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“If people do not believe that mathematics is simple, it is only

because they do not realize how complicated life is”

–John von Neumann

Abstract

Maximal monotone operators play an important role in nonlinear
modern analysis and partial differential equations. Here, we focus on
the most famous and significant open problem that is “Sum problem”
in monotone operator theory in the nonreflexive Banach spaces.
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1 Introduction

Monotone operators are an important class of operators used in the study
of modern non-linear analysis and various classes of optimization prob-
lems. Originally, the definition of the monotone operator was found in
Kachurovskii [27]. Then the theories of monotone operators (multifunc-
tions) were introduced by George Minty [31] to aid the abstract study of
electrical networks. Later it was used substantially in proving the exis-
tence results of partial differential equations by Felix Browder and his school
[1, 2, 10, 11, 12, 20, 25, 26, 48].
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1.1 Monotone operator

The concept of monotonicity for set-valued operators defined on Banach
spaces to its dual was introduced by Minty [34, 36] and Browder [15, 16, 17]
around fifty years ago. Some important contributions and surveys of mono-
tone operators may be found in Browder [14, 15, 17], Minty [32, 34, 35],
Kachurovskii [28] and Rockafellar [38, 39]. Monotone operators have numer-
ous applications to functional analysis, engineering problems and mathemat-
ical physics (see Brézis [13], Pascali and Sburlan [13]). Further, monotone
operators (multifunctions) are found in Deimling [24], Cesari [21], Zeidler
[47] and Vainberg [43]. Kenderov [30] proved that monotone operators are
almost everywhere single-valued. The application of monotone mappings
in the setting of the infinite-dimensional spaces to integral equations and
differential equations would be found in Kachurovskii [28], in the book of
Brézis [13] and Browder [18]. The more recent work on monotone operators
are found in Zeidler [48]. In the setting of infinite-dimensional spaces, map-
pings are usually called operators. But there are many more applications
of monotone mappings in the finite dimensional spaces for the numerical
optimization (see Chen and Rockafellar [22]).

1.2 Maximal monotone operator

Minty [33] introduced the significance of the maximality of monotone oper-
ators and established the maximality of continuous monotone mappings. It
has been observed that the notion of monotonicity has huge application in
nonlinear analysis, especially in convex analysis. Because the convexity of a
proper, lower semi-continuous function can be characterized by monotonicity
of its subdifferentials (see [23, 40]). The monotonicity of the subdifferential
of a proper closed convex function is studied by Minty in [35]. Further, while
studying proximal operator on Hilbert spaces, Rockafellar [4] and Moreau
independently developed a tool subgradient which serves as derivative for a
convex function. In this sequel, Moreau [37] studied the maximal monotonic-
ity of subdifferentials of any proper lower semi-continuous convex functions.
The proof of maximality of subdifferentials of any proper closed convex func-
tions was extended to any general Banach spaces by Rockafellar [41]. Also,
he introduced the notion of cyclic monotonicity [40] and proved that max-
imal cyclically monotone operators are maximal monotone operators and
have a subdifferential operator. The proof of maximality of subgradient was
a little bit cumbersome. Recently, an easy proof using the basic tools of
convex analysis is presented by Alves and Svaiter [7, Chapter 9].
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1.3 Application

During the first decades, the concept of monotone operators was applied
to many branches of mathematics such as differential equations, economics,
engineering, management science, probability theory and other applied sci-
ences. Monotone operators which have no proper monotone extensions are
called maximal monotone operators. Maximal monotone operators appear
in several branches of applied mathematics, such as optimization, partial dif-
ferential equations and variational analysis. In particular, maximal mono-
tone operators are applied to study the existence of Eigen vectors of the
second-order nonlinear elliptic equation in Sobolev spaces [29]. After the in-
troduction of the monotone operator by Minty to aid the abstract study of
electrical networks [31], the foundation of this modern operator theory was
established by Minty, Browder and his school (Brézis, Hess [19], Asplund
[3], Rockafellar, Zarantonello [45, 46]).

2 Preliminaries and Notion

2.1 Space

we suppose that X is a real Banach space with norm, ‖.‖ and X∗ is the
continuous dual of X. X and X∗ are paired by 〈x, x∗〉 = x∗(x), for x ∈ X
and x∗ ∈ X∗. If necessary, we identify X ⊂ X∗∗ with its image under the
canonical embedding of X into X∗∗. A sequence (xn) is said to be converge
weakly to x ∈ X if x∗(xn) → x∗(x), ∀x∗ ∈ X∗. Similarly, a sequence x∗n ∈
X∗ is said to be weak star convergence to x∗, if x∗n(x) → x∗(x), ∀x ∈ X.
Weak and weak star convergence are denoted by the notations

w→ and
w∗
→,

respectively.
For a given subset C of X we denote the interior of C as intC, the

closure of C as C and the boundary of C as bdry C. convC, affC is the
convex and affine hull of C. For 0 ∈ CoreC if and only if

⋃
λ>0 λC = X.

