
SIMPLICITY 

ELLIOTT SOBER 

CLARENDON PRESS · OXFORD 

1975 



Oxford University Press, Ely House, London, WI 
GLASGOW NEW YORK TORONTO MELBOURNE WELLINGTON 

CAPE TOWN IBADAN NAIROBI DAR ES SALAAM LUSAKA ADDIS ABABA 

DELHI BOMBAY CALCUTTA MADRAS KARACHI LAHORE DACCA 

KUALA LUMPUR SINGAPORE HONG KONG TOKYO 

ISBN 0 I 9 824407 X 

© Oxford Universiry Press 1975 

All rights reserved. No part qf this publication may be reproduced, stored in a 
retrieval J)lstem, or transmitted, in a'!)' form or by any means, electronic, 
mechanical, photocopying, recording or otherwise, without the prior permission 

of Oxford Universiry Press 

Printed in Great Britain by 
Butler & Tanner Ltd, Frome and London 



For 
Norma 





Preface 

THE diversity of our intuitions about simplicity is matched 
only by the tenacity with which these intuitions refuse to yield 
to formal characterization. Our intuitions seem unanimous in 
favour of sparse ontologies, smooth curves, homogeneous 
universes, invariant equations, and impoverished assumptions. 
Yet recent theorizing about simplicity presents a veritable 
chaos of opinion. Here one finds arguments that simplicity is 
high probability ,I that .it is low probability,2 and that it is not 
a probability at all.3 Indeed, the complexities of the problem 
of simplicity have led some to question the possibility and the 
fruitfulness of trying to define the notion of simplicity that 
seems to be involved in hypothesis choice.4 

In what follows, I try to show that the simplicity of a hypo­
thesis can be measured by attending to how well it answers 
certain kinds of questions. I claim that the more informative a 
hypothesis is in answering these questions, the simpler it is. The 
informativeness of hypotheses relative to questions is character­
ized by the amount of extra information they need to yield answers. 

I In Scientific Inference, Jeffreys tries to develop a simplicity ordering for differen­
tial equations and then proposes to assimilate this simplicity ordering to an 
ordering in terms of high probability. Quine's 'Simple Theories of a Complex 
World' concurs with certain examples cited by Kemeny in his 'The Use of Simplic­
ity in Induction' which tend to identify the simplicity of a hypothesis with 
its high probability. 

2 Popper's theory of simplicity (see, for example, his Logic qf Scientific Discovery, 
Chap. 7) identifies the simplicity of a hypothesis with its falsifiability as does 
Kemeny's proposal in 'Two Measures of Complexity'. 

3 Goodman's 'Safety, Strength, Simplicity' argues that the notion of simplicity 
involved in hypothesis choice is distinct from both high and low probability. 
Goodman's theory of the simplicity of formal systems (see The Structure qf Appear­
ance, Chap. 3) also is nonprobabilistic. A more recent nonprobabilistic theory is 
presented by Friedman in his 'Empirical Simplicity as Testability'. This theory 
has Popper's Logic qf Scientific Discovery as its point of departure, but offers an 
alternative construal of the idea of the dimension of a predicate. 

4 See, for example, Ackermann's 'Inductive Simplicity' andBunge's'TheWeight 
of Simplicity in the Construction and Assaying of Scientific Theories'. 

Hesse's 'Simplicity' offers a clear survey of recent work on simplicity and its 
limitations. See also the anthology of articles in Foster and Martin (eds.), 
Probability, Confirmation, and Simplicity, which overlaps with the five articles on 
simplicity in Philosophy qf Science, 28(2), 1961. 
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The more additional information a hypothesis needs to answer 
a question, the less informative it is relative to that question. 

The machinery of the theory is developed in Chapter I. In 
Chapter 2, I apply the theory to a host of very general in­
ferential policies that seem to be instances of choosing the 
simpler hypothesis, and I argue that the proposed theory 
mirrors and explicates these intuitions to a significant degree. 
Chapter 3 focuses on the simplicity criterion proposed for 
phonology by Chomsky and Halle and provides further 
applications and explorations of the theory I am defending. In 
Chapter 4, I show how my theory may be applied to perceptual 
judgements as a way of examining the idea that perception is a 
kind oflower-level theorizing. In Chapter 5, I present a way of 
justifying the use of simplicity in hypothesis choice and offer 
some indications of how the proposed theory is to be evaluated. 
Breaking the contents down by chapters in this manner may 
obscure the way different themes tend to recur and interweave. 
For example, the idea of a natural predicate is discussed in 
Chapter I and is further developedlateron, especially in Chapter 
3· The idea of perspicuous notation and representation is intro­
duced in Chapter 2, another example is cited in Chapter 3, and 
it is defined and discussed in Chapter 4· In addition, notions 
of simplicity applying to formal systems, to pictures, and to 
inscriptions are shown to flow from the concept of simplicity 
developed in Chapter I. 

I wish to thank Mary Hesse, who encouraged me to deal with 
the problem of simplicity and advised me on countless versions 
and revisions. I also benefited from conversations with C.J. van 
Rijsbergenand Neil Tennant. Bernard Comrie, Ed Keenan, and 
Alan Sommertein were kind enough to give me detailed criticisms 
of Chapter 3· I am glad to mention a similar debt to Daniel 
Dennett for his suggestions on Chapter 4· Hilary Putnam and 
Roderick Firth also helped me considerably by their careful 
reading of the manuscript. I began this work while supported 
by a University of Pennsylvania Thouron Fellowship for Study 
in the United Kingdom; I made final revisions while holding 
a University of Wisconsin Summer Research Grant. Both of 
these I acknowledge with thanks. 
Madison, Wisconsin E. S. 
August I974 
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I 

Simplicity as Informativeness 

1. I Informativeness 

One of our principal goals in making knowledge claims is to 
render particular experience redundant. By enabling us to 
anticipate the course of our sensations, hypotheses make the 
results of observation less surprising and less informative. It is 
as if the world and our theories about the world were in are­
ciprocal balance: the more the latter tell us, the less informative 
the former is. In this sense, requiring that theories inform us is 
equivalent to requiring that the world be made that much less 
able to tell us anything new.1 On the most elementary level, 
we can imagine asking whether a given object has a certain 
property. If we believe a hypothesis which entails an answer to 
this question, we do not have to go out and look for ourselves 
(or ask someone else, or consult a book, etc.). However, if we 
do not believe any such hypothesis, then we must consult with 
experience to answer our question. 

A crucial feature of this relationship between knowledge 
claims and particular experience is captured in the relationship 
between general hypotheses and questions about the properties 
of particular individuals. Suppose that we believe the hypo­
thesis 

(r) (x) (Fx => Gx) .2 

Suppose further that we want to know whether some arbitrary 

1 Of course, we want our knowledge claims to be true as well as informative 
How these two desiderata are related will be discussed in Section I .g. 

2 In the interest of smooth exposition, I will talk about the informativeness of 
hypotheses relative to questions when, strictly speaking, I should talk about the 
informativeness of hypotheses of such-and-such a form relative to questions of 
such-and-such a form. Also, as in statement (I), where distinct predicate letters 
are used, they are intended to be given distinct predicates in any interpretation. 
To make this work less unreadable than it otherwise might have been, I omit 
quotation marks wherever the context makes it clear whether a term is used or 
mentioned. 
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individual a has the property of G-hood. We can represent this 
question as a set, each of whose members is an alternative 
answer to the question, 

(2)' ( Ga, ""'Ga). a 

Notice that if we believe (I), we can use it to help us answer (2). 
One way of doing this is to discover the truth of 

(3) Fa. 

Ifwe believe (3), we may conjoin it with (I) to yield an answer 
to question (2): 

[Fa & (x) (Fx :::> Gx)] -+ Ga.4 

On the other hand, if we believe the hypothesis 

it would enable us to answer question (2) without any outside 
help, because 

(x) ( .-..Gx) -+ .-..Ga. 

From this, we can conclude that (4) is more informative than 
(I) in answering question (2), since the former requires less 
extra information than the latter to imply an answer.5 

Hypotheses expressed in the form of mathematical equations 
also display this property. Suppose we believe that 

(s) y =f(x) 

and want to use it to help us answer the question 

3 We will follow this notational convention wherever convenient. It will be 
discussed in Section r ·3· 

4 We will say that A-+ B just in case 'A ::> B' is valid. 'A-+ B' says that A 
logically implies B, following Quine, Methods of Logic, pp. 39-44. 

5 If general hypotheses always required additional information to imply 
answers to questions about the properties of individuals, then we would have a 
quite general proof of the so-called 'Duhemian thesis'. See Duhem, The Aim and 
Structure of Physical Theory, pp. r8o-220. For Quine's more general formulation, see 
'Two Dogmas of Empiricism' in From a Logical Point of View, pp. 40-6. But, in fact, 
such procedures as universal instantiation (in which a perfectly general hypothesis 
implies a particular one without outside help) provide counterexamples. Suffice it 
to say that in this world, the nontrivial general laws we believe and the questions 
that we want answered are such that the general laws require extra information 
to answer the questions. Examples like universal instantiation show that the truth 
of the Duhemian thesis is not due to purely formal considerations but is at least in 
part an artefact of the relatively fine grain of our questions and the relatively 
coarse grain of our hypotheses. 
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(6) What is the value of the variable y in situation s? 

If we believe a sentence of the form 

(7) Xa=C, 

where c is a constant whose value is known, we could conjoin 
(7) to (5) to imply an answer to question (6). On the other 
hand, if we want to use 

(8) y =f'(x, w) 

to answer question (6), it seems that we need in addition a 
sentence of the form 

(g) (xa =c) & (wa = c'), 
where c' is also a constant whose value is known. Sentence (g), 
when conjoined with (8), also implies an answer to question (6). 
Thus, we would say again that hypothesis (5) is more informa­
tive than hypothesis (8) relative to question (6), because (5) 
requires less extra information than (8) to imply an answer. 

Clearly, there is an inverse relationship between the in­
formativeness of a hypothesis H (relative to a question Q) and 
the amount of extra information that H requires to answer Q. 
That is, the more informative a hypothesis is, the less extra 
information it needs to imply an answer. This inverse relation­
ship recapitulates the inverse relationship between our know­
ledge claims and our experience: The more informative our 
knowledge claims are about the properties of the individuals in 
our environment, the less we need to find out about the special 
details of an arbitrary individual before we can say what its 
properties are. Thus, the informativeness of a hypothesis mani­
fests the redundancy of the world it describes. 

My theory of simplicity requires that we formalize this 
notion of a hypothesis needing extra information to answer a 
question. Some constituents of the explication are already 
clear. For example, we will say that a hypothesis H answers a 
question Q with the help of extra information I only if H & I 
implies an answer to Q. Furthermore, the explication must 
mirror the fact that there are two extremes on the scale of 
informativeness. On the one hand, some hypotheses and some 
questions are mutually irrelevant, while on the other hand, 
some hypotheses answer some questions without any help at 
all from outside information. But other details remain to be 
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examined. When is a hypothesis relevant to a question? What 
contribution does a hypothesis make towards answering a 
question? What extra information does a hypothesis require to 
yield an answer? Finally, how are we to compare the extra 
information needed by one hypothesis to answer a question 
with the extra information needed by another hypothesis? 
Solving these problems will put us well on the way to under­
standing this notion of informativeness. 

I. 2 Relevance 

Let us first deal with the problem of when a hypothesis is 
irrelevant to a question and use the classical law of gravitation 
as an example: 

( IO) F = m1m2. 
r2 

If someone wants to know the value of any variable in ( IO) for 
a particular situation, all he need do is find out the values of 
the rest of the variables and plug them into the equation. 

Now consider the question 

(I I) What is the temperature of a in situation s? 

Could (I o) help us here? In one very clear sense, the answer is 
no. 'Temperature' is not a variable in the equation; hence, the 
values of other variables cannot be plugged in to yield a value 
of the temperature of an object. From this point of view, 
whether equation ( 10) can answer a question about the 
temperature of an object is a purely formal issue, to be decided 
by attending to the variables that essentially occur in it.6 

In another sense, it is conceivable that ( 10), together with 
other information, might help us to answer the question about 
temperature. Suppose that the object in question happens to 
be a space ship that is shooting away from the earth and that 
the interior of the ship changes temperature as a function of the 
change in gravitational force between space ship and earth. 
Given this situation, we can easily imagine how (I o) could 
figure into a calculation of the temperature of the object at a 
given time. Regarded in this way, whether a hypothesis is 

6 A term occurs essentially in a sentence S if and only if it occurs in every 
sentence that is logically equivalent to S. 
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relevant to a question can be decided only by attending to the 
current status of human knowledge. Whether (10) can help us 
calculate the temperature of an object (or the gross national 
product of Yugoslavia) is wholly an epistemic question, not to 
be answered by examining the logical form of question and 
hypothesis alone. 

The relation of formal relevance seems fairly clear-cut. 
Where Sis the set of essentially occurring variables in an equa­
tion H and where question Q. has the form 'What is the value 
of the variable v in situation a?', H is formally relevant to Q. 
just in case v E S. In the case of logical formulae, if Pis the set 
of predicates that essentially occur in a hypothesis and Q.is the 
set of answer predicates, then the hypothesis is relevant to the 
question just in case P and Q. have a common member. One 
result of this definition is that logical truths and falsehoods are 
irrelevant to every question because no predicate essentially 
occurs in them. 

A definition of epistemic relevance is more difficult but need 
not detain us here. From the point of view of developing a 
theory of simplicity, formal relevance suffices, since we will find 
that our judgements of simplicity can be explained by con­
sidering the purely formal relation between hypotheses and 
questions without having to invoke such difficult notions as 
epistemic relevance. Moreover, epistemic relevance can be 
defined in terms of our notion of formal relevance (see Section 
1 .6), once we have characterized the sort of question-relative 
informativeness at issue here. 

In what follows, our use of formal relevance instead of 
epistemic relevance occasionally may seem to lead to counter­
intuitive consequences. This apparent counterintuitiveness will 
usually be due to the existence of suppressed premisses. When 
a hypothesis seems to be relevant to a question and yet turns 
out to be formally irrelevant, this is often because we are tacitly 
assuming the truth of yet another hypothesis, which, if con­
joined to the one being considered, would render the entire 
conjunction formally relevant to the question. Thus, in our 
previous example, the classical law of gravitation seems to 
be relevant to a question about the temperature of an object, 
and yet the law is formally irrelevant to that question. The 
paradox can be resolved if we conjoin to the law the assumed 
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equation expressing the relation of temperature to gravita­
tional force. The conjunction, which more fully represents the 
state of our beliefs, is itself formally relevant to the question. 

I ·3 Questions 

In the preceding pages, I have taken the liberty of represent­
ing questions as sets whose members are the alternative answers 
that may be given to the questions themselves. In the case of 
the simple yes-or-no answer, this technique seems unobjection­
able. We represent 'Is P true?' as '(P, ,....,p)'. But can this 
procedure be defended in general? Let us consider questions 
with more than two alternative answers, such as 

(I2) What is the colour of individual a? 
(I 3) What is the position of individual a? 
( 14) What is the relative frequency of 

property F in the set of individuals s? 

The alternative answers to questions like these may often be 
formulated as sets of mutually exclusive and collectively 
exhaustive alternatives. Thus, according to our policy, we 
might represent question (I 2) as 

(I 5) (Red a, Blue a, Green a, ... ) . 7 

Admittedly, there is no one privileged disjunction of alternative 
answers; there are many ways of slicing the cake. Which set is 
chosen as the 'right' one is dictated largely by the classification 
system of current theory and the demands of the problem at 
hand. But given any question like the ones mentioned above, 
the circumstances often do dictate what the alternative answers 
are. 

This characterization of alternative answers seems to run 
into problems when the question involves an infinity of answers, 
as in (I3) and (I4). When the number of answers is denumer­
able, the problem is just that we cannot write them all down; 
when the number of answers is indenumerable, the problem is 
that there are more answers than there are expressions in our 
language to express them with. In both cases we will resort to 
the expedient of identifying a question with its (single) answer 
schema. Thus, the question 'What is the value of variable v in 

7 The alternative answers are collectively exhaustive in the sense that any 
coloured object will fall under one of these answer predicates. 
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situation s?' will be represented as 'v8 = k', where 'k' is a 
dummy letter. Every alternative answer will have this form: 
they differ only with respect to the constant that replaces 'k'. 

Our criterion for individuating questions is neither linguistic 
nor typographic. For us, two questions are identical just in 
case the sets of their alternative answers are identical. In this 
sense, a question is an epistemic occasion containing a request 
(implicit or explicit) for information. Construed in this way, 
the alternative answers to a question are simply the different 
possible satisfactory responses. Another way in which our 
notion of a question departs from ordinary usage is that our 
questions are always about arbitrary individuals. Grammatical 
questions in natural languages typically contain information 
about the subject of inquiry as well as requests for further 
information. In our system, however, a question informally 
posed about 'this electron' would be represented as a question 
about some arbitrary individual a. Such a policy enables us to 
isolate more fully the requests for information in the question 
and to isolate the information supplied by the grammatical 
question in the category of extra information. By doing this, 
we ensure that all of the information used to answer a question 
is above board and open to inspection. 

Our notion of a question is peculiar in still another way. The 
questions we have singled out to talk about seem to be alto­
gether puerile and scientifically uninteresting. Do physicists 
spend time worrying about questions like 'What colour is this 
object?' As mentioned at the outset, one of our goals in formu­
lating theories is to render particular experience redundant. 
The ability of hypotheses to do this is revealed by their ability 
to inform us about the properties of the individuals in our 
universe. So the kind of question we have fixed upon is not an 
arbitrary one among many; how our knowledge claims succeed 
in answering questions of this sort is a crucial indication of their 
ability to anticipate the course of our experience. 

I. 4 The Contribution 

We can now turn to the idea of a hypothesis making a 
contribution to answering a question. We saw earlier that a uni­
versal generalization contributes a certain amount of informa­
tion about the properties of an individual and that for the 
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hypothesis to answer the question considered, some extra in­
formation must be added. One might say that answering a 
question involves traversing a certain logical distance. The 
universal generalization covers part of this distance; then extra 
information is imported to cover the rest. 

As a first step towards representing the idea of the contribu­
tion a hypothesis makes to answering a question, we can define 
the appropriate instantiation of a hypothesis H (assumed to be in 
prenex normal form) with respect to a question Q as follows. 
Suppose that question Q has the form 

[P1(a1a2 ... an), P2(a1a2 ... an), ... , Pm(a1a2 . .. an)], 
and that His formally relevant to Q in that H has the form 

... [ ... Ph(X1X2 ... Xn) ... ], 
where I < h < m and each Xi (I < i < n) is bound to a 
quantifier.s Now uniformly instantiate with at each variable 
Xi (I < i < n) that is bound to a universal quantifier, and 
uniformly instantiate with qi each such variable bound to an 
existential quantifier. For any variable Xk (k > n) that occurs 
in H, proceed in similar fashion with instantiations ak or qk as 
required. The resulting sentence is the instantiation of H with 
respect to Q. Call this H+. Note that H+ is nothing but an 
instantiation of H with the choice of replacing constants 
geared to the ones that occur in a particular question. Table I 

clarifies this. 
TABLE 1 : Constructing the appropriate instantiation of a hypothesis 

H Q H+ 

(x) (Fx) (Fa, ,._,Fa) Fa 
(3x)(Gx ::::> Fx) (Fa, ,._,Fa) Gq => Fq 
(x) (3y) (Hxy ::::> Fx) (Fa, ,._,Fa) Haq ::::> Fa 
(3x)(y)(Hxy ::::> Fx) (Fa, ,._,Fa) Hqb => Fq 
(x) (3y) (Hxy) (Hab, ,.._,Hab) Haq 
(3y)(x)(Hxy) (Hab, ,.._,Hab) Haq 

The last two hypotheses show that forming H+ obliterates 
differences between hypotheses due to the order of quantifiers. 

8 We are making two assumptions here regarding the relationship of Hand Q: 
First, all occurrences of answer predicates in Hare attached to the same series of 
variables. Second, where Pn(ataz . .• an) is an answer predicate and Pn(X!X2 ••• Xn) 
essentially occurs in H, a; = a1c iff x; = x1c (where 1 < j, k < n). These two assump­
tions will not affect any of the applications to be made in what follows. However, 
for the sake of generality, these two assumptions will be removed in the Appendix. 
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The consequences of this for our theory of simplicity will be 
discussed in Section 2.7. 

It is important to note that the rule for forming H+ does not 
guarantee that all of the information contained in H+ con­
tributes to answering the question; some parts of the instantia­
tion may be irrelevant. Thus, 

(x) (Fx => Gx) 
and (x)[(Fx => Gx) & Px] 
do not have the same instantiations relative to the question 
(Ga, ,.....,Ga) even though they make the same contribution 
towards answering it. By combining our notions of formal 
relevance and appropriate instantiation H+, we can mirror 
this fact and complete our definition of the idea ofthe contribu­
tion a hypothesis makes to a question. One merely writes H+ 
in a shortest conjunctive normal form and crosses out each 
clause that is neither formally relevant to Q nor formally 
relevant to a clause that is formally relevant to Q (nor formally 
relevant to a clause that is formally relevant to a clause that is 
formally relevant to Q, nor ... ). What remains is the contri­
bution H*. 9 Notice that by this criterion the contribution of 
both the above hypotheses is 'Fa => Ga', although that of 
'(x)[(Px => Fx) & (Fx => Gx)]' is '(Pa =>Fa) & (Fa=> Ga)'. 

The same procedure suffices for those questions represented 
by an answer schema (e.g., quantitative questions) rather than 
by the set of alternative answers themselves. One merely treats 
dummy constants in the answer schema as if they were real 
constants. Thus, 'What is the successor of a?' would be repre­
sented by the answer schema 

s(a) = k, 
and the appropriate instantiation (and contribution) of the 
equation 

would be 

(x)(y) [s(x) = y iffy = x + 1] 
s(a) = k iff k = a + 1. 

In summary, then, H* is the contribution of H to answering 
Q, and is formed by appropriately instantiating H and then 

9 See Quine's 'On Cores and Prime lmplicants of Truth Functions' for a 
discussion of how one derives a shortest disjunctive normal form expression for a 
schema. The dual of this method suffices for deriving a shortest conjunctive 
normal form expression, as required above. 
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eliminating irrelevant clauses from a shortest conjunctive 
normal form representation of the instantiation. Intuitively, 
H* contains all the data that H provides about the individuals 
and properties about which the question inquires. 

I.5 Minimum Extra lriformation (MEl) 

We are now in a position to formalize the idea that a hypo­
thesis answers a question with the help of extra information. 
Given that the contribution of a hypothesis towards answering 
a question is the distance the hypothesis traverses in answering 
the question, we now must say how one defines the minimum 
amount of extra information that suffices to traverse the 
remaining distance. 

Let H be formally relevant to Q, and let H* be the contribu­
tion that H makes to answering Q. We will say that an answer 
essentially occurs in H* just when its answer predicate so 
occurs. Thus, the answer 'Fa' essentially occurs in 'Fa', in 'Fq', 
and in '""'Fa'. The rule for generating the minimum extra 
information (MEl) set for H* relative to Qsimply is this: 

For every Ai E Q that essentially occurs in H*, such that 
(H* ::::J Ai) <f-+ Ai, form the conditional H* ::::J A,. The set of 
all these conditionals is the MEl set,lO 

Let us see how this rule fits our preformal intuitions. 
It follows from the rule that there are pairs ofhypotheses and 

questions for which no MEl set is defined. A special instance of 
this is truth-functional tautologies and contradictions, which 
are not defined relative to any question at all. Also, if H can 
answer Q without outside help, the MEl of H relative to Q is 
a tautology. We could show that our rule satisfies this self­
sufficiency requirement by showing that, if H implies an answer 
Ai, so does H*. The argument procedes more easily when the 
restrictions of footnote 8 are lifted; in the Appendix, it will be 
argued that the fully general characterization of our rule 
satisfies the self-sufficiency requirement. Our rule also fulfils 
the requirement that the conjunction of each parcel of extra 
information with the hypothesis itself should imply an answer 

10 We will represent the MEl set as an unordered list like this: (~) so as not 

to confuse the MEl set with the question set. 
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to the question. Consider the MEl set of any hypothesis H 
relative to any question Q.. If H and Q. are irrelevant to each 
other, then the MEl set is not defined. But suppose that Hand 
Q. are mutually relevant. In this case, every member of the 
MEl set has the form H* :::> Ai, and for every I which is a 
member of the MEl set, (I & H) ___,. Ai, since [(H* :::> At) & H] 
___,.Ai. 

It also is important that the MEl set be the weakest parcel of 
extra information that suffices for the contribution H* to yield 
an answer. An indirect proof that our rule fulfils this minimal­
ness condition runs as follows. For any hypothesis H that is 
relevant to an answer Ai in question Q., our rule specifies that 
the MEl set is the conditional H* :::> At. Call this Ir. So 

(16) Ir ~ (H* :::> Ai)· 

Now suppose that there is a sentence Iw which is logically 
weaker than Ir and yet suffices for H* to imply Ai. If Iw is 
weaker than Ir, we know that 

(17) "'(Iw ---J>- Ir). 
(16) and (17) together imply that 
(18) "'[Iw ___,. (H* :::> Ai)]. 
Furthermore, if Iw suffices for H* to yield At, then 
( 19) (Iw & H*) ___,. Ai, 
and (19) is equivalent to 
(2o) Iw ___,. (H* :::> Ai)· 
But (20) is incompatible with (18). Given the truth of (16), it 
follows that (17) and (19) cannot be true together, so there is 
no sentence Iw that satisfies them both. This shows that for 
every answer Ai such that His relevant to it, the extra informa­
tion constructed according to our rule satisfies the minimalness 
condition stipulated previously. 

Our rule also requires that the conditional H* :::> Ai not be 
equivalent to the answer A1 itself. This ensures that the hypo­
thesis not be useless relative to the answer, since if Ai were in 
fact equivalent to its own MEl, we would have to know that 
Ai is correct in order to use H to yield the answer Ai. Uselessness 
and irrelevance are twin concepts, and by excluding them both 
our rule ensures that an MEl is constructed for all and only the 
answers that the hypothesis can genuinely help to yield. 



TABLE 2 : Examples of MEl construction 

H H* MEl 

(21) (x)(Fx) Fa (Fa v ,._,Fa) 
(22) (x)(Fx & Gx) Fa (Fa v ,._,Fa) 

(23) (x)(Fx v ,.._,Fx) ND ND 
(24) (x) (Px) ND ND 
(25) (x)(Gx::J Fx) Ga ::J Fa (Ga v Fa) 
(26) (x)[(Fx & Gx) v (,.._,Fx & ,.._,Gx)] (Fa & Ga) v (,_,Fa & ,.._,Ga) (Fa v Ga ) 

,_,Fa v ,..._,Ga 

(27) (3x)(Fx) Fq (Fq::J Fa ) 
Fq ::J ,_,Fa 

(28) (x) (3y) (Hxy ::J Fy) Hbq ::J Fq ( Hbq ::J Fq) ::J Fa ) 
Hbq ::J Fq) ::J ,._,Fa 

(29) (x)[(Gx & Hx) ::J ,.._,Fx] (Ga & Ha) ::J ,_,Fa ((Ga & Ha) v ,._,Fa) 
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Table 2 contains examples of how the rule applies. Under H 
are listed the hypotheses to be considered, under H* are the 
contributions these hypotheses make, and under MEl are the 
MEl sets of the hypotheses. 'ND' means not defined. The 
question considered is (Fa, .....,Fa). 

Hypotheses (21) and (22) are both self-sufficient with respect 
to the question. Neither requires any additional information 
to yield an answer; their MEl sets have a tautology as their 
only member.11 Hypotheses (23) and (24) are each formally 
irrelevant to the question, so their MEl sets are not defined. 
Hypotheses (25) and (26) both contribute to answering the 
question, but each needs some additional information to do 
so. We will call such hypotheses relevant non-self-sufficient hypo­
theses. For (25) to yield an answer, Ga v Fa must be conjoined 
with it. For (26) to answer the question, either Fa v Ga or 
,....,Fa v ,....,ca must be conjoined with it. Hypotheses (27) to (29) 
also are relevant and non-self-sufficient and, as before, each 
will yield an answer when a member of its MEl set is conjoined. 

Our rules for deriving the MEl of a hypothesis relative to a 
question apply equally to mathematical equations. To show 
how this may be done, we will call on the classical law of 
gravitation as an example. We first must define the following 
three functions, each taking physical objects (at a given time) 
as arguments and real numbers as values. 

F(a, b) the gravitational force between a and b. 
M(a) the mass of a. 
R(a, b) the distance between a and b. 

We will also use two styles ofvariables: 'cf/ and 'if/ range over 
the physical objects, and 'w', 'x', 'y', and 'z' range over the 
real numbers. Given this, the classical law of gravitation is 

(30) (</>)(ifl)(w)(x)(y)(z){[M(cp) = x & M(ifl) =y 
& R(cp, ifl) = z & w = xy/z2] ::> [F(cp, ifl) = w]}. 

11 A hypothesis that is self-sufficient with respect to a given question will require 
no extra information to answer that question only if we assume that the use of 
logical principles of inference does not count as using additional information. We 
will make this harmless assumption; it is harmless because competing hypotheses 
may be thought of as formulated within a common background language and 
logic. Thus, we allow competing hypotheses to help themselves gratis to this shared 
logic, and in doing so we are not prejudicing our assessment of their relative 
informativeness. Viewing logical truths as uninformative is in keeping with 
Bar-Hillel and Carnap's 'An Outline of a Theory of Semantic Information'. 
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(30) says: Take any pair of physical objects 4> and ifi and any 
triplet of real numbers x,y, and.<;. Then the gravitational force 
between cp and ifi will equal xy / z2 if the mass of cp equals x, the 
mass of!Ji equalsy, and the distance between cp and ifi equals ,<:.12 

Now consider (30) relative to the question 

(3 I) What is the gravitational force between bodies a and 
b in situation s? 

Question (3 I) is represented by the answer schema 

(32) F(a, b) =h. 
To compute the MEl that hypothesis (30) needs to answer 
question (32), we proceed as before. First, we construct H*, 
which is the instantiation of (30) formed by replacing all 
occurrences of '4>' with 'a', 'ifi' with 'b', 'w' with 'h', 'x' with 'i', 
Y with 'J', and 'z' with 'k'. This instantiation is 

(33) [M(a) = i & M(b) = j & R(a, b) = k & h = U/k2] 

~ [F(a, b) = h]. 
Now with (33) as our H* and (32) as our Ai, we construct the 
conditional H* ~ Ai, which is equivalent to the disjunction 

(34) [M(a) = i & M(b) = j & R(a, b) = k & h = U/k2] 

v [F(a, b) = h]. 
(34) is the MEl for hypothesis (30) to answer question (3 I). 

Suppose that all of the dummy letters in (34) were replaced 
with the appropriate constants. Then the left-hand disjunct 
gives the values of the masses of bodies a and b and the distance 
between them; and the right-hand disjunct gives the value of 
the gravitational force between a and b. Roughly speaking, 
then, if you want to use the classical law of gravitation to tell 
you the value of the gravitational force between two bodies, 
you must discover the truth of a disjunction: the gravitational 
force itself, or the relevant masses and distance. 

We may generalize this result by considering any hypothesis 
in the form of the equation 

(35) Y = f (XI, Xz, • • ., Xn) • 
For equation (35) to answer the question 

12 To make the exposition easier, we will not include the gravitational constant 
G in our representation of the classical law of gravitation. This omission will not 
affect the outcome of our discussion, however. 
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(36) What is the value ofy in situations?, 

we must conjoin to (35) a disjunction A v B, where A gives the 
value of y in situation s and B gives the values of the variables 
Xl, x2, ... , Xn in situation s. 

It is not immediately obvious that the procedure just fol­
lowed in the case of the classical law of gravitation will work 
in the more general case of a hypothesis of the form given in 
(35) answering a question like (36). The reason is that in (35) 
the structure of the hypothesis has not been spelled out. In 
spite of this, the applicability of our method to the classical law 
of gravitation makes reasonable the supposition that once the 
structure of an equation is spelled out, the MEl may be calcu­
lated in the way indicated. 

1.6 Comparing MEl Sets 

If a hypothesis His more informative than a hypothesis H' 
in answering a question Q., then H requires less extra informa­
tion than H' to answer Q.; so the MEl set of H will be smaller 
in contentl3 than the MEl set of H'. In this section, we will 
systematically investigate the relationship between the relative 
informativeness of pairs of hypotheses and the relative content 
of their MEl sets. Several obstacles lie in the way of this task. 
First of all, comparing the content of the MEl sets ofhypotheses 
is not merely a question of ordering them in terms of logical 
strength. A quick look down the list of hypotheses (21) to (29) 
will show that some MEis do not imply some others. Secondly, 
some MEl sets contain more than one member, and we have 
yet to describe how to compare the content of such sets. 

In identifying a question with the set of its alternative 
answers, we stipulated that all members of the question set are 
equally good in terms of fulfiling the request for information 
implicit in the question. For example, the question 'Is P true?' 
may be represented as (P, ,..._,p), since the answers 'yes' and 'no' 
equally satisfy this demand. Because members of the question 
set often reappear in the MEl set, we will have to rephrase this 

13 'Content' is a technical term for us which will apply both to MEl sets and to 
individual sentences. It is to be distinguished from informativeness, which is the 
property of hypotheses that we have been investigating, and from logical strength. 
Saying that X is logically stronger than r just means that X implies r but not 
conversely. 
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equivalency of the content of alternative answers in terms of 
the content of sentences. Suppose that question Q contains A1 

and Ai as two of its alternative answers. We may state our 
principle of answer equivalence as follows: 

Relative to Q, X~ A, = c X~ Ah where X and A1 are logically 
independent and X and Ai are logically independent. 

Here, '= c' means 'is equal in content to' .14 

In addition, we will say that if A logically implies B, then A 
is greater than or equal in content to B. This idea of logical 
strength together with the principle of answer equivalence is all 
we need to characterize the relative content of sentences. We 
can now define the notion of relative content between sets of 
sentences as follows: 

If each member of set Sis greater than or equal in content to 
a member of setS', but not conversely, then Sis greater in 
content than S'. 

The content relation between sets has the following con­
sequences: 

(A) =c (~) 

(A) >c (~) 

(~:~) >c(~) 
(A & B) >c (~) 

(~) >c (A v --A) 

(~) >c (A vB) 

(~&c)>c(Z) 

With this machinery, we can make precise the inverse rela­
tionship between the informativeness of a hypothesis and the 
content of its MEl set relative to a question. A hypothesis His 
more informative than a hypothesis H' relative to a question Q 

14 X~ A; is a schema for two forms: For all occurrences of X~ A; in a given 
context, one either should delete every occurrence of '&' or every occurrence 
of'V'. 
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just in case the MEl set I' of H' is higher in content than the 
MEl set I of H. Thus, 

(37) H > 1 H' relative to Q.iff I' >c I relative to Q., 

where '> t' means 'more informative than'. 
This definition of informativeness now allows us to define the 

notion of epistemic relevance which arose in Section r.2. In 
the example given there, the classical law of gravitation H was 
epistemically relevant to a question Q. about temperature 
because there existed another hypothesis H' (namely, an equa­
tion relating temperature and gravitational force), and H in 
some sense helped H' to answer Q.. According to our theory, 
this intuition is represented as follows: H is epistemically 
relevant to Q. (relative to a body of beliefs B) iff there is a 
hypothesis H' in B such that H' is the most informative mem­
ber of B in answering Q., and H & H' > 1 H relative to Q.. A 
hypothesis is epistemically relevant to a question if it genuinely 
increases the informativeness of the body of beliefs in which it 
is embedded. 

