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THERMAL CONDUCTIVITY OF MULTICOMPO­
NENT MIXTURES OF INERT GASES II 

s.c. SAXENA and J.M. GANDHI 
Physics Department, Rajasthan University,, Jaipur. 

Recently we1 have discussed the four commonly used methods 
of calculating the thermal conductivity of mixtures of monatomic 
gases. A critical assessment of the relative merits of these methods 
was presented on the basis of numerical calculations on mixtures of 
inert gases. These procedures are refered as rigorous, approximate, 
empirical and semiempirical. Since the publication of this work, 
considerable work has been done in this direction in this laboratory 
as well as at a few other research centres. · The purpose of this 
article is to discuss all these different methods with a view to throw 
some light on their relative merits and appropriateness. 

All the four methods of, computing thermal conductivity of 
mixtures Uf monatomic gases, ,\mix, have already been described in 
detail by Saxena and Gandhi1 • We, however, present here a brief 
description for relevance to proper -reference and understanding. In 
the rigorous method the theoretical expression derived by Muckenfuss 
and Curtiss2 as modified by Mason and Saxena3 is used. This 
rigorous expression has been cast into the following form by Mason 
and Saxena4 : 

Arn ix= ~ >..; [ 1 + ; G .k x k ]- l 
i= 1 k=i 1 xi . 

...... ...... (1) 

k=/=i 

Here ,\ i is the therf!'.lal conductivity of the pure component i, xi is 

the molefraction of the i-th component, and G ik is given by an 

expression which involves only pure thermal conductivities and 
• • molecular weights, M, of the various components of the multicompo-

nent mixture. This is approximate method. In the empirical 
method Gik of Eq. (1) are treated as disposable parameters and are 
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determined from the knowledge of ,\mix values at two composi 

tions. In the semiempirical method one,\ . value and the relation mix 

............ "'..: ... (2) 

. . 
are used to determine G.k and G,. of Eq. (I) 

I 1(l . 

In view of the fact that the ,\ . expression given by Eq. ( I) mix 

forms the basis of so many procedures for calculating ,\mix, it will be 
useful if the relationship of Eq. (I) with the rigorous expression may 
be better understood than that given by Mason and Saxena .4 

Recently Gambhir and Saxena5 have shown that the rigorous "Amix 

expression can be expressed into the form of Eq. (I) with the 
following relation for G ik : 

where 

... .......... . .... (3) 

_1 

B .k + Bk.=b.k l l I , 

2 * 2 * 
16T (15/2) Mi+ (25/4-3 Bik) Mk+4Aik Mi Mk 

a= 25p (Mi +Mk ) ~ Di!, 

16T 
y= 25p 

* * ( 55/4-4A., -3B.,) M.Mk 
liC l1C l 

( Mi +Mk )2 Dik 
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and 

{Jik = ( 4+2y,\i +4\/"k) {J-1. 

Dik is the mutual diffusion coefficient of components i and k, p the 

pressure, T the temperature, A~k and B~k are functions involving 
, l l 

collision integrals6• The expression for Gkiis obtained from Gik by 

the interchange of subscripts refering to molecular species. Gambhir 
and Saxena5 have shown that the temperature and composition depen­
dence of G ., is small and they derived simpler expressions for those 

It( 

binary systems where Mi >>Mk. Equation (3) then simplifies to 

G.k,..., B.k 
l - - 1· • 

This relation can be further simplified for such system so that 

G;k=v'~,andGki=l/v'fi;;, 

~!~ >,.; 59M2+88M +150 
, or Gki =µ k=Tk . ·1soM2 +88M + 59. ·········<4) 

Here Aik and Bik are assigned a constant value of 1.10 and 

M= M 1, /M .. 
ML) I 

Thus, Gambhir and Saxena5 Suggest relation (4) along with one 

>..mix value to evaluate Gik and G ki .This has since been successfully 

tested by Saksena and Saxena.7 

Saxena and Gambhir8 have also shown that G ik's obey the 

following relation: 

Gik 'fJ; (Mk )o.ss 
-Gki = .fJk Mi 

>--; (Trans)(Mk )-o.is. . ........ (S) 

>..k (Trans) Mi 

Here 'fJi stands for the viscosity of the i-th component. Consequently 

the relation (5) and one >,. . value can be u'sed to determine G .k • . mix 1 

Detailed calculations of Saxena and Gambhir9 confirm the adequacy 
of this semi-empirical procedure. 

Thus, we have now two other versions of the semiempirical 
method given by Eqs. (1) and (4), and Eqs. (1) and (5) in addition to 

the one given by Eqs. (I) and (2) for calculating >..mix . It will be 



l 4 ) 

interesting to compare the accuracies of all these methods to know 
their relative adequacies. For this purpose we consider the experi­
mental data of Srivastava and Saxena10, and Saxena11 for six binary 
systems at 38°C and at 39 compositions. The average absolute 
deviations for the rigorous, approximate, empirical and ~emi­
empirical procedures .are 2.5, 2.4, I.I, and 1.1 percent, respectively. 
The semi-empirical method refers to Eqs. (1) and (2) and we will 
call this method as semiempirical method 'I. The semiempirical 
methods based on Eqs. (1) and (4), and (1) and (5) will be refered as 
semi-empirical methods-II and III, respectiveiy. These two semi-

•. empirical procedures yield the average absolute deviations for the 
above thirty nine compositions as l. 1 and 0.4% respectively. Thus 
all the three semi-empirical procedures seem equally good and also 
compete in merit with the other methods. 

For He-Xe system, which offers a wide range in the ,\ values, 
calculations were also performed for the data of other workers. 
The percentage ave rage absolute deviations for the different methods 
of calculations are shown in Table 1, In all cases it will be seen 
that the semiempirical procedures are adequate and dependable. 
More critical remarks are possible only when the accurate experi­
mental data become available. 

