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Introduction 

THE SINGLE LAW OF CHANCE-OUTLINE OF THE WORK 

1. The Single Law of Chance. Can there be laws of chance? 
The answer, it would seem, should be negative, since chance is 
in fact defined as the characteristic of the phenomena which 
follow no law, phenomena whose causes are too complex to 
permit prediction. However, following the lead of Pascal, 
Galileo, and many other eminent thinkers, mathematicians have 
built a science, the calculus of probabilities, the object of which 
is generally defined as the study of the laws of chance. Actu
ally, the chief object of the calculus of probabilities is, as its 
name indicates, to evaluate the probabilities of complex pheno
mena in terms of the presumably known probabilities of 
simpler phenomena. 

How can the calculus of probabilities permit the prediction 
of certain fortuitous eventualities? The mechanism of predic
tion is always the same and invariably brings in the single law of 
chance, of which we shall speak in greater detail, and which 
consists essentially of this: Phenomena with very small proba
bilities do not occur. It is then a matter of combining simple 
phenomena into complex phenomena whose probabilities cal
culated in terms of those of the simple phenomena are small 
enough for the application of the single law of chance. 

We shall make use in this little book of certain results of the 
calculus of probabilities, but it is not at all necessary that the 
reader know the intricacies of the methods by which these 
results were obtained; he need only trust the mathematicians, 
just as an industrialist trusts his accounting department 
without feeling compelled to go over all the additions and 
multiplications. 

The principles on which the calculus of probabilities is 
based are extremely simple and as intuitive as the reasonings 
which lead an accountant through his operations. The simple 
probabilities are sometimes deduced by arguments of sym
metry: If a coin is flipped (as in the game of heads or tails), there 
is one chance out of two of turning up heads and one out of two 

I 



2 PROBABILITIES AND LIFE 

of turning up tails. With a six-sided die, the probability for 
each side is one-sixth ; there is one chance out of six of turning 
up four. Other probabilities, of a more complex nature, are 
derived from experiments or statistics. If out of I 0,000 men of 
age 80, 1,087 die in the course of a year, we conclude that the 
probability that a man of 80 will die within a year is about 
10.87 per cent, or 0.1087. Clearly, empirical probabilities are 
not rigorously established ; all that is known are approximate 
values, which is also the case for all physical magnitudes that 
can be measured. However precise the measuring instru
ments, their accuracy is limited. The symmetry of a die or a 
coin is never perfect; and so the value 1/2 or 1/6 of the proba
bility is only an approximation. 

Once the simple probabilities are known, it is a matter of com
bining them. If two coins are flipped simultaneously or the 
same coin is flipped twice, the probability of turning up the 
same side twice will be equal to the product of one-half by 
one-half, or one-fourth. If two dice are thrown, the probability 
of obtaining the double six will be 1/6 multiplied by 1/6, or 1/36. 
But the probability of 6 and 5 with two dice will be 1/18, since 
one may have either 6 with the first die and 5 with the second or . ' 6 with the second and 5 With the first, and each eventuality has 
the probability 1/36. 

By analogous procedures and observations the actuaries 
of insurance companies, using the mortality tables for men and 
women, are able to solve a problem such as the following: A 
couple, husband, age 60, wife, 55, pay 10,000 francs for an 
annuity to be paid till the death of the last survivor. What 
should be the amount of the annuity, for a given rate of interest 
if no account is taken of the profit which the insurance com pan; 
must retain to provide fo~ general expenses and to set up 
reserves to guarantee that It shall meet its obligations in all 
eventualities? A more difficult problem, still solvable by the 
same principles, is how much the company must retain to be 
practically certain of fulfilling its engagements to its annuitants 
even if some of them are lucky enough to live a very long time: 
To solve this second problem we must have recourse to the single 
law of chance which we have already mentioned. 

~his law is extremely simple and intuitively evident, though 
ratiOnally undemonstrable: Events with a sufficiently small 
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probability never occur; or at least, we must act, in all circum
stances, as if they were impossible. 

A classical example of such impossible events is that of the 
miracle of the typing monkeys, 1 which may be given the follow
ing form: A typist who knows no other language than French 
has been kept in solitary confinement with her machine and 
white paper; she amuses herself by typing haphazardly and, at 
the end of six months, she is found to have written, without a 
single error, the complete works of Shakespeare in their English 
text and the complete works of Goethe in their German text. 
Such is the sort of event which, though its impossibility may not 
be rationally demonstrable, is, however, so unlikely that no 
sensible person will hesitate to declare it actually impossible. 
If someone affirmed having observed such an event we would 
be sure that he is deceiving us or has himself been the victim of a 
fraud. 

The case of the typist's reproducing the works of Shakespeare 
and Goethe without knowing them is so miraculous that no one 
can entertain any doubt about its impossibility. Less unlikely 
though still very improbable events could be imagined. Let us 
say that the typist wrote one verse of Shakespeare or Goethe, or 
only the first two words of one of their works. It is in such 
cases that the calculus of probabilities must intervene, since it 
permits the exact evaluation of the probability of the imagined 
event. We shall see later (Chapter Three) between what limits 
one is more or less authorized to regard this probability as 
negligible. 

2. It is Repetition that Creates Improbability. If we analyze 
the case of the miraculous typist, we notice that the improb
ability comes from the fact that total success demands that a 
partial success be realized a very great number of successive 
times. The partial success consists of the fact that the first letter 
tapped by the typist is precisely the first letter of Faust. That 
success is not very probable since there are twenty-six letters in 
the alphabet, but it is not at all unlikely. The same may be said 
of the second letter which, by luck, might very well coincide 
with the second letter of Faust; the same of the third letter, and 
so on. Each of these partial successes, taken by itself, appears 

1 See Emile Borel, Le Hasard (Aican), pp. 164-399. 



4 PROBABILITIES AND LIFE 

quite possible; it is their almost indefinite repetition that 
creates improbability and rightly seems to us impossible. 

One of the classical problems studied by the calculus of 
probabilities is precisely the probability of this or that result 
when the same test is repeated indefinitely. For instance, a 
coin is flipped and tails is considered the favorable result. 
What is the probability that the favorable event will be obtained 
10,000 times out of 10,000 successive ftippings? What is the 
probability of more than 6,000 favorable events out of 10,000 
ftippings? Calculation shows that these probabilities are so 
small that, according to the single law of chance, the respective 
events must be regarded as impossible. 

3. Outline of the Work. We wish to study in this book ap
plications of the calculus of probabilities to a number of 
questions chosen from among those which directly concern 
every man-questions which, for the most part, are related to 
either everyday living or to illness and death. We shall there
fore leave aside the important applications of the calculus of 
probabilities to science, notably to the physical sciences.2 Let 
us recall, however, that the importance of these applications, 
and the discoveries which they have produced, constitute one of 
the most solid proofs of the exactness of the results of the 
calculus of probabilities. Nor shall we develop the applications 
of the calculus of probabilities to the theory of games of chance, 
applications which were the origin of the calculus of probabili
ties and have remained one of its most attractive branches. 
We shall only refer to them from time to time, as 'Ve borrow 
from them simple examples to illustrate or make clearer certain 
results which we shall have to utilize. 

The brief explanations which we have just given concerning 
the single law of chance and the miraculous typing feat suffice 
to suggest a preliminary difficulty to which our first two chap
ters are devoted. This difficulty is the following: The calculus 
of probabilities is an exact science, whose results are as reliable 
as those of arithmetic or algebra, as long as it confines itself to 
the numerical evaluation of probabilities. For thus one would 
obtain the probability of the miraculous feat of typing the works 

2 See my other works: Le Hasard (Aican) and Le Jeu, Ia Chance et /es 
theories scientijique.1· modemes (Gallimard). 
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of Shakespeare and Goethe. If these works comprise fifty 
volumes the size of this one, say about 10 million letters, the 
probability of the miraculous event which we have imagined 
is equal to unity divided by a number of more than 10 million 
figures. This result is as incontestable as that of any correctly 
done arithmetical operation. But in concluding from its 
extremely small probability that the typist's miraculous feat is 
impossible, by virtue of the single law of chance, we leave the 
domain of mathematical science, and it must be recognized that 
the assertion, which seems to us quite evident and incontestable, 
is not, strictly speaking, a mathematical truth. A strictly 
abstract mathematician could even claim that the experiment 
need only be repeated a sufficient number of times, namely, a 
number of times represented by a number of 20 million figures, 
to be sure, on the contrary, that the miracle will be produced 
several times in the course of these innumerable trials. But it is 
not humanly possible to imagine that the experiment can be so 
often repeated. If the dimensions of the universe are assumed 
to be equal to a billion billion light years, the number of atoms 
which it could contain, if it were full of matter, is expressed by a 
number of less than two hundred figures, and in the course of a 
billion billion years there are fewer seconds than a number of 
fifty figures would express. If, therefore, in that lapse of time, 
every atom of the universe were transformed into a typist and 
repeated the experiment every thousandth of a second, the 
total number of experiments would be much less than a num
ber of three hundred figures. It is then clearly absurd to 
imagine experiments whose number would extend to more 
than a million figures; that is a purely abstract conception, a 
piece of mathematical juggling of no consequence, and we must 
trust our intuition and our common sense which permit us to 
assert the absolute impossibility of the typist's miracle which we 
have described. 

Cases will present themselves, however, where intuitive 
evidence will be less clear and where it would nevertheless be 
legitimate, by virtue of the law of chance, to arrive at in
contestable assertions. That these assertions do not possess 
the absolute truth of mathematical theorems must not be 
concealed; any such subterfuge would run the risk of justifying 
all the doubts as to their exactness. It must be well understood 
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that the single law of chance carries with it a certainty of another 
nature than mathematical certainty, but that certainty is com
parable to one which leads us to accept the existence of an 
historical character, or of a city situated at the antipodes, of 
Louis XIV or of Melbourne; it is comparable even to the 
certainty which we attribute to the existence of the external 
world. 

This digression makes clear the nature of the preliminary 
difficulty to which the first two chapters are devoted. Simple 
common sense suffices to make anyone realize, more or less 
clearly, the peculiar character of assertions based on the cal
culus of probabilities; from there to expressing doubts about 
the exactness of these assertions is but a step. This step is 
readily made, as we shall see, by men whose psychology 
induces them to reject certain results deduced from the calculus 
of probabilities. 

Our first chapter is concerned with the relations between the 
calculus of probabilities and the psychology of gamblers. The 
second chapter takes up the difficulties which arise in the minds 
of many quite reasonable men as soon as they consider the 
probabilities regarding human life. 

In Chapter Three we try to specify the values of the probabili
ties which may and must be considered as practically negligible. 
We are thus led to define successively the negligible probabilities 
on the human scale, on the terrestrial scale, on the cosmic and 
the supercosmic scales. The chapter ends with some remarks 
on the definition of the probabilities of everyday life. 

Chapter Four deals with the occurrence of events whose 
probability is very small, without, however, being absolutely 
negligible, when the number of tests becomes very large. We 
see that a very practical law, the law of Poisson, may be deduced 
from the single law of chance. 

Chapter Five studies more intensively the probabilities of 
deaths already mentioned in Chapter Two, as well as the proba
bilities of illnesses and accidents. Finally, Chapter Six treats 
of some curious applications of the calculus of probabilities to 
certain problems concerning heredity in the human race. 

We have relegated to appendixes certain developments which 
would have overburdened the text and which are not indis
pensable to the logical sequence of the ideas. Appendix One 
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is devoted to a study of the repetitions of figures in six-figure 
numbers, numbers which interest all the clients of the national 
lottery. Appendix Two gives some arithmetical evaluations 
of Poisson's formula. Finally, Appendix Three contains statis
tical tables (tables of mortality, causes of deaths, accidents ... ) 
which will permit our readers to know precisely the value of 
the probabilities which directly concern their health and their 
lives. 

One of my former pupils and the author of brilliant personal 
studies in the calculus of probabilities, Jean Ville, Professor in 
the University of Poitiers, has been kind enough to read care
fully and correct the proofs of this book. I tender him my 
sincere thanks for his valuable collaboration. 





CHAPTER ONE 

Probabilities and General Opinion; 
Gamblers' Presumptions 

1. Probabilities and Common Sense. There can be no doubt 
that some of the most reliable results of the calculus of proba
bilities seem to many people to be contrary to what is generally 
called common sense, that is to say, to popular opinion. I 
shall not undertake to analyze the somewhat obscure notion of 
common sense; I shall merely cite a brilliant page of Paul 
Valery (Regards sur le monde actuel, Stock, 1931, p. 73): 

I do not feel comfortable when people speak to me of common 
sense. I believe that I have some; who would concede that he 
has none? Who could live another instant having found himself 
devoid of it? If I am confronted with it I become confused, I 
turn to the one who is in me, and does not have it and does not 
care, and who claims that common sense is the faculty which 
once enabled us to deny and brilliantly refute the supposed 
existence of the antipodes, a feat which it performs anew today 
when it seeks and finds in yesterday's history how to understand 
nothing of what will happen tomorrow. 

He adds that this common sense is an altogether limited intui
tion which derives from experiences neither precise nor planned, 
and which is mixed with a logic and analogies impure enough to be 
universal. Religion does not admit it in its dogmas. The sciences 
overwhelm it every day, upset it, obscure it. 

This critic of common sense adds that there is nothing to boast 
of in being the most common thing in the world. 

But I reply that nothing, however, can take away from common 
sense its great usefulness in disputes over vague notions, if 
there is no more powerful argument before the public than to 
invoke it for onself to proclaim that others are mad and that this 
precious gift, common though it may be, resides entirely in the 
speaker. 

The lesson which seems to me derivable from these penetrat
ing remarks is that when science shocks common sense it may 
be useful to find out why, and to seek arguments capable of 
convincing those who invoke common sense against science. 

9 
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2. The Numbers of Lottery Tickets. Many people will 
refuse to buy a lottery ticket whose figures appear to them to 
possess, by their combination and choice, some exceptional 
property, as, for example, the number 272727 and, still worse, 
222222. All who have thought about probabilities and about 
the methods useJ in drawing the winning tickets in the lottery 
know, however, that the probabilities of winning are the same 
for all the tickets, whatever their numbers. Yet many buyers 
of tickets will persist in saying, in the name of common sense: 
"Just the same, it is not possible for a number as singular as 
222222 to win the first prize." The person who makes this 
assertion claims, furthermore, when the results are published, 
that in fact the first prize was won by a ticket bearing the 
number 825717 or 203409, and he concludes that his common 
sense did not deceive him and that he was right in not buying the 
number 222222, but the number 138615 which also, by the way, 
did not win. 

There is no doubt that the probability that the number of the 
winning ticket will be made up of six identical figures is very 
small; it is equal to one one-hundred-thousandth, since there are 
lO tickets in a million which bear six identical figures. 1 If there 
were 25 drawings a year, a ticket bearing six identical figures 
should win the first prize, on the average,2 every 4,000 years. 
It is then quite probable that this remarkable event will not be 
observed by a man in the course of his life; but this in no way 
contradicts the calculus of probabilities, according to which 
the probability of winning is the same for all the tickets. 

If any other number, or even a selection of ten numbers, is 
decided upon, it will be observed that generally none of these ten 
numbers wins. But if these are numbers without peculiarities it 
is not noticed at every drawing that these numbers did not win. 

3. Numbers Formed by Means of Two Figures. The fact that 
the chances of all the tickets are equal will be better realized by 
studying a class of numbers quite peculiar, but also large enough 
so that the drawing of one of these numbers is observed now and 
then. 

1 We take into account the ticket whose number is 1000000, which is 
equivalent, if the drawing is made by means of six wheels, to the number 
000000 formed by six zeros. 

2 See Chapter Four. 
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Such an example is furnished by the numbers composed of 
two figures, one of which may be zero. Such is, for instance, 
the number 233322, or 200200, or again, 55555, which must 
be written 055555. On the contrary, the number 55444 is 
formed with three figures, for it must be written 055444. The 
drawing is made by means of six spheres, each of which gives 
one of the six figures of the winning number. 

It is easy to evaluate the number of tickets whose numbers are 
thus formed with two figures only. 

If one of the figures appears 5 times and the other 1 time, 
there are 10 x 9 x 6 = 540 numbers.3 

If one of the figures appears 4 times and the other 2 times 
6 X 5 ' 

there are 10 x 9 x fX2 = 1 ,350 numbers. 

If, finally, each figure appears three times, there are 
10 X 9 6 X 5 X 4 _ 4 
1 x 2 x 1 x 2 x 3 - 900 numbers. 

There are then altogether 540 + I350 + 900 = 2, 790 num
bers in 1,000,000 which are formed with two figures only. If 
the ten numbers of one figure only are added to that, the total is 
2,800, that is to say, about I in 357. The probability that such 
a number will win a given prize is then about 1/357. If we 
suppose the number of drawings and the number of prizes to be 
such that there are 360 important prizes a year (for instance, 30 
drawings of 12 prizes, or 18 drawings of 20 prizes), the winning 
of an important prize by one of the peculiar numbers will be 
observed on the average about once a year.5 It will therefore be 
a rare occurrence, but frequent enough, however, to be noticed 
by all those who look closely, after every drawing, at the list of 
the numbers which win the important prizes. 

3 The figure which appears 5 times may be any one of the 10 figures and the 
one which appears I time any one of the other 9 figures, which gives 90 possible 
choices; the figure which appears only once may occupy 6 different places; 
there are therefore in all 90 x 6 = 540 numbers. 

4 If each one of the figures appears 3 times, one of them may be chosen in 
10 different ways and the next in 9 ways, but each combination, such as 3 and 
4 is thus obtained 2 times (3 and 4, then 4 and 3); there are therefore 45 com
blnations, such as 4 and 3, and for each one of them 20 possible combinations: 
444333, 443433, etc., that is, in all, 45 x 20 = 900. 

5 One may conclude, according to Poisson's formula (see Chapter Four), 
that out of 100 years, there will be about 36 when none of these numbers will 
win a prize, 36 when one of these numbers will win, 18 when 2 numbers will 
win, 6 when 3 numbers will win, 1 or 2 when 4 numbers or more will win. 
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In fact, if one took the trouble to consult many lists of draw
ings involving a million numbers (including the lotteries of the 
city of Paris, the O·Mit fancier, etc.), one would easily observe 
that the proportion of winning numbers composed of only two 
figures quite conforms to the predictions of the calculus of 
probabilities.6 

In Appendix One we shall study in more detail numbers of 
6 figures from the point of view of the repetition of one figure in 
a number. 