To give the reader a feel for how to compare the contents of 
different MEl sets, we will rank hypotheses (2r), (22), (25), 
(26), and (29) in Table 2. As before, the hypotheses will be 
considered relative to the question (Fa, ""'Fa). The MEls in ( 2 r) 
and (22) have less content than any of the other MEis we are 
considering, because each of the members of the other MEl sets 
implies, but is not implied by, a tautology. 

Now let us compare the MEis in (25), (26), and (29). The 

set (Ga v Fa) is greater in content than the set ( ~a v GaG ), 
'"'"'J.'a v'""" a 

since they have the form (A) and(~), respectively. The MEl 

in (29) is greater in content than the MEl in (25), because, by 
the principle of answer equivalence, ((Ga & Ha) v "'Fa) is 
equal in content to ((Ga & Ha) v Fa), which in turn is 
greater in content than (Ga v Fa). These results permit us to 
order the ME Is as follows: 

MEI(29) >c MEl(25) >c MEI(26) >c MEl(22) =c MEI(2r). 

Because the content of the MEl set is inversely related to the 
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informativeness of the hypothesis itself, the ordering of the 
hypotheses in terms of informativeness goes in the other 
direction: 

H(21) = 1 H(22) > 1 H(26) > 1 H(25) > 1 H(2g). 

The comparison of MEl sets for hypotheses containing 
existential and mixed quantifications would proceed in the 
same manner. The rules also apply to the MEis of mathe­
matical equations with one minor variation. The MEis of 
equations are sets of schemata, just like the questions that go 
into their construction. To compare the content of different 
MEis, treat the dummy constants as real constants, and 
proceed as before. 

After all this groundwork, our conjecture about simplicity 
comes to this: His more informative than H' in the sense just 
defined just in case His simpler than H'. Thus, 

(38) H >. H' (relative to Q,) iff H > 1 H' (relative to QJ, 
where'>.' means 'simpler than'. If we combine (37) and (38), 
our conjecture takes the form 

H >. H' (relative to Q,) iff I' >c I (relative to Q,). 

At this point in the argument, the reader has no particular 
reason to suppose that '> .' is an adequate explication of simpli­
city, although I hope that he has been persuaded that it is an 
adequate explication of the kind of informativeness lately 
discussed. To show that simplicity is informativeness, it must 
be shown that the proposed explication fits our intuitions to a 
high degree and systematizes these intuitions by exhibiting 
their common structure. That is, the theory must fit our pre­
formal ideas about which hypotheses are simpler than which 
others well enough to justify calling it a 'theory of simplicity'. 
However, beyond merely fitting the facts, which might be 
accomplished trivially by an ad hoc recounting of disparate 
details, the theory also must illuminate and give a systematic 
account of diverse phenomena. This is merely to say that the 
theory of simplicity is a theory like any other. These twin con­
straints of fitting the facts and systematizing them are repre­
sented within our theory of hypothesis choice (see Section I .g) 
by the twin desiderata of support and simplicity. In Chapter 5, 
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the theory of simplicity will be evaluated relative to these 
canons of hypothesis choice. 

Despite the constraint of fitting the facts, the monotony of 
prosaic usage (how we use the word 'simple') does not impose 
a stranglehold on the adequacy of our theory. At times, the 
theory will lead us to violate customary usage and will enjoin 
us to reform and educate our intuitions. Ultimately, the con­
straint imposed by our presystematic intuitions dictates that we 
can call '>s' a simplicity relation only if it coincides with our 
intuitions to some significant degree. It might turn out that the 
informativeness of hypotheses as described so far is an important 
component of our inferential behaviour but does nothing to 
help us understand what simplicity is. In what follows, I will 
try to show that the theory does capture the overwhelming 
majority of our presystematic intuitions about what is simple. 
In this sense, I will claim that the theory deserves to be called 
a 'theory of simplicity'. Furthermore, simplicity will be seen to 
be an important quality for hypotheses to have, because in­
formativeness is a desideratum of knowledge claims, and 
simplicity is informativeness. From this basis I will argue that 
the theory provides both an explication and a justification of 
the use of simplicity in hypothesis choice.15 

I.J Questions as Sets of Natural Predicates 

I have conjectured that simplicity is a kind of question­
relative informativeness. Given question Q,, hypothesis H is 
simpler than hypothesis H' (relative to Q,) just in case H is 
more informative than H' in answering Q,. That simplicity is a 
question-relative notion on this account appears to be prob­
lematic. Suppose we want to compare the simplicity of two 
hypotheses. According to our theory, we can do this only if we 
first select a question as the standard against which to assess 
their relative informativeness. How are we to make our 
selection? 

The theory provides us with a partial criterion for selecting 
Q,. If we want to compare the simplicity of Hand H', we must 

15 See Chapter 5 for a discussion of the idea of justification in general and its 
particular application to the role of simplicity in hypothesis choice. 
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find a question Q.such that the MEl of Hand the MEl of H' 
are both defined relative to Q., because unless Q. is formally 
relevant to both Hand H', the MEl of at least one of these 
hypotheses will not be defined and the simplicity of the two 
hypotheses will be incommensurable. 

This condition on the selection of Q. still leaves many differ­
ent questions to choose from, and these remaining questions 
may be far from unanimous in their verdicts as to the relative 
simplicity of Hand H'. That is, we may fix on one question 
and discover that relative to it H is simpler than H', but that 
relative to a different question, the simplicity ordering is 
reversed. Thus, at first glance, our simplicity criterion seems 
to be vitiated by a hopeless relativism. 

To clarify this problem, we will look at an example of a pair 
of hypotheses due to Goodman ;16 

(3ga) (x) (Emerald x ::::> Green x) 
(4oa) (x){Emerald x ::::> 

[(Green x & T(x) < t) v (Blue x & T(x) > t)]}. 
The quantifiers in (3ga) and (4oa) range over time-slices of 
physical objects. An enduring physical object that is an emerald 
changes colour at timet, according to (4oa). The constant tis 
stipulated to be some time in the future, say, the year 2000. 
Both (3ga) and (4oa) are defined relative to the question 

(41) (Green a, Blue a, . .. ). 

The MEl of (3ga) relative to question (41) is the set 

(42) (Emerald a v Green a), 

while the MEl of (4oa) relative to question (41) is the set 

(43) ([Emerald a & T(a) < t] vGreen a) 
[Emerald a & T(a) > t] v Blue a . 

MEl (43) is higher in content than MEl (42), so hypothesis 
(3ga) is simpler than hypothesis (4oa) relative to question (41). 

Now let us define the predicate 'grue': 

Grue x iff [(Green x & T(x) < t) v (Blue x & T(x) ;;;. t)]. 

16 See Goodman, Fact, Fiction, and Forecast, Chap. 3· Our formulation of (40) 
is not the one used by Goodman in that (40) does not involve the notion of'being 
examined'. This variant is used by Barker and Achinstein, 'On the New Riddle 
of Induction'; Blackburn, 'Goodman's Paradox'; and Hesse, 'Ramifications of 
"Grue" '. 
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The predicate 'bleen' may be defined in tandem: blue before, 
or green after. We can use these two predicates to reformulate 
(3ga) and (4oa), respectively, as 

(3gb) (x){Emerald x :::::> [(Grue x & T(x) < t) 

and 

(4ob) 

v (Bleen x & T(x) ;:;. t)]} 

(x)(Emerald x :::::> Grue x). 

These two hypotheses are defined relative to the question 

(44) (Grue a, Bleen a, ... ). 
The MEl of (3gb) relative to this question is the set 

(45) ([Emerald a & T(a) < t] v Grue a) 
[Emerald a & T(a) ;:;. t] v Bleen a , 

while the MEl of (4ob) relative to question (44) is the set 

(46) (Emerald a v Grue a). 

MEl (46) is lower in content than MEl (45), so hypothesis 
(4ob) is simpler than hypothesis (3gb) relative to question (44). 
Thus, relative to a question about colours, (3g) is simpler than 
( 40) ; relative to a question about grulers, the ordering is 
reversed. • 

For us, the set of grue individuals does not possess the unity 
and commonality of salient properties that we associate with 
members of the same kind. In contrast, the set of green things 
seems to cohere in virtue of some important common property. 
Even though our language permits us to delimit both of these 
sets, our talk of grue things seems to be a mere artefact of our 
ability to lump together unrelated elements; our talk of green 
things seems to be motivated by a law-like feature of the world. 
This example suggests a new interpretation of the notion of a 
question and the beginning of a solution to the problem of 
question-relativity: A question is a set of predicates designated as 
natural. 

The predicates which serve as the frame of reference against 
which our simplicity judgements are made are the predicates 
that we regard as natural. We noticed before that the simplicity 
ordering of (3g) and (4o) depends on which predicate family 
we designate as natural. Regarding colours as more natural 
than grulers and (3g) as simpler than (40) go hand in hand. In 
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contrast, we can imagine a person who has the opposite in­
tuition about which predicates are natural, and we would 
expect him to see (40) as simpler than (39). The predicates we 
designate as natural affect our simplicity judgements, and a 
decision to regard one hypothesis as simpler than another 
constrains which predicates may be regarded as natural.17 

In A System of Logic, Mill uses 'natural kind' to refer to sets 
that are especially rich in nomological significance. Although 
'man' and 'snub-nosed' are both true of Socrates, the former 
but not the latter picks out a natural kind (p. gg). Being a man 
is an index to an indefinite number of other peculiarities that 
are not logically deducible from being a man. On the other 
hand, snub-nosed men have no common properties beyond 
what men have in common and beyond what is implied by 
their being snub-nosed.IS Mill seems correct in viewing this 
difference as extremely significant. However, making the 
difference precise is difficult, since to do so, one would have to 
be able to say when a predicate determines a property and 
when two predicates determine different properties. Mill's idea 
of a natural kind is narrower than the notion of naturalness we 
have in mind.19 For Mill, concepts like bachelorhood and 
greenness are not natural kinds, whereas for us they can be 
natural. We will therefore reserve 'natural kind' for Mill's 
notion, and we will use 'natural predicate', 'natural set', and 
'natural property' to pick out our more inclusive notion.20 

17 One's set of natural predicates need not be unchangeably given. One may 
revise which predicates are taken to be natural. Often, the motive for doing this 
derives from one's acceptance of a particular set of laws. Given that we believe a 
set oflaws, we tend to regard the predicates used in some perspicuous representa­
tion of those laws as the natural, important ones. We will see an example of this 
process of adjusting one's simplicity judgements and one's choice of natural 
predicates in Chapter 3· 

18 Mill's idea that natural kind properties are indices for individuals having other 
properties is very close to the idea I develop in Section r .8 that natural predicates 
constitute natural sufficient conditions or tests for whether an individual falls into 
a given set. Mill's reason for thinking that the snub-nosed men do not make up a 
natural kind within the class of men seems closely related to an idea developed by 
Salmon that I discuss in Section 2.4; that is, partitioning the class of men into 
those that are snub-nosed and those that are not is statistically irrelevant. 

19 In the terminology of Putnam's 'The Analytic and the Synthetic', it seems as 
if all natural kind concepts are cluster concepts (i.e., not single-criterion concepts, 
like being a bachelor). In 'The Meaning of"Meaning" ',he offers a new explica­
tion of what determines the meaning of natural kind terms. 

20 More recent discussions of the notion of naturalness have included Carr.ap's 
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By interpreting questions as sets of natural predicates, we 
can regard the universal generalizations in a person's belief set 
as inferential links between the members of different families of 
natural predicates. For example, the hypothesis (x) (Fx ::::> Gx) 
might be interpreted as a link from Fa to Ga where a is any 
individual. Our desire for simple theories turns out (at least in 
part) to be a desire for 'efficient' deductive networks between 
the members of different families of natural predicates. We 
want any given link to have logically minimal input con­
ditions while at the same time yielding outputs of great logical 
strength; we want to be able to say a great deal about the 
properties of any individual in our world without first having 
to find out very much about its special features. The degree to 
which this goal is attained is a measure of how well we have 
succeeded in rendering particular experience redundant. 

We have seen that to use our simplicity criterion, we must 
calculate the simplicity of hypotheses relative to those predicate 
families that we take to be naturaL A further problem persists, 
however. Suppose P is the set of all our natural predicate 
families. In comparing the simplicity of two hypotheses, how 
do we go about choosing from P the appropriate question(s) to 
use as a standard? We can dispose of this problem once and 
for all by turning to a familiar problem that besets any applica­
tion of probability as an explication of our informal notion of 
support. By tracing the analogy between simplicity and support, 
we will pave the way for the concluding section (r.g), which 
outlines the interaction of these two desiderata in our inferential 
policies. 

'On the Application of Inductive Logic' and Reichenbach's Nomological Statements 
and Admissible Operations. Both Carnap and Reichenbach thought that natural 
predicates do not make explicit reference to particular places or times. Thus, 
'is 200 miles from Paris' and 'is examined before the year 2000' would not be 
natural. Carnap hoped to use this intuition as a solution of Goodman's new riddle 
of induction, although Goodman convincingly argued that this would not work. 
In discussing the new riddle in Fact, Fiction, and Forecast, Goodman mentions the 
distinction between artificial and genuine kinds (p. 121). In fact, Goodman's 
theory of entrenchment may be viewed as an attempt to explicate this difference. 
Quine's notion of a natural kind and his closely related idea of a quality space are 
discussed in 'The Scope and Language of Science', p. 218; Word and Object, 
pp. 82-5; and 'Natural Kinds'. 

S-B 
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I.8 Simplicity, Support, and the Weighting Problem 

Carnap and Hempel observed that any use of probability 
theory to explicate our informal notion of support must obey a 
requirement of total evidence if radically counterintuitive 
results are to be avoided.21 That is, suppose that the probability 
of H relative to each piece of evidence e1, e2, ... , en is known. 
Which of these probability statements corresponds to our 
intuitive idea of the degree of support of H on the evidence? 
The requirement of total evidence says that the appropriate 
evidential standard to be used is all of the evidence available. 

Now suppose that we want to compare the support of two 
hypotheses Hand H' and that we know the probability of each 
of them relative to each piece of evidence e1, e2, ... , en. What 
is the relative support of H and H' with respect to the total 
evidence E ? There is a special case in which the answer to this 
question is easy. If H is more strongly supported than H' 
relative to each piece of evidence et, then H is more strongly 
supported than H' relative to the total evidence E. But suppose 
that e1, e2, ... , en are not unanimous with respect to the relative 
support of Hand H'; that is, some et say that His more prob­
able than H', while other ei say the reverse. What are we to do 
here? Clearly, we must weight the importance, relevance, or 
appropriateness of the different pieces of evidence. By deciding 
that some pieces of evidence matter more to the relative support 
of Hand H' than others, we can calculate the total support as 
a function of the support of H and H' with respect to each ei 

and the weighting of each ei.22 

Similarly, the theory of simplicity defines the relative sim­
plicity of H and H' relative to many different predicate 
families. The first step in singling out the appropriate predicate 
family or families with which to assess their relative simplicity 
is the distinction between those predicate families that are in 
our P-system and those that are not. We calculate the sim­
plicity of a hypothesis relative to the predicate families that are 
in the P-system and ignore the dictates of those that are outside 

21 See, for example, Carnap's 'On the Application of Inductive Logic' and his 
Logical Foundations of Probability, p. 211. Hempel states this requirement in 'Induc­
tive Inconsistencies' in Aspects of Scientific Explanation, pp. 64-7. Carnap stresses that 
this requirement is part of the application rather than the pure theory of inductive 
probability. 

22 See Nagel, The Structure qf Science, pp. 591-2, for a discussion of this problem. 
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the P-system. This corresponds to the first step of an application 
of probability as an explication of degree of support. One con­
siders the probability of H relative to sentences that are in the 
belief set, and those sentences that we do not believe are 
viewed as having no bearing on our calculation. In both 
simplicity and support, we have an intuitive feel for which 
predicate families or sentences belong in the P-system or in the 
belief set. Just as a sentence is in our belief set if we believe 
it, so a predicate family is in our P-system if we regard it as 
natural. 

This is only the first step, however. The P-system contains 
many different predicate families. Which of these are the 
appropriate ones to use in determining the relative simplicity 
of H and H'? Again, we parallel our discussion of probability 
by requiring that the simplicity of a hypothesis be calculated 
relative to the total P-system. This is the analogue of Carnap 
and Hempel's requirement of total evidence. 

Just as there is a gap between the support of a hypothesis 
relative to individual pieces of evidence and its support relative 
to the total evidence, so now we are faced with the following 
problem: How are we to calculate the simplicity ordering of 
H and H' with respect to the total P-system when all we know 
initially is the relative simplicity of Hand H' with respect to the 
different individual predicate families in P ? This problem is as 
serious for simplicity as it is for support, and like the support 
problem, there is a special case for which the solution is obvious. 
When every predicate family in P is such that H is simpler 
than H', it should turn out that His simpler than H' relative 
to the entire P-system.23 When the different predicate families 
in P are not thus unanimous, we must weight them to reflect 
our intuitions about which of them are the most appropriate 
standards to use in assessing the simplicity of the hypotheses 
considered. Unfortunately, I can offer no general criterion that 
dictates what the weighting must be. As in the probability case, 
we have only our informal beliefs about what matters. 

23 If the simplicity (support) of a hypothesis is not defined relative to some 
predicates (pieces of evidence), then the special case described above will be 
said to obtain when all predicates (pieces of evidence) relative to which the 
simplicity (support) is defined are unanimous. In Carnap's inductive logic, the 
support of every hypothesis is defined for every piece of evidence, although in our 
theory, there are pairs of hypotheses which are incommensurable. 
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In Chapter 2, we will examine a great many pairs of hypo­
theses whose simplicity is question-invariant. That is, no matter 
which of a range of equally natural-sounding questions is used 
to evaluate their relative simplicity, the same result is obtained. 
Situations like this correspond to the special case just discussed. 
Given the virtual unanimity of predicate families on the relative 
simplicity of a pair of hypotheses, it is easy to see how the 
simplicity of these hypotheses relative to the total P-system is 
a function of their simplicity relative to each predicate family 
in the P-system. On the other hand, we will encounter a few 
examples where the different predicate families, each of them 
intuitively natural members of our P-system, yield contrary 
readings of the simplicity of a pair of hypotheses. In such cases, 
the weighting problem will become especially significant. 
Interestingly enough, examples of this kind will enable us to 
explain how it is possible to trade off a gain in simplicity in one 
part of a theory against a loss of simplicity in another. 

In Section I. 7, we urged that the questions used in the sim­
plicity comparisons made within the theory be reinterpreted 
in terms of the intuitive notion of naturalness. We can now 
return to this and use our theory of simplicity to give a clearer 
characterization of what a natural predicate is. We have seen 
that the simplicity (support) of a hypothesis is to be calculated 
relative to the total P-system (total evidence) and is defined as 
a weighted composition of the testimony of individual predicate 
families (pieces of evidence). Given this, we can define the 
notion of typicalness as follows: 

p is typical of P on h, h' iff h > s h' relative to p and h > s h' 
relative to P 

e is typical of E on h, h' iff h > st h' relative to e and h > st h' 
relative to E. 

'>st' means 'is more supported than', pis an individual predicate 
family, Pis a total P-system, e is an individual piece of evidence, 
and E is a total evidence set. If we had a quantitative notion 
of support and simplicity, typicalness could be expressed as 

pis typical of P on h iff Simp (h/p) =nand Simp (h/P) = n 
eistypicalofEonhiffSupp (hje) = nandSupp (h/E) = n. 
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Thus, a predicate family or piece of evidence is typical of the 
P-system or total evidence it belongs to if its testimony is 
representative of the total (weighted) testimony.24 

In the example lately discussed of colours and grulers, we 
concluded that colours are typical of our P-system and that 
grulers are not. This gave us a way of understanding why 
colours but not grulers are natural properties for us. We could 
pursue this sort of investigation and gradually reconstruct our 
total P-system by taking hypotheses about whose relative sim­
plicity we have fairly strong intuitions and then trying to find 
predicate families which mirror these judgements within our 
theory. 

Grulers turned out to be atypical of our intuitions about (39) 
and (40); we can imagine other hypotheses about which 
grulers would be typical. For example, compare (40) to 

(47) Emeralds are yellow before the year IOoo, green 
between the years 1000 and 2000, blue between the 
years 2000 and 3000, and orange thereafter. 

Grulers are typical of our intuitions about this pair of hypo­
theses in that relative to question (44), (40) is simpler than (47). 
The point is that colours are typical of this example as well. 
We do not count grulers as unnatural because they are never 
typical but because in every example they are either atypical 
or redundant. We need not include grulers in our P-system to 
substantiate our judgement on hypotheses (40) and (47), since 
we already have colours around to do the job. 

Now suppose that we have constructed a smallest set P such 
that each member of P is typical of at least one of our sim­
plicity judgements, and for every intuitive simplicity judgement 
there is at least one member of P that is typical of it. We can 
now say that pis a natural predicate just in case pEP. If the 
smallest P-system is not uniquely determined by the criterion 
above, then the criterion seems not to fully determine our notion 

24 e is typical of E on h just in case the complement of e in E is inductively 
irrelevant in Hempel's sense. See 'Inductive Inconsistencies', p. 64. The definition 
of typicalness for comparative simplicity and support is incomplete; it needs to be 
filled out for the cases where h = 8 h' and h =st h'. 
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of naturalness. But perhaps determinacy can be achieved if we 
appeal to other constraints.25 In this case, it is more correct 
to say that a person's simplicity judgements provide evidence 
for (but do not logically determine) what his P-system is. Note 
that the method of reconstructing a person's P-system that I 
am proposing itself obeys a simplicity constraint, in that we 
do not attribute more natural predicates to a person than are 
necessary to explain his simplicity judgements. 

Since this procedure helps delimit a person's initial fund of 
natural predicates, we can ask what truth-functions of natural 
predicates are themselves natural. For our answer, we must 
distinguish between a predicate being natural in virtue of its 
delimiting a natural set and being natural in virtue of its 
determining a natural property. All of the predicates in the 
initial stock are natural in both senses. Moreover, all con­
junctions of natural predicates determine natural sets and 
natural properties. Since natural kinds serve as indices for 
properties beyond themselves, conjunctions of natural kinds are 
always natural kinds: A & B is an index for every property 
indexed by either A or B. 

The case of disjunctions of predicates drawn from the initial 
stock is more interesting, and it is here that the distinction 
between set and property finds its application. We will say that 
a disjunction (or any truth-function) of natural predicates 
determines a natural set if it is materially equivalent to some 
conjunction of predicates from the initial stock. If the dis­
junction (or truth-function) is nomologically equivalent to 
some conjunction (i.e., the equivalence is a natural law), we 
will say that it determines a natural property. Notice that a 
disjunctive set is natural if the use of the disjunction in its 
formulation is dispensable. The link between the naturalness of 
a set and the dispensability of its disjunctive characterization 
will recur in the discussion of transformational grammar in 
Section 3.6. 

The distinction between natural sets and natural properties 

25 Doubtless there is more evidence relevant to determining a person's natural 
predicates than the one test proposed here. See, for example, Rosch's methodology 
in 'Natural Categories', where she offers experimental evidence that some ways of 
segmenting the colour spectrum are cross-culturally more natural than others. 
For Rosch, the naturalness of a category is linked to the ease with which the 
category is learned. See Section 4.6. 
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allows us to explain how a set can be natural in one theory and 
artificial in another when the two theories are jointly and 
reasonably believed. This can happen when A is materially 
equivalent to X v rand A is a natural predicate in the theory 
it occurs in, while X and r (but not their disjunction) are each 
natural in the theory in which they occur. In the following 
examples, we will consider the naturalness of predicates rela­
tive to the specific theories in which they occur and relative to 
the totality of theories we hold.26 

In the nineteenth century, Alexis Damour discovered that 
there are two kinds of jade: jadeite and nephrite. Jadeite is a 
silicate of sodium and aluminium and is a pyroxene; nephrite 
is a silicate of calcium and magnesium and is in the amphibole 
group of minerals. Jadeite and nephrite have different ranks 
on Moh's scale of hardness, different specific gravities, and 
different refractive indices. Yet jadeite and nephrite are jade; 
each is used in making jade carvings, for example. Notice that 
at the level of art history, the set ofjade things can be a natural 
kind, while at the level of crystallography, the same set is 
artificial and disjunctive. Now that we have determined the 
naturalness of jade' and jadeite or nephrite' relative to two 
specific theories, what can we say of the naturalness of these two 
predicates relative to our total body of theory? 'Jade' is a 
natural predicate relative to the totality of our theories because 
it is natural relative to one of our theories; 'jadeite or nephrite' 
will be natural if it is nomologically coextensive with jade'. 
Because it seems clear that nothing could be jade unless it were 
jadeite or nephrite, the equivalence in question is no mere 
accident. Hence the two predicates are both natural relative 
to our total body of belie£ 

Another example is the continuing debate in colour theory 
over the way physical parameters, such as wave length, are 
related to colour perception. The view that colour is just wave 
length currently seems highly suspect; it now seems likely that 

26 These examples were called to my attention by Hilary Putnam. In these 
examples, scientific progress consists in the discovery that a 'macro' natural class 
is disjunctive and artificial at some more 'micro' level of theory. For some examples 
of how science has moved in the opposite direction, see Section 3.6. The concept of 
nomological equivalence that I am using owes an obvious debt to the view of 
necessity advocated by Kripke in 'Naming and Necessity' and by Putnam in 
'The Meaning of "Meaning" '. 
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the class of situations in which we perceive brown, for example, 
is a disparate and heterogeneous collection of otherwise un­
related physical parameters.27 That is, the class of brown 
things is natural at the level of our commonsense talk about 
the colour of objects, but is artificial at the level of a taxonomy 
of physical conditions.2s Moreover, if an object's being brown 
nomologically guarantees that it has one of the physical pro­
perties specified, then both 'brown' and the disjunction of 
physical predicates that is nomologically coextensive with 
'brown' will pick out natural properties. 

The above characterization of when truth-functions of 
natural predicates are natural helps explain why the com­
plements of natural sets are rarely, if ever, natural.29 Predicates 
like 'not green' are neither materially nor nomologically 
equivalent to any conjunction of natural predicates; at best, 
they are materially equivalent to an elaborate disjunction of 
natural predicates. Furthermore, since all natural kind predi­
cates are natural predicates, complements of natural kind 
predicates are rarely natural kind predicates. This seems 
reasonable, since no matter how little being green serves as an 
index for further properties, being not green is even less an 
indication of any property beyond itself. 

Mill's insight that predicates are natural in virtue of their 
connection with other predicates within the inferential nexus 
of our beliefs is closely related to the following asymmetry 
between natural and nonnatural predicates. To discover 
whether an individual falls under a predicate M, one tries to 

27 In Eye and Brain, p. 125, Gregory takes this to be a lesson of Land's work on 
colour vision. 

2B The reductionist programme of identifying each mental property with a 
physical property would be confounded by the discovery that the predicates that 
determine natural properties at the level of psychology are artificial at the level of 
physics. The mind/body identity theory would be defeated by such a discovery, 
because if two predicates pick out the same property, their coextensiveness cannot 
be accidental. This statement of a necessary condition for property identity is 
presupposed by functionalism; without it, considering possible but nonactual 
cases (like whether Martians radically different in physical constitution from any 
known species could feel pain) would be entirely irrelevant. Thus Putnam's 
functionalism and his views on necessity are of a piece. See, for example, his 
'Reductionism and the Nature of Psychology' for a discussion of how the lack of 
alignment between mental and physical properties guarantees a degree of autonomy 
to the different levels of our total theory. 

29 In 'Natural Kinds', Quine expresses this idea. 
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find a natural predicate T such that Tis a sufficient condition 
forM: 

(x)(Tx=> Mx). 
Any such Tis a test for falling under M. Now consider a dis­
junctive predicate A v B that does not determine a natural set. 
It often will happen that all natural sufficient conditions for 
membership in A v B also will be tests for membership in A 
or tests for membership in B. But where A v B is natural, there 
will be tests for membership in A v B that are not also tests for 
membership in A or tests for membership in B. In fact, where 
A and B each determine nonempty sets, there must be such a 
test for membership in A v B, since if A v B determines a 
natural set, it must be materially equivalent to some natural 
predicate that is not materially equivalent to either A or B. 
Thus, we can know that a particular painting is Impressionist 
without having to know which Impressionist artist painted it. 
On the other hand, it seems that we can only place an in­
dividual in the set consisting of automobiles and prime numbers 
by first knowing that it is a car or knowing that it is a prime 
number.ao This difference helps explain what it is for natural 
sets to be unified and why nonnatural sets appear to be un­
systematic collections. If A v B is nonnatural, the subsets 
determined by A and B retain their separate identities and 
their separate tests for membership. However, if A v B is 
natural, the subsets shed their separate identities to some 
degree, and the larger set A v B itself has membership 
conditions that are not also conditions for the constituent 
subsets. 

At the start of our discussion of naturalness, we recognized 
that although colours are natural for us, grulers might be 
natural in some other P-system. With this intuition comes the 
suspicion that the two predicate families do not mix; it might 
seem that they cannot both be natural. Our previous charac­
terization of typicalness allows us to explain what is true in 
this idea. We will say that a P-system is incoherent just when two 
predicate families in it are each typical of P with respect to 

30 In A Stuify of Thinking, p. 158, Bruner, Goodnow, and Austin point to much 
the same asymmetry between disjunctive and nondisjunctive categories within 
the context of their experiments on concept attainment. For a geographical 
example of this asymmetry, see Section 4-4-
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hypotheses h and h' and yield contrary readings of the relative 
simplicity of h and h'. A similar notion of incoherence applies 
to evidential support, and the notion of incoherence applied to 
either concept can be given a quantitative as well as a com­
parative formulation. This explains why viewing colours as 
natural seems to preclude our viewing grulers in the same way, 
since if both were viewed as typical of our intuition of the 
simplicity of (39) and (40), our P-system would be incoherent. 
Notice, however, that there is nothing in the logical nature of 
'green' and 'grue' that prevents both from being members of 
a single, coherent P-system.31 

A further, deeper kind of incoherence is also possible. When 
a body of evidence is self-contradictory, every hypothesis is 
maximally supported. Thus, for any hypothesis h, e, will be 
typical of E on h just when h is maximally supported relative 
toe, (when e, implies h). Similarly, we will say that a P-system 
is deeply incoherent when every hypothesis is maximally simple. 
This occurs when for any hypothesis h, a predicate family p is 
typical of P on h just when h is maximally simple relative to p 
(when h implies an answer top without any outside help). 
When an evidential class is self-contradictory, a contradiction 
is typical of E on every hypothesis, since a contradiction will 
imply every hypothesis. When a P-system is deeply incoherent, 
the question 'What is, the case?' is typical of P on every hypo­
thesis, since every hypothesis implies an answer to this question 
without any extra information. 

In summary, a person's initial stock of predicates is recon­
structed by applying the simplicity criterion to sample pairs of 
hypotheses. A truth-function of predicates determines a 
natural set just when it is materially equivalent to some con­
junction of predicates from the initial stock, and it determines 
a natural property just when it is nomologically equivalent to 
some conjunction of predicates from the initial stock. Thus, a 
sufficient condition for two coextensive predicates to determine 
different properties is that one predicate be natural and the 
other artificial according to our simplicity criterion. 

31 The three natural predicates 'child', 'adult', and 'human' are logically 
related to each other in roughly the same way that 'green', 'blue', and 'grue' are 
related to each other. 
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I ·9 Simplicity in the Context of Hypothesis Choice 

33 

In developing the machinery for comparing the simplicity 
of hypotheses, we set the contents of the alternative answers to 
a question on a logical par. The strategy seemed reasonable, 
since any answer is as good as any other in the sense that each 
satisfies the question's demand for information. But from 
another point of view-that of truth-this policy hardly seems 
appropriate. Surely a true answer is to be preferred to a false 
one. 

In this world of incomplete and uncertain evidence, our 
desire for truth takes the form of a desire for sufficiently sup­
ported hypotheses. 'Support' is used to express the informal 
idea that some of our beliefs give us evidence for others. Since 
support comes in degrees, one piece of evidence can support 
two incompatible hypotheses. Further, we will assume that if 
H implies H', then H' is greater than or equal in support to H. 
This stipulation mirrors the intuition that the safer a hypothesis, 
the higher its support.32 

The twin goals of informativeness and support are related by 
a fundamental tension. If we were to choose hypotheses solely 
on the basis of their support, the safest course would be merely 
to reaffirm the evidence and its consequences. If, on the other 
hand, we were to abandon support and seek only to make the 
most informative statements possible, our otherwise reasonable 
statements would be swollen with fantastic prophesies. By 
following the stricture of maximum support alone, we would 
say little that is interesting; by pursuing informativeness alone, 
we would say little that is true.33 Thus, those instances of our 
inferential behaviour that we would call 'reasonable' are 
simultaneously risky and prudent: We do stick our necks out 
and go beyond the evidence at times, but we do not do so to 
the nth degree. This policy is represented in the following rules 
for choosing between competing hypotheses H and H'. 

32 This requirement on our notion of support is compatible with a probabilistic 
explication of support. Our assumption implies that equivalent hypotheses are 
equally supported on any evidence; our explication of simplicity also satisfies this 
equivalence condition. 

33 This does not mean that simplicity or informativeness (as we have described 
them) is low probability, as Popper claims (see The Logic of Scientific Discovery, 
Chap. 7). For the moment, we are merely contrasting two very extreme policies of 
hypothesis choice. 
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Let Supp (H/E) be a real-valued function that correlates 
the support of a hypothesis H given evidence E with a real 
number n, where o < n < 1. Simplicity will be represented 
by the relations '>.', '=.', etc. We also need a constant k, such 
that o < k < I. In conformity with our discussion in the pre­
vious section, we will require that the evidence considered be 
the total evidence available, and that the simplicity of hypo­
theses be assessed relative to the total P-system. In both cases, 
the relativity to total evidence or total P-system will be left 
tacit. 

Rule I: If Supp (H) < k and Supp (H') < k, then choose 
neither. 

Rule 2: If Supp (H) > k > Supp (H'), then choose H. 
Rule g: If Supp (H) > k and Supp (H') > k, then choose 

the simpler. 
Rule 4: If H =. H' and Supp (H) > Supp (H') > k, then 

choose H. 

The constant k may be thought of as representing the caution 
threshold we bring to bear in a particular situation of hypothesis 
choice.34 In some situations, the rewards and punishments may 
be such that we are unwilling to go beyond the evidence. Here 
we would set k very close to I, and as a consequence, we would 
exclude all of the competing hypotheses save the safest one. In 
cases where we are more willing to gamble, however, k would 
be given a somewhat lower value; and we would choose on the 
basis of simplicity between those hypotheses with more than 
minimal support. The value of k changes from situation to 
situation and may be different for different people. Determining 
what factors influence our choice of k is a fascinating epistemo­
logical problem but is beyond the scope of this work. 

