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Lle b od tIves wopresen-day acCounLT i Murston sorse’s theory of

treeocwloudlus o ovariat lone Ik la

Mie.  Hiwever, ‘hers nsve bee:n lm-

turcodeveloprents durlnes the psst o 'ew years whlch ure Lot mentioned.

P

st me descrite three !

R. Pz2lals ard 8. Oualer nave studled Morse thecry ror a real-valued
runctlon cnoen Infinlve dlnensiciel manifold and have siven direct proci's
Cotber nuli theorems, witlhour maxii: any use of finite dimenslonal ap-
proxivaticns,. The wpanlr'clds in quesilon mus: bte locally diffecmorphiic
Hiltepy space, 2rd the Mweetion must sutisiy 2 weax Compactness coli-

1lte dimensional manifold

dltiovl.. As an exunple, o s-udy pzths cno=
[L e considers the jlltert manircld consistingg ot all absolutely con-
vlrucus peihs w: [0,1) = M wlth square lntegsrable rirst derivative. Ac-

c.us of wniz work are c onteirned in R. Palals, Morse Th=cry on Hilvert

Mar.. o lds, Trpelogy, Vel. 2 (1763), pp. 299-34C; and In S. Smale, Morse

n=llnear Gereralizationn of the Dirichlet Prcoblem, Annals

Thzory and a o

o Matnematics, Vol. #o (1244), pp. 3z2-39¢.

Tis Be'' perlicdicity “hecrers were -rilc-iially inspired by Morse
thee ry  (swe part IV). @ wever, nere elemsitary prootl's, wnich de net in-
volve Morse thecry at all, have recenctly teern :iven. See M. Atlyah ard

R. Ec-t, Qi the Perlicdicity Theorem fcr Conplex Vector bundles, Aciu

Matiematica, Vol. 112 (1u6bs), pp. 229-247, as well as R. od, Banach

Al:ebres and Zott Pericdicity, Topelosy, « (19e5-6€), pp. 371-382.

Horsc tieory has provided the lnspiration ror exelilny developne:..s
in dirfferential tepolosy by S. Smale, A. Wallace, and others, inciuding
a4 prool of' the generalized P.l:.caré hypcthesis I:. hizh dimensions. I

have tried Lo descrive some ot this wer« I Lectures cn e h-coterdisn:

thecren, notes by L. Siebenmann and J. Scndow, Princetcnr University Press,
1965,
Let e take this oppertunity uve clarify (i term wnich may cause con-

fusion, In §12 I use the werd "energy' for the lutecral

v
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elong a path w(t). V. Arnol’d poirts out to me that mathenstliclansg icr
the past 200 years have called E the "azctler!'integrai. This dlscrepancy
in termirnology is caused by the fact that the intesrsi can b~ interpreted,
in terms cf a physical model, in more -han cne way.

Think of a particle P which moves alcri; a surface M durlry the time
interval ¢ < t < 1. e action of the particle durinz this time interval
is defined to bte a certain constant times the integral =. If nc forces
act on P (except for tne constrainir.; fcrces which hold it within M), then
+he "principle of least action' asserw.s that E will be mirlrnized within
the class of all paths ‘cining w(c) =c (1), »r at least that the first
variaticn or E will be zero. Hence P must traverse a geodeslic.

But a quite differer.t physical mcdel s possicle. Think of a rubber
vand which is stretched between two points of a slippery curved surface.
If the band is described parametricnily by the equation x = o(t), 7 <t
< 1, thern the pctential ensrsy arising from tensicn will be proporticnal
»¢ our integral E (a° least tc a f'irs% order of approximaticn). For an
eguilibriur positic:. this =nersy must be minimized, and hence the rubber
card will descrice a :s=cdesic.

The tex. which folliows is ldentical wiih that £ the Uirst printing
sxcept for a few corrections. I zm israteful to V. Arncl’d, D. Epstein

ané W. . Houston, Jr. for pointing cut corrections.

J.d.M.

Lcs Angeles, June 1968.
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PART I

NON-DEGENERATE SIMCOTH FUNCTIONS ON A MANIFOLD.

§1. Introduction.

In this section we will illustrate by a specific example the situ-
ation that we will investigate later for arbitrary manifolds. Let us con-

sider a torus M, tangent to the plane V, as indicated in Diagram 1.

S

Diagram 1.

Let f: M—R (R always denotes the real numbers) be the height
above the V plane, and let M* be the set of all roints x € M such that
f(x) < a. Then the following things are true:

(1) If a<o =1f(p), then M* is vacuous.

(2) If f(p) < a< r(q), then M®* is homeomorphic to a 2-cell.

(3)" If f(qQ) < a< f(r), then M® 1is homeomorphic to a cylinder:

(4) If f(r) < ac< f(s), then M® is homeomorphic to a compact
manifold of genus one having a circle as boundary:




2 I. NON-DEGENERATE FUNCTIONS

(5) If f(s) < a, then M* is the full torus.
In order to describe the change in M* as a passes through one
£ the points f(p),f(q),f(r),f(s) it is convenient to consicer homotopy
type rather then homeomorphism type. In terms of homotopy types:
(1) = (<) 1is the operation of attaching a 2-cell. For as far as

homotopy type is concerned, the space Ma, f(p) < a < f(q), cannot be -‘iis-

"

tinguished from a O-cell:

"n_u

Here "=" means "is of the same homotopy type as.

(2) — (3) is the operation of attaching a 1-cell:

<

(3) = (4) is again the operation of attaching a 1-cell:

O ©

(v) = (5) 1is the operation of attaching a «-cell.

The precise definition of "attaching a k-cell" can be given as

~011l0WS. let Y be any topologlcal space, and let

ek . (xeRktlng1]

be the k-cell consisting of all vectors in Euclidean k-space with length < 1.
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The boundary

ek . (xeRK:Ixl =1

will be denoted by sk=1. 1r g: sk*' =¥ is a continuous map then

k
v_ €
¥ g

(Y with a k-cell attached by g) 1is obtained by first taking the topologi-

k

cal sum (= disjoint union) of Y and e”, and then identifying each

X € sk=1 with g(x) € Y. To tale care of the case k = 0 let e vea
point and let &% - s be vacuous, so that Y with a 0-cell attached is
just the union of Y and a disjoint point.
As one might expect, the points p,q,r and s at which the homo-

topy type of M2 changes, have a simple characterization in terms of f.
They are the critical points of the function. If we choose any coordinate
system (x,y) near these points, then the derivatives n%% ?nd %§ are
both zero. At p we can choose (x,y) so that f = x° + y‘, at s so
that f - constant -x° - y°, and at g and r so that f = constant +

z 2
x -y . Note that the number of minus signs in the expression for f at

each point is the dimension of the cell we must attach to go from M2 to

b

MY, where a < f(point) < b. Our first theorems will generalize these

facts for any differentiable function on a manifold.

REFERENCES
For further information on Morse Theory, the following sources are
extremely useful.

M. Morse, "The calculus of variations in the large," American
Mathematical Society, New York, 193L.

H. Seifert and W. Threlfall, "Variationsrechnung im Grossen,"
published in the United States by Chelsea, New York, 1951.

R. Bott, The stable homotopy of the classical groups, Annals of

Mathematics, Vol. 70 (1959), pp. 313-337.

R. Bott, Morse Theory and its application to homotopy theory,

Lecture notes by A. van de Ven (mimeographed), University of
Bonn, 1960.
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§2. Definitions and Lemmas.

The words "smooth" and "differentiable" will be used interchange-
ably to mean differentiable of class C®. The tangent space of a smooth
manifold M at a point p will be denoted by TMp. If g: M= N 1is a
smooth map with g(p) = q, then the induced linear map of tangent spaces

1 : — .
will be denoted by g, TMp TNq

Now let f be a smooth real valued function on a manifold M. A
point p € M 1is called a critical point of f if the induced map

. — e a local coordinate syste
£t TM.p TRf(p) is zero. If we choos ystem

(x',...,x™ 1in a neighborhood U of p this means that

of of ( -
2L (p) = ... = n p) =0 .
ax1( ) X

The real number f(p) 1is called a critical value of f.

We denote by M® the set of all polnts x € M such that f(x) < a.
If a is not a critical value of f then it follows from the implicit
function theorem that M® 1is a smooth menifold-with-boundary. The boundary
f"(a) is a smooth submanifold of M.

A critical point p is called non-degenerate if and only if the

matrix

is non-singular. It can be checked directly that non-degeneracy does not
depend on the coordinate system. This will follow also from the following
intrinsic definition.

If p is a critical point of f we define a symmetric bilinear
functional f,, on TMp, called the Hessian of f at p. If v,w ¢ T
then v and w have extensions ¥V and W to vector flelds. We let ©
Ty (v,w) = Vp(ﬁ(f)), where Vp is, of course, just v. We must show that

this is symmetric and well-defined. It 1s symmetric because

Vp(ﬁ(f)) - ﬁp(V(f))

]
<
=,

—

2
[
o

where [¥,¥] is the Poisson bracket of V and ¥, and where [V,G]p(f) -0

Here W(f) denotes the directional derivative of f in the direction W.
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since I has p as a critical point.

Therefore f,, 1s symmetric. It is now clearly well-defined since
Vp(ﬁ(f)) = v(¥(f)) 1is independent of the extension ¥ of v, while
GD(V(f)) is independent of W.
I ny

1 d
If (x,...,x is a local coordinate system and v = X & -1

d
o= . <
W ): b‘) —ra:.: Tlp

stant function. Then

we can take W = T b, —éj where bj now denotes a con-
vdx

2
few (V,W) = V(W(O))(P) = V(T b; I a

J) ) 1] i j BxlaxJ (®)

so the matrix ( __IS_T (p)) represents the bilinear function f,, with
AXTIxX

3

, ==
ax?

t to th ‘e
respect to the basis S;Tlp, p

We can now talk about the index and the nullity of the bilinear
functional f,, on TMp. The index of a bilinear functional H, on a vec-
tor space V, 1is defined to be the maximal dimension of a subspace of V
on which H is negative definite; the nullity is the dimension of the null-
space, i.e., the subspace consisting of all v € V such that H(v,w) =0
for every w € V. The point p is obviously a non-degenerate critical
point of f if and only if fyx ON TMp has nullity equal to 0. The
index of f,, on TMp will be referred to simply as the index of f at bp.
The Lemma of Morse shows that the behaviour of f at p can be completely

described by this index. Before stating this lemma we first prove the
following:

IEMMA 2.1. Let f be a C” function in a convex neigh-
borhood V of o in R™, with f(0) = 0. Then
n
f(x1,...,xn) = 2{ xigi(x1,...,xn)
i=1
for some suitable C* functions g defined in V, with
of
g;(0) = 3x, (o).

PROOF : '

1
dr(tx,,...,tx)) >f
f‘(x],...,;&l) =f IE dt .-.fi Bi'i(txv“"txn)'xi dt .
0 0 i=

-

1
Therefore we can let g (X,,...,Xy) =Jf %éi (tXy, .00, txy) dt .
0
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IEMMA 2.2 (Lemma of Morse). Let p be a non-degenerate
critical point for f. Then there is a local coordinate
system (y‘,...,yn) in a neighborhood U of p with
yi(p) = 0 for all 1 and such that the identity

.+ (yn)2

holds throughout U, where A 1is the index of f at p.

£=fm - (yH2%- .- IR L (yH?

+

PROOF: We first show that if there 1is any such expression for £,

then *» must be the index of f at p. For any coordinate system

1
(z' ,...,2

My, if
£(@) = £(p) - (2 (@3 ... - (2M@N? + (M @)? - ...
then we have
-2 if 1=3< N,
bef()_ 0
ﬁ'p = if 1=J>X ’

0 otherwise ,

+ (2% ?

which shows that the matrix representing f,, with respect to the basis

3 d

3T 12 5 I

is

Therefore there is a subspace of TMp of dimension

tive definite, and a subspace V of dimension n-x
definite.

on which fun

» where

where f,,

which is clearly impossible. Therefore X 1is the index of f,

We now show that a suitable coordinate system (v',.

f

»%x 1s nega-

is positive

If there were a subspace of TMp of dimension greater than M

were negative definite then this subspace would intersect V,

%

7Y exists.

Obviously we can assume that p 1s the origin of R" and that f(p) = £(0)

By 2.1 we can write

n

£(Xy, 0 e,X,) = z X8y (x,, ..., %))

S

for (X;,...,x;) 1in some neighborhood of 0o, Since O

critical point:

is assumed to be a
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Therefore, applying 2.1 to the gj we have
n

gJ(XI,...,xn) = 122 xihij(x1""’xn)

for certain smooth functions hij' It follows that

f(x

:jv
[
g

1200 e0X xixjhij(XI"“'xn)
i,3=1

1
We can assume that hiJ = hji' since we can write ﬁij = §(h13+ hji)’
and then have ﬁij = ﬁji and f = X xixjﬁij . Moreover the matrix (ﬁij(o))

2
is equal to ( % S—%—g—j(o)), and hence is non-singular.
X~ X

There is a non-singular transformation of the coordinate functions
which gives us the desired expression for f, 1in a perhaps smaller neigh-
borhood of 0. To see this we just imitate the usual diagonalization proof
for quadratic forms. (See for example, Birkhoff and MacLane, "A survey of
modern algebra," p. 271.) The key step can be described as follows.

Suppose by induction that there exist coordinates wu;,...,u, in
a neighborhood U, of 0 so that

T = 1.(“1)2 e+ (ur_1)2 + j{ uiujﬂij(ul""’un)
i,i>r

throughout U,; where the matrices (Hij(u1""’un)) are symmetric. After

a linear change in the last n-r+1 coordinates we may assume that Hfr(o) 4 0.
Let g(u,,...,u,) denote the square root of IHfr(u,,...,un)l. This will

be a smooth, non-zero function of [EPTPII Y throughout some smaller neigh-

borhood U, C U, of 0. Now introduce new coordinates v,,...,v, by
vyo=uy for 1 £ r
vie(uy,.e,u)) = g(u],...,un)[ur + 2{ uiHir(u1""’un)/Hrr(u1""'un)]'
i>r
It follows from the inverse function theorem that Visyeee,Vp will serve as
coordinate functions within some sufficiently small neighborhood U; of O.
It 1s easily verified that f can be expressed as

f = Z * (Vi)2 + 2 ViVJHjI_J(V~|:"';Vn)
i<r i,ij>r
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throughout U3. This completes the induction; and proves Lemna 2.2,
COROLLARY 2.3 Non-degenerate critical points are isolated.

Examples of degenerate critical points (for functions on R and

Re) are given below, together with pictures of their graphs.

-~
7
rd
7~
— ’//
2

(8) £(x) = x3. The origin (b) F(x) = e’l/’( sin?(1/x)

is a degenerate critical point. The origin is a degenerate, and

non-isolated, critical point.

(¢) £(x,5) = x> - 3xy2 = Real part of (x + iy)>.

(0.0) 1s a degenerate critical point (a "monkey saddle"),
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(@) f(x,y) = x°.

are degenerate, is the x axis, which is a sub-manifold of R2.

The set of critical points, all of which

(e) f£(x,y) = x°y2. The set of critical points, all of which are
degenerate, consists of the union of the x and y axis, which 1s

not even a sub-manifold of Re.

We conclude this section with a discussion of 1-parameter groups of
diffeomorphisms. The reader is referred to K. Nomizu,"Lie Groups and Differ-
ential Geometry,' for more details.

A 1-parameter group of diffeomorphisms of a manifold M is a C

map

: RxM —-M
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such that
1) for each t € R the map 0y M — M defined by
@t(q) = ¢(t,q) 1s a diffeomorphism of M onto itself,

2) for all t,s € R we have o, . = 9¢ ° 94

Given a 1-parameter group » of diffecmorphisms of M we define
a vector field X on M as follows. For every smooth real valued function

£ 1let (o) (@)
1lim ®p'a - flq
Xq(f) =h=-o0 h

This vector field X 1s said to generate the group o.

LEMMA 2.4. A smooth vector field on M which vanishes
outside of a compact set K C M generates a unique 1-
parameter group of diffeomorphisms of M.

PROOF: Given any smooth curve

t —c(t) eM

it is convenient to define the velocity vector

de
aE € TMC(t)

by the identity $%(r) - Mm felth)=fe(®) - (oompare §r.) Now let o
be a 1-parameter group of diffeomorphisms, generated by the vector field X.

Then for each fixed q the curve
t—o.(q)

satisfies the differential equation
dp(q)
= X
dt 2.(q)

with initial condition mo(q) = q. This is true since

dt ()=h-’0 h = h=o0 15} =Xp(f))

where p = @t(q). But it is well known that such a differential equation,
locally, has a unique solution which depends smoothly on the initial condi-

tion. (Compare Graves, "The Theory of Functions of Real Variables,' p. 166.

Note that, in terms of local coordinates u1,...,un, the differential equa-
i .
tion takes on the more familiar form: %ﬁ? = xl(u’,...,un), i=1,...,n)
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Thus for each point of M there exlists a neighborhood U and a
number e > 0 so that the differential equation
do,(q)
—F— = th(q), o,(a) = a
has a unique smooth solution for q € U, |[t] < €.
The compact set K can be covered by a finite number of such
neighborhoods U. Let €y > 0 denote the smallest of the corresponding
numbers €. Setting ot(q) =q for q ¢ K, 1t follows that this differen-

tial equation has a unique solution wt(q) for |t| < € and for all

o]
Q € M. This solution is smooth as a function of both variables. Further-

more, 1t is clear that Pppg = @ providing that |t],[s|,|t+s] < e,.

t ° 9
Therefore each such 9y 1s a diffeomorphism.

It only remains to define 9, for It > €,. Any number t can
be expressed as a multiple of 50/2 plus a remainder r with |[r| < 50/2 .

If t=k(ey/2) +r with k> 0, set

9, =@ ) ° ... %9 ° 9
t £o/2 eo/2 ey/2 r

vhere the transformation ¢ is iterated k times. If k< 0 1t is

e /2
(o]
only necessary to replace ¢ / by o /2 iterated -k times. Thus L2

€,/2 -€,
is defined for all values of t. It is not difficult to verify that o is

well defined, smooth, and satisfies the condition o, . = @y ° o5 . This
completes the proof of lemma 2.4

REMARK: The hypothesis that X vanishes outside of a compact set
cannot be omltted. For example let M be the open unit interval (0,1) CR,
and let X be the standard vector field é% on M. Then X does not

generate any 1-parameter group of diffeomorphisms of M.
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§3. Homotopy Type in Terms of Critical Values.

Throughout this section, if f 1is a real valued function on a

manifold M, we 1et
M2 - (- w,al = (p €M : £(p) < al

THEOREM 3.1. let f be a smooth real valued function
on & manifold M. Iet a < b and suppose that the set
e »bl, consisting of all p € M with a < f(p) < b,
is °°mpact and contains no critical points of f. Then
is diffeomorphic to MP. Furthermore, M® 1is a de-
for""ﬂtion retract of Mb so that the inclusion map

R a homotopy equivalence.

b
The 1dea of the proof 1s to push M° down to M* along the orthogo-

nal trajectorieg of the hypersurfaces f = constant, (Compare Diagram 2.)

T

Diagram 2.

Choose a Riemannian metric on M; and let <X,Y> denote the
inner product of two tangent vectors, as determined by this metric. The
gradient of f 1s the vector field grad f on M wyhich is characterizeg
by the 1dentity

<X, grad £> = X(f)

(= directional derivative of f along X) for any vector field X. This
vector field grad f vanishes precisely at the critical points of f. If

In classical notation, in terms of local coordinates u' ,eooou”,  the

gradient has components ¥ g 13
J duJ
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c:R — 1 1is a curve with velocity vector %% note the identity

<g‘%’@‘&d?>=g§?_)

Let p: M— R be a smooth function which is equal to
1/ < grad f, grad > throughout the compactset £ 'fa,b]; and which vanishes
outside of a ccmpact neighborhood of this set. Then the vector field X,
defined by

Xq = p(q) (grad f)q
satisfies the conditions of Lemma 2.:. Hence X generates a 1-parameter
group of diffeomorphisms
Ot M — M.

For fixed q € M consider the function t— f(e.(a)). If o.(q)

lies in the set f"[a,b], then

df(e.(q)) do, (q)
gt = < dtt , grad £> = <X, grad £> =+ 1.

Thus the correspondence
t = £l (a))
1s linear with derivative +1 as long as f(9.(q)) lies between a and b.
Now consider the diffeomorphism Pyt M= M. Clearly this carries
e diffeomorphically onto Mb. This proves the first half of 3.1.

Define a 1-parameter family of maps

. oMb MP
Py M M
by
aQ if f(q) < a
r.(q) =
t i f(q) < b .
Pe(a-r(q) (@ 1f &< fl@)<
Then r, is the identity, and r, is a retraction from MP to M. Hence

1
M is a deformation retract of Mb. This completes the proof.

REMARK: The condition that f"[a,b] is compact cannot be omitted.
For example Diagram 3 indicates a situation in which this set is not compact.
The manifold M does not contain the point p. Clearly M® is not a de-

formation retract of Mb.
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Diagram 3.

THEOREM 3.2. Let f: M— R be a smooth function, and let
p be a non-degenerate critical point with index . Set-
ting f(p) = ¢, suppose that f"llc-e,c+e] is compact,
and contains no critical point of f other then p, for
some € > 0. Then, for all sufficiently small €, the set
M°*®  has the homotopy type of MC™® with a r-cell attached.

The idea of the proof of this theorem is indicated in Diagram L,

for the special case of the height function on a torus. The region

MCE - £ (-w,c-€)

is heavily shaded. We will introduce a new function F: M — R which

coincides with the height function f except that F < f in a small neigh-

borhood of p. Thus the region F-l(-w,c-e] will consist of M®™®  to-

gether with a region H near p. In Diagrem L, H is the horizontally

shaded region.

Mc+€

Diagram 4.
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Choosing a suitable cell et ¢ H, a direct argument (i.e., push-
ing in along the horizontal lines) will show that M® €y e 1is a deformation
retract of M®™® U H. Finally, by applying 3.1 to the function F and the
region F"[c-e,c+e] we will see that M®™® UH is a deformation retract
of M®*®., This will complete the proof.

Choose a coordinate system u‘,...,un in a neighborhood U of p
so that the identity

f=c¢ - (u’)a- el = (u)‘)2 + (ux*])2+... + (un)2

holds throughout U. Thus the critical point p will have coordinates
u'(p) = ... =u(p) =0
Choose € > 0 sufficiently small so that
(1) The region f~'(c-e,c+e] 1is compect and contains no criticel
points other than p.
(2) The image of U under the diffeomorphic imbedding
(u],...,un): v —R"
contains the closed ball.
(. ouMm: T wh? < 2e)
Now define e to be the set of points in U with

! 2+ A+ n 0.

(u Ce (uhH? <e and u = ... =U =

The resulting situation is illustrated schematically in Diagram 5.

(M, uM-axis

(u, ..., uh)-axis

Diagram 5.
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A+ n .
The coordinate lines represent the planes u o ... = vt =0 ani

L u7L = 0 respectively; the circle represents the bouniary of the
ball of redius <2e; and the hyperbolas represent the hypersurfaccs £~V (c-¢)
and £ '(c+e). The region M®® is heavily shaded; the region o1 [c-e,c]

is heavily dotted; and the reglon f~'lc,cse] 1is lightly dotted. The hori-
zontal dark line through p represents the cell e)‘

by N
Note that e

n M°® is precisely the boundary &%, so that e

A

is attached to M®® as required. We must prove that MC €y e 1s a de-

formation retract of MC*E.

Construct a new smooth function F: M —— R as follows. Let
p:R——R
be a C* function satisfying the conditions

u(o) > e

k(r) =0 for r> 2¢

-1 < u'(r) <o for all r,
where w'(r) = Q4. Now let F coincide with f outside of the coordinate
neighborhood U, and let

Fofou(h2 M2, 2u™2 ., 2™ ?)

within this coordinate neighborhood. Tt is easily verified that F 1is a
well defined smooth function throughout M.
It is convenient to define two functions

E,n: U—— [0,w)
by

]

E (111)2 Foee. + (u)‘)2
n = (\lk'“)2 e+ (un)2

Then f‘=c-§+n; so that:

F(Q) = c - ¢(Q) + n(Q) - u(e(q) + 29(q))
for all q € U.

ASSERTION 1. The region F"(-m,c+e] coincides with the region

M*E - (- w,cuel.

PROOF: Outside of the ellipsoid ¢ + 2q < 2¢ the functions f and



§3. HOMOCTOPY TYPE 17

F coincide. Within this ellipscid we have
F < = c-g+n < C+ -;—g-u] < c+e

This completes the proof.

o

ASSERTION 2. The critical points of F are the same as those of f.

PROOF: Note that

-1 - u'(g+29) <O

JF
EQ
dF
an

1 - 2u'(g+29) > 1

Since
. JF JF
aF:B_E_d§+.&l.dq
where the covectors dt¢ and dn are simultaneously zero only at the origin,
it follows that F has no critical points in U other than the origin.
Now consider the region F'][c-s,c+s]. By Assertion 1 together

with the inequality F < f we see that
F”[c—e,c+s] C £ c-€,cee]

Therefore this region is compact. It can contain no critical points of F
except possibly p. But
F(p) =c - u(0) <c -¢
Hence F"[c-e,c+e] contains no critical points. Together with 3.1 this
proves the following.
ASSERTION 3. The region F"(—m,c-e] is a deformation retract of

C+E
M N

It will be convenient to dencte this region F'](-w,c-e] by

MC~® , H; where H denotes the closure of F'1(-m,c—e] - MC°E

REMARK: In the terminology of Smale, the region MC® U H is
described &8s M with a "handle" attached. It follows from Theorem 3.1
that the manifold-vith-boundary M®™® y H is diffeomorphic to M°*®. This
fact is important in Smale's theory of differentiable manifolds. (Compare

S. Smale, Generalized Poincaré's conjecture in dimensions greater than four,

Annals of Mathematics, Vol. 74 (1961), pp. 391-406.)
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Now consider the cell e" consisting of all points 3 with

t(q) < e, n(a) = 0.

Note that e” 1is contained in the "handle" H. In fact, since 2% <0,

we have

F(a) < F(p) < c-€

but f(q) > c-e for q e e*.

Diagram €.

c The present situation is illustrated in Diagram 6. The region
M—E .

1s heavily shaded; the handle H is shaded with vertical arrows;
and the region F-][c-e,c+e] is dotted.

C~€
ASSERTION 4. M®™® | e i3 a deformation retract of MC™€ o H.

FROOF: A deformation retraction r M uH - M€ , H is

indi
lcated schematically by the vertical arrows in Diagram 6. More precisely

le .
t r. be the identity outside of U; and define r. within U as fol-

lows. i 5
It in necessary to distinguish three cases as indicated in Diagram 7.

CASE 1. Within the region t < e let r, correspond to the trans-

formation

1 n
(u',...,u™ M eutt! )

1
= (u,...,u",tu ,e..,tu
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CASE 3 CASE 3

“,/Aiigsz CAs;\E*\\,

Diagram 7.

Thus r, 1is the identity and r. maps the entire region into et. The

0
fact that each r, maps F'(-w,c-e] into itself, follows from the in-
: oF
19 0.
equality o) >
CASE 2. Within the region € < £ < n+ € let rg correspond to
the transformation

X A+

1 n 1 n
) = (u,.un,sunT e, Sl )

(u',...,u

where the number s, € [0,1) 1is defined by

sy = €+ (1-0)((g-e) /m /2

Thus r, 1is again the identity, and r, maps the entire region into the

0
hypersurface F'1(c-e). The reader should verify that the functions Stui
remain continuous as & — e, y — 0. Note that this definition coincides
with that of Case 1 when ¢ = €.