All these methods are competent to yield multicomponent 
thermal conductivity values on the basis of Eq. (I). We will test this 
only for those ternary systems where experimental data are available. 
We will consider the experimental data of Srivastava and Saxena10 

on Ne-Ar-Kr, Saxena11 on He-Ar-Xe, both at 38°C, and von Ubisch12 

on He-Kr-Xe at 520°C all as a function of composition. In this case 
we get for the percentage average absolute deviations in the rigorous, 
approximate, empirical and semiempirical procedure I, II and III 
respectively as 1.4, 1.4, I.3, 1.1, 1.1 and 1.2 for Ne-Ar-Kr, 0.4, 4.1 
0. 7, 0.6, 0.5 and 0.5 for He-Ar-Xe and 2.5. 3.9, 2.7, 2.6, 4.6 and 2.9 
for He-Kr-Xe. Thus, we find that for ternary systems also these 
formulae are satisfactory and almost equally good. Nothing every 
precise can be said in view of the great uncertainty associated with 
these measurements, particularly of von Ubisch12• It will be of 
great interest to have accurate measurements on the thermal conduc­
tivity of multicompanent gas mixtures as a function of temperature. 

A very interesting application of the approximate, empirical 
and semiempirical proeedures has been done in the prediction of 
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,\mix values at high temperatures. This method of course depends 

for its success on the · fact that Gik are essentially temperature and 

composition independent. This was shown by Gambhir and Saxena5 

and since then this fact has been used by a number of workers in 
predicting,\ . valu~s at high temperatures. It will be relevant to mix .. 
quote here the successes obtained according to different procedures in 
actual cases. The figures of percentage deviations given here refer to 
the data of von Ubisch12 on ten binary systems and at all the com­
positions at which he has given the experimental values. In each 
case Gik were evaluated at 29°C and these values were used to 

calculate,\ . at 520°C. The percentage average absolute deviations 
mix 

are : 2.3 for approximate, 3.4 for empirical, 3,0 for semiempirical I, 
3.9 for semiempirical II, and 2.5 for semiempirical III. For the He­
Kr-Xe system of von Ubisch12 similar calculations were performed and 
the percentage average absolute deviations are : 2.0 for approximate, 
6.3 for empirical, 3.8 for semiemperical I, 4.6 for semiempirical II, 

and 2.8 for semiempirical Ill. Thus, here again we find that all the 
methods are almost equally successful and any critical relative assess­
ment will await the availability of enough accurate data on several 
systems. 

u 
Table : Percentage average absolute deviations of the calculated thermal 

conductivity values from experimental data for He-Xe system by 
various methods. 

Method of calculation 
Reference of Temp. Rig. Approx. Empir. Semi-empir. 
the Expt. I II III 
data. oc 
Thoronton 18 7.3 6.8 8.8 4.4 4.8 
yon Ubisch 29 6.3 4.9 2.6 2.7 2.4 
von Ubisch 520 4.1 7.7 0.2 2.1 1.2 
Saxena 38 6.0 1.4 2.0 1.3 1.1 0.3 

We can thus sum up with the followin•g conclusions on the 
basis of this detailed comparison of theory and experiment : 

I. All the six methods of computing thermal conductivity 
of multicomponent gas mixtures are almost equally accurate 
and reliable. The choice of a particular procedure will 
depend upon the amount of initial input data available and 
the computational effort that can be put. 



( 6 ) 

2. The prediction of multicomponent "-mix values on the 

basis of binary ,\ . values by all the five methods ( i. e, mix 
except rigorous ) is dependable. This is one of the very 
potential methods for supplying the multicomponent "-mix 

values lor which very limited experimental data are 
available. 

3. The calculation of high temperature "-mix values using Gik 

determined at a lower temperature from any of the five 
methods seems fairly accurate and encouraging. In view of 
the great lack of data at high temperatures and their 
important applications in a number of very useful problems 
viz., reactor design, flame propagation, explosions and 
detonation etc., these procedures will continue to be the 
only source of providing the requisite information. 
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THERMAL CONDUCTIVITY OF MONATOMIC 
GASES AND BINARY GAS MIXTURES 

J.M. GANDHI and S.C. SAXENA 

Physics Department, Rajasthan University, Jaipur, India. 

ABSTRACT 

All the available experimental thermal conductivity data on pure noble 
gases have been considered with a view to determine their relative accuracies 
which also enable the assessment of the comparative merits of the different 
methods used in.measurements. Some very interesting conclusions follow from 
this study. The experimental data on the binary inert gas mixtures are also 
examined and it turns out that there are several notable discrepancies in the data 
of different workers. The accuracy, in particular, of von Ubisch data is poor 
and this over-all study suggests that there is a general deficiency of the experi­
mental data. Attempts are beinig made in this laboratory to supplement this 
information and resolve the discrepancies posed by the existing data as revealed 
by the present work. Following a procedure earlier suggested by Srivastava and 
and Saxena the present work has made possible to predict and estimate the 
thermal conductivity values of Rn and of its mixtures with other inert gases as 
a function f)f composition. 

Thermal conductivity data of gases like many other equilibrium 
and non-equilibrium properties provide a very adequate opportunity 
for exploring the appropriateness of the formulation of kinetie 
theory1

,
2

• In fact the extraordinary sensitivity of thermal conductivity 
to the presence of internal degrees of freedom, rotation and vibration, 
makes it some-what preferable over other properties. The knowledge 
of accurate thermal conductivity values as a function of temperature 
is basic for such a study. Unfortunately, there is a general paucity 
of the accurate data of this type. The endeavour of the present 
article is to pool together all the available data on pure gases as a 
function of temperature and also of binary rrt/xtures as a function of 
temperature and c.omposition. There are several very useful 
purposes at the back of such a laborious though straight forward 
effort and these only have provided incentive to the present work. 
We enumerate them here in brief. 