4. The Roulette Series. The problem of the series in a game 
such as roulette is extremely close to the one which we have 
just studied. It could even be regarded as identical if one used 
the binary (base two) system of notation. One may agree to 
represent the showing up of red by the number 0 and the coming 
up of black by the number I (we are speaking of a roulette hav
ing no zero). A sequence of spins of the wheel bringing up 
either red or black is then represented by a sequence of O's and 
I 's, such as 10100100101110101. Such a sequence may be 
regarded as a number written in the binary system, and we may 
apply to these numbers the reasoning which we applied to the 
numbers written in the decimal system. We shall be led to 
admit that these numbers, diverse as they are, all have equal 
probabilities. A number composed exclusively of the figure 0 
or I is very peculiar, and its turning up is very unlikely, especi
ally if the number of figures is large, 30, for example; but the 
turning up of any other specific number of 30 figures is just as 
unlikely. 

We disregard the binary system of notation and treat the 
question by direct reasoning, first discussing the delicate point 
where the results of the calculus of probabilities are contested 
in the name of common sense. 

This delicate point is as follows: All players of roulette have 
observed that in a long series of spins reds and blacks are about 
the same in number. For instance, in I ,000 spins, one will 
observe 483 reds and 517 blacks, but never only 217 reds against 
783 blacks. Most gamblers feel authorized to conclude from 

o The proportion is very close, as could easily be seen if, as is the case for 
certain categories of bonds, their number is not exactly 1,000,000, but say, 
500,000. If it exceeds 1,000,000, the figures for the millions may be dis
regarded. 
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this observation, exact in itself and besides conforming to the 
results of the calculus of probabilities, that if during a certain 
period they have observed more reds than blacks, the wheel has 
in a certain sense contracted a debt to black and will have to 
repay this debt by bringing up black oftener than red in the 
course of the next spins. In some cases the debt will even have 
to be paid off immediately. If a gambler, consulting the arch
ives of roulette over a great number of years, observes that the 
longest run registered has been 24 reds, or 24 blacks, and that no 
run of more than 24 has ever been observed, and if some day 
he happens to observe a run of 24 reds, he will not hesitate to 
conclude that black must necessarily come up at the next spin, 
"since there has never been a run of 25." 

To which Joseph Bertrand, together with all those who have 
probed the study of probabilities, replies: "The roulette wheel 
has neither conscience nor memory." It is paying it too great a 
compliment to imagine that it retains the memory of its errors 
and wants to make up for them. 

It seems that "common sense" should be enough to persuade 
gamblers that successive spins of the wheel are independent of 
one another. It is indeed impossible to imagine a mechanism 
by which previous spins would modify the result of the next 
spin. But gamblers are influenced by an undeniable fact, con
firmed by very numerous observations: in a large number of 
spins the reds are approximately as frequent as the blacks. 
They see no other way to explain this observed fact than to 
imagine the existence of an unknown mechanism playing the 
role of the conscience and memory of the roulette wheel and 
compelling the wheel to compensate for its errors. 

An intensive study of the whole range of possibilities (quite 
analogous to the study developed in Appendix One for the 
decimal numbers of six figures) shows that if the combinations 
in which the reds are about as numerous as the blacks are more 
often observed than the combinations in which the reds are 
much more numerous than the blacks, it is solely because the 
former combinations are much more numerous than the latter, 
just as the six-figure numbers formed with 3, 4, 5 or 6 different 
figures are much more numerous than those formed of only 
one or two different figures. 

lt is not because the spheres of the lottery have a particular 
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fondness for numbers made up of one or two pairs (one or two 
figures appearing twice in the number) that these numbers turn 
up oftener than the others, but because in a million numbers 
there are more than 680,000 containing one or two pairs. The 
same may be said of the distribution of reds and blacks in a 
series of spins of the roulette wheel (we disregard the zero). 
For instance, in a series of 30 spins the following results are 
obtained. The number of possible results of 30 spins is equal 
to the 30th power of 2, or a little more than a billion (exactly 
I ,073, 74 I ,824). In that billion possibilities, the various kinds 
of results turn up the number of times indicated below: 

30 reds and 0 black I time 
29 reds and I black 30 times 
28 reds and 2 blacks 435 times 
27 reds and 3 blacks 4,060 times 
26 reds and 4 blacks 27,405 times 
25 reds and 5 blacks 142,506 times 
24 reds and 6 blacks 593,775 times 
23 reds and 7 blacks 2,035,800 times 
22 reds and 8 blacks 5,852,925 times 
21 reds and 9 blacks 14,307,150 times 
20 reds and 10 blacks 30,045,015 times 
19 reds and II blacks 54,627,300 times 
18 reds and 12 blacks 86,493,225 times 
17 reds and 13 blacks 119,759,850 times 
16 reds and 14 blacks 145,422,675 times 
15 reds and 15 blacks 0 0 155,117,520 times 
14 reds and 16 blacks 0 0 145,422,675 times 
••• 0 •• 0. 0 •••• • •••• 0 ••• 0 ••• 0 •• 

• • • • • • 0. 0 0 0 •• . ............... 
1 red and 29 blacks 30 times 
0 red and 30 blacks I time 

We have omitted the greater part of the second half of the 
table since it is obviously symmetrical to the first half. 
There is the same number of combinations with 17 reds and 13 
blacks as with 17 blacks and 13 reds. 

The run of 30 reds and the run of 30 blacks are unique com
binations. Each is neither more nor less singular than any 
of the other particular combinations (the number of which 
surpasses a billion), but every particular combination is ex
tremely unlikely. This would be the case of the combination 
consisting of alternate reds and blacks such that red would 
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come up on every odd-numbered spin and black on the even
numbered spins. 

Roulette players have never observed a run of thirty reds or 
thirty blacks and readily consider such a run impossible. In 
reality, if roulette could be played I,OOO times a day (I whirl 
per minute for a little over I6 hours), a million days or about 
twenty-seven centuries, would be required to make a billion 
trials and thus have a good chance of obtaining a run of 30 
reds (see Chapter Four, Poisson's law). 

The case of at least 28 reds or at least 28 blacks are 2 (I + 30 
+ 435) = 932, or less than one millionth of the total number of 
plays. Such an eventuality will be very rare, but still observable 
from time to time, if a patient player notes all the plays for a 
few years. At the rate of I ,000 plays a day, three years would 
suffice for more than a million plays. 

The combinations involving at least 27 reds or at least 27 
blacks number more than 8,000, or almost a hundred-thou
sandth of the total number of combinations. Such an eventu
ality will occur about one time in IOO,OOO. 

There are almost 63,000 combinations of at least 26 reds or 
blacks. This set of combinations will be realized about one 
time in I5,000 trials. 

The combinations of at least 25 reds or blacks number almost 
350,000. They will be realized on the average a little better 
than one time in 3,000 trials. The player noting 1,000 trials a 
day would observe them about 2 times a week. 

If we proceed to at least 24 reds or blacks, the number of 
combinations slightly surpasses a million and the probability 
of observing one surpasses one one-thousandth. 

As for the combinations of at least 22 reds or blacks, their 
number surpasses I 0 million (about 17 million). The proba
bility ranges between I and 2 one-hundredths. 

Finally, the number of combinations of at least 20 reds or 
blacks is a little above I 00 million, and the probability very close 
to one tenth. There are therefore nine chances out of I 0 
that, in a series of 30 plays, neither the number of reds nor 
the number of blacks will exceed 19. The average number 
being 15, it may be said, if the number observed is 19, that 
the variation with respect to the average, or more briefly, the 
variation, is equal to 4. 
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There are then 9 chances out of 10 that the variation be at 
most 4, that is, less than 5. It will be observed that 5 is the 
integral part of the square root of 30, the number of plays 
observed. This is a general law: the probability of a variation 
equal to or greater than the square root of the number of plays is 
approximately equal to one tenth. 

5. The Law of Variations. It has been shown that the cal
culus of probabilities imposes no rigid laws to which chance 
should conform. Not only are relatively important variations 
possible, but to some extent they are probable and necessary. 
Anyone who observes with care and perseverance series of 30 
plays will quite often note series containing more than 20 reds 
in 30 plays, and sometimes series containing more than 25 reds; 
but he will not observe any series containing 29 reds, and cer
tainly none of 30 reds and no blacks. 

If the number of plays of the series is much higher, for ex
ample 3,000 instead of 30, the probability of the variations 
remains the same, provided the variations which are in the same 
proportion to the square root of the number of plays are paired, 
that is to say, the variations which are 10 times greater for 3,000 
plays than for 30 plays. Variations of 50 will therefore 
be quite probable, variations of 100 much less probable and 
variations of 150 practically impossible. If the number of 
plays were 300,000 it would be variations of I ,500 that would 
become extremely rare and, indeed, almost impossible. The 
relative variation, that is, the ratio of the variation to the 
number of plays decreases more and more as the number of 
plays increases. This is Bernoulli's law of large numbers, 
which is a simple arithmetical consequence of the single law of 
chance. The sets of 300,000 plays in which the variation is 
less than 1 ,500, that is to say, which contain fewer than 301,500 
and more than 298,500 reds, are extraordinarily more numerous 
than the sets in which the variation is more considerable. 
The latter are not met with because, though very numerous, they 
are, compared to the others, extremely rare. 

It is not only in games that one must keep in mind Joseph 
Bertrand's aphorism, "The roulette wheel has neither con
science nor memory." That is equally true of most common 
phenomena with which we are concerned in life, except in the 
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cases where successive phenomena are not independent of one 
another. A well-known example of non-independent phenom
ena is that of rain and fair weather. A long series of rainy 
days increases the chances that it will rain again the next day, 
and a long series of fair days increases the chances of still 
another fair day. But if one observes rain and fair weather 
not for consecutive days but, for instance, at the same date every 
year, the rules of probability will apply. Meteorological 
statistics will tell us that in such or such a town, in the month of 
May, the number of rainy days is the same as that of fair days. 
There is then one chance in two that May 14 will be a rainy day. 
If we observe that date for a certain number of consecutive 
years, we shall be able to apply to these observations the results 
obtained for red and black at roulette. The fact that it has 
rained on May 14 five years in succession neither increases nor 
diminishes the chance that it will rain on that date the follow
ing year; they remain one in two. 

If a telephone subscriber has noticed, after a careful observa
tion, that from 2 to 6 in the afternoon his telephone is busy a 
total of two hours out of four, that is, half the time, I have one 
chance in two to find him free if I call. If I get a busy signal 
three times in a row, I still have one chance in two of reaching 
him if I call again. If I call every day, about once a month I 
shall get the busy signal five times in succession and more than 
once a year I shall get it eight times in succession. If we admit 
that a breakdown of the telephone automatically producing the 
busy signal would occur on the average once or twice a year, it is 
only after at least 8 consecutive busy signals that I can reason
ably suspect that the telephone is out of order.? If I get 10 or 
12 successive busy signals, the breakdown begins to be very 
probable. It will be almost certain if the busy signal is ob
tained 20 times in succession, at intervals of 5 or 10 minutes. 

If I drive around in a town where many intersections are 
equipped with alternately red and green lights so that cars 
may use only one of the intersecting streets at a given time, 
I have one chance in two, at every crossing, to happen on 
a red or a green light. If my itinerary comprises twelve cross
ings, r must expect to meet, on the average, six red and six 
green lights. But if some day l have the bad luck to meet with 

7 The theory of the probability of causes is implicitly used here. 
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red lights at the first six crossings, I must not conclude that I 
shall have green lights at the other six crossings. If I make the 
same trip several times a day, 1 may well have, now and then, 
10 or even 11, much more seldom 12, red lights or, on the con
trary, 12 green lights. If one day I had the bad luck to be thus 
stopped at nearly every crossing, that will not in any way 
increase my chances of having a majority of green lights the 
next day. And yet, if I had the patience to compile the statis
tics for a whole year, I would find that the ratio of the total 
number of red lights to that of green lights is very close to 
unity. 



CHAPTER TWO 

Fallacies about Probabilities Concerning Life 
and Death 

1. The Mysticism of Chance. One of the reasons why certain 
fallacies are so deeply rooted in gamblers is the very great im
portance they attach to winning or losing; gamblers are thus ever 
ready to receive favorably the most unreasonable suggestions if 
they believe they detect in them a way to conquer chance and 
insure victory. It is for the same reason that some singular 
superstitions on good and bad luck, the good and the evil eye, are 
quite common among theater people, actors or authors, whose 
success or reputation may depend on some incident in the 
course of a dress rehearsal. It seems to them that the merest 
trifle may bring about a brilliant triumph or, on the contrary, a 
failure which they will find difficult to overcome, and they are 
ready to make use of any means, even the seemingly most 
absurd, to turn luck in their favor. 

But, important as may be winning or losing in gambling or 
success or failure in the theater, there is one possession to which 
men are still more attached-their own lives. That is why, in 
every question concerning more or less directly life and death, 
most men reason very badly, or rather cease to reason and let 
themselves be guided by their feelings or their prejudices. 

The obscure and sometimes mystical ideas which many men 
entertain about chance and its role in life have been summed up 
with great genius by Remy de Gourmont: 

Nothing is more expected than the unexpected, nothing, really, 
less surprising. What astonishes us above all is the logical 
course of facts. Man is ever waiting for a miracle, and is even 
chagrined if the miracle does not occur, or else he becomes dis
couraged. But the miracle often occurs. The humblest lives are 
but a sequence of miracles, or rather of chances. It will be argued 
that in reality there is no such thing as chance and that the word 
only proves our ignorance of the chain of causes. Since the chain 
of causes is undecipherable to our minds, we call chance all events 
whose occurrence we could not possibly discern. They are 
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formed, they happen, but we do not know and cannot know how 
or when. It is good that we cannot. Action is only possible if 
one is unconcerned and living is only an act of confidence in 
ourselves and the goodwill of chance. 

We count on chance. There is no man, even among those most 
devoid of imagination, who does not grant it a place in his most 
obscure previsions. To rely on chance alone is madness, but to 
rely on it not at all is still worse. It is as unreasonable to despair 
as it is to hope. The impossible becomes possible at every 
moment of life. To be lost in a labyrinth a thousand feet under 
ground is a reason to hope, and one may with equal reasonableness 
lose all hope the day when, with a heart full of happiness, one looks 
at a life which is amiable and agreeable, attentive to our wishes.• 

There are evidently many reasons, of which reason itself is 
not aware, that the applications of the calculus of probabilities 
to most problems concerning human life are often sys
tematically ignored, sometimes even scorned and contested by 
the very persons they should interest. 

There are, however, few results of the calculus of probabilities 
which have been better confirmed than those concerning mor
tality. For over a century life insurance companies have dis
tributed to their stockholders dividends which are a tangible 
proof of the exactness of the computations of their actuaries, 
computations based on the calculus of probabilities and on 
mortality tables, that is to say, on statistical data. 

This incontestable worth of data derived from carefully com
piled statistics contrasts with the current prejudices against 
statistics. These prejudices come largely from what has been 
called "the individualistic mentality." Man is not pleased to be 
regarded as a simple unit, identical to other units; everyone is 
attached to his individuality and has a multitude of good 
reasons for considering himself really different from all others. 
Therefore, when the statisticians note a certain proportion of 
deaths among men of 40 years of age, every man of 40 will be 
r~ady to believe that this fact does not in any way concern 
h1m and that, being young and in good health, there is no 
reason at all for him to die within a year. Unless, of course 
he r~ghtly or wrongly considers himself gravely ill and abou~ 
to dte. 

1 ~emy de Gourmont, "Epilogues: 'L'lnattendu '" Mercure de Fra11ce 
April15, 1906. ' 
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2. The Average Life. It is moreover perfectly true that the 
results of statistics must not be applied indiscriminately to all 
men of 40. Insurance companies demand a medical examina
tion of all who apply for insurance. It would be more correct 
to distinguish in the coefficients of mortality derived from the 
tables the fraction which applies to the individuals regarded as 
in good health after a thorough medical examination and the 
fraction which applies to the individuals in whom the medical 
examination reveals certain diseases or hereditary taints (tuber
culosis, cancer, syphilis, etc.). But, this distinction once made, 
there is no question that there is for every human being a certain 
probability that he will die within a year, a probability which 
depends on various elements, the most important being age and 
sex. This probability may be computed by means of the 
mortality tables of which we shall speak again.2 These mor
tality tables permit the computation, at a given time and in a 
given country, of the average life of men and that of women, 
which is generally a little longer than the men's. 

The average life of a given number of individuals is the 
arithmetical average of the length of life of every one of them. 
So defined, the average life can be calculated only when dealing 
with a group of individuals who have all died. Thus an investi
gation of the vital statistics of the nineteenth century would per
mit an evaluation of the average life of Frenchmen born in 1800 
who died in France. 

When dealing with a large population one may suppose, if 
the mortality tables are carefully compiled, that the ages at death 
of the mass of presently living persons will be distributed in 
proportions very close to those which would result from these 
mortality tables. That is why one may speak of the average 
life span of the inhabitants of a country at a given time. 

One might imagine another method of evaluating the average 
life: take the arithmetical average of the ages at death of all 
the men and women who died in the course of a year. But one 
quickly realizes that this method would be accurate only if the 
population had remained practically stationary for a long 
period. If we note the number of deaths during the year 1941, 
the deceased of 20 years of age are persons who were born in 
1921 whereas the deceased of 80 were born in 1861. If the 

2 See Chapter Five and Appendix Two. 
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population of the country considered had increased notably 
from 1861 to 1921, the number of deceased of age 20 would be 
too high relative to the number of deceased of age 80, so that 
the average life so evaluated would be below the actual life 
average. 

Statistics show that in all civilized countries the span of the 
average life has notably increased during the last two centuries. 
This increase is due largely to the considerable decrease that the 
progress of hygiene has effected in the mortality rate of children 
of less than a year. It would be interesting, from different 
points of view, to consider the evaluated life average, not in 
regard to the number of births, but to the number of children 
who have attained one year of age. We shall return to this 
point in Chapter Five. 

3. The Interpretation of the Mortality Tables. The few indi
cations which we have just given suffice to show the importance 
which the data of the mortality tables and the evaluation of 
the average life have for us all,. pr?vi?ed we fully understand 
them and do not exaggerate the1r significance. Every inhabit
ant of a country is undoubtedly concerned with the increase of 
the average life in that country, an increase which may result 
from the hygienic measures taken against the spreading of 
epidemic or contagious diseases, the building of hospitals and 
sanatoria, and so on. 

1 am well aware that an individualist could have recourse to 
his egotism and say: "I personally take all possible precautions 
to avoid contamination, I have an excellent doctor who watches 
over me and takes good care of me if I become sick. What do 1 
care whether hospitals are. built. to which I shall never go, 
whether unhealthy quarters m wh1ch I am resolved never to live 
are cleaned up or n?t.': Even. from his purely selfish point of 
view this individualist IS not nght, for he cannot live isolated 
from the mass of other human beings, and he therefore risks 
becoming the victim of more or less direct contaminations which 
would have been avoided if certain diseases had been controlled 
by the progress of hygiene. 