CASE . Within the region n + € < ¢ (i.e., within M°™%) let
ry be the identity. This coincides with the preceeding definition when
E =1 + €.

This completes the proof that MC €u e 1is a deformation retract
of F '(-w,c+e]. Together with Assertion 3, it completes the proof of

Theorem -.2.

REMARK 7.2. More generally suppose that there are k non-degenerate

...,x, in £ '(c). Then a
1 Tk X,‘ )‘k
similar proof shows that M®*€  has the homotopy type of MCELe 'u...u e .

critical points Pyse--sPy with indices A
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REMARK 2.4. A simple modification of the proof of 3.2 shows that

MC+E . C

the set M® is also a deformation retract of In ract i is a

deformation retract of F'l(-m,c], which is a deformation retract of MC*E,

(Compare Diagram €.) Combining this fact with 3.2 we see easily that

MC™® L e is a deformation retract of MC.

Diagram 8: M® ig heavily shaded, and F'I[c,c+e] is dotted.

THEOREM 3.5. If f is a differentiable function on a manifold
M with no degenerate critical points, and if each M% 1is

compact, then M has the homotopy type of a CW-complex, with
one cell of dimension A for each critical point of index .

(For the definition of CW-complex see J. H. C. Whitehead, Combin-

atorial Homotopy I, Bulletin of the American Mathematical Society, Vol. 55,
(1949), pp. 213-245,)

The proof will be based on two lenmas concerning a topological
space X with a cell attached.

LEMMA 3.6. (Whitel;ead) let 9, and ®; be homotopic maps
from the sphere &% to X. Then the identity map of X ex-
tends to a homotopy equivalence

k:Xue"—»Xue)‘.

®o @y
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PROOF: Define k by the formulas

k(x) = x for x € X
k(tu) = 2tu for 0<t< %, ueét
k(tu) = o, s (u) for % <t<, ueét

Here Py denotes the homotopy between o4 and o¢,; and tu denotes the
product of the scalar t with the unit vector u. A corresponding map

(: Xu e =Xou e
o, v,

is defined by similar formulas. It is now not difficult to verify that the
compositions k¢ and £k are homotopic to the respective identity maps.
Thus k is a homotopy equivalence.

For further details the reader is referred to, Lemma 5 of J. H. C.
Whitehead, On Simply Connected L4-Dimensional Polyhedra, Commentarii Math.

Helvetici, Vol. 22 (19k49), pp. he-92.

LEMMA 3.7. Let o: é" = X be an attaching map. Any
homotopy equivalence f: X =Y extends to a homotopy

equivalence
. k — X
F: X Yo e Y “fo e”.

PROOF: (Following an unpublished paper by P.Hilton.) Define F
by the conditions
F|X f

Flel = identity .

Let g: Y — X be a homotopy inverse to f and define

G:Yue)‘-'Xue)‘

fo gfe
by the corresponding conditions G|Y = g, GleA = 1identity.
Since gfep is homotopic to ¢, it follows from 3.6 that there is

a homotopy equivalence

k: X o eJL - X v el

gfo (]
We will first prove that the composition

KGF: X ve® =X v et

] P
is homotopic to the identity map.
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let ht be a homotopy between gf and the identity. Using the
specific definitions of %k, G, and F, note that

KGF(x) = gf(x) for x € X,
kGF ( tu)

2tu for'o <t 5-;-, uee
1

kGF(tu) = h,_,.o(u) for x <t <1, uee

The required homotopy

A X v et =X et
] ?
is now defined by the formula
() = h(x) for x € X,
A (tw) = 2 tu for o<t< T, ueét |
Ae(tw) = hy o0 0@ for YT <tc1, ueé

Therefore F has a left homotopy inverse.

The proof that F is a homotopy equivalence will now be purely
formal, based on the following.
ASSERTION. If amap F has a left homotopy inverse L and a

right homotopy inverse R, then F 1is a homotopy equivalence; and

R (or L) is a 2-sided homotopy inverse.
PROOF: The relations

IF o~ identity, FR = identity,
imply that

L = L(FR)

n

(LF)R =~ R.
Consequently

le

RF = IF identity ,
which proves that R is a 2-sided inverse.

The proof of Lemma 3.7 can now be completed as follows. The rela-
tion

kGF > identity

asserts that F has a left homotopy inverse; and a similar proof shows that

G has a left homotopy inverse.

Step 1. Since k(GF) ~ identity, and k is known to have a left

inverse, it follows that (GF)k = identity.
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Step 2. Since G(Fk) = identity, and G 1is known to have a left
inverse, it follows that (Fk)G = identity.

Step 3. Since F(kG) = identity, and F has kG as left inverse
also, it follows that F 1is a homotopy equivalence. This completes the

proof of 3.7.
PROOF OF THEOREM 3.5. Let ¢y < ¢y < ¢y < ... be the critical
values of f: M —R. The sequence [ci] has no cluster point since each

M is compact. The set M® is vacuous for a < C,- Suppose

af C19CpsCayene and that M® 1is of the homotopy type of a CW-complex.
Let c be the smellest c; > a. By Theorems 3.1, 3.2, and 3.3, MC*€  has
A x
the homotopy type of M¢ ™%y e Teoive J(e) for certain maps @150 1®5(c)
% ?5(e)

when € 1is small enough, and there is a homotopy equivalence h: MCTE - M2,
We have assumed that there is a homotopy equivalence h': M - K, where K
is a CW-complex.

Then each h' o h o 5 is homotopic by cellular approximation to

a map
Ry
VJ: e - (xj-l) - skeleton of K.
x by
Then K v e | u...u e J(e) is a CW-complex, and has the same homotopy
Y1 ¥ie)
C+E

type as M , by Lemmas 3.6, 3.7.

By induction it follows that each M®' has the homotopy type of a
CW-complex. If M is compact this completes the proof. If M 1is not com-
pact, but all critical points lie in one of the compact sets Ma, then a
proof similar to that of Theorem 3.1 shows that the set M® is a deformation
retract of M, so the proof is again complete.

If there are infinitely many critical points then the above con-

struction gives us an infinite sequence of homotopy equivalences

a
Mlcm2cemidc ...
Voo

K, CK, CKy C.o

each extending the previous one. lLet K denote the union of the Ki in the

direct limit topology, i.e., the finest possible compatible topology, and

b




2k I. NON-DEGENERATE FUNCTIONS

let g: M =+ K be the 1limit map. Then g induces lsomorphisms of homotopy
groups in all dimensions. We need only apply Theorem 1 of Combinatorial
homotopy I to conclude that g is a homotopy equivalence. [Whitehead's
theorem states that if M and K are both dominated by CW-complexes, then
any map M — K which induces isomorphisms of homotopy groups is a homotopy
equivalence. Certainly K is dominated by itself. To prove that M 1is
dominated by a CW-complex it is only necessary to consider M as a retract

of tubuler neighborhood in some Euclidean space.) This completes the proof
of Theorem 3.5.

REMARK. We have also proved that each M® has the homotopy type

of a finite CW-complex, with one cell of dimension X for each critical

point of index A in M®. This is true even if a 1is a critical value.

(Compare Remark 3.k.)
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§4. Examples.
As an application of the theorems of §3 we shall prove:

£

THEOREM 4.1 (Reeb). If M is a compact manifold and
is a differentiable function on M with only two critical
points, both of which are non-degenerate, then M is
homeomorphic to a sphere.

PROOF: This follows from Theorem 3.1 together with the Lemma of
Morse (§2.2). The two critical points must be the minimum and maximum
points. Say that f(p) = 0 is the mimimum and £(q) = 1 1is the maximum.
If e 1is small enough then the sets M° = £~ '[0,e] and £7'(1-¢,1) are
closed n-cells by §2.2. But M® is homeomorphic to M€ by §3.1. Thus
M 1is the union of two closed n-cells, M'™® end f 'l1-¢,1], matched
along their common boundary. It is now easy to construct a homeomorphism

between M and S.
REMARK 1. The thecrem remains true even if the critical points are

degenerate. However, the proof 1s more difficult. (Compare Milnor, Dirfer-

ential topology, in "Lectures on Modern Mathematics II," ed. by T. L: Saaty

(Wiley, 1964), pp. 165-183; Theorem 1'; or R. Rosen, A weak form of the

star conjecture for manifolds, Abstract 570-28, Notices Amer. Math Soc.,

Vol. 7 (1960), p. 380; Lemma 1.)

REMARK 2. It is not true that M must be diffeomorphic to S" with

its usual differentiable structure.(Compare: Milnor, On manifolds homeomor-

phic to the 7-sphere, Annals of Mathematics, Vol. Ak (1956), pp. 399-405.

In this paper a 7-sphere with a non-standard differentiable structure is

proved to be topologically s’ by finding a function on it with two non-
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degenerate critical points.)

As another application of the previous theorems we note that if an
n-manifold has a non-degenerate function on it with crnly thres critical
points then they have index ¢, n and n/2 (by Poircaré duality), =und the
manifold has the homotopy type of an n/2-sphere with an n-cell attached.

See J. Eells ard N. Kuiper, Manifolds which are like projequive planes,

Inst. des Hautes Etudes Sci., Publ. Math. 14, 1962. Such a functicn exists
for example on the real or complex projective plane.

Let CP, be complex projective n-space. We will think of Cp, as
equivalence classes of (n+1) -tuples (zo,...,zn) of ccmplex numbers, with
lejl2 = 1. Denote the equivalence class of (zg,--.,2,) by (2,

Define a real valued function f on CPn by the identity

f(zo:zl:...:zn) = ZE cjlzjl2

vhere C0sCy5---,C, are distinct real constants.
In order to determine the critical points of f
following local coordinate system. let U

with 2z, 40, and set

, consider the
be the set of (z_:z, :...:2)

25
'zOI E; = X‘j + 1yJ
Then

x] ':y]:° xn’yn: Uo - R
are the required coordinate functlons mapping U
the open unit ball in llen.

2
z '2 = sz + yj2 |zo|2 =1 -7 (xj2 + ¥, )

n
f=cy +.§£ (cJ -c )(x + yj

throughout the coordinate neighborhood U
' within Uy

diffeomcrphically onto
Clearly

SO that

Thus the only critical pcint of
lies at the center point

of the coordinate system. At this point is non-degenerate: and has
index equal to twice the number of j with cj < ¢y

Similarly one can consider other coordinate systems centered at the
roints
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It follows that PgsPys---,P, are the only critical points of f. The
index of f at Py is equal to twice the number of j with c‘j < Cy
Thus every possible even index between O and 2n occurs exactly once.

By Theorem 3.5:
CPrl has the homotopy type of a CW-complex of the form

eo ue2 ueh U...v e2rl

It follows that the integral homology groups of CP, are given by

H, (CP,;Z) - {Z for 1 =0,2,4,...,2n
n 0 for other values of 1 .
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§5. The Morse Inequalities.

In Morse's original treatment of this subject, Theorem 3.5 was not
available. The relationship between the topology of M and the critical
points of a real valued function on M were described instead in terms of

a collection of inequalities. This section will describe this original
point of view.

DEFINITION: ILet S be a function from certain pairs of spaces to
the integers. S is subadditive if whenever XD YD Z we have 5(X,2) <
S(X,Y) + S(Y,2). If equality holds, S 4is called additive.

As an example, given any field F as coefficient group, let

R, (X,Y) = rxth Betti number of (X,Y)
rank over F of H,(X,Y;F) |,

n

for any pair (X,Y) such that this rank is finite. R, 1s subadditive, as

1s easily seen by examining the following portion of the exact sequence for
(X,Y,2):

TR (Y,2) - K (X,2) ~ H, (X,Y) = ...

. The Euler characteristic X(X,Y) 1is additive, where X(X,Y) =
Z (-D* R (X,¥).

IEMMA 5.1, let S be subadditive and let XOC"'C X.n.

Then S(X,,X)< B S(X;,X;_,). If S 1is additive then
equality holds,t=!

PROOF: Induction on n.
the case n -

For n = 1, equality holds trivially and

2 1s the definition of [subl] additivity.

n-1
If the result ig true for n - 1, then S(Xn_1,xo) <z S(Xi,Xi_1) .
1

Therefore
Sn.X,) < S(Xn_l:xo) + S(X, X)) £ 8 S(Xy,X4_q) and the result
is true for n. 1

Let S(X,0) - s(x). Taking X, = ¢ in Lemma 5.1, we have

n
(1 S(Xp) < Z S(Xy,X4 _q)
1

with equality if S 1is additive.
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Iet M be a compact menifold and f a differentiable function

on II with isolated, non-degenerate, critical points. ILet a, <...< ay
a, a
be such that M ® contains exactly 1 critical points, and M k = M.
Then
a, a a x, a
Ham ity cpmitoelnih
where Ay is the index of the
critical point,
MoM
= Hy(e ~,e 7) by excision,
{ coefficient group in dimension xi
) 0 otherwvise.
) ey
Applying (1) to ¢ =M~ C...C M® =M with S = Rx we have
k
a, a
-1
RN < ) R LM T <o
i=1

vhere C denotes the number of critical points of index . Applying this

by
formula to the case S = X we have

"+
Q

!
a a
X(M) = Z x(MLm iy . Co - Cp + Cp =+..
1:

-

Thus we have proven:

THEOREM 5.7 (Weak Morse Inequalities). If C, denotes the
number of critical points of index A on the compact mani-
fold M then

(?) R, (M) < C, , and
(3) T (-DYR M = Z (-0 Cy

Slightly sharper inequalities can be proven by the following
argument.

LEMMA 5.3. The function S, 1s subadditive, where

S)‘(X:Y) = R)‘(X,Y) - RX-‘ (X,Y) + Rx_p(XJY) = +"'t RO(XIY)

PROOF: Given an exact sequence
bopl.plick. . ... -D=o0
of vector spaces note that the rank of the homomorphism h plus the rank

of 1 1is equal to the rank of A. Therefore,
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rank h = rank A - rank i
= rank A - rank B + rank
= rank

rank B + rank C - rank k

rank A -rank B+ rank C - +...+ rank D
Hence the last expression is > 0. Now consider the homology exact sequence
of a triple X DY D 2. Applying this computation to the homomorphism
3
H, ,1(X,Y) — H(Y,2)
we see that
rank 3 = R,(Y,Z) - R,(X,2) + R, (X,Y) - R, _,(¥,2) + ... >0

Collecting terms, this means that

S,(¥,2) - 5,(X,2) + S,(X,¥) » 0

2
which completes the proof.
Applying this subadditive function S, to the spaces

a a a
sCM'CcM2c..cmk

we obtain the Morse inequalities:

N e R
s, (M) < 121 s, Mty oo oy

or

(&) - -
X Ry, (M) - Ry _;(M) +-...4+ Ry (M) < C, - Cx_1+ -...+ Gy

These inequalities are definitely sharper than the previous ones.

In fact, adding (hx) and (hx-1)’ one obtains (2

»); and comparing (4,)
with (&

x-7) for A > n one obtains the equality (3).

As an illustration of the use of the Morse inequalities, suppose
that Cyy1 = 0. Then R,,1 must also be zero. Comparing the inequalities

(%) and (4,,1), we see that

RX - RX—] +---.t RO = (o}

x " Cx_1 -4 Co .
Now suppose that Cx-1 is also zero. Then R,

ment shows that

1 =0, and a similar argu-

RX-Z - Rx_3 -t RO = C
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Subtracting this from the equality sbove we obtain the following:

COROLLARY 5.4. If C
R

=C 0 then Rl =C and

A+1 x-1 7 A

A+l r-1 =0

(Of course this would also follow from Theorem 3.5.) Note that
this corollary enables us to find the homology groups of complex projective

space (see §i4) without making use of Theorem 3.5.
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§6. Manifolds in Euclidean Space.

Although we have so far consideféd, on a2 manifold, only Tunctions
which have no degenerate critical points, we have not yet even shown that
such functions always exist. In this section we will construct many func-
tions with no degenerate critical points, on any manifcli embedded in R".
In fact, if for fixed p e R™ define the function Ly: M - R by LP(Q) =
lp-qll®. It will turn out that for almost all p, the function Lp has
only non-degenerate critical points.

Let M CR" be a manifold of dimension k < n, -iffercntiably em-
bedded in R". Let NC M xR® be defined by
N = ((q,v): q € M, v perpendiculer to M at q).

It is not difficult to show that N is an n-dimensional manifold

differentisbly embedded in R®®. (N 1is the total space of the normal
vector bundle of M.)

Let E: N~R" be E(q,v) = q + v. (E 1is the "endpoint" map.)

E(q,v)

DEFINITION. e € R® is a focal point of (M,q) with multiplicity

(q,v) € N and the Jacobian of E at (q,v) has

B if e =9+ v where

Mallity u > 0. The point e will be called a focal point of M if e is

a focal point of (M,q) for some q € M.

Intuitively, a focal point of M 1is a point in R™ where nearby
normals intersect.

We will use the following theorem, which we will not prove.
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THEORE!M 6.1 (Sard). If M, and M, are differentiable
manifclds having a ccunteble basis, of the same dimensicn,
ani i My — M, is of class Cl, then the image of the

set of criticel rcints has measure 0 in M,.

A critical point of f 1is a point where the Jacobian of ¢ 1is

singular. For a proof see de Rham, "Variétés Différentiables,"” Hermann,

Peris, 1955, p. 10.

COROLLARY 6.7. For almost all x el{n, the point x 1is
not a focal point ol M.

PROOF: We have just seen that N 1s an n-manifold. The point x
is a focal point iff x 1s in the image of the set of critical points of
E: I — R®. Therefore the set of focal points has measure O.

For a better understanding of the concept of focal point, it is con-
venient to introduce the "second fundamental form" of a manifold in Euclidean
space. Ve will not attempt to give an invariant definition; but will make
use of a fixed local coordinate system.

let u’,...,uk be coordinates for a region of the manifold M C R™.
Then the inclusion map from M to R® determines n smooth functions

X,(ul,...,uk),...,xn(u1,...,uk)

These functions will be written briefly as X', ...,u) wvhere X -

(xy,...,%,). To be consistent the point q € M C R® will now be denoted by

—

q.
The first fundamental form associated with the coordinate system 1is

defined to be the symmetric matrix of real valued functions

(Sij) = %31'3%3

y—
The second fundamental form on the other hand, is a symmetric matrix (ﬂij

of vector valued functions.
2=
d°x
It is defined as follows. The vector -—I__j at a point of M can
du~du
be expressed as the sum of a vector tangent to M and a vector normal to M.
2»

Define .?ij to be the normal component of __I——I Given any unit vector

V which is normel to M at q the matrix

(;;.T

(v 5%
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can be called the "second fundamental form of M at d in the direction
-

It will simplify the discussion to assume that the coordinates
have been chosen to that gij’ evaluated at _q', is the identity matrix.
Then the eigenvalues of the matrix ( v - Tij) are called the principal
curvatures Kl""'KK of M at d in the normel direction V. The re-

- -1
ciprocals K11,. . "KK of these principal curvatures are called the Qrinci-

1

pal radii of curvature. Of course it may happen that the matrix - - T.J)

is singular. In this case one or more of the K, will be zero; and hence

the corresponding radii K? will not be defined.

Now consider the normal line ¢ consisting of all 7:1' + t.T/’, where

¥ 1is a fixed unit vector orthogonal to M at q .

LEMMA 6.>. The focal points of (M;4) along ( are pre-

cisely the points G + Kj' ¥V, where 1< i < k, K, # 0.

Thus there are at most, k focal points of (M,9) =along

£, each being counted with its proper multiplicity.

PROOF: Choose n-k vector fields _w'1 (u1 g e ,uk) yoon ’;;n k(Ll1 PRI ’uk)

along the m w o
g manifold so that Wiy *»¥n_x are unit vectors which are orthogo-

nal to each other and to M. e can introduce coordinates (u1 yeen ,uk,
1 n-k .
£oee, B0 on the manifold N C M xR as follows. Let (u',...,u5t',-
£y correspond to the point
- K n-k
(x(u yeee 0ty z t* % ', i) e
a=1
Then the functicn
E: N —~RP
gives rise to the correspondence
1 k .1 - g
(a',...u88) o ek &L = k <
s » FI ) > ) x(u,...,u)+ thwq(uI,. ,le) ’

with partial derivatives

?i = ﬁl . 3‘ £ MWy
u du 5 dut
=
3P T e

Taking the inner products cf these n-vectors with the linearly independent
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vectors éﬁ,,..., éﬁk,
du du

rank equals the rank of the Jacobian of E at the corresponding point.

we will obtain an nxn matrix whose

=}

TR A

This nxn matrix clearly hes the following form
o« Ny )

- - ow
X X § a “"a  d3x
oa L 24 + t .22 )t —_ "V
aut Al p Bui BuJ ) ('6' du &

identity

(:) matrix

Thus the nullity is equal to tnu: nullity of the upper left hend btlock. Using

the ldentity

0 = ) ('? . ég - EEE . ég, r W --——iiir
aul SRS aul Al @ utaud

we see that this upper left hand block is just the matrix

(8- > %, - Ty)
a
Thus:

ASSERTION 6.4, 'a + tv is a focal point of (Mﬁi) with multiplicity

u if and only if the matrix

(*) (gij -t '.?ij)

is singular, with nullity u.

Now suppose that (gij) is the identity matrix. Then (*) is singu-
lar if and only if % is an eigenvalue of the matrix € -TGJ) Further-
more the multiplicity u is equal to the rmltiplicity of % as eigenvalue.
This completes the proof of Lemma 6.3.

Now for fixed P € R® 1let us study the function

= : - R
ha f: M

where
rFa', . u9) - RSP -F F-X-T+D P
We have
df 3% - =
2, 2222 . (X -p)
Sul aut

Thus  has a critical point at 'H if and only if 'a -'5 is normal to M

—

at q .
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The second partial derivatives at & critical point ere given by

2%f & .3 -D)
= 2 . + _1_3 ‘ (x - p)
Sulaud ( ud  aud T auldu
Setting '5 = X+ €V, as in the proof of lLemma 6.3, this becomes
3%r =
= 2( - tv - _[ )
dutdud 81 1]
Therefore:
LEMMA 6.5. The point qQ e M is a degenerate critical point

of f =Lz if end only if T 1is a focal point of (M,7).
The nullity of 'a as critical point is equal to the multi-
plicity of T as focal point.

Combining this result with Corollary 6.” to Sard's theorem, we
immediately obtain:

THEOREM 6.6. For almost all p € R (all but & set of
measure 0) the function

L?: M—R

has no degenerate critical points.

This theorem has several interesting consequences.
COROLLARY 6.7. On any manifold M there exists a dif-

ferentiable function, with no degenerate critical points,
for which each M® 1s compact.

PROOF: This follows from Theorem 6.6 and the fact that an n-dimen-

sional manifold M can be embedded differentiably as.a closed subset of
2n+1
R

(see Whitney, Geometric Integration Theory, p. 113).

APPLICATION 1. A differentiable manifold has the homotopy type of

a CW-complex. This follows from the above corollary and Theorem 3.5.

APPLICATION 2. On & compact manifold M there is a vector field

such that the sum of the indices of the critical points of X equals
X(M), the Euler characteristic of M.

X

This can be seen as follows: for
any differentiable function f on M we have X(M) = L -n* C, where C,

is the number of critical points with index ». But (-1)" 1is the index of

the vector field grad f at a point where f has index .
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It follows that the sum of the indices of any vector field on M
is equal to x(M) because this sum is a topological inveriant (see Steen-
rod, "The Topology of Fibre Bundles," §39.7).

The preceding corollary can be sharpened as follows. Let k> 0o
be an integer and let K C M be a compact set.

COROLLARY 6.8. Any bounded smooth function f: M— R can

be uniformly approximated by a smooth function g which

has no degenerate critical points. Furthermore g can be

chosen so that the i-th derivatives of g on the compact

set K uniformly approximate the corresponding derivatives
of f, for i< k.

(Compare M. Morse, The critical points of a function of n vari-

ables, Transactions of the American Mathematical Society, Vol. 33 (1931),
pp. 71-91.)

PROOF: Choose some imbedding h: M — R® of M as a bounded sub-
set of some euclidean space so that the first coordinate h1 is precisely
the given function f. Let c¢ be a large number. Choose a point

P = (-c+e €5, .0 E0)
close to (-c,0,...,0) € R! so that the function L,: M — R is non-

(x) - c?
g(x) = i__

2c

degenerate; and set

Clearly g 1is non-degenerate. A short computation shows that

n
g(x) = £(x) + Z hi(x)e/ec -i eihi(x)/c +
1 1

2
€4 /2c - £,

-

Clearly, if c¢ 1is large and the €; ere small, then g will approximate
f as required.
The above theory can also be used to describe the index of the

function

Lp: M - R

at a critical point.

LEMMA 6.9. (Index theorem for Lp.) The index of

at a non-degenerate critical point q € M 1s equal to
the number of focal points of (M,q) which lie on the
segment from q to p; each focal point being counted
with its multiplicity.




38 I. NON-DEGENERATE FUNCTIONS

An analogous statement in Part III (the Morse Index Theorem) will

be of fundamental importance.

PROOF: The index of the matrix

a?
(gﬂl;%f) - 2gyy - & - Iy

is equal to the number of negative eigenvalues. Assuming that (g J) is

AN

the identity matrix, this is equel to the number of eigenvalues of € 1]

1
which are > - Comparing this statement with 6.3, the conclusion follows.
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§7. The lLefschetz Theorem on Hyperplane Sections.

As an application of the ideas which have been developed, we will
prove scme results concerning the topology of algebraic varieties. These
were originally proved by Lefschetz, using quite different arguments. The

present version is due to Andreotti and Frankel”.

THEOREM 7.1. If M C C" 1is a non-singular affine alge-
braic variety in complex n-space with real dimension 2k,
then

H; (M;Z) = O for 1 > k.

This is a consequence of the stronger:

THEOREM 7.2. A complex analytic manifold M of complex
dimension k, bianalytically embedded as a closed subset
of ¢" has the homotopy type of a k-dimensional CW-complex.

The proof will be broken up into several steps. First consider a
quadratic form in k complex variables

Q(zl,...,zk) = z,bhj 2Pz

h h

h for 2z, and then take the real part of Q we

If we substitute x + 1y

obtain a real quadratic form in 2k real variables:

Q'(x',...,xk,y',...,yk) = real part of E:bhj(xh+iyh)(xj+iyj)

ASSERTION 1. If e 1is an eigenvalue of Q' with multiplicity .y,

then -e 1is also an eigenvalue with the same multiplicity u.

PROOF. The identity Q(iz',...,1z%) - -q(z',...,z%) shows that
the quadratic form Q' can be transformed into -Q' by an orthogonal

change of variables. Assertion 1 clearly follows.

"

See S. Lefschetz, "L'analysis situs et la géométrie algébrique," Paris,
1924; and A. Andreotti and T. Frankel, The Lefschetz theorem on hyperplane
sections, Annels of Mathematics, Vol. 69 (1959), pp. 713-T17.
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Now consider a complex manifold M which is bianalytically imbed-

ded as a subset of C®. ILet q be a point of M.

ASSERTION 2. The focal points of (M,q) along any normal line ¢

occur in pairs which are situated symmetrically about gq.

In other words if q + tv 1s a focal point, then q - tv 1is a

focul point with the same multiplicity.