Recently we3 interpreted the thermal conductivity data on 
binary mixtures, Amix, in terms of the rigorous kinetic theory and 
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three other procedures of calculation. Since then many other 
methods have been suggested 4- 7 for estimating ,\mix. For the 
success of these works it is essential to know the ,\mix values with a 
fair degree of reliance. The plan of present work will provide 
such information. Further all the discrepancies in the existing data 
will get into light and this will enable experimentalists ro plan 
suitable experimehls. Also till_ that time we will have the know­
ledge of the correct assessment of the existing data from present 
study. Lastly this work also permits an estimation of the thermal 
conductivity of pure radon and its combinations with other inert 
gases, which are not known otherwise. 

We now consider the data on pure gases. Helium in this 
connection is of special interest, for a large amount of data of 
different workers obtained from different techniques are available. 
Kannuluik and Carman8, Srivastava and Saxena9 have used the 
"thick-wire" variant of the "hot-wire" method; while Von Ubisch10, 

and Johnston and Grilly11 have used the "thin-wire" variant of the 
"hot-wire" method. Keyes12 and Cheung, Bromley and Wilke13 

have exploited the concentric cylinders method while Blais and 
Mann14 have developed a thermal diffusion column method to deter­
mine thermal conductivity at high temperatures. Most of these 
data were plotted and considered by Saxena and Agrawal15 and they 
showed that Blais and Mann14 values are probably consistently 
higher than the true values. Consequently we have not considered 
this data while rest of the data 8- 13,

16 are shown plotted in Fig. 1, 
which also includes Ne. The experimental ,\ data for Ar, Kr and 
Xe are plotted in Fig. 2. A critical examination of these figures 
leads to the following interesting and useful observations : 

The thermal conductivity values obtained using either variant 
of the hot-wire cell are consistent with each other. This conclusion 
though may be regarded at present as partly prematured, for the 
elaborate data using the thin-wire variant are available only for 
He

11
• The only other set of data available are those of von Ubisch10 

but nothing reliable can be said for these are known . to be consis­
tently larger than the true values. It is important to note that 
elaborate data are not available even on the thick-wire variant of 
two independent workers to permit any conclusion about the 
possible relative consistencies. Efforts directed to produce such 
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data are highly desirable and valuable to derive conclusions regar­
ding the attainable accuracies. 

Using concentric cylinders type of conductivity cell Keyes12 

have reported values for He, Ne and Ar, and Cheung, Bromley and 
Wilke13 for He a'nd ·Ar. Keyes12 values are in agreement with 
Kannuluik and Carman8 values for Ne but are in disagreement in 
the case of Ar. The data of Cheung et al.13 and of Schottky17 for 
Ar also favour the values of Keyes12, all suggesting the data of 
Kannuluik and Carman8 to be somewhat low at temperatures above 
approximately 10.0°C. This conclusion is also atleast partly subs­
tantiated from the measurements of Cheung et al. 13 for He. It is 
unfortunate th_at no other date are available to further confirm this 
possibility and it will be highly useful if additional measurements are 
planned for temperatures above 100°C to resolve this discrepancy. 

Thornton16 values have been obtained using a katharometer 
which as pointed out by Srivastava and Saxena9 is inherently incapa­
ble of yielding accurate values. His values refer to 18°C and in all 
the five gases these are in satisfactory agreement with the existing 
values as he has corrected his values on the basis of Kannulik et 
al.8 SrivijJ tava and Saxena9 values at 38°C are also in reasonable 
agreement with the rest of the data 

Another indirect method of testing the accuracy of values is 
possible on the basis of viscosity data (1J). ,\ can he easily generated 
from the corresponding 1l values using the simple relation of the 
kinetic theory1, 2 viz., 

,\ = 15 R 1l 
4M 

where R is the familiar gas constant and M the molecular weight. 
The,\ values so obtained are shown in Figs. I and 2 in all the 
cases. The agreement of these indirect ,\ values with the directly 
obtained values is sat.isfactory in all cases e~cept He. This again 
shows the possibility of Kannuluik and Carman8 values to be syste­
matically lower at higher temperatures. 

In both these figures the continuous curves have been obtained 
by smoothly joining the points of Kannuluik and Carman8• We do 
not thereby imply any preference for these data except this facili­
tates the visual comparison with other data. 
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The experimental Amix data on binary mixtures of five noble 
gases have been reported by Thornton10 at I 8°C, von Ubisch10 at 
29° and 520°C, and Srivastava and Saxena9 at 38°C. All these 
measurements at' a particular temperature have been reported as a 
function of composition and we represent them graphically fn Figs. 
3-12. We wilf · discuss all these data in terms of their relative 
consistency and absolute accuracy so that we may know for definite 
what data with what reliance already exist, and what should be 
planned in the immediate future to enable a thorough and complete 
study of thermal conductivity on binary mixtures. The knowledge 
of Amix on binary systems has become now a days still more impor­
tant for it has been shown by Srivastava and Saxena18, and Saxena11 

as to how the Amix data of binary systems can be used to predict 
multicomponent Amix values with fair accuracy. Mason and Saxena2• 
have derived these formulae also from rigorous theory by well 
defined approximations and since then the scope of these calcula­
tions have been further enlarged to cover high temperatures also by 
Gambhir and Saxena0, and Gandhi and Saxena21. We now report 
some important conclusions and comments based on these plots. 

In general from these plots we find that ,\mix values of von 
Ubisch10 at 520°C are reasonably consistent in as much as in all 
cases we get a smooth plot of ,\mix as a function of composition. 
Nothing definite can be said about their absolute accuracy as there 
are no other data availabie for comparison. If pure A values as 
compared from the extrapolated values of Kannuluik and Carman8 

are any guide von Ubisch10 :Xmix values may be higher than the true 
values by a couple of per cent. In all cases there is a considerable 
confusion in the Amix values at lower temperatures and we present 

here a critical analysis for each system. 