For any C,D ⊆ X, C − D = {x − y| x ∈ C, y ∈ D}. For x, y ∈ X, we
denote [x, y] := {tx + (1 − t)y| 0 ≤ t ≤ 1} and star or center of C as
starC := {x ∈ C| [x, c] ⊆ C, ∀c ∈ C}.

2.2 Monotone Operators

Let A : X ⇒ X∗ be a set-valued operator (also known as multifunction
or point-to-set mapping) from X to X∗, i.e., for every x ∈ X, Ax ⊆ X∗.
Domain of A is denoted as domA := {x ∈ X| Ax 6= φ} and range of A is
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ranA = {x∗ ∈ Ax| x ∈ domA}. Graph of A is denoted as graA = {(x, x∗) ∈
X×X∗| x∗ ∈ Ax}. A is said to be linear relation if graA is a linear subspace.

Definition 2.1 (Monotone Operator) A set-valued mapping A : X ⇒
X∗ is said to be monotone if

〈x− y, x∗ − y∗〉 ≥ 0, ∀(x, x∗), (y, y∗) ∈ graA.

Example 2.2 A function f : R → R defines a monotone operator if and
only if f is a monotonic increasing function in the usual sense: that is,

[f(x2)−f(x1)](̇x2−x1) ≥ 0, ∀x2, x1 ∈ R iff f(x2) ≥ f(x1) whenever x2 > x1.

The following example provides an example of a set-valued monotone oper-
ator.

Example 2.3 Let f : R ⇒ R be a multifunction defined by

f(x) =


0, if x < 0

1 if x > 0

[0, 1] if x = 0

.

Example 2.4 Let f : X →]−∞,+∞] be any proper convex function, then
the subdifferential operator of f is defined as ∂f : X ⇒ X∗ : x 7→ {x∗ ∈
X∗| 〈y − x, x∗〉+ f(x) ≤ f(y), ∀y ∈ X} is a monotone operator.

If x∗ ∈ ∂f(x), y∗ ∈ ∂f(y) then 〈x∗, y − x〉 ≤ f(y)− f(x) and −〈y∗, y − x〉 =
〈y∗, x− y〉 ≤ f(x)− f(y). By adding these two inequalities,

〈y∗ − x∗, y − x〉 ≥ 0.

Definition 2.5 Let A : X ⇒ X∗ be monotone and (x, x∗) ∈ X×X∗ we say
that (x, x∗) is monotonically related to graA if

〈x− y, x∗ − y∗〉 ≥ 0, ∀(y, y∗) ∈ graA.

And a set-valued mapping A is said to be maximal monotone if A is mono-
tone and A has no proper monotone extension (in the sense of graph in-
clusion). In the other words, A is maximal monotone if for any (x, x∗) ∈
X ×X∗ is monotonically related to graA then (x, x∗) ∈ graA.

Example 2.3 gives an example of a set-valued maximal monotone operator.
For maximality of the subdifferential operator in Example 2.4, one may refer
[41].
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Definition 2.6 We say that A is of type (FPV) if for every open set U ⊆ X
such that U∩domA 6= φ, x ∈ U and (x, x∗) is monotonically related to graA∩
(U ×X∗), then (x, x∗) ∈ graA.

All monotone operators of type (FPV) are maximal monotone operators
[42]. However, converse is a still conjecture one. Subdifferential operators
are of type (FPV) [42]. For every x ∈ X, the normal cone operator at x
is defined by NC(x) = {x∗ ∈ X∗| supc∈C〈c − x, x∗〉 ≤ 0}, if x ∈ C; and
NC(x) = φ, if x 6∈ C. Also, it may be verified that the normal cone operator
is of type (FPV) [42].

3 The Sum Problem

The most famous and significant problem in monotone operator theory is the
“Sum problem”, that is: Let A and B be two maximal monotone operators.
Is A+B maximal monotone? Many solutions are available by giving various
conditions to the operators as well as to the underlying space. Here we have
provided an example for better understanding. Let C and D be two closed
disks in R2 such that C and D intersect at a single point p. Then NC and
ND are maximally monotone operators. But,

(NC +ND)(p) = NC(p) +ND(p)

is a proper subset of R2. Thus, gra(NC+ND) is a proper subset of gra(N{p}) =
{p} × R2. Therefore, NC +ND is not maximal monotone (see [42]).

