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THERMAL CONDUCTIVITY OF MULTICOMPO-
NENT MIXTURES OF INERT GASES II

S.C. SaxeNA and J.M. GANDHI
Physics Departmment, Rajasthan University,, Jaipur.

Recently we! have discussed the four commonly used methods
of calculating the thermal conductivity of mixtures of monatomic
gases. A critical assessment of the relative merits of these methods
was presented on the basis of numerical calculations on mixtures of
inert gases. These procedures are refered as rigorous, approximate,
empirical and semiempirical. Since the publication of this work,
considerable work has been done in this direction in this laboratory
as well as at a few other research centres. The purpose of this
article is to discuss all these different methods with a view to throw
some light on their relative merits and appropriateness.

All the four methods of, computing thermal conductivity of
mixtures ¢f monatomic gases, Amix, have already been described in
detail by Saxena and Gandhil. We, however, present here a brief
description for relevance to proper reference and understanding. In
the rigorous method the theoretical expression derived by Muckenfuss
and Curtiss® as modified by Mason and Saxena3 is used. This
rigorous expression has been cast into the following form by Mason

and Saxena?t :

n xk —1
Amix= z: [1 .s lex creeeeeenn(1)

—i
Here 2 ; is the thermal conductivity of the pure component 7, x; is

the molefraction of the i—th component, and G is given by an

expression which involves only pure thermal conductivities and
molecular weights, M, of the various components of the multicompo-
nent mixture. This is approximate method. In the empirical
method Gik of Eq. (1) are treated as disposable parameters and are
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determined from the knowledge of _, values at two composi

tions. In the semiempirical method one Amix value and the relation
cie N @)
i ™ .. -

are used to determine Gik and G of Eq. (l)

In view of the fact that the Anix €Xpression given by Eq. (1)

forms the basis of so many procedures for calculating Amix, it will be
useful if the relationship of Eq. (1) with the rigorous expression may
be better understood than that given by Mason and Saxena.?
Recently Gambhir and Saxena® have shown that the rigorous Amix
expression can be expressed into the form of Eq. (1) with the
following relation for Gik :

G. = By~ (Yk_'— xz)

- e 3
ik 1+Bxk(xk+ ki *p) =" ©

where
1
Byt By=by
Bix Bkl""’k ’
_1

A M\

16T (15/2)M + (25/4— 3Bk)Mk+4A MMk

*=725p (M, +M, )" Dy,
167 (15/2) My + (25/4—3 B ) M; +4Alk MM,
P= 25 (M My )2 Dy B

*
167 (55/4—44, —3 'k)MMk
Y="T35p - ,
25p (M, +M, ) Dy,

Bk =( )‘i/)tk) («/B),




and
By = (4+2yx; +4/0, ) B
Dik is the mutual diffusion coefficient of components i and k, p thev
pressure, T the telmperature, Al?k and B;‘k are functions involving
collision integrals®. The expression for Gkiis obtained from Gik by

the ‘interchange of subscripts refering to molecular species. Gambhir
and Saxena® have shown that the temperature and composition depen-
dence of Gik is small and they derived simpler expressions for those

binary systems where Mi >>Mk Equation (3) then simplifies to
G == By,

This relation can be further simplified for such system so that
Gy =VBy »andGp;=1/vpg,
G,-,E

K _p M SIME488M 150
> ka_pk— X 150M*188M+ 59 ceeeene(d)
Here A¥,

j and Bi?c are assigned a constant value of 1.10 and

M=M M,

Thus, Gambhir and Saxena® Suggest relation (4) along with one
_— value to evaluate Gik and G ki .This has since been successfully

tested by Saksena and Saxena.”

A

Saxena and Gambhir® have also shown that G ik’s obey the
following relation :

G ; /Mk >0.85 A; (Trans) (Mk )—0,15

’G,'a.= " \Mi = Ay, (Trans)\ M

Here v, stands for the viscosity of the i-th component. Consequently
the relation (5) and one Amix Value can be used to determine Gy -

Detailed calculations of Saxena and Gambhir® confirm the adequacy
of this semi-empirical procedure.

Thus, we have now two other versions of the semiempirical
method given by Egs. (1) and (4), and Egs. (1) and (5) in addition to
the one given by Eqgs. (1) and (2) for calculating Amix It will be
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interesting to compare the accuracies of all thcse methods to know
their relative adequacies. For this purpose we consider the experi-
mental data of Srivastava and Saxena!?, and Saxena!! for six binary
systems at 38°C and at 39 compositions. The average absolute
deviations for the rigorous, approximate, empirical and semi-
empirical procedures.are 2.5, 2.4, 1.1, and 1.1 percent, respectively.
The semi-empirical method refers to Eqgs. (1) and (2) and we will
call this method as semiempirical method'I. The semiempirical
methods based on Egs. (1) and (4), and (1) and (5) will be refered as
semi-empirical methods-II and III, respectiveiy. These two semi-
. empirical procedures yield the average absolute deviations for the
above thirty nine compositions as 1.1 and 0.4%, respectively. Thus

all the three semi-empirical procedures seem equally good and also
compete in merit with the other methods.

