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Abstract

The present article is based on some remarkable progression series found in Ancient

Indian mathematics. A new sequence of numbers is proposed, and their proper-

ties are studied. Taking the difference of above series, new series are established.

Suitable examples are given to support the present investigation.
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1 Introduction and preliminaries

During the early Vedic age, Indian began their interest in the series(Śred.hi). A large

number of Vedic series are found in the Taittir̄iya Sam. hitā, Vājasaneya Sam. hitā and

Pañcavim. sa Brāhman. a ([1]). Some of the series are mentioned in the Br.ahaddebatā,

Śatapatha Brāhman. a, Baudhāyana Śulba, Buddhist work Digha Nikāya and a Jaina work

Antagod. a Dasāo ([1]).The general formula for the summation of an A.P. found in the

Bakhshãl̃i Manuscript(200-400 A.D.) ([1, 6, 11]) is:

S = a+ (a+ b) + ...+ [a+ (n− 1)b] = n[a+ (n− 1)
b

2
],

* All Correspondence to: E-mail: subigyan101@gmail.com
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where S denotes the sum, a = first term, b = common difference, and n = number of

terms.

Āryabhat.a I (476 A.D.) gave the above form as well as the form: S = n
2
(a + l). The

same rule appears in the works of Bramhagupta (628 A.D.), Mahāv̄ira (850 A.D.),Śr̄idhara

(991 A.D.) and Bhāskara II (1150 A.D.) ([1, 2, 3, 4, 8, 9, 10, 11, 12]). Āryabhat.a I and

all the above writers also gave the sum of the following particular case:

1 + 2 + 3 + ...+ n =
n∑

k=1

k =
n

2
(n+ 1).

Presently a number of the form n
2
(n + 1), where n is a natural number, is known as a

triangular number and is generally denoted by S(n).

Āryabhat.a I calculated the value of the unknown number of terms n for an A.P. series

when its sum is S, first term a, common difference b as follows:

n =
1

2
[

√
8bS + (2a− b)2 − 2a

b
+ 1].

The same was also given by Bramhagupta, Mahāv̄ira and Bhāskara II. Āryabhat.a I,

Bramhagupta, Mahāv̄ira and Bhāskara II ([1, 2, 3, 4, 8, 9, 10, 11, 12, 13]) gave the

summation of the series of squares and cubes of n natural numbers as follows:

12 + 22 + 32 + ...+ n2 =
n∑

k=1

k2 =
n(n+ 1)(2n+ 1)

6
.

13 + 23 + 33 + ...+ n3 =
n∑

k=1

k3 = [
n(n+ 1)

2
]2.

Āryabhat.a I gave the summation of the sums of n times the 1st term of n naural numbers,

(n − 1) times of the 2nd term of n naural numbers, (n − 2) times of the 3rd term of n

naural numbers, . . . etc. Then

S1 + S2 + S3 + ...+ Sn = n.1 + (n− 1).2 + (n− 2).3 + ...+ [n− (n− 1)].n

= 1 + (1 + 2) + (1 + 2 + 3) + ...+ (1 + 2 + 3 + ...+ n) =
n(n+ 1)(n+ 2)

6
.

Nārāyana(1356 A.D.) calls this as repeated sum or Vārasam. alita. According to him,

Vārasam. alita of 1st order of n natural numbers

= 1 + 2 + 3 + ...+ n =
n

2
(n+ 1).
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Vārasam. alita of 2nd order of n natural numbers

= 1 + (1 + 2) + (1 + 2 + 3) + ...+ (1 + 2 + 3 + ...+ n) =
n(n+ 1)(n+ 2)

6
,

which is presently known as a tetrahedral number. Āryabhat.a I gave the result only up

to Vārasam. alita of 2nd order, but Nārāyana proceed further. His result for Vārasam. alita

of the rth order of n natural numbers is

n(n+ 1)(n+ 2)...(n+ r)

1.2.3...(r + 1)
=

n(n+ 1)(n+ 2)...(n+ r)

(r + 1)!
.

The earliest expression of an idea representing G.P. occurs in the Chandah. -sūtra (rule

of metres) of Piṅgala (c.200 B.C.), where the series: 1, 21, 22, 23, . . . is found. Mahāv̄ira

gives the generalised result of the sum of the n terms of the G.P. as follows:

a+ ar + ar2 + ...+ ar(n−1) =
a(rn − 1)

(r − 1)
.