Hence, Rockafellar proposed a condition as domA∩int dom B 6= φ called
as Rockafellar’s constraint qualification [41] and proved that the sum A+B is
maximal monotone in the setting of reflexive Banach spaces. This theorem is
called as Rockafellar’s Sum theorem. He posed the question“Is Rockafellar’s
constraint condition (domA ∩ int dom B 6= φ) sufficient for maximality of
the sum A + B in any general Banach spaces?” The problem is posed as
follows:
Let X be a non-reflexive Banach space. Suppose that A,B : X ⇒ X∗

are maximal monotone operators with domA∩int dom B 6= φ. Is A+B
necessarily maximal monotone?

In [41], Rockafellar proved that the maximality of the sum of two max-
imal monotone operators, namely, Rockafellar’s Sum theorem in reflexive
Banach spaces. After the introduction of Fitzpatrick function, most of the
proof of the results on maximal monotone operators are simpler than ear-
lier proof, and the proof of Rockafellar’s Sum theorem [41] becomes simple.
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The Sum problem was studied by many researchers like Borwein, Bauschke,
Wang, Voisei, Liangjin etc. They have tried to prove the sum problem by
giving different conditions within the real Banach spaces setting. The main
impetus in the Sum theorem remains to prove it in general real Banach
spaces, which is the last huddle to overcome. In [6], Borwein provides a
partial answer to the Sum problem by assuming that A and B are maximal
monotone operators with int domA ∩ int domB 6= φ.

Theorem 3.1 [6] Let A,B : X ⇒ X∗ be maximal monotone. Suppose that
int dom A ∩ int dom B 6= φ. Then A+B is maximal monotone.

In [5], Bauschke, Wang and Yao prove that the sum of maximal mono-
tone linear relation and the subdifferential operator of a sub-linear function
with Rockafellar’s constraint qualification is maximal monotone in general
Banach spaces. Yao [44] provide a partial answer to the Sum problem by ex-
tending the results of [5] to the subdifferential operator of any proper lower
semi-continuous convex function. The result is stated as follows:

Theorem 3.2 Let A : X ⇒ X∗ be a maximally monotone linear relation
and let f : X →]−∞,+∞] be a proper lower semi-continuous convex func-
tion with domA ∩ int dom ∂f 6= φ. Then A+ ∂f is maximally monotone.

Further, Borwein and Yao [8] generalized the result (Theorem 3.2) to any
arbitrary maximal monotone operator, i.e.,

Theorem 3.3 Let A : X ⇒ X∗ be a maximally monotone linear rela-
tion, and let B : X ⇒ X∗ be maximally monotone. Suppose that domA ∩
int dom B 6= φ. Then A+B is maximally monotone.

Finally, Borwein and Yao [9] provide another partial answer to the Sum
problem by relaxing the linearity from the result of [8] and prove the maxi-
mality of A + B with the conditions that A and B are maximal monotone
operators, star(domA) ∩ int domB 6= φ and A is of type (FPV). Formally,
we state the result in the following.

Theorem 3.4 [9] Let A,B : X ⇒ X∗ be maximally monotone. Assume
that A is of type (FPV) Suppose that star(domA) ∩ int dom B 6= φ. Then
A+B is maximally monotone.

Also, in [9], raises a question for further research on relaxing ‘star shaped’
hypothesis on domA.
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4 Steps needed to solve Sum problem

One may take the following two steps to solve the stated problem.

• To relax the ‘star shaped’ condition in [9].

• It is known that the closure of the domain of type (FPV) is convex.
However, if one proves that the domain of type (FPV) is convex, then
‘star shaped’ is not required to be relaxed.

• To prove that all the maximal monotone operators are of type (FPV).
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et applications. Israel J. Math., 23:165 – 186, 1976.

[13] H. Brezis. Operateurs Maximaux Monotones et Semi-groupes de Con-
tractions dans les Espaces de Hilbert. North Holland, Amsterdam, 1973.

[14] F. E. Browder. Continuity properties of monotone nonlinear operators
in banach spaces. Bull. of Am. Math. Soc., 70:551 – 553, 1964.

[15] F. E. Browder. Multivalued monotone nonlinear mappings. Trans.
AMS, 118:338 – 551, 1965.

[16] F. E. Browder. The fixed point theory of multi-valued mappings in
topological vector spaces. Math. Ann., 177:283 – 301, 1968.

[17] F. E. Browder. Nonlinear maximal monotone mappings in banach
spaces. Math. Ann., 175:89 – 113, 1968.

[18] F. E. Browder. Continuity properties of monotone nonlinear opera-
tors in banach spaces. Proceeding of Symposia in Pure Mathematics,
American Mathematical Society, Providence, Rhode Island,, 18, 1976.