One of the problems facing this outline of a theory of hypo­
thesis choice is explicating the informal concept of support. 

34 This is similar to the constant q used in Levi's Gambling with Truth and also has 
affinities with the ). parameter of Carnap's Continuum of Inductive Methods. Both 
authors envisage a trade-off between the requirements of high probability and a 
kind of informativeness. 

Levi's book stresses that hypothesis choice is a goal-directed activity with goals 
that go beyond the desire for truth. Moreover, Levi's concept of an ultimate 
partition is an obvious analogue of my concept of a question. 
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Probability looms large as a candidate for the job, but well­
known obstacles confront the use of probability theory in this 
way. I know of no general solution to those problems, and so 
the notion of support will have to remain on a fairly informal 
level. However, in some circumstances, a well-defined explica­
cation of support is available and acceptable. For example, in 
the curve-fitting problem (Section 2.6), certain goodness-of-fit 
measures seem to be acceptable. In such cases, we will assume 
that our notion of support is to be interpreted in terms of 
commonly accepted theory. 

Our rules are meant to capture the idea that a criterion of 
simplicity often is invoked in a 'situation of indifference'. When 
evidence supports two or more competing hypotheses to the 
extent that each is a reasonable alternative, one chooses the 
simplest. Rule 3 ensures that the evidence bestows on the 
hypotheses some greater-than-minimal degree of support before 
simplicity is called upon to decide between them. Thus, in 
cases where a 'crucial experiment' renders H' very unlikely 
(i.e., where its support plunges) and we choose H in preference 
to it, no simplicity criterion is applicable. Here the support of 
His greater than k, while the support of H' is not greater than 
k; by Rule 2, we opt for H. On the other hand, if the rival 
hypotheses are equal in simplicity (and each is more than 
minimally supported), then we choose the hypothesis that is 
best supported. The examples discussed in the next chapter 
will show in greater detail how these rules work. 

Notice that the rules do not tell us what to do if Hand H' are 
equally simple and equally supported (to some more-than­
minimal degree). In such a situation, we may have to postpone 
choice until further experiments can be performed; after that 
a decision on grounds of support may be possible. Similarly, 
we may be able to choose between H and H' by considering 
the simplicity of the more inclusive theories in which they are 
respectively embedded. It may be that the theory that His 
part of is simpler than the theory that H' is part of, and this 
fact might then give us a reason for choosing H in preference to 
H'. Of course, it is also possible that we may not have to post­
pone choosing between H and H' until further experiments 
or further considerations of simplicity can be brought to bear. 
Presumably if there were some desideratum of hypotheses 
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that cannot be represented in terms of simplicity and sup­
port, it might be invoked to make the choice. In Chapter 
2, I try to show that many virtues of hypotheses that seem to 
be different from simplicity in fact can be reduced to this con­
cept as it is explicated in our theory. Thus, I regard it as an 
open question whether there is such a desideratum that can be 
invoked to choose between H and H' when they are equally 
simple and equally supported (to a degree greater thank). 

The rules for hypothesis choice are prefaced by the require­
ment that Hand H' are competing hypotheses. When are two 
hypotheses competitors? Clearly, if Hand H' are incompatible 
with one another, they are competitors. But suppose that H 
merely restates the evidence, while H' is a conjecture that 
encompasses the evidence and goes beyond it. Here H and H' 
are compatible; in fact, H' implies H. We want to say that in 
this situation Hand H' are competitors. These two cases make 
it reasonable to say that two hypotheses are competitors just in 
case they are logically dependent; that is, the truth or falsity 
of one implies the truth or falsity of the other.35 

This explication of hypothesis choice, in so far as it proves to 
be illuminating, should lead us to revise our notion of what a 
theory is. It is customary to characterize theories as composed 
of two different sets of sentences, both taken to be closed under 
implication. The first is the set of relatively general hypotheses; 
the second is the set of evidential statements (which para­
digmatically includes particular judgements about the pro­
perties of individuals). This picture of a theory as an ordered 
pair <H, E) makes it plausible to think of theory goodness as 
explicable solely in terms of a relation of support that exists 
between H and E. Where H is assumed to be general and E is 
assumed to be particular, support tends to be explicated in 
terms of instance confirmation. However, in the view I am 
advancing, theories are ordered triplets <H, E, P) where H 
and E together comprise the set of all accepted statements 
and P is the set of all predicate families that are regarded as 
natural within the theory. Hypotheses and evidence are not 

35 Hypotheses taken in isolation can be competitors or they can be competitors 
in the light of some further assumptions. Thus, hypotheses (39) and (40) are logi­
cally independent, but with the assumption that there will be an emerald after 
time t, the two are seen to be competitors by our standards. 



SIMPLICITY AS INFORMATIVENESS 37 

distinguished by any logical property. Rather, within a given 
situation of hypothesis choice, some hypotheses will be assumed 
and others will be evaluated in the light of these assumptions 
(or not considered at all). The assumed hypotheses will be 
called the evidence and may include theories and observations, 
generalities and particularities. Which beliefs count as assumed 
evidence and which as scrutinized hypotheses may vary from 
situation to situation. This way of looking at theories makes it 
reasonable to explicate theory goodness in terms of the inter­
action of two considerations: support, which is a relation 
between Hand E, and simplicity, which is a relation between 
Hand P. 

The rules presented above do not constitute an explanation 
of our inferential behaviour, since support remains unexpli­
cated. Nevertheless, these rules should give the reader some 
feel for the dynamics of the situation. Two or more hypotheses 
are more than minimally supported by the set of data that 
comprises our beliefs. We cannot choose between the com­
petitors by appealing to some fact that makes one of them 
significantly more supported than the others. At this point, we 
must appeal to a criterion quite distinct from support. Our 
task now is to show that simplicity as informativeness explains 
this further criterion. 



2 

General Applications of the Theory 

2.I Heterogeneity 

A frequently expressed intuition about the role of simplicity 
in hypothesis choice is that hypotheses that predict a change in 
the world are less simple than hypotheses that predict no 
change. An allied intuition is that hypotheses which say that a 
given class of individuals is uniform and homogeneous are 
simpler than those which say that the class is nonuniform and 
heterogeneous. These two intuitions are closely related; change 
hypotheses express a special, temporal, kind of heterogeneity. 
Indeed, the special place in theorizing that is accorded to 
invariance and conservation testifies to the importance of 
homogeneity hypotheses. 

Let us consider the general form of change and no-change 
hypotheses. The change hypothesis 

Any object that is r has property P until time t, and after 
that it has property Q I 

has the form 

(r) (x){Yx => [(Px & Tx) v (Gx & '"""Tx)]}, 
where T means before time t. A no-change hypothesis having 
the form 

Any object that is r has property P 

does not limit the application of P to any particular period of 
time and may be represented as 

(2) (x) (Yx ::> Px). 
Assume that we want to choose between hypotheses (I) and ( 2) 
and that each hypothesis fits the evidence E well enough to 
merit considering their relative simplicity. In terms of the rules 

1 We assume that P and Q are mutually exclusive. This is the logical form of 
Goodman's 'grue hypothesis'. See Section 1.7. 
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for hypothesis choice given in Section I .g, this means that 
Supp [(I)/E] > k and Supp [(2)/E] > k. 

As might be expected, ( 2) is simpler than (I) relative to the 
question 

(3) (Pa, Q_a, .•• ), 
because the MEl of (2) relative to question (3) is the set 

(4) (Ya v Pa), 
while the MEl of (I) relative to question ( 3) is the set 

(s) ((Ya & Ta) v Pa ) 
(Ya & '"'"'Ta) v Q_a · 

MEl (5) is higher in content than MEl (4), so (2) is simpler 
than (I). That hypothesis (I) posits only one change does not 
affect its being more complicated than hypothesis (2); no 
matter how many changes a change hypothesis posits, within 
our theory it still turns out to be less simple than its no-change 
counterpart. 

The same result applies to a hypothesis which says that a 
given universe of discourse is heterogeneous and one which 
says that it is homogeneous. For example, if we give the pre­
dicate T a spatial interpretation, then (I) would be a hetero­
geneity hypothesis, and (2) would be its homogeneity counter­
part. The simplicity ordering relative to question (3) is pre­
served, of course, so we may conclude that a heterogeneity 
hypothesis is less simple than its homogeneity counterpart. 

This result is not limited in its application to homogeneity 
with respect to such quotidian qualities as colours. Moreover, 
the individuals that comprise the domain need not be physical 
objects. For example, the fact that hypotheses of a given form 
(e.g., differential equations or equations that use trigonometric 
functions) have proved successful in an area of theorizing is 
often a reason to think that hypotheses of the same form will 
suffice in a kindred area. This belief betrays a preference for 
simplicity; adopting it tends to maximize the homogeneity 
of our beliefs with respect to their logical form. The same 
applies to our preference for explanations that posit underlying 
mechanisms which have already proved successful elsewhere. 

Like the idea of a change in position as it occurs in mechanics, 
the idea of a change hypothesis makes sense only relative to a 
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frame of reference. This fact virtually guarantees that a theory 
of simplicity can mirror the intuition that change hypotheses 
are less simple than their no-change counterparts only if the 
theory allows for a parameter that does the work of specifying 
a rest frame. Within the theory I am defending, it is the P­
system-the set of predicate families designated as natural­
that plays the role of determining a coordinate system against 
which it becomes intelligible to count hypotheses as variously 
positing heterogeneities or homogeneities. 

2.2 Existential Razors 

Ockham's razor bids us not to multiply entitles beyond 
necessity. It is an obvious instance of how our desire for 
simplicity is a desire for less, in this case, a desire to minimize 
the number and kinds of entities admitted by our theory. But 
what justifies this desire for less? Given that our evidence leaves 
logically open whether a particular entity exists or not, why 
then do we so often opt for the denial of the existential claim? 
Why not just conjecture that the entity exists, bloat our 
ontology, and be done with it? Alternatively, if our evidence 
leaves the question logically open, why don't we leave the 
question open in the hypotheses we make? That is, why don't 
we merely suspend judgement? The theory of simplicity pro­
vides a partial justification for using Ockham's razor in the 
sense that it shows that using the razor results in more infor­
mative hypotheses than those yielded by using the opposite 
policy. The theory does not, however, show why Ockham's 
razor should result in true hypotheses more often than any other 
policy. Whether this further justification is needed will be 
discussed in Chapter 5· For the moment, we will show that 
using Ockham's razor is justified because it leads us to adopt 
simpler hypotheses. 

There seem to be two ways of formulating the principle of 
parsimony. Under an agnostic version, one asserts the existence 
of an entity only when doing so is indispensible to the theory. 
Under an atheistic formulation, one asserts the existence of an 
entity when it is indispensible and asserts the nonexistence of an 
entity when it is eliminable. The atheistic attitude is more 
ambitious than the agnostic when both are confronted with a 
superfluous existential claim-here, the agnostic remains silent 
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while the atheist denies. Without claiming that our attribu­
tions are historically accurate, we will call the atheistic version 
'Ockham's razor' and the agnostic version 'Russell's razor'. 
Both philosophers seem to have given agnostic formulations of 
the razor, but occasionally to have used the razor to atheistic 
effect. As we will see, the fact that an agnostic formulation often 
leads to atheistic consequences is no accident; it is part of the 
deep affinities that exist between the two policies.2 

Ockham's razor, thus construed, bids us to accept 
(6) ,..._,(3x) (Fx) 
and to reject 

(7) (3x) (Fx) 
when (6) and (7) are each more than minimally supported by 
what we believe about the world. To see that (6) is simpler 
than (7), consider the question 
(8) (Fa, ,..._,Fa). 
(6) is self-sufficient relative to question (8), while the MEl of 
(7) relative to (8) is the set 

( Fq ::>Fa ) 
Fq ::> ,..._,Fa • 

This means that (6) is simpler than (7). Thus, using Ockham's 
razor leads us to adopt hypotheses that are simpler than those 
obtained by the opposite policy. 

Russell's razor bids us accept 
(g) p 

in preference to 

(10) P & (3x) (Fx), 
2 Boehner, in his Introduction to Ockham: Philosophical Writings, p. xx, says that 

Ockham formulates the razor as 'Plurality is not to be posited without necessity' 
and as 'What can be explained by the assumption of fewer things is vainly ex­
plained by the assumption of more things'. The familiar maxim 'entities must not 
be multiplied without necessity' seems not to occur in Ockham, however. These 
statements of the razor seem more agnostic than atheistic, as are Boehner's own 
formulation and the one given by Moody in 'William of Ockham', p. 307. Thor­
burn's 'The Myth of Ockham's Razor' gives an interesting outline of the wander­
ing history of this principle. Russell urged the elimination of existential claims as 
justified by the increase in probability that accrues to the total theory. See, for 
example, his 'Reply to Criticisms', The Philosophy of Betrand Russell, p. 7o8; 'The 
Relation of Sense Data to Physics', pp. 148, 155; and My Philosophical Development, 
pp. 71, 265, 267-9. 
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where the existential claim in (I o) is dispensable. More 
generally, it says that if two theories have equal explanatory 
power, the failure of one theory to assert an existential claim 
counts in that theory's favour. Russell's razor is an elimination 
rule that at times seems to be justified on grounds of prob­
ability; (g) is more probable than ( 10). But what is its 
connection with simplicity? For one thing, eliminating an 
existential hypothesis opens the door for introducing a uni­
formity hypothesis (i.e., for the denial of the eliminated exis­
tential claim). Here, Russell's razor is justified because it pre­
pares the way for an application of Ockham's razor. Another 
way that Russell's razor is justified has nothing to do with the 
logical form of the hypotheses that it eliminates. Any hypothesis 
that plays no explanatory role-regardless of its logical form 
-is justifiably eliminated. In Section 2.5, I discuss this notion of 
explanatory irrelevance and link it with simplicity. 

Thus, the two razors are intimately related by a theoretical 
policy that allows the eliminability of an existential claim to 
serve as a reason for asserting its negation. If one can show that 
a particular existential posit is not required in a theory, one 
can then go on to deny its existence (assuming that it is not 
required by another accepted theory). A well-known example 
of this transition is the fate suffered by the ether at the hands of 
Einstein's special theory of relativity. In his 1905 paper,3 

Einstein claims to show that his theory renders 'superfluous' 
the introduction of a luminiferous ether, and the success of his 
theory provided the justification of our belief in the nonexistence 
of such an entity. 

Given the link noticed earlier between simplicity and 
homogeneity, it would seem that the simplest hypothesis we 
could make with respect to a predicate family is a hypothesis 
of the form (x)(Fx). When a hypothesis positing such perfect 
uniformity is precluded, simplicity is often maximized by 
minimizing the number of exceptions to perfect homogeneity. 
Thus, the hypothesis 

(3x) [ ( r··-Px) & (z) ( r-.~Fz => z = x)] 

a 'On the Electrodynamics of Moving Bodies', p. 38. Chapter xo of Hesse's 
The Structure of Scientific Inference gives a detailed account of Einstein's use of sim­
plicity and argues that our methodological preference for economy presupposes 
a clustering postulate. 
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claims that there is just one exception, while the hypothesis 

(3x) { ( ---Fx) & (3y) ( ---Fy & x =1= y) 
& (z)[---Fz::::. (x = z v y = z)]} 

posits two exceptions to the uniformity. Notice that the former 
hypothesis is simpler, since 

(3x) (z) (z =1= x ::::. Fz) 

is more informative than 

(3x) (3y) (z) [(z =1= x & z =1= y) ::::. Fz], 

relative to the question 

(Fa, ---Fa). 

This argument also tends to show a way in which simplicity 
favours meagre existential commitments. 

Returning to our analysis of Ockham's razor, an interest­
ing consequence of the relation of hypotheses (6) and (7) to 
question (8) becomes more evident if we rewrite (6) and (7) 
as universal generalizations 

(II) 
and 

( I2) 

(x) ( ---Fx) 

Imagine that these two hypotheses were framed in part on the 
basis of particular facts, such as 

---Fa & ---Fb & "'Fe & ..• 

That is, we have noticed that some of the members of the 
universe of discourse are not F (and have not noticed any that 
are F), and on this basis, we have framed (II) and (I2) as 
rival conjectures. (I I) says that the universe of discourse is 
uniform and homogeneous in that all of the individuals are 
not F. (I 2), together with the evidence on which it is based, 
says that the universe of discourse is nonuniform and hetero­
geneous; even though all of the members of the sample class 
lack F, at least one member of the total class has F. As we saw 
before, (6) is simpler than (7) relative to question (8). Since 
(II) and (I2) are merely trivial rewrites of (6) and (7), the 
same holds for them. Note that this result reinforces that of 
Section 2.I, in which we saw that a heterogeneity hypothesis is 
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less simple than its homogeneity counterpart. Here we see that 
a homogeneity hypothesis is simpler than its negation. 

Just as the fact that (6) is simpler than (7) justifies using 
Ockham's razor instead of the opposite policy, the fact that 
(II) is simpler than (I 2) justifies the following policy of 
enumerative induction over its opposite: 

If each member of the sample class has property P, then 
infer that each member of the total class has P also. 

This maxim looks significantly like a generalization of Reichen­
bach's straight rule, which deals specifically with cases in 
which P is the probability that a given individual will have a 
given property.4 Thus, Ockham's razor, which appears to be a 
policy limited to existential hypotheses, and Reichenbach's 
rule, which bids us assume that the sample class is typical of the 
total class from which it is drawn, are in fact variants of the 
same policy-a policy, as we have seen, that works in the 
interests of simplicity. 

Does this provide us with a justification of the straight rule? 
Clearly not. We have shown only that Reichenbach's straight 
rule leads to hypotheses that are simpler than those yielded by 
the opposite policy. But we have not shown that the straight 
rule yields simpler hypotheses than those yielded by any spe­
cific nonstraight rule. This will be our next task. 

2.3 Reichenbach's Straight Rule 

Suppose we want to infer the relative frequency of indi­
viduals who have property P in a total class and that we know 
that the relative frequency of individuals who have P in a 
sample class is x (where o .;;;; x .;;;; I). The straight rule5 bids us 

4 In fact, the straight rule is phrased in terms of the relative frequencies of 
properties in sets, not in terms of the odds on individuals having properties. I have 
represented the straight rule in this way in order to display its affinities with 
Ockham's razor. 

5 In The Theory of Probability, p. 447, Reichenbach says that the straight rule 
has greater descriptive simplicity than any nonstraight rule. However, he does not 
view descriptive simplicity as having a bearing on the truth of a hypothesis. 
Salmon, in The Foundations of Scientific Itiference, p. 8g, seems right in criticizing 
Reichenbach here, since the straight and nonstraight rules are not empirically 
equivalent, and Reichenbach says that his notion of descriptive simplicity is 
grounds only for choosing between empirically equivalent hypotheses. However, 
Salmon does go on to say (p. 8g) that the straight rule is in some sense the simplest 
of the asymptotic rules. 
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infer that the relative frequency in the total class is x as well.6 
Any nonstraight rule, on the other hand, tells us to conjecture 
that the relative frequency of P in the total class is (x + y) /2 
[where o < (x + y)/2 < I]. Here, y takes values between 
o and I and is a function/ ( ) of the size Cs of the sample class 
and of the size Ct of the total class. 

If Ct is infinite, then y tends to zero as Cs tends to infinity. 
But if Ct is some finite number k, then y tends to zero as C8 

tends to k. Thus, when the sample class simply is the total 
class, y is zero; and any nonstraight rule yields a result iden­
tical with the one yielded by the straight rule. We may express 
this constraint on the function/ ( ) as follows :7 

Limf (Cs, Ct) = o. 
Cs-7 Ct 

The straight rule is generally discussed for the case in which Ct 
is infinite. In what follows, we will discuss it for the more 
general case in which Ct can take any value at all. Proceeding 
in this fashion does not affect the outcome of the analysis; 
whether Ct is infinite or finite, it can be shown that the straight 
rule yields simpler hypotheses than those yielded by any non­
straight rule. 

Where s is the sample class, t the total class, and R( ) a 
relative frequency function taking values between o and I 

inclusive, we may represent the straight rule as instructing us to 
accept the general hypothesis 

6 Discussions of the straight rule usually characterize it as being applied over 
and over in a series of inferences. A sample class s1 is taken from the total class t, 
and the relative frequency of the property in question in s1 is x1• The straight rule 
tells us to infer that the relative frequency intis x1. We then increase the size of the 
sample class by adding to it members that are in the total class. Call this aug­
mented class s2, and let the relative frequency in it be x2. We then discard the pre­
vious inference based on s1, apply the straight rule to s2, and infer that the relative 
frequency in t is x2. This policy is repeated again and again for successively larger 
s;. The sample class grows in size until we reach an s; which is equivalent to the 
total class t. At this point, the straight rule ensures that the value we infer for the 
relative frequency in t is the correct value. 

7 In addition to requiring that the value of the corrective factor converge, we 
usually require that the limit of the relative frequency of successive sample classes 
exist for cases where Ct is infinite; where Ct is finite, some kind of'early convergence' 
is postulated. None of these special assumptions is needed for the purpose of our 
argument. All that we require is that the corrective factor of any nonstraight rule 
is zero when the sample class is the total class and nonzero for at least some cases. 
However, for the sake of representing usual formulations of the problem, we will 
assume the convergence condition to obtain. 
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(13) (x)k){[R(s) = x & x = z] => R(t) = z}. 

Any nonstraight rule yields this quite different conjecture: 

(14) (x)(y)(z){[R(s) = x & f(Cs, Ct) =y 
& z = (x + y)j2] => R(t) = z}.s 

Now consider the question 

What is the relative frequency of property P m the total 
class t? 

We identify this question with its answer schema 

(15) R(t) = y. 

By forming the contribution that (13) and (14) each make 
toward answering question (15), we can construct their re­
spective MEl sets: 

(16) ([R(s) = oc & oc = y] v R(t) = y) 
(17) ([R(s) = oc &f(Cs, Ce) = {J & 

y = (oc + {J)/2] v R(t) = y). 

Since (16) is lower in content than (17), (13) is simpler than 
(14)· 

This result mirrors our intuition that to use the straight rule 
to calculate relative frequencies in the total class, all we need 
know is the relative frequency in the sample class. To apply any 
nonstraight rule here, we must know the sample class relative 
frequency together with the sizes of the sample and total classes. 
Thus, the straight rule is simpler than any nonstraight rule.9 

8 We use these rather verbose representations of the straight and nonstraight 
rules to simplify the comparison of their MEI sets. Our acceptance of (13), for 
example, is of course linked in any application to a requirement of total evidence. 
Where s1 and s2 are successive sample classes of t and where R(s1) = Xl and 
R(s2) = x2 (x1 i= x2), we do not infer, via (13), that R(t) = Xl and R(t) = x2. 
Via a requirement of total evidence, we infer that R(t) = x2. This is spelled out in 
footnote 6. Note also that expressing the straight rule as a hypothesis as in (13), or 
alternatively as a deductive rule of inference ('If R(s) = x, then infer that 
R(t) = x'), may be somewhat misleading. Perhaps a more realistic formulation of 
the straight rule would be: if the proportion in the sample class is n, then infer that 
the best estimate of the relative frequency in the total class is n. This alternative 
formulation would not, however, affect the outcome of our argument. 

9 In 'A Conditional Vindication of the Straight Rule', Hunt shows that 'the 
only rule for inducing [total] population properties from sample properties, in the 
case of actually or potentially finite populations of unknown magnitude, which is 
convergent and whose success does not depend upon correct estimates of the 
[total] population size is the straight rule'. Hunt's result is a special case of our 
discussion above. 
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2.4 Explanations and Predictions 

Until now, we have mainly focused on using simplicity to 
select hypotheses. We now turn to a slightly different, but 
vital, role of simplicity-its use in the construction of explana­
tions. In an explanation, one assembles facts that are already 
believed. Simplicity is not here a partial criterion for belief so 
much as a partial criterion for ordering and selecting items 
that are already in the belief set. 

Hempel's hypothetico-deductive (HD) model of explana­
tionlo is a good starting point for our discussion. In this model, 
there are two broad logical categories of explanations. In 
deductive-nomological explanations, the explanandum is ex­
plained by deducing it from a conjunction of statements of 
covering laws and statements of initial conditions. In inductive­
statistical explanations, the explanadum is explained by showing 
that it has a high degree of probability based on a conjunction 
of statements of statistical laws and statements of initial 
conditions. Both kinds of explanations have the form of argu­
ments-deductive or inductive; both are supposed to have true 
premisses and obey the Principle of Total Evidence (see 
Section 1.8); and both are supposed to explain why an event 
occurred by showing that it was to be expected (either with 
certainty or with high probability) given the truth of the 
explanans statements. It now seems clear that Hempel's con­
ditions are not sufficient for explanation, and we will consider 
later some interesting arguments that they are not necessary 
either. For the present, we will take the HD model as a point 
of departure. 

Because according to the HD view explanations are argu­
ments, we can define the simplicity of an explanation in terms 
of the amount of extra information needed by the explanatory 
laws to yield the explanandum. That is, 'a simple explanation of 
an event' should be understood as shorthand for 'an explana­
tion of an event that uses simple laws'. When the explanation is 
deductive-nomological, the covering laws imply the explanandum 

lO For a brief outline of the hypothetico-deductive account of explanation, see 
Hempel, Philosophy of Natural Science, Chap. 5· Our discussion in this section, as in 
most of Chapter 2, focuses on the explanation of particular events; however, it 
seems plausible to expect some transfer from our results in this area to the sim­
plicity of explanations of generalizations. 
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sentence with the help of the initial condition sentences; this 
is a straightforward instance of how a hypothesis answers 
a question with the help of its MEL In inductive-statistical 
explanation, however, the application of the theory of sim­
plicity to the model of explanation is less automatic. Statistical 
laws together with initial condition statements do not imply 
the explanandum statement; they give it some degree of inductive 
support. Given an inductive-statistical explanation like the 
following 

Prob (A/ B) = n 
B 

============ n] 
A 

we will say that the statistical law explains A with the help of 
extra information B. As in deductive-nomological explanation, 
the initial condition statements correspond to the MEl that 
a hypothesis requires to yield an answer. How our simpli­
city criterion applies to inductive-statistical explanations will 
become clearer in what follows. That such an application is 
possible shows that until now we have been focusing on a 
special case in which hypotheses imply answers to questions. 

Scientists often assume that the fewer the theoretical assump­
tions needed to explain a given event the better, but how are 
we to measure the number of such sentences? Clearly, we 
cannot just count them up, for the number of assumptions may 
be reduced to one by conjunction. What seems to be needed is a 
criterion for individuating statements. Yet even if such a 
criterion were available, what good would it do? Even if 
we could count up the number of assumptions used in an 
explanation, why should fewer assumptions be better than 
more? 

The theory of simplicity furnishes answers to these questions. 
Suppose that the theory T1 can explain the truth of E, and that 
C1 & C2 describes the initial conditions that T1 needs to do this. 
The explanation formed by combining these elements is 

(18) [(C1 & C2) & T1] -+E. 
Now suppose that T1 were challenged by a rival theory T2 
which is also able to explain E but has as its description of 
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boundary conditions the sentence C1. This yields the expla­
nation 

Explanation (19) would be regarded as simpler, because it 
rests on a more meagre foundation of initial condition assump­
tions. The conjecture that simplicity is informativeness mirrors 
this intuition; consider the extra information sets that T1 and 
T2 require to yield E as a logical consequence. For T1 to imply 
E, C1 & C2 must be conjoined, but for T2 to imply E, only C1 

need be conjoined. Thus, T2 requires less extra information 
than does T1 to imply E, and is simpler as a result. It follows 
that explanation (19) is simpler than explanation (18), because 
it is built around a simpler theory.n 

In addition to paucity of assumptions, we also value gen­
erality and breadth of scope in theories and explanations. 
Suppose that we used a generalization of the form 

(20) (x)[(Gx & Hx) ~ Fx] 
to explain the fact that 

Fa. 
The minimum description of boundary conditions that (2o) 
needs to imply ( 2 1) is 

(22) (Ga & Ha) v Fa. 
(2o), (21), and (22) yield the explanation 

{[(Ga & Ha) vFa] & (x)[(Gx & Hx) ~ Fx]} ~Fa. 

However, suppose that (2o) could be supplanted by a more 
general hypothesis, for example by 

(23) (x)(Gx ~ Fx). 
For (23) to imply the explanandum sentence (21), the minimum 
description of boundary conditions is 

(Ga v Fa). 
Clearly, (23) requires less extra information than (2o) does to 
imply (21). So (23) is simpler than (20), and the explanation 
based on the former is simpler than the one based on the latter. 
This shows that the scope and generality of a hypothesis are 

11 In this case, dictates of simplicity concur with dictates of support. By mini­
mizing one's assumptions, one also increases the chances that they are true. 
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manifestations of its simplicity.12 By extension, simple expla­
nations use laws of greater scope and generality. 

The relationship between scope and simplicity is especially 
evident in cases where we contract a theory to avoid refutation. 
Suppose we believe (23) and decide to test it in a new realm of 
experience (e.g., where ',._,H' holds true). So we find an 
individual a which has ',._,H' true of it, and we see whether 
(23) holds true of that individual. What do we do if we dis­
cover, to our chagrin, that a has G but lacks F? One tactic 
(often disdained as ad hoc) is to contract the theory and say that 
it really does not apply to such unusual situations, but only to 
cases which have 'H' true of them. Ifwe then discard (23) and 
accept ( 20) instead, we are sacrificing scope (and simplicity) 
to keep our conjecture afloat. 

Another tempting way to sidestep recalcitrant experience is 
to split our world view and sacrifice a univocal treatment of 
phenomena. Suppose in the above case that a has the property 
J (where 'F' and 'J' are incompatible). In the face of the 
challenge to (23), we might reject it and complicate our theory 
by conjecturing that 

(x){[(Hx & Gx) :::> Fx] & [( ,._,Hx & Gx) :::> Jx]}. 

However, this new proposal has the form of a heterogeneity 
hypothesis, and (23) is its homogeneity counterpart. Here 
again, the new hypothesis sacrifices simplicity in its haste to 
avoid refutation.13 

Such considerations regarding paucity of assumptions and 
breadth of scope illuminate some flaws, discussed by Salmon,14 

in the hypothetico-deductive model of explanation. According 
to the HD account, both of the following would count as 
explanations: 

(24) b melted, because it is a piece of ice in an environment 
where the temperature is greater than 32°F and b is 
shaped like a swan and all swan-shaped pieces of ice 

12 This does not mean that if T implies T' but not conversely, then Tis simpler 
than T'. That our simplicity criterion does not have this property is quite signi­
ficant and will be discussed in Section 2.5. 

13 Lakatos' 'Proofs and Refutations' contains a detailed examination of the 
dynamics of these different strategies. 

14 Wesley Salmon, 'Statistical Explanation'. Salmon's proposal and the appli­
cations he makes of it are considerably more subtle and detailed than the fragment 
I will discuss here. 
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melt in environments where the temperature IS 

greater than g2°F. 
(25) Jones probably will live to be 50 years old, because he 

is now 40 years old and has blue eyes and most 
blue-eyed 40-year-olds live to be 50 years old. 

In both cases, the explanans contains facts that serve no expla­
natory function. Salmon's object is to rule out such explana­
tions in favour of their more reasonable counterparts :15 

(26) b melted, because it is a piece of ice in an environment 
where the temperature is greater than g2°F and all 
pieces of ice in such environments melt. 

Jones will probably live to be 50 years old, because he 
is now 40 years old and most 40-year-olds live to be 
50 years old. 

We can express the generalizations in (24) and (26) as 

(28) (x)[(x is a piece of ice and xis in an environment 
where the temperature is greater than g2°F and xis 
swan-shaped) ;::) x melts] 

and 

(29) (x) [(x is a piece of ice and x 1s m an environment 
where the temperature is greater than 32°F) ;::) x melts]. 

Notice that (29) is simpler than (28) relative to the question 

(a melts, a does not melt). 

Similarly, we can represent the generalizations in (25) and 
(27) as 

(go) Prob (x lives to be 50 years oldjx is now 40 years old 
and has blue eyes) > k 

and 

(g I) Prob (x lives to be 50 years oldjx is now 40 years 
old) > k. 

Here, k is between o and I, say 0·5. Notice that (gi) is simpler 
than (go) because (g I) requires less extra information than (go) 
to explain one of the following: 

15 Although Salmon wants to show that (24) and (25) are not explanations at 
all, the upshot of our discussion will be to show ways in which (24) and (25) are 
bad explanations. 
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(32) (a lives to be 50 years old, a does not live to be 50 
years old). 

Thus, explanation (26) is simpler than explanation (24), and 
explanation (27) is simpler than explanation (25). Our intuit­
ive preference is explicable on grounds of simplicity. 

Just as considerations beyond simplicity are crucial in hypo­
thesis choice in general, so considerations beyond simplicity are 
crucial to the choice of explanations. The following explana­
tion is preferable to (27): 

(33) Jones probably will live to be 50 years old, because he 
is now 40 years old and is in excellent health and most 
40-year-olds in excellent health live to be 50. 

even though the hypothesis 

Prob (x lives to be 50 years oldjx is now 40 years old and x 
is in excellent health) > k 

is less simple than hypothesis (31) relative to question (32). 
This means that our preference for explanation (33) over 
explanation (27) flies in the face of the fact that explanation 
(27) is simpler. It might seem that (33) is a better explana­
tion than (27), because the explanandum is more probable on the 
explanans in (33) than on the explanans in (27). However, Salmon 
persuasively argues that the higher probability in this case is 
merely 'a pleasant byproduct' of the satisfaction of another 
constraint. The real reason is that (33) takes account of more 
relevant information than (27) does. We will return to this 
point later. 

Salmon tries to determine what general policies are involved 
in these preferences by looking at a problem that has tradi­
tionally beset philosophers, like Venn and Reichenbach, who 
hold frequency interpretations of probability. This is the prob­
lem of assigning probabilities to single events. For a frequentist 
to do this, he must associate the single event in question with a 
reference class of events. The problem is that a given event can 
be described in a variety of ways, and each description may 
determine a different reference class. Which of these is the one 
to be used in assigning a probability to the single event? 

As an attempt to explicate an idea of Reichenbach's, 
Salmon offers two constraints on this choice. First, one must 
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choose a reference class that is homogeneous. The intuitive 
idea is that a reference class is homogeneous if there is no statis­
tically relevant way to partition it. For example, partitioning 
the class of 40-year-olds into those with blue eyes and those 
without blue eyes is statistically irrelevant to whether an 
individual will live to be 50, since 

Prob (x lives to be sofx is 40) = 

Prob (x lives to be sofx is 40 and x has blue eyes) 
Prob (x lives to be sofx is 40 and x does not have blue eyes). 

However, the class of 40-year-olds is not a homogeneous 
reference class with respect to whether an individual will live 
to be 50, since partitioning the class of 40-year-olds into those 
individuals with excellent health and those without it is statis­
tically relevant: 

Prob (x lives to be 50/xis 40) =I= 
Prob (x lives to be sofx is 40 and xis in excellent health). 

Thus, satisfying the requirement that the reference class be 
homogeneous implies that one has included in one's ex­
planation all of the facts that are statistically relevant to the 
explanandum. It is on this basis that explanation (33) is better 
than explanation (27). The second constraint Salmon proposes is 
that the homogeneous reference class be the largest one possible. 
This guarantees that no irrelevant facts are thrown into the ex­
planation. The class of 40-year-olds is larger than the class of 
40-year-olds with blue eyes, so explanation (27) is better than 
explanation (25) because (27) relies on a larger reference class. 