This formula also reappears in the works of Pr.uthudakasvāmī (864 A.D.) and Nemicandra

(978 A.D.). Mahāv̄ira also gave the form

S =
rar(n−1) − a

(r − 1)
.

In this paper, some important progression series of Ancient Indian mathematics are

discussed. A new sequence of numbers is introduced and some properties of these numbers

are established.

2 Progression Series in Patiganita of Śridharcarya

In this section, rules for finding the sum of a series of natural numbers, finding the number

of terms and difference of natural series found in the Patiganita ([10])are presented.

2.1 Addition and Subtraction of Logistics

In the Logistics (Parikarma) section of Patiganita, Rules of Verses 14 , 15 of Addition

(Saṅkalita) and 15 ,17 of Subtraction (Vyavakalita) are discussed.

Rule 2.1 [Verse14(i)] When the first term (âdi) and the common difference (caya) of a

series (in arithmetic progression) are (each) unity, the sum (Saṅkalita) is equal to half the

number of terms (Pada) multiplied by the number of terms plus one. That is,

S(n) = 1 + 2 + 3 + ...+ n =
n

2
(n+ 1).
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Rule 2.2 [Verse14(ii)] The number of terms (gaccha) is equal to the (integral) square

root of twice the sum of the series, which must be the same as the residue left (after the

extraction of the square root). That is,

n = integral part of
√

2S(n).

Rule 2.3 [Verse15] The sum of a series of natural numbers is equal to one-half of the

square of the number of terms plus the number of terms. And that (sum) multiplied by

8, (then) increased by 1, (then) reuced to its square root, (then) diminished by 1, and

(then) halved, is the number of terms (in the series). That is,

S(n) = 1 + 2 + 3 + ...+ n =
n2 + n

2
and n =

√
(8S(n) + 1)− 1

2
.

Rule 2.4 [Verse16] Having added (nidhâya) the number of terms of the subtrahend series

(vyavakalita-pada) plus one to the number of terms of the minuend series (saṅkalita-pada),

multiply that (sum) by the difference of the number of terms (of the two series): that

(product), when halved, become the residue of subtraction (of the given series). That is,

S(n)− S(m) =
(n−m)(n+ (m+ 1))

2
, where n > m.

Rule 2.5 [Verse17] Having subtracted the residue of subtraction (i.e., the difference of

the minuend and subtrahend series) from the sum of the minuend series, and multiplied

the remainder (obtained) by 2, the square root there of, which must be equal to the

residue left (after the extraction of the square root), should be delared as the number of

terms (of the subtrahend series). That is,

m = integral part of
√
2(S(n)−D), where D = S(n)− S(m).

3 Progression Series in Gan. itasārakaumud̄i of T. hakkura

Pherū

In this section, rules for finding the sum of natural series, two rules to find the number of

terms and difference of natural series are discussed.
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3.1 Sum and Difference of Natural Series

Out of eight fundamental operation of integers, Rules of Verses 16, 17, 18, 20 of Sum and

21, 22, 24, 25 of Difference found in the Gan. itasārakaumud̄i ([7]) are studied.

Rule 3.1 [ Verse GSK1.16a] (Sum of natural series)

S(n) = 1 + 2 + 3 + ...+ n =
n

2
(n+ 1).

Note that the n is here called icchā (the requisite).

Rule 3.2 [Verse GSK1.17] (Sum of natural series)

S(n) = 1 + 2 + 3 + ...+ n =
n

2
.(n+ 1),

if n is even and

S(n) = 1 + 2 + 3 + ...+ n = n.(
n+ 1

2
),

if n is odd.

Note that the n is here called din. a (or the number of days).

Rule 3.3 [Verse GSK1.18] (Sum of natural series)

S(n) =
(nx+ x).n

2x
.

Note that the superfluous x is here called pan.h-akkhara (praśna-aks.ara) or ’(the number

of) the letters in question’.

Rule 3.4 [Verse GSK1.20] (number of terms, two rules)

n =

√
(8S(n) + 1)− 1

2
,

and

n = integral part of
√

2S(n).