For He-Xe system, which offers a wide range in the )\ values,
calculations were also performed for the data of other workers.
The percentage average absolute deviations for the different methods
of calculations are shown in Table 1, In all cases it will be seen
that the semiempirical procedures are adequate and dependable.
More critical remarks are possible only when the accurate experi-
mental data become available.

All these methods are competent to yield multicomponent
thermal conductivity values on the basis of Eq. (1). We will test this
only for those ternary systems where experimental data are available.
We will consider the experimental data of Srivastava and Saxena®
on Ne-Ar-Kr, Saxena!! on He-Ar-Xe, both at 38°C, and von Ubisch12
on He-Kr-Xe at 520°C all as a function of composition. In this case
we get for the percentage average absolute deviations in the rigorous,
approximate, empirical and semiempirical procedure I, IT and III
respectively as 1.4, 1.4, 1.3, 1.1, 1.1 and 1.2 for Ne-Ar-Kr, 0.4, 4.1
0.7, 0.6, 0.5 and 0.5 for He-Ar-Xe and 2.5. 3.9, 2.7, 2.6, 4.6 and 2.9
for He-Kr-Xe. Thus, we find that for ternary systems also these
formulae are satisfactory and almost equally good. NOthing every
precise can be said in view of the great uncertainty associated with
these ‘measurements, particularly of von Ubisch. It will be of
g.rc?at interest to have accurate measurements on the thermal conduc-
tivity of multicompanent gas mixtures as a function of temperature.

A very interesting application of the approximate, empirical
and semiempirical proeedures has been done in the prediction of
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Amix Vvalues at high temperatures. This method of coursc depends

for its success on the fact that G, are essentially temperature and

composition independent. This was shown by Gambhir and Saxena®
and since then this fact has been used by a number of workers in
predicting i values at high temperatures. It will be relevant to

quote here the successes obtained according to different procedures in
actual cases. The figures of percentage deviations given here refer to
the data of von Ubisch!? on ten binary systems and at all the com-
positions at which he has given the experimental values. In each
case Gy were evaluated at 29°C and these values were used to
calculate Amix @t 520°C. The percentage average absolute deviations
are : 2.3 for approximate, 3.4 for empirical, 3,0 for semiempirical I,
3.9 for semiempirical II, and 2.5 for semiempirical III. For the He-
Kr-Xe syster of von Ubisch?® similar calculations were performed and
the percentage average absolute deviations are : 2.0 for approximate,
6.3 for empirical, 3.8 for semiemperical I, 4.6 for semiempirical II,
and 2.8 for semiempirical IIl. Thus, here again we find that all the
methods are almost equally successful and any critical relative assess-

ment will await the availability of enough accurate data on several
systems.

7 ’
Table : Percentage average absolute deviations of the calculated thermal

conductivity values from experimental data for He-Xe system by
various methods.

Method of calculation

Reference of Temp. Rig. Approx. Empir. Semi-empir.

the Expt. :

data. °%©

Thoronton 18 73 6.8 8.8 44 —_ 4.8
yon Ubisch 29 6.3 49 2.6 2.7 2.4 —
von Ubisch 520 4.1 T 0.2 2.1 - 1.2
Saxena 38 6.0 1.4 2.0 1.3 1.1 03

We can thus sum up with the following conclusions on the
basis of this detailed comparison of theory and experiment :

1. All the six methods of computing thermal conductivity
of multicomponent gas mixtures are almost equally accurate
and reliable. The choice of a particular procedure will
depend upon the amount of initial input data available and
the computational effort that can be put,
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2. The prediction of multicomponent A_; values on the
basis of binary Amix Values by all the five methods (i. e,
except rigorous ) is dependable. This is one of the very
potential methods for supplying the multicomponent A ..
values for which very limited experimental data are
available. &

3. The calculation of high temperature A values uslng G;

mix
determined at a lower temperature from any of the five
methods seems fairly accurate and encouraging. In view of
the great lack of data at high temperatures and their
important applications in a number of very useful problems
viz., reactor design, flame propagation, explosions and
detonation etc., these procedures will continue to be the
only source of providing the requisite information.
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THERMAL CONDUCTIVITY OF MONATOMIC
GASES AND BINARY GAS MIXTURES

J.M. Ganpti and S.C. SAXENA
Physics Department, Rajasthan University, Jaipur, India.

ABSTRACT

All the available experimental thermal conductivity data on pure noble
gases have been considered with a view to determine their relative accuracies
which also enable the assessment of the comparative merits of the different
methods used in.measurements. Some very interesting conclusions follow from
this study. The experimental data on the binary inert gas mixtures are also
examined and it turns out that there are several notable discrepancies in the data
of different workers. The accuracy, in particular, of von Ubisch data is poor
and this over-all study suggests that there is a general deficiency of the experi-
mental data. Attempts are beinig made in this laboratory to supplement this
information and resolve the discrepancies posed by the existing data as revealed
by the present work. Following a procedure earlier suggested by Srivastava and
and Saxena the present work has made possible to predict and estimate the
thermal conductivity values of Rn and of its mixtures with other inert gases as
a function pnf composition. ‘

Thermal conductivity data of gases like many other equilibrium
and non-equilibrium properties provide a very adequate opportunity
for exploring the appropriateness of the formulation of kinetie
theory’.. In fact the extraordinary sensitivity of thermal conductivity
to the presence of internal degrees of freedom, rotation and vibration,
makes it some-what preferable over other properties. The knowledge
of accurate thermal conductivity values as a function of temperature
is basic for such a study. Unfortunately, there is a general paucity
of the accurate data of this type. The endeavour of the present
article is to pool together all the available data on pure gases as a
function of temperature and also of binary mixtures as a function of
temperature and composition. There are several very useful
purposes at the back of such a laborious though straight forward
effort and these only have provided incentive to the present work.
We enumerate them here in brief.