These two constraints suffice to reflect the intuitions we have 
about the relative adequacy of explanations (24)-(27) and (33). 
The rule of choosing the largest homogeneous reference class 
helps solve the frequentist's problem of selecting reference 
classes with which to define the probabilities of single events. 
But the solution is only partial; once an initial selection of a 
class is made, the rule defines which subclass or superclass will 
serve as the reference class. But the rule does not tell us which 
of two classes is the reference class if one does not contain the 
other. 

A consequence of Salmon's criteria is that in cases of deduc­
tive-nomological explanation (as opposed to the inductive­
statistical examples we have been discussing), generality and 
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breadth of scope are always to be preferred. That is, an 
explanation of the fact that an individual has B which uses 

(34) (x) (Ax :::> Bx) 
as the explanatory hypothesis is better than one which uses 

(x)[(Ax & Cx) :::> Bx], 
since partitioning the class of things that are A's in terms of 
those that have C and those that lack Cis statistically irrelevant: 

Prob (BjA) = Prob (B/A & C) = r. 

Similarly, an explanation which uses 

(35) (x)[(Ax vCx) :::> Bx] 
as the explanatory hypothesis is better than one which uses (34). 
The superiority of (35) over (34) is a consequence of Salmon's 
theory, and according to our theory (35) is simpler than (34).16 

However, this result may cause problems for Salmon's 
proposal. Even though (35) is simpler than (34), it is not at all 
clear that explanations which use (35) as a covering law will 
always be better than ones which use (34). For example, 
compare explanation (26) with the following: 

b melted, because b is either ice or X and anything that is 
either ice or X melts when placed in an environment where 
the temperature is greater than 32°F. 

Let us assume that X is some substance completely unrelated 
to water, except that it melts at 32°F. This explanation places b 
in a homogeneous reference class larger than the one used in 
( 26). Accordingly, the explanation should be better than ( 26), 
but it isn't. Although the set determined by this explanation is 
homogeneous, it is not natural; the predicate 'ice or X' does not 
determine a natural property or a natural set (see Section 1.8). 
Since ice and X have nothing in common structurally except 
that both melt at 32°F, placing b in this artificial set does not 
help us at all to pinpoint the mechanism that causes melting 
at 32°F. This harks back to Mill's idea that natural kinds are 

16 This consequence goes counter to the intuition expressed in Goodman's 
'Safety, Strength, Simplicity', in which it is argued that an adequate theory of 
simplicity must show that in at least some cases a hypothesis of the form 
(x)(Fx :::> Hx) is simpler than both a hypothesis of the form (x)[(Fx & Gx) :::> Hx] 
and one of the form (x)[(Fx v Gx) :::> Hx]. This apparently counterintuitive 
consequence of our theory is discussed in Section 3.6. 
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indices to individuals having properties. Presumably, explain­
ing why b melts involves placing b in a natural kind that 
serves as an index for melting at 32°F.l7 

This brings out one difference between selecting hypotheses 
for inclusion in the belief set and selecting hypotheses from the 
belief set for use in an explanation. It seems reasonable that we 
should accept (35) in preference to (34) where both are more 
than minimally supported, and this intuition is mirrored within 
the rules for hypothesis choice as a preference for simplicity. 
Yet the choice of (35) over (34) for inclusion in the belief set 
does not imply that if both happen to be believed, an explana­
tion using (35) will be better than one using (34). In fact, the 
desideratum of naturalness can dictate just the opposite. 

The difference between the constraints on believing a hypo­
thesis and those on constructing explanations goes even deeper. 
In choosing hypotheses for inclusion in our belief set, we re­
quire that they be more than minimally supported. However, 
when we select hypotheses from our belief set to use in explana­
tions, we do not select them with the aim of rendering the 
explanandum more than minimally probable. Salmon, in 'Stat­
istical Explanation', and Jeffrey, in 'Statistical Explanation 
vs. Statistical Inference', argue that if we insist on explanations 
conferring a very high (or even a more-than-minimal) proba­
bility on explananda, we are committed to the a priori view that 
either there are no events that happen to be less probable than the 
requisite minimum or such events must be inherently inexplic­
able. One reason to think both alternatives unpalatable is that 
quantum mechanics countenances the existence of inherently 
improbable events and offers an explanation of why they take 
place. Just as we reject the determinist requirement that every 
explanation must confer a probability of I on its explanandum, 
we also should reject the more modest but no less incorrect 
requirement that every explanation must confer a high prob­
ability on its explanandum. A consequence of Salmon's and 
Jeffrey's critiques is that an explanation of an event assigns to 
the event a probability relative to the explanans and thereby 
shows that the event was the result-however improbable and 

17 In fairness to Salmon, I should mention that he recognizes the need for a 
constraint on the reference class which will bring out the role of causal factors in 
statistical explanation (p. 8 I). 

S-C 
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unexpected-of the stochastic processes and initial conditions 
described in the explanans sentences. 

The statistical relevance view thus asserts that an event can 
be explained even when it is extremely improbable and unex­
pected on the totality of evidence. Because most events are 
more probable than not, the oddity of this consequence does not 
often intrude, and Hempel's link between explaining and 
conferring high probability attains its initial plausibility. In 
those cases where the explanandum is improbable, a holistic 
approach to explanation somewhat lessens the oddity of the 
statistical relevance view. In his 'Explanation and Information', 
Greeno has suggested that the adequacy of an explanation of a 
single event is to be partially determined by seeing how well 
the theory it uses explains other events. Most explanations will 
confer some more than minimal probability on the explanandum. 
The fact that the statistical relevance model allows for some 
explanations having an improbable explanandum need not lead 
to the absurdity that every explanation can have an improb­
able explanandum. Rather, the statistical relevance view admits, 
but the Hempelian account precludes, the possibility that the 
improbable can be rendered intelligible within the total fabric 
of our explanations. 

If we agree that some explanations can confer very low 
probabilities on their explananda and accept our constraint on 
acceptance which says that acceptable hypotheses must be 
more than minimally probable on the evidence, then we begin 
to see how acceptance and explanation part ways. That is, it 
is possible that a given hypothesis should explain a body of 
evidence and yet be unacceptable relative to that body of 
evidence. This can come about where Prob (hje) is less thank, 
and Bayes' theorem allows the inference that Prob (ejh) is also 
less than k. The former probability precludes accepting h on 
the basis of e, but the latter does not preclude h's explaining e. 

So far we have given two arguments to show that the con­
straints on acceptance and explanation are not the same. A 
third argument can be made. At times two hypotheses are 
unequally acceptable on a body of evidence and yet equally 
explanatory of that body of evidence. For example, suppose 
that we want to accept a hypothesis about the result of the next 
coin toss. Our evidence is that the coin tossing device is biased 
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towards heads. This allows us to choose the hypothesis 'Heads 
will come up next' in preference to 'Tails will come up next'. 
Yet neither hypothesis in the slightest way explains why the 
coin tossing device is biased towards heads. This is a familiar 
point, much like those used to show the differences between 
explanation and prediction. I bring it up here to further 
undermine the view which claims that the logic of acceptance 
is the logic of inference to the best explanation. In general, each 
of the three arguments just presented denies that 'h is more 
acceptable than h', relative toe' implies or is implied by 'his a 
better explanation than h' of e'. This point will have important 
consequences for our discussion oflinguistic theory in Chapter 3· 

We may summarize our discussion of the statistical relevance 
view as follows. Salmon's requirement that the reference class 
be the largest (homogeneous) one is in fact a simplicity con­
straint. However, in our view, the reference class must be 
natural as well as the largest homogeneous class, and natural­
ness and largeness can at times be at odds with each other. 
Furthermore, we found that hypothesis choice and explana­
tion construction are subject to somewhat different constraints: 
Choosing beliefs involves constraints of more than minimal 
support and simplicity, while constructing explanations from 
the stock of beliefs involves constraints on the reference class of 
homogeneity, simplicity, and naturalness. 

Now let us look at a rather different aspect of our simplicity 
judgements, one involving mathematical equations. Suppose 
that we want to explain why a given variable has a certain 
value in situation a. That is, we want to explain the truth of 

(36) y(a) = c' 

where c' is a constant. To explain (36), we might use the general 
law 

(37) V = j(v1, V2, ••• , Vn). 

The description of initial conditions needed for (37) to explain 
(36) is 

38) [y(a) = c'] v 
[v1(a) = c1 & 

where c1, c2, ... , en are constants. 

& & Vn(a) = Cn], 
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Now consider an explanation built around a different general 
law, one involving fewer variables: 

(39) Y = j' (VI, V2, · • ., Vn-1). 

For (39) to yield an explanation of (36), the following descrip­
tion of initial conditions must be conjoined with it: 

l40) [y(a) = c'] v 
[v1(a) = c1 & v2(a) = c2 & & Vn-l(a) = Cn-1]· 

(40) has less content than (38), so equation (39) is more infor­
mative than equation (37). We therefore conclude that (39) 
is simpler than (3 7). In general, this shows that the fewer 
variables in an equation the simpler it is. 

Both the link between simplicity and generality and the one 
between simplicity and the number of variables in an equation 
manifest themselves in our belief that invariance is a mark of 
simplicity.18 In believing that a property P is invariant with 
respect to a property Q, we believe that an equation relating 
the value of P to other variables need not include a parameter 
representing the value of Q. Similarly, such an equation is 
fully general in that it applies to any situation regardless of the 
value of Qin that situation. 

The result above concerning the number of variables in an 
equation enables us to mirror the related fact that in an explica­
tion the fewer the number of places in the explicans predicate, 
the simpler it is. Consider two competing explications of the 
predicate Rx: 

(41a) (x) (y) (Pxy iff Rx) 

(x) (y) (z) (Qxyz iff Rx) .19 

Each of the explicans predicates is linked with its characteristic 
function in the usual way: 

(x)(y) [Pxy iff F(x,y) = o] 
(x)(y)(z)[Qxyz iffG(x,y, z) = o]. 

18 Post, in 'Simplicity and Scientific Theories', emphasizes the importance of 
invariance as a mark of simplicity. 

19 We assume that the ranges of the quantifiers 'x', )', and 'z' are specified 
elsewhere in the proposed explications. In our example, the explicans predicates 
have more places than the explicandum predicate. This is quite usual (witness our 
own theory of simplicity) and is the result of making explicit what was only tacit 
in the area being explicated. 
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So we can rewrite (4ra) and (42a) equivalently as 

\4rb) (x)(y)[F(x,y) = o iff Rx] 
(42b) (x)(y)(z)[G(x,y, z) = o iff Rx]. 
(4rb) will require less extra information than (42b) to answer 
the question 

(Ra, r-..~Ra), 

so (41a) is a simpler explication than (42a). Thus, the fewer 
the number of places in an explicans predicate, the simpler the 
explication. 

Our recent reflections on the simplicity of explanations and 
theories carry over into the realm of predictions. For our 
present purposes, we can assume that predictions are argu­
ments in which the 'answer to the question' is not known in 
advance. In a prediction, we want to know whether or not a 
certain sentence Pis true. To find out, we try to make use of 
laws and other information that we believe and to deduce P 
or deduce r-..~P from these other statements. 

Suppose that we want to know whether P is true, and that 
theoretical statement T1, together with boundary description 
cl, answers this question: 

(43) (C1 & T1) -+ ±P, 
where both C1 and T1 are members of our belief set.2o Now 
suppose that this prediction is reinforced by another theory T 2 

together with its own description of boundary conditions Cz: 

where we believe Cz and Tz as well. (43) and (44) may be 
combined into a single inference, which triangulates2l the pre­
diction of ±P: 

(45) [(C1 & T1) v (Cz & Tz)] -+ ±P. 
(45) triangulates the prediction of ±P, since T1 and Tz both 
lead to this common conclusion. We value predictions that do 
this, and sometimes even find them more persuasive than 
predictions that do not. The preference for triangulated 

20 '±P' is a schema for two forms: For all occurrences of'±P' in a given con­
text, one either should delete every occurrence of'±' or every occurrence of'+'. 

21 A prediction is triangulated when it is implied by each of several different 
pairs <Tt, C;), where T; is a theory and C; is its description of initial conditions. 
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predictions over untriangulated ones is mirrored in our theory. 
For T1 to imply ±P, C1 must be conjoined to it; but for 
T1 & T2 to imply ±P, C1 v C2 must be conjoined. Hence, 
triangulated predictions depend on less extra information than 
their untriangulated counterparts, and as a result they are 
simpler. 

2.5 The Problem of Logical Strength 

Logical strength seems to play an important part in our 
choice of hypotheses. Given two hypotheses Hand H' such that 
H implies H' (but not conversely), we sometimes seem to prefer 
H over H' because H is logically stronger; but the precise 
significance of logical strength is difficult to pinpoint. Some­
times the fact that H implies H' counts as an asset of H; other 
times it counts as a liability. To solve the problem of logical 
strength, we must determine what underlies this difference.22 

In an inductive logic where logical strength and consistency 
with the evidence are the only two criteria of choice, greater 
strength is always to be preferred. On the other hand, in an 
inductive logic where high probability is the only criterion of 
choice, greater strength is never to be preferred; one always 
opts for the weaker hypothesis. I have argued in Section 1.9 
that both of these policies are manifestly unrealistic. Our 
inferential behaviour seems to be a mixture of prudence and 
audacity; any policy which says eitherthatprudenceisall or that 
audacity is all must be rejected as fundamentally inadequate. 

Once we recognize the tension between safety and risk, it 
becomes tempting to set up a system of rules which leads to a 
compromise between these opposing attractions. We might 
require that each competing hypothesis be more than mini­
mally probable but that we choose the strongest hypothesis 
from the group. That is, we choose the most improbable of 
the more-than-minimally probable. However, this model is 
fatally flawed. Imagine a choice situation in which hypothesis 
His supported to a degree h greater than the minimum degree 
k. We can trivally construct a competitor H' out of Has follows. 
Let H' be H & A, where A is a hypothesis about the outcome of 
a coin toss. Fix A so that the degree of support h' of H' is such 

22 This problem is sometimes posed as a criticism of Popper's theory of sim­
plicity. See, for example, Hempel's Philosophy qf Natural Science, pp. 44, 45· 
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that h > h' > k. In this case, the above rules tell us to choose 
H' over H, since both are more than minimally supported, 
and H' is logically stronger than H. 

This particular model seems to be incorrect, because it fails to 
distinguish between good and bad logical strength. If we want 
a law of refraction, we prefer Snell's Law over Snell's Law 
conjoined with coin-toss hypothesis. On the other hand, want­
ing a law of refraction will lead us to prefer Fermat's Law to 
Snell's Law. In the former case, theextrastrengthofthestronger 
hypothesis is bad; in the latter case, the extra strength of the 
stronger hypothesis is good. Our compromise model of 'sup­
port + logical strength' is as incapable of mirroring this aspect 
of our inferential behaviour as were each of the one-dimen­
sional models mentioned above. The problem remains unsolved. 

Our measure of simplicity is not equivalent to a measure of 
logical strength. As we have seen, incompatible hypotheses are 
comparable on grounds of simplicity; they would not be com­
parable if simplicity were merely logical strength. Moreover, it 
is possible to exhibit pairs of hypotheses H and H' where H 
implies H' (but not conversely) and yet Hand H' are equally 
simple. Thus, even within the restricted domain of hypotheses 
that are related by '_,..', a simplicity ordering is not always the 
same as an ordering in terms of logical strength.23 

This difference between simplicity and logical strength 
provides a solution to the problem we have been considering. 
Given any two hypotheses H and H' where H implies H' (but 
not conversely), the strength that H has over and above that 
possessed by H' we will call its extra strength. Our simplicity 
criterion has the following property. If the extra strength that 
H has over H' is good, then H will be simpler than H'; but if 
the extra strength that Hhas over H' is bad, then Hand H' will 
be equally simple. In the former case, if Hand H' are each more 
than minimally supported, our rules tell us to choose H. In the 
latter case, if H and H' are each more than minimally 
supported, our rules tell us to choose H' (since it is better 

23 This property of the theory of simplicity distinguishes the notion of informa­
tiveness I develop from the idea of semantic information that motivates Bar-Hillel 
and Carnap's 'Outline of a Theory of Semantic Information', Putnam's 'For­
malization of the Concept of" About" ', and Hintikka's 'On Semantic Information'. 
The moving idea of these proposals is the Popperian one that the more possi­
bilities a sentence rules out, the more informative it is. 
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supported). Thus, given that both hypotheses are more than 
minimally supported, our rules tell us to choose H just in case 
the extra strength in His good, but to choose H' just in case 
the extra strength in His bad. This outcome seems to be highly 
realistic. 

I can offer no general proof that the simplicity criterion has 
this property, since our distinction between good and bad 
strength is presystematic and informal. The absence of a general 
proof is a characteristic of any explication and is not a special 
failing of the simplicity criterion. In the remainder of this 
section, I apply the simplicity criterion to several rather 
interesting cases and show that it yields satisfactory results. 

Snell's Law and Fermat's Law are well-known examples of a 
pair of hypotheses H and H' where H implies H' (but not 
conversely) and where the extra strength in His good. Consider 
the path of a ray of light as it passes from one medium into 
another. Snell's Law is given by 

sm <X 

sin fJ = p, 

where p is the characteristic refraction index of the two media 
(see Figure r). Fermat's Law, the famous 'Law of Least Time', 

[\ 
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Medium I 

Medium 2 

Fig. 1. The path of a ray of light as it passes from one medium into another 
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implies Snell's Law (but not conversely). Deducible from 
Fermat's Law is the equation 

(47) 
sin e< vr 
--=-=f-l 
sin f3 V2 

where vr and v2 are the characteristic velocities oflight through 
the media in question. 

Now let us compare the simplicity of (46) and (47) relative 
to the question 

(48) What is the value of the variable __ in situations?, 

where the blank may be filled in with 'e<', '{3', or '1-l'. It makes no 
difference which one we choose. Let's take 'e<'. For (46) to 
answer this question, we must conjoin a disjunction to it: the 
value of e<, or the value of f3 and the value of f-l· That is, the 
MEl of (46) relative to question (48) is the set 

(49) ([e< = kr] v [/3 = k2 & f-l = ka]), 
where kr, k2, and ka are constants. For (47) to answer question 
(48), we must conjoin to it a disjunction: the value of e<, or the 
values of f3 and f-l, or the values of {3, vr, and v2. The MEl of 
(47) relative to (48) is the set 

(50 ([e< = kr] v [/3 = k2 & f-l = ka] 
V [{3 = ka & VI = k4 & V2 = k5]), 

where k4 and k5 are also constants. Applying the rule for com­
paring the MEls, we find that MEl (50) is lower in content 
than MEl,(49). Hence, Fermat's Law is simpler than Snell's 
Law.24 

In contrast, let us compare Snell's Law, (46), to the hypothesis 

(51) Sill !X & . h" ---;--{3 = f-l snow IS w Ite. 
Sill 

According to the simplicity criterion, (46) and (51) are equally 
simple, because they can be compared only relative to questions 
about the value of variables that essentially occur in both of 
them. (46) and (51) are equally informative relative to ques­
tions about the values of e<, {3, and f-l· 

24 Strictly speaking, we have shown that a consequence of Fermat's Law is 
simpler than Snell's Law. However, since in our theory a consequence of a hypo­
thesis is never simpler than the hypothesis itself, it follows that Fermat's Law is 
simpler than Snell's Law. 
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Now suppose that Snell's Law and (51) are both more than 
minimally supported in some choice situation. They are equally 
simple, so no choice is possible on that basis. In this case, our 
rules tell us to choose the better supported hypothesis, Snell's 
Law. Notice that we do not opt for greater logical strength, 
because it brings us no gain in simplicity. On the other hand, if 
we suppose that Snell's Law and Fermat's Law are both more 
than minimally supported in some choice situation, our rules 
bid us choose Fermat's Law over Snell's on grounds of sim­
plicity. Here we do opt for greater logical strength, because it 
brings us gains in simplicity. 

Since both Fermat's Law and (51) imply Snell's Law, both 
have the form 

Snell's Law & X. 

We just saw that when X is filled in to turn (52) into Fermat's 
Law, the resulting instance of (52) is simpler than Snell's Law. 
Yet, when X is filled in with 'snow is white', the resulting 
instance of (52) and Snell's Law are equally simple. What is 
going on in the theory of simplicity that determines this dif­
ference? (52) can be turned into Fermat's Law in a variety of 
ways, depending on what sentence is substituted for X. But no 
matter which sentence is substituted, it will contain an essen­
tially occurring predicate which also essentially occurs in Snell's 
Law. On the other hand, if (52) is turned into (51), this no 
longer holds. That is, there is at least one substitute for X 
(namely 'snow is white') which contains no essentially' occurring 
predicate that also essentially occurs in Snell's Law. This 
difference is the source of our initial intuition that the extra 
strength that (51) has over Snell's Law is somehow irrelevant 
and useless, while the extra strength of Fermat's Law over 
Snell's Law is relevant to the subject matter already dealt with 
in Snell's Law. 

At this juncture, we can give a general characterization of the 
notion of good extra strength by using the idea of epistemic 
relevance defined in Section 1.6. Consider a case where H 
implies H' (but not conversely) and where Q)s a question that 
is an appropriate (typical) standard against which to assess the 
simplicity of H'. Imagine any rewrite of H in the form H' & X. 
H will have good extra strength over H' just in case X is 
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epistemically relevant to Qin that it helps H' answer Q. This is 
another way of saying that H has good extra strength over H' 
when H >. H' relative to Q. As noted above, a necessary 
condition for H to have good extra strength over H' is that 
H' and every substitution instance of X share an essentially 
occurring predicate. 

In situations of hypothesis choice, we are willing to run the 
risk of accepting a hypothesis having greater logical strength 
over one having less only if we gain in simplicity. Thus, in the 
tension between prudence and risk, we take risks only in those 
cases where the risks bring gains in simplicity. This is quite 
different from obeying an inferential policy which bids us say 
as much as possible no matter how our beliefs are complicated 
in the process. 

In Section 2.2, I discussed the simplicity of Ockham's and 
Russell's razors. We saw that both an agnostic and an atheistic 
attitude towards superfluous entities are vindicated by our 
theory, and that deep affinities in fact exist between the two 
policies. I now want to show that our discussion of logical 
strength throws further light on the virtues of Russell's razor. 
According to Russell's razor, superfluous entities are to be 
eliminated when they are theoretically dispensable. The razor 
bids us choose 

(53) p 

over 

(54) P & (3x)(Fx) 

when (3x) (Fx) is irrelevant to P. The existential claim is 
irrelevant when it does not help P to explain or predict any­
thing that is part of the subject matter of P. Put within our 
theory, this will be the case when there is no question Q that is 
typical of P relative to which (54) is simpler than (53). If 
(3x) (Fx) is irrelevant to Pin this sense, then (54) will have bad 
extra strength over (53). We therefore choose (53) over (54), 
and the grounds for eliminating the existential claim are 
explained by our theory of simplicity.25 

25 Note that good extra strength, like our initial explication of simplicity, is a 
question-relative concept. Thus, in determining whether adding a statement to a 
theory would be a gain in simplicity, we must first determine what the appro­
priate questions are in assessing the theory's simplicity. 
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The accuracy of one hypothesis over another provides another 
case of good extra strength. Consider two hypotheses that are 
compatible but differ as to their degree of accuracy: 

(55) 3 <y < 8 

(56) 7 <y < 8, 
where (55) and (56) both give a value of a variable y in some 
particular situation. (55) is less accurate than (56). We may 
rewrite (56) as a conjunction of (55) and some other hypo­
thesis. (56) is equivalent to 

(3 <y < 8) & '""(3 <Y < 7). 
Notice that this rewrite of (56) as a conjunction of (55) and 
some other hypothesis X is such that X and (55) have an essen­
tially occurring variable (i.e., )') in common, and any such 
rewrite would have this property as well. We conclude that 
the extra strength of (56) is good, and so (56) is simpler 
than (55). 

Linking simplicity and accuracy runs counter to the general 
point of view which links simplicity and high probability.26 
Admittedly, a hypothesis such as )' = 6·7' looks simpler in 
some preformal sense than the hypothesis )' = 6·694',27 but 
the apparent counterintuitiveness of our theory in this case may 
be dispelled by considering the role of simplicity within 
hypothesis choice in general. Given two hypotheses that are 
compatible but differ in accuracy, we can invoke simplicity as 
a grounds for choice only if they are each more than minimally 
supported. If, for example, our measurements are not accurate 
enough to yield a value for y that is accurate to three decimal 
places, we then dismiss )' = 6·6g4' not because of simplicity, 
but because it imputes more accuracy to the data than the data 
can sustain. Simplicity comes to bear when the data are pre­
cise enough to warrant either hypothesis. In this case, it seems 
that we should opt for the more accurate one in conformity 
with the scientific practice of giving as accurate an account as 
the data permit. However, in cases where the data do not 
sustain both hypotheses, no choice on grounds of simplicity is 

26 See, for example, Jeffreys' Scientific Iriference, Kemeny's 'The Use of Simplicity 
in Induction', and Quine's 'Simple Theories of a Complex World'. 

27 The sense in which )' = 6·7' is a simpler inscription than )' = 6·694' can be 
mirrored in our theory. See Section 4·4· 
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required. We dismiss over-ambitious hypotheses because their 
support falls below the requisite minimum. 

If our explication of good extra strength is adequate, I think 
that we may conclude that it is misleading to say that logical 
strength per se is a desideratum in our inferential behaviour. 
There are times when we reject hypotheses having greater 
strength in favour of safer alternatives; when we do in fact 
choose hypotheses that happen to have greater strength than 
the alternatives, we do so because greater strength happens to 
coincide with greater simplicity. 

2.6 More on Mathematical Equations 

So far, we have measured the simplicity of hypotheses repre­
sented as mathematical equations by considering how well they 
answer questions about the values of variables. Although this 
technique seems to capture fairly well the informativeness of 
logical formulae, it is fundamentally inadequate when we come 
to assess the informativeness of mathematical equations. 
Mathematical equations do not merely enable us to calculate 
the value of one variable given the values of the others. They 
also characterize the relationships between variables and 
enable us to compute how any variable changes relative to the 
others. This means that in considering the informativeness of 
an equation we must attend to how informative it is about the 
derivatives of the variables as well as about the values of the 
variables themselves. Thus, we will use the following question 
form to compare the informativeness of continuous and dis­
continuous polynomials: 

(57) What is the nth derivative ofy at x =a? 

Here n may be replaced by o, 1, or any integer. If it is replaced 
by o, (57) is to be construed as asking for the value of y at 
x = a. Introducing this new question is not a major departure 
from our previous policy, in so far as our apparatus for com­
paring the simplicity of hypotheses still holds sway. What is 
new is that we have acknowledged that any P-system which is 
rich enough to sustain comparisons of the simplicity of mathe­
matical equations (even of the elementary sort we will deal 
with in what follows) must include natural predicates other 
than those concerning the value of variables. 
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Before considering the relative simplicity of actual equations, 
let us consider the relative simplicity of conjectures about the 
form that an equation takes. Popper's theory of simplicity is 
able to account for the relative simplicity of the following two 
hypotheses by appealing to his general doctrine offalsification: 

(58) The equation relating x andy is linear 

(59) The equation relating x andy is circular. 

Popper points out that (58) requires two data points and that 
(59) requires three data points to answer the question: 

What is the equation relating x and v? 

Another way of saying this is that hypothesis (58) is falsifiable 
by three data points while hypothesis (59) requires four data 
points to falsify it.2s I entirely agree with this analysis, and 
Popper's account obviously fits into the general dictates of our 
theory. But Popper's falsificationist views cannot account for 
the simplicity of 

over that of 
y = 3X + 6 

y = 5X4 + 4X2 - 75X + 168. 
Each of these equations is falsifiable by one point, since that 
point may not lie on the unique curve that each defines. 
Popper's theory, although it can handle some conjectures about 
the general form that an equation will take, cannot handle 
equations themselves. 

We saw in Section 2.1 that a change hypothesis is less simple 
than its no-change counterpart. This conclusion obtains for 
mathematical equations as well. Consider the no-change 
hypothesis 

(6o) y=c 

and the change hypothesis 

(61) y=ciffx<;b 
v = c' iff x > b. 

Here c and c' are constants whose values are given. Now 
consider (6o) and (61) relative to the question 

(62) What is the value ofy at x =a? 

28 Kneale's Probability and Induction, pp. 228-30, offers the same explanation for 
the greater simplicity of (58) over (59). For Popper's theory, see his Logic qf 
Scientific Discovery, particularly Chap. 7· 
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(6o) needs no additional information to answer this question. 
However, for (61) to answer question (62), we must first know 
whether or not a is greater than b. So (6o) is more informative, 
and hence simpler, than (6!).29 

This result precisely parallels our discussion of homogeneity j 
heterogeneity hypotheses in Section 2. I. Indeed, if the variable 
x represents time, then ( 6 I) is a change hypothesis and ( 6o) is 

y 

c 

----------------r-----------------~x 

Fig. 2. A perspicuous representation of the equation)!= c', where x andy are 
natural properties 

its no-change counterpart. In fact, if we also let they variable 
represent emerald colour and the point b denote the year 
2000, equations (6o) and (61), respectively, represent the 
hypotheses 'All emeralds are green' and 'All emeralds are 
grue'. 

How would we choose a coordinate system to represent the 
two equations graphically? A completely natural method is to 
let the x-axis represent time and they-axis represent emerald 
colours. Equation (6o) would be represented as Figure 2 and 

29 Notice that this simplicity ordering is preserved if we consider (6o) and (6r) 
relative to questions about the derivatives ofy with respect to x. 
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equation (6r) as Figure 3· However, there are other ways of 
representing the hypotheses. For example, if we let the x-axis 
represent time and they-axis represent emerald grulers, (6o) 
would be represented by Figure 3 and equation (6r) by Figure 2. 

The first method of representation is undoubtedly the more 

y 

c 

c' 

b X 

Fig. g. A perspicuous representation of the equation )! = c iff x < b & _v = c' 
iff x > b', where x andy are natural properties 

natural one, and the fact that we prefer it reveals an important 
aspect of our penchant for perspicuous notation. We select coor­
dinate systems so that 'deep' properties, such as the simplicity 
of hypotheses, are manifested in 'surface' properties, such as 
whether a line is broken or not. This technique of representa­
tion seems so obvious as to be unworthy of mention, until we 
notice that from our intuitions about the simplicity of equations 
or hypotheses it is a further step to deciding what coordinate 
system or choice of notation to use in their representation. We 
will discuss this phenomenon again in Sections 3·5 and 4·5· 

Now let us consider another pair of straight-line equations 
that are related in the same way as are (6o) and (6r): 

v=mx+d 
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y = mx + d iff x < b 
v = m'x + d' iff x >b. 

Here m, d, m', d', and b are constants whose values are given. 
By our policy of choosing perspicuous representations, equa­
tions (63) and (64) are respectively represented in Figures 
4 and 5· 

y 

Fig. 4· A perspicuous representation of the equation )1 = mx + d', where x and 
are natural properties 

Notice that (63) and (64) are equally informative relative to a 
question about the value ofy, because for either hypothesis to 
imply an answer, the value of x at the point in question must be 
conjoined with it. However, this parity breaks down once we 
begin considering questions about the derivatives of y. The first 
derivative of y in equation (63) is a constant, while the first 
derivative of y in (64) is not defined at point b, and has one 
value for points x such that x < b and another value for points 
x such that x > b. Thus, relative to a question about the first 
derivative of y at an arbitrary point x = a, (63) is more infor­
mative than (64). The verdict favouring (63) over (64) holds 
for all further questions about the value of the nth derivative 
ofy at x =a. (63) can answer a question about any derivative 
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y 

Fig. 5· A perspicuous representation of the equation )' = mx + d iff x < b & 
= m' x + d' iff x > h', where x andy are natural properties 

of y without needing any extra information, while (64) will 
always require extra information to yield an answer. We 
conclude that (63) is simpler than (64). 

This result obtains for any continuous polynomial C and its 
discontinous counterpart D, for the derivatives ofy in equation 
C eventually go to zero while the derivatives ofy in equation D 
never become uniformly constant. This means that there is at 
best a finite number of questions such that C =. D and an 
infinite number of questions such that C >.D. Therefore, C 
must be simpler than D, no matter what the order of the 
polynomials.3o Similar results could be obtained for equations 
other than polynomials, so we may conclude that a continous 
curve is simpler than its discontinuous counterpart. This does 
not mean, however, that we are never justified in accepting a 
discontinuous hypothesis over its continuous counterpart. A 

30 An argument similar to this one would also show that where n is an integer 
and m is not, )! = xn' is simpler than ) = xm', relative to a battery of questions 
about the derivatives ofy. 
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scientist may be justified in adopting the point of view that 
certain phenomena have discontinuous properties by the quite 
separate criterion of support or by simplicity considerations 
arising out of a broader theoretical context. 

Now let us consider any two continuous polynomials Nand 
M of order n and m, respectively. Assuming that n > m, we 
proceed to compare N and M relative to a series of questions, 
first about the value of y, then about the first derivative of y, 
then about the second derivative of y, and so on. For N, the 
first n questions will be such that the value of x at x = a must 
be conjoined to N for it to yield an answer. N will be able to 
answer all of the subsequent questions without any outside 
help, since the nth and greater derivatives of y are constants. 
For M, the first m questions will be such that the value of x at 
x =a must be plugged into M for it to imply an answer. 
Relative to the rest of the questions considered, M will be 
self-sufficient. 

Since n > m, there will be some questions such that M is self­
sufficient relative to them, but N is not. In fact, there will be 
n - m questions relative to which M is more informative than 
N, but no question such that N is more informative than M. 
According to our theory of simplicity, then, M is simpler than 
N. Hence, the lower the order of a continuous polynomial, 
the simpler it is.a1 

Another intuition about the simplicity of equations that is 
amenable to our treatment is that circles are supposed to be 
simpler than ellipses. Consider how a specific circle hypothesis 
C and a specific ellipse hypothesis E would fare relative to 
either of the following questions: 

What is the distance from the centre to point a on the curve? 
What is the curvature of the curve at point a? 

C requires no extra information to answer either question. For 
E to yield an answer, some extra information is needed-we 

31 As an example, let N be 'x4- 3x3 + 32' and let M be 'xZ + 24X- 5'. 
According to what we have just said, there should be n - m, or two, questions 
such that M is more informative than N, but no question for which this ordering i~ 
reversed. For Nand M to answer questions about the oth and 1st derivatives, both 
require that the value of x at x = a be conjoineC:. For the 2nd and 3rd derivatives, 
M requires no extra information to yield an answer, but N does. For all subsequent 
derivatives, neither hypothesis requires any extra information. 
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must know the coordinates of a. It follows that Cis simpler than 
E relative to either question.32 

The two questions above, in the way they are presently 
formulated, depart somewhat from the kinds of questions 
considered previously. They are not about the value of the 
variables that occur in the equations C and E, nor are they 
about the value of a derivative of these variables. This shows 
that a P-system consisting only of questions about the values 
and derivatives of variables cannot sustain comparisons between 
the simplicity of ellipse and circle hypotheses, while a P-system 
including either of the above two questions can. Finding out 
which properties are regarded as natural is just as much a job 
for the theory of simplicity as is discovering which hypotheses 
are simpler than others. In this case, we have used our in­
tuitions about the simplicity of hypotheses to partially recon­
struct a P-system on which such intuitions could rest. 