On the other hand, the excessive precautions taken against 
certain contaminations by people obsessed with their health 
cause at times unforeseen disasters. Cases are cited of persons 
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who, having for many years drunk nothing but boiled water to 
avoid typhoid fever, die of that illness because of a single slip 
which would have been better withstood by one whose organism 
had been gradually accustomed to fighting microbes. 

Joseph Bertrand devotes some very interesting pages3 to the 
controversy which took place at the time of the discovery of 
the inoculation against smallpox, a quarrel in which some 
specialists in the calculus of probabilities took part. The 
problem which presented itself was the following: Vaccination 
killed one person in 100, but it reduced the probabilities, 
quite considerable at the time, of death by smallpox; must 
vaccination be advised or, on the contrary, forbidden? 

Daniel Bernoulli, evaluating the life average under the two 
hypotheses (vaccination or no-vaccination), concluded that 
vaccination increased the life average by three years and de
clared that one ought not hesitate to practice it. 

Joseph Bertrand, following d'Alembert's lead, has no trouble 
in showing that the evaluation of the average life is not suffi
ciently decisive and that other considerations must enter. 

I have discussed elsewhere Joseph Bertrand's arguments.4 
The chief reason many people hesitate to let themselves be con
vinced by the evaluation of the life average is man's ignorance of 
the exact date when he will die, an ignorance which is one of the 
most important elements of his daily happiness. If the prog
ress of science brought an end to that ignorance, and everyone 
could know when he would die, human mentality would be pro
foundly modified and everyone would attach a special import
ance to diverse circumstances which would change the date 
foreseen by the doctors for his death. But it is futile to reason 
on an unrealizable hypothesis; let us see things as they are. 

It is quite apparent that, in facing the risks of diseases, men 
are divided into two categories, some passing from one cate
gory to the other, according to their humor, or belonging alter
nately to one or the other, according to the particular disease. 
One of the categories is composed of insouciants and the other 
of the obsessed. The former do not worry, and want to dis
regard the existence of microbes transmitting typhoid fever and 
the risks of contamination. They eat and drink as their parents 

3 Calcul des probabilites (Gauthier-Villars). 
4 Le Hasard, pp. 239 et seq. 
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and ancestors did, and believe that their robust constitution will 
protect them; if contamination happens, they accept it with 
fatalism. The obsessed, on the contrary, whose attention may 
have been aroused by something they have read or by a fatal 
disease observed among their friends, will think only, from morn
ing to night, of precautions against the diseases which preoccupy 
them most (overlooking sometimes the risks of more dangerous 
or more frequent diseases). Neither category of men would 
care to know exactly the probabilities of contamination or death 
pertaining to a particular disease. These abstract figures 
would mean nothing to them. They are concerned only with 
the reaction of their personal sensibility to this or that disease. 
One will dread typhoid; another, cancer. 

The statistical data which we reproduce in Appendix Three 
should make them all think and give them a fair appreciation 
of the real dangers to which we are all exposed. 



CHAPTER THREE 

Negligible Probabilities and the Probabilities of 
Everyday Life 

1. Scienti~c Certainty and Practical Certainty. When w.e 
stated the smgle law of chance, "events whose probability zs 
sufficiently small never occur," we did not conceal the lack of 
precision of the statement. There are cases where no doubt is 
possible; such is that of the complete works of Goethe being 
reproduced by a typist who does not know German and is 
typing at random. Between this somewhat extreme case and 
ones in which the probabilities are very small but nevertheless 
such that the occurrence of the corresponding event is not 
incredible, there are many intermediary cases. We shall 
attempt to determine as precisely as possible which values of 
probability must be regarded as negligible under certain cir
cumstances. 

It is evident that the requirements with respect to the degree 
of certainty imposed on the single law of chance will vary 
depending on whether we deal with scientific certainty or with 
the certainty which suffices in a given circumstance of every
day life. 

If we are dealing with a scientific law, say Carnot's principle 
that heat cannot pass spontaneously from a hot substance into 
a cold substance, we have the right to demand that the prob
ability of the phenomenon, impossible according to the law, be 
in fact extraordinarily small. If the law is to be called a physical 
law, the smallest infraction of it must not be possible under 
any circumstances, at any time, anywhere in the universe. We 
say briefly that the probability must be negligible on the super
cosmic scale. Our preceding calculations of the number of 
atoms possible in a universe whose dimensions attain billions of 
light years and of the number of seconds in billions of centuries 
lead to an estimate of IQ-500 (unity divided by a 500-figure 
number) as the negligible probability on the supercosmic scale. 
A probability so small may be taken to be 0 in the formulation 
of a scientific law. It goes without saying that the evaluation is 
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a little arbitrary. Instead of the exponent 500 we could have 
written either I ,000 or only 200 or 300. In fact, the probabili
ties of a possible infraction of Carnot's principle in the kinetic 
theory of gases are very much smaller. They are equal to unity 
divided by numbers of millions of figures. Such probabilities 
must be regarded as universally negligible. 

But in dealing only with human actions, the everyday life of 
any one of us, we shall see that a probability need not be so 
small to be rightfully disregarded in practice, i.e., considered as 
nil. We shall thus have to define negligible probabilities on the 
human scale, on the terrestrial and the cosmic scales. To these 
scales correspond degrees of practical certainty which do not 
attain the scientific and quasi-absolute certainty given by the 

supercosmic scale. 

2. Probabilities which are Negligible on the Human Scale. 
We shall say that a probability is negligible on the human scale 
when it appears that the most prudent and reasonable men must 
act as if this probability was nil, that is, must run the risk of the 
occurrence of the event with which this probability is conr.Prned, 
even if the event is considered by them a great misfortune. 
Such is the case, for example, of the death of the interested 
person or of a person particularly dear to him. 

Let us take a simple example. According to peacetime 
statistics, the number of fatal accidents in traffic in a city like 
Paris, whose population counts several millions, is, on the aver
age, one a day. For every Parisian who circulates for one day 
the probability of being killed in the course of the day in a traffic 
accident is about one one-millionth. If, in order to avoid this 
slight risk, a man renounced all external activity and cloistered 
himself in his house, or imposed such confinement on his wife 
or his son, he would be considered mad. The wisest persons do 
not hesitate to face every day a risk of death whose probability 
is one one-millionth. This is not, of course, a case in which the 
single law of chance warrants the assertion that the considered 
event will never occur; anyone who goes out every day into the 
streets of a great city knows very well that a fatal accident is pos
sible. But he only thinks of it long enough to take, somewhat 
unconsciously, a few precautions to diminish his risk. He does 
not venture out to the middle of the street without first looking to 
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see whether a car is coming; but he is not obsessed all day with 
the fear of a probable accident. 

It is by comparing the number of accidents to that of the in
habitants of a great city that we came to proposing one one
millionth as a reasonable value for a negligible probability on 
the human scale. An analogous result would be obtained if we 
turned our attention to the number of times a man may perform 
in his lifetime gestures or very simple acts, such as tracing a 
letter of the alphabet with his pen, walking one step, or drawing 
one breath. The number of times is of the order of magnitude 
of a million in a few weeks, or months or years, according to the 
nature and frequency of the action. A prolific writer like 
Balzac wrote two or three million letters in a year. A profes
sional typist could easily surpass that number. It may be 
concluded that the probability of writing one letter instead of 
another, whether it be done by a man using a pen or by a very 
expert typist, is certainly more than one one-millionth. If it 
were but one one-millionth, that is, one error in five hundred 
typed pages, everyone would agree to regard it as negligible and 
to declare that the typist had reached perfection. 

3. Probabilities which are Negligible on the Terrestrial Scale. 
When our attention is turned not to an isolated man but to the 
mass of living men, the probabilities must be considerably 
smaller to be regarded as negligible. An accident which is quite 
improbable for one given man may be relatively quite frequent 
if all men are considered. Winning the grand prize in a lottery 
of a miilion tickets has a negligible probability for one holding a 
single ticket. If he is sensible, he will refrain from making 
plans for the future based on his winning the grand prize. This 
winning, on the other hand, is a certainty if all the tickets are 
sold and all the holders of tickets are considered : one of them 
must win. 

If the number of human beings is estimated to be between one 
billion and two billion, a probability a billion times smaller than 
the negligible probability on the human scale must be regarded 
as negligible on the terrestrial scale, that is to say, a billionth 
of one one-millionth, or I0- 15 , unity divided by a number of 
15 figures. The same evaluation may be accepted if we con
sider all the men who lived in the historic past, that is, in the 



28 PROBABILITIES AND LIFE 

course of some hundreds of centuries, for their number is hardly 
a thousand times larger than the number of presently living men. 
Such probabilities may have to be considered, as we shall see in 
Chapter Seven, in handling certain problems pertaining to 
heredity in the human race. 

The probability of obtaining red 50 consecutive times at 
roulette, or tails in the game of heads or tails, is 2-50. If the 
approximate equality (very convenient in questions of this sort) 
210 = 1Q3 is used (in reality 210 = I ,024, a little more than 
1,000), then 2-50 is equal to about I0-15, that is to say, to the 
negligible probability on the terrestrial scale. In fact, if all 
presently living men were to spend all their time in playing a 
game such as roulette, at the rate of I ,000 games a day, or about 
I ,000,000 games every three years, only once every three years, 
on the average, would one of them obtain a run of 50 reds. 

4. Probabilities which are Negligible on the Cosmic Scale. If 
we turn our attention, not to the terrestrial globe, but to the 
portion of the universe accessible to our astronomical and phys
ical instruments, we are led to define the negligible probabilities 
on the cosmic scale. Some astronomical laws, such as New
ton's law of universal gravitation and certain physical laws 
relative to the propagation of light waves, are verified by 
innumerable observations of all the visible celestial bodies. The 
probability that a new observation would contradict all these 
concordant observations is extremely small. We may be led to 
set at 10-so the value of negligible probabilities on the cosmic 
scale. When the probability of an event is below this limit, the 
opposite event may be expected to occur with certainty, what
ever the number of occasions presenting themselves in the entire 
universe. The number of observable stars is of the order of 
magnitude of a billion, or 109, and the number of observations 
which the inhabitants of the earth could make of these stars, 
even if all were observing, is certainly less than I ozo. A phenom
enon with a probability of I0-50 will therefore never occur, or 
at least never be observed. 

5. Probabilities which are Negligible on the Supercosmic Scale. 
Let us recall that the physical laws derived from statistical 
mechanics (and also the mathematical laws derived from 
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the calculus of probabilities) have a still incomparably greater 
certainty which may be described by saying that the probability 
of the opposite event is negligible on the supercosmic scale. 
Such are the probabilities inferior to IO-n, when n is a number 
of more than ten figures. If, for instance, there is in a liter con
tainer a mixture of equal volumes of oxygen and nitrogen, the 
probability that, at a given instant, all the molecules of oxygen 
be in the lower half of the container and all the molecules 
of nitrogen in the upper half is equal to 2-", n being the 
number of molecules.' It is negligible on the supercosmic 
scale. 

An easy computation shows that if we evaluate the dimen
sions of our universe, that is to say, the distance of the farthest 
perceptible galactic nebulae, at ten billion light years, the volume 
of this universe is inferior to I 085 cubic centimeters and contains 
less than 10110 atoms, since the mean density is certainly inferior 
to 1 Q25 atoms per cubic centimeter. 

Let us imagine, with Boltzmann, a universe U2 which contains 
as many universes U1 analogous to ours as the latter contains 
atoms, then a universe v3 which contains as many universes v2 
as V 1 contains atoms, then a universe V4 which contains as 
many U3 as U1 contains atoms, and so on, repeating the same 
operation a million times, up to a universe V N' with N = 106. 
This super-universe contains a number of atoms equal to 10 
raised to the power 110 million, a number of one hundred and 
ten million figures. Let us imagine, on the other hand, a time 
T2 containing as many billions of years as the billion years T1 

contains seconds, then a time T3 containing as many times T2 

as T1 contains seconds, and so on up to a time TN whose index 
N is a million. Let us suppose that we do an experiment over 
as many times as there are atoms in the universe V N and again 
as often as there are seconds in time TN, that is to say, a number 
of times certainly inferior to 10 to the power 109 . If the 
probability of the success of an isolated experiment is negli
gible on the supercosmic scale, an easy computation shows that 
the probability that the experiment will succeed a single time 
is so small that it can be disregarded. If we take as an example 

1 Since a gram molecule of gas contains 6,062 x 1022 molecules, the number 
n of molecules contained in a liter is of the order of 3· 1022, and 2 -n is thus of 
the order of 10 to the power 10-22. 
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the spontaneous separation of the oxygen and nitrogen 
contained in a liter, we can assert that this experiment will 
never succeed in time or space. 

6. Probabilities and Everyday Life. Probabilities inferior to 
I Q-6 or IQ-15, negligible on the human or terrestrial scale, are not 
often met with in practical life; but much larger probabilities 
must also be disregarded in the numerous cases where the event 
corresponding to such probabilities does not represent for us a 
grave misfortune, but merely a disagreeable incident. For 
instance, if it is a question of going out without an umbrella 
or a raincoat on a day when the weather is fair, the probability 
that it might rain could be evaluated from the statistics of the 
days when the weather was fair at lO o'clock in the morning but 
it nevertheless rained in the afternoon. Without making the cal
culation I believe I may assert that the probability is above one 
one-tho~sandth, at least in France. But unless a person is very 
frail, to the point that an unexpected rain might endanger his 
health and his life, we will not consider him careless if, on a fair 
day when nothing indicates a storm, he goes out without a rain-

coat or an umbrella. 
It is unnecessary to accumulate examples; all men, even those 

who have never heard of the calculus of probabilities, evaluate 
probabilities without knowin¥ it, even as M. Jourdain in Le 
Bourgeois Genti!lwmme spoke Ill prose. Many of their decisions 
are influenced by the more or less confused notion they enter
tain of the probability of certain events. It might seem useless 
to know the calculus of probabilities, since mere common sense 
takes its place in most cases. I need no calculus to tell me to 
take my umbrella if rain is threatening and to leave it at home 
if the sun is shining. But it is equally true that, in some cases, I 
shall want to consult the barometer before I make up my mind 
for the indications which it will give me will permit me t~ 
evaluate the probability that it will rain, with less chance of 
error, than if I merely glance at the sky through my window. I 
may also, if possible, consult a ~eteorological bulletin, or inquire 
about the direction and veloc1ty of the wind. These supple
mentary precautions must not be neglected, if instead of merely 
risking being soaked, I go out to sea in a small sailboat, where 
bad weather may cause serious accidents. 
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Most men are as ignorant of the exact value of the proba
bilities which they use more or less consciously, as are young 
children and savage tribes of the exact value of money and of 
the prices of common articles. In one case as in the other the 
evaluation is dictated by subjective impressions, which often 
cause very gross errors. Before trusting a child regularly with 
money, it is well to teach him the worth of the articles which he 
may be led to buy. The same is true of probabilities. A man 
who has to run certain risks will gain by being precisely in
formed of their probabilities. Such is the case, for instance, 
of the probabilities concerning certain dangers or certain dis
eases. When someone has witnessed a serious accident, or 
observed among his friends some cases of contamination, he 
may be deeply impressed and unconsciously led to exaggerate 
the value of the probability that this accident or this contamina
tion will occur again. If, on the contrary, the accident or the 
disease is one of which no example is known among acquaint
ances, he will tend to disregard the probability of its occurrence, 
though it may be relatively high. 

The comparison which we made between ignorance of the 
value of probabilities and ignorance of the value of money and 
various merchandise may be pursued further. In very many 
cases one must run one risk or another, go out on foot or in a 
car, or else stay constantly at home at the risk of becoming 
anemic. A man with a delicate stomach must still eat, and must 
therefore choose among the possible inconveniences of the 
foods at his disposal. 

The situation of one who does not know the probabilities is 
therefore similar to that of a man or child who has a limited 
sum of money and does not know the prices of merchandise. 
He runs the risk of spending all he has in a foolish manner. In 
the same way, ignorance of the probabilities may lead to run
ning greater risks in trying to avoid lesser ones. 

There is another analogy between prices and probabilities: 
the exact knowledge of prices is one of the elements in our 
decisions, but not the only one. If we have to choose between 
two articles of the same nature, one may appeal to us more than 
the other, and we may choose it, even if it costs more. It is 
nevertheless reasonable to inform ourselves of prices so that we 
may decide with full knowledge of what we are doing. If the 
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price is ten times higher, we may hesitate to make so great a 
sacrifice to satisfy our fancy. 

It is the same with probability. If we have serious reasons 
for wishing to travel quickly to another place, we shall consent 
to run greater risks of accident by traveling in a very rapid car 
or in an airplane. But if we knew that, under the circum
stances, the risk of a fatal accident reaches one tenth, we would 
undoubtedly think twice before running this risk. 

For the small child who does not yet know the value of 
money, the expressions ten francs, a hundred francs, a thousand 
francs are, if not equivalent, at least deprived of any precise sig
nificance. The same is true of the man who has never given 
thought to probabilities, when he is told of probabilities whose 
respective values are one tenth, one hundredth, one thou
sandth. A little thinking and practice is enough, however, to 
make one realize that there are many cases where it would be 
reasonable to run a risk with a probability of one thousandth, 
while it would be very unwise to run the same risk if its pro
bability were one tenth. 

Let us emphasize further the fact that, just as price is not the 
sole element of our decision when we make a purchase, prob
ability alone must not dictate our decision in the matter of a 
risk. One of the reasons why certain minds mistrust the preci
sion of mathematics is that they imagine that this precision may 
interfere with their freedom of choice. A sufficiently rich 
person may, of course, choose the articles he buys without re
gard to price, consulting only his taste. But when it is a matter 
of running a risk, especially if health or even life is involved, 
no one can afford to disregard certain probabilities, except 
when high considerations of morality and honor compel us to 
run a risk of death, great as it may be. In such cases it is 
best not to know the probability of the danger. But in every
day life the knowledge of the probability is a useful element 
in our decision, just as the knowledge of the price when we 
make a purchase, although this knowledge must not prevent us 
from taking other considerations into account before deciding. 

7. Probabilities are Only Approximate. Probabilities must 
b~ regarded as analogous to the measurement of physical mag
mtudes; that is to say, they can never be known exactly, but 
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only within a certain approximation. Moreover the degree of 
this approximation varies greatly with the nature of the prob
abilities. In cases where the probabilities may be evaluated by 
considerations of symmetry, the possible error in their evalua
tion is generally very small. Such is the probability of tuming 
up a certain side of a die, or drawing a predetermined card 
from a new deck well shuffled and spread out on a table. A 
?ie is never a perfect cube, and the points marking the faces also 
Introduce an asymmetry, but this asymmetry is very small, and 
the probability of each face turning up differs very little from 
l /6. Similarly, the probability of drawing the king of diamonds 
out of a 52-card deck is very close to 1/52, although the c~rds 
cannot be rigorously identical, and differ furthermore in designs 
and colors. Errors in the evaluation of probabilities are neces
sarily more considerable when we deal with empirical prob
abilities derived from statistics. On the one hand statistics are 
often imperfect, and are subject to systematic er;ors unavoid
able and difficult to correct. We shall see examples of th~se 
apropos of the statistics of the causes of death. Further, statis
tics embrace only a limited number of cases, and the results 
obtained from them differ according as these statistics extend 
to a greater or lesser population, in a longer or shorter interval 
of time. Finally, probabilities vary generally with time, and 
one applies to the present year values of probabilities ob
tained from the statistics covering one or several of the 
preceding years. 