For He-Xe system all the ,\mix data are shown in Eig. 3. All 
the three sets of measurements seem to be reasonably consistent and 
the agreement becomes still better if it is recalled that von Ubisch10 

measurements are higher by a couple of per cent. In the case of 
He-Kr system, Fig. 4, the Thornton10 values are inconsistent with 
those of von Ubisch10 and the discrepancy gets further enhanced if 
the data of von Ubisch10 are corrected for the general trend of being 
higher by a couple of per cent than the correct values. One is thus 
tempted to think that Thornton10 data may be systematically higher. 
This latter possibility also receives some suppo~t from the results on 



'a- 30 
~ 
-;-.., 
. ti 
II\ 

'e 
u 
~ 
u 20 
0 

)( 

,< 

10 

0 

( 13 

~ 
~ ' 

~ <Al II ,, 
~--

, · -

O·l 

-....::.~":-

O ~-

~"i() le F..-act1 oh )( ,­

Fig. 3 

I-le - Xe 

40 . < 
QJ 
> 
).. 
::I 
u 
$--

.2 
<II 

-a 
u 

1/) 

l ·O 



-; 

""' u 
i:J 

-; 
\J 
u 
"' ·~ ~ 
V 

t1 20 
u 

"g 
X 

,< 

10 

0 

( 14 

~-----------------------------~so 

0-4 0 •(. 

Mole Fraction Kr 

Fig4 

4o 

0-8 10 

,c 

" > 
).. 
::l 
u 
).. 
0 ..... 
" ci 
u 
<fl 



( 15 ) 

other systems, as discussed below. Additional measurements will 
be useful to clarify this point. 

Measurements of all the three groups for Ar-He are plotted 
in Fig. 5, and these data also do not seem to be consistent. von 
Ubisch 10 values :ire again higher and so are of Thornton16

• The 
former values when corrected will be at the appropriate place rela­
tive to measurements of Srivastava and Saxena9

, while those of 
Thornton16 which refer to the lowest temperature appear somewhat 
greater than the correct values. Further measurements therefore 
seem reasonable. 

Available data on He-Ne system are shown in Fig. 6 and the 
two sets of measurements are completely inconsistent with each 
other. Thorriton16 values which refer to a lower temperature are 
greater than von Ubisch10 values. The discrepancy gets further 
enhanced if von Ubisch10 data are corrected which will reduce the 
plotted values. This again shows that Thornton16 ,\ values may be 
greater than the correct value. 

In Fig. 7 are shown the Amix values for the Ar-Ne system. If 
reliance is given to the values of Srivastava and Saxena9 one again 
finds that Thornton16 values .are somewhat higher. This view is 

i.J 
further substantiated if von Ubisch 10 values are corrected, which 
then will fall below those of thornton16 values inspite of the fact 
that these refer to a higher temperatue. To resolve the discrepancy 
posed by these measurements additional data are required. The 
experimental data on Ne-Kr system are shown in Fig. 8 and the 
same trends and conclusions as observed in the case of Fig. 7 are 
also valid in this case. 

The date on the Ne-Xe system are shown in Fig. 9. The 
measurements as they are, appear to be qualitatively in the right 
order. However, if von Ubisch19 measurements are corrected, 
these values almost merge into those of Thornton 16• This again 
indicates the possibility of Thornton16 values being systematically 
higher. New measurements are therefore valuable for this system. 

Experimental data on Ar-Kr and Ar-Xe systems are plotted 
in Figs. IO and I I respectively. In both the cases measurements of 
Thornton10 and Srivastava and Saxena9 seem to be consistent with 
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each other while those of von Ubisch10 also become in line when 
corrected. Figure 12 shows the results for the Kr-Xe system and _ 
the results seem to be satisfactory. 

Thus, we can &Um up the over-all picture by the following 
general remarks : 

(a) The data of von Ubisch10 seem to be consistently higher 
than the correct values. 

(b) The data of Thornton16 also do not seem to be very 
accurate and there are evidences to support the view that his data 
may also be systematically higher. 

(c) For a number of systems the three sets of measurements 
present serious discrepancies and new reliable measurements seem 
highly desirable. 

Another very interesting use of the present study lies in the 
possibility of predicting the thermal conductivity values of Rn and 
its mixtu 1ti,s with other inert gases following Srivastava and Saxena,22 

and Saxena23
• From Figs. 3-12, Amix values were read for Thorn­

ton16 data at arbitrarily chosen compositions. The values correspon­
ding to different systems at a fixed composition of the common 
constituent for each series were plotted versus the molecular weight. 
On extrapolation these curves yield the value corresponding to the 
binary mixture of the common constituent of the series with Rn at 
that composition. One such representative set of curves for the 
argon series is reproduced in Fig. 13. In the table we list the Amix 

values for the various combinations of Rn with other inert gases as 
a function of composition. The pure Rn value reported in this 
table is obtained by plotting the pure values of all the gases at J 8°C 
against the molecular weight and extrapolaffng the curve upto the 
molecular weight of Rn. These values are only rough estimates and 
may be uncertain by_ as much as even 20% on the average. Inspite 
of this large uncertamty. we are tempted to report them for there 
are no direct values avatlable. 

We are thankful to Prof. M. F. Soonawala for his kind interest 
and encouragement. ~~-·· · ·- --~:::c ::,- _ 
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Table : Amix values of Rn with other inert gases. 

5 
% of 10 X Amix, Cal/cm-see-deg 

Rn 
He Ne Ar Kr Xe 

100 0.6 0.6 0.6 0.6 0.6 

80 2.4 1.5 1.3 0.6 0.6 

60 5.1 2.7 1.7 1.0 0.8 

40 7.9 4.7 2.2 1.3 1.0 

20 13.0 7.0 3.0 1.9 1.2 

0 35.6 11.6 4.2 2.2 1.3 

Figure Captions 
(J 

Figure 1. ). of He and Ne as a function of temperature. Experimental points : 
• Kannuluik and Carman, er von Ubisch, 9 Srivastava and Saxena, 
6 Thornton, /~Keyes, 1-iCheung et al., ....OSchottky, QCalculated 

from "Yl• and eJohnston and Grilly. 

Figure 2. The legend is same as in figure 1 except the values refer to Ar, Kr 

and Xe. 