It might be useful to reflect for a moment on the circum­
stances wherein our criterion of simplicity comes to bear in 
choosing between rival equations. In our outline of a theory of 
hypothesis choice, simplicity is balanced against support. In 
choosing between rival equations, interpreting 'support' as 
meaning 'goodness-of-fit' makes the role of simplicity more 
intuitive. Consider any n data points gathered from experiments 
and used as the basis for a general hypothesis about the rela­
tionship of the variables involved. Assume that there are two 
variables and that the data points are ordered pairs of numbers. 
In general, for any n data points there is a polynomial of order 
n - 1 which has perfect goodness-of-fit for those n points. For 
example, given two data points, there is a first-order equation 
(i.e., a straight line) which passes through both of them. Thus, 
we can always come up with perfect goodness-of-fit by accept­
ing hypotheses of sufficiently high order. 

However, even though we desire goodness-of-fit, we also 
show a preference for lower order equations. In this section, 
we have seen that the order of a polynomial is inversely related 
to its simplicity, given our conjecture that simplicity is infor­
mativeness. Thus, there is a tension between goodness-of-fit and 

32 Note that both questions have very natural physical interpretations where the 
competition between C and E takes the form of a debate over the orbit path of the 
earth around the sun. 
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simplicity. The former pulls towards higher order equations; 
the latter draws us towards lower order ones.aa Our rules for 
hypothesis choice demand that these two tendencies be balanced 
off. 

Based on our knowledge of the experimental conditions, we 
decide that any viable hypothesis must have more than some 
minimum degree of goodness-of-fit. The relative accuracy of 
the apparatus used, for example, may lead us to believe that 
any equation must fit the data points within certain limits. 
Given that two or more equations fit the data points to a degree 
greater than the minimum, we then take the simplest. Con­
versely, if two equations are equally simple, we choose the one 
which has better goodness-of-fit. 

Such considerations relating specifically to equations accord 
well with our more general conception of how competing 
hypotheses are evaluated, but in the context of the curve­
fitting problem, we do not have to leave the idea of support on 
a purely intuitive and informal level. Here at least, we can take 
the theory of hypothesis choice at its word, and it seems reason­
able to suppose that our inferential behaviour in this context 
may be adequately explicated as a policy whose two components 
are support and simplicity. 

The theory of simplicity is open-ended. Presumably, more 
simplicity judgements on pairs of hypotheses can be mirrored 
within the theory, and some ofthesejudgements would involve 
using questions about mathematical properties that go well 
beyond the few examples (i.e., value of a variable, value of a 
derivative, radius, curvature) that have actually been men­
tioned. Although the kinds of examples given in this section are 
not exhaustive, it would be wrong to think that the theory is 
adequate only if every pair of equations can be definitively 
compared for simplicity by our theory. Some equations will 
have such thoroughly different values that the supporting 
evidence, and not dictates of simplicity, is the relevant standard 
of choice. Also, some equations are simple because of the laws 
in which they are embedded, and one cannot expect that this 
contextual source of simplicity will always manifest itself in the 

33 This does not mean that for any set of data points, an equation of order 
n + 1 has better goodness-of-fit than an equation of order n. Sometimes an 
increase in order will result in worse goodness-of-fit over the short run. 
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hypotheses considered in isolation. Nevertheless, these caveats 
do not obscure the fact that the examples given in this section 
are few and far from diverse. Consequently, the degree to which 
the theory applies to and illuminates this area remains an open 
question. 

2.7 The Order of Quantifiers 

One of the properties of the rules given in Section I ·4 for 
constructing the contribution that a hypothesis makes to 
answering a question is that hypotheses that differ only in the 
order of their quantifiers make the same contribution towards 
answering a given question. This would suggest that 

(x)(3y)( . .. ) 

would have to be just as simple as 

(66) (3y) (x) ( . .. ), 

since they would end up being equally informative. Such a 
consequence would count against any theory of simplicity, 
because the order of quantifiers has consequences for the 
existential commitments of a hypothesis; and surely this is one 
of the factors that any theory of simplicity should be sensitive 
to. 

However, the theory provides a way to understand the 
difference in simplicity between hypotheses that differ only 
with respect to the order of their quantifiers. Let's take (65) 
and (66) as an example, and consider how they could conceiv­
ably differ in truth value. Since (66) implies (65), we must 
look at the case in which (66) is false and (65) is true. In such a 
world, there would have to be at least two ys such that (65) is 
true. On the other hand, in a world where (66) is true (and, 
hence, (65) is true), we are committed to the existence of only 
one y. Thus, in so far as (65) and (66) differ, (65) makes more 
existential commitments than (66). This provides us with a 
reason-which appeals to our intuitions and is vindicated by 
the theory-for saying that (66) is simpler than (65). 

We can generalize this result by saying that moving an 
existential quantifier from the right to the left of a universal 
quantifier yields a gain in simplicity. Of course, some pairs of 
hypotheses differ only with respect to the order of their quan-
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tifiers, yet their simplicity ordering is not determined by this 
result. For example, how are we to handle 

(67) (x)(3y)(w)(z)(3v)( .. . ) 
and 

(68) (x) (w)(3y) (3v) (z) ( ... ) ? 

Here, we are faced with another weighting problem. We must 
decide which is more important, the loss in simplicity that 
comes from moving the quantifier '3y' one place to the right 
or the gain in simplicity that comes from moving the quantifier 
'3v' one place to the left. Once we decide this, perhaps by 
consulting theoretical issues that occur in a wider context, we 
can compare the simplicity of (67) and (68) as before. 

Our conclusion about the order of quantifiers can also be 
derived via the heuristic device sometimes used to introduce 
the idea of functional normal forms.34 The hypotheses 

(6ga) (x) (y) (z) (3w) (Fxyzw) 
and 

(7oa) (x) (3w) (y) (z) (Fxyzw) 
differ in that in (6ga), one's choice ofw turns on one's choice of 
x,y, and z; while in (7oa) one's choice ofw turns only on one's 
choice of x. If we allow the variables 'G' and 'H' to range over 
functions, we can express this difference as follows: 

(6gb) (3G) (x) (y) (z) [G(x,y, z) = w & Fxyzw] 
(7ob) (3H)(x)(y)(z)[H(x) = w & Fxyzw]. 
By existential instantiation of (6gb) and ( 7ob), we get 

(6gc) (x) (y) (z) [g(x,y, z) = w & Fxyzw] 
(7oc) (x)(y)(z)[h(x) = w & Fxyzw]. 
If we compare the simplicity of (6gc) and ( 7oc) relative to the 
question 

What is the value of 'w' in situation s? 

(7oc) will be simpler. This is an example of the result (obtained 
in Section 2.4) indicating that the fewer the number of vari­
ables in an equation, the simpler it is. 

34 See Quine's Methods of Logic, p. 186. The line of argument is only het~ristic, 
since it presupposes the axiom of choice. 
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Taken together, these two arguments make clear how the 
order of quantifiers affects simplicity. By moving an existential 
quantifier from the right to the left of a universal quantifier, 
one reduces one's existential commitments (in the sense 
indicated) and also reduces the number of previous universal 
instantiations on which the instantiation of the existential 
quantifier depends. 

2.8 Logical Simplicity 

The theory of simplicity applies to hypotheses without regard 
to their subject matter. Thus, conjectures in mathematics, 
sufficiently supported by incomplete evidence, could be selected 
for their simplicity. However, mathematicians at first glance 
seem not to be particularly interested in choosing mathematical 
hypotheses in situations of uncertainty on the basis of simplicity. 
Mathematicians are interested in proofs, and simplicity appears 
to be used more as a desideratum in the construction of formal 
systems than as a criterion for accepting hypotheses. 

On closer inspection, however, the role of simplicity in 
mathematics and its role in the rest of science are not so far 
apart. Although mathematicians are interested in proofs of 
theorems, their selection of fundamental assumptions is influ­
enced by simplicity just as the scientist's construction of theory 
is. In both science and mathematics, the basic assumptions of 
theories are at once rooted in and transcend the evidence. The 
choice of theoretical postulates, whether it is said to derive 
from 'scientific method' or from 'mathematical intuition', obeys 
a simplicity constraint. And not only is it misleading to think 
that the methodologies of science and mathematics differ in 
their use of simplicity in choosing basic postulates; but also 
the very distinction of science and mathematics as separate 
areas of inquiry is somewhat artificial. Results in each area 
influence and justify choices in the other. 

Thus, simplicity can be a factor governing one's choice of 
basic beliefs in a given body of mathematical phenomena. But 
given a set of axioms chosen in this way, judgements of sim­
plicity can occur without serving as reasons for belief. This 
manifests itself in the fact that at times a proof is said to 
simplify our view of a body of math.ematical phenomena. We 
did not accept the theorem proved on grounds of simplicity; we 
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accepted it because it was proved. Yet a byproduct of the proof 
is a gain in simplicity. To show how this is possible, I first want 
to show why the hypothesis that a sentence s is provable from a 
set of assumptions P, 

f-r-s, 
is simpler than the hypothesis that s is not provable from P, 

J?s. 
Put model theoretically, (7ra) asserts that s is true in every 
world w that is a model for P. If we let the predicate 'S' mean 
'the sentence s is true in world w', then ( 7 r a) may be rewritten 
as 

(7rb) (w) (Sw). 
According to (72a), there is at least one model of Pin which s 
comes out false: 

(3w) ( ....,sw). 

Now let us compare (7rb) and (72b) relative to the question of 
whether the sentence s is true in a given model of P. Where P 
is taken to be true, the question might be 'Is s true in the actual 
world?': 

(Sa, ....,sa). 
(7rb) can answer this question without any outside help, 
whereas (72b) requires some extra information to yield an 
answer. (7rb) is the more informative hypothesis relative to 
this question, so it is simpler than ( 7 2 b) . 

What can we conclude from this difference in simplicity? 
According to (71a), assuming P renders s redundant; on this 
view s is derivable from more basic propositions. However, 
according to (72a), sis sui generis relative to the assumptions in 
P. Now, of course, (7ra) and (72a) are incompatible, and a 
mathematician would choose between them by attempting to 
prove one or the other. Yet if (7ra) were proved, this would 
mean that if P is a proposed set of axioms for a field of know­
ledge, the axioms would not have to be augmented to capture 
the truth of s. On the other hand, if (72a) were proved, the 
axioms would have to be enlarged to include s, if they are to be 
adequate for the field being axiomatized. That is, of the two 
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alternatives (71a) and (72a), the proof of the simpler does not 
force an increase in the axioms, while a proof of the more 
complex does lead to an increase in the postulated basis. 

This mirrors our belief that a contraction in the axiom set is a 
gain in simplicity. Moreover, a proof that the axioms are 
mutually independent is a proof that the axiom set is maxi­
mally simple; no axiom is redundant. And a proof that the 
axiom set is complete simplifies our view of the area being 
axiomatized, for it assures us that relative to the axiom set, 
every truth is redundant. 

These results having to do with axioms can be duplicated for 
proposed formulations of the primitive predicates of an area of 
discourse. Given a set P of predicates which is proposed as a 
formulation of the primitive predicates, showing that a pre­
dicate s is definable in terms of P is a simpler outcome than 
showing that s is not so definable. In the latter case, the set of 
primitives must be enlarged to accommodate s; in the former 
case, no such enlargement is required. 

Given that an axiom's being redundant is simpler than its 
being indispensable, we must explain why we want to eliminate 
redundant statements from the axiom set. In an earlier day, the 
axioms were supposed to be those truths which were most 
basic; discovering that a truth was derivable was tantamount 
to discovering that it was not an axiom. Within our present, 
more pragmatic epistemology of mathematics, there can be as 
many different axiom sets as there are purposes in formalizing. 
Yet even with this tolerant turn, the older policy on redundant 
axioms persists: Given any selection of truths which are pro­
visionally and pragmatically designated as basic, a truth that is 
derivable from the set is not itself basic. Mathematicians, like 
scientists in general, try to minimize unproved assumptions. 
When postulates are proffered as basic, they assume that no 
assumption is known to be provable from the rest; if it were, it 
would not have been designated as basic in the first place. 

The conclusions obtained above apply only to cases in which 
one axiom set or set of primitive predicates is part of another. 
However, most simplicity judgements on formal systems apply 
not to this special case but to pairs of sets which at best overlap 
and often don't even do that. To mirror such intuitions within 
our theory, I will first show how certain standard logical 
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properties of predicates are related to simplicity and then I will 
give a more systematic characterization of the logical simplicity 
of primitive predicates. The simplicity of predicates will be 
explained in terms of the simplicity of hypotheses that express 
some of their logical properties, because the theory of simplicity 
is first and foremost a theory of the simplicity of hypotheses. A 
similar strategy is used in Chapter 4 where the simplicity of 
pictures and perceptual judgements is explicated in terms of 
the simplicity of hypotheses that describe them. 

First, 
(73) (x)(y)(z)[(Rxy & Ryz) => Rxz)35 
is equal in simplicity to 

(x) (y) (z) [(Rxy & Ryz) => ,_,Rxz] 
relative to the question 
(74) (Rab, ,_,Rab). 
Furthermore, ( 73) is simpler than its negation relative to 
question (74). Thus, relative to (74), 

(75) R is transitive =. R is intransitive >. R is nontransitive. 
Similarly, relative to the question 
(76) (Raa, ,_,Raa), 
the hypotheses 

(77) (x) (Rxx) 

and 

(78) (x) ( ,_,Rxx) 

are equally simple. Moreover, (77) and (78) are each simpler 
than the conjunction of their negations, relative to question 
( 76). Hence, 

(79) R is reflexive =. R is irreflexive >. R is nonreflexive. 

We can prove similar results for symmetry and its kindred 
relations. The hypothesis 

(8o) (x) (y) (Rxv ::::> Ryx) 

is just as simple as 

(8r) (x) (y)(Rxy ::::> '""Ryx) 

as MEl construction for most of the remaining hypotheses in this section re­
quires the procedure given in the Appendix, in that the special assumptions of 
footnote 8 of Chapter I do not obtain. 
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relative to question (74), and relative to the same question (8r) 
is simpler than 

(82) (x)(y)[(Rxy & x ;ey) :::> ,..._,Ryx]. 
Each of (8o) to (82) is simpler than the conjunction 01 their 
negations, so we have shown that 

(83) R is symmetrical =. R is asymmetrical >. R is anti­
symmetrical > • R is nonsymmetrical. 

One more result of this kind will allow us to compare the 
simplicity of different orderings that R might impose on a given 
domain. Since 

(x)(y)[x ;ey :::> (Rxy v Ryx)] 
is less simple than 

(x) (y) (Rxy v Ryx) 
relative to question ( 74), it follows that 

(84) R is strongly connected > • R is connected. 

We now give the customary definitions for some kinds of 
orderings that R might provide for a set. 

R is a quasi-ordering =df R is reflexive and transitive. 
R is a partial ordering =at R is reflexive, transitive, and 

antisymmetric. 
R is a simple ordering =at R is reflexive, transitive, anti­

symmetric, and connected. 
R is a strict partial ordering =at R is asymmetrical and 

transitive. 
R is a strict simple ordering =at R is asymmetrical, transitive, 

and connected. 

These definitions allow us to conclude that relative to question 
(74), the simplicities of these various orderings are related as 
follows: 

(85) R is a simple ordering >. R is a partial ordering >s 
R is a quasi-ordering. 

(86) R is a strict simple ordering > s R is a strict partial 
ordering. 

Evidently, the names 'simple ordering' and 'strict simple 
ordering' were well chosen. 

Notice that all of the conclusions above are simplicity com-
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parisons of the form ' "relation R has property F" is simpler 
than "relation R has property G" '. We can expand these 
results in order to compare different predicates for the sim­
plicity of their logical properties, once we recognize what it is 
for us to be interested in logical simplicity. Logical simplicity 
is the kind of simplicity a predicate has solely in virtue of its 
logical properties: Any two predicates that have all the same 
logical properties must be equally simple and may be viewed as 
identical for the purposes of our theory. If we admit further 
that the total simplicity of a predicate is a composition of the 
simplicity of its different logical properties, we may assume 
that for any two predicates R and S and for any logical pro­
perty F, 'R has F' is equal in simplicity to 'S has F'. This 
enables us to show, for example, that one predicate's being 
symmetrical and another's being nonsymmetrical counts in 
favour of the gTeater simplicity of the former. In fact the 
conclusions on the logical properties of predicates ((75), (79), 
(83), (84), (85), and (86)), augmented by this postulate of the 
identity of indiscernibles, allows us to compare the logical 
simplicity of any two predicates with respect to those logical 
properties. 

Another feature of predicates that seems relevant to assessing 
their logical simplicity is the number of places that they have. 
We can use Tarski's idea of a sequence of things satisfying a 
predicate to characterize what it is for a predicate to have n 
places. We will then show that 'P has n places' is less simple 
than 'P has n - I places', and by the kind of argument given 
in the preceding paragraph we can conclude that 'P has n 
places' is less simple than 'Q_has n - I places'. We will regard 
sequences as always having infinite length. The sequence 
written as <Madison, Wisconsin) can be construed as having 
infinite length by letting its last member repeat indefinitely. 
This sequence satisfies the predicate 'x is the capital of y'. 
Another sequence that satisfies this predicate is <Madison, 
Wisconsin, Julius Caesar). The predicate has two places in that 
there are precisely two members of any sequence that matter in 
determining whether the sequence satisfies the predicate. 

Where sand t range over sequences and Xi indicates the ith 
member of the sequence x, we can represent the claim that P 
has no more than n places as follows: 
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(87) (3a1)(3az) ... (3an)(s)(t)[(s satisfies P & 
Sal = tal & ... & San = tall) ::::> t satisfies P]. 

Similarly to assert that P has no less than n places is just to say: 

(88) (ai) (3s)(3t){i < n ::::> [s satisfies P & 
t =Sub (ta;, Sa~> s) & ,_,(t satisfies P)]}. 

Here 'Sub (x,y, s)' denotes the result of substituting x for yin s. 
The conjunction of (87) and (88) represents the claim that P 
has precisely n places. This definition of 'P has n places' mirrors 
the idea that the number of places a predicate has is the number 
of places in any sequence that affect whether the sequence 
satisfies the predicate. 

As might be expected, the greater simplicity of 'P has n - I 

places' over 'P has n places' is due to the greater simplicity of 
'P has no more than n - I places' over 'P has no more than n 
places'. 'P has n - I places' is the simpler hypothesis because 
it puts a lower ceiling on the number of places in P than does 
the hypothesis 'P has n places'. To see this, let us compare (87) 
with the following hypothesis, which says that P has no more 
than n - I places: 

(8g) (3al) (3az) ... (3an-1) (s) (t) [ (s satisfies P & 
Sa1 = fa1 & ... & Sa11_ 1 = ta11_ 1 ) ::::> t satisfies P]. 

(8g) is simpler than (87), relative to the question 

(a satisfies P, a does not satisfy P). 

We are now able to compare the logical simplicity of any 
two predicates with respect to a number of logical properties. 
Presumably, the number of relevant logical properties could 
be expanded. For example, it can be shown that a predicate 
that is self-complete36 is simpler on that count than one that is 
not. Yet the kinds of results we have been obtaining are fairly 
weak. They allow us to compare the simplicity of two predicates 
with respect to this or that logical property but do not tell us 
how to calculate the total relative simplicity of two predicates 
from their simplicity relative to a number of individual logical 
features. Here again, we encounter a weighting problem (see 

36 See Goodman's The Structure of Appearance, Chap. 3, for the definition of 
'self-completeness' and other logical properties of predicates. Goodman's calculus 
oflogical simplicity is undoubtedly the most systematic and detailed explication of 
this concept currently available. 
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Section r.8). When we leave the level of individual predicates 
and proceed to the level of sets of predicates (predicate bases), 
the same problem occurs. The simplicity of the basis is a func­
tion of the simplicity of the member predicates, but some 
weighting of predicates will usually be needed to make the 
transition. In all of these respects, it is quite obvious that Good­
man's calculus of logical simplicity provides much stronger 
results than ours does. In Goodman's system, a numerical 
complexity value is assigned to any predicate basis. It would be 
interesting to investigate how many of Goodman's com­
parative judgements are preserved or violated by our pro­
posals, but this would take us too far afield. 

2.9 Trade-Offs in Simplicity 

Until now we have mainly considered pairs of hypotheses of 
a very special sort, in that no matter which of several natural­
sounding questions was used to assess their relative simplicity, 
the same result ensued. For example, 

(go) y = x + w 

is simpler than 

(gr) y =X+ W + Z, 

no matter which of the following questions is used in com­
paring the two: 

(g2) What is the value ofy in situation a? 
What is the value of x in situation a? 
What is the value of w in situation a? 

Note that (go) is not defined relative to a question about the 
value of z, so (go) and (gr) are incommensurable relative to 
that question. Since (go) dominates (gr) relative to the questions 
in (g2), there is no need to weight the questions in (g2) as to 
their relative impact on the total simplicity of (go) and (gr). 
In this sense, our comparisons of (go) and (g r) may be said 
to be question-invariant. (go) and (gr) represent an example 
of the 'special case' discussed in Section 1 .8. 

But when hypotheses are not thus isolated from the theor­
etical context in which they are embedded, such neat results 
tend to disappear, and one is again faced with a weighting 
problem. Thus, consider a theory T which has a rather swollen 
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ontology but which posits relatively few changes and hetero­
geneities in the universe. Opposing T is a theory T' with a 
sparser ontology but committed to many changes and hetero­
geneities. Here is a case where relative to some predicate 
families (which focus on the existential commitments of T 
and T'), T' is simpler than T, but relative to other predicate 
families (which focus on the heterogeneity and homogeneity 
hypotheses in T and T'), Tis simpler than T'. The two groups 
of predicate families may both be part of a single coherent 
P-system. The problem is to weight the dictates of the two 
groups in order to calculate the relative simplicity of T and T' 
with respect to the entire P-system. 

Thus, the weighting problem is not an idiosyncratic artefact 
of our theory. Rather, playing off a gain in simplicity in one 
area against a loss of simplicity in another is at the very heart 
of the use of simplicity in hypothesis choice. Because of this, 
the question-relativity of the theory, far from rendering it 
hopelessly obscure or inapplicable, offers a framework within 
which these reciprocal and interpenetrating considerations can 
be understood. 



3 

Simplicity in Transformational 

Phonology 

3. I Introduction 

In Chapter 2, we tested the theory of simplicity by discerning 
certain very general policies in our inferential behaviour that 
seem to be intuitive examples of 'preferring the simpler alterna­
tive' and showing that the theory mirrors and explicates these 
intuitions. Thus far, the interest of the theory lies in its showing 
how seemingly diverse phenomena have a common logical 
basis. In this chapter, the theory is used in the service of a 
slightly different task. Rather than unite disparate details of 
inferential practice, I want to show how the theory makes clear 
the substance of one particular debate concerning simplicity 
that has occurred in science. The objective here is depth rather 
than breadth; that is, to yield insights into a single strain of 
theorizing. 

The example I have chosen is the attempt by Chomsky and 
Halle to frame a simplicity criterion for the phonological com­
ponent of a transformational grammar. Their work has a 
unique interest for our theory in that it is probably the most 
detailed attempt by scientists to articulate a simplicity criterion 
in a form explicit enough to yield unequivocal applications to 
particular cases. Chomsky and Halle defend their theory by 
showing that it captures the intuitive simplicity judgements of 
linguists. Beyond trying to show that their theory coincides with 
the realities of scientific practice, Chomsky and Halle also 
argue that their theory of simplicity helps explain related 
concepts like natural kinds and law-likeness. Thus, their work 
is of interest to our theory of simplicity for at least two reasons: 
First, their theory provides a rich range of intuitive simplicity 
judgements that we can use to test our own theory. Second, in 

S-D 
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that their theory tries to relate simplicity to other desiderata, 
mirroring these connections within our own theory of sim­
plicity would enhance the explanatory power of our proposal. 

Despite its multifaceted relevance to our theory of simplicity, 
this body of work by Chomsky and Halle soon reveals some 
perplexing features. Why, for example, did they bother to 
explicate simplicity at all, given that scientists usually are quite 
happy to appeal to simplicity without offering any systematic 
account of what it is? Another problem is the repeated claim 
that their notion of simplicity is purely internal to the theory of 
transformational grammar and need have no significant 
similarities with the notion of simplicity discussed in philosophy 
of science. Why did Chomsky make this claim, and how does it 
bear on our own theory of simplicity? Reflecting on these 
questions will lead to some practical consequences that our 
theory might have for work in linguistics. 

Before proceeding further, it might be useful for me to give a 
preliminary indication of the relation I see between Chomsky 
and Halle's theory and mine. I stressed earlier (in Section 1.8) 
the reciprocal influence of one's simplicity judgements and one's 
choice of natural predicates. This relationship is manifest in 
Chomsky and Halle's discussion, in that they are trying to 
construct simultaneously a set of natural phonological kinds 
and an adequate simplicity measure. Yet this affinity helps 
explain why it would be a mistake to view their proposal and 
our own conjecture as two alternatives on the same level. 
From their point ofview, ours is only half a theory; we provide 
an explicit simplicity criterion but fail to provide an enumera­
tion of natural kinds. This omission of natural kinds means that 
even if our theory is accepted, much linguistics needs to be done 
before the simplicity criterion can do the theoretical work 
linguists want it to. On the other hand, our theory's lack of 
specifically linguistic content means that it is general and can 
show how the issue of simplicity in linguistics fits into a larger 
context. This feature has the curious consequence that both the 
Chomsky-Halle proposal and the proposals of some of their 
critics (see Section 3·5) can be mirrored in our theory. Thus, 
our theory of simplicity is offered less as an incompatible 
alternative to Chomsky and Halle's than as a framework within 
which their theory can be understood. 
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In what follows, I explain Chomsky and Halle's view of the 
role of simplicity in linguistic theory and the details of their 
simplicity criterion. Then I show how my theory reflects the 
kinds of intuitions they had about simplicity and how it accounts 
for most of the particular cases that they thought important. 
Mter that, I examine two modifications of Chomsky and 
Halle's theory suggested by Contreras and Bach and argue that 
my theory of simplicity mirrors their intuitions as well. Section 
3.6 deals with the issue of spurious generalizations and clears 
up a seemingly paradoxical consequence of my theory. In the 
conclusion, I discuss what my theory shows about the role of a 
theory of simplicity in linguistics. 

3.2 Chomsky and Halle on the Role of a Simplicity Criterion in 
Linguistic Theory 

Between 1957 and 1968, Chomsky and Halle wrote a series 
of books and articles in which a recurrent theme was the rela­
tionship of a general linguistic theory to the grammar of any 
particular language. Constant through this period is the belief 
that a linguistic theory must provide a simplicity measure 
which ranks alternative grammars according to how well they 
describe the language in question. Their published views on the 
role of this simplicity criterion have undergone a subtle change 
in this period, a change brought about by an alteration in their 
account of the role of linguistic theory as a whole.l 

In Syntactic Structures (pp. 51 ff.), Chomsky discusses three 
constraints that might be placed on the relationship between a 
linguistic theory and the grammar of a particular language. 
These three possibilities are represented in Figure 6. In all 
three cases, the box is a linguistic theory containing, among 
other things, a simplicity criterion. 

The strongest requirement that we could place on a linguistic 
theory is that it provide us with a mechanical method whereby 
a grammar for a language Lis constructed out of a given corpus 
of utterances from L. This is the requirement that is pictured in 

1 In Chomsky, p. 63, Lyons' quotes Chomsky as saying that there has been no 
change in his views on simplicity through the years. Chomsky does say, however, 
that there has been a shift of emphasis in his published work from weak to strong 
generative capacity. Perhaps it would be more accurate for us to say that we want 
to explain this shift in emphasis and its connection with Chomsky's view of 
linguistic theory as a whole. 
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(i). A less stringent demand, pictured in (ii), is that a linguistic 
theory provide a method for saying of a given grammar for L 
and a corpus of utterances from L whether or not that grammar 
is the best grammar for L, based on the corpus at hand. The 
weakest condition, (iii), requires only that the linguistic theory 
give us a method for saying which of any two proposed gram­
mars is better, relative to the given corpus of utterances. If a 
linguistic theory satisfies condition (i), it is said to provide a 
discovery procedure; if it satisfies (ii), it is said to provide a decision 

(i) corpus --------~~ 

(ii) grammar------. 

corpus 

(iii) Ci, 

Gz 

corpus~ 

D 

------ grammar 

------YCS 

-----no 

------Ci, 

Fig. 6. Three alternative constraints on a linguistic theory (from Chomsky, 
Syntactic Structures, p. 51) 

procedure; and if it satisfies (iii), it provides an evaluation pro­
cedure. 

Chomsky then goes on to say that a linguistic theory need 
only provide us with an evaluation procedure, the other 
conditions, particularly condition (i), being too demanding, 
relatively unilluminating, and perhaps unattainable. By 
'lowering our sights to this more modest level', Chomsky wanted 
to bypass the lengthy discussions of discovery procedures that 
had preoccupied Bloomfieldian linguistics. One was to ignore 
the problem of how grammars are to be invented. Our interest, 
as linguists, is confined to evaluating grammars once we have 
managed to come up with them. 

An important reason that Bloomfieldian linguistics had in­
sisted on the formulation of discovery procedures2 was its 

2 In Syntactic Structures, p. 52, Chomsky remarks that many of these attempts to 
provide discovery procedures at most provide only evaluation procedures. 
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practical concern with recording the grammars of American 
Indian languages. These languages were very different from 
European ones, and it was feared that important ethnocentric 
biases would enter into their analysis unless methods of dis­
covery were rigorously articulated. Another factor (whether it 
was a reason or an ideological concomitant is hard to say) in 
this concern with discovery procedures was the desire to make 
linguistics 'scientific', which was taken to mean narrowly 
empirical and behaviourist. The laying down of operational 
procedures was supposed to purge linguistics of mentalistic 
and metaphysical obscurity.a 

Just as Bloomfield's desire for discovery procedures was in 
keeping with the larger philosophical climate of behaviourism, 
so Chomsky's eschewing of discovery procedures drew on the 
familiar philosophical distinction between the context of dis­
covery and the context of justification.4 The former was 
regarded with suspicion as a matter for psychology, or worse, 
as having no interesting general structure (the idea being that 
somehow there are no interesting regularities underlying how 
people come to hold a given belief).5 Philosophers of science, 
with some exceptions, usually confined their attention to the 
logic of justification and advised scientists to do likewise. It was 
argued that one invented theories any way one could; the 'real' 
problem consisted in evaluating them. 

This historical fact helps explain why Chomsky and Halle 
rejected the goal of discovery procedures, 6 but it fails to help us 

3 This emphasis on detailing methods for constructing a grammar out of a 
corpus of utterances and a set of elementary speaker judgements is especially 
prominent in Harris' Methods in Structural Linguistics. In 'Some Controversial 
Questions in Phonological Theory', p. 103, Chomsky and Halle quote Bloomfield 
as saying that linguistics was the first social science to rid itself of the 'elusive 
spiritistic-teleologic words of our tribal speech'. 

4 This has been a standard distinction in technical philosophy from Frege on. 
See, for example, Frege's Foundations of Arithmetic, pp. v-x; Reichenbach's Experi­
ence and Prediction, pp. 6-7; and Hempel's Philosophy of Natural Science, pp. 14-18. 
Quine's 'Epistomology Naturalized' (in Ontological Relativity, pp. 6g-go) can be 
seen as an attack on the distinction. 

5 This latter, more radical, claim seems to be implicit in the usual assertion that 
the incredible diversity of ways in which different people come to believe a given 
proposition shows that the context of discovery has little to do with the cognitive 
content or justification of the proposition. In Chapter 4, I argue that the psychology 
of perceptual knowledge is not idiosyncratic in this way. 

6 In 'Phonology in Generative Grammar', p. 335, Halle imposes the same 
constraint on linguistic theory. 
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understand why they thought that a linguistic theory should 
provide any sort of simplicity measure at all. In presenting a 
theory, scientists usually leave the standards against which they 
expect it to be evaluated on a largely imprecise and tacit level. 
At most, they offer some precise interpretation of 'fitting the 
data' (e.g., in terms of a goodness-of-fit measure), but they give 
no formal account of notions like 'simplicity', 'explanatory 
power', or 'naturalness'. Chomsky realizes the virtual unique­
ness of the attention of linguists to evaluation procedures when 
he says in Syntactic Structures (p. 53): 

There are few areas of science in which one would seriously consider 
the possibility of developing a general, practical, mechanical 
method for choosing among several theories, each compatible with 
the available data. 

It is important to point out that Chomsky's reasons for 
abandoning discovery procedures in Syntactic Structures do not 
explicitly include mention of any adoption of a mentalistic 
point of view. Although linguists like Bloomfield and Harris 
wanted discovery procedures as a hedge against mentalism, the 
connection between requiring discovery procedures and eschew­
ing mentalism seems somewhat accidental. Moreover, to call 
Syntactic Structures 'mentalistic' would be quite misleading in any 
case. In fact, Chomsky begins to write that a linguistic theory 
should provide discovery procedures precisely when he ex­
plicitly adopts a more mentalistic point ofview.7 We will leave 
these questions about Chomsky and Halle's requirement of an 
evaluation procedure and go on to examine their different 
attitude towards linguistic theory in two works published in 
rg65. Then, we will explain the shift in their view by contrasting 
the relatively formal emphasis of ~yntactic Structures with the 
relatively psychological emphasis of their later work. 

In Chomsky's Aspects of the Theory of Syntax (p. 30) and in 
Chomsky and Halle's 'Some Controversial Questions in Phono­
logical Theory' (p. roo), the demands on a linguistic theory 
become much stronger. The requirement in these works is that 

7 Although both Bloomfield and Chomsky (in his published writings from about 
1965) advocate the search for discovery procedures, the kinds of discovery pro­
cedures they wanted were as different as their reasons for wanting them. Thus, I am 
using 'discovery procedure' to pick out certain formal properties of linguistic 
theories and not to denote any particular substantive proposal. 
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a linguistic theory include a method both for constructing 
alternative grammars compatible with a corpus and for 
choosing among these alternatives and selecting the best one. 
That is, Chomsky and Halle seem now to require that a lin­
guistic theory provide a discovery procedure. A justification 
for this shift becomes obvious if one considers the picture of 
linguistic theory as a psychological theory that has been so 
prominent in Chomsky's publications since rg65. In their rg65 
paper (p. wo), Chomsky and Halle say that a linguistic theory 
is to be taken as a model oflanguage acquisition. Just as a child 
attains competence in a language after hearing only a small 
and imperfect sample of utterances, so a model of language 
acquisition must generate a maximally valued grammar based 
on a finite and incomplete sample corpus. Chomsky and Halle 

Primary Linguistic 

Data 

Acquisition 

Model 
---.grammar 

Fig. 7· Linguistic theory as a language acquisition device (from Chomsky and 
Halle, 'Some Controversial Questions in Phonological Theory', p. 100) 

picture this constraint on the relationship between a linguistic 
theory and a grammar in a manner closely akin to condition 
(i) of Figure 6 (see Figure 7). 