Other probabilities are still more uncertain. They are those 
which are formulated from the impressions and recollections of 
even quite reliable persons. For instance, a doctor evaluates 
at nine out of ten the chances that a patient will recover from 
the disease with which he is afflicted, or a close follower of 
tennis tournaments evaluates at three out of four the chances 
that a certain player will win. We should be going too far, 
however, if, as some writers do, we denied any worth to evalua
tions of this nature, uncertain as they may be; but it is fitting 
that they be submitted to a serious scrutiny. The first point to 
ascertain is the sincerity of the person who evaluates the prob
ability. We must ask ourselves whether there are not serious 
reasons to question his sincerity. A doctor may give to a 
patient's relatives an intentionally optimistic diagnosis. The 
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habitue of the tennis courts may let his judgment be influenced 
by personal friendships or less respectable considerations in con
nection with wagers in which he has a personal interest. The 
surest way to determine the sincerity of a judgment of probabil
ity is to invite the person passing the judgment to make an im
portant wager, provided, however, that he cannot exert any 
influence on the outcome of the contingent event on which the 
wager is made. 

8. The Wagering Method. If a wager is made on the occur
rence of an event with the probability p, the stakes must be 
equitably determined in the following manner. If Peter bets 
that the event will occur and Paul takes the opposite bet, Peter 
must put up a sum Ap and Paul a sum A(l - p). The total of 
the stakes, A, goes to the winner. If, for instance, Peter bets 
that he will throw a 6 with one die, he should put up 10 francs, 
and Paul 50 francs. The winner will collect the total of the 
stakes, 60 francs. If Peter throws a 6, he wins 50 francs ; if 
he does not throw a 6, he loses 10 francs. 

Let us now consider the case where the probability p is not, 
as in the case of dice, well known by the two bettors, but where 
Peter has declared that he estimates at p the value of the 
probability. If his estimate is too high, the sum Ap which he 
will have to put up will be too large, and the sum A (I - p) which 
his opponent will put up will be too small; the wager will be 
disadvantageous to Peter. If therefore Peter is suspected of 
exaggerating the value of the probability, as could be the case 
of an optimistic doctor who, wishing to reassure his clients, 
would exaggerate the probability of recovery, he could be made 
to reduce this exaggeration and return to a more exact evalua
tion by the obligation to wager a very large sum on the eventu
ality whose probability he has exaggerated. For instance, if a 
doctor declares that the chances of recovery are 9 out of l 0 
(a probability of 0.9), while they are really only I out of 2 
(a probability of 0.5), and if he were to put up 90,000 francs 
in the hope of collecting 100,000 in the event of recovery, he 
would soon be bankrupt if this wager were often repeated. 
Out of 100 patients in the same situation we suppose that only 
about 50 recover. The doctor would put up altogether 9 
million and collect only about 5 million if he bet on every one of 
his l 00 patients. 
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The wagering method permits us to avoid the intentional 
errors which would be committed in the evaluation of probabil
ities, when the nature of these errors is known. But it is quite 
clear that, if instead of being optimistic, the doctor becomes 
pessimistic in some cases and evaluates the probability of re
cover~ at_ 0.9, while it is really greater, equal, for instance, t_o 
0.99, It _will be to his advantage to accept a wager based on hiS 
evaluation. He will put up 90,000 francs to collect 1 OO,OOO 
in the event of recovery. If a single patient dies in 100 cases, 
he will have put up 9 million to collect 9 900 000 francs. 

Is it possible by the wagering method t~ av~id the intentional 
errors committed by Peter in the evaluation of the probability, ' 
~hen thes_e errors are not necessarily always in the same d!rec
tiOn, that IS to say, are sometimes an over-estimation, sometimes 
an under-estimation? It is possible, but on two conditions. 
First, that Paul has the right to dictate to Peter how he must. bet. 
In the case of a sick person, Paul may bet as he chooses, either 
for the recovery or for the death of the patient. The second 
condition complements the first and is no less indispensa?le, 
namely, that Paul must be as competent as Peter in eval~atmg 
the probability, that he be himself a very good doctor if It ~on
cerns the treatment of a patient, and that he know in what dire~
tion Peter has altered the value of the probability, and place Ius 
bet accordingly. If Peter has exaggerated the probability of re
covery, he will be compelled to bet on recovery. If, on the con
trary, Peter exaggerates the probability of death, he will be co~
pelled to bet on death. If Peter accepts these conditions, he \~Ill 
find himself by that very reason obligated to be absolutely sm
cere in his evaluation, since any systematic error would be 
ruinous for him . d 

It would moreover be natural enough for Peter, modest an 
T f prudent, to refuse to set a precise value on the probabi It~ .0 

recovery, but merely affirm that in his judgment this prob~b!li~Y 
is between 0.8 and 0.9, and that, under the circumstances, If he ~s 
forced to bet on recovery, he will demand that 0.8 be adopte ' 
but if he is forced to bet on death, he will demand that 0.9 
be adopted. Such an attitude would be perfectly correct, but 
Paul would be equally justified if he refused to bet under these 
conditions. It would mean that he agrees with Peter that the 
probability of recovery is between 0.8 and 0.9 and believes both 
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wagers to be disadvantageous to him, whether Peter is to risk 
80,000 francs against 20,000 by betting on recovery, or to risk 
only I 0,000 francs against 90,000 by betting on death. 

In fact, the method which we have just sketched to compel 
Peter to evaluate as correctly as he can certain probabilities has 
great analogies with the evaluation of probabilities of the rise or 
fall of the market value of a bond. The fluctuations are the re
sults of offers and demands which represent the evaluation of a 
probability by the buyer and by the seller, each one estimating 
that this evaluation is advantageous to himself. Thus, the 
evaluation is a maximum for one of them and a minimum for 
the other. 

9. The Combination of Wager and Auction. The method of 
auction sale often clarifies a buyer's exact evaluation of the 
worth of an object or a building offered for sale, for he stops 
bidding when the limit he has set himself has been reached. A 
similar method may be used, if Peter will accept it, to compel 
Peter to reveal precisely his evaluation of a certain probability. 
Let us return to the case where Peter is a consultant doctor who 
has been able to evaluate a patient's chances of recovery. We 
propose to find out whether he evaluates these chances at more 
than 50 per cent. We choose a contingent event with an exact 
50 per cent probability, such as the game of heads or tails and 
we offer Peter an important gift or an intangible reward of con
siderable value to him and give him the choice between the 
following two eventualities: either he will receive the gift if the 
patient recovers, or he will receive the gift if a tossed coin turns 
up tails. He is clearly interested in choosing the eventuality 
with the higher probability in his opinion. He will choose the 
recovery of the patient if he considers the probability of this 
recovery to be above 50 per cent. If, on the contrary, he 
chooses the game of heads or tails, that will prove to us that he 
evaluates the probability of the recovery at less than 50 per cent. 
We may then repeat the test, using an eventuality with a 49 per 
cent probability. We may, for instance, with several decks of 
cards, whose backs are similar, make up a pack of 100 cards, 49 
of which are red and 51 black. The probability of extracting a 
red card from this pack spread on the table after shuffling is 
49 per cent or 0.49. If Peter prefers this probability to that of 
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the case of recovery, it is because he evaluates the latter at less 
than 0.49. We may continue until Peter chooses the probabil
ity of the recovery when the other probability is only 0.43, 
whereas he had preferred the probability 0.44. We shall con
clude that his true evaluation of the probability of the 
recovery is between 0.43 and 0.44. But, of course, true 
evaluation does not mean exact evaluation since Peter is not 
infallible. Even if he is very skillful, it is quite doubtful that he 
can distinguish with certainty between probabilities as close 
together as 0.43 and 0.44. That is why it would be futile to seek 
a more exact decimal by diminishing the successive probabilities 
by a thousandth instead of a hundredth. 

These evaluations of the probability of a particular ev~nt 
may be compared to the evaluation of a length or a weight wh1ch 
is made by a person with no means at his disposal for measurin? 
them. If this person has a certain competence due to expen
ence, his evaluation may be relatively exact, that is to say, 
contain two exact significant figures; perhaps three if the fir_st 
figure is I, as in the case of the height of a man evaluated lfi 
centimeters. Such evaluations do not have the value of a 
precise physical measurement done with good instruments, but 
are still preferable to absolute ignorance; it is the same with 
probabilities. 

There is, however a notable difference between these two 
sorts of evaluation, ~hich comes from the fact that the methods 
which may be used to control these evaluations are different 
according as we are dealing with the evaluation of a measur
able magnitude or with a probability. In the first case the 
control is easy: we need only measure with a good instrument 
and compare the result to the evaluation. Anyone may 
control his own evaluations and perfect himself in the art of 
evaluating at a glance the height of a man or a ceiling. In 
the case of a probability it is generally impossible to give a 
precise method similar to measuring a length by means of~ 
meter rule. It is only by indirect and necessarily more compli
cated methods that the relative exactness of the evaluations 
made by this or that person of a certain category of prob
abilities can be determined. 
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10. The Control of the Accuracy of the Evaluations of Prob
ability. It is not possible to control the accuracy of the evalua
tion of the probability of a single isolated event unless t~e 
evaluation is either extremely small or very close to I, that IS, 

amounts practically to an impossibility or to a certainty. But 
if we assert that an event has 9 chances out of I 0 to occur or, on 
the contrary, 9 out of 10 chances not to occur, it may happen in 
either case that the event actually will or will not occur, and we 
cannot conclude that our evaluation was exact or not. An 
event may very well not occur, although its probability is 0.9, 
or occur, although its probability is only 0.1. Some writers 
believe they can solve the difficulty by refusing to examine it, 
that is, by denying the probability of an isolated event. I have 
discussed this point elsewhere2 and shown why it does not seem 
to me to be acceptable. The notion of probability is a primi
tive notion, whose significance everyone grasps intuitively and 
which a scientific study can improve, as the geometrician im
proves the notions of straight line, plane, sphere, of which more 
or less crude examples are given by everyday experience. 

Everyone knows perfectly well what he is saying when he 
asserts that a certain eventuality seems to him not very prob
able, rather probable, very probable, extremely probable, just 
as when he says that a person is small, average, rather tall and 
very tall. A certain experience permits us to substitute more 
precise numerical evaluations for these approximate evaluations 
and to say: I believe that this person is 1.60 m. tall, or I believe 
that the probability of this eventuality is slightly above one half, 
that is to say, this eventuality is more probable than the opposite 
eventuality. 

The question is, how shall we know whether the evaluations 
of probabilities made by a given person are generally correct, 
and the evaluations of another grossly inaccurate. As the 
reader certainly suspects, it is the wagering method that will 
help us solve this problem, but, to avoid regrettable errors, the 
method must be used with circumspection. 

We must observe that if a person makes an inexact evaluation 
of the probability, and we force him to wager on the basis of his 
evaluation, there are just as many chances that this wager will 

2 . ~alew· pratique et Plzilosoplzie des probabilites (Traitd du Calwl des Prob
ablllles et de ses applications, Vol. IV, fasc. Ill, Gauthier-Villars). 
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be advantageous to him or disadvantageous. That depends on 
the direction of the wager. If, knowing nothing about roulette, 
I assert that the probability of red is 3 out of 4 and that of black 
l out of 4, and another person as ignorant as I wagers 3 fran~s 
on red against my wager of I franc on black, this wa~er IS 

advantageous to me and my error is profitable to me. Without 
going more deeply into the question, we may conclude that the 
wagering method, used without caution, would not single out 
the person who makes grossly inexact evaluations, since the 
cases where this inexactness will make the wagers advantageous 
to him will compensate the cases where the wagers will be 
dis advantageous. 

That is no longer the case if one proposes to compare the 
respecti_v~ skills of two persons separately evaluating the same 
probability who must act on their evaluations. 

Let us suppose that Peter has evaluated at 0.5 and James at 
0. 7 the probability of the event which we call favorabl_e (~he 
recovery of a patient, the winning of a tennis match, the wmmng 
of a race by a designated horse). If they adopt for their wager 
the average value 0.6, James will be interested in betting for the 
favorable event and Peter in betting for the opposite event. 
For a total stake of 100 francs James puts up only 60 francs, 
while, according to his own evaluation, he should put up 7.0 
francs, and Peter puts up only 40 francs, while, according to hiS 
own evaluation, he should put up 50 francs. If one of the two 
bettors, James or Peter has made an exact evaluation of the 
probability, the wager is 'advantageous to him and disadvantage
ous to his opponent. But one may go further and note that, 
if both evaluations are inexact the wager is advantageous to the , s 
bettor who has made the slighter error,3 whether the error 
are in the same direction or in opposite directions. For 
example, if the true value of the probability is 0.8, the wag~r ~f 
60 francs against 40 is advantageous to James, ~~ile_ It IS 
disadvantageous to him if the value of the probability IS 0.4 

3 W_e e_valuate the error by the difference betwe~n the true value and ~~: 
value Indicated by James or Peter. In this evalual!on of the error we m 
usc of the arithmetic mean. If we agreed-which may be preferable
to evaluate the error by the relation of the true value to the indicated value, we 
would have to choose as basis for the wager the geometic mean of0.5 and 0.?, 
or about 0.59. The difference between the arithmetic and the geometric means 
is generally very small in practical cases: it will hardly ever happen that James 
evaluates the probability at 0.9 and Peter at 0.1. 
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or even 0.55 (here the errors have opposite signs). 
If James and Peter make a single wager, it may, of course, be 

won by the one to whom it is, in principle, disadvantageous. 
But if they make a sufficiently larger number of similar wagers, 
the one who generally has the advantage4 will win in the end. 
This is a consequence of Bernoulli's law of larger numbers. 
The probability that Peter will end by winning, when he makes a 
large number of disadvantageous wagers, becomes negligible as 
soon as the number of these wagers is sufficiently large. 

The method of the wager applied to two persons shows which 
one is the more skillful in evaluating the probability. If a large 
number of persons taken in pairs are compared in the same 
manner, as for example, in the case of the diagnoses by many 
specialists of the same disease, it can be determined which one 
among them most correctly evaluates the probabilities, and it 
can be presumed that the evaluations of the winner of the 
tournament of wagers are as good as the present state of 
medical science permits. 

4 We say "generally" because, even if James is more skillful than Peter in 
evaluating, it may occasionally happen that an evaluation made by Peter will be 
better than the corresponding evaluation by James. 



CHAPTER FOUR 

Events of Small Probability. Poisson's Law 

I. The Small but Non-Negligible Probabilities. It often hap
pens that the probability of some events is not small enough to 
be negligible. One cannot then apply the single law of chance 
and assert that they never occur. But when the experiences are 
nu~erous, one may formulate certain approximate laws on the 
ba~1s of the frequencies of these events. The probability of 
senous departure from these laws is sometimes small enough to 
permit the application of the single law of chance, and departures 
~ay then be regarded as highly improbable, or even practically 
Impossible. 

Let us consider a phenomenon with so small a probability 
that its occurrence may be regarded as ·exceptional. To be 
specific, we shall suppose the probability to be less than 1/30. 
If one trial is made every day, the phenomenon should occur, on 
the average, at most once a month. We shall suppose, on the 
other hand, that the probability is greater than IflOOO, although 
this hypothesis has no bearing on the results about to be cite~, 
which remain true, however small the probability; but ifthts 
probability became too small, the trials we have in mind would 
be too numerous to be practically realizable. 

2. Poisson's Law. Let us take, to be specific, a probabil_ity 
?f If 100, the probability, for instance, of winning the pnze 
In a lottery of 100 tickets by the holder of one ticket. If t~e 
buyer of one ticket can repeat his experiment often, that IS, 

frequently buy one ticket of a I 00-ticket lottery, with the 
prize remaining the same, we have already asserted on several 
occasions, as an evident fact resulting from the very definition 
of probability, that the buyer in question, call him Peter, will 
win, on the average, one time out of 100. However, observa
tion shows that if Peter repeats exactly 100 times an experiment 
consisting in buying one ticket of a 100-ticket lottery, he may 
well win one time and only one, but he may also not win a 
single time, and he may win two or more times. Poisson's 

41 
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theorem I reveals the probabilities of these various eventualities. 
According to this theorem, the probabilities that in I 00 trials 
Peter will win 0 time, l time, 2 times, etc., are given by the 
following table: 

Peter wins 0 time: 36.788%; probability 0.36788 
I , 36.788% 0.36788 
2 times: 18.394% 0.18394 
3 " 6.131% 0.06131 
4 " 1.533% 0.01533 
5 " 0.306% 0.00306 
6 " 0.051% 0.00051 
7 " 0.007% 0.00007 
8 " 0.001% 0.00001 

It will be observed that the probability of winning one time 
and one time only is equal to the probability of winning 0 times. 
The probability of winning 2 times is 2 times smaller. That of 
winning 3 times is 3 times smaller than that of winning 2 times. 
That of winning 4 times is still4 times smaller, and so on. The 
probability of winning 8 times is about 1 out of 100,000. 
That of winning 9 times would be 9 times smaller, that is, about 
one one-millionth and that of winning I 0 times would be one 
ten-millionth. We are reaching the probabilities negligible on 
the human scale. 

If 100 different persons make the same experiment as Peter, 
taking a lottery ticket 100 consecutive times, it can be asserted 
that among these 100 persons 36 or 37 will not win one single 
time out of the IOO drawings, about as many will win only 
once, while about 18 will win 2 times, 6 will win 3 times, I or 2 
will win 4 times, and, rarely, I will win more than 4 times. 

But, here too, the figures are only averages, and as always, 
variations from the average values are not only possible, but 
very probable, and must be regarded as the rule and not the 
exception, provided the variations are not too great. 

3. The Variations. We have already said that the values of 
the variation which may be regarded as normal that is which are 
frequently seen, are those which are less than the squ~re root of 

1 See in Appendix Two some mathematical developments relative to this 
theorem. While they are not actually indispensable to the understanding of 
what follows, they will surely interest those of our readers who have some 
mathematical knowledge. 
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the expected number. For example, out of 100 persons who 
have participated in 100 lotteries, it is expected that 36 or 37 will 
not win a single time (on the average 36.8). The square root 
of 36 is 6, it is therefore reasonable to expect that the number 
of persons who will not win a single time will be between 31 and 
43. A variation double that of 6, which would correspond to 
less than 25 or more than 44 will be very rare, and a triple varia
tion (less than 19 or more than 55) will be quite exceptional. 
J?e same results apply to the numbers of persons who would 
wm one time and one time only. 