Rule 3.5 [Verse GSK1.21] (definition of difference) For two natural numbers, n and m

with n > m, let S(n,m) is defined as:

S(n,m) = S(n)− S(m).
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Then, either S(m) or S(n,m) is called vimakaliya (vyavakalita, that which is subtracted),

and in either case, the number of terms left in the summation S(n) decreases one by one

from n, which is called the root-quantity (mūla-rās̄i), as the vimakaliya increases.

Rule 3.6 [Verse GSK1.22] (difference of natural series)

S(n,m) =
(n−m)(n+ (m+ 1))

2
, where n > m.

Here m = vimakaliya− paya and S(n,m) = vimakaliya− sesa.

Rule 3.7 [Verse GSK1.24] (number of terms of the difference)

m = integral part of
√
2(S(n)− S(n,m)).

Rule 3.8 [Verse GSK1.25] (difference of natural series)

S(m) =
2n+ 1− k

2
.k,

where k = n−m = vimakaliya− paya and S(m) = vimakaliya− sesa. Note that here

the vimakaliya (that which is subtracted) and the vimakaliya− sesa (the remainder of

the subtraction) exchange their positions.

Remark 3.1 The above formulae of the progression series are also found in the Lilavati

of Bhaskara II ([3]).

4 Proposed Sequence of Numbers

Using (2.4 and 3.6), let us introduce a new sequence of numbers called Co-Gadtia numbers

defined as follows:

Definition 4.1 A number of the form T (n) with T (1) = 0, and satisfying T (n) =

S(n, 2) = S(n) − S(2), where n ≥ 2 is a natural number, is called a Co-Gadtia num-

ber.

Note 4.1

S(n) = 1 + 2 + 3 + ...+ n =
n∑

k=1

k =
n

2
.(n+ 1),
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where n is a natural number, is called a triangular number, where as

G(n) = 2 + 3 + ...+ n =
n∑

k=2

k =
(n− 1)(n+ 2)

2
,

where n is a natural number, is called a Gadtia number ([5]). The triangular numbers are

S(1) = 1, S(2) = 3, S(3) = 6, S(4) = 10, S(5) = 15, S(6) = 21, S(7) = 28,

S(8) = 36, S(9) = 45, S(10) = 55, S(11) = 66, S(12) = 78, S(13) = 91, ...etc.

and the Gadtia numbers are

G(1) = 0, G(2) = 2, G(3) = 5, G(4) = 9, G(5) = 14, G(6) = 20, G(7) = 27,

G(8) = 35, G(9) = 44, G(10) = 54, G(11) = 65, G(12) = 77, G(13) = 90, ...etc.

Definition 4.2 A number of the form T (n) that satisfy T (n) = (n−2)(n+3)
2

, where n is a

natural number, is called a Co-Gadtia number.

Note 4.2 Throughout this paper, we shall denote the nth Co-Gadtia number by T (n).

Example 4.1 Evaluation of First Six Co-Gadtia numbers using Definition (4.1).

T (1) = 0,

T (2) = S(2)− S(2) = 3− 3 = 0,

T (3) = S(3)− S(2) = 6− 3 = 3,

T (4) = S(4)− S(2) = 10− 3 = 7,

T (5) = S(5)− S(2) = 15− 3 = 12,

T (6) = S(6)− S(2) = 21− 3 = 18.

Example 4.2 Evaluation of Co-Gadtia numbers within 100 using Definition(4.2).

T (1) = 0,

T (2) =
(2− 2)(2 + 3)

2
=

(0)(5)

2
= 0,

T (3) =
(3− 2)(3 + 3)

2
=

(1)(6)

2
= 3,

T (4) =
(4− 2)(4 + 3)

2
=

(2)(7)

2
= 7,

T (5) =
(5− 2)(5 + 3)

2
=

(3)(8)

2
= 12,

T (6) =
(6− 2)(6 + 3)

2
=

(4)(9)

2
= 18.
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In a similar manner, other numbers can be found as T (7) = 25, T (8) = 33, T (9) =

42, T (10) = 52, T (11) = 63, T (12) = 75, T (13) = 88, ...etc.

5 Some Fascinating Properties of Co-Gadtia Num-

bers

In this section, some linear and non-linear recurrence relations among the Co-Gadtia

numbers are presented, and other properties are also discussed. Two theorems relating

to Co-Gadtia numbers are established.