The acquisition model is usually described as working in two 
steps. First, it generates a set of alternative grammars, each of 
which fits the primary linguistic data. Then a simplicity cri­
terion is applied which orders the competitors. The maximally 
valued grammar (or the grammars tied for first place) among 
these is the one chosen. The similarity of this set of rules to our 
own rules for hypothesis choice given in Section r .g is inter­
esting. Here, as before, one chooses the simplest from the field 
of more than minimally supported competitors. Notice also 
that even though this acquisition model provides a discovery 
procedure, the simplicity criterion in it provides only an 
evaluation procedure; that is, it only allows us to compare 
pairs of hypotheses (grammars) for simplicity. 

Given this psychological interpretation of linguistic theory, 
it is clear why such a theory must provide a discovery procedure 
rather than just a decision or an evaluation procedure. In both 
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conditions (ii) and (iii) in Figure 6, the grammars considered 
by a linguistic theory have not been generated by that theory, 
but are imported fully formed from the outside. This point 
of view simply does not fit in with a psychological interpretation 
of linguistic theory as a model of language acquisition. Thus, 
Chomsky and Halle's psychological interpretation of linguistic 
theory presupposes the requirement of a discovery procedure. 
This reinforces our previous conjecture that their eschewing 
discovery procedures at an earlier date was the result of the 
influence of contemporary empiricism with its antipsychologism 
and its devaluation of the context of discovery. To be sure, 
Syntactic Structures characterizes grammar as the end product of 
language acquisition (p. rs): 
Any grammar of a language will project the finite and somewhat 
accidental corpus of observed utterances to a set (presumably 
infinite) of grammatical utterances. In this respect a grammar 
mirrors the behavior of the speaker who, on the basis of a finite and 
accidental experience with language, can produce or understand 
an indefinite number of new sentences. 

However, in spite of this tendency to think of grammars as 
admitting of an interesting psychological interpretation, 
Chomsky shows little inclination to treat linguistic theory in 
the same way. 

In Syntactic Structures, Chomsky was interested in outlining a 
linguistic theory within which the notion 'grammatical in L' 
could be defined for any human language L. To this end, he 
considered various ways of representing the syntax of some 
parts of English, and he eliminated several alternatives by 
showing that they were inadequate or clumsy. Chomsky used a 
notion of simplicity to show that his transformational approach 
yields more perspicuous descriptions of English than do the 
other alternatives. This notion of simplicity, once explicated, 
was to form a part oflinguistic theory. As such, it was to provide 
a basis for choosing some grammars over others, and more 
generally, it was to be a criterion for choosing some ways of 
representing grammar over others. 

Thus, in Syntactic Structures, Chomsky conceived of linguistic 
theory as a metatheory which describes the form of certain 
formal objects called 'grammars'. Although these grammars 
describe human behaviour and dispositions, the metathcory is 
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not primarily conceived of as a description of human mental 
structure. Rather, linguistic theory provides a general standard 
which allows one to compare the adequacy of pairs of grammars. 
From this point of view, it makes sense to require of a linguistic 
theory that it be related to grammars of languages in the same 
way that any set of conditions of adequacy is related to the 
theories it is meant to constrain. Condition (iii) of Figure 6, 
that of evaluation procedures, seemed the most reasonable 
alternative. 

However, by the time of Aspects of the Theory of Syntax, both 
particular grammars and linguistic theory were taken to des­
cribe human behaviour and dispositions. This new psycho­
logical emphasis made it impossible to merely require of a 
linguistic theory that it provide an evaluation procedure and 
made discovery procedures the most reasonable choice. Thus, 
the goal of a linguistic theory, as it is presented in Aspects of the 
Theory of Syntax and has been elaborated since, is to explicate 
a certain range of inferential behaviour, namely the process 
whereby a child acquires competence in a language on the basis 
of incomplete evidence. It now becomes clear why linguistic 
theory, so construed, must offer a fully explicit account of 
simplicity, while a theory of physics, say, may leave the notion 
of simplicity on a purely intuitive and informal basis. A linguis­
tic theory must do for language acquisition what a theory of 
scientific inference must do for scientific inference in general. 
In both cases, 'simplicity' is not just a part of the informal 
conditions of adequacy we place on our own proposed theories; 
rather, simplicity forms a part of the phenomenon we have set 
ourselves the task of explaining. 

3·3 Chomsky and Halle's Simplicity Measure 
In this section, I describe the simplicity criterion first pro­

posed by Halle and then developed more fully by Chomsky and 
Halle. s This criterion evaluates phonological rules in terms of 
the number of symbols they contain. I begin with a rough 
characterization of the phonological component of a trans­
formational grammar. 

Suppose that we have a transformational syntax which 
B See Halle's 'On the Role of Simplicity in Linguistic Descriptions', his 

'Phonology in Generative Grammar', his 'On the Bases of Phonology', and 
Chomsky and Halle's The Sound Pattern of English. 
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generates all and only the syntactically well-formed strings in a 
language. The task of the phonological component is simply to 
assign phonological interpretations to each syntactic string; 
that is, to transform syntactic elements into sound. 9 Each 
syntactic output is a string of formatives, in particular, a 
labelled bracketing of formatives. Each formative will have 
certain phonological information about it registered in the 
lexicon (where resides some basic syntactic and semantic 
information as well). The phonological component works by 
consulting the lexicon and extracting information about each 
formative. Then, on the basis of this information, it subjects the 
formatives (taken as basic phonological concatenations) to 
certain transformations whose end result is the phonological 
interpretation of the string. 

This raises the question of what phonological information 
goes into the lexicon. It might seem that we could trivially pack 
all of the phonological information into the lexicon and get a 
phonological representation of a string by using the lexicon 
like a dictionary. On the other hand, we could leave the lexicon 
empty and state every phonological fact about the language 
in terms of a transformation rule. These two extreme policies 
are rejected by Chomsky and Halle because they want to use 
the lexicon/phonological rules distinction as a way of separating 
accidental from law-like facts about the language. The brute 
givens-the accidental particular facts-are put into the lexi­
con, and all of the law-like generalities are put into the rules.l 0 

The obvious question here is how Chomsky and Halle dis­
tinguish accidental from law-like facts. This will become clearer 
after we have gone some way in understanding how their 
simplicity criterion works. 

In 'Phonology in Generative Grammar', Halle characterizes 
the phonological component of a generative grammar as a set 
of rules, each having the form 
(I) p --+ Q. in the environment X __ r, 
where P, Q., X, and rare 'symbols of a particular alphabet or 

9 We ignore here the difference between phonetic and phonological representa­
tion in order not to complicate the exposition unnecessarily. We also ignore for 
the moment the explanatory functions of the phonological component. These will 
be taken up later. 

10 In Language, p. 274, Bloomfield distinguishes lexical entries from law-like 
generalizations in the same way. 



SIMPLICITY IN TRANSFORMATIONAL PHONOLOGY 97 

zero', and '--+' means 'is to be rewritten as'. (I) says: Take any 
item a. If a is bounded on the left by X and on the right by r, 
and if a has the property P, then rewrite a so that it has the 
property Q,. Rules like (I) are subject to certain conventional 
manipulations. For example, (I) may be collapsed with the rule 

(2) C--+ Din the environment X __ r 
to form 

(3) {~:~}fx_r. 
In general, 'in the environment' is abbreviated by a slash, 'f'; 
and braces, ' { }', have the force of disjunction. Halle proposes 
that we explicate simplicity in terms of the number of alpha­
betical symbols. The complexity of a sentence is assigned a 
numerical value equal to the number of symbols occurring 
in its minimum representation. Thus, the numerical value of 
the conjunction of (I) and (2) would be calculated by counting 
the symbols in (3), assuming that (3) is the minimum repre­
sentation of the conjunction. 

Halle leaves open what sorts of items P, Q,, C, D, X, and r 
are. The reason for this initial position of neutrality is import­
ant. There has been considerable debate in phonology about 
whether the basic elements in the phonological part of a gram­
mar are indivisible phonemes or distinctive features such as those 
described by Jakobson. The intricacies of this debate need not 
detain us. Suffice it to say that distinctive features are proper­
ties of phonemes and that the programme stemming from 
J akobson and Halle consists in expressing all phonological 
rules in terms of these properties. According to this view, a 
phoneme is nothing more than a distinctive feature matrix, 
whereas according to the 'indivisible phoneme' point of view, 
a phoneme is thought of as having an ontological integrity that 
is obscured by the distinctive feature approach. Notice that this 
is a debate about which properties are the natural ones in 
terms of which phonological laws are to be stated. 

Halle wants to use his simplicity measure to help settle this 
debate. He begins with an example that he takes to be self­
evident: 
(4a) a --+ref __ i 
(sa) a --+ref i __ i. 
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(4a) says that the phoneme /a/ becomes the phoneme /re/ if it 
precedes the phoneme jij. (sa) says that fa/ becomes /re/ if it 
precedes and is preceded by jij. Linguists (with some excep­
tions) seem to share the intuition that (4a) is simpler than (sa). 
Note that we have represented (4a) and (sa) in terms of 
indivisible phonological segments and that the counting 
measure makes (4a) more highly valued than (sa). Here, our 
intuitions about simplicity are mirrored by a combination of 
Halle's simplicity measure and the indivisible phoneme point 
of view. 

If we express (4a) and (sa) in terms of distinctive features, 
our intuitions also are preserved by the evaluation measure: 

(sb) 

+vocalic 
-conson 

[+grave] -+[-grave]/ -diffuse 

+compact 
-flat 

+vocalic 

+vocalic 
-conson 
+diffuse 
-compact 
-flat 
-grave 

+vocalic 
-conson +vocalic -conson 

[+grave] -+ [-grave]; 
+diffuse -conson +diffuse 
-comp -diffuse -comp 
-fiat +comp -flat 
-grave -flat -grave 

Each of the items in the square brackets is a binary distinctive 
feature. The '+' or '-' before each one tells whether the item 
in question has the feature or its opposite. The square bracketing 
indicates conjunction, and the blank to the right of the slash 
in both (4b) and (sb) has the meaning explained previously. 
To help the reader grasp this notation, I will translate (4b): 

If the item in question is +vocalic, -consonantal, -diffuse, 
+compact, and -flat, and if it is followed by an item that is 
+vocalic, -consonantal, +diffuse, -compact, -flat, and 
-grave, and if it is +grave, then it is to be rewritten as 
-grave. 

According to Halle's simplicity measure, (4b) comes out 
simpler than (5b). Thus, whether we represent the two rules in 
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terms of indivisible phonemes or in terms of distinctive features, 
intuitive results ensue. 

Now consider the simplicity of (4a) versus the following: 

(6a) 

a-+~/-{~} 
(6a) says: If the phoneme fa/ is followed by the phonemes jij, 
jej, or /~/, then it is to be rewritten as ;~;. (6a) is intuitively 
simpler than (4a). However, by representing (4) and (6) in 
terms of indivisible phonological segments, we find that Halle's 
simplicity criterion contradicts our intuitions. According to his 
counting measure, (4a) should be simpler than (6a). As might 
be expected, this problem does not arise if we use distinctive 
feature notation to represent (6a): 

(6b) 

[
-cons ] [+voc ] 

[+grave] -+ [-grave]/ -diff -cons 
+compact -grave . 
-flat 

(6b) contains fewer symbols than (4b) and is simpler according 
to Halle's criterion. Halle concludes that if we wish to use his 
simplicity measure, we must 'regard phonological segments as 
complexes of properties' rather than as indivisible phonemes.n 

A further vindication of Halle's two-pronged proposal comes 
from comparing the following rule with (6): 

(7) 
a -+~1-m 

(6) and (7) come out equally simple when represented in 
terms of indivisible phonemes. But linguists unhesitatingly 
regard (6) as simpler than (7), because (6) states a law-like 
generalization about the front vowels /~/, ;e/, and jij, while 
(7) applies to jij, jpj, and jzj, which comprise 'an odd 
unsystematic collection of phonemes' .12 Halle expresses this 
difference by saying that the front vowels make up a natural 

11 Halle, 'Phonology in Generative Grammar', p. 337· 
12 Ibid., p. 337· 
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kind while the set /i/, /p/, and /z/ is ad hoc and unnatural. 
The difference between (6) and (7) is mirrored when Halle's 
simplicity measure is applied to their distinctive feature repre­
sentations. The distinctive feature representation of (7) would 
fill an entire page, while (6b), the distinctive feature represen­
tation of (6), contains less than a dozen symbols. Once again, 
Halle's simplicity criterion together with the distinctive feature 
point of view seem to imply just the judgements we want. 

Halle's simplicity measure gives him a handy way of defining 
the notion of natural kind: 

N is a natural kind iff fewer features are required to designate 
the class N than to designate any individual sound in N.13 

To evaluate Halle's proposal, it will be helpful to look at the 
distinctive feature representation of English consonants given 
in Table 3· In support of his characterization of natural sets, 

TABLE 3: Distinctive feature representation of the con­
sonants qf Englishl4 

Vocalic 
Consonantal 
Grave 
Diffuse 
Strident 
Nasal 
Continuant 
Voiced 

p b m f v k g t d e ' n s z ~ 3 i 

+ + + + + + + + + + + + + + + + + + 
+ + + + + + + 
+ + + + + + + + + + + + 

++ ++++++ 
+ 

+ + 
+ + + + 

+ 
+ + + + 

+ + + + 
+ + 

+ + 

Halle points out that the class of consonants [s z s i. c 3] is 
natural, since it can be pinpointed with two distinctive features 
(nongrave and strident), while any member of the class 
requires at least three distinctive features to designate it. In 
contrast, the class [ m s J is not natural, because it requires a 

13 Halle, 'On the Role of Simplicity in Linguistic Descriptions', p. go. Although 
Halle states this characterization as a conditional ('N is a natural kind if ... ') 
rather than as a biconditional, it seems clear from the examples he cites that he 
intends to provide a necessary and sufficient condition. He uses the same definition 
and examples in 'On the Bases of Phonology', p. 328. Notice the affinities of his 
definition with our discussion of natural sufficient conditions in Section 1 .8. In 
what follows we shall construe Halle's proposal as intended to define what we 
called natural sets and natural properties (see Section 1. 7). 

14 Halle, 'On the Role of Simplicity in Linguistic Descriptions', p. go. 
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rather long list of distinctive features to be characterized, while 
jmj can be designated by two distinctive features (grave and 
nasal), and jsj can be designated by four (nongrave, diffuse, 
strident, and nonvoiced).15 

According to the criterion above, no class containing just one 
sound counts as natural, because specifying the class requires 
the same number of distinctive features as specifying the (one) 
member sound. However, there are both internal and external 
reasons for wanting to view such unit classes as natural. Within 
transformational grammar, a class is natural if all its members 
are subject to the same (or nearly the same) transformation 
rules. This condition is trivially satisfied by the unit classes. 
Also, from the broader point of view of our theory of simplicity, 
we saw in Section I .8 that every conjunction of natural pre­
dicates is itself natural. If we accept the distinctive features as 
the natural properties for phonology, as Halle would like, it 
would seen that individual sounds also are natural, since they 
are then viewed as nothing but conjunctions of distinctive 
features. If the members of a natural set are unified by the 
natural properties they share, then the members of the inter­
section of any natural sets must be unified to an even greater 
degree. Where the intersection has only one member, the set is 
unified to the nth degree; all (one) of its members are identical. 

A further problem for Halle's criterion is that it conflicts with 
one of his own examples. The set [p b m f v] is supposed to be 
natural in that the two features grave and diffuse suffice to 
specify it; yet, jmj can be specified with just two features. To 
remedy this inconsistency and take account of the argument of 
the previous paragraph, we might revise Halle's criterion to 
read: 

N is a natural set iff no more features are required to desig­
nate the class N than to designate any individual sound inN. 

This revision fits the examples used by Halle cited above. 
However, since at least three features are needed to specify each 
consonant (with the exception of jmj and jnj), any disjunction 
of two features would have to pick out a natural set according 

15 In counting the number of features needed to specify a sound or a class of 
sounds, we will not count the features +cons, since all of our examples will be 
taken from the class of consonants anyway. 
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to the new criterion. Thus the sounds that are nasal or con­
tinuant would have to comprise a natural set, as would those 
that are voiced or strident and those that are grave or voiced. 
This result seems to be wholly unsatisfactory. The fact that this 
problem does not seem to arise for sets that are specified as 
conjunctions of distinctive features reaffirms our previous obser­
vation (Section I .8) that disjunctions seem to be particularly 
troublesome when it comes to defining the notions of natural 
set and natural property. 

The way around the problem appears to lie in jettisoning 
Halle's definition and accepting instead the characterization 
suggested in Section I .8. Within the distinctive feature frame­
work, the distinctive feature predicates comprise our initial 
stock of natural predicates. Every conjunction of these is 
itself natural. A disjunction of natural predicates is natural if it 
is nomologically equivalent to one of the initial natural pre­
dicates or a conjunction of them. That the naturalness of a set 
is here identified with the dispensability of its disjunctive 
formulation will be discussed again in Section 3.6. 

After offering his definition of 'natural kind', Halle quotes 
Jakobson as remarking that 'in describing the most varied 
linguistic facts, we commonly encounter sets of sounds which 
form natural classes in the distinctive feature framework, and 
that only rarely does one meet classes of sounds that require 
long, cumbersome lists of distinctive features for their charac­
terization' _16 Halle and Chomsky both point to this fact as 
important. After all, it might have turned out that rules 
formulated in the distinctive feature framework are quite com­
plex and frequently specify highly contrived sets. That lin­
guistic facts are so simply describable in the Jakobsonian 
manner seems to show that distinctive features really are the 
natural properties with which to do phonology. J akobson's com­
ment is an example of how the fact that a certain vocabulary 
enables us to obtain a perspicuous representation of a set of 
truths can serve as a reason for thinking that the vocabulary 
picks out the natural properties. 

The observation that the combined strategy of distinctive 
feature framework and simplicity measure might not have 
yielded such neat results brings out two important properties 

16 Halle, 'On the Role of Simplicity in Linguistic Descriptions', p. go. 
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that Chomsky and Halle see in their approach. In the first 
place, they regard their simplicity measure as empirical. A 
simplicity measure is an explication of our educated intuitions 
about which transformation rules are simpler than others, and 
like any other explication, the proposed measure must con­
serve a significant number of our strong intuitions. However, 
Chomsky and Halle want to say that the evaluation measure is 
empirical in another sense. Given a simplicity measure, the 
choice made between different grammars (or parts of gram­
mars) can have clear testable consequences manifested both in 
predictions about strings and in deeper hypotheses about 
competence. We will see an example of this later when we 
examine how Chomsky and Halle use the simplicity measure to 
explicate the notion of phonological deviance. 

Second, Chomsky and Halle view their simplicity measure 
as internal to linguistic theory. They are concerned to forestall 
irrelevant criticism from those who think they already know 
what a simplicity criterion should look like. Chomsky and 
Halle stress that constructing a simplicity criterion is a theor­
etical task to be evaluated by its consequences within linguistic 
theory and not by how well it matches our presystematic 
intuitions about what simplicity 'really is'. Furthermore, 
Chomsky repeatedly claims that the proposed measure need 
have no important connection with wider notions of simplicity 
discussed in philosophy of science. He asserts that not only is 
the simplicity criterion internal to linguistics, it is internal to 
the particular linguistic theory that he is considering.17 

Although Chomsky and Halle's insistence on rigorously 
formulated and tested explications seems all to the good, one 
cannot help balking at the claim that a simplicity criterion 
adequate for transformational grammar need have no wider 
application. This difficulty is especially pronounced in view 
of Chomsky and Halle's desire for their simplicity criterion to 
form part of a linguistic theory that describes human mental 
structure. Are we to imagine that people use one simplicity 
criterion in language acquisition and a quite different one when 

17 See Chomsky and Halle's criticisms of Householder in 'Some Controversial 
Questions in Phonological Theory' and Chomsky's Aspects of the Theory of Syntax, 
pp. 38--g. One wonders how simplicity can be internal to linguistic theory and yet 
be used as it is in .~yntactic Structures to adjudicate between kinds of grammars. 
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they construct, say, their everyday 'theory' of physical objects? 
A psychological theory that needs a different simplicity 
criterion for each area of human cognition surely would be 
dismissed as ad hoc and unnecessarily complex. In the final 
analysis, we want an adequate simplicity criterion for phono­
logical theory to be a special case of the simplicity criterion 
used in cognition in general.IS 

3·4 The Relevance of our Theory of Simplicity 

An immediately obvious affinity between our simplicity 
criterion and Chomsky and Halle's is that in both accounts the 
simplicity of hypotheses is crucially relative to which predicates 
are regarded as the natural ones. This relativity cuts both ways 
in Halle's arguments. Intuitions about which hypotheses are 
simpler than others help determine which predicates are 
natural, and our confidence that certain predicates are natural 
constrains which hypotheses we regard as simpler than others. 

Beyond this general similarity of approach, our simplicity 
criterion yields results that are identical to the ones generated 
by Chomsky and Halle's proposal. Before we can examine some 
of these points of agreement, it is necessary to explain how to 
calculate the MEl of a transformation rule. One of the standard 
conventions for manipulating transformation rules is that we 
are allowed to move 'any part of the feature complex on the 
left-hand side of the arrow ... to the environment' _19 Thus, we 
can rewrite (6b) as 

0 ~ [-grave]/ 

+grave 
-cons 
-cliff 
+compact 
-fiat 

[
+voc ] 
-cons , 
-grave 

where '0' applies to any segment. In the above reformulation, 
we have moved into the environment everything that was to 

18 This demand for a unified treatment of the role of simplicity in cognition 
goes counter to the tendency to view the mechanisms of language acquisition as 
unique. If the unified approach is correct, then we cannot account for whatever 
special status the use of language might have in our species in terms of the sin­
gularity of its manner of acquisition. 

19 Halle, 'Phonology in Generative Grammar', p. 338. 
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the left of the arrow. We can consider the resulting hypothesis 
relative to the question 

Should phonological segment x be rewritten as -grave? 

The MEl of the hypothesis relative to this question is the set 
to the right of the slash. Manipulating the transformation rule 
in this way provides an easy method for constructing its MEl 
set. 

Consider (4a), (sa), and (6a) relative to the question 

(8) Should phonological segment x be rewritten as jcej? 

For (sa) to answer this question, we must know that xis fa/ 
and that it is followed and preceded by jij. For (4a) to answer 
(8), we must know that xis fa/ and that it is followed by jij. 
And for (6a) to answer (8), we must know that xis /a/ and that 
it is followed by jij, jej, or jcej. Because (sa) requires more 
information than (4a), and (4a) requires more information 
than (6a), relative to question (8), (6a) >s (4a) >s (sa). 

But as Halle points out, comparing the simplicity of (4), (s), 
and (6) proceeds smoothly whether one adopts a distinctive 
feature or an indivisible phoneme approach. It is when we 
reach examples like (6) and (7) that the difference between 
these two techniques becomes important. When (6) and (7) 
are expressed in terms of phonemes, our simplicity criterion 
seems to be useless. Which requires more information: knowing 
that a phoneme is in the set [i e ce] or knowing that a phoneme 
is in the set [i p z] ? Specifying these two sets in terms of in­
divisible phonemes does not reveal that the members of the 
first have many important properties in common, while the 
members of the second do not. The significance of the dis­
tinctive feature approach in this case is that it makes this fact 
explicit. Given a phonological segment, one needs to know far 
less about it to say that it is a member of the first set than to 
say that it is a member of the second. Thus, within a distinctive 
feature framework, (6) is demonstrably simpler than (7). 

We saw earlier that a phonological theory must assign 
phonological interpretations to syntactic strings. For Chomsky 
and Halle, a phonological theory must also meet the require­
ment of explanatory adequacy. Part of this additional task 
involves solving the problem of possible nonexistent forms. Chomsky 
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and Halle20 discuss the fact that English contains the sound 
jbrik; ('brick') but not jblik/ or /bnik/. Even though neither 
jblik/ nor jbnik/ actually occurs as a formative in English, 
most English-speakers would agree that /blik/ is a possible 
English sound, while jbnik/ is not. Put another way, the non­
occurrence of jblik/ is an accident, while the nonoccurrence of 
jbnik/ is guaranteed by the laws of English sound structure. 
The problem posed by nonexistent forms is to find some theor­
etical explanation of this difference. 

This brings us back to the uses that Chomsky and Halle want 
to make of the lexicon and the transformation rules: They 
want the accidental facts about a language to go into the 
lexicon and the phonological laws to be represented by the 
transformation rules. Thus, in the example above, Chomsky 
and Halle want to exclude jblik/ from the class of actual 
English sounds by having it not occur in the lexicon, while 
jbnik/ is to be excluded by a phonological law. The following 
law excludes jbnik/ but includes both jblik/ and /brik/: 

(g) Consonantal segment --?liquid in the context: 
*stop - vowel. 

However, compare (g), which satisfies the kind of distinction 
between law-likeness and accident that Chomsky and Halle 
want to make, with 

(10) Consonantal segment--? jrj in the context: *fb- ik/. 

( 10) excludes both jblik/ and /bnik/ but includes jbrik/ in 
the sounds of English. 

For Chomsky and Halle to show that the nonoccurrence of 
/bnik/ in English is law-like and that the nonoccurrence of 
/blik/ is an accident, they must provide a criterion for choosing 
(g) over (10). If (g) were adopted, the nonoccurrence of 
jblik/ would be registered as an accidental fact in the lexicon. 
As might be expected, Chomsky and Halle's simplicity criterion 
results in (g) being simpler than ( 10). Our theory of simplicity 
yields the same result, because knowing that a consonantal 
segment occurs in the context *stop -vowel requires less 

2o Chomsky and Halle, 'Some Controversial Questions in Phonological Theory', 
p. IOI. 
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information than knowing that a consonantal segment occurs 
in the context * jb - ikj.21 

When we embed this example in the psychological context 
of language acquisition, another similarity between Chomsky 
and Halle's measure and our own becomes evident. A child 
hears neither ;blik/ nor jbnik/ in the course of his early 
training, so all of his primary linguistic data are compatible 
with generalizations (g) and (Io). The child is in a 'situation 
of indifference', in that the totality of his evidence fits more 
than one alternative generalization. The rules for hypothesis 
choice dictate that we choose (g) over (Io) because of its 
simplicity. Thus, the role of simplicity within a psychologically 
oriented linguistic theory seems similar to the role of simplicity 
within the context of hypothesis choice in general. 

Chomsky and Halle22 discuss the following two rules in 
terms of the difference between a natural and an unnatural 
environment: 

(I I) 

( 12) 

[ -cons] [ J +high --+ [ -voc]/ -back 

r
-voc ] +cons 
+ant 
-cor 
-nasal 

[
+voc ] 
+cons 
-ant 

[
-voc ] 
-cons 
-back 

[
-voc j 
-cons 
-high 
+hack 

[ +~~:~] ___,.. [ -voc]j __ [+voc J 
-back -cons . 

21 Chomsky and Halle in The Sound Pattern of English, p. 417, give a definition of 
degree of deviance: the simpler the rule violated by a sequence, the more deviant it is. 

22 Ibid., p. 340. 
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(I I) says that if a segment has the features -back, -cons, and 
+high and if it precedes a segment having all of the features 
specified within any of the square brackets in the braces, then 
the segment is to be rewritten so that it has the feature -voc. 
Chomsky and Halle's counting measure clearly yields the 
result that (I 2) is simpler than (II). 

Our simplicity criterion gives the same result. Consider (I I) 
and (I 2) relative to the question 

(I3) Should segment x be rewritten as -voc? 

The MEl of (I I) relative to this question is the four-member set 

[
-cons] 

xis +high 
-back 

[
-voc l . +cons 

and IS followed by 
a segment which is +ant 

-cor 
-nasal 

[
-cons J and is followed by [++voc J 

xis +high h. h . cons 
_back a segment w IC IS -ant 

[
-cons] 

xis +high 
-back 

[
-cons] 

xis +high 
-back 

[
-voc ] and is followed by 

. . -cons 
a segment which IS _back 

and is followed by -cons [
-voc ] 

a segment which is -high 
+back 

However, the MEl of (I2) relative to question (I3) is 

( [
-cons] . ) xis +hi h and IS follow~d b.y [+voc J 

b gk a segment which Is -cons 
- ac . 

( I5) 

Since ( I4) is greater in content than (I 5), hypothesis (II) re­
quires more extra information to answer question (I3) than 
does hypothesis (I2). Therefore, (I2) is simpler than (u). 
Thus, whether we use Chomsky and Halle's counting measure 
or our criterion in terms of informativeness, (I 2) is simpler 
than (I I). This result mirrors our strong intuition that an 
important difference between (II) and (I2) is that in (I2) 
'the environment is a highly natural class of segments, that 
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is, all vowels of the language, whereas the environment [in 
(!!)] ... is a very unnatural class'.23 

The third example that I want to discuss illustrates the use 
of variables as feature coefficients in the context of assimilation 
and dissimilation rules. 'Assimilation is a process in which two 
segments are made to agree on the value assigned to one or 
more features, whereas dissimilation is a process in which two 
segments are made to disagree in the value assigned to one or 
more features.'24 The assimilation rule below is taken from 
Southern Paiute. 

r ~~ih l ; __ + r ~~~ih l 
l-back l-back 

('6) [+con'] _J ;~~ih l/ ) ;~;hl 
l-back l-back 

r ~~ihl/ ) ~~ihl J +back l +back . 
Although ( 16) is highly regular and law-like, according to 
Halle's counting measure it comes out just as simple as the 
following monstrosity: 

r ~~ih l ; __ ) +~ih l) 
l-back l +back 

[+cons]~ J !~ihlf ___ + r :~ihl 
l-back l +back 

r +~ihl/ ) !~ihl 
l +back l-back . 

23 Chomsky and Halle, The Sound Pattem of English, p. 340. 
24 Ibid., p. 350. 
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In (16), but not in (17), there is a perfect correlation between 
the matrix to the right of the slash and the one to the left. 
Halle's solution to this problem is to use variables, which in 
this case can take either '+' or '-' as values. Given this nota­
tional convention, ( 16) can be abbreviated as 

[+cons] --+ { [~~~ih ] ; __ 
oback 

( 18) [
()(ant ]} (Jcor 

+ yhigh 
oback . 

Using Halle's counting measure, it turns out that ( 18) IS 
simpler than (17).25 

Similarly, consider ( 1 7) and ( 18) relative to the question 

(19) What values of the features ±ant, ±cor, ±high, and 
±back should x be rewritten as having? 

For (17) to answer this question, we must know one of the 
following: 

xis +cons and xis followed by -ant 
+cor 
-high 
+back 

(20) xIS +cons and xis followed by +ant 
-cor 
+high 
+back 

xIS +cons and xis followed by -ant 
+cor 
+high 
-back 

For (18) to answer (19), we must know a sentence of the form 

(21) xIS +cons and xis followed by ()(ant 
(Jcor 
yhigh 
oback. 

25 Strictly speaking, (18) is not equivalent to (16). However, according to 
Chomsky and Halle, The Sound Pattern of English, p. 351, (16) implicitly includes 
the other permutations of values for the four features mentioned. Once this is 
spelled out, ( 18) becomes a straightforward rewrite of ( 16). In applying the count­
ing measure here, it is assumed that a variable counts as one symbol, just like 
'+'and'-'. 
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The set of sentences in ( 20) has the form 

(~), 
while the set of sentences represented in ( 2 I) has the form 

A 
B 
c 
D 

since it includes all of the sentences obtained by permuting the 
values for a:, {3, y, and ().According to our definition of content, 
( 20) is higher in content than ( 2 I). Therefore, (I 8) is more 
informative, and hence simpler, than (I7). 

A final example of an application that Chomsky and Halle 
make of their simplicity criterion concerns the relationship 
between the lexical entry of a formative and its final representa­
tion. Chomsky and Halle express the intuition that the smaller 
the amount of change involved in getting from lexical entry to 
final representation, the better.26 Thus, they feel that 

l ~~:~] __,.. [ -voc] 

-back 

is simpler than 

l ~~~~s] [--voc J 
+high __,.. +back , 
-back 

which in turn is simpler than 

l :~f:~] __,.. [!~;~s] 
b k -high . - ac 

26 Chomsky and Halle, The Sound Pattern if English, PP- 337-9-
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Clearly, their counting measure preserves these judgements. 
They express an allied intuition that the more invariant the 

formatives of a language, the simpler will be the rules describ­
ing their phonologicai properties.27 To see what they mean by 
'invariant', notice the difference between the phonological 
representations of 'inn' and 'algebra'. No matter what string 
of formatives the word 'inn' appears in, its phonological 
representation in terms of a distinctive feature matrix remains 
unchanged. However, the same is not true of 'algebra', in that 
this word has one representation in the sentence 'I like algebra' 
and quite a different one in 'It is algebraic'. This means that 
the lexical representation of 'inn' is carried over unchanged 
into its final representation, while the lexical representation of 
'algebra' is not the same as its final representation in certain 
contexts.28 

The desire for invariance is a limiting case of the desire to 
minimize the change between lexical and final representations. 
If a formative is invariant, then none of its lexical properties 
are altered in the transformations which produce its final re­
presentation. However, this desire to minimize the difference 
between lexical entry and final representation is not the only 
ambition we have for our grammar. If it were, we would posit 
many more formatives than we do, thereby increasing the 
amount of invariance exhibited by the total description of the 
language. For example, rather than having a single formative 
'algebra' which is not invariant, we might decide to posit two 
formatives-'algebra' and 'algebraic'-each of which is in­
variant. As speakers of English, we have strong intuitions that 
such a move is artificial. But what is the general rationale for 
avoiding this, if we really do want to maximize in variance? 
Clearly, counterbalancing this desire for invariance is our 
desire to maximize law-likeness and thereby minimize the 
content of the lexical entries.29 

27 Chomsky and Halle, The Sound Pattern of English, pp. 166-8. 
28 We ignore here the import of lexical redundancy rules, since they do not 

affect this point about invariance. Even so, it is worth mentioning that lexical 
redundancy rules fit into the desire to minimize the accidental character of a 
language. These rules guarantee that the lexical entry of a phonological matrix 
includes only 'accidental facts'; the rest of the matrix is then filled in by phono­
logical laws. 

29 Since both the lexicon and the phonological rules are subject to a simplicity 
constraint, the problem arises of how to weight the importance of gains in sim-
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From our discussions of change/no-change hypotheses and 
invariance (Sections 2.1 and 2.4), it should be obvious that our 
theory of simplicity mirrors the intuition that simple grammars 
minimize the difference between lexical entry and final repre­
sentation, all else being equal. This desideratum may be 
traded off for gains in law-likeness, and as we have seen, 
Chomsky and Halle's notion of law-likeness is also mirrored 
within our theory. Thus, in evaluating total grammars, we will 
encounter weighting problems of the kind discussed in Section 
2.g. 