As for the persons who would win twice, a variation of 4 from 
the average number I 8 may very normally occur. The 
range would be between I 4 and 22, it will seldom go down to 
10 or up to 26. It must be considered quite exceptional for it to 
be less than 6 or more than 30. 

Analogous results would apply to the cases of persons win
ning 3 times or more in a series of I 00 lotteries. 

These results show how disappointing is the gambler's pro
fession, if one may so call the behavior of the person for whom 
gambling becomes a habit. The single prize of the lottery in 
Which Peter continues to buy a ticket must be worth certainly 
less than I 00 francs if the ticket costs l franc, for the organizers 
?f the lottery have' to provide for certain expenses and even 
I~sure a profit. If the prize is worth 80 francs and Peter buys a 
smgle ticket I 00 consecutive times, the probability that he will 
win one time is 0.37. In that case, his loss is 20 francs, since he 
bought I 00 tickets at 1 franc apiece and won a prize of 80 francs. 
There is, on the other hand, a probability 0.37 that he will lose 
his 100 francs without winning anything. As for his chances of 
gain, they are as follows: about I 8 chances out of 100 to gain 60 
francs (2 prizes of 80 francs less 100 francs of tickets), 6 chances 
out of 100 to gain 140 francs, I or 2 chances out of 100 to gain 
220 francs, the chances of a greater gain being extremely small. 
Analogous calculations would apply to the habitue of roulette 
who persists in playing a number other than zero (which he may 
change as he pleases, without altering the probabilities). 
Since roulette has a zero, he will win, on the average, one time 
out of 37, so that in 37 consecutive trials, the probabilities that 
he will never win or will win I time, 2 times, etc., are given by 
Poisson's table. 
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4. The Case where the Series of Trials is Repeated Several 
Consecutive Times. It is interesting to investigate what hap
pens when the series of trials which we have imagined are 
repeated several times in succession : Peter buys I 00 consecutive 
times a ticket in a 100-ticket lottery, or he plays 37 consecutive 
times a full number at roulette. 

Let us suppose that Peter does not win a single time in the 
course of the first series. The probability of such an eventual
ity is 0.3679. If that occurs, the probability that Peter w.ill not 
win in the course of the second series is not affected, and IS also 
0.3679. The probability that these two eventualities will occur 
consecutively, that is, that Peter will not win either in t~e 
course of the first series or in the course of the second series, IS 

equal to the product of these two probabilities, or about 0.135. 
Such is the probability that in the course of these two series. of 
100 lotteries each, that is, in the course of 200 consecut1ve 
lotteries, Peter will not win a single time. If we consider. a 
second series, also of 200 lotteries, the probability that Peter w1ll 
not win is the same, that is, 0.135, and the probability that he 
will not win a single time in the course of the 400 consecutive 
lotteries (2 series of 200) is the product of 0.135 by 0.135, ~r 
about 0.018. This probability is close to 2 hundredths, and IS 

not at all negligible. 
The probability that Peter will not win in two series of 400, 

that is, in a series of 800, would be the square of 0.0 18, or about 
0.0003, nearly I out of 3,000, a very small probability, but by no 
means negligible on the human scale. 

One realizes here that the simple observation that Peter wins 
on the average one time out of I 00 trials must be interpreted 
in the light of Poisson's calculations, if its significance is to be 
fully grasped. Peter should not interpret this formulation of an 
average value as implying the certainty that he will win the 
prize in 100, but in even several hundreds of consecutive 
trials . 

. It is the same when the probability in question is not the win
n.mg of a lottery prize, but an accident of which Peter runs the 
nsk daily. For instance, Peter is a workman whose trade 
ca~ries certain risks, an aviator, a locomotive engineer, or a truck 
dn~er: If the probability of an accident, according to the 
statistics of all the accidents which have happened to those 
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exercisi~g Peter's trade, is 1/1000 per work day, that means 
one acctdent about every three years (if one supposes that there 
a~~ 333 work days in a year). But for every 100 persons exer
ctsmg Peter's trade one must count about 37 who will have no 
accident in a first period of three years, and about 13 who will 
have no accident in two consecutive periods of 3 years. Such a 
proportion of exceptions must appear as quite natural, a si~p~e 
consequence of Poisson's calculations of probabilities, and It IS 
not necessary, in order to explain it, to bring in the differences 
between the probabilities among the various individuals. 

The probability of such differences cannot, of course, be ex
cluded a priori. A question is involved, which can only be 
answered by observation and experience. One may even 
regard as certain that these differences exist since men are not 
all alike. Among truck drivers there are 'certainly· some for 
whom the probability of an accident is less than the average, and 
others for whom this probability is, on the contrary, greater 
than the average. 

The inequality of the probabilities associated with various 
individuals must obviously augment the proportion of those to 
whom, in a certain lapse of time, no accident has happened. 
We know that if the number of trials of each individual is equal 
to the denominator of the probability, that is, to 1,000 if the 
probability is 1/1000, one must expect that the event hoped for 
or dreaded will not happen to about 37 per cent of individuals. 
In the matter of accident, such will be the proportion of the 
spared individuals, aviators or truck drivers, for instance, who 
will have had no accident.2 

A variation which does not surpass 6 per cent in either direc
tion relative to the mean value must, of course, be regarded as 
normal, since it may be due to purely fortuitous causes. If the 
proportion of those who have had no accident is noticeably 
higher than 36 per cent, and reaches, for example, 45 or 50 
per cent, it must be presumed that the variation is not fortuitous, 
but due to the fact that, among the individuals concerned, there 
are some for whom the probability is notably less, while for 

2 The probability 1/1000 is assumed to be calculated from certain statistics. 
It may refer either to a day's travel, a rather vague unit, since all days are not 
alike, or to a number of kilometers covered, say, a thousand kilometers. A 
thousand repetitions of the experiment will then amount to a million kilo
meters. 
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others, it may be more than the average. This last result would 
be confirmed, in accidents which are generally not fatal, as in 
automobile casualties, by the fact that the proportion of 
individuals who have had, in the period considered, more than 
2 accidents, would be above 18 per cent and the proportion of 
those who would have had more than 3 accidents, would be 
above 6 per cent. 

In the language of the calculus of probabilities, we sum up this 
increase of the proportion of cases where the number of acci
dents is 0, 2, 3 and the inevitably correlative decrease of cases 
where the number of accidents is equal to unity, which is the 
average, by saying that the observed dispersion is greater than the 
normal dispersion. It is a general law of the calculus of prob
abilities that, in this case, the material observed is not homo
geneous: the probabilities are not equal for all individuals, but 
above the average for some and therefore below the average for 
others. 

Can it happen that the observed dispersion is, on the contrary, 
less than the normal dispersion? It can when the observed 
phenomena are not independent of one another, as, for instance, 
in the case of contagious patients, or of observations bearing on 
numerous travelers using the same means of transportation. 
If a train loaded with travelers jumps the tracks, several hundred 
persons are simultaneously classified among those who have 
participated in an accident, and a fairly large number of them 
are sometimes killed or more or less seriously injured. A grave 
accident, assuming the proportions of a catastrophe, makes 
sometimes, in one day, a greater number of victims than the 
total yearly average. It is all the more so in maritime accidents. 

However, in trains as in ships, there exists a certain inde
pendence between the chances of accident of two different per
sons. This comes from the fact that, except in rather particular 
cases (members of one family traveling together, inhabitants of 
the suburbs of a great city taking the same trains every day at 
r~gular hours), it is generally because of entirely fortuitous 
Circumstances, which will not happen again, that travelers find 
themselves together in the same train or on the same boat. 
!fie probability that one of them will have another accident is 
Independent of the analogous probability regarding one of his 
chance companions. It is not the same when one considers the 
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probabilities of certain epidemic diseases or of diseases whose 
frequency is influenced by very severe' cold or heat. The 
probabilities vary then simultaneously for the inhabitants of a 
house, a neighborhood, a city or a region. 

5. Th~ Probabilities of Waiting. One of the practical prob
lems which presents itself most frequently in everyday life is the 
P~obability of waiting, when the time depends on fortuitous 
Circumstances, such as the number of clients at a window, or the 
more or less regular passage of a public bus. 

Let us first consider the very simple case of a bus which passes 
at rigorously fixed intervals, say, every 20 minutes. If its 
~~hedule is not known, or no account is taken of it, the probabil
~ties of arriving at a stop at any moment of the 20-rninute 
Interval between two successive buses must be regarded as equal. 
The average duration of the waiting will therefore be 10 minutes. 

Let us now consider a slightly more complicated case. We 
suppose that the average interval between buses is still 20 
minutes, but this interval is alternately 30 and 10 minutes. In 
other words, the hours of departure from the terminal are 12, 
1_2:10, 12:40, 12:50, 1:20, 1:30, 2, 2:10, 2:40, etc. We con
tmue to suppose that the traveler pays no attention to t~e 
schedule, either because he does not know it or because hiS 
watch is not right, or again, as is usually the case, because h~ has 
occupations or errands whose duration cannot be precisely 
evaluated, and he decides to take the bus as soon as he is free. 

One might be tempted to reason as follows: when the interval 
between two buses is 30 minutes, the average waiting is 15 
~inutes, and when the interval is 10 minutes, the average waiting 
IS 5; the average waiting, being alternately 15 minutes and 5 
minutes, is, on the average, 10 minutes, the same as when t~e 
buses pass at regular 20-minute intervals. This reasoning IS 
wrong, since it does not take into account a circumstance which 
a moment's reflection makes evident. The traveler who comes 
to a bus-stop at an arbitrary moment has many more chances 
to arrive during a 30-minute interval than during a 10-minute 
interval. Out of 4 times, he will arrive, on the average, 3 times 
during the 30-minute interval and I time only during the 
10-minute interval. He will have therefore, out of four trials, 
an average wait of 15 minutes 3 times and an average wait of 
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5 minutes only once. The actual average waiting time will 
thus be: 

I 50 
4 (3 x 15 + I x 5) = 4 = 12.5 min. 

that is, 12 and a half minutes; it is increased by the irregularity 
of the service. 

One could attempt to solve an analogous problem, when the 
irregularities of the service are not systematic, but brought abo~t 
by fortuitous circumstances, as frequently happens in the b1g 
cities where traffic is very congested. Although leaving the 
terminal at regular intervals, 10 minutes, say, the buses find 
themselves farther apart from each other by the time they reach 
the middle of their routes.3 

It is somewhat difficult to submit the problem thus formulated 
to a rigorous calculation, since such a calculation could only 
be based on very precise hypotheses, on the probability of 
various irregularities (ahead of or behind schedule) which are 
regarded as possible. In the case of bus lines where departures 
are rather frequent, a fairly practical result will be obtained 
by admitting as an experimental fact that, when the average in
terval between buses is 10 minutes, intervals from 0 to 20 min
utes are all about equally probable. The average waiting is 
5 minutes when perfect regularity is achieved, and 10 minutes 
when irregularity is as great as it can be under our hypothesis 
(intervals whose lengths are alternately 10 and 20 minutes). An 
easy calculation leads to the conclusion that the average waiting 
is the arithmetic mean of 5 and 10 minutes, or 7 and a half 
minutes ; it is increased 50 per cent by the irregularities of the 
service. 

We have supposed, so far, that the traveler who waits always 
finds a seat in the first bus which comes along. To submit to 
calculations the cases where the coaches are full or can only 
accommodate some of the travelers, a number of hypotheses 
would be required which might be very arbitrary if they were not 

3 One may observe, in the case of buses, that a delayed bus will have to pick 
up a greater number of passengers at every stop, which will tend to increase its 
d~lay, whereas a bus ahead of schedule with respect to the preceding bus will 
PICk up few passengers, so that its earliness will tend to increase. Thus it is 
that, on some lines, it frequently happens that a bus overtakes the preceding 
bus before they reach the terminal. 



EVENTS OF SMALL PROBABILITY 49 

?as~d on observation and statistics. The problem of wait
mg m the cases where the coaches are sometimes full or nearly 
full has some analogy with the problem of the waiting at win
dows,. of which we are going to speak, restricting ourself to a 
~ery Simple case, since the problem would be very complicated 
If one wished to study all the circumstances which can actually 
present themselves. 

6. The Problem of Waiting at an Office Window. Let us 
first assume that the number of windows of a certain bureau, 
all identical, is strictly sufficient for the customers, who, we shall 
say to simplify matters, all require the same amount of time, 
5 minutes. If the window is open 10 consecutive hours a day, 
it can serve 120 persons and I 0 windows can serve I ,200 per
sons. 

If the customers are less numerous at the beginning of the 
day, some windows will be idle part of the time, and the rush 
will be so great at the end of the day that the customers cannot 
all be served. If that situation occurs several times and 
becomes known, those customers who will consider themselves 
harmed by not being served by the end of the day, because of the 
rush, will make every effort to come at the beginning of the day. 
The consequence will be a greater-than-average rush in the 
morning and a more or less prolonged waiting. The problem is 
far from being a simple matter of probabilities, since it involves 
the psychology of the customers as well as numerous circum
stances depending on the nature of the operations. It is only 
by greatly simplifying the hypotheses that we can submit it to 
calculations. 

We shall suppose henceforth that there is only one window 
and that the daily clientele is below its capacity to the extent 
that, if the customers came at regular intervals, not only would 
there never be any waiting, but the windows would be idle 
during one fourth of the work day, that is, 2 hours (120 minutes 
in all) out of 8 business hours. lt can, during the 6 hours of 
effective work, serve an average of 30 customers an hour, each 
staying two minutes, or 180 a day. But these 180 customers 
do not come at equal intervals. There generally are idle 
hours and rush hours. If, however, a large enough number 
of customers are free at all hours and are much afraid of having 
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to wait, some of them will seek the hours known to be idle, and a 
certain equilibrium will be established. It is not absurd, 
therefore, to make the simple hypothesis that, for every one of 
the customers, all the hours of the work day are equally prob· 
able, everything happening as if everyone drew lots on the hour 
and minute of his coming. The problem may now be sub· 
mitted to calculations, and, in spite of the simplicity of the 
hypothesis, the solution still is rather complicated. Appendix 
Two contains some precise calculations for readers interested 
in mathematics. We give here the results in the particular case 
just indicated. 

Let us first make clear certain conventional phrases. The 
first customer to present himself at the opening of the window 
will be called the head of a series. If during the two minutes 
of his stay at the window, no other customer comes, the series is 
ended, and is composed of only one element. If, on the con· 
trary, during the stay of the first customer, there come one or 
several customers, the series will only end when the window 
is again idle. It may comprise 2, 3, 4, etc. elements, each one 
consisting of one customer who makes use of the window for 2 
minutes. If the series comprises 4 elements, its duration is 8 
minutes. When it is ended, the first customer to come is again 
the head of a series, and so on, until the closing of the office. 
We shall suppose that closing time is held up a few minutes, if 
necessary, to accommodate waiting customers. 

We have supposed that there are altogether 180 customers, 
whose business demands 6 hours, while the window is open 8 
hours. The window remains unoccupied a quarter of the time 
it is open. Under these conditions the probability that a 
customer coming haphazardly in the course of the day will be 
the head of a series is precisely one fourth, hence the number of 
series will on the average, be equal to one-fourth of 180, or 45. 

The respective probabilities that a series will comprise 1, 2, 3, 
or a larger number of elements can be calculated. These 
probabilities decrease rapidly at first and then much more 
slowly. By multiplying these probabilities by 45, the probable 
total number of series, we obtain the probable numbers of series 
of 1, 2, 3, 4, etc. elements. These numbers are 21 series of 1 
element, 7 series of 2 elements, 3.5 series of 3 elements, 
2.1 series of 4 elements, 1.4 series of 5 elements, 1 series of 6 



EVENTS OF SMALL PROBABILITY 51 

elements. The number decreases very slowly after this point, 
since it is multiplied by about 0.9 every time the number of 
elements increases by one unit. It becomes 0.36 for 16 ele
ments and 0.13 for 26 elements. But the sum of the probable 
~umbers of series of 6 elements or more is equal to 10, which 
IS far from negligible, and the probable number of the series 
of 29 elements or more is equal to unity. One may then 
expect a distribution like the following: 

21 series of 1 element 
7 2 elements 
3 3 
2 4 " 
2 5 
1 6 or 7 elements 
1 8 elements 
I 9 
I 10 or 11 elements 
I 12or13 
1 14 to 16 
1 17 to 20 
1 21 to 25 
I 25 to 30 
1 31 to 40 

But there may, of course, be variations relative to these 
average numbers. We sought only to indicate the general 
behavior of the phenomenon. 

The number of series being 45 and the total number of ele
ments 180, every series comprises, on the average, 4 elements. 
Let us recall that the total business time of the window, 8 hours, 
is equal to 4 times the number of idle hours; that is why the 
average number of elements is 4. 

The average number which we have just calculated is the 
arithmetic mean of the number of elements of the various series, 
or, if one prefers, the average duration of these series (the unity 
of duration being 2 minutes). But in certain cases another 
definition of the average is preferable. 

Let us consider a random customer. He will belong to a 
series, either as the head of it or as one of its other elements. 
When this series is terminated it will comprise a certain number 
of elements which may be called the number obserred by 
the random customer. lf we consider a large number of 
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customers, each one will observe a certain number of elements in 
the series to which he belongs, and the average value of the series 
may be taken to be the arithmetic mean of the values observed 
by a large number of customers. The average so defined is 
evidently greater than the average which we previously calcu
lated, since it is more probable that a customer taken at random 
will belong to a long series rather than to a short one. Calcula
tions show that, in the present problem, the new average length 
is precisely the square of the previous one: 16 elements instead 
of 4. If a customer comes in at random and belongs to a series 
of 16 elements, he has equal chances to occupy any of the places 
between the first and the sixteenth. The number of those pre
ceding him is between 0 and 15, an average of 7 .5. This is the 
most precise and the most general answer to the problem of the 
waiting at the window. A new calculation would be required to 
determine the average duration of the waiting. 

If the window were idle for a length of time equal to half of 
the business hours (not to a fourth as was supposed) the average 
length of the series would be 2, according to the first method of 
calculating, and 4, according to the second method. Every 
customer would have an average of 1.5 predecessors in the 
series to which he belonged. Half of the customers would be 
heads of series and have no predecessor. 

If, on the contrary, the window were idle for only one tenth of 
the business hours, the average length of the series would be ten, 
according to the first method of calculating, and 100, according 
to the second method. There could be, if not every day, at 
least quite often, series above 100. The average daily number 
of series being only 18, observations bearing on several days 
would be required to verify our results concerning only aver
ages. 



