completes the 

proof in Case 1. 

CASE 2. Now let x and y be arbitrary. For each n let 

l5n Yn- ~ be a homotopy inverse to fn. Note that the diagram 

(>~here 

fact 
jn denote inclusion maps) is homotopy commutative. 

Choose a n i 
specific homotopy hn : y -X with h0 = n~• 

and -u n n+1 
define G : Yl: - ~ by the formula 

G(y,n+t) 

In 

We Will h 
s O>r that the composition Gfl: : ~ _ xl: is a homotopy equivalence 

Let xn 
E denote the subset of XE consisting of all pairs (x,T) with 

T .$ n. (Thus ~ = Xox[o,1) u ... u ~-1x[n-1,nl u ~x[nJ.) The compo_ 
sition G n h 

fE carries Xi into itself by a mapping whic is homotopic to tn 
identity. I n ti t d th n fact x;: contains ~ x [n) as deforma on re ract; an e 

mapping GfE restricted to Xn x [n) can be identified with ~fn, and 

hence is homotopic to the identity. Thus we can apply Case 1 to the seque~ 



(~} 1 and conclude that GrE is a homotopy equivalence. 

This proves that rE has a left homotopy inverse. A similar 

argument shows that rEG: YE -YE is a homotopy equivalence, so that 

fE has a right homotopy inverse. This proves that fE is a homotopy 

equivalence (compare page 22) and completes the proof of Theorem A. 

COROLLARY. Suppose that 
limit of (Xi). If each 
of a CW-complex, then X 
type of a CW-complex. 

X is the homotopy direct 
xi has the homotopy type 

itself has the homotopy 

The proof is not difficult. 
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