3·5 The Suggestions of Contreras and Bach 

In this section, I examine the recommendations that Con­
treras3o and Bach31 have made for modifying the notation of 
Chomsky and Halle's distinctive feature framework. These 
suggestions are similar in spirit to the comments that Chomsky 
and Halle make at the end of The Sound Pattern of English, 
where they cite examples in which the binary distinctive 
features used earlier in the book fail to yield correct results 
when subjected to the counting measure. Like Chomsky and 
Halle, both Contreras and Bach want to preserve the counting 
measure, and so they focus their attention on augmenting or 
altering the predicates regarded as natural. Since the counting 
measure involves counting symbols, their proposals amount to 
suggestions of notation. I will not discuss here whether Con­
treras' or Bach's proposed modifications are true to the lin­
guistic facts, or whether the facts cited really demand a 
modification in Chomsky and Halle's approach.32 The goal is 

plicity in these two areas. McCawley, in The Phonological Component of a Grammar of 
Japanese, pp. 51-2, seems to think that any economy in the rules should take 
precedence over any economy in the lexicon, and his 'The Accentual System of 
Standard Japanese', p. 70, attributes this view to Halle as well. In 'The Measure­
ment of Phonological Economy', Harms criticizes this policy and says that the 
two kinds of economies can be traded off. Zimmer's 'On the Evaluation of Alterna­
tive Phonological Descriptions' also questions McCawley's proposal and points 
to the need for a set of principles that enables us to weight and compare the kinds 
of economy at issue. 

30 Contreras, 'Simplicity, Descriptive Adequacy, and Binary Features'. 
31 Bach, 'Two Proposals Concerning the Simplicity Metric in Phonology'. 
32 In his 'Resolution of Vocalic Hiatus in Portugese: Diachronic Evidence for 

Binary Features', Naro takes issue with some of 1:he examples used by Contreras 
and argues that the relevant facts can be accommodated within a binary dis­
tinctive feature framework. 
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the more modest one of showing how these further simplicity 
intuitions are captured by our theory. 

Contreras considers three possible ways of accommodating 
the counterexamples he finds to the Chomsky-Halle simplicity 
measure: (I) rejecting the intuitive simplicity judgements that 
comprise the counterexamples; (2) rejecting Halle's simplicity 
measure; (3) rejecting the binary principle (whereby every 
distinctive feature has just the value '+' or '-', rather than, 
say, some integer between o and 10). Contreras thought that 
the intuitions were too clear to adopt strategy (I) and that 
Halle's simplicity criterion works too well elsewhere for ( 2) to 
be an option (and Contreras also admits that he has no better 
alternative to offer). So Contreras chooses (3), and applies the 
variable notation discussed in Section 3·4 to nonbinary 
features. 

He argues that although 

(22) (
[+cliff J * 

[-stress] ~ [ -syll] / [ . ] 
-dlff * 
-comp 

[ +syll ]) -cons 

[
+syll] 
-cons 
-cliff 

is intuitively more simple than 

[ =~~;p] ~ [ -syll]j ___ 4f [~~~~s] 
-stress -cliff , 

Halle's simplicity measure yields the opposite judgement. In 
order to compare ( 22) and ( 23) from the point of view of our 
simplicity criterion, first we rewrite (23) equivalently as 

(24) [-stress] ~ [ -syll]/[-diff ] 4f [~~~~s] 
-comp -d1ff . 

Consider (22) and (24) relative to the question 

(25) Should segment x be rewritten as -syll? 

For (22) to answer this question, we must know one of the 
following: 

( 26) x is -stress and +cliff, and is followed by a segment 
that is +syll and -cons. 
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xis -stress, -cliff, and -comp, and is followed by a 
segment that is +syll, -cons, and -cliff. 

On the other hand, for ( 24) to answer this question, we must 
know that 
(27) xis -stress, -dift~ and -comp, and is followed by a 

segment that is +syll, -cons, and -cliff. 

(26) has the form(~) while (27) has the form (B). This means 

that (27) is higher in content than (26), so (22) requires less 
extra information to answer question (25) than (24) does. 
Thus, according to our theory, (22) is simpler than (23). 

The second example that Contreras brings to bear against 
Chomsky and Halle's proposal is that 

~Xant ~Xant 

f3cor f3cor 

[+nasal] -+ 
yhigh 

I 
yhigh 

<51 ow <51 ow 
shack shack 
'l'distrib "tdistrib 

and 
+ant +ant 
-cor -cor 

[+nasal] -+ 
-high 

I 
-high 

-low -low 
-back -back 
-distrib -distrib 

are equally simple according to the counting measure, even 
though (28) is intuitively simpler than (29). However, within 
our theory, (28) is simpler than (29) relative to the question 
(3o) What values of ±ant, ±cor, ±high, ±low, ±back, 

and ±distrib should segment x be rewritten as having? 
Notice that the MEl of (29) relative to this question will have 
the form (A), while the MEl of (28) will have the form 

A 
B 
c 
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Thus, (28) requires less extra information than (29) to answer 
question (30), and is simpler as a result. 

Before presenting the other objections that Contreras raises 
against Halle's proposal, I should outline how Contreras wants 
to deal with these problems. Since he wants to continue using 
Halle's counting measure, Contreras' objective becomes one of 
formulating a perspicuous notation33 within which the counting 
measure yields intuitive results. To this end, Contreras makes 
use of nonbinary features, and he introduces the following 
weighting for variable and constant coefficients: 

It seems reasonable to assume that the identification of one out of 
three elements involves a greater degree of specificity than the 
identification of one out of two. Therefore, I suggest that the value 
assigned to integers be a function of the number of integers which 
are possible for a given feature. Since plusses and minuses may be 
conceived of as integers for scales having two terms, a uniform 
measure may be applied to binary and non-binary features. Thus, 
a variable is assigned the value I, a plus or minus the value 2, and 
an integer the value 3, 4, etc., depending on how many integers are 
possible for the feature in question.34 

Given this convention, (28) turns out to be simpler than (29) 
according to the counting measure. But what of (22) and (23)? 
It still looks as if the counting measure yields the same counter­
intuitive result when applied to them. 

To solve this problem, Contreras reformulates (22) and (23) 
as (3r) and (32) respectively: 

(3r) [-stress] -+ [ -syll]![nhigh] [
+syll] 

# -cons 
mhigh 

Condition: n > m. 

(32) [ -stre,;s] ~ [ -syl1Jj[2high] + [~~~s] 
Condition: 2 > n. 

33 The Chomsky-Halle programme of developing an adequate counting mea­
sure for simplicity embodies the search for perspicuous notation in just the sense 
that this idea was discussed in Section 2.6. Here, as before, the goal is to so arrange 
one's technique of representation that 'deep' (properties, like the simplicity of 
hypotheses, are manifest, in 'surface' properties, like the number of symbols in a 
sentence. 

34 Contreras, 'Simplicity, Descriptive Adequacy, and Binary Features', p. 4· 
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Contreras' convention assigns ten points to (3 I) and twelve 
points to (32), which is just what is required. Now intuitions 
and theory agree that (3I) is simpler than (32). 

Contreras' next criticism of Halle involves the following 
three rules: 

(33) [ -low J [ alow] --J> 1 -a ow 

(34) [-high] --J> [+high]/[ -low] 

(35) [ alow] --J> [ = :~;r1] 
Intuitively, we would expect that (33) should be simpler than 
both (34) and (35). Halle's counting measure and his binary 
approach yield intuitive results when applied to (33) and (34). 
However, his strategy seems to go wrong when applied to (33) 
and (35); in this case, his simplicity criterion says that (33) and 
(35) are equally simple. However, if these three hypotheses are 
reformulated in Contreras' nonbinary notation, intuitive results 
ensue: 

(37) 

(38) 

[ nhigh] --J> [n + I high] 
Condition: n < 3 

[ 2high J --)> [ 3high J 

[Ihigh] --l> [~!~~]. 
Here, Contreras' proposal implies that (36) is simpler than 
(37), which in turn is simpler than (38). 

It should be obvious that our theory yields the same results. 
(36) is simpler than (37), since (36) requires less extra informa­
tion than (37) to answer the question 

(39) What degree of height should be given to segment x? 

(37) is simpler than (38), since (38) represents a more radical 
change from input to output than does (37) (see the discussion 
of in variance in Section 3.4). 

Contreras' last example also involves variable notation. This 



u8 SIMPLICITY IN TRANSFORMATIONAL PHONOLOGY 

time 'n' ranges over the first n integers and 'a' is 
variable, as before. As in the previous example, 

[ +syll J --?- [anhigh]j ___ [+~~~s] 
-cons 

anhigh 

a binary 

requires less extra information to answer question (39) than 

[ ~~~~s] --?- [rhighJf---[+~~~s] 
rhigh , 

so ( 40) is simpler. 
Bach's proposals on simplicity are similar to Contreras' in 

that both attempt to augment the notational conventions pro­
posed by Chomsky and Halle in such a way that a counting 
measure yields intuitive results. Bach begins by noticing that 
the Chomsky-Halle measure is insensitive to the greater sim­
plicity of (41a) over (42): 

(41a) [-cnt J --?- [agrave]/{[ag~~~~J [ ]} +high -cons 
agrave 

(42) [ -cnt J --?- [agrave]/{[~~~~~J } 
+high __ [ IY.V~~t J 

(41a) is the rule for English that determines the front and back 
allophones of the velar stops. Notice that the two environments 
represented in the braces in (41a) are mirror images of each 
other. The rule says that if a -cnt +high segment is before or 
after a segment that is -cons and agrave, it is to be rewritten 
as agrave. (42) is a hypothetical rule in which there is no im­
portant connection between the two possible environments. 
By ranking the two rules as equally simple, the Chomsky­
Halle measure seems to miss the fact that (41a) represents a 
more significant generalization than (42). 

According to the 'neighbourhood convention' that Bach 
proposes, (4ra) could be rewritten as 

(41b) [ ~~7;h] --?- [agraveJ/[~~~~~]. 
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The omission of the blank in (4rb) indicates that the segment 
described in the environment comes before or after the one 
described to the left of the arrow. Now intuitions and counting 
measure concur, because (41b) comes out simpler than (42). 

Within our theory of simplicity, we can compare (41b) and 
(42) relative to the question 

What degree of grave should segment x be given? 

For (41b) to answer this question, we must know, in addition, 

(43) xis -cnt and +high and is before or after a segment 
that is -cons and <Xgrave. 

For (42) to yield an answer, we must know one of the following: 

(44) x is -cnt and +high and is after a segment that is 
-cons and <Xgrave. 
xis -cnt and +high and is before a segment that is 
-cnt and <XVCe. 

If we let '-cons and <Xgrave' be equal in content to '-cnt and 
Otvce', then (44) comes out higher in content than (43). The 
idea behind this assumption is that each of the sentences in (44) 
'says more' than the sentence in (43). Granting this, our theory 
implies that (41b) is simpler than (42). 

The second situation that Bach considers is 'that in which 
the determining environment is separated from the segment 
undergoing the rule by an irrelevant stretch of segments'.35 

Where X indicates such an irrelevant stretch of segments (or 
no segments at all), we see that 

[ ~ir~ve] --+ [ +highJI---[~ir~ve] 
-comp +high 

(45) 

is a special case of 

[ +ir~ve] --+ [ +high]j ___ X [~~~~ve] 
-camp +high . 

Bach's second convention ensures that (46) comes out simpler 

35 Bach, 'Two Proposals Concerning the Simplicity Metric In Phonology', 
p. 139· 

S-E 
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than (45), which matches our intuitions. Notice that by our 
criterion (46) is simpler than (45) relative to the question 

Should segment x be rewritten as +high? 

This is a case when greater generality brings with it greater 
simplicity. In fact, most of the examples Bach uses could serve 
as illustrations of the connection between simplicity and 
generality drawn in Section 2.4. 

The suggestions of Contreras and Bach by no means exhaust 
the attitudes that linguists have to Chomsky and Halle's pro­
posal, nor do they exhaust the recommendations that have been 
made to modify the simplicity criterion and distinctive feature 
framework to yield more intuitive results. Yet, the preceding 
discussion should constitute further evidence that our simplicity 
criterion mirrors a host of intuitions in transformational gram­
mar and should provide some insight into the kinds of problems 
faced by the Chomsky-Halle counting measure. 

3.6 Spurious Generalizations 

One of the principal purposes of a simplicity criterion in 
linguistics is to distinguish law-like significant generalizations 
about a language from spurious nonsignificant facts. The 
examples we have examined thus far show that the dictates of 
our theory coincide with the intuitions of linguists about this 
distinction. Yet, one feature of our theory seems to violate these 
intuitions. According to our proposal, 

is simpler than 

(48a) 

A -+BI---{f} 
A -+Bj __ ~F 

relative to the question 

Should segment x be rewritten as having B? 

However, the indispensable use of braces-the disjunction­
has been seen by some linguists as a sure sign of a spurious 
generalization. Lakoff expresses his view of braces quite suc­
cinctly: 
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Devices like curly-brackets may be useful as heuristics when one is 
trying to organize data at an early stage of one's work, but they are 
not something to be proud of. Each time one gives a disjunctive 
list of the environments where a rule applies, one is making a claim 
that there are no fully general principles determining the applica­
tion of that rule. Over the years, curly-brackets have had a ten­
dency to disappear as insights were gained into the nature of the 
phenomena being described.36 

In Section 2-4, we saw that in general, the hypothesis 

(47b) (x) [(Ax v Cx) => Bx] 
is simpler than 

(48b) 
relative to the question 

(x) (Ax => Bx) 

(Ba, ,.._,Ba), 
and clearly our judgement on (47a) and (48a) 1s JUSt an in­
stance of the greater simplicity of (47b) over (48b). I now want 
to argue that (47) is simpler than (48), although an explanation 
using (47) as its explanatory law can often be worse than an 
explanation using ( 48). That is, hypotheses that use braces are 
to be eschewed, but on grounds other than simplicity. 

Explaining why an individual is B involves placing it in a 
reference class that is natural (see Section 2.4). Thus, a better 
explanation for why a melts is that a is a piece of ice in an en­
vironment where the temperature is higher than 32°F, rather 
than that a is either ice or X, where ice and X are completely 
unrelated except that both melt in environments warmer than 
32°F. In transformational grammar, the fact that a given seg­
ment having property A is transformed into having B is ex-

36 Lakoff, 'On Generative Semantics', p. 294· In 'Linguistic Universals and 
Linguistic Change', p. 176, Kiparsky concurs with this judgement. In A Stut[y of 
Thinking, pp. 161-2, Bruner, Goodnow, and Austin give the following historical 
examples of how the discovery that a disjunctive set can be supplanted by a 
nondisjunctive one often counts as a theoretical advance. Our understanding of the 
sensory physiology of the skin was deepened when a nondisjuncti ve characteriza­
tion was found for the conditions under which a sensation of cold (or warmth) 
could be produced. The same thing happened with the discovery of a univocal 
explanation for why diverse therapeutic techniques can relieve swelling of a bruised 
joint. In both these cases, a nonnatural category at a macro-level of theory was 
found to be identical with a natural category at a micro-level. This is the opposite 
of the kind of situation discussed in Section 1.8 where a natural category at a 
macro-level was found to be nonnatural at a micro-level. 
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plained better by saying that the segment precedes a context 
of kind F than by saying it precedes a context of kind F, or one 
of kind G, or one of kind H. We see then that our intuition that 
(47) is a worse explanatory hypothesis than (48) is explicated 
in terms of our desire for natural reference classes in explana­
tions. Recall that the naturalness of a class is defined in terms 
of its being equivalent to some intersection of classes that are 
initially designated as natural (see Section r.8). Thus, our 
theory of simplicity substantiates Lakoff's claim that dis­
junctively characterized sets are natural when their disjunctive 
characterizations are dispensable, even though the theory 
violates the intuition that (48) is simpler than (47). 

If (47) and (48) are each more than minimally supported by 
the evidence, the model for hypothesis choice (Section 1.9) 
dictates that (47) should be chosen on grounds of simplicity. 
Choosing (47) seems intuitive, because if each hypothesis is a 
relatively safe bet, what reason could there be for choosing the 
less general one? The problem here is not which hypothesis is 
chosen, but the reason for the choice. Granted that (47) is the 
better hypothesis in this situation, why is it the simpler? 

From the discussion of homogeneity in Section 2.1, it seems 
clear that the simplest possible hypothesis we can make with 
respect to the predicate family (B, ""'B) has the form' (x) ( ±Bx) '. 
Take 

(49) (x) (Bx) 

as an example. (49) says the universe is perfectly homogeneous 
with respect to the predicate family just mentioned. Now con­
sider a universe in which (47b) and (48b) have different truth 
values. Because (4 7b) implies (48b), such a universe must be 
one in which (47b) is false and (48b) is true. In this universe, 
there must be at least one individual that is both C and not B. 
Note that if A is nonempty, then the universe has less homo­
geneity with respect to the predicate family (B, ,_B) than when 
(47b) is true. That is, in so far as (47b) and (48b) differ, (47b) 
yields a more homogeneous universe than (48b) does. We can 
think of (47b) and (48b) as unequal approximations of the 
maximal simplicity of (49). (47b) puts us one step closer to this 
goal than ( 48b) does, and 

(x)[(Ax v Cx v Dx) ::::> Bx] 
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puts us closer still. In the limit, by sufficiently broadening the 
class determined by the antecedent, the hypothesis 

(x)[(Ax v Cx v Dx v ... ) => Bx] 

is hypothesis (49). This should provide some insight into why 
the greater generality of (47b) over (48b) is also a greater 
simplicity. 

One result of this discussion, noted in Section 2 .4, is to drive 
a wedge between constraints on accepting hypotheses and 
constraints on constructing explanations. Even though (47) is 
a more reasonable choice than (48) when both are more than 
minimally supported, (48) might better explain why an in­
dividual is B. We also noticed that acceptance and explanation 
assign different uses to the notion of support and that two 
hypotheses can be unequally acceptable but equally explana­
tory. So even if the theory of simplicity here proposed proves 
unsatisfactory, sufficient reason remains to regard the desiderata 
in these two areas as distinct. 

This has important consequences for the view that a gram­
mar is at once the accepted output of a language acquisition 
device and an explanation of the transformations that linguistic 
units undergo in different contexts. Chomsky and Halle's sim­
plicity measure was supposed simultaneously to model the 
child's rules for 'accepting' linguistic laws and to prescribe 
which hypotheses provide the best explanations for linguistic 
phenomena. However, no single counting measure can do both 
these jobs, because an ordering of hypotheses in terms of their 
acceptability is not the same as an ordering of hypotheses in 
terms of their explanatory adequacy. 

Thus, the following argument is not in general warranted: 
Since a given hypothesis explains the data better than another 
hypothesis does, we must ensure that the language acquisition 
device accepts the former hypothesis in preference to the latter. 
A special version of this argument, however, is suspect for an 
additional reason. Linguists sometimes argue for the superior 
explanatory power of a rule by appealing to its symmetry with 
other transformational rules that already seem reasonable. For 
a child to be in a position to do the same thing, he must already 
have internalized the other rules considered. At times, this will 
be false to his psychological history. 
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In fact, the impact of the difference between acceptance and 
explanation is less damaging to the psychological interpretation 
of linguistic theory than it is to Chomsky and Halle's pro­
gramme for developing a simplicity measure. It still remains 
reasonable to suppose that language acquisition involves in­
ternalizing rules and that explaining linguistic regularities 
involves appealing to some of those rules. Moreover, rules of 
acceptance and explanation both partake of certain con­
straints, notably simplicity. But constructing explanations is a 
selective process; we use as explanatory hypotheses only some 
of the rules internalized during language acquisition. Since 
acceptance is deciding what to believe and explanation is 
deciding which beliefs to use for a particular purpose, there 
seems to be no prima facie reason to expect the constraints on 
the two processes to be the same. 

3. 7 Conclusion 

The discussion of Chomsky and Halle's proposals in the light 
of our own simplicity criterion has perhaps fostered the im­
pression that linguists largely agree on the role and details of a 
simplicity criterion in linguistic theory. Nothing could be 
further from fact. Even among transformational grammarians, 
the multiplicity of opinion in this area extends right down to 
fundamentals. Some linguists37 think that linguistics needs to 
formulate explicit evaluation procedures only because the 
subject is not yet mature; once the theory becomes rich enough, 
such self-conscious attention to criteria for hypothesis choice 
will naturally pass by the way. Among those linguists who feel 
that some evaluation procedure is desirable are some who 
believe that no counting measure can suffice.as They would see 
the weighting of variables and the elaboration of notation dis­
cussed in Section 3·5 as an ad hoc postulation of epicycles. And 
even linguists who think that a counting measure is useful do 
not agree on what conclusions such a measure should yield. 
For example, Halle's 'Phonology in Generative Grammar' and 

37 See, for example, Botha's Methodological Aspects qf Transformational Generative 
Phonology. 

38 In 'On the Functional Unity of Phonological Rules', Kisseberth examines 
some cases where the usual abbreviatory conventions seem to be insensitive to 
important theoretical similarities and differences between rules. His article raises 
the possibility that some fundamentaiiy new standards of evaluation are needed. 
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Chomsky and Halle's The Sound Pattern of English assert that 
ordered transformation rules should come out simpler than un­
ordered ones, but this intuition has been called into question 
in recent discussion. Moreover, the role of a simplicity measure 
in diachronic linguistics is a subject of considerable con­
troversy.39 

How does our discussion affect the general question of 
whether evaluation procedures are needed in a linguistic 
theory? It seems clear that if one views linguistic theory as a 
description of a language acquisition device, then a simplicity 
criterion is necessary. Yet, our discussion of simplicity throws 
some doubt on whether any counting measure can explicate 
simplicity judgements within linguistics or in general. We saw 
in Chapter 2 that choosing hypotheses on grounds of simplicity 
often involves a trade-off between a gain in simplicity in one 
area of theory and a loss in simplicity in another. Moreover, 
in the previous section and in Section 2.4, we saw that con­
siderations beyond simplicity and support are involved in 
constructing explanations, and these considerations can often 
be balanced off against simplicity. The ubiquity of instances of 
the weighting problem suggests that it may be tremendously 
difficult to invent a notation in which these complex, inter­
related, and theory-wide influences on the simplicity of a 
hypothesis are all somehow manifest in an 'internal' property 
of a hypothesis, such as the number of symbols in its minimum 
representation. In general the global character of a concept 
mitigates against the possibility of perspicuous notation. 

A similarly discouraging conclusion derives from the differ­
ence between acceptance and explanation. If the constraints 
on these two processes are distinct, it seems unlikely that any 
counting measure can simultaneously mirror a language 
acquisition device's acceptance policies and linguists' in­
tuitions about the relative adequacy of explanations. However, 
this is a limitation in principle; there are important similarities 
between our policies of acceptance and explanation, and 
Chomsky and Halle's proposal reflects many of our intuitions 
about both areas. 

39 See, for example, Yen's 'Two Measures of Economy in Phonological Descrip­
tion', Bach's 'Two Proposals Concerning the Simplicity Metric in Phonology', and 
Kiparsky's 'Linguistic Universals and Linguistic Change'. 
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Our own simplicity criterion is relatively invariant with 
respect to notation. Any two logically equivalent hypotheses, 
no matter how formulated, are equally simple because equally 
informative. The notational reformations urged by Bach and 
others, which were required to bring the counting measure in 
line with considered judgements, are unnecessary when our 
theory is used to judge the relative simplicity of hypotheses. 
Notational suggestions, where useful at all, matter to our theory 
by making the content of hypotheses explicit; the actual form of 
words used in expressing a hypothesis is irrelevant. In the same 
vein, it is worth recalling that our simplicity criterion is con­
siderably more general than Chomsky and Halle's specifically 
linguistic proposal. Both of these properties of our theory­
its notational invariance and its greater generality-are mani­
festations of the greater simplicity of our notion of simplicity 
as informativeness. 

In spite of this catalogue of problems for Chomsky and 
Halle's approach, it is important to emphasize some of the posi­
tive lessons of their programme. Their insight into the connec­
tion between simplicity judgements and frameworks of natural 
properties seems fundamentally correct. In addition, their idea 
of a language acquisition device as involving parameters of 
simplicity and something like our notion of support shows how 
language acquisition may obey constraints that also govern 
the activity of theorizing. In fact, their considerable success in 
showing that language acquisition can be modelled in terms of 
a simplicity metric suggests that a similar approach to other 
areas of cognition may be fruitful. To this task we now turn. 



4 

Simplicity and Visual Perception 

4· I Introduction 

Psychologists and philosophers have frequently stressed the 
conjectural and active nature of perceiving, likening it to the 
way we create scientific theories. They have denied that per­
ception consists in the passive assimilation of impressions and 
have emphasized that in perceiving, we impose our categories 
and concepts on the sensory stimulations we receive. According 
to this view, the full spectrum of perceptual and cognitive 
activities manifests an organizing and meaning-creating quality. 
All cognition, from the most unreflective recognition of an 
ordinary object to the most self-conscious and abstract scientific 
theorizing, essentially involves processing and transformation. 

On one level, this analogy between perceiving and theorizing 
says nothing more than that both processes are active: Sensa­
tion underdetermines perception and evidence underdeter­
mines theory. However, some psychologists have made the 
bolder claim that the mechanisms of perception are identical 
or strongly analogous to the mechanisms of theorizing.! If 
stated in terms of the flow charts discussed in Chapter 3 (Figures 
6 and 7), this thesis would come to the claim that the two boxes 
in Figure 8 have similar structures. In this chapter, I examine 
how this general thesis might be substantiated by examining 
the sense in which simplicity can be said to play a part in 
perceptual judgements. 

We have observed that simplicity becomes a relevant con­
sideration in hypothesis choice when two or more hypotheses 
fit a given body of evidence but go beyond it in divergent ways. 

1 For example, in The Intelligent Eye, Gregory argues for a probabilistic model of 
perception in which people are taken to perceive the most probable among com­
peting interpretations. Attneave's 'Some Informational Aspects of Visual Per­
ception' discusses some perceptual analogues of the goal in theorizing of seeking 
out redundancies in the environment. This will be discussed in Sections 4.2 and 4-4-
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Simplicity is then used as a criterion for choosing amongst 
these competitors. Before looking at specific perceptual pheno­
mena, we should consider for a moment what the psychological 
correlate of this paradigmatic situation might look like. If there 
were such a thing as a given in perception, we could let it 
correspond to the evidence, and the component of perception 
that goes 'beyond the information given' would then corres­
pond to the hypothesis chosen on the basis of simplicity. Within 
this model, the perceptual given would underdetermine what 
is perceived, since different perceptual judgements would fit 

sensations -----• observations 

evidence ------ theories 

Fig. 8. The analogy between perceiving and theorizing 

the given equally well. Simplicity would then be the 'internal 
criterion' by which these remaining competitors are sorted 
out. 

However, this picture of perception is problematic, since 
there do not seem to be any givens in perception in the sense 
that every perception is the result of some degree of cognitive 
processing. Without the notion of a perceptual given, the 
psychological correlate of the difference in theorizing between 
evidence and hypothesis seems impossible to define. The way 
out of this dilemma begins with the recognition that our 
picture of theorizing has no truck with the idea that evidence 
is somehow given in experience or that evidence enjoys some 
special kind of certainty. The main interest in the analogy is 
that hypotheses are at once based on and go beyond the evi­
dence. The analogue of the evidence /hypothesis distinction in 
perception can be made out by discerning two stages. First, 
we cull certain information from the environment; then we 
impose an interpretation which subsumes the information first 
acquired. Neither stage is a passive process; rather, our per-
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ceptual judgements are best seen as interpretations imposed 
upon interpretations.z 

Another objection that might be raised against the proposed 
analogy between perceiving and theorizing is that there is no 
introspective testimony that perception consists of two distinct 
stages; we simply perceive, without first pondering the evidence 
and then hazarding a hypothesis. This objection glosses over 
the fact that we do have some introspective evidence for the 
existence of stages of processing in perception. For example, in 
perceiving ambiguous figures (see Section 4.2), we alterna­
tively impose different interpretations (hypotheses) on the 
same perceived pattern (evidence). But, clearly, the objection 
based on introspection is mistaken for a more fundamental 
reason. A distinction between evidence and hypothesis in the 
theory of theorizing is justified because it helps us make sense 
of how theorizing works, whether or not we have any intro­
spective evidence that the distinction really exists. Similarly, 
regardless of the introspective testimony about perceptual 
judgements, the best justification we could have for making the 
distinction is that it enables us to construct a better theory of 
perception. The structure of the mind is not transparent to the 
inward gaze. Thus, the initial analogy between theorizing and 
perceiving is nontrivial to the degree that it is substantiated 
by adequate theories about both. Although the day of such 
theories is not at hand, it is possible to give some idea of how 
theorizing and perceiving are analogous, and this will be our 
task in what follows. 

A further objection that might be raised against applying the 
simplicity criterion to perception is that hypothesizing occurs 
in language whereas perception does not. Because the theory 
of simplicity applies first and foremost to sentences, we found it 
necessary in Section 2.8 to explain the simplicity of predicates 
in terms of the simplicity of sentences that describe predicates. 
In this chapter, we will pursue the same kind of programme; 
we will explain the simplicity of nonsentential objects in terms 
of sentences that are associated with them. 

Perceptions are judgements that a given state of affairs ob-

2 In his Aspects of Motion Perception, Kolers argues persuasively for this stages-of­
processing view in the context of apparent motion perception. This will be dis­
cussed in Section 4·3· 
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tains. If a sentence adequately captures the content of such a 
perception, then the sentence is true of the state of affairs just 
in case the perceptual judgement it represents is a correct or 
veridical perception of that state of affairs. Similarly, we will 
discuss the simplicity of pictures in terms of their corresponding 
sentences; a sentence adequately captures the content of a 
picture if the sentence is true of all and only the scenes that the 
picture represents. To make this idea more precise, we will use 
a function R( ) which we will call the method of representa­
tion. R( ) maps pictures or perceptions into sentences. These 
sentences will be complicated existential hypotheses subject to 
the constraint that R(p) has a scene (actual or possible) as its 
verifying instance in just those cases when p pictures the scene 
or p is a veridical perception of the scene. This allows us to say 
that a picture is true (or a perception is veridical) just when its 
corresponding sentence has at least one verifying instance. 

The definition of R( ) provides a partial test for whether a 
given sentence represents a given picture or perception. In 
addition, our linguistifying of perception receives a further 
check from the way it fits in with our theory of simplicity. Given 
our hypothesis that perception involves a simplicity criterion, 
it should turn out that in at least some interesting cases where 
x andy are divergent perceptions each compatible with a given 
stimulation, we tend to have perception x instead of perception 
y and R(x) is simpler than R(y). Similarly, if we think that xis 
a simpler picture than y, then our method of representing 
pictures in language will be confirmed if it happens that R(x) 
is simpler than R(y). 

This brings us to the question of how we should construct the 
linguistic representations of pictures and perceptions. We need 
an enumeration of the natural kind predicates of perception; 
the linguistic representation of a picture or a perceptual judge­
ment would merely be some logical composition of these predi­
cates. Our theory provides no specification of these natural 
kinds, just as it fails to provide a set of natural kinds for phono­
logy (see Chapter 3). Psychology fails to do this as well, since 
at present no comprehensive theory of perception exists. 
Nevertheless, we can test our conjecture by looking at some 
experimental work in psychology which has yielded partial 
successes on circumscribed problems. This will enable us to 
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sketch the likely linguistic representations of certain perceptual 
judgements. a 

All of the foregoing can be summarized in terms of a machine 
model of perception. The machine will have stimulations of its 
sensory surfaces as inputs and perceptual judgements as out­
puts. The problem of developing a theory of perception in­
volves specifying an intervening mechanism. The physical 
cause of a sensation might be a bundle of light rays which excite 
the machine's receptors. At an early level of procest:ing, the 
causal impact of this stimulation will be described in some very 
elementary way, say, by assigning a colour to each square in 
the mosaic of colours that occurs at the sensory surface. Mter a 
sequence of processing on this information, the machine will 
issue in a perceptual judgement, which typically will be a 
physical object sentence.4 This perceptual judgement will be 
related to the lower-level description as hypothesis to evidence. 
Moreover, the perceptual judgement often explains the charac­
ter of the lower-level sentence by locating its causal source in 
the external world of objects. 

To what extent this model can be applied to human percep­
tion is a complicated problem. For one thing, we now know 
that there is no retinal image which consists of a stable mosaic 
of colours. Thus, if a description of a mosaic of colours plays 
any role at all in specifying the sensory input, it is constructed 
from the information yielded as the eye darts about in a series 
of quick scannings and fixations. When the eye is forced to re­
main motionless, the retinal image degenerates or disappears 
altogether.5 Another problem is to know how seriously to take 
the model's linguistic quality. I am inclined to regard it as more 
than a fanciful fiction; the sentences operated upon by this 
functional model rna y be thought of as occurring in the language 

3 In 'Epistemology Naturalized', p. go, Quine suggests that there may be 
perceptual norms that play a role similar to that played by phonemes as linguistic 
building blocks. 

4 A physical object sentence need not always be the output. Roderick Firth 
has pointed out to me that conflicting cues can lead the subject to make the more 
tentative judgement 'I seem to see ... '. In what follows I will use 'perceptual 
judgement' to refer both to physical object judgements and to judgements of 
appearance. 

5 See, for example, Riggs, Ratliff, Cornsweet, and Cornsweet's 'The Disap­
pearance of Steadily Fixated Visual Objects' and Pritchard, Heron, and Hebb's 
'Visual Perception Approached by the Method of Stabilized Images'. 
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of thought-the language in which information is transmitted 
and processed. I take it that most of the information processing 
models of cognition considered in cognitive psychology and 
machine intelligence presuppose a structure of this kind. A 
processing model shows how inputs are transformed into outputs; 
an information processing model shows how objects possessing 
information (e.g., sentences) are so transformed. If the focus of 
such models is the content of representations and not just the 
probabilities of states of a system, the idea of information must 
be semantic; for if the syntactic Shannon-Weaver idea is the one 
used, information is no more central to cognition than to 
digestion. 

4.2 Two- and Three-Dimensional Interpretations of Line Drawings 

Many two-dimensional line drawings strike us as being 
pictures of three-dimensional objects; other two-dimensional 
line drawings appear flat, not representations of solids at all. 
Still others strike us as ambiguous, admitting of both kinds of 
interpretations. If we look a bit more selfconsciously, we notice 
that most drawings admit of off-beat interpretations. For 
example, even though a Kopfermann cube is inevitably seen 
as a cube, it can also be seen as a flat hexagonal figure (see A4 
of Figure g). And although a square can be viewed as a compli­
cated three-dimensional object, it usually is seen as a square. 
Thus, if we reflect on our unreflective interpretations of such 
pictures, we realize that although we could interpret a given 
line drawing in various ways, we typically see it in one way 
rather than in any of the others. 

In what sense might a two-dimensional drawing be seen in 
different ways? The answer seems to be that the picture under­
determines the object it is taken to be a projection of. Given a 
line drawing satisfying certain minimum conditions (like 
closure), an infinity of dissimilar three-dimensional objects can, 
when suitably oriented, project just that line drawing. Yet, in 
spite of this underdetermination, we so often manage to single 
out just one solid as the object depicted by the line drawing. 
Clearly, 'fitting' the drawing does not uniquely determine the 
designated interpretation; some other consideration seems to 
be involved. 