Figure 3. Amix values for He-Xe mixture as a function of composition. 
Experimental points: oVOn Ubisch at 520°C, •von Ubisch at 

29°c, • Thornton, and O Srivastava and Saxena. 

Figure 4. The legend is same as in Fig. 3. except it refers to He-Kr system. 

Figure 5. The legend is same as in Fig. 3 except it refers to He-Ar system. 

Figure 6. The legend is same as in Fig. 3 except it refers to He-Ne system. 

Figure 7. The legend is same as in Fig. 3 except it refers to Ar-Ne system. 

Figure 8. The legend is same as in Fig. 3 except it refers to Ne-Kr system. 
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Figure 9. The legend is same as in Fig. 3 except it refers to Ne-Xe system. 

Figure JO. The legend is same as in Fig. 3 except it refers to Ar-kr system. 

Figure 11 . The legend is same as in Fig. 3 except it refers to Ar-Xe system. 

Figure 12. The legend is same as in Fig. 3 except it refors to Kr-Xe system. 

Figure 13. Plots of .\mix versus M for argon series at various concentra~ions of 

argon. 
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ABSTRACT 
An equation, relating the growth rate n, and the wave number 

k, which charactrizes the equilibrium of a heavy viscous, incompres­
sible stratified fluid of finite depth in the presence of a horizontal 
magnetic field, derived by Gandhi has been studied. The properties 
of the magnetohydrodynamic waves generated under certain condi­
tions, have been discussed in detail. 

INTRODUCTION 
Gandhi (1964) studied the properties of waves generated in a 

heavy, viscous, incompressible, electrically conducting fluid of 
variable density, in the presence of a magnetic field. He had 
enunciated a variational principal for the problem.. While discussing 
the applications of vadational principals, he studied the case of a 
continuously stratified fluid of a finite depth, Measuring k (wave 
number of propogation) and n (the growth rate) in non-dimensional 
parameters of the two different kinds, he had derived, the following 
equations :-

2 4Gx2 Qx2y 
Y +2y(l+x2)- 1+x2 + Y+2p(l+xz) = 0 (1) 



where 

and 

kd 
X=-- andy=n 

i7S 

G 
gf3d4 

i7 4v2sil 

Q 
KHZa.2 

i7 • P, v 2s 2 

P=l 
V 

Measuring 

( 26 ) 

2d2 

x = kd ' y=n _a._ ( 4 i7 ~' )½ 
iiS ;;S KH-

equation (I) takes the form:-

(2) 

(3) 

(4) 

(5) 

(6) 

Bx2 yx2 

yz+2y (l+xz) Sr- 1+x2 + --Y+2R (l+x2) = 0 (7) 

where 

(8) 

(9) 

S =½v ( _!!_!_) - 1 

d VA 
(IO) 

Gandhi discussed equation (7) and did not study equation (1) 
on the ground that in this particular form of the equation (equation I) 
we can not discuss cases with facility when V=O. It may be observed 
that in the form of the equation as given by (7), we cannot discuss 
cases when the field H = O. As we are studing the effect of a 1vertical 
magnetic field, it will be advisable to discuss equation (I) also, 
so that we can compare the various cases in the presence as well as 
in the absence of the magnetic field. Hence we discuss equation (I) 
in detail. 

Equation (I) is cubic in y but reduces to a quadratic equation in 
two cases, namely G=O and P=O. Below we deal with them 
separately. 
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WAVES IN THE ABSENCE OF BUOYANCY FORCES 

This is the case when G=O in equation ( I) which now 

becomes:-

y 2 +2v (l+x2 ) (I +P) + 4P (I +x2)2 + Qx2=0 

provided y:,t:0. 

The solutious of the last equation are 

(I 2) 

y = -(l+P) (l+x2) ± i{Q2-(I -P)2(1+x1)2}t (13) 

From the last equation we can readily see that when o<x<xe, 

where 

I = ( I - P).2 ( 1 + Xe 2 ) 2 - I -
Xe Q 

(14) 

the solution corruspounds to a damped oscillation. The damping 
co-efficient 

-R(y) = (1 + P) (1 +x2
) 

and the frequency 
(I 5) 

(16) 

These' bscillations give rise to horizontally propagated magne­
tohydrodynamic wave. 

The waves are propogated with phase velocity V w and group 

velocity Vg where 

[ &(y)] 
d 

V w2 = --x-~-- { Q - (1-P)2 ( I :xz r} 
[ 

rl ] 2 _ { Q-2(1 - P)2 (I +x2) }2 

V/ = dx 1(Y) - vw2 

(17) 

(18) 

When the wave number x exceeds the critical wave number x 
C ' 

the quantity under the ·radical sign in equation ( I 3) becomes negar . . . . IVe. 
Thus when x < Xe the motion 1s apenod1cally damped with d . amping 
co-efficients 

- R (Y )=(1 +P) (I +x2) ± { (1 - P)2 (I +x2)2 - Qx2 }t (19) 

The foregoing discussion of the behaviour of the roots of the 
equation ( 12) is illustrated by figures I, 2 and 3. 
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Waves in an Ideal Conductor in the presence of Buoyancy Forces : 

This is the case when P = 0, so that the equation ( I) simplifies to 

4Gx2 

y2+2y(l+x2) + Qx2- - l+x2 

The solution of which-is 

0 

{ 
4 Gx

2 }½ Y=-(l+x2)± (l+x2)-Qx2+ l+xz 

Unstable Stratification :-

(20) 

(21) 

When fJ>O, G>O and according to equation (21) when x>x0 , 

x 0 being the real root of the equation 

{ 
4G Q} _ O 

1 +xa2 - - (22) 

The value of y correspounding to the upper sign is real and positive. 
The equilibrium in these circumstances is unstable as the disturbance 
grows ( aperiodically ) with time. 

When x>x0 , y no longer has a pos1t1ve value, so that over 
this wave number range no amplified motion is possible. The 
mathematically stable modes of this case of unstable stratification are 
of no physical interest, hence we conclude this case here. 