CHAPTER FIVE 

Probabilities of Deaths, Diseases and Accidents 

1. Probabilities of Deaths. As early as the eighteenth cen
tury statistics of deaths in relation to age began to be seriously 
established. 1 During the nineteenth century these statistics 
became quite accurate in all civilized countries. Moreover, 
the life insurance companies, whose number and importance 
did not cease to grow, established very precise statistics on 
their clientele. In these statistics the companies differentiate 
between two categories of clients, according to the nature 
of the insurance policy. In certain policies the death of the 
insured is an advantageous event, if not for him, at least for his 
heirs, and therefore disadvantageous to the company which 
must pay a considerable sum to them. In other contracts, on 
the contrary, it is the prolonged life of the insured which is 
advantageous to him and disadvantageous to the company 
which must pay him a life annuity. In the language of insur
ance companies, the first category are the insurants and the 
second the annuitants. The mortality of the annuitants is 
obviously lower than that of the insurants, even though the 
companies demand a medical examination of the latter and 
refuse to insure them if the examination is not favorable. A 
man who knows he is sick or frail does not easily decide to 
put himself in the category of annuitants by sacrificing a con
siderable capital in exchange for a life pension. 

The Mortality Tables of French policy holders, reproduced by 
the Annuaire du Bureau des Longitudes from the publications of 
the insurance companies, are given in Appendix Three. The 
Appendix also contains other tables of the general statistics of 
France and tables of survival by generations, accompanied by 
comments on the differences between these various tables. We 
remark here only that the tables of insurance companies refer to 
a somewhat selected population, since the insured have passed a 
medical examination before a company's doctor, and it is to 
the interest of the annuitants to consult their own doctors before 

I Deparcieux' Table, 1746. 
53 
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taking a policy. But these examinations take place only once, 
when the policy is taken, and the duration of the contract is 
often very long. In the course of it insurants or annuitants may 
have some grave illnesses which considerably increase their 
probabilities of dying within a year, compared with the mean 
probabilities of the group of men or women of the same 
age. 

Let us insist a little on the distinction which must be made 
between the mean probability of death in the course of a year 
for a man of forty and the analogous probability when it is 
known that the man of forty is presently well and runs no excep
tional risks in the exercise of his profession or his mode of living. 

2. The Meaning of the Mean Probability. Let us consider, 
to fix our ideas, the men of 40, according to the Table of Sur
vival of French insurants (French companies, 1895). Out of 
711,324, 6,938 die in the course of a year, a little less than 10 
out of a thousand. If we adopt the figure 10 out of 1,00~, 
the mean probability of mortality in the course of the year IS 

0.01, or one hundredth, for a man of 40 on whom there is no 
other information available, and who may legitimately be con
sidered as chosen at random among the men of 40. Take, for 
instance, the totality of the men who reach their 40th year in 
January: if they number 30,000, it must be regarded as probable 
that 300 will die before the age of 41. The difference which 
may be observed between the actual number of deaths and the 
average number of 300 calculated according to the probability 
will be relatively small, of the order of magnitude of the varia
tions which occur when a simple experiment is repeated a 
great number of times, such as the throw of a die or the drawing 
of a number out of an urn. 

If account is taken of the possibility of exceptional events 
which increase the general mortality (war, epidemic, abnormally 
cold winter), the variations concerning mortality are sometimes 
greater than those of simple fortuitous events. 

It may, then, be assumed, in the examples we have 
picked, that the number of deaths will be above 250 and below 
400. But this supposes that the experiment embraces 30,000 
persons of 40 really taken at random. Such is the case if, 
instead of those born in January, we choose those whose names 
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begin with A or B. But if one chooses 30,000 office workers 
betw~en 40 and 41, working on January I, one must expect a 
defimtely lower mortality, since their being active proves that 
they do not on that date suffer from a grave illness, such as 
tuberculosis. Moreover, one may expect that the probabilities 
of certain illnesses or causes of accident are less for office 
employees than for workmen or farmers. 

The variations of the probability in dealing with a restricted 
category of persons, would be still greater if, instead of the 
probability of death in the course of a year, we spoke of the 
probabilities of death in the course of a day, within 24 hours, 
from noon today to noon tomorrow. 

For the aggregate of men of 40 this probability is 365 times 
less than for the year, that is, one may expect an average of 10 
deaths out of 365,000 persons instead of 10 out of 1,000. In a 
large country, if the number of persons of 40 were 730,000, 
the average daily mortality among persons of that age would be 
20. But this number would evidently be very much smaller, if 
we considered only the persons of 40 who, today at noon, are in 
good health, and will not, in the next 24 hours, run any excep
tional risk of accident (a long trip by plane or car, a dangerous 
acrobatic exhibition, etc.). There are very few illnesses that kill 
in 24 hours without previous warning, and many fatal accidents 
grant to their victims a few hours or days of survival. It would 
therefore be a gross exaggeration to evaluate at I out of 36,500 
the probability of death in the course of 24 hours for a person 
in good health and not running any exceptional risk. It may be 
asserted that the probability is very much lower, although a pre
cise evaluation, or even a definition of it, is somewhat difficult. 
What is meant by "a person in good health"? Must the 
person's assertion suffice, or is a medical examination required? 
On the other hand, what are the risks of accident that must be 
considered either normal or exceptional? 

It might be interesting, however, to distinguish better than 
has been done so far the probabilities of global survival at a 
certain age for the whole of a population from the probabilities 
relative to persons of this age who are in good health and run no 
exceptional risks. The statistics of deaths classified according 
to their causes would be one of the most important elements of 
this study. 
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3. Deaths According to their Causes. The enforcement of the 
laws requiring declaration of the causes of death has made 
great progress in France since the publication of the first 
edition of this book [1943], largely because of the development 
of social insurance; as a consequence the doctor is called in 
almost every grave illness. Whereas in 1936, out of 642,000 
deaths, there were about 131,000, more than 20 per cent, due to 
unspecified or ill-defined causes, in 1948 the number was only 
about 35,000 out of 506,000 deaths, less than 7 per cent. We 
have therefore replaced the tables which we had given for 1936 
by the statistics published for 1948, which is the year when the 
number of deaths was the lowest for the half-century period 
1900-1949. 

We have reproduced the new classification of the causes of 
death. Like all classifications, this one cannot be perfect, and 
it must be conceded that in many cases a doctor may legitimately 
be puzzled. Here is a patient suffering from a sort of tuber
culosis which may be presumed curable. However, after ex
posure to excessive cold, he dies of bronchitis or pneumonia. 
Is the death attributable to tuberculosis or to the accidental 
illness? A similar question often presents itself with syphilitic 
patients. According to the specialists, the number of deaths 
whose real cause is syphilis is in reality much higher than the 
statistics indicate, for they name more readily an accidental 
cause in numerous cases where the latter would probably 
not have brought about death, had not the victim been syphil
itic. 

We have given, regarding the most frequent causes of death, 
the distribution of deaths in relation to ages as it appears in the 
Bulletin de Ia statistique generale de Ia France. It was, of course, 
useless to give the distribution for cause XV (illnesses peculiar 
to the first year of life). As for cause XVI (senility, old age), 
let us state here that, for the men, there are 488 deaths between 
the ages 50 and 69, 4, 722 between 70 and 79, and 9,578 between 
80 and 99, and for the women 572 between the ages of 50 and 69, 
6,188 between 70 and 79, and 16,954 above 80. These figures 
are explained by the greater longevity of women. 

We lacked room for the distribution by provinces of deaths 
from various causes. This breakdown is rather instructive. 
It emphasizes important differences sometimes due to the 
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variety of climates or the existence in some provinces of 
specialized hospitals, but more often to differences in ter
minology among the doctors of various regions. The propor
tion of deaths whose causes are not declared or ill-defined 
varies much according to regions. 



CHAPTER SIX 

Application of Probabilities to Certain Problems 
of Heredity 

1. Heredity and the Chromosomes.:' According to theories 
generally accepted by biologists and. confirr~ed by numer~us 
experiments, the phenomena of hered1ty are. !Inked to the exist
ence, in every individual, of a number. of palfS. of chr?mosomes 
(24 in the human species). These palfS are dlfferentmted from 
one another and may therefore be numbered. In every child 
the chromosomes of a given pair, say, the seventeenth, are 
formed from one of the chromosomes of the father's seventeenth 
pair and one of the mother's seventeenth pair. lt is as if the 
child drew lots and had one chance out of two to choose either 
one of the father's two chromosomes and either one of the 
mother's two chromosomes, for the seventeenth and for every 
one of the other pairs. The number of choices among 48 pairs 
is 248, more than 250,000 billions. When two brothers or 
sisters are not twins from the same egg, in which case they have 
the same chromosomes, and are exactly alike, the probability 
that the choices will all be the same is extremely small, the 
quotient of unity over 250,000 billions. It is not probable 
that such an event happened on earth since the beginning of the 
human species. 

Although the precise role of the chromosomes in the deter
mination of physical, intellectual and moral characteristics of 
every individual is still little known, it seems that the presence 
in two individuals of certain groups of identical chromosomes is 
enough to create very striking resemblances or analogies be
tween them. A single chromosome may sometimes determine 
a characteristic important enough to attract immediate notice. 
Such is the case of certain hereditary taints. This shows the 
significance of the study we shall presently make of the probabil
ities relative to the simultaneous presence of a chromosome in 
individuals who have one or several ancestors in common 
resemblances between brothers, uncles and nephews, first cousins: 
etc. 

*See note, page 63. 58 
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2. Chromosomes Common to Brothers and to Cousins. 
Consider first two brothers having the same father and mother. 
All the chromosomes of one, whom we call A, come from either 
the father or the mother, that is, from one of the two parents 
common to A and his brother B. If we pick out a given 
chromosome of A, there is one chance in two that it will be 
found in B. Out of the 48 chromosomes of A an average of 24 
will be found in B. 

We have implicitly supposed that the father and mother of the 
two brothers are not related, that is, have no common chromo
somes. 

Consider now an uncle and a nephew. The nephew's father 
is understood to be a full brother of the uncle, that is, they have 
the same father and mother, but the nephew's mother is not re
lated to her husband. Under these conditions, the uncle and 
nephew have two common ancestors, the uncle's parents and the 
nephew's paternal grandparents. The uncle's chromosomes 
come from one of these two common ancestors, but there is 
only one chance in four that any one of these chromosomes will 
be found in the nephew, since the latter is separated from the 
two common ancestors by two generations (including his 
own). 

The uncle and nephew have in common an average of I 2 
chromosomes. 

If we consider first cousins, we shall specify that their fathers 
are full brothers and their mothers unrelated to each other or to 
their husbands. Under these conditions, they have two com
mon ancestors, their two paternal grandparents. A chromo
some of one of the cousins has one chance out of two of coming 
from the common ancestors, and there is one chance out of four 
that it will be found in the other cousin. The probability that a 
chromosome of a given rank will be common to the two 
cousins is therefore 1/2 x 1/4 = 1/8. Out of 48 chromosomes 
they have an average of 6 in common. 

We take now the case of first cousins whose fathers are broth
ers and whose mothers are sisters. They have four common 
ancestors, any chromosome of one of them comes from one of 
these four ancestors. But every one of these ancestors is 
separated from his grandson by two generations, that is, two 
choices. One of their chromosomes has only one chance out of 
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4 to be found in the grandson. The two cousins have in 
common an average of 12 chromosomes, an average of3 of these 
chromosomes coming from each of the four common ancestors. 
The difference between the case of these two cousins and that of 
two brothers who have also 4 common grandparents is ex
plained by the fact that, in the case of the two brothers, the 
parents have already made a choice among the chromosomes of 
the grandparents, and this choice is the same for the two 
brothers. 

If a characteristic is linked to a single chromosome, this 
characteristic is common to two brothers one time out of two, 
to uncle and nephew one time out of 4, one time out of 8 to two 
first cousins (one time out of 4 to double first cousins). 

If a characteristic is linked to the simultaneous presence of 
two chromosomes, it will be present only one time out of 4 in 
two brothers, one time out of 16 in uncle and nephew, one time 
out of 64 in first cousins. 

It would seem then that a few precise statistics would suffice 
to determine, a posteriori, from resemblances between brothers, 
etc., what characteristics depend on one, two or several chro
mosomes. 

3. A Few Words on a More General Case. We have sup
posed, as is most frequently the case, that two brothers have the 
same two parents. It would be easy to treat the more general 
case in which the common ancestors are not necessarily at once a 
father and mother. Let us take, for instance, two cousins who 
have in common a grandfather and a great-grandmother, the 
other common ancestors being exclusively the ancestors of these 
two .I Given a chromosome of one of the cousins, there is one 
chance out of 4 that it comes from his grandfather and one 
chance out of 8 that it comes from his great-grandmother, 
these two eventualities are mutually exclusive. In the first case 
there is one chance out of 4 that the chromosome exists also i~ 
the second cousin, and in the second case, there is one chance 

I Given Paul and James, the two cousins. Paul is the son of Peter and Jean 
and James the son of Henry and Bertha. Peter and Henry are the sons of th~ 
same father and not of the same ~other. Jean is the daughter of Edward, and 
Bertha the daughter of Marguente. Edward and Marguerite have the same 
mother and not the same father. 
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out of 8. The probability that the chromosome will be common 
to the two cousins is 

1 1 1 1 5 
4 X 4 + 8 X 8 = 64. 

An analogous formula would apply, whatever the number of 
common ancestors, who may well not correspond to the same 
generation for both cousins. Generally, the ancestor of 
order a1 of A is supposed to be the ancestor of order b1 of B 
(if a1 = I, we are speaking of the father, if a1 = 2, of the grand
father, if a1 = 3, of the great-grandfather, etc.), the ancestor of 
order a2 of A is the ancestor of order b2 of B, the ancestor of 
order a3 of A is the ancestor of order b3 of B, etc. The prob
ability that a chromosome is common to A and B is 

P=-1-+_1_+ +-~-· 
2a1+b1 2az+bz · · · 2ak+bk 

If we speak of two double first-cousins, that is, having four 
grandparents in common: 

a1 = b1 = 2; a2 = bz = 2; a3 = b3 = 2; a4 = b4 = 2, 

and, from the formula, 
1 1 I 1 1 

P = 16 + 16 + T6 + 16 = ~r 

There remains the case where one of the common ancestors 
must be considered a multiple ancestor by one of the descen
dants (when cousins are married to one another). Without 
going into details, let us indicate that every individual has two 
ancestors at the first generation (parents), four at the second 
generation (grandparents), eight at the third generation (great
grandparents), etc. If among the 16 ancestors of the fourth 
generation, one person figures two times, he must be counted 
twice, that is, must be given two numbers (equal to each other) 
a1 and a2 in the above calculation. If among the 32 ancestors of 
the fifth generation, one person figures 3 times among the an
cestors of A and 2 times among the ancestors of B, there will be 
3 numbers a each equal to 5 and 2 numbers b each equal to 5, 
which gives 3 x 2 = 6 sums a + b equal to I 0, that is, 6 terms 

I 
each equal to 210• 



62 PROBABILITIES AND LIFE 

We leave to the reader the study of the more complicated 
cases which may present themselves. The one in which one 
ancestor figures two or several times in the ancestry of one 
individual, with possibly different ranks, offers no particular 
difficulty. A less simple case is that of our two individuals 
A and B having common ancestors who are related to one 
another, that is, who themselves have common ancestors. 
The simplest example of this is the case of two brothers whose 
father and mother are more or less distant cousins. Still more 
complex cases, in which, to be thorough, one would have to go 
back an almost indefinite number of generations, are frequent 
in isolated villages where for centuries a small number of fam
ilies have intermarried, with very little· new blood from outside. 

4. Application of the Single Law of Chance. All the results 
which we have just indicated concerning heredity can be trans
lated into the language of probabilities. They cannot therefore 
lead to any sure predictions, unless they are used to calculate 
other coefficients of probabilities which would be small enough 
for application of the single law of chance. 

For instance, we said that the probability that a chromosome 
SofA will be found in his brother B is 1/2, while it is only 1/8 
that this chromosome of A will be found in his first cousin C. 
It may very well happen, however, that S is not found in B 
but is found in C, that is, there may be between the first cousins 
a resemblance or analogy which does not exist between the 
brothers. 

But if we consider 100 pairs of brothers AI> B1 ; A2, B2 ; etc., 
and suppose that the hundred A's possess a given chromosome 
which determines in them a characteristic S, we may assert that 
this chromosome, and consequently this characteristicS will be . , 
found an average of 50 times among the hundred B's. And, by 
v_irtue of the single la~ of chance, we conclude that it is impos
Sible that S be found m all the hundred B's at the same time, or 
even in more than 95 of them, and equally impossible that s 
not be found in a single B, or even in only less than 5 of them. 
If instead of 100 pairs of brothers AB, we had considered 100 
pairs of first cousins AC, the characteristicS would have been 
found on the average in 12.5 ofthem, and we could have asserted 
with certainty that it would not be found in more than 50 of 
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them, while there would be an extremely small probability, 
although it would not be absolutely impossible, that it would 
not be found in any one of them. 

If it is assumed a priori that we do not know whether the 100 
pairs were formed of brothers or first cousins, but if we do know 
that the relation is the same for the 100 pairs, and the character
istic S is observed 60 times in both individuals, we can be 
certain they are brothers, while if S is found only 5 or 6 times, 
they are first cousins. 

These examples suffice to show how the various results ob
tained in this chapter and the preceding can lead to sure 
predictions, when they are combined in such a way as to make 
applicable the single law of chance. 

Note to Chapter Six: Since the original French edition of this work was 
published, it has been determined that there are 46 chromosomes (23 pairs 
of chromosomes) in the human species. 



APPENDIX ONE 

On Recurrences of Figures in Winning Lottery 
Numbers 

1. Probabilities of the Various Types of Numbers. The 
problem of the probability of the recurrences of figures in win
ning lottery numbers, briefly mentioned in the first chapter, 
seems to deserve further development, for it is one of those 
problems which can contribute the most to the understanding of 
difficulties often encountered in numerical applications of the 
calculus of probabilities. 

Let us consider all the six-figure numbers in the decimal 
system. They number one million, if we include numbers of 
less than six figures which may be completed at the left by zeros, 
and the number zero, which is written 000,000. These are the 
numbers which can be obtained by drawings out of six bowls 
arranged in a determined order, each containing the ten figures: 
0, 1,2,3,4,5,6, 7,8,9. 

We shall first calculate how many among these million six
figure numbers contain either 6 different figures or 5, 4, 3, 2, 1 
different figures. 

In a six-different-figure number, such as 324789 or 023586, 
the figure on the left may be any o~e of the ten figures, the fol
lowing figure any one of the other nme figures, the third any one 
of the remaining eight, and so on up to the sixth figure, which 
is any one of the last five. There are then 10 x 9 x 8 x 7 x 
6 x 5 = 151,200 numbers of6 different figures. 