Recently we® interpreted the thermal conductivity data on
binary mixtures, Amix, in terms of the rigorous kinetic theory and
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three other procedures of calculation. Since then many other
methods have been suggcsted %7 for estimating Amix. For the
success of these works it is essential to know the Amix values with a
fair degree of reliance. The plan of present work will provide
such information. Further all the discrepancies in the existing data
will get into light and this will enable experimentalists to plan
suitable experiments. Also till that time we will have the know-
ledge of the correct assessment of the existing data from present
study. Lastly this work also permits an estimation of the thermal
conductivity of pure radon and its combinations with other inert
gases, which are not known otherwise.

We now consider the data on pure gases. Helium in this
connection is of special interest, for a large amount of data of
different workers obtained from different techniques are available.
Kannuluik and Carman8, Srivastava and Saxena® have used the
“‘thick-wire”” variant of the “hot-wire”” method; while Von Ubisch?®,
and Johnston and Grilly'! have used the “thin-wire” variant of the
“hot-wire” method. Keyes!? and Cheung, Bromley and Wilke!3
have exploited the concentric cylinders method while Blais and
Mann* have developed a thermal diffusion column method to deter-
mine thermal conductivity at high temperatures. Most of these
data were plotted and considered by Saxena and Agrawal'® and they
showed that Blais and Mann* values are probably consistently
higher than the true values. Consequently we have not considered
this data while rest of the data 8-'%!® are shown plotted in Fig, 1,
which also includes Ne. The experimental A data for Ar, Kr and
Xe are plotted in Fig. 2. A critical examination of these figures
leads to the following interesting and useful observations :

The thermal conductivity values obtained using either variant
of the hot-wire cell are consistent with each other. This conclusion
though may be regarded at present as partly prematured, for the
elaborate data using the thin-wire variant are available only for
He'.  The only other set of data available are those of yon Ubisch!®
but nothing reliable can be said for these are known to be consis-
tently larger than the true values. It is important to note that
claborate data are not available even on the thick-wire variant of
two independent workers to permit any conclusion about the
possible relative consistencies. Efforts directed to produce such
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data are highly desirable and valuable to derive conclusions regar-
ding the attainable accuracies.

Using concentric cylinders type of conductivity cell Keyes'?
have reported values for He, Ne and Ar, and Cheung, Bromley and
Wilkel® for He and -Ar. Keyes!? values are in agreement with
Kannuluik and Carman® values for Ne but are in disagreement in
the case of Ar. The data of Cheung et al.’® and of Schottky” for
Ar also favour the values of Keyes!?, all suggesting the data of
Kannuluik and Carman® to be somewhat low at temperatures above
approximately 100°C. This conclusion is also atleast partly subs-
tantiated from the measurements of Cheung etal.’® for He. Ttis
unfortunate that no other date are available to further confirm this
possibility andwit will be highly useful if additional measurements are
planned for temperatures above 100°C to resolve this discrepancy.

Thornton'® values have been obtained using a katharometer
which as pointed out by Srivastava and Saxena? is inherently incapa-
ble of yielding accurate values. His values refer to 18°C and in all
the five gases these are in satisfactory agreement with the existing
values as he has corrected his values on the basis of Kannulik et
al.® Srivajstava and Saxena® values at 38°C are also in reasonable
agreement with the rest of the data

Another indirect method of testing the accuracy of values is
possible on the basis of viscosity data (7). A can he easily generated
from the corresponding v values using the simple relation of the
kinetic theory?,? viz., ’

15 R

Sam "

where R is the familiar gas constant and M the molecular weight.
The A values so obtained are shown in Figs. 1 and 2 in all the
cases. The agreement of these indirect \ values with the directly
obtained values is satisfactory in all cases except He. This again
shows the possibility of Kannuluik and Carman® values to be syste-
matically lower at higher temperatures.

A

In both these figures the continuous curves have been obtained
by smoothly joining the points of Kannulujk and Carman®. We do
not thereby imply any preference for these data except this facilj-
tates the visual comparison with other data.
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The experimental Amix data on binary mixtures of five noble
gases have been reported by Thornton'® at 18°C, von Ubisch!® at
29° and 520°C, and Srivastava and Saxena® at 38°C. All these
measurements at a particular temperature have been reported as a
function of composition and we represent them graphically in Figs.
3—12. We will ‘discuss all these data in terms of their relative
consistency and absolute accuracy so that we may know for definite
what data with what reliance already exist, and what should be
planned in the immediate future to enable a thorough and complete
study of thermal conductivity on binary mixtures. The knowledge
of Amix on binary systems has become now a days still more impor-
tant for it has been shown by Srivastava and Saxena’®, and Saxena®
as to hOW_ the Amix data of binary systems can be used to predict
multicomponent Amix values with fair accuracy. Mason and Saxena2®
have derived these formulae also from rigorous theory by well
defined approximations and since then the scope of these calcula-
tions have been further enlarged to cover high temperatures also by
Gambhir and Saxena®, and Gandhi and Saxena®’. We now report
some important conclusions and comments based on these plots.