[19] F. E. Browder and P. Hess. Nonlinear mappings of monotone type in
banach space. J. Funct. Anal., 11:251 – 294, 1972.

[20] B. D. Calvert and C. P. Gupta. Nonlinear elliptic boundary value prob-
lems in lp spaces and sums of ranges of accretive operators. Nonlinear
Analysis: Theory Methods and Applications., 2:1 – 26, 1978.

[21] L. Cesari. Optimization-Theory and Applications: Problems with Ordi-
nary Differential Equations. Springer-Verlag, New-York, 1983.

8



[22] G. H.-G Chen and R. T. Rockafellar. The set-valued monotone map-
pings are almost every where single-valued. SIAM Journal on Opti-
mization, 7, 1997.

[23] Jofre-A. Correa, R. and L. Thibault. Characterization of lower semi
continuous convex functions. Proc. AMS., 116:67 – 72, 1992.

[24] K. Demiling. Nonlinear Functional Analysis. Springer-Verlag, Berlin,
1973.

[25] C. P. Gupta. Sum of ranges of operators and applications. Academic
Press, New York, 1997.

[26] C. P. Gupta and P. Hess. Existence theorems for nonlinear noncoercieve
operator equations and nonlinear elliptic boundary value problems. J.
Differential Equations, 22:305 – 313, 1976.

[27] R. I. Kachurovskii. On monotone operators and convex functionals.
Uspekhi Mathemacheskays Nauk, 15(4), 1960.

[28] R. I. Kachurovskii. Nonlinear monotone operators in banach space.
Russian Mathematical Surveys, 23(2), 1968.

[29] A. G. Kartsatos and I. V. Skrypnik. On the eigen value problem for
perturbed nonlinear maximal monotone operators in reflexive banach
spaces. Trans. Am. Math. Soc., 358:3851 – 3881, 2006.

[30] P. S. Kenderov. The set-valued monotone mappings are almost every
where single-valued. Bulgarskaia Akademiia na Naukite Sofia, Doklady,
27(9), 1974.

[31] G. J. Minty. Monotone networks. Proc. Roy Soc. London., 257:194 –
212, 1960.

[32] G. J. Minty. On the maximal domain of a monotone function. Mich.
Math. J., 14:135 – 137, 1961.

[33] G. J. Minty. Monotone (nonlinear) operators in hilbert space. Duke
Math. J., 29:341 – 346, 1962.

[34] G. J. Minty. Nonlinear mappings of monotone type in banach space.
Duke Math. J., 29:341 – 346, 1962.

[35] G. J. Minty. On the monotonicity of the gradient of a convex function.
Pacific J. Math., 14:243 – 247, 1964.

9



[36] G. J. Minty. On some aspects of theory of monotone operator in theory
and application of monotone operators. Odersi Gubbio, 1969.

[37] J.-J. Moreau. Proximite et dualite dans un espace hilbertien. Bulletin
de la Societe Mathematique de France, 93:273 – 299, 1965.

[38] R. T. Rockafellar. Characterization of the subdifferentials of convex
functionals. Pacific J. Math., 17(3):497 – 510, 1966.

[39] R. T. Rockafellar. Local boundedness of nonlinear, monotone operators.
Mich. Math. J., 16:397 – 407, 1969.

[40] R. T. Rockafellar. On the maximal monotonicity of subdifferential map-
pings. Pacific J. Math., 33:209 – 216, 1970.

[41] R. T. Rockafellar. On the maximality of sums of nonlinear monotone
operators. T. Am. Math. Soc., 149:75 – 88, 1970.

[42] S. Simons. From Hahn-Banach to Monotonicity. Springer-Verlag, 2008.

[43] M. M. Vainberg. Variational Method and Method of Monotone Opera-
tors. Halsted Press/John Wiley, Jerusalem, 1973.

[44] L. Yao. The sum of a maximally monotone linear relation and the sub-
differential of a proper lower semicontinuous convex function is maxi-
mally monotone. Set-Valued Var. Anal., 20:155 – 167, 2012.

[45] E. H. Zarantonello. Projections on Convex Sets in Hilbert Spaces and
Spectral Theory I Projections on Convex Sets In: Contributions to Non-
linear Functional Analysis. Academic Press, Dublin, 1971.

[46] E. H. Zarantonello. Dense single-valuedness of monotone operators.
Israel J. Math., 15:158 – 166, 1973.

[47] E. Zeidler. Nonlinear Functional Analysis and its Applications III: Vari-
ational Methods and Optimization. Springer-Verlag, New-York, 1985.

[48] E. Zeidler. Nonlinear Functional Analysis and Its Applications: Part
2 A: Linear Monotone Operators and Part 2 B: Nonlinear Monotone
Operators. Springer-Verlag, 1990.

10