Let us pass on to numbers of five different figures. One and 
only one figure is repeated once. That is what poker players call 
a pair. The repeated figure may ~e any one of the ten figures and 
may be put in any two of the SIX possible places, which gives 
fifteen possibilities1 for each one of the figures, or in all, 150. 

1 The first figure may be put in_ any one of the six places and the second in 
any one of the other 5 places, which seems to give 30 possibilities. But if the 
second place is picked first and then the fourth, the distribution is the same as if 
the fourth were pic~ed first and then ~he second. We must divide 30 by 2, 
which gives 15. This result may be venfied by a direct listing of the 15 possible 
distributions. 

64 
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When the repeated figure is put, for instance, in the second 
place and in the fifth, the number may be written 

x3xx3x, 

x designating the undetermined figures which must not be 3's. 
The rightmost x may be replaced by any one of the 9 figures 

other than 3, the following x by any one of the 8 figures re
maining, the other x's by any one of the 7 and any one of the 6 
figures that remain. The number of possibilities is equal to 

150 X 9 X 8 X 7 X 6 = 10 X 9 X 8 X 7 X 6 X 5 X 3, 

the triple of the number 151,200 of numbers formed with 6 
different figures. 

The number of possibilities with 5 different figures (and one 
pair) is therefore 

151,200 X 3 = 453,600. 

Analogous reasonings determine the number of possibilities 
with 4 different figures. They may be divided into two catego
ries, one made up of numbers with two pairs, such as 121472 or 
003347, the other of numbers containing a figure repeated three 
times (a triplet), such as 303483. The first category (2 pairs) 
comprises 226,800 possibilities and the second (1 triplet) 
I 00,800 possibilities, in all, 327,600 numbers with only 4 figures. 

To obtain all the numbers containing 2 pairs, the two repeated 
figures must be picked first. The choice may be made in 
10 X 9 

2 = 45 different ways. Any one of the ten figures may 

be picked, then any one of the remaining nine, in all, 10 x 9 = 
00 choices. But each couple of two figures, such as 7 and 5, 
is obtained twice, since one may pick first 7 and then 5, or first 
5 and then 7. The number of couples of two figures is therefore 
half of 90, or 45. Let 7 and 5 be the chosen couple: 7 may be 
put in any one of the six places, then in any one of the remaining 
5 places. The total number of choices is 6 x 5, but this 
number must be divided by 2 for the reason just given. There 
are 15 ways to choose the places of the two 7's. When the two 
7's are placed, there remain four vacant places, and there are six 
ways to place the two 5's. When the two Ts and two 5's are 
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placed, the distribution may be 

x577x5, 

where the first x may be replaced by any one of the 8 other fig
ures and the second x by any one of the 7 remaining figures. 
We obtain finally a number of possibilities equal to 

45 X }5 X 6 X 8 X 7 = 5 X 9 X 8 X 7 X 6 X 5 X 3. 

This number is therefore half of the already calculated number 

lQ X 9 X 8 X 7 X 6 X 5 X 3 = 453,600. 

It is equal to 226,800. 
It is a rather remarkable fact that there is exactly the same 

total number of pairs in the one-pair and the two-pair numbers. 
This fact does not occur for all the values of the total number 
of figures involved (equal to 10 here, since the decimal system 
is used) and of the number of figures forming the considered 
possibilities.2 

To obtain all the numbers containing a triplet, the triplet 
must first be picked out, which may be done in ten different 
ways. The three places which it occupies may then be chosen in 

6 x 5 x 4 = 20 different ways. There are 200 distributions 
I X 2 X 3 
like the following 

x88xx8, 

each of which may be completed in 9 x 8 x 7 different ways by 
three figures different from 8 and differing from each other. 
There are in all 200 x 9 x 8 x 7 = 100,800 numbers contain
ing a triplet. 

Let us pass on to numbers containing only 3 different figures. 
They may contain 3 pairs, such as 422477 (10,800 of these) or a 
pair and a triplet, such as 422274 (43,200 of these), or finally a 
quadruplet, such as 447484 (10,800 of these): in all, 64,800 
numbers formed by 3 figures. 

2 It can easily be shown that if the total number of figures involved is n = 
2K2 ± K, K being any integral number, this property subsists if the number of 
figures appearing in a numter, is p = 2K + 2 if n = 2K2 + K and p = 2K 
+ I if n = 2K2 - K. The above result is for K = 2, n = 2K2 + K = 10 

p = 2K + 2 = 6. ' 
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Without going into the details of reasonings always based on 
the same principles, let us indicate how the preceding numbers 
are obtained. 

Numbers containing three pairs: 

Numbers containing a pair, a triplet and another figure: 

10 X 9 X 8 
2 

X 6 X 5 X 4 = 43,200. 

Numbers containing a quadruplet (a figure occurring 4 times) 
and two other different figures : 

6 X 5 X 4 X 3 
10 X I X 2 X 3 X 4 X 9 X 8 = I 0,800. 

We have calculated (p. II) the number of combinations con
taining only two different figures. They fall into three cate
gories. 

Numbers containing a quintuplet (a figure occurring 5 times) 
and another figure : 

10 X 9 X 6 = 540. 

Numbers containing a quadruplet and a pair: 

10 X 9 X 6 X 5 = I 350 1 X 2 ' . 

Numbers containing two triplets: 

10 X 9 X 6 X 5 X 4 = 900. 
1 X 2 1 X 2 X 3 

Finally, numbers formed by means of a single figure (includ
ing 000000, but leaving aside 333, for instance, which must be 
written 000333): 10. 

These results may be gathered as in the following table. 
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TABLE I 

Number of Number cor- Total number for 
different Example respont/j,ng each number of 
figures to each example differellf figures 

6 327689 151,200 151,200 

5 327683 453,600 453,600 

4 327376 226,800 
327,600 

327336 100,800 

3 071701 10,800 
007017 43,200 64,800 
723777 10,800 

2 556555 540 
556565 1,350 2,790 
556566 900 

1 333333 
or 10 10 

000000 

TOTAL .••••. 1 ,000,000 1,000,000 

Many readers will certainly be surprised at these results, 
which are, however, incontestable. Since there are ten figures 
and only six bowls, one could have expected the most frequent 
case to be that in which every bowl would give a different figure. 
This happens only about 15 times in 100, whereas more than 45 
times in 100 the same figure is drawn twice; and nearly 33 times 
in 100 only 4 different figures are drawn, two of them being 
drawn twice each (nearly 23 times in 100) or one figure being 
drawn 3 times (about 10 times in 100). 

If attention is fixed on a single drawing of the lottery, it will 
often happen that the proportions of winning tickets with, 
respectively, 6, 5, 4, 3 different figures, will be quite different 
from those which have just been calculated. But if we consider 
a number of drawings large enough to involve at least a hundred, 
or preferably, several hundred important prizes, the proportions 
will be seen to approach closely those given by our table. It 
will be seen in particular that by far the most important case . . ' 
pr~v1dmg nearly half of the winning tickets, is that of numbers in 
wh1ch one, and only one, figure occurs twice. Of course, these 
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breakdowns must not overlook the zeros which must be 
written at the left, so that all the numbers have exactly six figures. 

2. Results Relative to the Repetitions of a Particular Figure. 
It is interesting to compare the results which we have just 
obtained with those obtained by fixing attention on a particular 
figure, 7, for instance, and classifying the numbers according to 
the recurrence of 7. 

Numbers not containing 7.-Each one of the six figures of these 
numbers may be chosen arbitrarily among the other nine figures. 
The number of combinations is : 

9 X 9 X 9 X 9 X 9 X 9 = 96 = 531,441. 

Numbers containing one, and only one, 7.-The figure 7 may 
be. put in any one of the six places, and then in any one of the 5 
remaining places any one of the other nine figures. The num
ber of combinations is: 

6 X 9 X 9 X 9 X 9 X 9 = 6 X 95 = 354,294. 

Numbers containing two, and only two, 7's. The two 7's may 

be placed in ~ : ; = I 5 different ways, and one of the other 9 

figures may be written in each one of the other 4 places. The 
number of combinations is 

15 X 9 X 9 X 9 X 9 = 15 X 94 = 98,415. 

Numbers containing three, and only three, 7's. The three 7's 
. 6x5x4 . 

may be placed m 1 x 2 x 3 = 20 different ways, and we have 

in all: 

20 x 9 x 9 x 9 = 20 x 93 = 14,580 combinations. 

Numbers containing four, and only four, 7's.-There are fifteen 
possible places for the four 7's, and 

15 x 9 x 9 = 1,215 combinations. 

Numbers containing jive, and only jive, 7's.-There are 

6 x 9 = 54 combinations. 

Finally, there is only one number 777777 of six 7's. 
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Let us summarize in a table the results obtained. 

TABLE II 

Number of 7's Number of combinations 

0 531,441 
I 354,294 
2 98,415 
3 14,580 
4 1,215 
5 54 
6 l 

TOTAL 1,000,000 

It may be observed that the numbers obtained are the terms of 
the development of the sixth power of the binomial 9 + I : 

(9 + I )6 = 96 + 6 X 95 + I 5 X 94 + 20 X 93 ... 

Table I I suggests several interesting remarks. 
It may first be noted that more than half of the combinations 

(531,441 in a million) do not contain 7. Suppose six drawings 
are made in each one of which the probability of drawing 7 is 
one tenth. The sum of these probabilities is six tenths, that is, 
more than one half. This shows that the probabilities must not 
be added indiscriminately. What may be added are the mathe
matical expectations, that is, the probabilities of gain of a 
gambler who bets on the 7. If this gambler puts up one franc, 
he should, in fairness, be given 10 francs when the 7 comes out. 
If six drawings are made at once, the gambler must put up six 
francs and will receive as many times ten francs as the number 7 
comes out. 

The table shows that the gambler has about 53 chances in 100 
to lose his 6 francs, a little more than 35 chances in 100 to win 
10 francs, nearly 10 chances in 100 to win 20 francs, 14 chances 
in I ,000 to win 30 francs, about I chance in I ,000 to win 40 
francs. These possibilities of relatively high winnings compen
sate for the fact that he loses his wager of 6 francs more than 
one time in two. 

Let us now consider the case where 7 appears more than once. 
In a million trials, there are 98,415 pairs of 7, 14,580 triplets of 7, 
I ,215 quadruplets of 7 and 54 quintuplets of 7. 
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Since one may reason regarding each one of the ten figures 
exactly as regarding 7, there are among the million combina
tions 984, ISO pairs, nearly a million. It would be wrong to 
conclude that almost all the numbers contain a pair. Table I 
tells us that only 453,600 numbers contain one, and only one, 
pair. To obtain the total number of pairs, account must be 
taken of the combinations with 2 or 3 pairs and of those where 
the pair is accompanied by a triplet or a quadruplet. Table I 
gives us: 

453,600 numbers with one isolated pair, or 
226,800 , two pairs, or 

10,800 three pairs, or 
43,200 a pair and a triplet, or 

I ,350 a pair and a quadruplet, or 

735,750 numbers containing in all .. 

Pairs 
.. 453,600 

453,600 
32,400 
43,200 

1,350 

. . 984,150 

The result agrees with what was deduced from Table II, con
firming the exactness of our calculations. 

Table II also shows that there are in all 145,800 triplets, 
which, according to Table I, are thus distributed: 

100,800 numbers with one isolated triplet.. 
43,200 where the triplet is accompanied by a pair 

900 with two triplets .. 

. . 100,800 
43,200 

1,800 

TOTAL 145,800 

Finally, there are, according to Table II, 12,150 quadruplets 
in all, of which 10,800 are isolated and I ,350 are accompanied 
by a pair, according to Table I. 

Let us indicate, in conclusion, a curious consequence of the 
figures of Table II. 

Let us suppose that a player bets on the drawing of pairs and 
is promised as many times lO francs as the number of pairs in 
the drawn combination. If he plays a million times and all the 
tickets are drawn, he will see 984,150 pairs in all, or nearly one 
million. If his wager is 10 francs, the game is about equitable; 
it only holds back a profit of 15 to 16 per 1,000 or about 11- per 
cent for the entrepreneur of the lottery, who has contracted to 
pay 10 francs for every pair drawn. But it is worthy of notice 
that the game can be made entirely equitable by agreeing that 
every triplet, quadruplet, quintuplet or sextuplet will pay, not lO 
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francs as does the pair, but only one franc. According to 
Table I, the total number of triplets, quadruplets, quintuplets 
and sextuplets for the figure 7 is : 

14,580 + 1,215 + 54 + 1 = 15,850. 

The total number would be 10 times as great for all the figures 
together, but if only one tenth of the wager (1 franc instead of 
1 0) is put up, we must simply add 15,850 to 984, 150, which 
makes exactly one million. 

This rather remarkable result is a consequence of the follow
ing relation, which our readers will easily verify: 

150 X 94 + ( 106 - 96 - 6 X 95 - 15 X 94) = 106. 

Thus, the following game is perfectly equitable: Peter gives 
Paul 10 francs before the drawing of the lottery, and if the 
winning number contains pairs, Paul pays to Peter as many 
times I 0 francs as there are pairs. If instead of pairs, or 
in addition to them a figure occurs more than twice,3 Paul 
pays one franc to Peter for each one of these groups of more 
than two identical figures (triplets, quadruplets, quintuplets, or 
sextuplets). Thus Peter's possible gains are the following (from 
which should be deducted his 10 franc wager): 

One pair 10 francs Triplet .. I franc 
Two pairs 20 Two triplets .. 2 francs 
Three pairs 30 Quadruplet 1 franc 
Pair and triplet 11 " Quintuplet .. 1 
Pair and quadruplet .. 11 Sextuplet 1 

" 
J If a figure occurs exactly three times it must be regarded as a triplet; if 

exactly four times, then a quadruplet and not two pairs; if exactly five times, 
then a quintuplet and not a pair and triplet; etc.-PUBLISHER's NOTE. 
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On Poisson's Formula 

1. Poisson's Formula. Poisson's formula reveals the prob
abilities relative to the intervals of time which separate fortui
tous events following each other without any other law than the 
recognized existence of a certain average frequency. If, for 
instance, a roulette wheel functions at the rate of one play 
per minute, each number, say, 17, will come up, on the average, 
once every 37 minutes: this is the average frequency. 1 There 
are some very important phenomena which fall under this 
definition. Such is the case of emissions of particles which 
correspond to the disintegration of certain radioactive mole
cules. For a given mass of radium, the average number of 
disintegrated atoms in a given interval of time is a well-deter
mined constant. 

The time intervals may be represented by proportional 
segments of a straight line. Instead of the distribution of the 
events in time, one may speak of the distribution of points on the 
line. These points may be considered as distributed at random, 
under the sole condition that their mean density is constant, the 
density being the number of points per unit of length; if it is 
designated by d, the number of points situated on a segment a 
will be, on the average, ad. 

Let us then consider either an interval of time or a fixed seg
ment of the straight line, and let us designate by b = ad the 
average number of events or points which may be expected to 
be observed in the given interval of time or on the given segment 
of the line. This number b is generally not an integer. Even 
when b is an integer, one may not always observe the precise 
number b. Poisson's law shows the probability that n events 
(or n points) will be precisely observed, instead of the average 

1 Actually, Poisson's law is a limit law which would apply rigorously only if a 
roulette wheel could be imagined whose cadence was more and more rapid, 
while the possible numbers increased in quantity. For a wheel of 600 numbers, 
say, playing once per second, every number would come up on the average every 
ten minutes. 

73 
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number b. This probability Pis: 
b" p = e-b-
n! 

(I) 

Such is Poisson's formula, in which e designates, as usual, 
the base of Napier's logarithms (e = 2.718281828 ... ). 

If b = I ,formula (1) becomes 
I 1 

p = --· 
en! 

(2) 

It is by formula (2) that the results given in Chapter Four 
were calculated. 

We have 
I 
- = 0.36788 .... 
e 

and formulas (I) and (2) apply also when n = 0, if n ! is replaced 

by I. 
(n! designates the product of the first n integers. (n + 1)! 

= (n + I)n!, and if n = 0, then 0! = 1.) 

2. The Problem of Waiting at the Window. It is thanks to 
Poisson's formula (and to other calculations) that we were able 
to obtain the results indicated in Chapter Four relative to the 
problem of the waiting at a window. Let us say that the num
ber of clients at the window is N per day, and that each client 
remains a minutes. We suppose that the product Na is less 
than the total time the office is open, or more precisely, that 
Na = Da a being a number less than I. 

As we have remarked, all clients together may be divided into 
series, each series being composed of clients succeeding one 
another without interruption, while in the interval between two 
series the window remains free. The probability that a series 
be composed of n clients is given by the formula.2 

n"-2 
P, = e-""a"-1 --· 

(n-I) ! 
This formula gave the numerical results cited in Chapter 

Four. 
2 For a proof. see Emile Borel, Sur l'emp/oi du tluioreme de Bernoulli, pour 

le calcu/ d'Ime infinite de coejficiellfs. Application au problhne d'attellfe a Ull 

guichet (Comptes rendus de I'Academie des Sciences, March 1942). 
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On Mortality Tables and the Statistics Relative 
to Causes of Death 

1. Mortality Tables of French Companies. It was in the 
middle of the eighteenth century that Deparcieux established 
the first Mortality Tables and calculated the probabilities of 
death which derive from them. Since then statistical researches 
on mortality have been very numerous and highly perfected, 
particularly in certain countries and large cities. The statistics 
gathered by insurance companies on their own clientele are 
more restricted, but, from a certain point of view, they are at 
least as interesting as the more general statistics. 

As a sample of the tables so established for insurance com
panies, we reproduce, from the Annuaire du Bureau des Longi
tudes of 1937, Table F.A. (French annuitants) and Table F.l. 
(French insurants) of the French companies (1895). 