PROOF. Choose complex coordinates z‘,...,zk for M in a neigh-
borhood of q so that zl(q) = v, 0= zk(q) = 0. The inclusion mep M—C"
determines n complex analytic functions

1
vy = vz, ...,25),

a a =1

P B

Iet v be a fixed unit vector which is orthogonal to M at q. Consider

the Hermitian inner product

i 1 -
z wava = Z wa(z ,-..,Zk)va

of w and v. This can be expanded as a complex power series

1 Ky =
ZEwa(z yeve,Z )Va = constant + Q(z’,...,zk) + higher terms,

where Q denotes a homogeneous quadratic function. (The linear terms van-

ish since v is orthogonal to M.)

h h

Now substitute x + iy

for zP SO as to obtain a real coordinate
system for M; and consider the real inner product

WV = real part z J
P of Vo

This function has the real power series expansion

1
W+ v = constant + Q'(x ,...,xk,y1,...’yk) + higher terms.
Clearly the quadratic terms Q' determine the seconq fundemental form of

M et q in the normal direction v. By Assertion 1 the eigenvalues of
Q' occur in equal and opposite pairs. Hence the focal points of (M,q)
along the line through q and q + Vv also occur in symmetric pairs. This
proves Assertion 2.

We are now ready to prove 7.2. Choose a point p € C* so that the

squared-distance function
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Lp: M—R
has nc degenerate critical points. Since M 1s a closed subset of Cn, it
is clear that each set

M - Li'[o,a]
is ccmpact. Now consider the index of LD at a critical point q. Accord-
ing to 6.9, this index is equal to the nu%ber of focal points of (M,q)
which lie on the line segment from p to gq. But there are at most 2k
focal points along the full line through p and q; and these are distri-
buted symmetrically about q. Hence at most k of them can lie between p
and ag.

Thus the index of Lp at q 1is < k. It follows that M has the

homotopy type of a CW-complex of dimension < k; which completes the proof

of 7.27.

COROLLARY 7.3 (Lefschetz). Let V be an algebraic variety
of complex dimension k which lies in the complex projective
space CP,. Let P be a hyperplane in CP, which contains
the singular points (if any) of V. Then the inclusion mep

VnP=—V

induces isomorphisms of homology groups in dimensions less
than k-1. Furthermore, the induced homomorphism

H_,(V n P;Z) = H _,(V;Z)

is onto.

PROOF. Using the exact sequence of the pair (V,V n P) it is
clearly sufficient to show that H(V,V n P;Z) = 0 for r < k-1. But the
Lefschetz duality theorem asserts that

H(V,V n P;2) = HXT(V —(V n P);2)
But V -(V n P) 1is a non-singular algebraic variety in the affine space
CP, - P. Hence it follows from 7.7 that the last group is zero for r < k-1.
This result can be sharpened as follows:
THEOREM 7.4 (Lefschetz). Under the hypothesis of the

preceding corollary, the relative homotopy group
T.(V,V n P) 1s zero for r < k.
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PROOF. The proof will be based on the hypothesis that some neigh-
borhood U of V n P can be deformed into V n P within V. This can be
proved, for example, using the theorem that algebraic varieties can be tri-
angulated.

In place of the function Lp: V-VNnP—-R we will use f: V— R

where
for x e VnP ,

f£(x) {0
) 1/I..p(x) for x ¢ P.

Since the critical points of Lp have index < k it follows that
the critical points of f have index > 2k - k = k. The function f has
no degenerate critical points with ¢ < f < ». Therefore V has the

€ -1
homotopy type of V* = £7'[0,e] with finitely many cells of dimension > k
attached.

Choose e small enough so that V& C U. Let I° denote the unit
r-cube. Then every map of the pair (I¥,i") into (V,V n P) can be deform-
ed into a map

r :r
(I = (v vap c@wyvnp ,
since r < k, and hence can be deformed into V n P. This completes the

proof.



PART II

A RAPID COURSE IN RIEMANNIAN GEOMETRY

§€. Covariant Differentiation

The object of Part II will be to give a rapid outline of scme basic
concepts of Riemannian geometry which will be needed later. For more infor-
maticn the reader should consult Nomizu, "Lie gsroups and differential Zeo-
metry. Math. Soc. Japan, 19%6; Helgason, 'Differential ,jeometry ard sym-
metric spaces," Academic Press, 1962; Sternberg, 'Lectures on differential
geometry," Prentice-Hall, 196h4; or Laugwitz, "Differential and Riemannian

geometry," Academic Press, 1965.

Iet M be a smooth manifold.

DEFINITION. An affine connection at a point p € M 1is a function

which assigns to each tangent vector Xp € TMp and to each vector field Y

a new tangent vector

Xp FY e TMp

called the covariant derivative  of Y in the direction Xp. This is re-

quired to be bilinear as a function of Xp and Y. Furthermore, if
f: M= R
is a real valued function, and if fY denotes the vector field
(f‘if)q = 1‘(q)1{q
‘then F 1is required to satisfy the identity

xp F(fY) = (pr')Yp + f‘(p)Xp FY

Note that our X F Y coincides with Nomizu's VXY. The notation is in-
tended to suggest that the differential operator X acts on the vector field
Y.
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(As usual, pr denotes the directional derivative of f 1in the direction

)

A global affine connection (or briefly a connection) on M 1is a

function which assigns to each p € M an affine connection l-p at p,
satisfying the following smoothness condition.
1) If X and Y are smooth vector fields on M then the vector

field X F Y, defined by the identity
(X I-Y)p=)Lp l-pY ,
must also be smooth.
Note that:
(2) X FY is bilinear as & function of X and Y .
(3) (FX) FY=fX FY) ,
() (X F(£Y) = (XD)Y + £(X FY)
Conditions (1), (2), (3), (4) can be taken as the definition of

a connection.
In terms of local coordinates u1 yo o .,un defined on a coordinate
neighborhood U C M, the connection F 1s determined by n3 smooth real
k
valued functions ryy on U, as follows. ILet 9, denote the vector

d
field QE on U. Then any vector field X on U can be expressed
uniquely as

k
X = Zxak
k=1

where the xk are real valued functions on U. 1In particular the vector

field ai k aj can be expressed as

k
(5) 3; F3y = z Tij %
k
These functions r 1kj determine the connection completely on U.
In fact given vector fields X = inai and Y - Zy-jaj one can

expend X FY by the rules (2), (3), (4); yielding the formula

(6) XFY - Z(inyl,(i)ak
K1
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where the symbol yki stands for the real valued function
2

vE - K ) )
J

Conversely, given any smooth real valued functions r;; on U,
one can define X F Y by the formula (6). The result clearly satisfies
the conditions (1), (?2), (3), (¥), (5).

Using the connection F one can define the covariant derivative of

a vector field along a curve in M. First some definitions.

A parametrized curve in M 1is a smooth function ¢ from the real

numbers to M. A vector field V along the curve c¢ 1s a function which

assigns to each t € R a tangent vector
Vt € TMC(t)

This 1s required to be smooth in the following sense: For any smooth func-

tion f on M the correspondence
t — th

should define a smooth function on R.
As an example the velocity vector field %% of the curve is the
vector field along c¢ which is defined by the rule

dc d
aE = C*a-E

Here é% denotes the standard vector field on the real numbers, and

Cxt TRy = Ty
(=]

denotes the homomorphism of tangent spaces induced by the map c. (Compare

Diagram 9.)
g

de
c(t)

Diagram 9
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Now suppose that M 1s provided with an affine connection. Then
any vector field V along c¢ determines a new vector field %% along c
called the covariant derivative of V. The operation

- v
v T

is characterized by the following three axioms.

a) DVsW) DV D¥
I S s § 7

b) If f 1is a smooth real valued function on R then

D(fV) | df y , ¢ DV
dt- = dt I3
¢) If V 1is induced by a vector field Y on M, that is if

Vi = Yo(t) for each t, then g% is equal to %% kY

(= the covariant derivative of Y 1in the direction of the
velocity vector of «¢)
DV

LEMMA 8.1. There is one and only one operation V — 3g
which satisfies these three conditions.

PROOF: Choose a local coordinate system for M, and let
1 n
u (t),. .,u(t) denote the coordinates of the point c(t). The vector
field V can be eéxpressed uniquely in the form

vV = vabJ

n
»--+,V @&re real valued functions on R (or an appropriate open
subset of R), and 9y,...,3

where v1

h &re the standard vector fields on the co-

ordinate neighborhood. It follows from (a), (b), and (c) that

n

n 2(3T 3+ w3 &2 1 ay)

)

k i
dv d k
Z(‘d‘t‘ + <x Ty vd) I
k i,J
Conversely, definin v b
, € gt by this formula, 1t is not difficult to verify
that conditions (a), (b), and (c¢) ape satisfied.
A vector field V along c 1is said to be a perallel vector field

: v
if the covariant derivative Tt 1s identically zero.
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IEMMA 8.7. Given a curve c¢ and a tangent vector Vo
at the point <c¢(0), there is one and only one parallel
vector field V along ¢ which extends VO.

PROOF. The differential equations

have solutions vk(t) which are uniquely determined by the initial values
vk(o). Since these equations are linear, the solutions can be defined for
all relevant values of t. (Compare Graves, "The Theory of Functions of
Real Variables," p. 152.)

The vector V. is said to be obtained from V, by perallel trans-
lation along c.

Now suppose that M 1is a Riemannian manifold. The inner product
of two vectors Xp, Yp will be denoted by <:Xp, Yb:>

DEFINITION. A connection + on M 1is compatible with the Rieman-
nian metric if parallel translation preserves inner products. In other words,
for any parametrized curve c and any pair P, P' of parallel vector fields

along c, the inner product < P,P'>> should be constant.

LEMMA 8.32. Suppose that the connection is compatible with
the metric. Ilet V, W be any two vector fields along c.
Then

S<vu> - <us o o<y, X

PROOF: Choose parallel vector fields P1,...,Pn along c¢ which
are orthonormal at one point of c¢ and hence at every point of c. Then

the given fields V and W can be expressed as ZE viPi and j; Wij reéspec-
ot

tively (vhere vi - <V,P;> 1is a real valued function on R). It fol-
lows that < V0> = z vivl  and that

oY oavt v _ § oawd g

at = qT "1 dqE - qE

Therefore
DV i i
<a’f:w> + <V:g}‘fl> = z ( %V? wi + Vi dawf’ ) = é"f <V,W> ’

which completes the proof.




48 II. RIEMANNIAN GEOMETRY

COROLLARY 8.4. For any vector fields Y,Y' on M anti any

vector Xp € TMp:
X KLYS> = KX RS> e Yk RY>

PROOF. Choose a curve c¢ whose velocity vector at t = 0 is Xp;
and apply 8.3.

DEFINITION 8.5. A connection F 1is called symmetric if it satis-
fies the identity’

(X FY) - (Y FX) = [X,Y]

(As usual, [X,Y] denotes the poison bracket [X,YIf = X(Yf) - Y(Xf) of
two vector fields.) Applying this identity to the case X = Bi, Y = aj,
since [ai,ajl = 0 one obtains the relation

k k
Pij - rji = 0.
k k
Conversely if ryy = Tyi then using formula (6) it is not difficult to

verify that the connection | 44 symmetric throughout the coordinate neigh-
borhood.

LEMMA 8.6. (Fundamental lemma of Riemannian geometry.)
A Riemannian manifold possesses one and only one sym-
metric connection which ig compatible with its metric.

(Compare Nomizu p. 76, Laugwitz p. 95.)

PROOF of uniqueness, Applying 8.4 to the vector fields ai,aj,ak,
and setting < 34,3, > = 8y one obtains the identity
a =
1 8jk <y Fay,a,> + <3y, F o>

Permuting 1,J, and k this giyes thpee linear equations relating the

* The following reformulation may (or may not) seem more intuitive. Define

The "covariant second derivative" of o real valued function f along two
vectors X, ,Y, to be the expression

Xp(¥e) - X, FOf
where Y denotes any vector fielg extending Y_. It can be verified that
this expression does not depend on the choice of Y. (Compare the proof of
Lemms 9.1 below.) Then the connection is symmetric if this second deriva-

tive is symmetric as a function of xp and Yp'
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three -juantities

<?«i FAJ,B}{), <Aj FB;‘:,Fi), and ¥y l-?’,.,3j>

1

(There are only three such quantities since 51 + Bi = >1 F Bi .Y These

equaticns can be solved uniguely; yieliing the first Christcffel identity

1
KA FARMD = 5 (ygy + N8y - N8iy)

The left hend side of this identity is equal to i; F;G 8ok - Multiplying
T

by the inverse (gke) of the matrix (gﬂk) this yields the second Christof-
rfel identity

4

1
riJ =

Ke
3 (3 8jk * 95 Bik - % 3135 8

=N

Thus the connection is uniquely determined by the metric.

Conversely, defining r;} by this formula, one can verify that the
resulting connection is symmetric and compatible with the metric. This
completes the proof.

An alternative characterization of symmetry will be very useful

later. Consider a '"parametrized surface" in M: that is a smooth function

2

st R — M.

By a vector field V along s is meant a function which assigns to each

(x,y) € R? a tangent vector

Vix,y) € Ms(x,y)

As examples, the two standard vector fields ;% and é% give rise to vec-

tor fields s, ;% and s, é% along s. These will be denoted briefly by

%; and %3 ; and called the "velocity vector fields" of s.

For any smooth vector field V along s the covariant derivatives
%% and %% are nev vector fields, constructed as follows. For each fixed

Ygs restricting V to the curve
X - s(x,yo)
one obtains a vector field along this curve. Its covariant derivative with
respect to x 1s defined to be ( %¥ )(x v - This defines %% along
: Yo
the entire parametrized surface s.

As examples, we can form the two covariant derivatives of the two
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ds ds D Js D Js
vector fields 3% and 3 The derivatives 3% X and 3y Sy are

simply the acceleration vectors of suitable coordinate curves. However,

the mixed derivatives é% %% and g% %% cannot be described so simply.

8.7. c then = = = __l: __ES .
LEMMA If the connection is symmetr'i : ¥ 3

PROOF. Express both sides in terms of a local coordinate system,

and compute.
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§9. The Curvature Tensor

The curvature tensor R of an affine connection F measures the
extent to which the second covariant derivative ai + (6J F2Z) is sym-
metric in 1 and j. Given vector fields X,Y,Z define a new vector field

R(X,Y)Z by the identity
RIX,Y)Z = X F(YFZ) +YF(XF2 +« [X,Y] F2Z .

IEMMA 9.1. The value of R(X,Y)Z at a point p e M
depends only on the vectors Xp,Yp,Zp at this point
p and not on thel!r values at nearby points. Further-
more the correspcndence

Xp,Yp,Zp - R(Xp,Yp)Zp
from TMD X TMp X TMD to TMp is tri-linear.

]

Briefly, this lemma can be expressed by saying that R is a "tensor.'

PROOF: Clearly R(X,Y)Z is a tri-linear function of X,Y, and Z.
If X 1is replaced by a multiple fX then the three terms -X F (Y F 2),
Y F(X F2Z), [X,Y] FZ are replaced respectively by
1) -fXF(YF2Z) ,
i) (¥O(X F2) + fTY F (X F2) ,
i11) - (¥D)(X F 2) + CIX,Y) F 2
Adding these three terms one obtains the identity

R(fX, )2 = fR(X,Y)2

Corresponding identities for Y and Z are easily obtained by similar

computations.

Now suppose that X = xia , Y = S‘ ia. and Z = 5; z
L *9 Yy

k
Ay

Then
R(X,Y)Z

E R(xiai,yjajuzkaks

= i; xiyjzk R(Bi,aj)hk

Nomizu gives R the opposite sign. Our sign convention has the advan-
tage that (in the Riemannian case) the inner product <:R(§h,éi)3j,5k:>

coincides with the classical symbol Rhijk .
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Evaluating this expression at p one obtains the formula
RV, - ) e RO,

which depends only on the values of the functions xi,yj,zk at p, and

not on their values at nearby points. This completes the proof.

Now consider a parametrized surface
s: R2 — M.

Given any vector field V along s one can apply the two covariant d4dif-
ferentiation operators %% and g% to V. 1In general these operators will
not commute with each other.
D D D D _ ds as
IEMMA 9.2, 3y 5% v - =37 Vv = 3_,3_
PROOF: Express both sides in terms of a local coordinate system,
and compute, making use of the identity

3 k(3 k3 -3y F(3y k3 = R(3;,3)3,

i)
[It is interesting to ask whether one can construct a vector field

P along s which is parallel, in the sense that

and which has a given value P(o,o) at the origin. 1In general no such
vector field exists. However, if the curvature tensor happens to be zero
then P can be constructed as follows. Let P(x,o) be a parallel vector
field along the x-axis, satisfying the given initial condition. For each

fixed Xo let P be a parallel vector field along the curve

(%0,3)

¥y — s(x5,¥)

having the right value for y = 0. This defines P everywhere along s.

D :
Clearly 3y P 1is identically zero; and g% P 1s zero along the x-axis.
Now the identity

D D D s s
P - = 3y P = R ( X’ Jy P - o0
P = 0. In other words, the vector field %% P is

Yo So

implies that é%

parallel along the curves

y — s(xo,y)
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D D R .
since (2 P)(xo,o) = 0, this implies that 3 P 1is identically zero;
and completes the proof that P 1s parallel along s.]

Henceforth we will assume that M 1s a Riemannian manifold, pro-
vided with the unique symmetric connection which is compatible with its
metric. In conclusion we will prove that the tensor R satisfies four

symmetry relations.

IEMMA 9.2. The curvature tensor of a Riemannian manifold
satisfies:

(1) R(X,Y)Z + R(Y,X)Z = 0O

(2) R(X,Y)Z + R(Y,2)X + R(2,X)Y = 0

() <RIX,VZ,W> + <RIX,YW,Z2> =0

() <R(X,Z,W> = <R(Z,WNX,Y>

PROOF: The skew-symmetry relation (1) follows immediately from the
definition of R.

Since all three terms of (2) are tensors, it is sufficient to
prove (2) when the bracket products [X,Y], [X,Z] and [Y,2] are all
zero. Under this hypothesis we must verify the identity

-XF@XFZ) + YF(XF2)

-YF(ZFEX) + ZFH(YEX

~Z2ZFXFY) + XF(ZFY) = 0.
But the symmetry of the connection implies that

YFZ-2FY = [Y,2) = o.
Thus the upper left term cancels the lower right term. Similarly the re-
maining terms cancel in pairs. This proves (2).

To prove (3) we must show that the expression < R(X,Y)Z,W> 1is

skew-symmetric in Z and W. This is clearly equivalent to the assertion
that

<R(X,Y)2,2> = o0

for all X,Y,2. Again we may assume that I[X,¥Y] = 0, so that
<R(X,Y)2,Z2> 1is equal to

<-XF(YFZ) +Y F(XFD,2>
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In other words we must prove that the expression

<YFX F2D),2>

is symmetric in X and Y.

Since [X,¥] = 0 the expression YX < Z,Z> is symmetric in X
and Y. Since the connection is compatible with the metric, we have
X<2,2> = 2<X F2,2>
hence

W <L2Z,2> =2Y HX F2),2> +2<X F2,Y F2Z>

But the right hand term is clearly symmetric in X and Y. Therefore

<Y F (X F 2),2> 1is symmetric in X and Y; which proves property (3).

Property (4) may be proved from (1), (2), and (3) as follows.

<R(X,Y)Z,W>

<R(X,W)Y,Z2>

<R (ZIW) X'Y>

Formula (2) asserts that the sum of the quantities at the vertices

°7 sheded triangle W is gero. Similarly (making use of (1) and (%)) the
sum of the vertices of each of the other shaded triangles is zero. Adding
these identities for the top two shaded triangles, and subtracting the

identities for the bottom ones, this means that twice the top vertex minus

twice the bottom vertex is zero. This proves (), and completes the proof .
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§10. Geodesics and Ccmpleteness

Let M be a connected Riemannian manifold.

DEFINITION. A parametrized path
y+ I =M,
where I denotes any interval of real numbers, is called a geodesic if the

acceleration vector field é% %% is identically zero. Thus the velocity

vector field g% must be parallel along ». If » 1s a geodesic, then the

identity D dy dy

d dy 4
w<gat> - °<F;a x> - ©°

shows that the length IIg%Il = <.g%, g%>1/‘° of the velocity vector is
constant along y. Introducing the arc-length function

s(t) = ( H%%Hdt + constant

This statement can be rephrased as follows: The parameter t along a
geodesic is a linear function of the arc-length. The parameter t 1s actu-
ally equal to the arc-length if and only if H%%” = 1.

In terms of a local coordinate system with coordinates ul,...,un
1
a curve t— y(t) € M determines n smooth functions u (t),...,u"(t).

The equation é% %% for a geodesic then takes the form

a®uk $ k 1 n, dut aud
?-ﬁ- J 1"1J (ll ’...,U.) 1-51-5 = (o]
,Jd=1

The existence of geodesics depends, therefore, on the solutions of a certain
system of second order differential equations.

More generally consider any system of equations of the form

d —
d"u ¥ du
— = F(u )
) » dt
Here U stands for (u’,...,un) and F stands for an n-tuple of C%

functions, all defined throughout some neighborhood U of a point

O —

(u,,v;) e R
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EXISTENCE AMD UNIQUENESS THEOREM 10.1. There cxists 2
neighborhood W of the point 631571) ani a nurber

e > 0 so that, for each (36,36) € W the differen-
tial equation

2= - g
&L FE,
dt

has a unigue solution t —u(t) which is defined for
It] < e, and satisfies the initial conditions

[(0) = .36, %% (0) = v,
Furthermore, the solution depends smoothly on the in-
itial conditions. In other words, the corresponience

Uy, ¥, t) —u(t)

from W x (-e,e) to RP
2n+1 varisbles.

is a C” function of all

[

i du
PROOF :

Introducing the new variables Vv~ = g this system of n
second order equations becomes a system of °n first order =quations:

& . FEH
The assertion then fcllows from Graves,

"Theory of Functions of Real Vari-
ables," p. 166.

(Compare our §2.4.)

APplying this theorem to the differential equation for geodesics,
one obtains the following.

LEMMA 10.2. For every point P, ona Riemannian

manifold M there exists g neighborhood U of Py
and & number € > 0 s0 that: for each p € U and
each tangent vector v € TM_ with length < €
there is a unique geodesic

7yt (-2,2) = M
satisfying the conditions

d'rv

7,(0) = p, a8 (0 = v

PROOF. 1If we were willing to replace the interval (-» ~) by &n

arbitrarily small interval, then this statement would f0llov immeqiately
from 19.1. To be more precise; there exists a neighborhood U of p, and
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numbers €,,€, > 0 8o that: for each p € U and each v ¢ TMp with

lvii < e, there 1s a unique geodesic

Tyt (-?e?,es?) —- M

satisfying the required initial conditions.
To obtain the sharper statement it is only necessary to observe that
the differential equation for geodesics has the following homogeneity pro-

perty. ILet ¢ be any constant. If the parametrized curve
t = y(t)

is a geodesic, then the parametrized curve
t — y(ct)

will also be a geodesic.
Now suppose that e 1is smaller than e,e,. Then if vl < € and
|t] < 2 note that

v/e ll < e, and le,t| <2e,

Hence we can define 7V(t) to be (eet) . This proves 10.2.

Tv/es

This following notation will be convenient. ILet v € TMq be a

tangent vector, and suppose that there exists a geodesic
y: [0,1] =M
satisfying the conditions
dy
y(0) = q, Hf(o) = V.

Then the point (1) € M will be denoted by equ(v) and called the
egponential* of the tangent vector v. The geodesic +» can thus be des-
cribed by the formula

y(t) = equ(tv)

*

The historical motivation for this terminology is the following. If M
is the group of all n x n unitary matrices then the tangent space TMI
at the identity can be identified with the space of n x n skew-Hermitlan
matrices. The function

expy: TMp -+ M
as defined above is then given by the exponential power series

epr(A) = I+A+-21!-A2+31—!-A3+
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Iemma 10.2 says that equ(v) is defined providing that yvj 1s small enough.
In general, exgq(v) is not defined for large vectors v. However, if

defined at all, equ(v) is always uniquely defined.

DEFINITION. The manifold M is geodesicelly complete 1if equ(v)

is defined for all q € M and all vectors V € TMq. This is clearly equiva-

lent to the following requirement:

For every geodesic segment (a,b] — M 1t should be possible

to extend 7y, to an infinite geodesic

y+ R — M

We will return to a study of completeness after proving some local results.
Let TM bve the tangent manifold of M, consisting of all pairs

(p,v) with peM, v e TMp. We give TM the following C* structure:

. 1 n
if (u,...,u") 1is a coordinate system in an open set U C M then every

tangent vector at q € U can be expressed uniquely as t‘a, PR tnan,

where 3, - 1 n o1

)
S;I 'q . Then the functions u ,...,u"’,t ,...,tn constitute
& coordinate system on the open set TU C TM.

Lemma 10.2 says that for each p € M the map

(q,v) — equ(V)

is defined throughout a neighborhood V of the point (p,0) € TM. Further-

more this map is differentisble throughout V.

Now consider the smooth function F: V — M x M defined by

Flq,v) = (q, expy(Vv)). We claim that the Jacoblan of F at the point

(p,0) 1is non-singular. In fact, denoting the induced coordinates on

UxUCMxM by (u:,...,u?,u;,...,ug), we have
> 3_ 2
e R
du Bu1 Bu?
d 3
F ) - 5
*( Btj Bu?

Thus the Jacobian matrix of F at (p,0) has the form ( DI), e
hence is non-singular. o

It follows from the implicit function theorem that F maps some

neighborhood V' of (p,0) € TM diffeomorphically onto some neighborhood
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of (p,p) € M x M. Ve may assume that the first neighborhood V' consists
of all pairs (q,v) such that q belongs to a given neighborhood U' of
p and such that |[lv|l < e. Choose a smaller neighborhood W of p so that
F(V') > W x W. Then we have proven the following.

IEMMA 10.3. For each p € M there exists a neighborhood
W and a number € > 0 so that:

(1) Any two points of W are joined by a unique
geodesic in M of length < €.

(?) This geodesic depends smoothly upon the two
points. (I.e., if t — eXpy (tv), 0<t< 1, 1is the
geodesic joining q, and q,, then the pair (q1,v) €
TM depends differentiably on (q,,q,).)

(3) For each q € W the map exp, maps the open
e-ball in TMq diffeomorphically onto an open set
U, 0> W.

REMARK. With more care it would be possible to choose W so that
the geodesic joining any two of its points lies completely within W. Com-
pare J. H. C. Whitehead, Convex regions in the geometry of paths, Quarter-

ly Journal of Mathematics (Oxford) Vol. 3, (1932), pp. 33-ke.
Now let us study the relationship between geodesics and arc-length.

THEOREM 10.4. Iet W and e be as in Lemma 10.3. Let
y: [0,1] =M

be the geodesic of length < & Jjoining two points of W,

and let
w: [0,1] =M

be any other plecewise smooth path joining the same two
points. Then

1 1
(idziae < ( 1g2iae
o] (o]

where equality can hold only if the point set o([0,1])
coincides with y(l[0,1]).

Thus y 1s the shortest path joining its end points.
The proof will be based on two lemmas. ILet q = 7(0) and let U,

be as in 10.3.




60 II. RIEMANNIAN GEOMETRY

LEMMA 10.5. In U,, the geodesics through q are
the orthogonal trajectories of hypersurfaces

{ equ(V) Vo€ TMq, vl = constanf} .

PROOF: Iet t — v(t) denote any curve in TMq with (lv(t)ll =
We must show that the corresponding curves
t— equ(rov(t))

in U where 0 < rj < e, are orthogonal to the radial geodesics

q!
r— equ(rv(to))

In terms of the parametrized surface f given by

f(r,t) = expy(rv(t)), 0<T<E
we must prove that
of ar
<> =°
for all (r,t).
Now
of D of
F<ER - BEE - <HFR

The first expression on the right is zero since the curves

r —+ f(r,t)

are geodesics. The second expression is equal to

D of Bf =
<T’B‘f T> = Ef <3—)E— = 0,
of of
since ” " = [lv(t) I = 1. Therefore the quantity <FI_”3-‘E> is indepen-

dent of r. But for p = O we have

f(o,t) = equ(o) =q
hence %%(o,t) = 0. Therefore <:%§,%§;> is identically zero, which com-
pletes the proof.