In general from these plots we find that Amix values of von
Ubisch!® at 520°C are reasonably consistent in as much as in all
cases we get a smooth plot of Amix as a function of composition.
Nothing definite can be said about their absolute accuracy as there
areno other data availabie for comparison. If pure ) values as
compared from the extrapolated values of Kannuluik and Carman®
are any guide von Ubisch® Amix values may be higher than the true
values by a couple of per cent. In all cases there is a considerable
confusion in the Amix values at lower temperatures and we present
here a critical analysis for each system.

For He-Xe system all the Amix data are shown in Eig. 3. All
the three sets of measurements seem to be reasonably consistent and
the agreement becomes still better if it is recalled that von Ubisch?®
Measurements are higher by a couple of per cent. In.the case of
He-Kr system, Fig. 4, the Thornton'® values are inconsistent with
those of von Ubisch® and the discrepancy gets further enhanced if
the data of von Ubjscho are corrected for the general trend of being
higher by a couple of per cent than the correct values. One is thus
tempted to think that Thornton'® data may be systematically higher.
This latter possibility also receives some support from the results on
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other systems, as discussed below. Additional measurements will
be useful to clarify this point.

Measurements of all the three groups for Ar-He are plotted
in Fig. 5, and these data also do not seem to be consistent. von
Ubisch®® values are again higher and so are of Thornton'®. The
former values when corrected will be at the appropriate place rela-
tive to measurements of Srivastava and Saxena® while those of
Thornton?® which refer to the lowest temperature appear somewhat
greater than the correct values. Further measurements therefore
seem reasonable.

Available data on He-Ne system are shown in Fig. 6 and the
two sets of measurements are completely inconsistent with each
other. Thornton'® values which refer to a lower temperature are
greater than von Ubisch!® values. The discrepancy gets further
enhanced if von Ubisch!® data are corrected which will reduce the
plotted values. This again shows that Thornton'® A values may be
greater than the correct value.

In Fig. 7 are shown the Amix values for the Ar-Ne system. If
reliance is given to the values of Srivastava and Saxena® one again
finds thatHThomton16 values are somewhat higher. This view is
further substantiated if von Ubisch!® values are corrected, which
then will fall below those of thornton!® values inspite of the fact
that these refer to a higher temperatue. To resolve the discrepancy
posed by these measurements additional data are required. The
experimental data on Ne-Kr system are shown in Fig. 8 and the
same trends and conclusions as observed in the case of Fig. 7 are
also valid in this case.

The date on the Ne-Xe system are shown in Fig. 9. The
measurements as they are, appear to be qualitatively in the right
order. However, if von Ubisch!’® measurements are corrected,
these values almost merge into those of Thornton!t. This again
indicates the possiBility of Thornton!® values being systematically
higher. New measurements are therefore valuable for this system.

Experimental data on Ar-Krand Ar-Xe systems are plotted
in Figs. 10 and 11 respectively. In both the cases measurements of
Thornton® and Srivastava and Saxena® seem to be consistent with
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each other while those of von Ubisch!® also become in line when
corrected. Figure 12 shows the results for the Kr-Xe system and
the results seem to be satisfactory.

Thus, we can sum up the over-all picture by the following
general remarks :

(a) The data of von Ubisch!® seem to be consistently higher
than the correct values.

(b) The data of Thornton'® also do not seem to be very
accurate and there are evidences to support the view that his data
may also be systematically higher.

(c) For a number of systems the three sets of measurements
present serious discrepancies and new reliable measurements seem
highly desirable.

Another very interesting use of the present study lies in the
possibility of predicting the thermal conductivity values of Rn and
its mixtures with other inert gases following Srivastava and Saxena,??
and Saxena?®. From Figs. 3-12, amix values were read for Thorn-
ton'® data at arbitrarily chosen compositions. The values correspon-
ding to different systems at a fixed composition of the common
constituent for each series were plotted versus the molecular weight.
On extrapolation these curves yield the value corresponding to the
binary mixture of the common constituent of the series with Rn at
that composition. One such representative set of curves for the
argon series is reproduced in Fig. 13. In the table we list the Amix
values for the various combinations of Rn with other inert gases as
a function of composition. The pure Rn value reported in this
table is obtained by plotting the pure values of all the gases at 18°C
against the molecular weight and extrapolating the curve upto the
molecular weight of Rn. These values are only rough estimates and
may be uncertain by as much as even 209, on the average. Inspite

of this large uncertainty we are tempted to report them for there
are no direct values available.
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Table : \pix values of Rn with other inert gases.