Property 5.1 T (1) = 0, T (2) = 0 and T (n) = n+ T (n− 1),

or T (n)− T (n− 1) = n, for all n ≥ 3.

Property 5.2 T (n− 1) + T (n+ 1) = 2T (n) + 1, for all n ≥ 3.

Property 5.3 T (n− 1) + T (n) + 6 = n2, for all n ≥ 3.

Property 5.4 T (n− 1) + T (n) + 2 = (T (n)− T (n− 1))2, for all n ≥ 3.

Property 5.5

n =

√
(8T (n) + 25)− 1

2
.

Property 5.6

n = integral part of
√

2T (n) + 6.

Property 5.7

T (n,m) = T (n)− T (m) =
(n−m)(n+ (m+ 1))

2
, where n > m, and n ≥ 3.

Property 5.8

1 + 2 + 3 + ...+ n =
n∑

k=1

k

=
n

2
.(n+ 1)

= T (n) + 3

=⇒ T (n) = S(n)− 3.

=⇒ T (n) = 3 + 4 + ...+ n.
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Property 5.9

12 + 22 + 32 + ...+ n2 =
n∑

k=1

k2

=
n(n+ 1)(2n+ 1)

6

=
(2n+ 1)(T (n) + 3)

3

=⇒ 3
n∑

k=1

k2 = (2n+ 1)(T (n) + 3).

Property 5.10

13 + 23 + 33 + ...+ n3 =
n∑

k=1

k3 = [
n(n+ 1)

2
]2 = [T (n) + 3]2.

Presentation 5.1 The Co-Gadtia numbers can be presented in triangular form in the

whole number table as follows:

0

1 2

3 4 5

6 7 8 9

10 11 12 13 14

15 16 17 18 19 20

21 22 23 24 25 26 27

......................................

Remark 5.1 In the above table of representation, the numbers in the third column from

the last represent the Co-Gadtia numbers, where as the last column represent the Gadtia

numbers and the uppermost diagonal numbers are triangular numbers.

Theorem 5.1 The generating function relating to the Co-Gadtia numbers is given by

S =
2x− 1

(1− x)2
+

1

(1− x)3
=

x(3− 2x)

(1− x)3
.
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Proof: Let

S = 0 + 3x+ 7x2 + 12x3 + 18x4 + . . .

xS = 3x2 + 7x3 + 12x4 + . . .

On subtraction, we get

S − xS = 3x+ 4x2 + 5x3 + 6x4 + . . . (5.1)

=⇒ S(1− x) = 3x+ 4x2 + 5x3 + 6x4 + . . . (5.2)

Let

S ′ = 3x+ 4x2 + 5x3 + 6x4 + . . .

xS ′ = 3x2 + 4x3 + 5x4 + . . .

On subtraction, we get

S ′ − xS ′ = 3x+ x2 + x3 + x4 + . . .

=⇒ S ′(1− x) = 3x+ (1 + x+ x2 + x3 + x4 + . . . )− (1 + x)

=⇒ S ′(1− x) = 2x− 1 + (1 + x+ x2 + x3 + x4 + . . . )

=⇒ S ′(1− x) = 2x− 1 +
1

1− x

=⇒ S ′ =
2x− 1

1− x
+

1

(1− x)2
.

Putting this value of S ′ in equation (5.2), we get

S(1− x) =
2x− 1

1− x
+

1

(1− x)2

=⇒ S =
2x− 1

(1− x)2
+

1

(1− x)3

=⇒ S =
x(3− 2x)

(1− x)3
.

Theorem 5.2 x is a Co-Gadtia number if and only if 8x+ 25 is a perfect square.
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Proof: Let

x = T (n) ⇐⇒ 8x+ 25 = 8T (n) + 25

⇐⇒ 8x+ 25 =
8(n− 2)(n+ 3)

2
+ 25

⇐⇒ 8x+ 25 = 4(n2 + n− 6) + 25

⇐⇒ 8x+ 25 = 4n2 + 4n+ 1

⇐⇒ 8x+ 25 = (2n+ 1)2.

6 Conclusion

Some important progression series found in Ancient Indian mathematics are discussed. A

new sequence of numbers called Co-Gadtia numbers is introduced, and some properties

of these numbers are established. Suitable examples are given in support of the present

work.
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