Now consider any piecewise smooth curve
o: [a,b] = Uy - (a)
Each point o(t) can be expressed uniquely in the form exp,(r(t)v(t)) with
0 <r(t) <e, and Iv(t)l = 1, wv(t) € qu,
ILEMMA 10.6. The length Sb H ®| dt 1is greater than or

equal to |r(b) - r(a)|, where equality holds only if the
function r(t) is monotone, and the function v(t) 1s constant.
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Thus the shortest path joining two concentric spherical shells

around q 1s a radiel geodesic.

PROOF: Let f(r,t) = expy(rv(t)), so that o(t) = f(r(t),t)

Then

Since the two vectors on the right are mutually orthogonal, and since

KBSl = 1, this gives

21 - 11 e el 2 e ®

where equality holds only if %% = 0; hence only if %% = 0. Thus
b b
S IE2jat > S Ipr(t)|dt > |r(b) - r(a) |
a a

where equality holds only if r(t) is monotone and v(t) is constant.
This ccmpletes the proof.
The proof of Theorem 10.L is now straightforward. Consider any

piecewlse smooth path w from q to a point

q' = equ(rv) € Uq ;
where 0 < r < e, lvll = 1. Then for any & > 0 the path o must con-
tain a segment joining the spherical shell of radius & to the spherical
shell of radius r, and lying between these two shells. The length of this
segment will be > r - 5; hence letting & tend to O the length of o
will be > r. If ([0,1]) does not coincide with y([0,1]), then we
easlly obtain a strict inequality. This completes the proof of 10.4.

An important consequence of Theorem 10.4 is the following.

COROLLARY 10.7. Suppose that a path w: [0,0] —= M, para-
metrized by arc-length, has length less than or equal to
the length of any other path from w(0) to w(f). Then o
is a geodesic.

PROOF: Consider any segment of o lying within an open set W, as
above, and having length < e. This segment must be a geodesic by Theorem
10.4. Hence the entire path o 1is a geodesic.

DEFINITION. A geodesic y: [a,b] — M will be called minimal if
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its length is less than or equal to the length of any other piecewise smooth
path joining its endpoints.

Theorem 10.l4 asserts that any sufficiently small segment of a
geodesic is minimal. On the other hand a long geodesic may not be minimal.
For example we will see shortly that a great circle arc on the unit sphere
is a geodesic. If such an arc has length greater than =, it is certainly
not minimal.

In general, minimal geodesics are not unique. For example two anti-
podal points on a unit sphere are joined by infinitely many minimal geodesics.
However, the following assertion is true.

Define the distance o(p,q) Dbetween two points p,q € M to be the
greatest lower bound for the arc-lengths of plecewise smooth paths joining
these points. This clearly makes M into a metric space. It follows
easily from 10.4 that this metric is compatible with the usual topology of M.

COﬁOLlARY 10.8. Given a compact set K C M there exists
a number & > 0 so0 that any two points of K with dis-
tance less than & are jolned by a unique geodesic of
length less than &. Furthermore this geodesic is minimal;
and depends differentiably on its endpoints.

FROOF. Cover K by open sets Wy, @s in 10.3, and let 5 be
small enough so that any two points in K with distance less than s 1lie
in a common Wa. This completes the proof.

Recall that the manifold M is geodesically complete if every geo-
desic segment can be extended indifinitely.

THEOREM 10.9 (Hopf and Rinow ). If M 1is geodesically

complete, then any two points can be joined by a minimal
geodesic.

PROOF. Given p,q € M with distance r > 0, choose a neighborhood

U. as in Lemma 10.3, Iet §¢ U

P denote a spherical shell of radius & < e

Compare p. 341 of G. de Rham, Sur la réductibilité d'un espace de
Riemann, Commentarii Math. Helvetici, Vol. 76 (1952); as well as H. Hopf and
W. Rinow, Ueber den Begriff der vollstédndigen differentialgeometrischen Flache,
Commentarii,Vol. * (1921), pp. 209-225.
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eabout p. Since S 1s compact, there exists a point
P = expy(sv), vl = 1,
on S for which the distance to q 1is minimized. We will prove that
expp(rv) = Q.
This implies that the geodesic segment t — (t) = expp(tv), 0Lt r,
is actually a minimal geodesic from p to q.
The proof will amount to showing that a point which moves along the

geodesic y must get closer and closer to q. In fact for each t € [o,r]

we will prove that
(14) p(7(t),q) = r-t
This identity, for t = r, will complete the proof.

First we will show that the equality (15) is true. Since every
path from p to q must pass through S, we have

o(p,q) = MinS (o(p,8) + o(s,d)) = & + o(py,q)
se
Therefore o(p,;,q) = r - 5. B3ince p, = 7(s), this proves (1,).

Let t, € [5,r] denote the supremum of those numbers t for which
(1t) is true. Then by continuity the equality (1t0) is true also.
If to < r we will obtain a contradiction. Let S' denote a small spheri-
cal shell of radius &' about the point 7(t0); and let pé € S' be a
point of S' with minimum distance from q. (Compare Diagram 10.) Then

p(7(ty),q) = Min (o(7(ty),s) + o(s,a) = &' + o(P§,Q) ,
seS!

hence

(2) p(pg,a) = (r - ty) - 8"
We claim that pJ is equal to 7(t, + 5'). In fact the triangle
inequality states that

o(p,P5) > o(p,@) - o(p§,q) = ty + &'

(making use of (2)). But a path of length precisely t, + 8' from p to
Py 1s obtained by following y from p to 7(t0), and then following
a minimal geodesic from 7(t0) to pé. Since this broken geodesic has
minimal length, it follows from Corollary 10.7 that it is an (unbroken)
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geodesic, and hence coincides with 7.

Thus 7(to +8') = pé. Now the equality (2) becomes

(1t0+5') p(r(ty +8',q) =r - (ty +8")
This contradicts the definition of tys and completes the procf.

Diagram 10.

As a consequence one has the following.

COROLLARY 10.10. If M 1is geodesically complete then
every bounded subset of M has compact closure. Con-
sequently M 1is complete as a metric space (1.e., every
Cauchy sequence converges) .

PROOF. If X C M has diameter d then for any P € X the map
€Xpp: TM; — M maps the disk of radius d in TM, onto & compact subset
of M which (making use of Theorem 10.9) contains X. Hence the closure
of X 1is compect.

Conversely, if M is complete as a metric space, then it is not
difficult, using Lemma 10.3, to prove that M 1is geodesically complete.
For details the reader is referred to Hopf and Rinow. Henceforth we will
not distinguish between geodesic completeness and metric completeness, but

will refer simply to a complete Riemannian manifold.
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FAMILIAR EXAMPLES OF GEODESICS. In Euclidean n-space, Rn, with
the usual coordinate system x,,...,x, &and the usual Riemannian metric
dx1 3 dx1 E—— dxn 3 dxn we have P;S = 0 eand the equations for a geo-
desic 7, glven by t— (x,(t),...,x (t) become

dex1
=0
_— - ,
dt
whose solutions are the straight lines. This could also have been seen as

follows: 1t is easy to show that the formula for arc length
n 1
dx;\ 2\ 3
i
F (D) e
i=1

coincides with the usual definition of arc length as the least upper bound
of the lengths of inscribed polygons; from this definition it is clear that
straight lines have minimal length, and are therefore geodesics.

The geodesics on S" are precisely the great circles, that is, the
intersections of S™ with the planes through the center of sm.

PROOF. Reflection through a plane E2 is an isometry 1I: st — st
whose fixed point set is C = s®n Eg. Iet x and y be two points of C
with a unique geodesic C' of minimal length between them. Then, since I
is an isometry, the curve I(C') 1is a geodesic of the same length as C!'
between I(x) = x and I(y) = y. Therefore C' = I(C'). This implies that
c'cc.

Finally, since there is a great circle through any point of s® in
any glven direction, these are all the geodesics.

Antipodal points on the sphere have a continium of geodesics of
minimal length between them. All other pairs of points have a unique geo-
desic of minimal length between them, but an infinite family of non-minimal
geodesics, depending on how many times the geodesic goes around the sphere
and in which direction it starts.

By the same reasoning every meridian line on a surface of revolution
1s a geodesic.

The geodesics on a right circular cylinder Z are the generating

lines, the circles cut by planes perpendicular to the generating lines, and
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PROOF:
isometry 1.

If L 1is e generating line of Z then we can set up an

2
Z-L =R by rolling Z onto R®:

e

-1

I
s on Z have infinitely many geodesics between them.

of the straight 1ines
TWO poin



PART III

THE CALCULUS OF VARIATIONS APPLIED TO GEODESICS

§11. The Path Space of a Smooth Manifold.

Let M be a smooth manifold and let p and q be two (not neces-
sarily distinct) points of M. By a piecewise smooth path from p to q

will be meant a map : [0,1] — M such that

1) there exists a subdivision 0 = t; < t; < ... <t = 1 of
(0,1] so that each w|[t;_;,t;] 1is differentiable of class c%;

2) (o) = p and (1) = q.

The set of all pilecewise smooth paths from p to q in M will be denoted
by a(M;p,q), or briefly by a(M) or a.

Later (in §16) @ will be given the structure of a topological
space, but for the moment this will not be necessary. We will think of @
as being something like an "infinite dimensional manifold." To start the
analogy we make the following definition.

By the tangent space of a at a path o will be meant the vector
space consisting of all piecewise smooth vector fields W along o for
which W(0) = 0 and W(1) = 0. The notation Ta, will be used for this
vector space.

If F 1s a real valued function on a it is natural to ask what

Fa Ta, _'TRF'(m) )

the induced map on the tangent space, should mean. When F is a function
which is smooth in the usual sense, on a smooth manifold M, we can define
F,: TMp —.TRF(p) as follows. Given X € ™, choose a smooth path

u — a(u) in M, which is defined for -e < u < € so that

’

a(0) = p, FXo) - x
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Then F,(X) 1s equel to QLEé%LEll Y multiplied by the basis vector

d
(& Irip) € Tr(p)
In order to carry out an analogpus construction for F: a — R,

the following concept is needed.

DEFINITION. A variation of o (keeping endpoints fixed) is &

function
a: (-e,e) = q,

for some € > 0, such that

1) a(0) = o

2) there is a subdivision 0 = t; < t; < ... < e =1
cf (0,11 so that the map

a: (-e,e) x [0,1] =M

defined by a(u,t) = &u)(t) 1s C° on each strip (-€,8) x [ty ;,t4],
i=1,...,k.

Since each &(u) belongs to 0 = a(M;p,q), note that:

3) @(u,0) =p, a(u,1) =q for all u € (-€,€)

We will use either @ or & to refer to the variation. More
generally if, in the above definition, (-e,e) 1is replaced by a neighbor-

hood T of 0 in R®, then « (or &) 1is called an n-parameter varia-
tion of .

Now @ may be considered as a "smooth path" in 0. Its "velocity

n d&
veetor” 5(0) € Ta, is defined to be the vector fleld W along o given
by

W

o
t = @Oy = 3Xo,b)

Clearly W € Ta,. This vector field y is also called the variation vec-

tor field associated with the variation «

Given any W € T2, note that there exists a variation

@: (-e,e) — 9 vhich satisfies the conditions &0) = ®, Sx(0) = W.
In fact one can set

W (t) = expyyy(uwy) -

By analogy with the definition given above, if F 1s a real valued



§11. THE PATH SPACE 69

function on 2, we attempt to define
Fyu: an _’TRF‘(u))
as follows. Given W € T,  choose a variation a: (-e,e) — o with

v By -
d(F(&(w))
du u=0

C-I(O) = w

and set F_ (W) equal to multiplied by the tangent vector

( é% ) ( ). Of course without hypothesis on F there 1s no guarantee that
F(lw

this derivative will exist, or will be independent of the choice of a.

We will not investigate what conditions F must satisfy in order for F,
to have these properties. We have indicated how F, might be defined only
to motivate the following.

DEFINITION. A peth o is a critical path for a function
F: a—R 1if and only if Qgégﬂill i3 zero for every variation & of

u=0
.

EXAMPLE. If F takes on its minimum at a path g, and if the
derivatives QE%%LELL are all defined, then clearly w, is a critical path.
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§12. The Energy of a Path.

Suppose now that M is a Riemannian mani{old. The length of a vec-
2 a fine the
tor Vv € TMp will be denoted by lvll = < Vv,V >2, For o € defin

energy of o froma to b (where O <a<bg1) es

2o - | e

We will write E for Ey.

This can be campared with the arc-length from & to b glven by

b
e - § [l
a
as follows. Applying Schwarz's inequality
b 2 b b -
( § rear)” < (§ rPar)( (" goar)
a a a
with f£(t) = 1 and g(t) = “%%“ we see that

@) <o-ag

where equality holds if and only if g is constant; that is if and only if
the parameter t 1is proportional to arc-length.

Now suppose that there exists a minimal geodesic y from p = w(0)
to q = o(1). Then

E(7) = L(n?% < L(w)? < B
Here the equality L(s)° = L(#)? can hold only if © I8 @ls0 e mininsd
geodesic, possibly reparametrized. (Compare §10.7.) O the other hand
the equality L(s)2 = E(») can hold only if the paremeter is proportional
toarc-lengthalong . This proves that E(y) < E(w) unless o 1s 8ls0

a minimal geodesic. In other words:

LEMMA 12.1. Let M be a complete Riemannian menifold
and let p,q € M have distance d. Then the energy
function

E: e(M;p,q) = R
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takes on its minimum d? precisely on the set of minimal

geodesics from p to a.

We will now see which paths ® € @ are critical paths for the
energy function E.

let a: (-e,e) — 2 be a variation of o, and let Wy = %%(o,t)

be the associated variation vector field. Furthermore, let:

Ve = g% = velocity vector of o ,
At = é%‘%% = acceleration vector of o ,
oV = Vt+ - Vt- = discontinuity in the veloclty vector at t,
where 0 < t < 1
Of course AV = 0 for all but a finite number of values of t.

t
THEOREM 17.7 (First variation formula). The derivative

1 dE(a(u))

o0 is equal to

= 1
- Z W ,a0> - ( W, A > dt
t 0

PROOF: According to Lemma 8.3, we have

d da da D da da
s <soot > = ? <3pseoet P

Therefore
1
dE(a D da d
EEH §<E’aaa>dt - °( <z vt > It

By Lemma 8.7 we can substitute %% gﬁ for gl %% in this last formula.
Choose 0 = t, < t; <...< t, =1 so that a is differentiable on
each strip (-e,e) x [t;_;,t;]. Then ve can '"integrate by parts" on

[ti~1’ti]' as follows. The identity

da da D da da da D da
3 <swst > = <3t wot > * <swE 5 >

implies that

t =t; -
A
D da d
S < 3% oSt > dt - anba>l
t b=ty gt
i-1
lt D
-'\ < RRF>at
t
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g e

Adding up the corresponding formulas for 1 =1 .,k; and using the fact
that %‘} =0 for t=0o0r 1, this gives

k=1 1

1 dE(&(u)) d da Ja D 22

JEGW) z<3%,Ati3-E>-S<BTj'B'EF€>dt
i=1 = 0

Setting u = 0, we now obtain the required formula

1
it o T ey s cuas @
t (o]

This completes the proof.

Intuitively, the first term in the expression for —-—d—dE o—(0) shows

that varying the path o in the direction of decreasing "kink," tends to
decrease E; see Diagram 11.

%ﬁg( ty-)

w(ti) = a(o;ti)

%%(t1+)

path a(e) with\
smaller energy \

\

Diagram 11.

The second term shows that varying the curve in the direction of 1ts

4 D
acceleration vectopr IE (%%) tends to reduce E.

Recall that the rath w e 0

is called a geodesic 1if and only if
w is C%

d
on the whole interval [0,1], and the acceleration vector al')f(a%)

of w is identically zero along o.

COROLLARY 12.3. The path o 1is a critical point for the
function E if and only if o 1is a geodesic.
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PROOF: Clearly a geodesic is a critical point. Let o be a
critical point. There is a variation of o with W(t) = f(t)A(t) where

f(t) 1is positive except that it vanishes at the ty- Then
1

%é‘%—(o) = -S' £(t) < A(t),A(t) > dt.
(o]

This is zero if and only if A(t) = 0 for all t. Hence each ollty,t; ,]
is a geodesic.

Now pick a variation such that W(ti) = AtiV. Then
%g'%(o) = -z <AtiV,AtiV> - If this 1s zero then all AV are O, and
o 1s differentiable of class C], even at the points ty- Now it follows
from the uniqueness theorem for differential equations that o 1is c”

everywhere: thus o 1s an unbroken geodesic.
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§13. The Hessian of the Energy Function at a Critical Path.

Continuing with the analogy developed in the preceding section, we
now wish to define a bilinear functional

Eyu: Tn7 X T97 - R

. This
when y is a critical point of the function E, 1.e., a geodesic
bilinear functional will be called the Hessian of E at 7.

1
If £ 1is a real valued function on a manifold M with critica
point ©p, then the Hessian

faxt TH, x TM, — R
can be defined as follows. Given X;,X, € TM, choose & smooth map

2
h
(uy,u,) - o(u;,u,) defined on a neighborhood of (0,0) in R", wit

values in M, so that
aa da 0 = X
Q(O’O) = p’ Tu1(0,0) = x1, we(oy ) 2
Then

3°r(a(u, ,u,))

Ten(Xy,X) =
*¥ 10,0, Su

1 au? (0:0)
This suggestg defining E,,

as follows. Given vector fields w,,w e TQ
choose a 2

? Y
-Parameter variation

@ Ux [0,1] =M

where U 4g o neighborhood of

b

(0,0) in R?, so that
Q(O’O,t) = 7(t), ?Tg (0,0’t) = w1(t), %g?(o,oyt) = wp(t)
1 2

Then the Hessian Eyx (W ,W,)  will be defined to be the
second partial derivative

(Compare §11.)
3*B(&(u, ,u,))
_ 1

du; du, (0,0)

denotes the path a(uy,u,) (b)) = a(uy,u,,t) This
2
derivative will be written briefly as

where 5(u1,u2) € Q
3°E 0

second 33;352(01 )

The following theorem is needed to prove that Eyx 1s well gefined.
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THEOREM 13.1 (Second variation formula). Iet a: U=—a@
be a 2-parameter variation of the geodesic y with

variation vector fields
W g.g-’i(o,o) €Ta, i=1,2

2
1 J3°E
Then the second derivative 7 3,00, (0,0) of the energy

1 =

function is equal to

DW, ! D,
_z QW ()8, g5 > - S‘ < Wy, " R(V,W,)V> dt ;
t

0
where V = g% denotes the velocity vector field and where
DW, oW, DW, _
sege = et - (t)

DW
denotes the jump in ~31} at one of its finitely many

points of discontinuity in the open unit interval.

PROOF: According to 12.2 we have

1 D
7 5 z<aa't3'f> §<3— 3% 3% > at
Therefore
1 3%E D da aaD da
? 3u, ou, u2=‘2<waﬁ’% > - E< 30, % 3T 2
D D
§<D apﬁ%%>dt '§<3— 3‘3‘53{>dt’
(o]

Let usevaluate this expression for (ul, ,) = (0,0). Since 7 = @(0,0) 1is
an unbroken geodesic, we have

so that the first and third terms are zero.

Rearranging the second term, we obtain

1
1 % D D D
Z Ju;on, (0 - - ) <Wpsy B> - (<, 55, 3V > 9t
(o]

(13.2)

In order to interchange the two operators BéL and é% , we need to
1

bring in the curvature formula,

D D D D aa aa
3o, 5tV s,V - R( % = ROV,W)V



76 III. CALCULUS OF VARIATIONS

a D ds
Together with the identity 3%-1V = -a% %ﬁl = g V,, this yiel
D3
D 1
(13.3) 3%1 2v . L LRV

dt
13.1.
Substituting this expression into (13.2) this completes téhe proof of
d°E
COROLLARY 13.4. The expression E,,(W,,W,) = 3ﬁl—5u—2'(°:°)

is a well defined symmetric and bilinear function of W,
and We.

t BQE (0 O)
PROOF: The second variation formula shows tha W ’
depends only on the variation vector fields W, and Wp, SO that

ilinear
Eex (W, sW5)  1s well defined. This formulas also shows that Ex, 1s®
The symmetry property

Eux(W W) = Eyy(W,, v,)
W
1s not at all obvious from the second variation formule; but does follo

2 d°E
immediate o°E =
1y from the symmetry property o0, Ju,00,

iri
REMARK 13.5. The diagonal terms E,,(W,W) of the bilinear palring

t
Evx can be descrived in terms of a 1-parameter variation of y. In fac
d’E - a
Eer(W,W) = $E 2 %0)
du

- tor
vhere & (_¢ »,€) = o denotes any variation of 7 with veriation vee
field

da to
a%(o) equal to W. To prove this identity it 18 only necessary

introduce the two parameter variation

Bluj,up) = &(u, + up)
&nd to note that
aé _ da aQE o a d2E 0o &
F&i—aﬁ’ Eu‘ 3u5_ = ——7

2 du

As
8N application of this remark, we have the following-

LEMMA 13.6. If 5 1is a minimal geodesic from P to q
then the bilinear pairing E,, 1is positive semi-definite.

Hence the index » of Eyx 1s zero.

PROOF':

2L, =
d E(Z(u)
du ) » evaluated at u =0, is > 0. Hence E**(W,W) >0 for all W.

The inequality E(&(u)) > E(,y) = E(@(0)) implies that
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§14. Jacobl Fields: The Null Space of Exx

A vector field J along a geodesic +~» 1is called & Jacobi field
f it satisfies the Jacobi differentiel equation

2
D°J
+ R(V,J)V = o0
at? ’
here VvV = g% . This is a linear, second order differential equation.

t can be put in a more familiar form by choosing orthonormal parallel vec-

A1
along 7. Then setting J(t) = L £ (8)P;(t),  the

or fields | SIS
quation becomes
n
2.1
af . Z aj(t)fJ(t) - o, i=1,..., 0;
dt P
here a% = < R(V,P,)V,P;> .1 Thus the Jacobi equation has 2n linearly

ndependent solutions, each of which can be defined throughout . The
olutions are all C®-differentiable. A given Jacobi field J 1is com-
letely determined by its initial conditions:

3(0), ZL(0) € ™ oy

let p = y(a) and q = ¥(b) be two points on the geodesic v,
ith a £ b.

DEFINITION. p and q are conjugate along » 1if there exists a
on-zero Jacobi field J along » which vanishes for t =& &and t =Db.
he multiplicity of p and q as conjugate points is equal to the dimen-
ion of the vector space consisting of all such Jacobi fields.

Now let 7 be a geodesic in @ = o(M;p,q). Recall that the null-

pace of the Hessian
Eyy: Tﬂy X Tny——rR

s the vector space consisting of those W, € Tn7 such that Ey,(W,,W,) =0

If y has self-intersections then this definition becomes ambiguous.
e should rather say that the parameter values & and b are conjugate
lth respect to .
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for all W,. The nullity v of E,, 1s equal to the dimension of this
null space. E,, 1s degenerate if v > 0.

THEOREM 14.1. A vector field W, € Tn7 belongs to the

null space of E,, 1if and only if W, 1s a Jacobi field.
Hence E,, 1s degenerate if and only if the end points

P and q are conjugate along y. The nullity of E,, is
equal to the multiplicity of p and q eas conjugate points.

PROOF: (Compare the proof of 12.3.) If J 1s a Jacobi field which

vanishes at p and q, then J certainly belongs to an. The second
variation formula (§13.1) states that

1
-%—E**(J,WQ) = 2(»!2(1;),o> +S {W,,0> dt = o0
t 0

Hence J belongs to the null space.
Conversely, suppose that w1 belongs to the null space of Eyg.
Choose a subdivision 0 = ty < t, <...< ty =1 of [0,1] so that

Wpllty 1,t5) 1is smooth for each 1. Let fr: (0,1] — [0,1] be a smooth

function which vanishes for the parameter values t,,t,,...,%, and 1is
positive otherwise; and let
D2
W, (t) = 1 ’
(1) = £ty ( —>+ ROV, WV,
Then
1 ! 2w 2
- 2B (W, W) - 2 0+ gf(t) "E_‘g + ROV,U)V| dt
o dt

Since this is 2ero, it follows that vl

4_1,t4] 1s & Jacobi field for
each 1.
Now let ' DW,
W2 € T2 be a field such that Wyt = oy g for
i=1’2’...,k-1, Then
! DW
- 2B (W, W) z 1 S
i R = A Il * 0 dt = O
1=1 ti
Dw 0

Hence —g¢ has no jumps. Byt o solution W, of the Jacobl equation is

DW
completely determined by the vectors W (t) and gg(ty). Thus it fol-

lows that the k Jacobi fields w1'[t1-1’ti]' i=1,...,k, fit together

to give a Jacobi field W, which is C®-differentiable throughout the
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entire unit interval. This completes the proof of 14.1.
It follows that the nullity v of E,, 1is always finite. For
there are only finitely many linearly independent Jacobi fields along 7.

REMARK 14.2. Actually the nullity v setisfies 0 < v < n. Since
the space of Jacobi fields which vanish for t = 0 has dimension
precisely n, it is clear that v < n. We will construct one
example of a Jacobi field which vanishes for t = 0, but not for
t = 1. This will imply that v < n. In fact let Jt = tVt where

V = %% denotes the velocity vector field. Then
DJ _ . v _
FE = ! Vs+t IE = v
2
(Since g% = 0), hence 2—% = 0. Furthermore R(V,J)V = tR(V,V)V
dt

= 0 since R 1s skew symmetric in the first two variables. Thus
J satisfies the Jacobi equation. Since J, =0, J, #0, this

completes the proof.

EXAMPIE 1. Suppose that M 1is "rlat" in the sense that the curva-

ture tensor is identically zero. Then the Jacobi equation becomes

%} = 0. Setting J(t) = I f1(t)P,;(t) where P, are parallel,
2.1

this becomes d fg = 0. Evidently a Jacobi field along y can have
dt

at most one zero. Thus there are no conjugate points, and E,, is

non-degenerate.

EXAMPLE 2. Suppose that p and q are antipodal points on the
unit sphere sn, and let 7y be a great circle arc from p to q.
Then we will see that p and q are conjugate with multiplicity
n-1. Thus in this example the nullity v of E,, takes its
largest possible value. The proof will depend on the following

discussion.

Let o be a 1-parameter variation of y, not necessarily keeping

the endpoints fixed, such that each &(u) is a geodesic. That is, let
a: (-e,e) x [0,1] =M

be a C™ map such that a(o,t) = +9y(t), and such that each a(u) [glven

by @(w)(t) = oa(u,t)] 1is a geodesic.
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IEMMA 1:.32. If « is such a variation of » through
geodesics, then the veriation vector field W(t) = %%(O,t)
is a Jacobi field along 7.

PROOF: If «a is a variation of ¥ through geodesics, then g% %%

is identically zero. Hence

o - D D3 _ DD ( Ba du ) da
= Justst T ST u Bf *
2
_ D aa aa da
- - R( 5 3t

(Compare §13.3.) Therefore the variation vector field %% is a Jacobi
field.

Thus one way of obtaining Jacobi fields is to move geodesics around.

\ __/

Now let us return to the example of two antipodal points on a unit
n-sphere. Rotating the sphere, keeping p and q fixed, the variation
vector field along the geodesic 7y will be a Jacobl field vanishing at P
and q. Rotating in n-1 different directions one obtains n-1 linearly

independent Jacobi fields. Thus p and q are conjugate along » with

multiplicity n-1.
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LEMMA 14,4, Every Jacobi field along a geodesic y: [0,1] = M
may be obtained by a variation of y through geodesics.