% of

Rn

100

80

60

40

20

5
10 X Amix, Cal/cm-see-deg

He Ne Ar Kr Xe
0.6 0.6 0.6 0.6 0.6
24 1.5 1.3 0.6 0.6
5.1 2.7 1.7 1.0 0.8
7.9 4.7 22 13 1.0
13.0 7.0 3.0 1.9 1.2
35.6 11.6 4.2 22 13

Figure Captions

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

.

2 of He and Ne as a function of temperature, Experimental points :
® Kannuluik and Carman, g— von Ubisch, § Srivastava and Saxena,
LThornton, [@ Keyes, |_|Cheung et al., _OSchottky, QCalculated

from v, and gJohnston and Grilly.

The legend is same as in figure 1 except the values refer to Ar, Kr
and Xe.

Amix Values for He-Xe mixture asa function of composition.
Experimental points : gvon Ubisch at 520°C, ®@von Ubisch at
29°C, ® Thornton, and () Srivastava and Saxena.

The legend is same as in Fig. 3. except it refers to He-Kr system.
The legend is same as in Fig. 3 except it refers to He-Ar system.
The legend is same as in Fig. 3 except it refers to He-Ne system.
The legend is same as in Fig. 3 except it refers to Ar-Ne system.

The legend is same as in Fig. 3 except it refers to Ne-Kr system.
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Figure 10.
Figure 11.
Figure 12.
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The legend is same as in Fig. 3 except it refers to Ne-Xe system.
The legend is same as in Fig. 3 except it refers to Ar-Kr system.
The legend is same as in Fig. 3 except it refers to Ar-Xe system.
The legend is same as in Fig. 3 except it refors to Kr-Xe system.

Plots of \mix versus M for argon series at various concentrations of
argon.
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. ABSTRACT
An equation, relating the growth rate 7, and the wave number
k, which charactrizes the equilibrium of a heavy viscous, incompres-
sible stratified fluid of finite depth in the presence of a horizontal
magnetic field, derived by Gandhi has been studied. The properties
of the magnetohydrodynamic waves generated under certain condi-
tions, have been discussed in detail.

INTRODUCTION

Gandhi (1964) studied the properties of waves generated in a
heavy, viscous, incompressible, electrically conducting fluid of
variable density, in the presence of a magnetic field. He had
enunciated a variational principal for the problem. While discussing
the applications of variational principals, he studied the case of a
continuously stratified fluid of a finite depth, Measuring k& (wave
number of propogation) and n (the growth rate) in non-dimensional
parameters of the two different kinds, he had derived, the following

equations :—
4Gx*? Ox2y

242y (14x3) - =
A S Al Bl N )

0 (1)



where
2d*
X = dy= 2
s anc.y=n Vi 2s2 ()
and
4
GEL‘M_ (3)
7 4v2s4 ~
Kl;zaz
= 4
Q 7 ® p,Vis? @
P N
- ()
Measuring
kd o 4 3
X = y y=n—— 2761 6
7s # 7S ( KH? ) @
equation (1) takes the form :—
Y242y (14x2) Sve—— e 4 oy 0 )
l+x" Y+2R (1+x7)
where
s 1
R— s 1
bz ®)
d?
8= ”ngzvi1 9
|
S = . 1
(),

Gandhi discussed equation (7) and did not study equation (1)
on the ground that in this particular form of the equation (equation 1)
we can not discuss cases with facility when v=0. It may be observed
that in the form of the equation as given by (7), we cannot discuss
cases when the field H=0. As we are studing the effect of a vertical
magnetic field, it will be advisable to discuss equation (1) also,
so that we can compare the various cases in the presence as well as

in the absence of the magnetic field. Hence we discuss equation (1)
in detail.

Equation (1) is cubic in y but reduces to a quadratic equation in
two cases, namely G=0 and P=0. Below we deal with them
separately.
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WAVES IN THE ABSENCE OF BUOYANCY FORCES

This is the case when G=0 in equation (1) which now
becomes :—

Y242y (14x%) (1+P) + 4P (1 +x%)? 4 Ox?=0 (12)
provided y=0.

The solutious of the last equation are

» o 2192 *

y= —(1+4P) (1+x%) £ i{Q*—(1 - P)*(1+x?)*} (13)

From the last equation we can readily see that when o<{x<x, ,
where

T4+x.2\* 1
l=QQ-P2(___"€¢ s 14
(- ) o (14)

the solution corruspounds to a damped oscillation. The damping
co-efficient /

—R(y) = (1+P) (1+x7) ' (15)
and the frequency

€ (1) = 4 { @~ (1= P)* (1+ 292} (16)
These' oscillations give rise to horizontally propagated magne-
tohydrodynamic wave.

The waves are propogated with phase velocity V,, and group
velocity V, where

L 1em)] .
YL ={ 0—a-pp(-E2) } a7
\ d 2 {Q—2(1-PR(1+x) )
Vo' = [7{‘30)] = ( V;'«)’ Sl (18)

When the wave number x exceeds the critical wave number X s

the quantity under the radical sign in equation (13) becomes negative
Thus when x < X, the motion is aperiodically damped with damping

co-efficients
“R(y)=+P) A+x) ELA-PY (L4x2 _grayy  (19)

The foregoing discussion of the behaviour of e yools ofihe
equation (12) is illustrated by figures |, 2 and 3.
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Waves in an Ideal Conductor in the presence of Buoyancy Forces :

This is the case when P=0, so that the equation (1) simplifies to

o 4Gx?
Y2y (1427 + Oxt - - 5 =0 (20)
The solution of which is
4 2
y=—(l+x’)n&{ (l+x2)—Qx2+l~f§§—}% (21)

Unstable Stratification :—
When >0, G>0 and according to equation (21) when x>x,,
x, being the real root of the equation

{ 4c A—Q}=0 (22)

14+x,2

The value of y correspounding to the upper sign is real and positive.
The equilibrium in these circumstances is unstable as the disturbance
grows ( aperiodically ) with time.