Stable Stratification : -

When f:J<O, G<o and by equation (21) y never bas a pos1t1ve 
real part, so that the equilibrium is stable. Whether the equilibrium 
is restored periodically or aperiodically depends on the sign of the 
quantity under the radical sign. In order to discuss the conditions 
under which one or the other of these types of flow arises, it will be 
convenient to introduce the quantity 

z- x2 + 4G1x2 (23) 
-(I +x2 ) 2 Q (I+x1) 3 

where G1 = - G, G
1 

being positive in all the following discm,sions. 
It follows from equation (21) that the motion is periodically or 
aperiodically damped according as 

I < Q Z (24) > 
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In figure (4) Z is plotted as a function of x for several values 
of (G1/Q). According to the criterion (24) we only have oscillattons 
at those values of x for which a line dtawn parallel to the x axis at 

a distance ~ above it lies below the curve Z, otherwise th~ equili­

brium is restored aperipdically. It is easily seen from the figure (4) 

for all values of flu z rises from x=O until it reaches 

- 4G1 (' I 6G1
2 4G1 1 )* --Q ± -w-+Q+ 

z -max - --:-( -4-,-G---) -,-(-c-;:16G=--;;:2----c-c4G=--)-.-½ -
I - _ .-! -t- - 1

- + --1 + 1 G - Q2 Q 

r 
I-i l 

L 

l 
I 
?" (25) 

J 
and 

(26) 

- from this point on z falls monotonically with z, the curve approaching 
the x axis osymptolically. 

u , 
It remains now to specify the properties of the motion. In the 

case of aperiodic damping there are two damping co-efficients (see 
equation 21) 

-y=(l +x2)+{ (I +x2)2 - ( Q + 14Z~2) x2}1 (27) 

In the case of oscillatory motion there is only one damping 
coefficient 

-R(y) = (l+x2
) (28) 

the angular frequency of the oscillation 

&( Y) = -t- { Qx2 + 4G1x2 - (l +x2)2·}i 
d . l +x2 (29) 

The corrosponding wave and group velocities V w & Vg satisfies 
the equations 

& 

v2w=--= J_ d_ ( ~l'--=-={ Q+ 4'i', - (_!__-1:-x_2_ )2} x- I +x~ X (30) 
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and 

[ 

IX & ]
2 

V/= IXXd(y) (31) 

These equations are illustrated by figures 5 and 6. 
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A VARIATIONAL PRINCIPLE FOR A VISCOUS 
COMPRESSIBLE FLUID WITH A PREVELENT 

MAGNETIC FIELD 
s. R. SHARMA AND J. M. GANDHJ 

A variational principle for treating the stability of viscous 
compressible fluid with a prevelent magnetic field is discussed. It is 
shown that the self-adjoint character of the problem provides the 
basis for a var~_ational treatrr-ent of the problem. A necessary and 
sufficient condition of stability is also derived. 

INTRODUCTION 

Variational principles charactering the stability of hydromagne­
tic systems have been discussed by various authors 1 - 4• The purpose 
of the present paper is to give a most general variational principle 
for a hydromagnetic system where the electrically conducting fluid 
is assumed to be viscous and compressible. (Separale variational 
principles }~r the compressible but non viscous fluid and for in­
compressible but viscous fluid were discussed by Cbandrasekbar5.) 

It is shown that the problem possesses a self adjoint character and 
the system forms the basic of a variational treatment of the problem. 
A condition for the stability of the hydromagnetic system is also 
derived. 

Let us consider a viscous compressible and infinitely conduc­
ting fluid occupying a volume V enclosed in a surface S which is 
surrounded by vacuum. Let us suppose that in equilibrium a -magnetic field H and material pressure p prevailes. In equilibrium, 
inside the fluid we have 

where R is the total scalar psessure, 

(2) 
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On the bounding surface normal stress must be continuous 
hence 

(3) 

.. 
Further since we have. supposed that the system is surrounded 

by vacuum, the external magnetic field must be curl free. 

-+ 
Curl nex = o (4) 

further we must have everywhere on the bounding surface 

-+-+ 
H. ds = <• (5) 

su that the magnetic lines of force lie on the surface and this is a 
necessary condition if infinite accelerations are not to arise on the 
surface. 

Now we shall consider the perturbed state of the system. The 
equations governing the first order perturbations of the initial state 
ca'n be written as 

ou; cJw ; I I (I H h H 
P + - 1i 1· + 1' i ) at= - cJX; 4;; 

oh; _ a (H· u; _ uj H; ) 
andTt-~ 1 

J 

(6) 

(7) 

where u; and h; denote the perturbed velodty and magnetic fields, 

p is the density of the medium, and 

(8) 

with 

( 
oU; cJUj ) 2 oUk 

Pij = µ oxj + ox; - 3 oxk B;j (9) 

in which µ. is the coefficient of viscosity of the fluid, 

We now introduce a displacement 
the velocity field by 

~ which is connected with 

a~, 
U; = ar {10) 
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Substitution of (10) in (7) immediately yields 

0 . 
h; = (TX; (Hj 1;1 - l;j H; ) (11) 

As usual, we consider the Perturbation quantities having 

exponential time dependence, ei at , then the perturbed equation 
of motion gives, 

ow; . I o 
- a 2 P ~; = - ~ + -

4 
-- (Hj h; + hi H; ) (12) 

uX1 ;; oXj 

The perturbed fields outside V must satisfy the relations 

Curl hex= o - (13) 

Curl Eex = _ i <T hex (14) 

On the displaced boundary S + r,S the conditions which must be 
satisfied are (5 l 

Ni 6 (P;j) = o (IS) 

- -N • H = o (16) 

- II - - -... ➔ -- -N X 6 (E) = (Nu) 6 H = i <T (N 1;) !::,, H (17) 

-where 6 (/) represents the jump in the quantity f on S + r,S and N -is the outward drawn normal to this surface. In (15)-(17) H stands 
for the total magnetic field, the perturbed plus unperturbed and Eq. 
( 17) results from the relation 

- - -E+uxH=o (18) 

Equations ( I 2) and ( 14) constitute a characteristic value prob­
lem for cr2 with the _boundary conditions expressed by means of 
equations (15) to (17). 