PROOF: Choose a neighborhood U of y(0) so that any two points
of U are joined by a unique minimal geodesic which depends differentiably
on the endpoints. Suppose that y(t) € U for 0 < t < &. We will first
construct a Jacobi field W along v|[0,5] with arbitrarily prescribed
values at t = 0 and t = 5. Choose & curve a: (-e,e) — U so that
a(o) = y(0) and so that g%(O) is any prescribed vector in TM7(O).
Similarly choose b: (-e,e) — U with b(0) = y(s) and %%(0) arbitrary.

Now define the variation
a: (-e,e) x [0,8] =M

by letting &(u): [0,8)] — M be the unique minimal geodesic from a(u)
to b(u). Then the formula ¢t —’%g(o,t) defines a Jacobl field with the
given end conditions.

Any Jacobi rield along v|[0,5] can be obtained in this way: If
#(y) denotes the vector space of all Jacobi fields W along 1y, then the

formula W — (W(0), W(s)) defines a linear map
£:
/ (7) - TM7(O) X TM7(5)

Ve have just shown that £ 1is onto. Since both vector spaces have the same
dimension 2n it follows that ¢ is an isomorphism. I.e., a Jacobi field
is determined by its values at y(0) and y(s). (More generally a Jacobi
field is determined by its values at any two non-conjugate points.) There-
fore the above construction yilelds all possible Jacobi fields along
y|lo,s].

The restriction of &(u) to the interval [0,5) is not essential.
If u 1s sufficiently small then, using the compactness of (0,11, &(u)
cen be extended to a geodesic defined over the entire unit interval [0,1].

This yilelds a variation through geodesics:
a': (-e',e') x [0,1] =M
with any given Jacobi field as variation vector.

REMARK 14.5. This argument shows that in any such neighborhood U
the Jacobil filelds along a geodesic segment in U are uniquely determined
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by their values at the endpoints of the geodesic.

REMARK 14.6. The proof shows also, that there 1s a neighborhood
(-8,8) of 0 so that if t € (-8,5) then y(t) 1s not conjugate to
7(0) along . We will see in §15.2 that the set of conjugate points to

7(0) along the entire geodesic y has no cluster points.
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§15. The Index Theorem.

The index A of the Hessian
Eyy: T07 X Tny—-R

is defined to be the maximum dimension of a subspace of Tﬂ7 on which E,,
is negative definite. We will prove the following.

THEOREM 15.1 (Morse). The index » of E,, 1is equal
to the number of points ~(t), with 0 < t <1, such
that y(t) 1is conjugate to y(0) along ¥; each such
conjugate point being counted with its multiplicity.
This index ) 1is always finite*.

As an immediate consequence one hes:

COROLLARY 15.2. A geodesic segment y: [0,1] = M can
contain only finitely meny points which are conjugate
to ¥(0) along 7.

In order to prove 15.1 we will first make an estimate for X by
splitting the vector space TQ7 into two mutually orthogonal subspaces, on
one of which E,, 1is positive definite.

Each point y(t) 1is contained in an open set U such that any two
points of U are Joined by a unique minimal geodesic which depends differ-
entiably on the endpoints. (See §10.) Choose a subdivision
0=1%t; <t <..< T =1 of the unit interval which is sufficiently fine
so that each segment y[t;_;,t;] 1lies within such an open set U; and so
that each 7|[ti_1,t1] is minimal.

et Tﬂy(to,t1,t2,...,tk) C Tn7 be the vector space consisting of
all vector fields W along 7y such that

1) wl[ti_1,ti] is a Jacobi field along 7|[ti_1,t1] for each 1;

2) W vanishes at the endpoints t -0, t = 1.

’

Thus Tﬂy(to,t],...,tk) is a finite dimensional vector space consisting of

broken Jacobi fields along .

For generalization of this result see: W. Ambrose, The index theorem in
Riemannian geometry, Annals of Mathematics, Vol. 73 (1961), pp. 49-86.
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Iet T'C Tn7 be the vector space consisting of all vector fields
We TQ7 for which W(to) =0, W(t,) =0, W(te) =0,..., W(tk) = 0.

IEMMA 15.3. The vector space Tny splits as the direct
sum Tny(to’tl""’tk) ® T'. These two subspaces are
mutually perpendicular with respect to the inner product

Eyy. Furthermore, E,, restricted to T' 1s positive
definite.

PROOF: Gilven any vector field W e TQ7 let W, denote the unique
"
broken Jacobi field" in Ta (tg,t,,...,t,) such that W,(t;) = W(e,) for

i =0,1,...,k. It follows from §14.5 that W, exists end is unique.

Clearly W - W, belongs to T'. Thus the two subspaces, T, (b, by, -0 by

, and have only the zero vector field in common.
If W, belongs to Tny(t

and T' generate Tn7

0,t1,...,tk) and We belongs to T',
then the second variation formula (13.1) takes the form

1
i v
FEux (Wy, W) = -z Wo(0) 8-> _g {Hp0> dt = o .
t 0

Thus the two subspaces are mutually perpendicular with respect to E,, -

For any W eeTn7 the Hessian E,,(W,W) cen be interpreted as the
second derivative g;g_%_g (0); where a: (-e,e) - 2 1is any variation of
u
7y with variation vector field %%(0) equal to W. (Compare 13.5.) If

W belongs to T' then we may assume that a 1s chosen so as to leave the

points  7(ty),r(t,) »e++,7(t)) fixed. In other words we may assume that

&(u)(ti) = 7(ti) for i-= 0,1,...,ko
Proof that E,,(W,w) >0 for WeT'. Each @&(u) € @ 4is a piece-

wise smooth path from 7(0) to 7(t1) to 7(t2) to ... to y(1). But

each 7|[ti_1,t1] is & minimal geodesic, and therefore has smaller energy

than any other path between its endpoints. This proves that

E(a(u)) > E(y) = E(&(0))
Therefore the second derivative, evaluated at u

= 0, must be > 0.
Proof that Eye(W,W) > 0

for W e T', W#O. 3uppose that

Exx(W,W) were equal to 0. Then W would 1ie in the null space of Egx-

In fact for any W, € Tﬂy(to t.,

-,ty) ve have already seen that
E**(w1 ,W) = 0.

For any W, € T' the inequality
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0 S Eyy(W 4 €Wy, Wa WY = 20 Egy(Wy,W) + c° Eyy(W,, W)

for all values of c¢ implies that E**(We,W) = 0. Thus W 1lies in the
null space. But the null space of E,, consists of Jacobi fields. Since
T' contains no Jacobi fields other than zero, this implies that W = O.
Thus the quadratic form E,, 1is positive definite on T'. This
completes the proof of 15.3.
An immediate consequence is the following:

LEMMA 15.4. The index (or the nullity) of E,, 1s equal
to the index (or nullity) of E,, restricted to the space
an(to,t1,...,tk) of broken Jacobi fields. In particular
(since T“y(to’tl""'tk) is a finite dimensional vector
space) the index A 1s always finite.

The proof is straightforward.

Let . denote the restriction of y to the interval [o,7].
Thus 7.: [o,t] = M 1is a geodesic fram v(0) to +~(T). ILet A(T1) denote
the index of the Hessian ( E; )** which is associated with this geodesic.
Thus X(1) 1s the index which we are actually trying to compute. First
note that:

ASSERTION (1). A(T) is a monotone function of ~.

For if 1t < t' then there exists a A(t) dimensional space ¢’ of
vector filelds along 7. Which vanish at y(0) and y(7) such that the
Hesslan ( E; )** is negative definite on this vector space. Each vector
rield in <’ extends to a vector field along 7.1 which vanishes identically
between (1) and y(7'). Thus we obtain a r(t) dimensional vector space
of fields along Y1 on which ( E;' )** is negative definite. Hence
A1) < AT,

ASSERTION (2). A(T) = 0 for small values of <.

For if t is sufficiently small then 1 is a minimal geodesic,
hence *(T) = 0 by Lemma 13.6.

Now let us examine the discontinuities of the function (7). First
note that A(t) 1s continuocus from the left:

ASSERTION (3). For all sufficiently small € > O we have
r(t-€) = A(7T).
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PROOF. According to 15.2 the number A(1) can be interpreted as
the index of a quadratic form on a finite dimensional vector space
Tny(to,t1,...,tk). Ve may assume that the subdivision is chosen so that
say t; < 7 <ty ,. Then the index X (7) can be interpreted as the index
of a corresponding quadratic form H. on a corresponding vector space of
broken Jacobl fields along 7y .. This vector space is to be constructed
using the subdivision 0 < t; < t, <... <ty <7 of [o,7]. Since a
broken Jacobi field is uniquely determined by its values at the break points

7(ti), this vector space is isomorphic to the direct sum

r = TM7(t1) D TM7(t2) D ...9 TMy(ti)

Note that this vector space I is independent of 1. Evidently the quad-

ratic form H. on ¥ varies continuously with .

Now H_. 1is negative definite on a subspace “” C ¥ of dimension
A(t). For all v' sufficiently close to t it follows that Heo is
negative definite on . Therefore i(t') > A(t). But if T' =T - € < T

then we also have X(t-g) < A(T) by Assertion 1. Hence \(T-g) = rT).

ASSERTION (4). Let v be the nullity of the Hessian ((ET ) .
Then for all sufficiently small e > 0 we have

AMT+E) = A(T) 4 v

Thus the function A(t) Jumps by v when the variable t passes

& conjugate point of multiplicity v; and is continuous otherwise. Clearly

this assertion will complete the proof of the index theorem.

FROOF that A(T+e) < A(71) + o Let H_ eand L be as in the proof

of Assertion 3. Since dim ¥ = ni we see that H_ is positive definite on

some subspace ' C ¥ of dimension ni - A1) - v. For all T' sufficient-

ly close to 71, it follows that H_, is positive definite on “’'. Hence

M) < dimZ - dim o (1) + v

PROOF that XA(T+e) > AM(T) + v. ILet IR A be \(T1) vector
“ielis along v, vanishing at the endpoints, such that the matrix

( Ej ) (413115 )
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is negative definite. Let J,,...,J be v linearly independent Jacobi

fields along =~ also vanishing at the endpoints. Note that the v

T’
vectors

DJh
—HE(T) € TM7(T)

are linearly independent. Hence it is possible to choose v vector fields

XI,...,XV along Yee? vanishing at the endpoints of yt + €, so that

(< % (1), X (1) >)

is equal to the v x v 1identity matrix. Extend the vector fields Wi and

Jh over 7y by setting these fields equal to 0 for T < t< T+ €.

T+E
Using the second variation formula we see easily that

( Eg‘e)**( J.h" wi)

n
o

( Eg+e)**( I, xk) = 28,  (Kronecker delta).

Now let c¢ be a small number, and consider the A(t) + v vector fields

-1 -1
w1,...,wx(1), c J, -c Xy5000, € JV - ¢ X,

along We claim that these vector fields span a vector space of

T+E°
dimension A(t) + v on which the quadratic form ( Eé*ey** is negative

definite. In fact the matrix of ( ES*E)** with respect to this basis is

EX) A
( LWL ) cA
c At LT+’ B

where A and B are fixed matrices. If ¢ is sufficiently small, this
compound matrix is certeinly negative definite. This proves Assertion ().
The index thearem 15.1 clearly follows from the Assertions (2),(3),

and (4).
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§16. A Finite Dimensional Approximation to ¢

Iet M be a connected Riemannian manifold and let p and q be

two (not necessarily distinct) points of M. The set 0 = a(M;p,q) of

piecewise C” paths from P to q can be topologized as follows. Let o

denote the topological metric on M coming from its Riemann metric. Given

o, o' € @ with arc-lengths s(t), s'(t) respectively, define the distance
d(w,w') to be 1 1
. ? E
Max ds _ ds! 2
plo(t), o'(t)) + [ S - dt]
0<t<1 ( ’ ) ) ( dat ~ dt

(The last term is added on so that the energy function

B - § (3 e
a

wlll be a continuous function from o to the real numbers.) This metric

induces the requireq topology on @.

Glven o> 0 1et o° genote the closed subset E”'(lo,c]) C #
1
and let Int 2% genote the open subset E"'(lo,c)) (where E = Eq: 8 —-R
is the energy function). We will study the topology of a® by construct-

ing a finite dimensional approximation to it.

Choose some subdivision o - to< ty <...< by = 1 of the unit inter-
val. lLet Q(t()’t]:

o [0,1] —p
1
2)

.,tk) be the subspace of & consisting of paths
such that

0)(0) = p and 03(1) -q,
m|[ti-1:t1] is a geodesic for each 1 = 1,...,k.
Finally we define the subspaces

Btg,ty,.,t0% = 0% 0 alty, by, -, T

Int 8(ty,ty,...,1)°

(Int 8% 0 2(tg,...,t,)

LEMMA 16.1. Tet M be a complete Riemannian manifold;

and let ¢ be a fixed positive number such that 0° # g,
Then for all sufficiently fine subdivisions (Tortyseneyty)
of [0,1] the set Int 8(tg,t,,...,t,)C can be glven the

structure of a smooth finite dimensional menifold in a
natural way.
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PROOF: Jet S denote the ball
(x € M : o(x,p) < Vo)

Note that every path o € 2¢ 1ies within this subset S C M. This follows
from the inequality L2 <E<Lc.

Since M 1s complete, S 1s a compact set. Hence by 10.8 there
exists € > 0 so that whenever x, y € S and o(x,y) < € there is a
unique geodesic from x to y of length < e€; and so that this geodesic
depends differentiably on x and y.

Choose the subdivision (tg,,t,,...,t,) of [0,1] so that each
difference t; - t;_ ; 1s less than eg/c. Then for each broken geodesic

® € A(ty,ty,..0,t)°

we have
@)

t 2 t
( Lti_1 ) = (b -ty Eti_1

IA

(ty - t;_1)(E @)

2
(ti - ti—1)c <E€

In

Thus the geodesic wo|lty_;,t;] 1is uniquely and differentiably determined by
the two end points.
The broken geodesic o 1is uniquely determined by the (k-1)-tuple

o(t,), m(tQ)”"’m(tk-l) € Mx Mx...x M.

Evidently this correspondence

o - (m(tI),...,m(tk_1))

defines a homeomorphism between Int a(t ..,tk)c and a certain open

t
(RS B
subset of the (k-1)-fold product M x...x M. Taking over the differentiable
structure from this product, this completes the proof of 16.1.
To shorten the notation, let us denote this manifold

Int 8(ty,t,,...,t,)° of broken geodesics by B. Let

E': B - R
denote the restriction to B of the energy function E : ¢ —R.
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THEOREM 16.2. This function E': B—R is smooth.
Furthermore, for each a < ¢ the set B® = (E")"'(0,a]
is compact, and is a deformation retract® of the cor-
responding set a®. The critical points of E' are
precisely the same as the critical points of E 1in
Int o%: namely the unbroken geodesics from p to g
of length less than Jc. The index [or the nullity]

of the Hessian E'y, at each such critical point ¥

is equal to the index [ or the nullity ] of E,, at 7.

Thus the finite dimensional manifold B provides a faithful model

for the infinite dimensional path space Int n°. As an immediate conse-

quence we have the following basic result.

THEOREM 16.3. Let M be a complete Riemannian manifold
and let p,q € M be two points which are not conjugate
along any geodesic of length < va. Then 2® has the
homotopy type of a finite CW-complex, with one cell of

dimension X for each geodesic in 0% at which E,,
has index .

(In particuler it is asserted that 0% contains only finitely meny

geodesics.)

on the

PROOF. This follows from 16.2 together with §3.5.

FROOF of 16.2. Since the broken geodesic o € B depends smoothly

(k-1) -tuple

©(t)),0(t,),...,0(t, ;) € Mx...x M

it is clear that the energy E'(w) also depends smoothly on this (k-1)-

tuple.

In fact we have the explicit formula

k
E'(w) = z °(w(ti_1):m(ti))2/(ti - tyq)
i=1

Similarly B 1itself is a deformation retract of Int aF.
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For a < c the set B® is homeomorphic to the set of all (k-1)-
tuples (pl,...,pk_I) € Sx S x...x S such that

k

Z °(pi-1’pi)2/(ti - ti-1) S a
i=1

(Here it is to be understood that Pp =P, Py = q.) As a closed subset
of a compact set, this is certainly compact.

A retraction r: Int ¢ — B is defined as follows. let r(w)
denote the unique broken geodesic in B such that each r(m)l[ti_1,ti] is
e geodesic of length <e from o(ty_ ;) to m(ti). The inequality

2
o(p,0(t)) < (Lof<Ew<ec

implies that wl[0,1] C S. Hence the inequeality
2 t 2
ooty 1) e(t)) < (b - t5_)( Eti 1 o) <& - c = €?
imrlies that r(w) can be so defined.
Clearly E(r(m)) < E(w) < c. This retraction r fits into a 1-
parameter family of maps

r,: Int a® — Int a°

as follows. For ti g Lugty let

ry(e)llo,t, 4] r(w)|lo,t, 1,

ry(@) [Tty u) minimal geodesic from o(ty ;) to o(u) ,
, -

ro(w)lu,1] = ol|lu,]

Then r, 1s the identity map of 1Int ﬂc, and r, =r. Itis easily veri-
fied that r (o) 1is continuous as a function of both variables. This proves
that B 1s a deformation retract of Int a€.

Since E(ru(m)) < E(w) 1t is clear that each B® is also a defor-
mation retract of a2,
Every geodesic is also a broken geodesic, so it is clear that every

"critical point" of E in Int 2° automatically lies in the submanifold B.

Using the rirst variation formula (§12.2) it is clear that the critical
points of E' are precisely the unbroken geodesics.
Consider the tangent space TB7 to the manifold B at a geodesic

y. This will be identified with the space Ta (t -,ty) of broken
y

N
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Jacobi fields along 7, as described in §15.

This identification can be
Justified as follows. Let

a: (-e,e) — B

be any variation of vy through broken geodesics. Then the corresponding

variation vector field %%(o,t) along vy 1is clearly a broken Jacobi field.
(Compare §14.3)

Now the statement that the index (or the nullity) of E,,
is equal to the index (or nullity) of E},
quence of Lemma 15.4.

at 7

at y 1s an ilmmediate conse-
This completes the proof of 16.2.

REMARK. As one consequence of this theorem we obtain an alternstive
proof of the existence of a minimal geodesic joining two given points

p,d
of a complete manifold. For if 0%(p,q)

1s non-vacuous, then the corres-

ponding set B® will be compact and non-vacuous.

Hence the continuous
function E!': Ba-ﬂ-R. will take on its minimum at some point v € B%. This
y will be the required minimal geodesic.
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§17. The Topology of the Full Path Space.

Iet i tbte a Riemannian manifold with Riemann metric g, and let
o be the induced topological metric. Iet p and g be two (not neces-
sarily distinct) points of M.

In homotopy theory one studies the space a* of all continuous
paths

w: [0,1] =M

from p to q, in the compact open topology. This topology can also be
described as that induced by the metric

d*(w,0') = I-i%.x o(u)(t),w'(t)\)

On the other hand we have been studying the space a of piecewise c”

paths from p to q with the metric
1 1
? H
d(w,w') = d*¥(w,0') + [ S‘ (g-% - g-%') dt]
0

Since d > d* the natural map
i: a — o

is continuous.

THEOREM 17.1. This natural mep i is a homotopy equiva-
lence between 2 and a¥,

[Added June 1963. The following proof is based on suggestions by
W. B. Houston, Jr., who has pointed out tlat my orizinal proof of 17.1 was
incorrect. The original proof m:de use col' an alleged homotopy inverse
n* — Q which in fact was not even continuous. ]

PROOF: We will use the fact that every point of M has an open

[

relszhberhood N which is "secdesically convex" in the sense that any two
points of N are jolned by % unique minimal ;jecdesic which lies completely
within N and depends differentiably on the endpoints. (This result is due

to J. H. C. Whitehead. See for example Bishop and Crittenden, "Geometry of
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marifclds,” p. 246; Helgason, "Differential geometry and symmetric spaces,”
p. 33; or Hicks, '"lotes on differential gecmetry,"” p. 134.)

Choose a coverinz of M by such gecdesically convex open sets I, -
Subdividing the interval {0,1] into 2K squal subintervals [(j-l)/2k,J/2K]
lew f denote the set of all continuous paths o from p tc g which sat-
isfy ;he fcllowing corditicn: the image under o of each subinterval
[(j-l)/ak,j/Zk] should be contained in one of the sets I, cf the covering.

Clearly each Q3 is an open subset of the space (¢ of all paths from
<t G, arnd clearly O+ is

‘o

the union of the sequence ~f open subsets
i C ag C ng Covee
Similarly the corresprnding sets
-1
Q= 177 (o)
are open subsets of Q with union equal to Q.

We will first show that the natural map

(i|ﬂk) t o o 0

2 homolopy equivalence.

o
Q
Q
¢

For each o ¢ o let h(w) ¢ nk te the broken
sic whick ccincides with o fer the éaramecer salues t = §/2%,
T - %,1,2,...,2% arg vhich is a minima] secdesic within each interrediate
leeerval [(J-1)/2%, /247, This constructics defines o furcticn

h:Q‘(—bﬂK’

Cdifficult Lo verify that p is econtinuous .
Just a

S ir the proof of 16.2 on page 91, it can be verified that the
At (218) 2 B is hemotopie to pne igentity map of 0 and chat the
e (ila) is homotopic to the identity mep cf G- This proves
nat llal is fiemovopy equivalence .

© ccnclude the proof of 17.1 we appsal tc the Appendix. Using EX-
xple 1 otnorazs 1bo ngre that trs
Wi S2dusice U subsets o

Bt

Space Q is the homotopy direct limit of

Similarly reote that o* .s the homctopy direct
$2gusnce f subsets Q%.  Therefore, Theorem A (pase 15°) shovws

= 0 Is a f.cmotopy equivalerce. This completes the proof.
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It is known that the sp=ace 2 has the homotopy type of a Cli-
complex. (See Milnor, On sraces having the homotopy type of a CW-complex,

Trans. Amer. Math. Soc., Vcl. 90 (1959), pp. £72-280.) Therefore

CORCLLARY 17.2. 2 has the homotopry type of a CW-
complex.

This statement can be sherpened as follows.

THECREM 17.3. (Fundsmental theorem of Morse Theory.)
Iet M be a complete Riemannian manifold, and let

£,1 € M be two points which are not conjugate alcng
any geodesic. Then a(M;p,3) (or 2¥(M;p,q)) has the
homotopy type of a countable CW-complex which contains
one cell of dimension X for each geodesic from ¢

to 3 of index .

The proocf is analogous to that of .=, Choose a sequence

25 < 8y < a, < of real numbers which are nct critical values of the

energy function E, so that each interval (ai_1,ai\ contains rrecisely

one critical value. Consiier the seauence

a a a-
Q ° ca! (O I
&s
where we may assume that ©° is vacucus. It follows from 16.2 together
&as a4
with *.* and >.7 that each 2 © has the homotopy type of @ 1 with =2

finite number or cells attachei: one -cell for each geodesic of index

in E'1(ai_l,ai). Now, Just as in the rroof of °.5, one constructs a se-

quence K, C K, C K, C ... c¢f CW-complexes with cells of the requirei
description, ani a seqguence a. & s,

i 0 (G C

KD C K1 C K? C

of homotopy equivalences. Letting ©: o — K be the direct limit mapping,
it 1s clear that £ induces isomorphisms oI homotopy groups in all Jimen-
sicns. Since 2 is known to have the homctory type of a CW-complex (17.2)
it fcllows from Whitehead's thecrem that f is a homotopy eaguivalence. This
cunpletes the prcof. [For a different proof, not using 17.2, see p. 1k9.]

EXAMPLE. The path space of the srhere s". Suppose that p and 3

are two non-conjugate points on S". That is, suppose that 3 # r,p'

where ' Jenotes the antipoie of p. Then there are ienumerably many
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geodesics 74,7;,7,,--- from p to q, as follows. ILet Aenote the

4
o]
short great circle arc from p to gq; let v, denote the long great

circle arc pa'p'aq; let y, denote the arc pap'a'pa; and so on. The

subscript k denotes the number of times that p or p' occurs in the
interior of e

The index x(,k) -

My 4.4 is equal to k(n-1), since each

1y

k
in the interior is conjugate to p with multi-
Therefore ve have:

of the points p or p'
plicity n-1.

COROLIARY 17,4, The loop space a(s™) has the homotopy
type of a CW-cq

mplex with one cell each in the dimensions
0, n-1, 2(n-1), 3(n-1),,_,

For n> 2 the homology of n(s?) can be computed immediately
from this information. Since a(sh

has non-trivial homology in infinite-
ly many dimensions, we cap conclude:

COROLLARY 17.5.

n
for n> 2. Iet M have the homotopy type of S,

non-
Ih.ell B.I),y ',W() N-C( mjugate poj n
Join-ed b y 1111 itli tely m&ny geodesics

This follows since the homotopy type of a*(M) (and hence of
depends only on the homotopy type of M
geodesic in a(M) with index o,

3(n-1), and so on.

(M
) There must be at least one

at least one with index n-1, 2(n-1),
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REMARK. Iore generally if M 1is any complete manifold which is
not contractible then any two non-conjugate points of M are joined by
infinitely many geodesics. Compare p. 438L of J. P. Serre, Homologie

singuliére ces espaces fibrés, Annals of Math. S (1951), pp. 425-505.

As another application of 17.4, one can give a proof of the Freuden-

thal susrension theorem. (Compare §22.7.)
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§18. Existence of Non-Conjugate Points.

Theorem 17.3 gives a good description of the space 0(M;p,q) pro-
viding that the points p and g are not conjugate to each other along any
geodesic. This section will justify this result by showing that such non-
conjugate points always exist.

Recall that a smooth map f: N—- M between manifolds of the same
dimension is critical at a point x € N if the induced map

o

1yt TNX—. TMf(x)

of tangent spaces is not 1-1. We will apply this definition to the ex-
ponential map

€ = exp_: End

Xp pp TMp M
(We will assume that M 1is complete, so that exp 1s everywhere defined;
although this assumption could easily be eliminated.)

THEOREM 18.1. The point exp v 1is conjugate to P 2along

th i
e geodesic 7y from p to exp v if and only if the
mapping exp 1is critical at v.

PROOF: Suppose that exp 1s critical at v e M- Then exp, (X)

lor some non-zero X e T(TMp)
s v,
considered ag g manifold

=0
the tangent space at v to TM,,

Let u—v(u) be a path in TM, such that

Then the map o gefined by o(u,t) = exp tv(u)

S & varlation through geodesics of the geodesic
Therefor

v(3) = v ang %%(o) = X.

1 v
en b t — ex .
Ty giv y P

e tb i J

he vector field w glven by ¢ - gL(exp tV(u))lu-O 1s a Jacob:
o -~ i _
Tield along 7y- Obviously w(o)

= 0. Ve also have

)
A1) = Sxlexp v(u))l = exp, Iv(u) X=0
u=0 Pe —qu(0) = expel = O
But this field is not identically zero since
D D 9
T = 2% (exp tvw) | - 2w #o
(0,0) Bﬁ u=

is a -tri
non-trivial Jacobi fielgd along 7, from p to expyv,

-enishing a i .
San ‘€ at these points; hence p ang eXp v are conjugate along y_ .
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Now suppose that exp, 1s non-singular at v. Choose n independ-
ent vectors X,,...,X, in T(TMP)V. Then expy(X,),..., exp*(xn) are

linearly independent. In TMp choose paths u — v,(u),...,u — vn(u)
dvi(u)

with vi(o) = v and —_Hﬁ__(o) = Xy

Then « a constructed as above, provide n Jacobi fields

1902,
Wyy...,W, along 7, venishing at p. Since the Wi(l) = expy(X;) are
independent, no non-trivial linear combination of the Wi can vanish at
exp v. Since n 1is the dimension of the space of Jacobi fields along Tys
which vanish at p, clearly no non-trivial Jacobi field along Ty vanishes

at both p and exp v. This completes the proof.