When x>x, , y no longer has a positive value, so that over
this wave number range no amplified motion is possible. The
mathematically stable modes of this case of unstable stratification are
of no physical interest, hence we conclude this case here.

Stable Stratification : —

When <0, G<o and by equation (21) y never has a positive
real part, so that the equilibrium is stable. Whether the equilibrium
is restored periodically or aperiodically depends on the sign of the
quantity under the radical sign. In order to discuss the conditions
under which one or the other of these types of flow arises, it will be
convenient to introduce the quantity

X 4G, x*
2= To @3)
where G, = - G, G, being positive in all the following discussions.

It follows from equation (21) that the motion is periodically or
aperiodically damped according as

1§Qz 24)



( 29 )

In figure (4) Z is plotted as a function of x for several values
of (G,/Q). According to the criterion (24) we only have oscillattons
at those values of x for which a line dtawn parallel to the x axis at

a distance —IQ— above it lies below the curve Z, otherwise the equili-

brium is restored aperiodically. It is easily seen from the figure (4)
for all values of f3,, z rises from x=0 untll it reaches

' -4G (16G,2 4G 1
— =t —A + ]
Zax = Q (16322 " 9 )
(- &)=("g g+
4G, ]
I- 0 i
ﬁ e 4G 16G,2 4G t > (23)
L ()T )
and A :
2
Xomax= { - igLi(—ngGZL-i- 481 + 1 )1} r (26)

- from this point on z falls monotonically with z, the curve approaching
the x axis osymptolically.

It remains now to specify the properties of the motion. In the
case of aperiodic damping there are two damping co-efficients (see
equation 21])

-y= +x2)t{ (1 +x2)% - ( 0+ 1—4%;2) xzr (27)

In the case of oscillatory motion there is only one damping
coefficient

~R(y)=(1+x% (28)
the angular frequency of the oscillation
4G, x*? 3
— 2 1 _ 212 "
&) i—{Qx £ 39X (e } 29)

The corrosponding wave and group velocities Vy & V, satisfies
the equations

_[emz_ 47, _(1+x Y

X
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and

4G,x o |}
i 14+ x2
[(Zx y] V'Wn

These equations are illustrated by figures 5 and 6. -
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A VARIATIONAL PRINCIPLE FOR A VISCOUS
COMPRESSIBLE FLUID WITH A PREVELENT
MAGNETIC FIELD

S. R. SHARMA anD J. M. GANDHI

A variational principle for treating the stability of viscous
compressible fluid with a prevelent magnetic field is discussed. It is
shown that the self-adjoint character of the problem provides the
basis for a variational treatment of the problem. A neceséary and
sufficient condition of statility is also derived.

INTRODUCTION

Variational principles charactering the stability of hydromagne-
tic systems have been discussed by various authors !~ 4. The purpose
of the present paper is to give a most general variational principle
for a hydromagnetic system where the electrically conducting fluid
is assumed to be viscous and compressible. (Separate variational
principles tor the compressible but non viscous fluid and for in-
compressible but viscous fluid were discussed by Chandrasekhar®.)
It is shown that the problem possesses a self adjoint character and
the system forms the basic of a variational treatment of the problem.
A condition for the stability of the hydromagnetic systemis also

derived.

Let us consider a viscous compressible and infinitely conduc-
ting fluid occupying a volume ¥ enclosed in a surface S which is
surrounded by vacuum. Let us suppose that in equilibrium a

—_—
magnetic field H and material pressure p prevailes. In equilibrium,
inside the fluid we have

BR 1 a8 (HH)
8x, T4z ox, 0

where R is the total scalar psessure,

R=p-+H?*/87 ¥
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On the bounding surface normal stress must be continuous
hence 5.

! 12 i 2
(in) | gr(lin), ex
plin). | HOW \He, 3)
8 87

Further since we have supposed that the system is surrounded
by vacuum, the external magnetic field must be curl free.

—_—
Curl Ht’x = 0 (4)
further we must have everywhere on the bounding surface
- —
H. ds=o 4

su that the magnetic lines of force lie on the surface and this is a
necessary condition if infinite accelerations are not to arise on the
surface.