Consider equation (12) belonging to er{),.) multiplied (12) by 

1;(µ) belonging to defferent characteristic value a-(P.), ,md integrate 
over the volume V, eq. (12) becomes 
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ah~A) H 
_!_f Hj , •--'- F.Y·>dv+-1 f h~).)~~ 'f.~µ.)dv: · (19) 
4,,- V axj I . . 4rc V J axj I 

Integrating the second term in eq. ( 19) by parts, we have 

(,,) 

- c/Y)p Ip 'f.~A) 'f.~A) dV = -f 'iJwij 'f.~A) dV -
V I I V 'iJXj I 

a{A) · H 

I ( H- 1/'•) _ i _ _ 1/A) !_j_ 'f.~µ.)) dV. (20) 
V I I 'iJXj J 'iJXj I 

substituting the value of from eq. ( 11) after a little simplification and 
making use of eq. (I) we get 

(,\) 

H- 'f.~µ.) a'f.k aH; ) dV. 
l I oXk oXj 

(21) 

Now consider the integral 

wa~~) 

f IJ 'f.<,.µ.) dV = - f - ~ 
J • s 

"'~~) l,.µ.) dSj + 
I} 

r,:(µ) 

f 
(,\) 0'->; 

w . • - -dV. 
'f I J oXj 

(22) 

We now expand eq. (14), regarding the continuity of normal 
stress tensor, expressing it in the surface integral. 
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H 
ex 1 ex, ).. - >-

[ 
(,\)] k '

1
k (- )) c-:,. ] w(iiJ s = -.-· 4;-- N ~(), N grad 6.s (Pij) (23) 

where 6.s (/) denotes the jump a quantity f experiences on s. 
Substituting (23) in_ the first integral on the right hand side of (22), 
and using the relation (cf. eq. 17) 

· ; X £<•0 ,J.t> = io-(µ)( -; ~ (µ)) Hex (24) 

we get 

-J s w;/'\) C: (µ) dsi = f ( N. ~ (),)) ( -;_ C: (J.t)) [-; grad 6.s (Pu)] 

dr - __ _! __ ·· 1• h (ex,,\) ( N x E(ex,J.t)) ds 
' . (/t) . 

4ii l IT • 

(25) 

Now the second integral on the right hand side of eq. (25) can be 
changed to volume integral exterior to 'v by Gauss's theorem; 

- ·- _ 1(/l) f sh(ex,i.)_ ( -;x £(ex.it)) ds 
4iilt, • 

,_,, 1 J -.. d .'/1- (ex,),) E (ex,µ) 
7 . (/l) s "'tJk s, J k 

4ii I (i 

- 1 ( i 1/\) curl E(!t) t!v 

4 
. /t) 1 1/ ex 

ii I (1 • 

_ _ I_ i 1,. (),) 1, .Ut) dv. 
4ii .I Vex I I 

(26) 

Hence 

-I w;j (,\) ~?t) dsi ,_, - Is ( N. ~(i.)) ( N. ~(/t)) 

[ ] 
I J. (It) (i,) 

N. grad 6.s (P,1 ) ds - 4;;- vex h; h; dv. (27) 

Now consider the second integral of (22). 

f .. (),L~C:;<1-tj d = J " (,.) ( Hk hk (,\) ) oVit) 
w,1 oX· V (op + 4 ------ dv-

v 1 V ii oX j 

I p ,_(,\) ~~~~~dv 
I} OX. 

J 

(28) 
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Let us assume that the variation in pressure and density take 
place adiabatically as we follow the fluid element. This amounts to 
the equation for perturbed state 

a oTJ rp a op 
-;-t Sp + Uj --;x~- = --p- -;1 S p + Iii (29) 

U UJ U 0~ 

where r is the ratio.of the specifir. heats and p is the unperturbed 
pressure. From the equation of continuity we have 

-a - s P + u- --· ap_ - = - P ~ 
ot 'J clXj c)xj 

using eq. (IO) we get 

op O~k 
S P = - ~k -- - P - - --

axk oXk 

and 

Sp=-~- _ op_ -C2p~ 
'} axj OXk 

where c is the velocity of sc>Und in the fluid 

c2 = __!P_ 
p 

Using (32) we have 

(30) 

(3 I) 

(32) 

(33) 

a~ <14) · a~ (.\) af(!J-) 

f 8/>..) _ _ ;_ dv = - J( ~_(>..) JP + c2 p _ ':__)-
1 

-. dv (34) 
c)Xj 'J c)Xj c)Xk c)X1 

Also we have used eq. (I I) and simplifying 

Hkht1.) a~?> t 2 a~/14
) 

I- .- dv=--f (H) . 4;; ax, 4;; ax, c)Xj 

-:ii: .(11.) -:ii:-('4} -:ii:k(,\) 

I (,\) uc.,1 0 (y2) 1 j• . uc.,1 ~c.,-- E- - - - -- dv+-H1 Hk - - . dv(35) 
v · I oXi ax; 8;; 4;; ax; c)XJ 

Now consider the second intergal on the R.H.S. of eq. (28), using 

eq. (10) it becomes 

-:, ... (ll) 0 r:.<>..> -:ir: .(),) a~l!J-) 

f (,\) u(,1 ( (,\))[J' ( <-,1 u<,J ) d 
p ij ax1 ·d,, =- ia- /! oXj +ax; -ax; V 

-j'2>..(a~/>..)) (a~;~~~)dv (36) 
3 axk ax, 



( 43 ) 

Finally using equations (22), (27), (34), (35) and (36), and after a 
little simplification Vie can write equ. 21 as 

(/,\))2 f !? !;~") !;t) d V = f s ( N.F..'") ) ( N.1;(µ.) ) 

c);~,\) 

+ I r f (. H -:;-x_k'. - ) ( Hi 

[ N grad t::, 5 (P;i >] dS 

aF..~µ) 

ax: ) 4;;. v l_ k u 

( 1.t) (,\) 

f ( . fi2 ) oF..; oF..j I f (,\) he_µ. )dV + C 2p+ - --- --- dV.+- h . 
v 8i7 ax; OXj 1 4;, vex 1 1 

(37) 

we observe that the expression on the right hand side of the equation 
(37) is symmetrical in" and µ and therefore 

J• p !;~,\) 'E.,~µ.) dV = o (A 7 P.) (38) 
V I I 

Hence self adjoint character of the characteristic value problem is 
proved. 