COROLLARY 18.2. ILet p € M. Then for almost all q € M,
p 1s not conjugate to q along any geodesic.

PROOF. This follows immediately from 18.1 together with Sard's
theorem (§6.1).
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§19. Some Relations Between Topology and Curvature.

This section will describe the behavior of geodesics in a manifold

with '"negative curvature" or with "positive curvature."

LEMMA 19.1. Suppose that <R(A,B)A,B> < 0 for
every pair of vectors A,B in the tangent space
TMp and for every p € M. Then no two points of
M are conjugate along any geodesic.

FROOF. Let y be a geodesic with velocity vector field V; and

let J be a Jacobi field along y. Then

§%+R(V,J)V =0
so that
D23
<E§,J> - - < R(V,DV,I> > o0.
Therefore
w<B.o> 2L B

Thus the function <>

D.
so if a% #0.

Ir g vanishes both at

< DJ J
TE 7> also vanishes at o
throughout the interval

» 3> is monotonically increasing, and strictly

0 and at t5; > 0, then the function
and t,, and hence must vanish identically

[0,t,]. This implies that
. D -
J(o) = T = 9

so that J
is identically zero. This completes the proof.

REMARK.
If A and B are orthogonsl unit vectors at p then the
quantity < R(A,B)A,B>

is called the sectional curvature determined by
A and B.

It
1s equal to the Gaussian curvature of the surface
(4y,u0,) - exp,(u,A + ugB)
spanned by the geodesics through p with velocity vectors in the subspace
spanned by A and B.

(See for example, Laugwitz "Differential-Geometrie,"
p. 101.)
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[Intuitively the curvature of a manifold can be described in terms
of "optics" within the manifold as follows. Suppose that we think of the
geodesics as being the paths of light rays. Consider an observer at p
looking in the direction of the unit vector U towards a point q = exp(rU).
A small line segment at q with length L, pointed in a direction corre-
sponding to the unit vector W € TMD, would appear to the observer as a

line segment of length
2
L(1 + %— < R(U,WU,W > + (terms involving higher powers of r))

Thus if sectional curvatures are negative then any object appears shorter
than it really is. A small sphere of radius € at q would appear to be
an ellipsoid with principal radii e(1 + %;K1 o), eee, (1 4 %;Kn + ..)
where K,,K,,...,K, denote the eigenvalues of the linear transformation
W — R(U,W)U. Any small object of volume vV would appear to have volume
v(1 %;(x, + K, +...+ K ) + (nigher terms)) where K, +...+ K. is equal
to the "Ricci curvature" K(U,U), as defined later in this section.]

Here are some familiar examples of complete manifolds with curva-
ture < 0:

(1) The Euclidean space with curvature O.

(2) The paraboloid 2z = x? - y2, with curvature < o.

(3) The hyperboloid of rotation x2 + y2 - 22 . 1, with curva-
ture < 0.

(4) The helicoid x cos z + y sin z = 0, with curvature < o.

(REMARK. In all of these exampies the curvature takes values arbi-

trarily close to 0. Cf. N. V. Efimov, Impossibility of a complete surface

in 3-space whose Gaussian curvature has a negative upper bound, Soviet Math.,
Vol. 4 (1963), pp. 843-846.)

A famous example of a manifold with everywhere negative sectional

curvature is the pseudo-sphere

z = - J1-x°_ y2 + sech™! ¥x? + yz, z2>0
with the Riemann metric induced from R}. Here the Gaussian curvature has
the constant value -1.

No geodesic on this surface has conjugate points although two geo-

desics may intersect in more than one point. The pseudo-sphere gives a
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non-Euclidean geometry, in which the sum of the angles of any triangle 1is
< n radians. This manifold is not complete. In fact a theorem of Hilbert

states that no complete surface of constant negative curvature can be
‘mbedded in R3.  (See Blaschke, "Differential Geometric I," 3rd edn., §96;
or Efimov, ibid.)

However, thers do exist Riemannian manifolds f constant negative
curvature vhich are complete. (See fop example LawZwitz, "Differ:ntiszl
and Riemannian eometry," §12.6.2.) Such a manifold can eVsL bLe compacts
for example, a surface of genus > 2. (Compare Hilbert and Cohn-Vossemn,

'‘Geometry and the imagination," p. 259.)

THEOREM 19.7 (Cartan*), Suppose that M is a simply
connected, complete Riemannian manifold, and that the
sectional curvature <R(A,B)A,B> 1is everyvwhere < O.
Then any two points of M ape joined by e unique geo-

desic. Furthermore, M 14 diffeomorphic to the
Euclidean space RR,

PROOF: Since there are no conjugate points, it follows from the
index theorem that every geodesic from p to q has index X = o. Thus
Theorem 17.3 asserts that the path space o(M;p,q) has the homotopy type
of a 0-dimensional CW-complex, with one vertex for each geodesic.

The hypothesis that M is simply connected implies that o(M;p,d)
is connected. Since a connected 0-dimensional CW-complex must consist of

a single point, it follows that there is precisely one geodesic from P to

|

* 1
See E. Cartan, "lecons sur la Géométrie des Espaces de Riemann," Pparis,

1926 and 1951.



§19. TOPOLOGY AND CURVATURE 103

Therefore, the exponential map eXpy* TMp — M 1s one-one and
onto. But it follows from 13.1 that expp is non-critical everywvhere;
so that expp 1s locally e diffeomorphism. Combining these two facts, we
see that expp is a global diffeomorphism. This completes the proof of
19.2.

More generally, suppose that M 1is not simply connected; but is
complete and has sectional curvature < 0. (For example M might be a
flat torus s! x 81, or a ccompact surface of genus > 2 with constant
negative curvature.) Then Theorem 19.2 applies to the universal covering
space M of M. For it is clear that M inherits a Riemannian metric
from M which is geodesically camplete, and has sectional curvature < O.

Given two points p,q € M, 1t follows that each homotopy class of
paths from p to q conteins precisely one geodesic.

The fact that M 1is contractible puts strong restrictions on the
topology of M. For example:

COROLLARY 19.32. If M 1is complete with < R(A,B)A,B>
< 0 then the homotopy groups "i(M) are zero for

1> 1; and n1(M) contains no element of finite order
other than the identity.

PROOF: Clearly = (M) = =, (M) = o for 1> 1. Since M 1is
contractible the cohomology group Hk(M) can be identified with the co-
homology group Hk(nl(M)) of the group n,(M). (See for example pp. 200-
202 of 8. T. Hu "Homotopy Theory," Academic Press, 1959.) Now suppose
that n,(M) contains a non-trivial finite cyclic subgroup G. Then for a

suitable covering space M of M we have u1(ﬁ) = G; hence
H(G) - Hk(&) = 0 for k>n .

But the cohomology groups of a finite cyclic group are non-trivial in arbi-
trarily high dimensions. Thils gives a contradiction; and completes the
proof.

Now we will consider manifolds with "positive curvature." Instead
of considering the sectional curvature, one can obtain sharper results in
this case by considering the Ricci tensor (sometines called the "mean curve-

ture tensor").
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DEFINITION. The Ricci tensor at = point p of a Riemannien mani-
fold M 1is a bilinear pairing

K: TMp X TMp - R

defined as follows. ILet K(U1,U?) be the trace of the linear transforma-
tion
v - R(U,,"NU,
from TMp to TMp. (In classical terminology the tensor K 1s obtained
from R by contraction.) It follows easily from §9.3 that K 1is symmetric:
K(U,,U,) = K(U,,U,).
The Ricci tensor is related to sectional curvature as follows. Let

U;,Up,+..,U, be an orthonormal basis for the tangent space ™.

ASSERTION. K(Un,Un) is equal to the sum of the sectional curva-

tures < R(Un’Ui)Un’U1> for 1 =1,2,...,n-1.

PROOF: By definition K(Un,Un) is equal to the trace of the matrix
( SR(U,, 00, Uy > ) . Since the n-th diagonal term of this matrix is

2€ro, we obtain a sum of p-1 gectional curvatures, as asserted.

THEOREM 19.4 (Myers®). suppose that the Ricci curvature
K satisfiesg

2
K(U,U) > (n-1)/r
for every unit vector U at every point of M; where r
1s a positive constant. Then every geodesic on M of

length > »r contains conjugate points; and hence is not
minimal.

PROCF: Let o: [0,1] — M be a geodesic of length L. Choose

y which are orthonormal at one

parallel vector fields Pise..,P_ along

n
point, and hence are orthonormal everywhere along 7. We may assume that

P_ points along 7, 8o that

n
DP
a 1
V=a%=LPn’ andaf-=°
et wi(t) = (sin nt) Pi(t). Then

See S. B. Myers, Riemann manifolds with positive mean curvature, Duke
Math. Journal, Vol. 8 (1941), pp. Lo1-Lok,
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2,
DMy

1
1
oy - - (<, —5 ¢ ROV > at
0

1
S‘ (sin ﬂt)2 (ﬂe - L2 < R(Pn’Pi)Pn’Pi > ) dt.
(o]

Summing for 1 = 1,...,n-1 we obtain
i 1 2 2 2
%- 25 E**(wi,wi) = S (sin nt) ((n—1)n - L K(Pn,Pn)) dt
1 0

Now if K(P,,P,) 2 (n-1)/r?® and L > nr then this expressicn is
< 0. Hence E**(wi,wi) < 0 for some i. This implies that the index of
y 1s positive, and hence, by the Index Theorem, thet » contains conju-
gate points.

It follows also that o 1s not a minimal geodesic. In fact if

a: (-e,e) —a 1is a variation with variation vector field W; then
dE(3(w) _ .  4°E(E) .,
— du T —__EGE___ ’

for u = 0. Hence E(&(u)) < E(y) for small values of u # 0. This com-

pletes the proof.

EXAMPLE. If M 1is a sphere of redius r then every sectional
curvature is equal to 1/r’. Hence K(U,U) takes the constant value
(n-1)/r?. It follows from 19.4 that every geodesic of length > nr con-

tains conjugate points: a best possible result.

COROLLARY 19.5. If M 1is complete, and K(U,U) >
(n-1)/r? > 0 for all unit vectors U, then M 1s
compact, with diameter < nr.

PROOF. If p,q € M let y be a minimal geodesic from p to Q.
Then the length of y must be < nr. Therefore, all points have distance
< nr. Since closed bounded sets in a complete manifold are compact, it
follows that M itself is compact.

This corollary applies also to the universal covering space M of
M. Since M is compact, it follows that the fundemental group =,(M) is
finite. This assertion can be sharpened as follows.
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THEOREM 19.6. If M 1is a compact manifold, and 1f the
Ricci tensor K of M is everyvhere positive definite,
then the path space n(M;p,q) has the homotopy type of
a CW-complex having only finitely many cells in each
dimension.

PROOF. Since the space consisting of ell unit vectors U on M
is compact, it follows that the continuous function K(U,U) > 0 takes on
& minimum, which we can denote by (n-1)/r® > 0. Then every geodesic
7 € 2(M;p,q) of length > ar has index X > 1.

More generally consider a geodesic y of length > krr. Then a
similar argument shows that v has index A > k. In fact for each
i1=1,2,...,k one can construct a vector field X; elong y which vanishes
outside of the interval ( iﬁl , % )’ and such that E,.(X;,X;) < o.

Clearly E**(Xi,XJ) = 0 for 1 #3j; sothat X;,...,X, spana k-
dimensional subspace of Tn7 on vhich E,, 1is negetive definite.

Now suppose that the points p and q are not conjugate along any
geodesic. Then according to § 16.3 there are only finitely many geodesics
from p to q of length S krr.  Hence there are only finitely many geo-
desics with index < k. Together with §17.3, this completes the proof.

REMARK. I do not know whether or not this theorem remains true if
M 1is allowed to be complete, but non-compact. The present proof certainly

breaks down since, on a manifold sych as the paraboloid =z = x” . Y?, the

curvature K(U,U) will not pe bounded away from zero.

It would be 1nteresting to know which manifolds can carry a metric

so that all sectional curvatures gpe positive. An instructive example is

m
provided by the product & X sk of two spheres; with m,k > 2. For this

manifold the Ricci tensor is everywhere positive definite. However, the
sectional curvatures in certain directions (corresponding to flat tori
s'x8'C S x 55 are zer. It 1s not known whether or not S® x SX can
be remetrized so that all sectiona)l Curvatures are positive. The following
partial result is known: If such g pe, metric exists, then it can not be
invariant under the involution (X,y) = (-x,-y) of &M x sK. This follows

from a theorem of Synge. (See J. 1., Synge, On the connectivity of spaces
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of positive curvature, JQuarterly Journal of Mathematics (Oxford), Vol. 7

(1936), pp. =16-°20.
For other theorems relating tcpology and curvature, the following

sources are useful.

K. Yano and S. Bochner, "Curvature and Betti Numbers," Annals
Studies, No 37, Princeton, 1953.

S. S. Chern, On curvature and characteristic classes of a Riemann

manifold, Abh. Math. Sem., Hamburg, Vol. 20 (1955), pp. 117-126.

M. Berger, Sur certailnes variétés Riemanniennes & courbure positive,

Comptes Rendus Acad. Sci., Paris, Vol. 247 (1958), pp. 1165-1168.
S. I. Goldberg, "Curvature and Homology," Academic Press, 1962.
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PART IV.

APPLICATIONS TO LIE GROUPS AND SYMMETRIC SPACES

§20. Symmetric Spaces.

A symmetric space is a connected Riemannian manifold M such that,

r each p € M there is an isometry Ip: M — M which leaves p fixed
d reverses geodesics through p, i.e., if » 1is a geodesic and ¥(0) = D
en Ip(y(t)) = y(-t).

IEMMA 20.1 Iet ~» be a geodesic in M, and let

P =9y(0) and q = r(¢c). Then Iqu(y(t)) = y(t + 2¢)
(assuming ~y(t) and «(t + 2c) are defined). More-

over, Iqu preserves parallel vector fields along 7.
PROOF: Let '(t) = (t + ¢). Then y' 1is a geodesic and
= = - = (- - \ =
(0) Q. Therefore Iqu(7(t)) Iq(7( t)) Iq(Y (-t - ¢))
(t + c) = y(t + 2c).

If the vector field V 1is parallel along 7y then Ip*(V) is

rallel (since Ip is an isometry) and Ip;V(o) = -V(0); therefore
l*V('c,) = -V(-t). Therefore Iq* Ip*(V(t)) = V(t + 2c).

COROLIARY 20.2. M 1s complete.

Since 20.1 shows that geodesics can be indefinitely extended.

COROLLARY 20.3. Ip is unique.

Since any point is joined to p by a geodesic.

COROLIARY 20.4. If U,V and W are parallel vector
fields along r then R(U,V)W 4is also a parallel
field along 7.

PROOF. If X denotes a fourth parallel vector field along 7,
te that the quantity < R(U,V)W,X > is constant along . In fact,
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given p = 7(0), q = y(c), consider the iscmetry T = 17(0/2)Ip which
carries p to gq. Then

<(h(U§,v§)wq,xqj> = < R(T,U, TV T, TyXp D>
by 20.1. Since T is an isometry, this quantity is equal to

<:\R(Ub,vp)wp,xp:> . Thus <R(U,V)W,X> is constant for every parallel

vector field X. It clearly follows that R(U,V)W is parallel.

Manifolds with the property of 20.4 are called locally symmetric.

(A classical theorem, due to Cartan states that a complete, simply connected
locally symmetric manifold is actually symmetric.)

In any locally symmetric manifold the Jacobi differential equations
have simple explicit solutions. Iet y: R — M be a geodesic in a local-

1y symmetric manifold, et V - %%(0) be the velocity vector at p = 7(0).
Define a linear transformation

K ™, T
by Ke(W) = R(V,W)V. 1Let e,,...,e, denote the eigenvalues of K.

THEOREM 20.5. The conjugate points to P along

are the points y(nkA'e;) where k 1is any non-zero
integer, and e, 1is any positive eigenvalue of
The multiplicity of 4(t) as a conjugate point is

equal to the number of e, such that t 1s a mul-

i
tiple of "/ng'

PROOF: First observe that K, is self-adjoint:

<Ky > = KK ) D
This follows immediately from the symmetry relation
<REV,MVLWS - KRVLUNDV,ED

Therefore we may choose an orthonormal basis U;,..-,U

ha
n for Mp so that

KV(Ui) = eiui ,
10°++,8 @&re the eigenvalues. Extend the Uj; to vector fields
along y by parallel translation.

where e

Then since M is locally symmetric,

Ky should not be confused with the Ricci tensor of §19.
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the condition
R(V, UV = e U,

remains true everywhere along y. Any vector field W along 7y may be

expressed uniquely as

W(t) = w1(t)U‘(t) oot wn(t)Un(t)
2
Then the Jacobl equation D g + KV(W) = 0 takes the form
dt
S\ d2W1 U z -
+ e,w = 0.
/. dt2 i 1711

Since the U; are everywhere linearly independent this is equivalent to

the system of n equations
2
d Wy

-d—t§+eiwi = 0 .

We are interested in solutions that vanish at t o. If ey >0 then

n

wi(t) = cy sin (Je; t), for some constant cy.
Then the zeros of w,(t) ere at the multiples of t = n/fgl
Ir €y = 0 then wi(t) = c;t and if e; < 0 then
wy(t) = ¢y sinh (Jleilt) for some constant c;. Thus if e; <O, wy ()
vanishes only at t = 0. This completes the proof of 20.5.
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§21. Lie Groups as Symmetric Spaces.

In this section we consider a Lie group G with a Riemannian metric

which is invariant both under left translations

L;: 6 =G, Li(o) = t0

end right translation, R () = ot. If G is commutative such a metric
certainly exists. If G 1is compact then such a metric can be constructed
as follows: let <> be any Riemannian metric on G, and Let u denote
the Hear measure on G. Then n is right and left invariant. Define &
new inner product <,>> on G by

o% T

LVu>> - g <Ly Re, (V), Ly R () > dulo) du(r)
GxG

Then  <<,>> 1is left and right invariant.
LEMMA 21.1 If G is a Lie group with a left and right
invariant metric, then G is a symmetric space. The
reflection I, in any point 7 € G 1is given by the
formula IT(u) = 10-11.
PROOF: By hypothesis L. and R, ere isometries. Define a map
I

e: G—’G by

T(e) = o

Then Ie*= TG, - TG, reverses the tangent space of e; so is certainly

&n 1sometry on this tangent space. Now the identity

= L
I RU-1Ie o1

shovs that Teo? TG, TG__q 1is an isometry for any o € G. Since Te
Peverses the tangent space at e, 1t reverses geodesics through e.
-1
Finally, defining I _(¢) = 7o '7, the identity I_ = R IRg
shovs that each I, 1is an isometry which reverses geodesics through T.

A 1-parameter subgroup of G 1is a C* homomorphism of R 1nto

G. It is well known that a 1-parameter subgroup of G is determined by
its tangent vector at e. (Compare Chevalley, "Theory of Lie Groups,'

Princeton, 1946.)
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n
(1]

LEMMA 21.72. The gecdesics y 1in G with ¥(0)
are precisely the cne-rarameter subgroups of G.

FRCOF: ILet y: R — G be a geodesic with ¥(0) = e. By Lemma 20.1

the map I . I, takes »(u) into 7(u + 2t). Now Iv(t)Ie(U) = 7(t)o y(t)
so y(t)y(wr(t) = ~(u + 2t). By induction it follows that v(nt) = y(t)®
for any integer n. If t'/t" 1s raticnal so that t' = n't and t" = n"t
for scme t and some integers n' and n" then »(t' + t") = 7(t)n'+n" =
y(t")y(t"). By continuity » 1is a homomorphism.

Now let y: R —= G be a 1-rarameter subgroup. Let y' be the
geodesic through e such that the tangent vector of y' at e 1s the tan-
gent vector of y at e. We have just seen that y' 1is a 1-parameter sub-
group. Hence »' = y. This completes the proof.

A vector field X on a Lie group G is called left invariant if
and only if (Lh)*(xb) = Xg.p for every a and b in G. If X and Y
are left invariant then [X,Y] 4is also. The Lie algebra g of G is the
vector space of all lert invariant vector fields, made into an algebra by
the bracket [ ].

8 1s actually a Lie algebra because the Jacobi identity

((x,¥),2) + (1Y,2),X] + [[2,X),Y) = o

holds for all (not necessarily left invariant) vector fields X,Y and Z.

THEOREM 21.3. ILet G be a Lie group with a left and

right invariant Riemannian metric. If X,Y,Z and W
are left invariant vector fields on G then:

a) <Ix,¥1,z2> = <X,[Y,21>
b) R(X,V)Z = ¢ [[X,¥],2)
©) <RX,NZW> = ¢ <IXY],Iz,W]> .

PROOF: As in §8 we will use the notation X F Y for the covariant
derivative of Y in the direction X. For any left invariant X the iden-
tity

XFEX-=0

is satisfied, since the integral curves of X are left translates of 1-

parameter subgroups, and therefore are geodesics.
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Therefore
X+Y) F(X+Y) = (XFX + (X FY)
(Y FX) + (Y FY)

+

is zero; hence

Xl‘Y+Y|‘X=0.
On the other hand

XFY-YFX = [X,Y]
by §8.5. Adding these two equations we obtain:

d) 2X FY = [X,Y]
Now recall the identity

Y <X,Z> = <Y F X,Z> + XY kz > °
(See §8.4.) The left side of this equation is zero, since <X,z2> 1is

constant. Substituting formula (d) in this equation we obtain

o = <I¥,x1,2> + <x,[y,21>

Finally, using the skew commutativity of [(Y,X), we obtain the required
formula*

(a) <Ix,¥,z> = <x,1y,21>
By definitlon, R(X,Y)Z 1s equal to
- XF@XF2) + YFRXF2Z) + [XY)F2Z
Substituting formula (d), this becomes
- $1X,0%,2)) + My, (X,21) + BUIX,¥],2)
Using the Jacobi identity, this yields the required formula
(v) R(X,MZ = ¢l(X,Y),2)

The formula (c) follows from (a) and (b)

It follows that the tri-linear function X,Y,Z — X, Y1,2>  is skew-

symmetric in all three variables. Thus one obtains & left invariant diffen.

ential 3-form on G, representing an element of the de Rham cohomology group
#7(G). 1In this way Cartan was able to prove that H3(G) 0 if ¢ is a
ncn-abelian compact connected Lie group. (See E. Cartan, "La Topologie deg
Zsraces Représentatives des Groupes de Lie," Paris, Hermann, 1936.)
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?OROLLARY 21.4. The sectional curveture <R(X,Y)X,Y> =
v <IX,Y],[X,¥Y]> 1is elways > 0. Equality holds if and

enly if [X,Y) = o.
Recall that the center ¢ of a Lie algebra g 1s defined to be
the set of X € ¢ such that [X,¥) =0 for all Y € g.

COROLIARY 21.5. If G has a left and right invariant
metric, and if the Lie algebra g has trivial center,
then G is compact, with finite fundemental group.

PROOF: This follows from Meyer's theorem (§19). Let X, be any

unit vector in g and extend to a orthonormal basis Xy,.-.,X,- The Ricci
curvature

n
K(X,,X%)) = Z ROX, X)Xy, Xy >
101

must be strictly positive, since (X,,X,) # o for some 1. Furthermore
K(X,,X,) 1s bounded away from zero, since the unit sphere in ¢ 1is compact.
Therefore, by Corollary 19.5, the manifold G is compact.

This result can be sharpened slightly as follows.

COROLLARY 21.6. A simply connected Lie group G with left
and right invariant metric splits as a Cartesian product

G' x RX where G' is compact and RX denotes the additive
Lie group of some Euclidean space. Furthermore, the Lie
algebra of G' has trivial center.

Conversely it is clear that any such product G' x Rk possesses a
left and right invariant metric.

PRCOF. ILet ¢ be the center of the Iie algebra g and let
g' = (Xeg:X,C>= 0 forall Ce ¢}

be the orthogonal complement of ¢ . Then @' is a Lie sub-algebra. For

if X,Ye g' and C e ¢ then

< [X,¥l,c > = <x,lY,c)> = o;
hence [X,Y] € ¢'. It follows that g splits as a direct sum g' & ¢ of

Lie algebras. Hence G splits as a Cartesian product G' x G"; where G'

1s compact by 21.5 and G" 1is simply connected and abelian, hence iscmorphic
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to some RX, (See Chevalley, "Theory of Lie Groups.") This completes the

proof.

THEOREM 21.7 (Bott). ILet G be a compact, simply con-
nected Lie group. Then the loop space 0(G) has the
homotopy type of a CW-complex with no odd dimensionsl
cells, and with only finitely many Ar-cells for each
even value of .

Thus the A-th homology groups of a(G) 1is zero for odd, and is
free abelian of finite rank for X even.

REMARK 1. This CW-complex will always be infinite dimensional. As
an example, if G 4is the group S3 of unit quaternions, then we have seen

that the homology group Hin(s3) is infinite cyclic fqr all even values of i

REMARK 2, This theorem remains true even for s nen-compact group.
In fact any connecteq Lie group contains a compact subgroup as deformation

retract. (See K. Iyassawa, On_some types of topological groups, Annals of

Mathematics so0 (1949), Theorem 6.)

PROOF of 21.7. Choose two points p and q in G which gre not
conjugate along any geodesic. By Theorem 17.3, 2(G;P,q) has the homotopy
type of a CW-complex with one cell of dimension X for each geodesic from
P to q of index *». By §19.% there are only finitely many i_cejls for

each A. Thys it only remains to prove that the index X\ of a geogesic is

alvays even,
Consider g geodesic 7y starting at p with velocity vectop
_ 4y ~
vV = Hf(o) € TGp =g

According to §z0.5 the conjugate points of p on 7y are determined by the

eigenvalues of the linear transformation

Ky;: TGp - TGp ’
defined by

K (W) = ROV,WV = LIV,W],V)

Defining the adjoint homomorphi sm

AdV: g — g
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by
A3 V() = (V,W)
we have

(AG V) o (A% V)

&
|

The linear transformation Ad V is skew-symmetric; that is
< A V(W)WY D> = - L WA V(WD) D>

This follows immediately from the identity 21.3a. Therefore we can choose

an orthonormal basis for & so that the matrix of Ad V takes the form

It follows that the composite linear transformation (Ad V)o(Ad V) has

matrix

Therefore the non-zero eigenvalues of K, = - 11—(Ad V)? are positive, and
occur in pairs,

It follows from 20.5 that the conjugate points of p along 7 &lso
ncceur in pairs. In other words every conjugate point has even multiplicity.
Together with the Index Theorem, this implies that the index » of any

geodesic from p to q 1is even. This completes the proof.
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§22. Vhole Manifolds of Minimal Geodesics.

So far we have used a path space 0(M;p,q) based on two points
P,q € M which are in "general position." However, Bott has pointed out

that very useful results can be cbtained by considering pairs p,q in some

special position. As an example let M be the unit sphere 57 and

2
1t ©,a be antipodel points. Then there are infinitely many minimal geo-
desics from p to q. In fact the space 9"2 of minimal geodesics forms

& Smooth manifold of dimension n which can be identified with the equator
n N+ 1
s Cs - Ve will see that this space of minimal geodesics provides a

P

sl’l

n+1
e loop space a(S ).
. M be a complete Riemannien manifold, end 1€t Pd € M be TVO
POINts with distance o(p,q) =43 ,
’ = .