Now we shall consider the perturbed state of the system. The
equations governing the first order perturbations of the initial state
can be written as

o iy V. H, . h: H,
ST " tay N D %
ahi 0 H: u; u; H)

where u; and h; denote the perturbed velocity and magnetic fields,

p is the density of the medium, and

Hy hy '
i j= (8p+ 741_4#) 8ij— Pij (8)
with
ou; ou;j 2 aliL 5
pij= & 5%, + —é—)-c-l— T3 ox ij )

in which # is the coefficient of viscosity of the fluid,

We now introduce a displacement £ which is connected with
the velocity field by

ot;
U = o1 (10)
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Substitution of (10) in (7) immediately yields

0 ; .
hi = o (Hy § — & H;) (11)

As usual, we consider the Perturbation quantities having

exponential time dependence, ef 6! , then the perturbed equation
of motion gives,

—c*pEi=—g~Z;i+z‘;anj H; b+ H;) (12)
The perturbed fields outside ¥ must satisfy the relations 7

Curl h°* = o - (13)

Curl Ee; = — ig he* (14)

On the displaced boundary S+ S the conditions which must be
satisfied are (%)

- -

N . H=o0 (16)
- 1) - - - 5 > —
NxA(E) =(NwpAH=igc(NE)AH 17)

—_>
where A (f) represents the jump in the quantity fon S+8§S and N

—_
is the outward drawn normal to this surface. In (15)-(17) H stands
for the total magnetic field, the perturbed plus unperturbed and Eq.
(17) results from the relation

- =

—_
E+uxH=o (18)

Equations (12) and (14) constitute a characteristic value prob-
lem for g-* with the boundary conditions expressed by means of

equations (15) to (17).

Consider equation (12) belonging to 0—0\) multiplied (12) by

E(M) belonging to defferent characteristic value O_(p.)

over the volume ¥, eq. (12) becomes

, and integrate
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(O L ]

1 oh @ oH; (1)

i (/1-) ? " - (19)
”_['H, e b Vg f i w-‘. AR
Integrating the second term in eq. (19) by parts, we have

( osi )
T .o, iJ O -
[e*] fs g dV = fv x; g, dv
85(-/\) 9H
f (H,. P e o )) av. (20)
v i axj' J axj‘ 1

substituting the value of from eq. (11) after a little simplification and
making use of eq. (1) we get

)2 f E(A) E(ll) dV — fa ij E..(#) dv -

oE() aEm

1 ; i
T4 (Hi o%; )(H" EXk")dV'
AR

M (® R 1 T I
J'E S o dV+4,,f( Hi 5% %

(A)

o ;
)k 3HL gy @n
B & ax— ox; )d'
Now consider the integral
wa( ) )
- (1) W) ) 4.
fax g av = - Jls“’ij g, dS; +
E(u)
f (A)___d,, (22)
v ij 0X;

We now expand eq. (14), regarding the continuity of normal
stress tensor, » €Xpressing it in the surface integral.
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N Hy ex hkex, N
0], =2 G ) [ ] @

where A (f) denotes the jump a quantity [ experiences on .
Substituting (23) in the first integral on the right hand side of (22),
and using the relation (cf. eq. 17)

Y 5 g — g (u)( ,(u)) (24)

we get

. - =
1 . . ‘
ds — - —— | p (€X,1) ( N x E(""”‘)) ds (25)
450
" tr
Now the second integral on the right hand side of eq. (25) can be
changed to volume integral exterior to V by Gauss’s theorem;

1 (ex,2) [ o (ex.) )
I G R, ( NXFE ds
4;7 l't)_(‘“) 'r y

; 1 v X, A ex,u.)
= 7‘!ﬁfs < dsi hy () £ (e
45 i

_

4; "()‘(/L)
1 ¥ "y g,

- A5 rpe.\- h; *) I’i( ) dv. : (26)

“o

l' " h(\) curl EU) dv
l/

Hence

[ ()

. " (f‘) *)
[N grad Ng (Pj) |ds — il ¥ h; ,- dv. (27)

Now consider the second integral of (22).

() 5 Hy, by (V) £, (1)
x) 0% 5 (. k Mk 05
J-v ]( e ax]:» dv J' (bp(’) ! ( ____4;_’. —)——a); dv

g, (M)
fpl!(,\) av —dy (28)
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Let us assume that the variation in pressure and density take
place adiabatically as we follow the fluid element. This amounts to
the equation for perturbed state

0 _op__rp 9 . opr

o p + u; BX = 5 p +u x| (29)
where r is the ratio of the specific heats and p is the unperturbed
pressure. From the equation of continuity we have

2 ) A
5t 8p+ Y ax; p 7, (30)
using eq. (10) we get
_ e 0%
and :
0%k
— — 5" 32
where c is the veloc1ty of sound in the fluid
ct="P (33)
4

Using (32) we have
bY) 2% ()

(*) :
- aik
W& (A) 0P
J‘Sp 3 dv = — gj ax; + ¢? “axk | oxi ——dv (34)
Also we have used eq. (I11) and simplifying

V= — -

y P %) D3 o

J (\)
a5 : aei") otk

£ M) H L i 3
—J. Xi ax;( )d”+4 JH’H" oxi 0% A G2

Now consider the second intergal on the R.H.S. of eq. (28), using
€q. (10) it becomes

. (1) EIONT
- I\) ac,l . . ag' a e
J'PU( o d‘,T('O-m>I:J ! ( %t om ) N *

anfoe™MY (a8 ))d (36)
J 3( axk ) \ oxi
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Finally using equations (22), (27), (34), (35) and (36), and after a
little simplification we can wr ite equ. 21 as