TABLE F.A. (FRENCH ANNUITANTS) OF FRENCH COMPANIES (1895) 

Ages Living Ages Living Ages Living Ages Living 

0 1,000,000 18 835,173 36 740,070 54 613,494 
1 963,985 19 829,762 37 734,545 55 603,634 
2 937,488 20 824,159 38 728,922 56 593,302 
3 917,939 21 818,471 39 723,190 57 582,465 
4 903,486 22 812,809 40 717,338 58 571,092 
5 892,765 23 807,271 41 711,352 59 559,149 
6 884,754 24 801,926 42 705,219 60 546,604 
7 878,676 25 796,786 43 698,925 61 533,427 
8 873,932 26 791,817 44 692,452 62 519,588 
9 870,056 27 786,827 45 685,784 63 505,060 

10 866,684 28 781,811 46 678,902 64 489,820 
11 863,529 29 776,764 47 671,787 65 473,851 
12 860,371 30 771,681 48 664,417 66 457,139 
13 857,043 31 766,556 49 656,770 67 439,680 
14 853,426 32 761,383 50 648,823 68 421,478 
15 849,446 33 756,156 51 640,548 69 402,549 
16 845,069 34 750,866 52 631,921 70 382,919 
17 840,298 35 745,508 53 622,913 71 362,630 

75 
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Ages Living Ages Living Ages Living Ages Living 

72 341,741 81 145,553 90 20,791 99 225 

73 320,328 82 125,891 91 14.874 100 103 

74 298,484 83 107,374 92 10,296 101 44 

75 276,325 84 90,185 93 6,873 102 17 

76 253,984 85 74,477 94 4,408 103 6 

77 231,618 86 60,372 95 2,706 104 2 

78 209,398 87 47,947 96 1,583 105 I 

79 187,512 88 37,232 97 878 

80 166,162 89 28,204 98 459 

TABLE F.l. (FRENCH INSURANTS) OF FRENCH COMPANIES (1895) 

Ages Living Ages Living Ages Living Ages Living 

0 1,000,000 27 786,713 54 584,594 81 91,047 

1 963,985 28 781,578 55 572,246 82 76,094 

2 937,488 29 776,368 56 559,322 83 62,588 

3 917,939 30 771,075 57 545,797 84 50,588 

4 903,486 31 765,690 58 531,649 85 40,118 

5 892,765 32 760,203 59 516,861 86 31,159 

6 884,754 33 754,606 60 501,417 87 23,658 

7 878,676 34 748,887 61 485,307 88 17,523 

8 873,932 35 743,036 62 468,525 89 12,632 

9 870,056 36 737,039 63 451,075 90 8,841 

10 866,684 37 730,884 64 432,964 91 5,992 
II 863,529 38 724,556 65 414,214 92 3,920 
12 860,371 39 718,042 66 394,851 93 2,468 
13 857,043 40 711,324 67 374,918 94 1,490 
14 853,426 41 704,386 68 354,468 95 859 
15 849,446 42 697,210 69 333,567 96 471 
16 845,069 43 689,777 70 312,299 97 245 
17 840,298 44 682,067 71 290,759 98 120 
18 835,173 45 674,058 72 269,062 99 55 
19 829,762 46 665,729 73 247,333 100 23 
20 824,159 47 657,056 74 225,714 101 9 
21 818,471 48 648,015 75 204,359 102 3 
22 812,809 49 638,581 76 183,430 103 1 
23 807,271 50 628,727 77 163,096 
24 801,926 51 618,429 78 143,530 
25 796,786 52 607,659 79 124,896 
26 791,780 53 596,389 80 107,354 



APPENDIX THREE 77 

2. Tables of General Statistics of France. Other tables 
are also to be found in the Annuaire du Bureau des Longitudes, 
especially those established every ten years in the general statis
tics of France, by combining the mortality according to official 
records over a six-year period with a census taken about the 
middle of this period, a census showing the distribution of the 
population according to ages. 

To save space, these tables have been simplified by omitting 
superfluous decimals and restricting the figures, after the first 
five years, to multiples of five years of age. 

The table shows the number of survivors in 1,000 births, the 
yearly quotient of mortality at every age (that is, the average 
number of deaths in the year for 1,000 persons of that age), 
and finally the life expectancy, that is, the mathematical expec
tancy of a gambler who would collect 1 franc per year of life of 
a given person (leaving aside, of course, the interest on the 
money). The tables are computed separately for males and 
females. The quotients of mortality, for almost all the ages, 
are markedly higher for men than for women. These mortality 
quotients refer to 1 ,000 inhabitants. 

We deduce from these tables that for men of 60, for instance, 
the number of survivors in 1,000 births is 544, the mortality 
quotient is 29 over I ,000 and the life expectancy 13.8 years, or a 
little more than 13 years 9 months and a half. The average age 
to be reached by a rather large number of men of 60 is therefore 
73 years and 9 months. 

MoRTALITY TABLES 

OF THE FRENCH POPULATION (1928-1933) 

A = ages. 
SM = survivors (male) 
SF = survivors (female) 
MQ = mortality quotient for 1,000 (males) from the age A to A + l. 
FQ = mortality quotient for 1 ,000 (females) from the age A to A + 1. 
EM = life expectancy (male). 
EF = life expectancy (female). 

A SM MQ EM SF FQ EF 
0 1,000 90 54.3 1,000 72 59.0 
I 910 17 58.6 928 15 62.5 
2 894 6.7 58.6 914 6.3 62.5 

A 

0 
1 
2 
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A SM MQ EM SF FQ EF A 

3 888 4.3 58.0 909 4.0 61.9 3 
4 885 3.4 57.3 905 3.2 61.1 4 
5 882 2.8 56.5 902 2.8 60.3 5 

10 872 1.6 52.1 892 1.6 55.9 10 
15 864 2.5 47.5 884 3.0 51.4 15 
20 849 5.2 43.3 867 4.8 47.4 20 
25 827 5.2 39.4 846 5.0 43.5 25 
30 805 5.9 35.4 825 4.8 39.5 30 
35 780 7.1 31.5 806 5.1 35.4 35 
40 750 8.9 27.6 784 6.1 31.4 40 
45 713 12 23.9 759 7.5 27.3 45 
50 669 15 20.3 727 9.8 23.4 50 
55 613 21 16.9 688 13 19.6 55 
60 544 29 13.8 637 19 15.9 60 
65 458 42 10.9 567 30 12.6 65 
70 354 64 8.3 472 48 9.6 70 
75 261 92 6.5 375 72 7.5 75 
80 125 153 4.4 120 128 5.1 80 
85 45 234 3.2 91 200 3.6 85 
90 9.6 303 2.6 24 285 2.7 90 
95 1.4 334 2.3 3.8 336 2.4 95 

100 0.2 348 1.5 0.5 346 2.1 100 

To help the reader realize the progressive decrease in mortal
ity, we give, for every ten years, the number of survivors for 
1 ,000 births, according to the General Statistics of France for 
the six-year periods ending in 1903 and 1913, the four-year 
period ending in 1923, and the five-year period ending in 1938. 

A considerable constant and regular amelioration is to be 
observed in the number of survivors at all ages. 

Ages 
I 

10 
20 
30 
40 
50 

SURVIVORS IN 1,000 BIRTHS 

FOR THE PERIODS ENDING 

IN 1903 (1898-1903), IN 1913 (1908-1913), 1923 (1920-
1923) and 1938 (1934-1938) (General Statistics of France). 

Males Females 
1903 1913 1923 1938 1903 1913 1923 
837 866 892 924 864 888 912 
759 806 845 891 786 827 866 
729 779 819 872 752 797 837 
677 727 767 831 701 750 790 
616 666 712 775 646 698 742 
538 583 638 691 584 636 684 

1938 
940 
911 
891 
843 
819 
763 
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Males Females 
Ages 1903 1913 1923 1938 1903 1913 1923 1938 
60 432 465 521 561 494 545 595 672 
70 275 295 344 366 341 383 436 508 
80 88 97 119 135 128 150 182 241 
90 7.3 7.6 8.8 12 15 17 20 35 

After 1938 the number of deaths increased considerably 
during the years of war and occupation, and decreased greatly 
in the years 1946, 1947, 1948. On the other hand, in the first 
quarter of 1949, a severe epidemic of grippe caused 198,000 
deaths, 57,000 more than in 1948. It will not be possible for 
several years to know whether the decrease in mortality is an 
important and lasting phenomenon, resulting from a proven 
amelioration due to the progress of medicine and hygiene. 

The following table gives the numbers of deaths from 1938 
to 1948, according as the deaths from war casualties are in
cluded or not. 

A and B: number of deaths, by thousands of inhabitants, from 1938 to 
1948. 

A (including the officially recorded deaths from war casualties). 
B (not including deaths from war casualties). 
A' and B' (respective percentages per 10,000 inhabitants). 

'38 '39 '40 '41 '42 '43 '44 '45 '46 '47 '48 
A 647 642 760 674 657 631 744 658 542 533 506 
A' 154 153 185 170 167 161 191 166 134 130 122 
B 647 632 738 673 654 624 664 656 542 533 506 
B' 154 151 180 170 166 160 170 165 134 130 122 

3. Tables of Survival by Generations. In the preceding 
tables the percentage of mortality for any one age is computed 
for a given year by dividing the number of officially recorded 
deaths for that age by the total number of persons of that age, 
as may be determined from the census. These percentages are 
naturally adjusted so that the curve representing them seems to 
be continuous, giving the number of survivors at every age. 

In the Tables of Survival by generations given below, follow
ing Pierre Delaporte (publications of the General Statistics), 
we proceed differently. For the generation born in 1820, 
for instance, the mortality percentage at the age of 55 is com
puted from the statistics of the year 1875. That is why these 
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tables, computed at a time when the known statistics did not go 
beyond the year 1935, stop at age 75 for the generation born in 
1860 and at age 35 for the generation born in 1900. 

Here too some adjustments are, of course, necessary to bring 
out the true general behavior of the phenomena, a behavior 
which would be perturbed by accidental causes occurring in 
such or such a year. 

Ages 
n 
0 
1 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 
99 

Ages 
1 
5 

10 

MORTALITY RATE PER GENERATION 

(DEATHS FROM AGE n TO n + 1 PER 100,000 OF AGE n) 

Born in 1820 Born in 1860 Born in 1900 

Males Females Males Females Males Females 
17,600 15,270 16,500 16,500 16,500 13,600 
6,400 6,200 7,470 6,780 3,000 3,170 
1,520 1,500 1,350 1,330 530 570 

635 735 500 620 240 260 
575 716 450 570 280 370 
872 878 820 720 620 520 

1,020 926 960 790 590 550 
825 964 830 840 600 480 
930 1,004 960 870 680 460 

1,074 1,068 1,110 890 
1,310 1,177 1,350 970 
1,545 1,382 1,610 1,150 
2,090 1,750 2,090 1,460 
3,000 2,560 3,000 2,080 
4,460 3,860 4,460 3,160 
6,720 5,900 6,720 4,940 

10,620 9,200 10,620 7,830 
16,050 14,000 
22,800 20,500 
29,300 26,600 
35,500 33,600 
42,000 39,900 

TABLES OF SURVIVAL OF GENERATIONS 

FOR 100,000 BIRTHS 

Born in 1820 Born in 1860 Born in 1900 
Males Females Males Females Males Females 
82,400 84,730 83,500 83,500 83,500 86,400 
70,948 73,167 71,192 71,879 77,993 80,675 
67,133 69,252 68,168 68,584 76,561 79,066 
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Born in 1820 Born in 1860 Born in 1900 

Ages Males Females Males Females Males Females 
15 65,268 66,834 66,694 66,692 75,677 78,012 
20 63,089 64,230 64,828 64,572 74,086 76,311 
25 59,853 61,382 61,794 62,211 71,810 74,280 
30 57,206 58,552 59,140 59,732 69,731 72,340 
35 54,771 55,738 56,601 57,230 61,515 70,670 
40 52,142 52,926 53,778 54,773 
45 49,164 50,074 50,628 52,315 
50 45,829 47,016 47,038 49,670 
55 41,955 43,574 43,028 46,619 
60 37,157 39,327 38,106 42,858 
65 31,003 33,708 31,795 37,851 
70 23,640 26,693 24,244 31,261 
15 15,464 18,478 15,859 22,983 
80 7,838 10,336 
85 2,785 4,200 
90 636 1,150 
95 94 200 

100 8 20 

Only ten or fifteen years hence, when these Tables of Sur
vival by generations have been extended, will it be possible to 
determine whether the net amelioration which appears at the 
beginning of the tables holds up till the end. In other words, it 
is not yet possible to know for certain whether the decrease in 
mortality during childhood, adolescence and even maturity con
tinues in old age, causing a real prolongation of life, or whether 
this mo.rtality, smaller before the age of 50 or 60, is not in some 
way compensated by a greater mortality after this age. 

4. Statistics of Deaths According to their Causes. As we 
have said, statistical science has made great progress in the 
last ten years. We give below the new official classification of 
the causes, restricting ourselves to the main categories (each 
one of which is broken down in a more or less extended list of 
more precise designations). 

NOMENCLATURE OF THE CAUSES OF DEATH 

I. Infections and parasitic diseases. 
II. Cancers and other tumors. 

Ill. General diseases and avitaminosis. 
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IV. Diseases of the blood and hematopoietic organs. 
V. Chronic poisonings and intoxications. 

VI. Diseases of the nervous system and sensory organs. 

VII. Diseases of the circulatory system. 

VIII. Diseases of the respiratory system (except tuberculosis, included 
in I). 

IX. Diseases of the digestive system. 
X. Diseases of the urinary system and the genital system. 

XI. Diseases of pregnancy, delivery and puerperal state. 

XII. Diseases of the skin and cellular tissue. 

XIII. Diseases of the bones and organs of motion. 

XIV. Congenital defects of conformation (stillborn children not 
included). 

XV. Diseases peculiar to the first year of life (stillborn children not 
included). 

XVI. Senility, old age. 
XVII. Violent or accidental deaths. 

XVIII. Undetermined causes. 

XIX. Grand total. 

The causes III, IV, V, XI, XII, XIII, XIV, which produce a 
relatively small number of deaths are grouped below under the 
letter G. 

DEATHS ACCORDING TO SEX IN 1948 

Causes Males Females Total 

I 24,499 16,564 41,063 
II 34,352 36,512 70,864 

VI 31,812 36,195 68,007 
VII 49,609 50,810 100,429 

VIII 24,747 23,266 48,013 
IX 14,561 11,605 26,166 
X 14,367 9,342 23,709 

XV 8,132 5,892 14,024 
XVI 14,788 23,714 38,502 

XVII 18,872 7,536 26,408 
G 6,709 7,081 13,790 

XV Ill 18,539 16,773 35,312 

XIX 260,987 245,290 506,287 



Ages 
0-1 
1-4 
5-9 

10-14 
15-19 
20-24 
25-29 
30-34 
35-39 
40-44 
45-49 
50-54 
55-59 
60-64 
65-69 
70-79 
80-99 

Ages 
0-1 
1-4 
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10-14 
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25-29 
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35-39 
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55-59 
60-64 
65-69 
70-79 
80-99 
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DEATHS ACCORDING TO AGE IN 1948 
FROM THE CHIEF CAUSES (MALES) 

I 
1,813 

872 
288 
205 
563 

1,301 
1,596 
1,075 
1,818 
2,246 
2,672 
2,143 
1,965 
1,840 
1,625 
2,000 

477 

I 
1,456 

813 
299 
250 
723 

I ,358 
1,483 

859 
1,093 
1,063 

955 
838 
914 
992 

1,015 
1,702 

751 

II VI VII VIII 
26 2,686 202 4,555 
61 522 51 728 
57 141 78 67 
51 117 90 46 
73 153 139 69 

117 167 191 132 
147 178 231 141 
127 162 225 122 
407 325 537 256 

1,033 503 996 488 
2,146 855 1,724 851 
2,831 1,203 2,339 1,009 
3,525 1,695 3,270 1,190 
4,745 2,692 5,265 1,749 
5,600 4,027 6,962 2,279 

10,579 II ,098 17,977 6,719 
2,827 5,288 9,331 4,346 

DEATHS AcCORDING TO AGE IN 1948 
FROM THE CHIEF CAUSES (FEMALES) 

II VI VII VIII 
24 1,790 151 3,400 
53 408 55 663 
49 107 57 67 
34 64 68 52 
60 126 113 93 
93 128 189 107 

118 139 283 151 
205 132 264 123 
641 260 474 191 

1,127 392 646 228 
1,955 745 1,075 354 
2,728 1,259 I ,513 466 
3,513 1,904 2,250 672 
4,501 2,948 3,794 1,116 
5,403 4,442 6,083 1,757 

II ,261 13,021 18,963 6,775 
4,747 8,380 14,832 7,051 

83 

IX XVII 
3,735 313 

445 581 
70 315 
84 309 

107 811 
147 1,241 
176 1,171 
164 926 
329 1,434 
573 1,763 
894 1,768 

1,024 1,481 
1,029 1,230 
1,308 1,293 
1,352 1,246 
2,269 2,131 

855 859 

IX XVII 
2,628 205 

325 433 
50 152 
64 73 
91 200 

123 256 
135 236 
127 229 
244 323 
418 365 
570 386 
670 468 
720 451 
898 510 

1,065 563 
2,194 1,353 
1,283 1,333 

We do not reproduce stat1st1cs by provinces or past 
statistics. The readers who are interested in them will find them in 
the Annuaire de Ia Sratistique generate de Ia France published by the 
Service de Ia Statistique generale de Ia France, ll Boulevard 
Haussmann, Paris (9c), and printed by the Imprimerie Nationale. 
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Emile Borel 
What is the probability if you are now thi rty-five years old that you will live to be 
100? Ho_w likely is it that next Tuesday will be a clear day? What are your c,hances 
of catchmg a bus within one minute after reaching the bus stop, if the buses arrive 
alternately at 10 and 30 minute intervals? How likely is it that two first cousins 
(who have the same maternal grandmother) wil l have, among their ch romosomes, one 
chromosome in common? 

You may have encountered similar problems at one time or another, but perhaps 
you weren't aware that they can all be answered by means of the mathematics of 
probability which computes the probabilities .of complex matters through the known 
probabi lities of simpler ones. This book- by Emile Borel , one of the leading French 
mathematicians of the past hundred years- makes use of certain results of the 
mathematics of probabi li ties to solve a number of problems that directly concern 
every man- problems that, for the most part, are related either to everyday living 
or to illness and death: computation of life expectancy tables, chances of recovery 
from various diseases, probabi lities of job accidents, weather predictions, games of 
chance, and other such matters. The emphasis throughout is on the resul ts, rather 
than the actual processes, of the mathematics of probability, though some indication 
of the mathematical proof is given in order to show what one can accomplish in this 
field. 

Beginning with a discussion of the connection between mathematical probabili ty and 
the psychology of gamblers, Borel takes up the probabilities of life and death, and 
the difficulties we encounter in trying to think rationally about them. The next two 
chapters are concerned wi th negligible probabilities on various scales (human, ter· 
restrial , cosmic, supercosmic), and with others that are very small but not entirely 
negligible. The last two chapters investigate the probabilities of illnesses and acci· 
dents,;-and some curious applications of mathematical probabili ty to heredity in the 

·.human race. 

This book differs from others of its kind in that it does not attempt to cover the 
entire field of mathematica l probability -it omits probability in scienti fic research, 
for example - and concentrates instead on probabil i ty in everyday si tuations. Simple 
in style and free of technical terminology, the book is entirely comprehensible to 
the laymari, and provides fine reading materi al for those entering on the study of 
probabili.ty. 
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