(JJ.) (µ) . ( ) 
If we replace E,i and hi by the complex conJugate ofE, .,\ and 

r 
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Ii~,\) respectively, we obtain. 
I 

o-2 I Fl~l2 dV = r~ (Nll2 
[ N. grad D.s (Pij ) ] dS 

+ - J IH' - + 4 ;; ~,- t; · --- - } dV I f a~ 12 ~ * a2 R 
4- l j ":IX • · · '] ":IX. ":I X. "V L u'J u 1 u 1 

f ( 0 ' / ; 12 ) I O~i 1

2 

1 f 1-12 

+ c-p, - - --- ldV + - vex I h dV 
• 4 ii I ax; 1 . 4;; 

I j" f oH · ( 
+ 2;; V l Hk ax~, Re 

* 

( 
o~k o~i ) } 

- fl. Hk Re -- -- - ·- dV 
J OXj ax; 

* 
a" a~. ] - !_!: ( _:!___ ) - I - dV ( 39) 

3 oXk ox; 

or symbolically we can write 

Ucd 2 1-(icr) ,f,-2.. = 0 

The roots of this equation are 

--- 1 
icr =-! ·/ - ,f,+ / cf,2 

- 4!/ }-
2/ ' , , ) 

(40) 

(41) 

Since I is necessa rily positive, a necesary and sufficient condition for 
stability is that ~1 must be positive, When the system is stable i.e. 
I 1>0, the magnitude of cfi will determine the modes of oscillation of 
the system. 
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A NOTE ON LEXELL'S PROOF OF FERMAT'S 
LAST 'l'HEOREM FOR THE POWER 5. 

J. M. GANDHI, 

Deptt. of Physics, University of Rajasthan, (Jaipur). 

We, in thit note show that Lexell's proof for the impossibility 
of the equation a5 + b5 =c5 [2] is incorrect. Firstly we reproduce 
L.E. Dickson's report (1) Page 732, on Lexell's proof for the impos­
sibility of the above equation. 

"A.J. Lexell considered a5 + b5 =c5
• 

Set x+y=a5, x-y = b5
, then 

lJ 

(x~ -y2 )/4x2 = (z/x)5 ":'==a5 b5
/ c10 

x6 -4xz5=X4 Y2 = 1~-I 

_Since the factors are relatively prime, 

x= p2, x5-4z5=q2, hence 

p1o_q2 = 4rs ss or ps+q_= 2rs 

ps-q=2ss, ps = rs+ss." 

Then we show that the above proof is incorrect. 

Since x+y=a5
, x-y=b5 

2x=as+bs=cs, 

which shows that x is necessarily even. Also it can be easily seen 
that z is even and hence the factors x and x5 -4z5 are not relatively 
prime as was assumed by Lexell. 

Tt is interesting to note that the assumption of the truth of 
Lexell's proof implies the proof of F.L.T. for all primes, for substi­
tute the power 5 by p and all the results will remain as they are, 
except that the prime 5 in all the results will now be replaced by p. 
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However if Lexell's proof can be corrected without changing 
his outlines of the proof, a complete proof of Fermat's Last Theorem 
may probably follow. 
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COMMENT ON LOUI'S S. MANN'S PAPER 

"A REMARK ON F.L.T." 

by 
J.M. GANDHI 

Dept. of Physics, University of Rajasthan, Jaipur (India). 

In this note we show that the results obtained by Mann in his 
paper [ I ] regarding Fermat's Last Theorem, are not correct. 

Consider an +b" =en 

Suppose (I) factors into 

(cn/2 -bn/2 -ap ) (c11/2 +bn/2 -an-p) =O 

Expanding (2) we have 

c" - b" + a" -a"-P (c11/2 -b"/2) 

~~P (cn/2 +bn/2) =0. 

( I ) 

( 2) 

( 3) 

In order that ( I ) and ( 3 ) be identical, we must have ( as is 
argued by Mann ) 

-O n/2 bn/2 - I n/2 +b"/2 _ n p- , C - - , C . -8 
( 4) 

This seems to be incorrect. 

Io general (3) will be identical with (I) when 

p=k, cn/2 -bn/2 =ak, cn/2 +bn/2 =an-k ( 5 ) 

k is any integer. 

Putting p=O . means assuming one impossible ~ t ,ac or of (1), 
since then (I) will read as 

(cn/2 -bn/2 -I) (cn/2 +bn/2 -a" )=o 
and we must have 

cn/2 -bn/2= I 
(6) 
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C n/2 -bn/2 --· l 2 Evidently 1s impossible when n> . 

consider 

Let a =-- u" v" 

Now Mann factorizes ( I 0) as 

(cn/2 -bn/2 _ y" ) (cn/2 +bn/2 _ u" ) =0 

(7) 

Similarly 

( 8 ) 

( 9) 

(10) 

(11) 

This assumption itself is not correct, since the truth of this 

implies that 

cn/2 -bn/2 = v" 

and c
1112 

+b
1112 = V 11 

( 12) 

( 13) 

As discussed by Mann, equation ( 12) and ( 13) lead to impossible 

results when n>2, therefore /I0J cannot be factorized as (11), and 
thus Mann's method of attc1cking Fermat's Last Theorem does not 

succeed. 
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