THEOREM
22.1. T1f the space Qd of minimal geodesics from

L to
1 is a topological MANifold, and if every non-minimal
s

geodesic f
homotopy sz Pt d Pas index » », then the relative
group my(a,09) 44 zero for g <1< g

is an isomoprphi
phism for 1 ¢ Y = 2. But 1t 1g ye1l known that the homotoP¥

E°OUE m.(2)  is isomorphic
. o to "341(M)  fop a11 values of 1. (Compare

S. T. Hu, "Hq "
B motopy Theory, Academi ¢ Press, 1959, P- 111; together with
b

§17.1.)
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Thus we obtain:

d
COROLLARY 22.2. With the same hypotheses, ni(n ) is

iscmorphic to "1+1(M) for 0 <1< Ay - 2.

let us apply this corollary to the case of two antipodal points on
the (n+1)-sphere. Evidently the hypotheses are satisfied with A, = 2n.
For any non-minimal geodesic must wind one and a half times around st
and contain two conjugate points, each of multiplicity n, in its interior.

This proves the following.

CCROLIARY 22.x. (The Freudenthal suspension theorem.)1

n+
The hcomotopy group ni(sn) is isomorphic to =y ,(S )
for 1 < 2n-2.

Theorem 22.1 also implies that the homology groups of the loop

d

space 9 are isomorphic to those of @ in dimensions < :», - 2. This

(o}
fact follows from 22.1 together with the relative Hurewicz theorem. (See
for example Hu, p. *06. Compare also J. H. C. Whitehead, Combinatorial
homotopy I, Theorem 2.)

The rest of §22 will be devoted to the proof of Theorem 22.1. The
proof will be based on the following lerma, which asserts that the condition
"all critical points have index > ko" remains true when a function is
Jiggled slightly.

Let K be a compact subset of the Euclidean space R®; 1let U be
& neighborhood of K; and let

f: U= R
be 2 smooth function such that all criticel points of f in K have index

>,

LEMMA 22.4., If g: U—= R is any smcoth function which
is "close" to f, in the sense that

d of
- <€,
IE%i Eiil

uniformly throughout K, for some sufficiently small constant €,

2 2
g d°f . N
dxiaxj - C"Xidxj <&, (1,3 = 1,04 )

then all critical points of g in K have index > Ao

(Note that f 1is allowed to have degenerate critical points. In
the application, g will be a nearby function without degenerate critical
points.)
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PROCF of 22.4. The first derivatives of g are roughly described

by the single real valued function

d
kg(X) = Z Ia%ilzo

i
on U; which vanishes precisely at the critical points of g. The second

derivatives of g can be roughly described by n continuous functions

as follows. Let
eg(X) < e3(x) < ... < eg(x)

denote the n eigenvalues of the matrix ( 3__35; ) Thus a critical point
x of g has index > :» if and only if the number e (x) is negative.

The continuity of the functions eg follows from the fact that the
A-th eigenvalue of a symmetric matrix depends continuously on the matrix*.
This can be proved, for example, usings the fact that the roots of a complex
polynomial of degree n vary continuously with the coefficient of the poly-
nomial. (Rouché’s theorem.)

Iet m (x) denote the larger of the two numbers kg(x) and -ego(x),
Simllarly let mf(x) denote the larger of the corresponding numbers kp(x)
and -ef (x). The hypothesis that all critical points of f in K khave

A
index > A, implies that -ero(x) > 0 whenever kn(x) = 0. In other words

o
mf(x) > 0 for all x € K.
Let & > 0 denote the minimum of m. on K. Now suppose that g

is so close to f that
L) *
(*) kg0 - k()| <5, o0 - et

for all x € K. Then mg(x) will be positive for x € K; hence every

critical point of g in K will have index > A

This statement can be sharpened as follows. Consider two nxn symmetric
matrices. If corresponding entries of the two matrices differ by at most
e, then corresponding eigenvalues differ by at most ne. This can be
rproved using Courant's minimax definition of the r-th eigenvalue. (See
§1 of Courant, Uber die Abhiéngigkeit der Schwingungszahlen einer Membran..,,
Machrichten, Koniglichen Gesellschaft der Wissenschaften zu Gottingen, Math,

Phys. Klasse 1919, pp. £55-26kL.)
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To complete the proof of 22.4, it is only necessary to show that
the inequalities (*) will be satisfied providing that

2 2
o) of :) 3 f
|3%1 - Biil <e and axia% " 3Xox; < ¢

for sufficiently small e. This follows by a uniform continuity argument
wbich will be left to the reader (or by the footnote above ).

We will next prove an analogue of Theorem 22.1 for real valued
functions on a manifold.

let f: M — R be a smooth real valued function with minimum O,
such that each M - f’llo,c] is compact.

LEMMA 22.5. If the set M° of minimal points is a manifold,

and if every criticel point in M - M° has index 2 Ao
then n,(M,M°) =0 for 0 < r < Ay

PROOF: First observe that M° 1is a retract of some neighborhood
UC M. In fact Hanner has proved that any manifold M° is an absolute

neighborhood retract. (See Theorem 3.3 of O. Hanner, Some theorems on

absolute neighborhood retracts, Arkiv for Matematik, Vol. 1 (1950), PP.

389-408.) Replacing U by a smaller neighborhood if necessary, we may

assume that each point of U 1is joined to the corresponding point of u°

by a unique minimal geodesic. Thus U can be deformed into M° within M.
Let I” denote the unit cube of dimension r < Ay, and let

h: (15,17 = (M,M°)
be any mep. We must show that h 1is homotopic to @ mep h' with
h'(1%) ¢ MO,
Let ¢ be the maximum of f on h(IF). Let 38 > 0 be the mini-
mum of f on the set M - U. (The function f has & minimum on M -U

since each subset M® - U is compact.)

Now choose a smooth function

g: MC+26-’R

which approximates f closely, but has no degenerate critical points. This
1s possible by §6.8. To be more precise the approximation should be 8O
close that:

(1) If(x) - gx)| <& for all x € M°*2®; and
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(2) The index of g at each critical point which lies in the com-
pact set £~ '[s,c+25] 1s 2 Ay
It follows from Lemma 22.4 that any g which approximates

sufficiently closely, the first and second derivatives also being approxi-

r

mated, will satisfy (2). In fact the compact set f '[s,c+25] can be
covered by finitely many compact set Ki’ each of which lies in a coordi-
nate neighborhood. Iemma 22.4 can then be applied to each Ki‘

The proof of 22.5 now proceeds as follows. The function g is
smooth on the compact region g '[25,c45) C £ '[5,ce25], and all critical
points are non-degenerate, with index > Ao+ Hence the manifold
g '(-=,c45] has the homotopy type of g '(-=,28] with cells of dimension

> lo attached.
Now consider the map
h: 17,37 — w®,M0 C g7 (-, cup), M0

Since r < o 1t follows that h 1s homotopic within g_1(-w,c+5],M° to
a map
h': 17,17 = g (-, 250,10

But this last pair is contained in (U,M°); and U can be deformed into
M within M. It follows that h' is homotopic within (M,M°) to a map
h": 17 47 M%,M°. This completes the proof of 22.5.

The original theorem, 22.1, now can be proved as follows. Clearly
it is Sufficient to prove that

x (Int 2%, = o

for arbitrarily large values of c. As in §16 the space Int 2° contains

& smooth manirelg Int nc(to:t1""’tk) as deformation retract. The space

d
1] of minimaj geodesics is contained in this smooth manifold.

The energy function E: 0 — R, vhen restricted to

Int ot almost satisfies the hypothesis of 22.5, The only

o’t1""’tk)’
difficulty is gnat E(w) ranges over the interval d < E < ¢, instead of

the requireq interval [o0,=). To correct this, let

F: [d,C) - [O’Q)
be any diffeomorphism.
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Then
F e E: Int2%¢ty,t,,...,t) — R
satisfies the hypothesis of 22.5. Hence
ny (Int a%(tg,...,t),0%) = =, (Int a®,ad)

is zero for 1 < Ay - This completes the proof.
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§23. The Bott Periodicity Theorem for the Unitary Group.

First a review of well known facts concerning the unitary group-
Let C" be the space of n-tuples of complex numbers, with the usual Her-
mitian inner product. The unitary group U(n) 1is defined to be the grouP
of all linear transformations S: C% —C% which preserve this inner
Product. Equivalently, using the matrix representation, U(n) 1s the
8roup of all n x n complex matrices S such that S 8% - I; where s*
denotes the conjugate transpose of S.

For any n x n complex matrix A the exponential of A 1is defined
by the Convergent power series expansion

exp A = I+A+?1!-A2+?1!-A3+

The fOllo"’inz properties are easily verified:
() exp (a%) - (exp A)"; exp (TAT™') - T(exp AT,
(2 1r 4 and B commute then
exp (A + B) = (exp A)(exp B). 1In particular:
(3) (exp &) (exp -a) - 1T
() The function exp meps a neighborhood of 0 in the space of
N x n matpices diffeomorphically onto a neighborhood of I-

1 IT A is skew-Hormitien (that s if A + A* - 0), then it fol-
ows f'rom (,) ang

unttapy (3) that exp A 1s unitary. Conversely if exp A 18

> 89 A belongs to a sufficiently small neighborhood of o, then

ow
cast S frop (1), (3), and (4) that A + A* - 0. From these facts one
Ly Proves that.

(5)
(6)

U(n) is a smooth submanifold of the space of n x n matrices
the tangent space TU(N); can be identified with the space ©F
% X n skew-Hermitian matrices.

The
refore the 1ie algebra g ©Of U(n) can also be identified With

the SpaCe of Skew

anique] -Hermitian matrices. For any tangent vector at I extends
ue ¥y t
the 1 © @ left invariant vector rield on U(n). Computation shows that
racke
t product of left invariant vector fields corresponds to the

Proj
UCt  [A,B] - ap - BA of matrices.
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Since U(n) 1s compact, it possesses a left and right invariant

Riemannian metric. Note that the function
exp: TU(n); — U(n)
defineqg by exponentiation of matrices coincides with the function exp de-

fined (as in §10) by rollowing geodesics on the resulting Riemannian mani-

fold. In fact for each skew-Hermitian matrix A the correspondence
t — exp(t A)

defines a 1-parameter subgroup of U(n) (by Assertion (2) above); and
hence defines a geodesic.

A specific Riemannian metric on U(n) can be defined as follows.
Glven matrices A,Beg let <A,B> denote the real part of the complex

number

trace (AB") = iz AiJBij

(=Y

Clearly this inner product is positive definite on g

This inner product on g determines a unique left invariant
Rlemannian metric on U(n). To verify that the resulting metric is also
right invariant, we must check that it is invariant under the adjoint
action of U(n) on g.

DEFINITION of the adjoint action. Each S € U(n) determines an

inner automorphism
X —=sxs - (LgRgTHX
of the group U(n). The induced linear mapping
-1, . ,
(LgRg )*- TUn); — TWn);
1s called Ad(S). Thus Ad(S) 1is an automorphism of the Iie algebra of
U(n). Using Assertion (1) above we obtain the explicit formula
Ad(S)A = sas™! |
for Aeg, S eUn).
The inner product <A,B> is invariant under each such automorphism

Ad(S). In ract if A, = Ad(S)a, B, = Ad(S)B then the identity

* * =1

AB,* = sas '(ses ") - saB*s
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implies that
trace (A1B1*) = trace (SAB*S_I) - trace (AB") ;
and hence that
<A1 ,B«' > = < A’B >

It follows that the corresponding left inveriant metric on U(n) is also
right invariant.

Given A € @ we know by ordinary matrix theory that there exists
T € U(n) so that oaT"' is in diagonal form

ia,

ia
a7 - 2

1an

where the a;'s are real. Also, given eny S € U(n), there is a T € U(n)
such that

where again the a,'s are real. Thus ve see directly that exp: ¢ —U(n)
is onto.

One may treat the special unitary group sU(n) 1in the same way.
SU(n) 1is defined as the subgroup of U(n) consisting o matrices of de-
terminant 1. If exp is regarded as the ordinary exponential map or

metrices, it is easy to show, using the diagonal form, that
det (exp A) = ctrace A

B ; ;
sing this equation, one may show that gq' , the Lie algebra of su(n) 1is

the set of all matrices A such that A + A° = 0 end trace A - o.

In order to apply Morse theory to the topclogy ©f U(n) and su(n),
we begin by considering the set of all geodesics in U(n) from T to -IL.
In other words, we look for all A€ TUn); = ¢ such that exp A = -I.
Suppose A is such a matrix; if it is not already in diagonal form, let

~ € U(n) be such that TAT ' is in diagonal form. Then

“XL AT - T(exp AT - T(-I)T'1 R §
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so that we may as well assume that A is already in diagonal form

s,
A =
ia,
In this case,
ia
e | i
exp A =
. iep
e

so that exp A = -I 1if and only if A has the form

k11n'
kziﬂ

kniﬂ
for some odd integers k1,...,kn.

Since the length of the geodesic t—exp tA from t =0 to t =1
is JA| = Ytr AA*, the length of the geodesic determined by A 1is
n ka ook kﬁ. Thus A determines a minimal geodesic if and only if each
ky equals + 1, and in that case, the length is = Jn. Now, regarding
such an A as a linear map of C" to C" observe that A is campletely
determined by specifying Eigen(ix), the vector space consisting of all
v € C" such that Av = inv; and Eigen(-ix), the space of all Vv € c?
such that Av = -inv. Since C" splits as the orthogonal sum Eigen(ix) @
Eigen(-ix), the matrix A is then completely determined by Eigen(in),
which is an arbitrary subspace of C™. Thus the space of all minimal geo-
desics in U(n) from I to -I may be identified with the space of all
sub-vector -spaces of c".

Unfortunately, this space is rather inconvenient to use since it
has components of varying dimensions. This difficulty may be removed by
replacing U(n) by SU(n) and setting n = 2m. In this case, all the
above considerations remain valid. But the additional condition that
8, +...+ &, = 0 with &; = + = restricts Eigen(ix) to being en arbl-

trary m dimensional sub-vector-space of C?". This proves the following:
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ILEMMA 23.1. The space of minimal geodesics from I to -I

in the special unitary group SU(2m) 1s homeomorphic to the
complex Grassmann manifold Gm(sz),’ consisting of a1l m
dimensional vector subspaces of C°™.

We will prove the following result at the end of this section.

LEMMA 23.2. Every non-minimal geodesic from I to -I
in SU(2m) bas index > 2ms2.

Combining these two lemmas with §22 we obtain:

THEOREM 2.2 (Bott). The inclusicn map G (C°™) —

a(SU(2m); I,-I) induces isomorphisms of homotopy groups
in dimensions < 2m. Hence

1y Gu(C®™) = o« SU(2m)
for 1 < om.

On the other hand using standard methods of homotopy theory one
obtains scmewhat different isomorphisms.

LEMMA 23.4. The group x,G (€™ 1is isomorphic to
"3-1 U(m) for 1 < 2m. Furthermore,

. U(m) = 41 U(m+1) = LT U(m+2) =
for i S am; and

= .

7, U(m) = U
for 541 3 U(m ﬂjS(m)

PROOF. First note that for each m there exists & fibration

U(m) = U(me1) — §2™!
From the homotopy exact sequence

2m+1
[ ﬂi S Sem'i"

_’th

= 55 U(m) — LT Ulmse1) = «

i-1
of this fibration we see that

"3 Ulm) = =, U(mer)  for 1< em.

(Compare Steenrod, "The Topology of Fibre Bundles," Princeton, 1951, p. 35
and p. 90.) It follows that the inclusion homomorphi sms

Ty Ulm) o — ny L UGmer) — 1, Ulme2) = ...

are all isomorphisms for 1 < 2m. These mutually isomorphic groups are
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called the (i-1)-st stable homotopy group of the unitary group. They will
be denoted briefly by LI U.

The same exact sequence shows that, for 1 = 2m+1, the homomorphism
Tom U(m) — Tom U(m+1) = n,, U 1s onto.

The complex Stiefel manifold is defined to be the coset space
U(2m) /U(m). From the exact sequence of the fibration

U(m) —U(2m) — U(em)/ U(m)
we see that ni(U(em)/ U(m)) = o for 1< 2m.
The complex Grassmann manifold Gm(Cem) can be identified with
the coset space U(2m)/ U(m) x U(m). (Compare Steenrcd §7.) From the exact
sequence of the fibration
U(m) —U(zm)/ Ulm) — Gy (CZ™

wve see now that

%G, (€M) —— xy_, U(m)

for 1 < om.

Finally, from the exact sequence of the fibration

SU(m) — U(m) — S' we see that n'jSU(m) = ny U(m) for J # 1. This

completes the proof of Lemma 23.4.

Combining Lemma 23.4 with Theorem 23.3 we see that

LI U = LI U(m) o~ "1Gm(C2m) = oy, SU(2m) = T34 U
for 1 <1 < 2m. Thus we obtain:

PERIODICITY THEOREM. T, U =~ Ty U for 1> 1.

To evaluate these groups it 1s now sufficient to observe that U(1)
1s a circle; so that

L U = L U(1) = o
U = =, U(1) = Z (infinite cyclic).
As a check, since SU(2) 1is a 3-sphere, we have:
U = n,80(2) = o
3 U = 3 8U0(2) = Z .

Thus we have proved the following result.



130 IV. APPLICATIONS

THEOREM 2:.5 (Bott). The stable homotopy groups Ty U
of the unitary groups are periodic with period 2. 1In
fact the groups

n
n

noUgn?U n, U

are zero, and the groups
1(1U gnQUEﬂSU

n

are infinite cyclic.

The rest of §23 will be concerned with the proof of Lemma 23.2.

must compute the index of any non-minimal geodesic from I to -I on

SU(n), where n 1is even. Recall that the Lie algebra

g' = T(SU(n))I

We

consists of all n x n skew-Hermitian matrices with trace zero. A given

matrix A € g' corresponds to a geodesic from I to -I if and only if

the eigenvalues of A have the form ink,,...,1ink, where k,,...,k are

odd integers with sum zero.

We must find the conjugate points to I along the geodesic

t — exp(tA)

According to Theorem 20.5 these will be determined by the positive eigen-

values of the lineapr transformation

KA: g' — ¢

where

K = Ra,wA = g [[A,W],A)
(Compare §21.7.)

We may assume that g is the diagonal matrix

in'k1
1nkn/
with k. > k, > ... > kn. If w - (wjﬂ) then a short computation shows
that
(AW < (1n(ky - Kvyg)
hence

(A, [A,W]) - (~ﬂ2(kj - kﬂ)2 wjl) ,
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and
2
bid 2
Ky = (et - k)% wy)
How we find a basis for g¢' consisting of eigenvectors of KA’ as follows:
1) For each j < ¢ the matrix Ejl with +1 in the (jf)-th
place, -1 in the ({j)-th place and zeros elsewhere, is in @'
and is an eigenvector corresponding to the eigenvalue
2
kg - k) ®
2) Similarly for each J < ¢ the matrix Ej't with +i 1in the
(j2)-th place and +i in the (£j)-th place is an eigenvector,
2
b 2
also with eigenvalue —E(kj - kg) .

3) Each diagonal matrix in g¢' 1is an eigenvector with eigenvalue 0.

Thus the non-zero eigenvalues of KA are the numbers 4§(kj - k()e
with kJ > ky. Each such eigenvalue is to be counted twice.

Now consider the geodesic y(t) = exp tA. Each eigenvalue
e = %—(kJ - kﬂ)2 > 0 gives rise to a series of conjugate points along ~

corresponding to the values

t = =pNe, enpNe, 3xNe,

’

(See §20.5.) Substituting in the formula for e, this gives

t = 2 b 6
kj - kﬂ ’ kJ - kﬂ ’ kj - k@ 4

The number of such values of t in the open interval (0,1) 1s evidently

k, - k
equal to 62;9 - 1.

Now let us apply the Index Theorem. For each J,¢ with kj > Ky

2
we obtain two copies of the eigenvalue l‘h-(kJ - kc)E, and hence a contri-

bution of
k. - k
J {4
2( P - 1)
to the index. Adding over all j,f this gives the formula
Y (ky - Ky - 2
kJ > ky

for the index of the geodesic 7.

As an example, if 7 is a minimal geodesic, then all of the Kj
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are equal to + 1. Hence A = 0, as was to be expected.

Now consider a non-minimal geodesic. Iet n = 2m.

CASE 1. At least m+1 of the ki's eare (say) negative. In this

case at least one of the positive k; must be > :, anil we have

m+1
2 Z (3 -(-1) -2) = 2(m1)

CASE 2. m of the k, are positive and m are negative but not
all are + 1. Then one is 2 2 and one is < -2 so that

m-1 m=1
> ZE (3 - (-1) -2) + 25 (1 - (-3) - 2) + (3 - (-3) - 2)
1 1

= bm > 2(m+1)

Thus in either case we have > em+2. This proves Lemma 23.2,

an,
d therefore completes the proof of the Theorem 23.3.
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§24. THE ORTHCGONAL GROUF 1

§c+. The Fericidicity Thecrem for the Orthogonal Group.

This secticn will carry out en analogous study of the iterated loop
Space < the urthogenal group. However the treatment is rather sketchy, and
many ictaeils are lef't out. The roint of view in this section was suggested

Ly the paper Cliifurd medules by M. Atlyai:, R. Bott, and A. Shapiro,

)

which rolntes the pericdicity thecrem with the structure of certain Clifford

aliscbras. (See Topology, Vol. 3, Supplement 1 (1964), pp. 3-38.)

Ccnsider the vector space R™ with the usual inner product. The
orthogonal group O(n) consists of all linear maps

T - Rn _Rn

which preserve this inner product. Alternatively O(n) consists of all
real n x n matrices T such that T T - TI. This group O(n) can be
considered as a smooth subgroup of the unitary group U(n); and therefore
inherits a right and left invariant Riemannian metric.

Now suppose that n is even.

DEFINITION. A complex structure J on R™ is a linear transfor-

mation J : R" —R", belonging to the orthogonal group, which satisfies
the identity J® - -I. The space consisting of all such complex structures

on R™ 4111 be denoted by @,(n).

We will see presently (Lemma 24.4) that O.,(n) is a smooth sub-
manifold of the orthogonal group O(n).

REMARK. Given some fixed J, e Q,(n) 1let U(n/2) be the subgroup
of O(n) consisting of all orthogonal transformations which commute with

Ji+ Then Q,(n) can be identified with the quotient space O(n)/U(n/2).

LEMMA 24.1. The space of minimal geodesics from I to -I
cn O(n) 1s homecmorphic to the space Q,(n) of complex
structures on Rn.

PROOF: The space O(n) can be identified with the group of n x I
orthogonal matrices. Its tangent space g = TO(n)I can be identified with

the space of n x n skew-symmetric matrices. Any geodesic » With
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7(0) = I can be written uniquely as
y(t) = exp (=t A)
for scme A € g.

Iet n = 2m. Since A 1is skew-symmetric, there exists an element
T € O(n) so that

o a,
-a, 0
0 a,
-820
TAT™' -
0 e,
-8, 0
1t] that T(exp n A)T™' is
#lth 2,,85,...,8, > 0. A short computation shows
equal to
cos ra, sin ra, o 0
-sin xa1 cos na, 0 o)
° 0 cos ra,  sin ra,
° Y -sin ra, cos na,

tegers,
Thus exp(rA)  is equal to -I if and only if a,,8p,--+»&y @&re odd in 82
The 2 2 L...+gp).
The inner product <A,A>  is easily seen to be 2(87 + aj +...+8p
Therefore the gecdesic

- i if
7(t) = exp(nt A) from I toO I is minimal
ani only if g

1=a2="'=am=1-

IT v is minimal then

nence A is g complex structure.

O~
Conversely, let J be any complex structure. Since J is orthog
nal we have

JJ* = I
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where J¥ denotes the transpose of J. Together with the identity
JJ = -I this implies that J¥ - -3. Thus J 1is skew-symmetric. Hence

0 &,
-a,0
TJ T - !
2 :
for some a,,a,,...,8, > 0 and some T. Now the identity J° = -1 implies
that a;, = ... = a, =1; and hence that exp nJ = -I. This completes the

proof.

IEMMA 24.2. Any non-minimal geodesic from I to -I
in O(2m) has index > ‘m-2.

The proof is similar to that of 23.2. Suppose that the geodesic has
the form t — exp(nt A) with

o a,
-310
0 a,
A = —8.20
where a, >8a,> ... >8a8, >0 are odd integers. Computation shows that the
1 (ad A)Z are
non-zero cigenvalues of the linear transformation K, = - ¢ (

1) for each i < j the number (a; + aj)e/ L, and

2
2) for each 1< J with a; # ay the number (&; - aj) /.

Each of these eigenvalues is to be counted twice. This leads to the formula

= - -a, -2
r = z (a; + ay 2) + z (8 - &y )
1< 8y > &y
For a minimal geodesic we have a, =8, = ... =8 -= 1 so that

A = 0, as expected. For a non-minimal geodesic we have &, > 3; SO that

m
x> ? (3+1-2) + 0 = 2m - 2.
2

This completes the proof.

Now let us apply Theorem 22.1. The two lemmas above, together with
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the statement that 01(n) is a2 manifold imply the following.

THEOREM 24.2 (Bott). The inclusion map Q,(n) = 2 0(n)
induces isomorphisms of homotopy groups in -iimensions
< n-L. Hence

ﬂiﬂ1(n) =y, Oo(n)
for 1 £ n-bL,

Now we will iterate this procedure, studying the space of geodesics

from J to -J 1in Q,(n); and so on. Assume that n is divisible by a

high pover of 2,

Let J]:---,Jk_1 be fixed complex structures on R"™ which anti-
commute *,  in the sense that

JPJS + Jer = (o]

for r #s. Suppose that there exists at least one other complex structure

J which anti-commutes with Jysees e g

DEFINITION. Iet Q,(n) denote the set of all complex structures J

on R™® which anti-commute with the fixed structures Jyye- Iy

Thus we have

By (m) €Oy (n) C ... CQ(n) COMN)

Clearly each Q,(n) 1is a compact set. To complete the definition it is
natural to define Q,(n) to be O(n)

*

LEMMA 24.k. Each Q,(f) is 4 smooth, totally geodesic”
submanifold of @(n). The space of minimal geodesics from

Jg to -J, in Qy(n) 1s homeomorphic to y,;(n), for
0< 2 <k

It follows that each component of Q. (n) 1isa symmetric space.
For the isometric reflection of O(n) in a point of ﬂk(n) will automati-
cally carry Qk(n) to itself.

These structures make R™ into a moguie over a suitable Clifford slgebra

However, the Clifford algebras will pe Suppressed in the following presen-
tation.

** A submanifold of a Rilemannian manifolgq is called totally geodesic if
each geodesic in the submanifold is alge & geodesic in larger manifold.
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n

PROOF of 24.4. Any point in o(n) close to the jdentity can be
expressed uniquely in the form exp A, where A 1is a "small," skew-
symmetric matrix. Hence any point in O(n) close to the complex structure

J can be expressed uniquely as J exp A; where again A is small and

skew.
ASSERTION 1. J exp A 1is a complex structure if and only if A
anti-commutes with J.
PROOF: If A anti-commutes with J, then J'AJ = -A hence
I - exp(J-'AJ) expA = J '(exp A)J exp A .
Therefore (3 exp A)2 = -I. Conversely if (J exp A)2 = -I then the

above computation shows that
exp(J"'A J) expA = I
Since A is small, this implies that
J'AT - -A
so that A anti-commutes with J.

ASSERTION 2. J exp A anti-commutes with the camplex structures

JyseeesJypy if and only if A commutes with Jq,..-,Jp -

The proof is similar and straightforward.