©Vy: J‘ ot £y — J' . ( niz™ ) ( N_g(u))
' [ N grad As(Pij)] ds
a;(l) ag(“)

+.zl,:,fv{(ﬂk 5;;’>(Hf ax:- )

(W ok L,

+ 4n

0Xgr 0Xce
o WO gm
| o8, (#) E() - a*(“)
+T7fv{ ol ék},—( % %~ T 5 ox; )

L (az,ﬁ) 2t AR a&“‘))
A TR A v

(,\) aa(") e

+io” ‘ [ ai; 5;;—
a',("\) ai.(.”) .
2u "7k T Qv (37)
3 an axj

we observe that the expression on the right hand side of the equation
(37) is symmetrical in A and p and therefore

J e N W ar— o =m (38)

Hence self adjoint character of the characteristic value problem is

proved.

If we replace E_E#) and lzf“) by the complex conjugate ong’\) el
i
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Izg'\) respectively, we obtain.
0‘sz[£|2 dv = J (N.&? [N. grad A (P;;) ]dS
RY

2 *  52R =
4u b b }dV

2

n2 -
| 0&; | 1 J’ |-
‘] ,.,XT ldV + -—4n yex |’l av

*
( G )}
_Hj H; Re 3% Aani dv

*

. [ ( 0&; 0% ) 2k,

2u ( s ] (39)
- —_ | %4
3 BX/\ 8‘(, 4

or symbolically we can write
(i) I—(ig~) p—2=0 (40)

The roots of this equation are

i 7»211 ; - == /4)"—4‘Ij' (41)

Since I is necessarily positive, a necesary and sufficient condition for
stability is that 3! must be positive. When the system is stable i.e.

5! >0, the magnitude of ¢ will derermine the modes of oscillation of
the system.
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A NOTE ON LEXELL’S PROOF OF FERMAT'S
LAST THEOREM FOR THE POWER 5.

J. M. GaNDHI,
Deptt. of Physics, University of Rajasthan, (Jaipur).

We, in thit note show that Lexell’s proof for the impossibility
of the equation a®+bS=c5® [2] is incorrect. Firstly we reproduce
L.E. Dickson’s report [1] Page 732, on Lexell’s proof for the impos-
sibility of the above equation.

““A.J. Lexell considered a®+ b®=c".

Set x4+ y=a’% x—y=D>b°%, then
(x®—y?}/4x%=(z/x)%=a’ b%/c!?

x®—dxzP=x" y*=| |

,Sinc;a/the factors are relatively prime,
x=p? x*—47°=q?, hence
pl0—q2=a4r® s° or p°+q=2r°
p>—q=2s% pi=ro+s5.”

Then we show that the above proof is incorrect.
Since x +y=a®, x—y=b®

2x=a5+b5=C5,

which shows that x is necessarily even. Also it can be easily seen
that z is even and hence the factors x and x°—4z° are not relatively
prime as was assumed by Lexell.

Tt is interesting to note that the assumption of the truth of
Lexell’s proof implies the proof of F.L.T. for all primes, for substi-
tute the power 5 by p and all the results will remain as they are,
except that the prime 5 in all the results will now be replaced by p.
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However if Lexell’s proof can be corrected without changing
his outlines of the proof, a complete proof of Fermat’s Last Theorem
may probably follow.
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COMMENT ON LOUTIS S. MANN’S PAPER

“A REMARK ON F.L.T.”
by
J. M. GANDHI
Dept. of Physics, University of Rajasthan, Jaipur ( India).

In this note we show that the results obtained by Mann in his
paper [ 1 ] regarding Fermat’s Last Theorem, are not correct.

Consider a"+-b" =c" (1)
Suppose (1) factors into

(cn/z M _gP ) ( "/2+b"/2 _a"'P) -0 (2)

Expanding (2) we have
no__ b” + an _an—p (cn/2 _bn/Z)

4

g? (cn/2 +bn/2) —o. ‘ (3)

In order that (1) and ( 3) be identical, we must have ( as is
argued by Mann)

cn/2 n2 _ n/2 a" (4)

This seems to be incorrect.
In general (3) will be identical with (1) when

n/2 bn/z nIZ n-k ( 5 )

p:k, a ’ / +b

k is any integer.

Putting p=0 means assuming one impossible S of )
since then (1) will read as ’
(cn/z _bn/2 1 ) (cn/z +b"/2 " )%0

and we must have

2 nf2
Cn, —b =] (6)
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and c"? +b"/2 —=a" (7)

Evidently c"lz —b"?=1 s impossible when n>2. Similarly
consider

a" + b” +- " (—8 )

Let a=U"V" ‘ (9)
X so that U" V" +b" =¢" (10)

Now Mann factorizes (10) as

(cn/Z M2 _yn ) (cn/2 b2 yn )=0 (n

This assumption itself is not correct, since the truth of this
implies that

C”/2 __b"/Z V" (12)

n/2: n (13)

and c"lz +b =U

As discussed by Mann, equation (12) and (13) lead to impossible
results when n>2, therefore (10) cannot be factorized as (11), and
thus Mann’s method of attacking Fermat’s Last Theorem does not

succeed.
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