Note that Assertions 1 and 2 both put linear conditions on A.
Thus a neighborhood of J in ,(n) consists of all points J exp A where
A ranges over all small matrices in a linear subspace of the Lie algebra g-
This clearly implies that £,(n) is a totally geodesic submanifold of
O(n).

Now choose a specific point Jk € fﬁérﬂ, and assume that there
exlsts a complex structure J which anti-commutes with JI""’Jk‘ Setting
J = JkA we see easily that A 1s also a complex structure which anti-

comrutes with J,. However, A comutes with J,,. Hence the

"’Jk-l’
formula

t — Jk exp(nt A)

defines a geodesic from Jy to -Jy in (lk(n). Since this geodesic 1s
minimal in O(n), it is certainly minimal in (lk(n).
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Conversely, let » be any minimal geodesic from Jy to -y in
Q,(n). Setting y(t) = Jy exp(nt A), 1t follows from 2h.1 that A 18
a complex structure, and from Assertions 1,2 that A commutes with
J1,...,Jk._1 and anti-commutes with Jk' It follows easily that JKA
belongs to Q,,,(n). This completes the proof of 2k.k.

REMARK. The point J A € Q. ,(n) which corresponds to a given
geodesic y has a very simple interpretation: it is the midpoint (%)
of the geodesic.

In order to pass to a stable situation, note that Qk(n) can be
imbedded in Q,(n+n') as follows. Choose fixed anti-commuting complex
structures Jl' seee,

structure J @ J}'{ on R @ R™ which anti-commutes with Iy ® J for

o= 1,000 k-1,

Jp on R, Then each J € Qk(n) determines a complex

DEFINITION. Iet Q) denote the direct limit as n— o of the

spa
Faces Q,.(n), with the direct limit topology. (I.e., the fine topology-)

The s
pace O - %, 1is called the infinite orthogonal group.

It is not difficult to see that the inclusions O.k_”(n) —- 0 Qk(n)
v
Blve rise, in the limit, to inclusions Q,,, — 20 -

THEOREM 24.5. For each Kk > 0 this limit mep Q,, —
29y 1is a homotopy equivalence. Thus we have isomorphisms

LER L

n

O = Thet @, = o2, = ...
The proof will be given presently.

Next we will give individuel descriptions of the manifolds Qk(n)
Hor k0,10, 8.
Q4(n) 1s the orthogonal group.
Q,(n) 1is the set of all complex structures on R
Gis F
1iven a fixeq complex structure J, we may think of R" as being a vector
n/2
space ¢ over the complex numbers,
Q25(n) can be described as the set of "quaternionic structures" on

the complex vector space €72, Given a fixed J, € 2,(N) Ve may think of
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Cl’l/? n/h

as being a vector space H over the quaternions H. Let Sp(n/b)

be the group of isometries of this vector space onto itself. Then .Q,g(n)
can be identified with the guotient space U(n/2)/ Sp(n/b).

Before going further it will be convenient to set n = 16r.

LEMMA 24.6 - (*). The space Q.(16r) cen be identified
with the guaternionic Gressmann manifold consisting of
all quaternionic subspaces of l-[hr.

FROOF: Any complex structure J3 € 93(161-) determines a splitting

- L
of H'T - Rl 6r into two mutually orthogonal subspaces V1 and V, as fol-

lows. Hote that J1J?J3 is an orthogonal transformation with square

J1J?J3J1J?J3 equal to + I. Hence the eigenvalues of J,J,J., are + 1.

3

let v, C R16P be the subspace on which J,.If?J3 equals + I; and let V,

be the crthogonal subspace on which it equals -I. Then clearly

R'®" . v ov,. since J,J,J, commutes with J, and J, it is clear

that both V, and V, are closed under the action of J, and J,-
Conversely, given the splitting H'T = V, @V, into mutually

orthogenal quaternionic subspaces, we can define J3 € ,('23(161') by the
identities

[ 3,1V,
Lo,

This proves Lemma 24.6 -(3).

-3,3,1V,

IV,

The space Q;(16r) 1is awkward in that it contains components of
varying d4imension. It is convenient to restrict attention to the component
of largest dimension: namely the space of ?r-dimensional quaternionic sub-

spaces of Hhr. Henceforth, we will assume that J3 has been chosen in

this way, so that dimHV1 = dimHVf = 2p.

LEMMA #4.6 - (). The space Qh(mr) can be identified
with the set of all quaterniocnic isometries from v, to
V . Thus Q,(16r) is diffeomorphic to the symplectic
group Sp(er).

PROOF: Given J), € ,(16r) note that the product J.J, anti-

3
commutes with J,J,J, . Hence J3J, maps V, to V, (and V, to v,).
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Since J3Jh commutes with J1 and J? we see that

I, 2 Yy Ve
is a quaternionic isomorphism. Conversely, given any such isomorphism
T: VvV, =V, it is easily seen that J, 18 uniquely determined by the

jdentities:

-1
g0, = 33 T

—T" J

n

I\, 3

This proves 24.6 - (4).

1LEMMA 24.6 - (5). The space 05(161') can be identified
with the set of all vector spaces W C V4 such that

(1) W 1is closed under J, (L.e., ¥V ijs a complex
vector space) and

(2) V, splits as the orthogonal sum W % I, M

PROOF: Given J € Q(16r) note that the cpensformation J,3.J5
commutes with J1J2J3 and has square + I. Thus J1JhJ5 maps V, into
itself; and determines a splitting of V, into two mutually orthogonal sub-
spaces. Let W CV, be the subspace on which J,7J5 coincides with + I.
since J, anti-commtes with JJ,Jg, 1t follovs that JW CV, 1s

precisely the orthogonal subspace, on which J4J s equals -I. Clearly
J1W = W.
Conversely, given the subspace W, it is not difficult to show that

J 5 is uniquely determined.

REMARK. If U(2r) C Sp(2r) denotes the group of quaternionic auto-

morphisms of V., keeping W fixed, then the quotient SPace Sp(zr) / U(20)
can be identified with 9,5(161') .

ILEMMA 24.6 - (6). The space 96(16r) can be identified
with the set of all real subspaces X C V¥ sach that W
splits as the orthogonal sum X ® J,X.

PROOF. Given J. € @ (16r) note that the transformation J,J,J6

commutes both with J,J,J, and with J I3 J5- Hence JJyJg mMAPS w into
itself. Since (JZJhJ6)2 - I, it follows that JQJhJ6 determines a
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splitting of W into two mutually orthogonal subspaces. Let X C W be the
subspace on which J?JhJe equals +I. Then J,X will be the orthogonal
subspace on which it equals -I.

Conversely, given X C W, it is not hard to see that J6 is unique-
ly determined.

REMARK. If O(?r) C U(2r) denotes the group of complex automor-

phisms of W keeping X fixed, then the guotient space U(2r)/ O(2r) can
be identified with (16(16r).

IEMMA 24.6 - (7). The space (17(16r) can be identified

with the real Grassmann manifold consisting of all real
2r

subspaces of X = R .

PROOF: Given J7, anti-commuting with J,,...,J, note that

JJglq commutes with J1J2J3, with J,J,J

square +I. Thus J‘JGJ7 determines a splitting of X into two mutually

5, @nd with J,J,Jg; and has

orthogonal subspaces: X, (where J1J6J7 equals +I) and X5 (where
J19gI7 equals -I). Conversely, given X, C X it can be shown that Jq
is uniquely determined.

TMswmeQ#wm,hmaﬁwm,MSwmmmmofmmmgﬂmm

slon. Again we will restrict attention to the component of largest dimen-

sion, by assuming that

dim X1 = dim X2 =r.

Thus we obtain:
ASSERTION. The largest component of ()7(16r) is diffeomorphic to

the Grassmann manifold consisting of r-dimensional subspaces of ReT.

LEMMA 24.6 - (8). The space Qg(16r) can be identified
with the set of all real isometries from X, to XQ.

PROOF. If J8 EIIB(IGr)
commutes with J,J,J;, J,J,J

then the orthogonal transformation J7J8
5 and JQJhJG; but anti-commutes with J1J6J7-

Hence J7J8 maps X, 1isomorphically onto X,. Clearly this isomorphism
determines J8 uniquely.

Thus we see that ()8(16r) is diffeomorphic to the orthogonal
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group” O(r).

Let us consider this diffeomorphism Q,(16r) —O(r), and pass to
the limit as r — . It follows that Qg 1s homeomorphic to the inrinite
orthogonal group O. Combining this fact with Theorem 24.5, we obtain the
following.

THEOREM 24.7 (Bott). The infinite orthogonal group O has
the same homotopy type as its own 8-th loop space. Hence
the homotopy group n; O 1is isomorphic to ;,40 for i1 > 0.

If Sp =Q, denotes the infinite symplectic group, then the above
argument also shows that O has the homotopy type of the 4-fold loop SPac€
2000 Sp, and that Sp has the homotopy type of the k-fold loop space
2200 0. The actual homotopy groups can be tabulated as follows.

1 modulo 8| O | %; Sp
0 z, °
1 zZ, 0
2 0 0
3 z z
L 0 z,
5 0 z,
6 o 0
7 z Y/

The verification that these groupsare correct will be left to the reader-
(Note that Sp(1) 1is a 3-sphere, and that SO(3) 1is & Projective 3-spece.
The remainder of this section will be concerned with the proof of
Theorem 24.5. It is first necessary to prove an algebraic lemma,
Consider a Euclidean vector space V with anti-commuting compl€X

structures J,,... PO

For k > 8 it can be shown that Q, (16r) 1is diffeomorphic to ﬂk—s(r) .

In fact any additional complex structures J_.J .,J, on Rl6r give

9710’ " "
rise to anti-commuting complex structures J8J9, JBJ'O, JBJ”, e ’JBJk

15 and hence to an element of Qk_a(rn). However, fOr OUr Purposes it

on

X
will be sufficient to stop with k - g,
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DEFINITION. V is & minimel (J ..,Jk)—space if no proper, non-

12°
trivial subsrace is closed under the action of Jys---, &nd Jp . Two such
minimal vector sraces are iscmorphic if there is an isometry between them

which commutes with the action of J )

100 K

IEMMA 24.8 (Bott and Shapire). For k ¥ 3 (mod L), any

two minimal (J1,...,Jk) vector spaces are isomorphic.

The proof of 24.8 follows that of 24.6. For k = 0,1, or 2 a
minimal space is just a 1-dimensional vector space over the reals, the
complex numbers or the quaternions. Clearly any two such are iscmorphic.

For k = 3 a minimal space is still a 1-dimensional vector space
Over the quaternions. However, there are two possibilities, according as
J3 1s equal to +J,J, or -J,J,. Thisglives two non-isomorphic minimal
Spaces, both with dimension equal to 4. Call these H and H'.

For k = 4% a minimal space must be isomorphic to H & H', with
J3J, mapping H to H'. The dimension is equal to 8.

For k = 5,6 we obtain the same minimal vector space H @ H'. The
complex structures J5,J6 merely determine preferred complex or real sub-
Spaces. For k = 7 we again obtain the same space, but there are two

possibilities, according as J,; 1s equal to +J1J,930),J5Jg oOF to

-J1J2J3JhJ5J6. Thus in this case there are two non-isoerphic minimal
vector spaces; call these L and L!'.

For k = 8 a minimal vector space must be isomorphic to L & L',
with JJg mapping L onto L'. The dimension is equal to 16.

For k > 8 it can be shown that the situation repeats more or less
periodically. However, the cases k < 8 will suffice for our purposes.

let m_  denote the dimension of a minimal (Tys-- .,Jk) -vector space.

From the above discussion we see that:

m0=1,m.|=2,m =m, = L
my, = Mg = mg = m, = 8, mg = 16.

For k > 8 it can be shown that my, =

16my _g-
REMARK. These numbers m,are closely connected with the problem
of constructing linearly independent vector fields on spheres. Suppose for

€xample that Jis---5Jd are anti-commuting complex structures on a vector
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space V of dimension rm, . Here r can be any positive integer. Then
for each unit vector u € V the k vectors Ju, Jou,..., Jyu are perpen-
dicular to each other and to u. Thus vwe obtaln k 1linearly independent
vector fields on an (rmy-1)-sphere. For example we obtain = vector
fields on a (4r-1)-sphere; 7 vector fields on an (8r-1)-sphere; 8 vector
fields on a (16r-1)-sphere; and so on. These results are due to Hurwitz

and Radon. (Compare B. Eckmann, Gruppentheoretischer Bewels des Satzes von

Hurvwitz-Radon..., Commentarii Math. Helv. Vol. 15 (1943), pp. *58-766.) J.

F. Adams has recently proved that these estimates are best possible.

PROOF of Theorem 24.5 for k # 2 (mod 4). We must study non-

minimal geodesics from J to -J in (Ik(n), Recall that the tangent space

of ,(n) at J consists of all matrices J A where

1) A is skew

2) A anti-commutes with J

3) A commute
8 with J1""’Jk-1'
tet T denote the vector space of all such matrices A. A given A e T

corresponds to a geodesic t—J exp (ntd) from J to -J 1if and only if

its eigenvalues are all ogq multiples of i

Each such A e 7 determines a self-adjoint transformation
K

A T—T. Since Q(n) 154 totally geodesic submanifold of O(n), we
can compute K

;, by the formuls

KB = -¢ [4,04,B]) . (-A°B + 2ABA - BAD) /b,
just as before. We must construct some non-zero eigenvalues of K, so as
to obtain a lower bound fopr the index of the corresponding geodesic
t =37 exp(nt A)
Split the vector space RI as a direct sum M, ® M, ® ... @ Mg of

mutually orthogonal subspaces which are ¢losed and minimal under the action
of Jy,..e,Jp y, J and A. Then the eigenvalues of A on My must be

11 1 t f *
all equal, except for sign. Fop otherwise My would split as a gum of

Vie are dealing with the complex elgenvalues of a real, skew-symmetric

transformation. Hence these eigenvalues are pure imaginary; and occur in
conjugate pairs.
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eigenspaces of A; and hence would not be minimal. Let + iay be the two

eigenvalues of Ath; where a,,. a_ are odd, positive integers.

-8y
Now note that J' = aﬁ‘JAth; is a complex structure on M, which
enti-commutes with J,,...,J, _;, and J. Thus My is (JqyseeesTpaq 9,9
minimal. Hence the dimension of M, 1is my, ,. Since k + 1 # 3 (mod &)
we see that M1,M?,...,MS are mutually isomorphic.
For cach pair h,j with h # j we can construct an eigenvector
B: R"—R" o7 the linear transformation &:TﬂT as follows. Let
B|My, be zerc tor ( £ h,j. Let B|Mh be an isometry from M, to MJ
which satlisiies the conditions
BJ, = JB for a=1,...,k-1;
BJ = -JB and BJ' = +J'B .

In other words BIMh is an lscmerphism from My to M;; where the bar in-
dicates that we have changed the sign of J on Mj' Such an isamorphism
exists by 24.8. Finally let BIMJ be the negative adjoint of Bth-

Proof that B belongs to the vector space T. Since
<Bv,w> = v,-Bw> for vebM, vebly

it is clear that B 1is skew-symmetric. It is also clear that Bth com-

mutes with J,,...,J,_; and anti-commutes with J. It follows easily that
the negative adjoint BIM‘j also commutes with J1,.-
commutes with J. Thus B € T.

,,Jk_1 and anti-
We claim that B is an eigenvector of K, corresponding to the
elgenvalue (ay, + aj)e/h. For example if v € M, then

(KB)v = 1 (-A®B + 2ABA - BA®)v

n

= % (ang + 2ajBahv + Baﬁv)
= % (aj + a.h)2 Bv ;
and a similar computation applies for v e Mj.
Now let us count. The number of minimal spaces M, C R" is given
by s = n/mk+1. For at least one of these the integer ay must be > 3.
For otherwise we would have a minimal geodesic. This proves the following
(always for k # 2 (mod 4)):

ASSERTION. K, has at least s-1 eigenvalues which are
> (3+41)3/4 = 4, The integer s = n/m,,, tends to infinity with n.
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2
Now consider the geodesic t — J exp(rt A). Each eigenvalue e

of Ky glves rise to conjugate points along this geodesic for
t = 9-1, 29-1, 3e_1,... by 20.5. Thus if e° > L then one obtains at

least one interior conjugate point. Applying the index theorem, this proves
the following.

ASSERTION. The index of a non-minimal geodesic from J to -J in
Q,(n) 1s 2 n/m .- 1.

It follows that the inclusion map

Q .,(n —a Q. (n)
induces isomorphisms of homotopy groups in dimensions < n/mk+1 - 3. This
pumber tends to infinity yitn n. Therefore, passing to the direct limit

88 D=, it follows that the inclusion map 1 : @, , — 0 Q_ induces
iscmorphisms of homotopy groups in all dimensions. But it can be shown

- . here-

that both Q.. ang 8 &y  have the homotopy type of a CW-complex. T

fore, by Whitehead's theorem, 1t rollows that 1 1s a homotopy equivalence,
E

This completes the Proof of 24.5 providing that k # 2 (mod bu).

PROOF of k.5 pPop k = 2 (mod 4). The difficulty in this case may

be ascribed to the fact that Q has an infinite cyclic fundamental

K(n)
imat-
group. Thys Q(Ik(n) has infinitely many components, while the approx

ng subspace @ (n) paq only finitely many.

To describe the fundamental group ﬂ#)k(n) we construct a map

T ()k(n) - S1 cc

as follows. Let J1,...,Jk be the fixed anti-commuting complex struc-
-1

n
ture on R Make RP into an (n/2)-dimensional complex vector space by

defining

1V = J1J2 PRI Jk_~|v
F n
OV €R;  whepe 1-V3 eq. The condition k = 2 (mod 4) guarantees

~

that it = -1
B) and that J1’J2,. "Jk-1

Choose g base point g e()k(n), For any J' € (zk(n) note that the
composition J7 'y

commute with 1i.

commutes with 1. Thus J'J' 1s a unitary complex

iinear transformation, and has g well defined complex determinant which wily
be denoted by (g
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Now consider a geodesic
t — J exp(ntd)
from J to -J in @ (n). Since A commutes with 1 = J T, e Ty
(compare Assertion 2 in the proof of z4.%:) we may think of A also as a
complex linear transformation. In fact A 1is skew-Hermitian; hence the

trace of A 1s a pure imaginary number. Now
£(J exp(ntA)) = determinant (exp(ntA)) = et trace A

Thus f maps the given geodesic into a closed loop on s' which is com-
pletely determined by the trace of A. It fcllows that this trace is in-
variant under homotopy of the geodesic within the path space ﬂﬁlk(n);J,-J)-
The index X of this geodesic can be estimated as follows. As
before split R™ into an orthogonal sum M, ®...8M, where each My
is closed under the action of J,,...,J,_,,J, and A; and is minimal.
Thus for each h, the complex linear transformation AIMh can have only
one eigenvalue, say 1ia,. For otherwise My would split into eigenspaces.
Thus A|M, coincides with a,J.J, ... J,_,IM,. Since M, is minimal under
the action of Jysersdyy, and J; its complex dimension is mk/2-
Therefore the trace of A 1s equal to i(a1+...+ar)mk/2.

Now for each h # j an eigenvector B of the linear transforma-
tion

B~ KB = (-A°B + zABA - BA®) /b
can be constructed much as before. Since Mh and MJ are (J1:--':Jk-1'J)'

minimal it follows from 24.8 that there exists an isometry

BIMh oMy Mj
which commutes with J,,...,J, , and anti-commtes with J. Let BIM; be
the negative adjoint of BIM_; and let BIM, be zero for ¢( # h,j. Then

an easy computation shows that
KB = (e - ay) B/
Thus for each a > ay we obtaln an eigenvalue (a, - aj)?/h for K-

Since each such eigenvalue makes a contribution of (ay - aj)/e -1

towards the index 1, we obtain the inequality

x> jg (ay, - ay - 2)
ah> &j
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Now let us restrict attention to some fixed ccmpenent of 12 £y(n).

That is let us look only at matrices A such that trace A = icmk/e where

c 1is some constant integer.

Thus the integers 8y,...8, satisfy

N ey za,=...za =1 (mod2), (since ~xp(xd) - -T),

2) &y 4.+ a, =c¢, and

2) Mﬁx Iahl > 3 (for a non-minimal geodesic) .

Suppose for example that some a, 1s equal to -3. Let p Dbe the sum of

the positive 2, and -q the sum of the negative &y. Thus

P-q = ¢, p+12r

hence 2p >r+c. Now

2x > 25 (ay - ay - 2) > }g (ay, - (-3) -3) = p ,
an > aj ay >0
hence 4\ > 2p> r . ¢; where r - n/my, tends to infinity with n. It
follows that the component of 2 Q (n) is approximated up to higher and
higher dimensions by the corresponding component of (1k+1(n), as n— o .

Pessing to the direct 1imit, we obtain a homotopy equivalence on each com-
2
ponent. This completes the proof of 24.5.

o
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AFPPENDIX. THE HCMCTOFY TYFE OF A MCNCTONE UNICN

The objJect of this appendix will be to give an alternative version
for the final step in the proof of Theorem 17.3 (the fundamental theorem
of Morse theory). Given the subsets an C na‘ C 032 C ... of the path
space 0 = a(M;p,q), and glven the information that each a°l has the
homotopy tyre of a certain CW-complex, we wish to prove that the union @
also has the homotopy type of a certain CY-complex.

More generally consider a topological space X and a sequence
X 0x, ¢ X, C ... of subspaces. To what extent is the homotopy type of
X determined by the homotopy types of the X7

It is convenient to consider the infinite union
Xy = Xg x[0,1] v X;x [1,2) v X, x[2,3] v ...

This is to be topologized as a subset of X x R.

DEFINITION. We will say that X is the homotopy direct limit of

the sequence (X;) if the projection mep p : Xz = X, defined by

p(x,T) = x, 1is a homotopy equivalence.

EXAMPLE 1. Suppose that each point of X lies in the interior of
some Xi, and that X 4is paracompact. Then using a partition of unity one
can construct a map

f : X—=R
SO that f(x) > 1+1 for x ¢ X;, and f(x) > 0 for all x. Now the corres-
pondence x — (x,f(x)) maps X homeomorphically onto a subset of X; which
1s clearly a deformation retract. Therefore p 1is a homotopy equivalence;

and X 1is a homotopy direct limit.

EXAMPLE 2. Let X be a CW-complex, and let the X; be subcomplexes
with union X. Since p : Xz = X induces isomorphisms of hcmotopy groups
in all dimensions, it follows from Whitehead's theorem that X 1is a homotopy
direct limit.
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EXAMPLE 3. The unit intervel (0,1] is not the homotopy direct
limit of the sequence of closed subsets (0] o [1/1,1].

The main result of this appendix is the following.

THEOREM A. Suppose that X 1is the homotopy direct
limit of (Xy) and Y is the homotopy direct limit
of (¥y]. Let f: X—=Y be a map which carries each
Xy Into Y, by a homotopy equivalence. Then f

itself is a homotopy equivalence.

Assuming Theorem A, the alternative proof of Theorem 17.3 can be

given as follows. Recall that we had constructed & commutative diagrem

o)

a a
2 i ‘¢ T 2¢ ...
Ky, €K, CK,C ...
of homotopy equivalences' Since aq U Qai

and K =U K1 are homotopy
direct limits (compare Examples 1 and 2 above), 1t follows that the limit
mapping Q — K
Fpine 1s also & homotopy equivalence.
PROOF of
Theoren A. Define fy ¢ X — Yy by fg(x,t) = (F(x),t).

It is cle i
arly Sufficient to prove that f. 1s a homotopy equivalence.
z
CASE 1., Suppose that
(obtained by restricting )
that fz

Xy =Y, end that each msp fy : Xy =¥y

1s homotopic to the identity. We must prove
is a homotopy ®Quivalence

REMARK.

Under thege conditions it would be natural to conjecture
that fz

must actual
1y be hOmOtopic to the identity. However counter-
examples can be given.

For each n let

Ry X=X

be a one-parameter f
8Ly of mappings, with nd = £, 0y - identity.

Define the homotopy

Byt X~ X
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as follows (where it is always to be understood that o0 <t <1, and

n=0,1,2,...).

(R3(x),ne2t) for 0<t< %

ny(x,met) = 4 (B 4y (x),0e0) for F<t<e
3

(Bt seye (¥),0e1) for <t

Teking u = 0 this defines a map ho D S )(2 which is clearly hcomotopic
to ;. The mapping h, : X; = X; on the other hand has the following

rroperties:

hy(x,n+t) = (x,n+2t) for 0<t< 3

In
In

(i

hy(x,n+t) € X, ,x[ns1]  for 3t <1

We will show that any such map h; 1is a homotopy equivalence. In fact a
hcmotory inverse g : XE — Xz can be defined by the formula

(x,n+2t) 0<t< 3
g(x,n+t) = 3 .
hy(x,ne5 - t) <t <1

This is well defined since
hy (x,n+3) = hy(x,n+1) = (x,n+1)

Proof that the composition h;g 1is homotopic to the identity map
of X.. Note that

(x,n+bt) o<ttt
hyg(x,n+t) = 4 h, (x,n+2t) ettt
hy (x,n43 - t) tEARS
Define a homotopy H, + Xy = X; as follows. For o< ucg 3 let
h, g(x,n+t) for 0<tX (1-u) /2
H,(x,n+t) = and for H+u<t<1

h (x,n+1-u) for (1-u)/2 < t< %+ u
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This is well defined since
h1g(x,n+(1-u)/2) - h1g(x,n+%+u) = h(x,ns1-0).

low Ho 1s equal to h1g and H% 1s given by

(x,n+bt) 0<tg 0
H%(x,mt) = { .
(x,n+1) <t

Clearly this is homotopic to the identity.
Thus h,g 1is homotopic to the identity; end & completely enalogous
argument shows that gh, 1is homotopic to the identity. This completes the

proof in Case 1.

CASE 2. Now let X and Y be arbitrary. For each n 1let
&n P Y~ X, Dbe a homotopy inverse to £,. HMNote that the diagram

&n
Yn Xn
Jn I in
Eny1
Yn+ I—+_. )8’1"‘ 1

(v
fere 1, ana Jp denote inclusion maps) is homotoPy commutative. IN

fact

ingn ~ gn+1f11+‘|1ngn = gn-'.ljnfngn ~ ngJn

Chy n s
O0se g Specific homotopy }-{: P Y~ Xpe1 with hy = ingn’ h? = 3n+1jn’

and
define G : Y): - Xz by the formula

(gy(¥) ,ne2t) 0<t<3
G(y,n+t) = { .
(hDy_y () ,m+1) 2Lt

w .
© V11l show that the composition Gfy : X, — X, 1is @ homotopy equiveléfce

T
Te n
t Xy denote the subset of X; consisting of all peirs (x ) with

TS0, (Thus X - Xox[0,1) v i o x  x(n-1,n] v X, x[nl.) pe compo.

Sttion Gr.  capries Xy 1into itself by a mapping which 18 homotopic tO th

tdentity,  In ract X contalns X x[n] as deformation retracy; and the

"ePPing Gfy restricted to X x[n] can be identified with &nf'ns and

hence 14 homotopic to the identity. Thus we can apply C8Se 1 o the seduer
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[xgl, and conclude that Gfy 1s a homotopy equivalence.
This proves that fj has a left homotopy inverse.
argument shows that sz : Yi-* Yz

A similer
is a homotopy equivalence, so that

g has a right homotopy inverse. This proves that f. 1is a homotopy

equivalence (compare rage 22) and completes the proof of Theorem A.

COROLLARY. Suppose that X 1is the homotopy direct
limit of (X;). If each X; has the homotopy type
of a CW-complex, then X 1itself has the homotopy
type of a CW-complex.

The proof is not difficult.
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