This perceptual phenomenon is quite analogous to the pa1·a-
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digmatic situation described earlier in which simplicity judge­
ments are relevant. We know that any acceptable interpretation 
of a given picture must fit that picture; that is, it must project 
onto the picture by the method of projection we assume to 
hold.6 However, this constraint fails to single out the inter­
pretation that people ordinarily make. According to the rules 
for hypothesis choice outlined in Section 1 .g, we tend to settle 
on an interpretation that fits the picture and is the simplest 
alternative. 

Before going into the psychological literature on this problem, 
let us distinguish three questions that might be asked about the 
regularities underlying a person's choice of two-dimensional 
versus three-dimensional interpretations of line drawings: 

(A) Of two figures, which is more likely to be given a two­
dimensional (three-dimensional) interpretation? 

(B) Will a figure more likely be given a two-dimensional or 
a three-dimensional interpretation? 

(C) If a figure is given a three-dimensional interpretation, 
which three-dimensional interpretation will it be given ?7 

The work of Hochberg and his associates provides an answer to 
question (A).s Perkins and Attneave and Frost address question 
(C).9 I will indicate how question (B) can be answered by 
extending the treatment given in the articles that Hochberg 
co-authored. 

The background for much of this work was established in 
two early papers by Attneave and Hochberg and McAlister.lo 
In both papers, an attempt was made to explicate some of the 
Gestalt qualities of figural goodness in terms of a quantitative 
definition of information. Although their ideas were inspired 

6 Rectilinear projection is the method that we will consider, although it is not 
the only method of projection available. 

7 A fourth question falls in with these three: If a figure is given a two-dimensional 
interpretation, which two-dimensional interpretation will it be given? Although 
not unproblematic, this question will not be discussed in what follows. 

8 Hochberg and McAlister, 'A Quantitative Approach to Figural "Goodness" '; 
Hochberg and Brooks, 'The Psychophysics of Form: Reversible Perspective 
Drawings of Spatial Objects'. 

9 Perkins, 'The Perception of Line Drawings of Simple Space Forms'; Attn eave 
and Frost, 'The Determination of Perceived Tridimensional Orientation by 
Minimum Criteria'. 

10 Attneave, 'Some Informational Aspects of Visual Perception'; Hochberg 
and McAlister, ibid. 
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by Shannon and Weaver's work on information, the authors' 
proposals by no means constituted uncritical transfers of the 
engineering notion of information into the domain of percep­
tion. According to Hochberg and McAlister (p. 36r), when 
faced with a stimulus that admits of more than one interpreta­
tion (as all stimuli in principle do), people tend to perceive the 
alternative that maximizes certain Gestalt properties. In par­
ticular, 'the less the amount of information needed to define a 
given organization as compared to the other alternatives, the 
more likely that the figure will be so perceived'. That is, the 
perceptual system seems to obey a 'minimum principle'; 
Hochberg later identifies this principle with simplicity.ll 

Note that the minimum principle, thus enunciated, was 
aimed at solving problem (B). Given a single stimulus, one was 
to predict the likelihood of a person's making one interpretation 
rather than another. However, the experimental work in that 
article, and in the later one by Hochberg and Brooks, really 
addresses problem (A). The Hochberg-Brooks study (p. 340) 
proposes to show that 'the relative apparent tridimensionality 
of each member of a family of reversible-perspective representa­
tions of a given three-dimensional object will be a simple 
function of the geometrical complexity of the two-dimensional 
figure (as a first approximation)'. 

In Hochberg and Brooks' study, the subjects were given 
each family of figures in Figure 9 and were asked to place the 
figure that seemed most strongly three-dimensional at ro on a 
scale and the one that looked least solid, or 'most flat', at o and 
then to place the rest of the family members in between. The 
authors devised a series of counting measures on the geometrical 
figures, such as number of interior angles, number of line­
segments, number of points of intersection, and the like. Each 
drawing was evaluated for each of these measures, and the 
score of each test was transformed to a ro-point scale, the 
highest scoring figure within each family being ro, the lowest 
being o. 

Three different hypotheses were considered which correlated 
subjects' estimates of three-dimensionality (Y) with the mea­
sures on the figures. The single test with the highest correlation 
was total number of continuous line-segments (T4), which 

11 Hochberg, Perception, p. go. 
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correlated at 8g per cent. With K a constant very close to 1 

and C a constant very close to o, the conjecture took the form 
of the equation 
(r) r = K(T4) +C. 
The second hypothesis considered was the result of a multiple 

~ $, ~ ®. ~ ~ ~ L.J_I I_.L.JI a 
Family A Family B., 

~ @] lW [Jr] ~ 
45 46 47 48 49 

Family K 

~ ~ ~ ~ ® 
50 52 53 54 

Family L 

1\7\ e ~ B 4d 
55 56 57 58 59 

Family M 

~~~$~ 
65 66 67 68 69 

Family 0 

Fig. g. Some figure families used to test the hypothesis that perceived three­
dimensionality is a simple function of geometrical properties (from Hochberg and 
Brooks, 'The Psychophysics of Form: Reversible Perspective Drawings of Spatial 

Objects', pp. 340, 348) 

regression analysis on all seventeen tests. This strategy yielded 
a monstrous equation (with multiple-R of o·g6, however). It 
had the form 

(2) r = C1 + C2(T2) + ... + C1s(T1s). 
This alternative was dismissed out of hand, since it failed 'to 
exhibit any rational pattern', and 'its underlying principles 
... are unclear' (p. 345). Moreover, the weightings reflected 
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in ( 2) were specific to the figures used and were in fact not 
verified by the second set of figures examined. The last equation 
considered, and the one subsequently adopted, related r to 
total number of interior angles ( T2), total number of different 
angles divided by total number of interior angles ( T12), and 
total number of continuous line-segments ( T4) in the following 
way: 

(3) yi = (T2 + T12 + 274),_ 
NT 

Here, Yi is the predicted three-dimensionality score for any 
figure (on a scale from o to ro), and NT is the number oftests 
(with 274 counting as N = 2) which actually discriminate 
between the figures of the family being considered. Equation 
(3) subsequently was verified with a new set of figures.l2 

One cannot help feeling ill at ease with (3) for many of the 
same reasons that Hochberg and Brooks must have felt ill at 
ease with (2). Even though (3) fits the data quite well and relies 
on a relatively small number of parameters, it nevertheless 
appears rather ad hoc in the sense that it does not seem to pro­
ceed from any general principle. This comes into focus more 
clearly when we try to understand (3) as an instance of the 
minimum principle proposed by Hochberg and McAlister. The 
information about a figure or object provided by tests T2, T12, 
and T4 does not uniquely specify that figure or object at all; 
so in what sense does (3) show apparent three-dimensionality 
to be related to the amount of information needed to describe 
a figure? Moreover, the minimum principle seems to be quite 
incapable of providing the theoretical underpinning for hypo­
thesis (3), because the minimum principle concerns question 
(B), and equation (3) is addressed to answering question (A). 

However, neither of these objections is fatal to the pro­
gramme of Hochberg and his associates, because their research 
seems to provide the tools necessary for dealing with both of 

12 However, Hochberg and Brooks later had to augment equation (3) to include 
a parameter for perspective. See their 'Compression of Pictorial Space Through 
Perspective Reversal'. 

Hochberg and Brooks' choice between these three hypotheses, each of which 
fits the data quite well, reflects the rules for hypothesis choice given in Section I .g. 
In particular, note that equation (2) was rejected as intolerably complex. Accord­
ing to our theory, (2) is less simple than both (1) and (3), because it has so many 
more variables in it (see Section 2 ·4). 
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them. To begin with, consider the difference between questions 
(A) and (B). A theory addressed to (A) would merely rank 
figures according to their relative apparent three-dimension­
ality. A theory focused on (B) could be built on the shoulders 
of a theory aimed at (A) merely by specifying a threshold such 
that any figure above that threshold probably would be given 
a three-dimensional interpretation and any figure below it 
probably would be given a two-dimensional interpretation,l3 

Take family A of Figure g as an example. Subjects ordered 
these four figures in terms of increasing three-dimensionality as 
1, 3, 2, 4· Any theory answering question (A) would merely 
have to generate this ordering. Now suppose that figures I and 
3 are usually perceived as two-dimensional, while 2 and 4 are 
usually perceived as three-dimensional. A theory addressed to 
question (B) would have to specify a threshold between 3 and 
2 as the cut-off between two- and three-dimensional interpreta­
tions. But what general principle is available to generate a 
threshold for every such figure family? 

It would seem that an altogether natural solution to this 
problem is to take the three-dimensional interpretation as 
specifying the threshold. For example, the three-dimensional 
alternative in family A is to interpret each figure as a cube, 
while the two-dimensional alternative is to interpret each 
figure as a particular kind of hexagon. To decide whether a 
given figure will be perceived one way or the other, we measure 
the relevant geometrical properties of the hexagon and com­
pare the results with those yielded by the same measurements 
on a cube. If the number assigned to the hexagon is greater 
than the one assigned to the cube, then the figure will be per­
ceived as a cube; if less, then it will be seen as a flat hexagon. 
A measure on figures and solids which has this property of 
placing the value of the three-dimensional alternative for each 
figure family where the threshold for that family should go 
would provide a solution to question (B). 

Imposing one more constraint on this geometrical measure 
ensures that, besides answering questions (A) and (B), the 

13 This difference between questions (A) and (B) is similar to the difference 
between a probability logic (which defines the relation 'is more probable than' 
on pairs of hypotheses) and an acceptance logic (which specifies when a hypothesis 
may be believed in terms of its being more than minimally probable). 
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result will be an instance of the minimum principle discussed 
above. All we need require is that the measure turn on pro­
perties of figures and solids which are rich enough to uniquely 
specify them. If, for example, the measure were just the number 
of different angles, the number of different line-segments, and 
the total number of line-segments (say, the ordered triplet of 
these three values), it would satisfy our constraint with respect 
to a square figure. The value of a square on this measure would 
be <r, r, 4), and a square is the only plane figure that could 
have this value. However, a richer measure would be required 
to satisfy our constraint for all straight-edged figures and for 
solids in general. Such a measure would be an instance of the 
minimum principle, because it would show that a given inter­
pretation of a figure is more likely than an alternative just in 
case that interpretation can be specified by fewer facts than the 
alternative can. Presumably, the measure would have the 
following properties: 

• All else being equal, the more nonequivalent angles (line­
segments) a figure has, the more information is necessary 
to specify it. 

• All else being equal, the more angles (line-segments) a 
figure has, the more information is necessary to specify it. 

Given Hochberg and Brooks' success in correlating apparent 
three-dimensionality with certain simple geometrical proper­
ties, it does not seem unreasonable to think that their measure 
could be refined in the two ways I have suggested. 

This method of understanding the regularities underlying 
our two- and three-dimensional interpretations of figures fits 
in well with the paradigmatic situation described in Section 4· r, 
in that we predict whether a figure will be perceived as three­
dimensional or two-dimensional by evaluating two competing 
hypotheses, for example 'It's a cube' and 'It's a hexagon of 
such-and-such a kind'. Our theory predicts that people tend to 
perceive in accordance with the interpretation which mini­
mizes certain parameters. Notably, we posit that figure or 
solid with the fewest number of parts and differences between 
parts. In preferring the fewest differences between parts, we 
are preferring an interpretation that maximizes homogeneity 
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(see Section 2. r). In preferring the fewest parts, we are mini­
mizing the existential commitments involved in a given 
interpretation (see Section 2.2). For if we interpret a given 
figure p as representing a cube, the linguistic representation of 
p, via the method of representation R( ), is the sentence 
R(p) = 'There exist 12 congruent line-segments and 24 right 
angles arranged as follows .. .'. Whether p is a perceptual 
judgement that there is a cube here-now or pis a picture in­
terpreted as a cube, our choice of perceptual judgement or 
pictorial interpretation, when construed as a kind of hypothesis 
choice, is influenced by the dictates of a simplicity criterion. 

At this point, we must consider the problem raised by 
question (C): There is no single three-dimensional interpreta­
tion of a figure. If we are to give a figure a three-dimensional 
interpretation, which one are we most likely to choose? 

Perkins attacks this problem by considering what geometrical 
properties of a figure can be used to predict the three-dimen­
sional interpretation that will be attributed to it.14 His theory 
is that a straight-line figure tends to be interpreted as ' ... a 
space form which (r) has planar (not curved) faces, (2) projects 
to the figure, and (3) satisfies a geometrically maximal com­
bination of constraints from the set of constraints' (p. 24). In 
explaining what 'projects' comes to, Perkins purposely ignores 
the influence of perspective on the geometrical properties of the 
figure; its influence is usually not great and seems to be 
accommodated best as a second-order effect. The set of geo­
metrical properties that Perkins employs includes sameness of 
angles, colinearity, rectilinearity, symmetry, and parallelness. 
Given that each of these is to be optimized, his theory predicts 
many of the interpretations which we in fact affix to figures. 
Moreover, his theory often predicts cases in which the maximal 
interpretation is not unique, where we have the experience of 
shifting from one interpretation to another. His theory also 
predicts the opposite situation from ambiguity, namely, the 
geometrically optimal set of constraints can sometimes preclude 
the existence of a solid object which satisfies them all. These 
are cases of perceiving 'impossible' figures. Although Perkins' 
theory is not perfect because there seem to be some counter­
examples and because it is not rigorously quantitative (nor had 

14 Perkins, 'The Perception of Line Drawings of Simple Space Forms'. 
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it been fully tested at the time of publication), it fits well 
enough to be highly suggestive. 

Perkins' proposal may also be accommodated within our 
paradigmatic situation. Condition (2) stipulates that the 
posited object must project to the figure; that is, the hypothesis 
accepted must fit the evidence. Moreover, the maximally 
valued interpretation of a figure tends to be one which has the 
fewest differences and inhomogeneities between constituent 
parts. For example, one tends to minimize the number of 
different angles and line-segments. In this sense, condition (3) 
of Perkins' theory seems to be an instance of a preference for 
maximally simple interpretations. Perkins' work lends further 
credence to our claim that the interpretation of these line 
figures seems to involve the existential positioning of arrays of 
lines and angles, subject to a minimum principle. 

A similar point of view emerges from the work of Attneave 
and Frost.l5 The variable they investigated was the apparent 
slant with the frontal plane of line drawings seen as boxes. 
Attneave and Frost showed that the perceived slant was pre­
dicted by the geometrical arrangement in which there was 
perfect homogeneity of clues on one or more of three variables 
(angle, length, slope). This case also shows that perceiving 
involves a preference for interpretations which maximize the 
homogeneity of certain crucial properties of the posited object. 

Even though the details of these theories need to be refined 
and attention needs to be given to a greater variety of cases, it 
seems that the success that has been encountered so far is 
sufficient to show the potential explanatory character of some 
'quantitative minimum criterion'. What is needed is some 
canonical form in which to describe figures and objects (pos­
sibly in terms of angles and segments positioned within a 
visual coordinate system).16 A simplicity criterion would then 
be applied which valued interpretations (hypotheses) that 
posited configurations that are minimal relative to the canonical 

15 Attneave and Frost, 'The Determination of Perceived Tridimensional Orien­
tation by Minimum Criteria'. 

16 An ambitious attempt in this direction which subsumes the Necker cube 
example as well as many others is Leeuwenberg's Structural Information qf Visual 
Patterns and his 'A Perceptual Coding Language for Visual and Auditory Pat­
terns'. Attneave's 'Some Informational Aspects of Visual Perception' also considers 
some characteristics of the perceptual coding system. 
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properties. As we have seen, fewer angles (segments) and fewer 
different angles (segments) would be preferred to more. Such 
variables as rectilinearity and parallelness clearly are not in­
dependent of the other desiderata, and a simplicity criterion 
applied to an adequate canonical description would have to be 
sensitive to them as well. It is worth repeating that defining a 
canonical form in which to describe figures and solids is hardly 
trivial. There are many different ways of describing figures, 
and which figures come out more 'minimal' than others cruci­
ally depends on which properties are used to describe them. 
Within the theory of simplicity, this project amounts to con­
structing a P-system for visual forms. Regardless of what the 
details of this construction turn out to be, it seems clear that the 
regularities underlying our interpretation of figures are in 
no way idiosyncratic but constitute an instance of our more 
general policy of imposing simple hypotheses on the environ­
ment. 

4·3 Apparent Motion 
If two or more figures are flashed onto a screen at properly 

arranged intervals, durations, distances, and intensities,17 one 
will perceive apparent motion between the figures. Depending 
on how the parameters are set, one can perceive partial appar­
ent motion (where the first figure moves part of the way towards 
the second and then disappears, and the second figure appears 
along the path of motion and then moves the rest of the way to 
'join itself'), beta motion (where the first figure moves to join 
the second), or phi motion (usually described as 'pure motion', 
in which one does not perceive figural characteristics, such as 
contour). The phenomenon of apparent motion makes movies 
possible; successive still images are projected on a screen and 
the viewer fills in the disparities herself. Max Wertheimer was 
the first to study apparent motion systematically; his study was 
one of the seminal works of Gestalt psychology .IS 

One of the most striking features of apparent motion is that 
it is 'rationalizing' in character. For beta motion, the perceiver 
does not merely fill the intervening space between the flashed 

17 The optimal values for these and other parameters and how they are related 
are discussed in Chap. 3 of Kolers' Aspects cif Motion Perception. 

18 Wertheimer, 'Experimentelle Studien tiber das Sehen von Bewegung'. 
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figures with copies of the first figure. If there is a difference of 
shape or colour between the first and second figure, the per­
ceiver will transform and deform the first as it moves along the 
path so that, gradually, it becomes the second. Usually, 
though not always, the transformation follows a principle of 
minimal change to resolve disparity; that is, the impletion of 
images between the two flashed figures seems to rationalize 
differences in simple ways.19 

However, as Kolers points out in Aspects of Motion. Perception, 
it is difficult to specify what principles these impletions obey. 
Apparent motion encompasses a multiplicity of effects and 
seems to turn on a multiplicity of variables. One can perceive 
plastic and continuous deformations of figures along straight 
lines, along curves in a plane, and in depth. Also, one can per­
ceive somewhat abrupt contour deformations between figures 
which intuitively seem to be very different in contour (e.g., 
the transformation from a circle to a triangle will not be 
smooth). However, just what this difference in contour amounts 
to proves to be exasperatingly difficult to explain. Further, 
certain patterns of apparent motion seem to be impossible to 
achieve (e.g., one cannot achieve collisions or make figures 
cross). This staggering variety must be taken seriously, because 
the effects people experience clearly are not idiosyncratic (in 
that different people tend to see the same sorts of motion in the 
same sorts of stimulus situations), nor are they significantly 
influenced by 'volition, attitude, or expectation' .20 

In spite of the diversity of effects, the paths followed in 
apparent motion are rather narrowly constrained. An infinity 
ofimpletions could link two flashed points in apparent motion. 
Yet, which paths are actually seen? Usually one sees a straight 
line; less often, a smooth curve in the plane21 or a smooth curve 
in depth.22 The same sorts of constraints on the paths seem to 
apply to three or more points in apparent motion. If the points 
are colinear, then the path usually seen is a straight line. If 
the points are not colinear, then we usually see them joined 

19 Kolers, Aspects of Motion Perception, pp. I 94---6. 
20 ibid., p. 163. 
21 Hall, Earle, and Crookes, 'A Pendulum Phenomenon in the Visual Percep­

tion of Apparent Movement'; Johansson, Configurations in Event Perception. 
22 Kolers, ibid., pp. 82-95, discusses techniques for obtaining depth apparent 

movement. 
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by a smooth curve, often by a circle. Brown and Voth23 report 
that four points arranged as a diamond have a circular apparent 
motion effect, although Sylvester24 has shown that under some 
conditions the four points will be linked by four straight lines. 
Also, if each of three noncolinear points is flashed for a rela­
tively long period while the interstimulus time is relatively 
short, one sees two straight lines linking the three points. This 
effect, however, seems to have the form of two separate im­
pletions, rather than a single impletion between three points. 

These facts suggest that apparent motion is a kind of per­
ceptual curve-fitting problem. If a scientist is interested in 
correlating two variables, he plots his evidence, a set of n data 
points, and then he joins them with a curve. An infinity of 
curves fits these n points to any desired degree; the scientist 
will select the simplest curve. Among other things, this pre­
ference for simple curves voices itself as a preference for smooth 
curves, i.e., ones lacking changes and discontinuities (see 
Section 2.6). Strictly speaking, this conjecture implies that the 
path perceived in apparent motion between a set of flashed 
points must be the same as the optimal curve associated with 
those points in a curve-fitting problem (where perfect goodness­
of-fit is required); but this is not true in general. Two points in 
apparent motion are sometimes seen to be joined by a curve, 
and three noncolinear points are sometimes seen to be linked 
by two straight lines rather than by a curve. 

At least some of these deviations from the conjecture can be 
accounted for as second-order effects-the results of inter­
vening variables. Seeing two points in depth apparent motion 
is sometimes caused by stimulus asynchrony (that is, when 
points one and two alternate, and the interval between one and 
two is different from the interval between two and one). This 
seems to be a case in which the perceiver attributes constant 
speed and a circular path to the objects to resolve the disparity. 
The dictates of simplicity are not violated here; rather, the 
simplest curve is one in which uniform curvature and uni­
form speed are achieved by moving into three dimensions.2 5 

23 Brown and Voth, 'The Path of Seen Motion as a Function of the Vector­
Field'. 

24 Sylvester, 'Apparent Movement and the Brown-Voth Experiment'. 
25 See Kolers' Aspects of Motion Perception, Chap. 3, for a discussion of this 

phenomenon. Kolers doubts that the perceptual system has a primitive speed-
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Similarly, the case mentioned earlier in which three noncolinear 
points are joined by two straight lines seems to be accounted 
for by the relatively long periods of time that each point is 
shown. Two curve-fitting problems are being tackled, not one. 
Initially, the first two points are joined; then the second and 
third points are joined. 

A slightly different difficulty besetting the conjecture that 
apparent motion is the solution to a perceptual curve-fitting 
problem is the existence of arrays of points for which it is im­
possible to achieve a good apparent motion effect. Although 
there may be apparent motion between two points, introducing 
a few extra points between the initial two weakens rather than 
strengthens the effect. However, if many extra points are intro­
duced, the effect can be of good quality. The relationship 
between number of points and quality of effect seems to graph 
as a U-shaped curve.26 Notice that in the two extreme cases 
where a good effect is possible, the counterpart curve-fitting 
problem seems to yield results in keeping with our conjecture. 
When two points are flashed, a straight line occurs (except in 
the somewhat exceptional cases mentioned before), and a two­
point curve-fitting problem has a straight line as its optimal 
solution. On the other hand, a large number of points 
arranged in a curve will be seen in curved apparent motion, 
and the curve-fitting interpolation will also be a smooth 
curve. 

These results suggest that if a pattern of dots is seen in good 
apparent motion, the path usually obeys the constraints on 
solving a curve-fitting problem. However, the converse seems 
not to hold in that there are patterns of dots for which a curve­
fitting problem can be solved, and yet there can be no good 
apparent motion effect between the points. Perhaps the reason 
for this asymmetry is that curve-fitting is a higher order cog­
nitive process than the perception of apparent motion, and, in 
general, higher order judgements are more subject to the will 
than lower order ones are. That is, we can consciously and 
deliberately impose continuous hypotheses on sets of data, but 

detecting device and sees the operating principle in terms of time. McKay's 
'The Interactive Processes in Visual Perception' suggests that the visual system 
has a primitive velocity-detecting system. 

26 See Kolers, Aspects of Motion Perception, pp. 35 ff. 
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the same ability seems not to attach to apparent motion per­
ception.27 

Other facts could be cited in support of this way of looking 
at apparent motion between points,2B and other difficulties 
with our hypothesis could also probably be produced. Clearly, 
the whole phenomenon of the regularities governing the paths 
of apparent motion needs more study. However, based on the 
data now available, it seems reasonable to conjecture tentatively 
that apparent motion follows simple paths, and the notion of 
simplicity involved is the same one that applies to scientific 
hypothesis choice. 

4· 4 Aesthetic Simplicity 

Although discussions of simplicity tend to distinguish 
routinely between aesthetic simplicity and the kind of 'epi­
stemic' simplicity considered so far,29 I will argue here that the 
two kinds of simplicity are in fact one. They share a common 
logical structure and differ only in the way they are used. Our 
epistemic policies for choosing hypotheses are based in part on 
epistemic simplicity, but our aesthetic preferences for pictures 
do not seem to be as clearly predicated on their aesthetic 
simplicity. We will take up this question of preference later 
on. For now, we focus our attention on applying the theory 
of simplicity to certain elementary judgements of aesthetic 
simplicity. 

Earlier, we used a method of representation R( ) which 
translated pictures and perceptual judgements into sentences. 
It enabled us to compare the simplicity of different pictures 
and the simplicity of different perceptual judgements by com­
paring the simplicity of their linguistic representations. We 
now want to compare the simplicity of different physical 
objects. To do this, we will use a method of description D( ) 
which maps physical objects onto sentences that describe them. 

27 In his 'On Perceptual Readiness', p. 8, Bruner notes that perceptual infer­
ences are much less reversible and flexible than higher level ones. 

28 For example, apparent motion seems never to involve 'created corners'. 
That is, if a corner is perceived at all, it is associated with a flashed point, and is 
not the result of an impletion. The same applies to the existence of changes in 
curvature in a smooth apparent motion path. 

29 See, for example, Reichenbach, Experience and Prediction, pp. 373 ff., and 
Popper, The Logic of Scientific Discovery, pp. xg6-7. 
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Notice that D( ) and R( ) are not the same, although both 
partake of the linguistifying tactic urged earlier. There are 
many ways to describe a physical object, so it is important to 
delimit the kinds of descriptions that D( ) will provide. The 
choice of appropriate descriptions can be evaluated on at least 
two fronts. First, given that we intuitively think that one 
physical object is simpler than another, does our theory of 
simplicity mirror this intuition when it is applied to the descrip­
tions that D( ) yields of the two objects? Second, does the 

2 3 4 5 6 2 3 4 5 6 

a a 

b b 

c c 

d d 

e e 

f f etc. 

(i) (ii) 

Fig. 10. (i) is a simpler picture than (ii) 

description chosen for an object seem to describe fully what we 
take to be the salient significant properties of the object in the 
context in which it is discussed? Although these two con­
straints by no means uniquelyfixhowobjectsareto be described, 
they do provide some check on descriptions assigned to parti­
cular objects. 

An example shows how our theory draws aesthetic and 
epistemic simplicity together. Consider the two pictures in 
Figure ro, each made of a grid of squares with a colour assigned 
to each square. Picture (i) is half white and half black; picture 
(ii) has a different colour assigned to each square. We intuitively 
judge (i) to be aesthetically simpler than (ii). Pictures (i) and 
(ii) may be described as follows: 

(4) Columns 1, 2, and 3 are black and columns 4, 5, and 6 
are white. 
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(5) Square ( 1, f) is black, square ( 2, f) is green, square 
(3, f) is red, square (4, f) is blue, etc. 

Relative to the following question, (4) is more informative and, 
hence, simpler than (5) : 

What colour is square x? 

Notice that the intuitive aesthetic simplicity of picture (i) over 
picture (ii) is mirrored by the epistemic simplicity of the 
canonical description of (i) over the canonical description of 
11. ( "") 30 

We might conceive of (i) and (ii) as pictorial representations 
of two competing hypotheses; for example, they might be in­
compatible maps of the same terrain. In this case, epistemic 
simplicity would counsel us to choose (i) over (ii) just as it 
would dictate our choice ofhypothesis (4) over (5). However, 
if we consider (i) and (ii) as pictures that make no knowledge 
claims at all, we are not compelled to decide between them on 
either epistemic or aesthetic grounds. Yet, if we wanted to, we 
could state an aesthetic preference for one of them. Here, 
simplicity need not play a decisive role, since we might find (ii) 
more pleasing than (i). Thus, the use we make of simplicity 
judgements in aesthetic contexts seems to differ from its use in 
epistemic contexts; however, if the example of Figure 10 is at 
all representative, the two kinds of simplicity have a common 
underlying structure. 

In our theory, (4) is a simpler hypothesis than (5) because 
of its informativeness; that is, because it renders the occur­
rence of colours in squares more redundant and predictable. 
Attneave's investigation of the redundancy of grid pictures 
yields similar results, although he does not couch them in terms 
of simplicity.31 Subjects were given a concealed picture divided 
into squares and were asked to go through the rows in order and 
guess of each square whether it was black or white. After each 
guess, the square was uncovered so that the subjects saw 

30 (5) would come out simpler than (4) if they were compared relative to a 
question about spatial location. This shows that colour, not spatial location, is 
typical of our simplicity intuitions about (4) and (5) (see Section 1.8 for a discus­
sion of the notion of typicalness). This problem also arises in comparing either 
(i) or (ii) with a perfectly homogeneous picture. 

31 Attneave, 'Some Informational Aspects of Visual Perception'. 
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whether their guesses were correct. Attneave found that 
guessing patterns favoured hypotheses of homogeneity and no­
change and that guessing errors clustered around changes in 
picture pattern. Relative to these guessing policies, pictures can 
be ranked as more or less redundant, the most redundant 
picture being one that is all black or all white and the least 
redundant being one with a random distribution of black and 
white squares. Attneave's paper examines other cases in which 
we tend to have expectations of homogeneity and no-change 
and suggests that the perceptual system aims at detecting re­
dundancies in the environment. Attneave identifies the search 
for redundancy with the search for law-like connections and 
explores the analogy between perceiving and theorizing in 
some detail. 32 

Green and Courtis objected to Attneave's results on the 
grounds that the results depended on the subjects having to 
guess the squares' colours in a particular order.33 It is easy to 
see how this might be true if we compare picture (i) of Figure 
10 with a picture made of an equal number of black and white 
squares that are randomly distributed. If the subjects were 
asked to go through both pictures by starting at the lower left 
and working to the right and then up to the next row and so 
forth (as they were in Attneave's experiment), they would 
probably make fewer errors on picture (i) than on the random 
picture. But suppose that they were asked to guess so that the 
first half of the squares queried were in fact the black ones of 
the random picture. In this case, they would probably make 
fewer mistakes on the random picture than on picture (i) (or 
at least the difference in the number of errors made on the two 
pictures would be smaller). 

Thus, Attneave's experiments can serve as an explication of 
pictorial redundancy only if we relativize them to a certain 
kind of guessing order. Green and Courtis took this relativity 
as a decisive :::riticism of Attneave's experiments. However, the 
guessing pattern Attneave used seems to be a natural one, at 
least in comparison with the odd guessing sequence contem-

32 Attneave's notion of redundancy is distinct from that given in Garner's 
Uncertainry and Structure as Psychological Concepts, even though the two are related. 

33 Green and Courtis, 'Information Theory and Figure Perception: The Meta­
phor that Failed'. 
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plated above. In visual perception, not all groupings of loca­
tions in the two-dimensional visual array are equally natural. 
Adjacent locations are naturally associated together, whereas 
randomly scattered ones are not. That Attneave's results 
depend on this difference is not a shortcoming but points once 
again to the importance of principles of classification and 
organization in perception. 

A similar problem besets our explication of simplicity. To 
compare picture (i) with the random picture discussed above, 
we must compare hypothesis (4), which is the description of (i), 
with the hypothesis 

(6) Squares (a, I), (b, I), (e, r), (b, 2), (d, 2), (a, g), 
(b, g), (e, g), (f, g), (c, 4), (e, 4), (b, s), (d, s), (f, s), 
(a, 6), (b, 6), ( d, 6), and (f, 6) are black and all the 
rest are white, 

which is the description of the random picture (let us assume), 
relative to the question 

(7) What colour is square x? 

If we call the set of black squares in (6) 'A' and the set of white 
squares in (6) 'B', the MEl of (6) relative to question (7) is 
the set 

(8) ( x is in A v x is black) 
x is in B v x is white . 

If we call the set of black squares in hypothesis (4) 'left' and the 
set of white squares in (4) 'right', the MEl of (4) relative to 
question ( 7) is the set 

(g) ( x is left v x is black ) 
x is right v x is white . 

To compare the contents of MEis (8) and (g), we must have 
some further information about the relative contents of their 
member statements. The set of left-hand squares is a much 
more natural spatial grouping than A, which is odd and 
artificial. The same applies to the right-hand squares as 
opposed to B. Based on this, it seems natural to postulate that 
knowing that a given square is on the left requires less informa­
tion than knowing that it is in set A, and knowing that it is on 
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the right requires less information than knowing it is in set B. 
From this, we can deduce that MEl (g) is lower in content than 
MEl (8), so hypothesis (4) is simpler than hypothesis (6). It 
follows that picture (i) is simpler than the random picture. 

The reason that the unnaturalness of sets A and B led us to 
say that placing an individual in A requires more information 
than placing it in the set of left-hand squares derives from a 
difference between natural and unnatural classes noted earlier 
(see Section 1.8). If we imagine picture (i) and the random 
picture to be maps of a city, the source of this asymmetry be­
comes more apparent. Suppose that the city in question is 
divided into hostile camps by a wall (falling between columns 
3 and 4 on the maps). Under this interpretation, the left-hand 
squares constitute a natural class in that they comprise one 
faction's territory. Assuming that A is an unnatural class, it 
represents a set of spatially scattered locales which our know­
ledge of the city fails to unite into a law-like category.34 We 
can imagine situations in which we know that an individual is 
in the western halfofthe city (represented on map (i) in black) 
but do not know which part of the western half he is in. In 
contrast, it seems that we can place an individual in A only by 
knowing which subclass of A he is in. Notice that even though 
the western half of the city and the locations in A each constitute 
half of the city's total territory, we must know more about an 
individual to place him in A than to place him in the western 
half. 

Precisely the same situation obtains in a simplicity compari­
son between two equations relating x and y that graph as 
Figure 3 (seep. 70) and Figure 1 r, respectively. The fact that 
the equation in Figure 3 is simpler because it posits only one 
change can be mirrored within our theory only if we can say 
that the set of x values greater than b is more natural than 
the set of x values such that d1 < x < d2 or da < x < d4 or 
b < x < d5 or d6 < x. Put differently, we need to-assume that 
saying that an individual falls into the former class has less 
content than saying that it falls into the latter. Granting this, 

34 This means that our disjunctive specification of A is indispensable (see 
Sections 1.8 and g.6); there is no natural sufficient condition for membership in A 
that is not also a natural sufficient condition for membership in one of the indi­
vidual squares in A. 
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our theory implies that the equation in Figure 3 is simpler than 
the one in Figure I I in that it involves fewer changes and 
heterogen ei ties. 

These observations telescope into our discussion of aesthetic 
simplicity. The simplicity of two pictures each made of black 
and white squares can be distinguished only if we can rank 
different groupings of squares as more or less natural and non­
random. From the example ofpicture (i) in Figure IO and the 
random picture described in hypothesis (6), we saw that con-
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Fig. 1 1. A multiple change hypothesis 

tiguity is an important structural factor. This constraint on the 
naturalness of ways of grouping squares in a grid picture plays 
the same role in our theory that the stipulation of a particular 
kind of guessing pattern plays in Attneave's. In both cases, the 
constraint is needed if the theory is to explicate the redundancy 
(simplicity) of pictures. 

A crude description of a picture that merely assigns a colour 
to each square of a grid completely fails to pick out structurally 
significant properties of organization. We have seen that a set 
of n contiguous squares is more natural than a set of n randomly 
scattered ones. A P-system which is insensitive to contiguity as 

S-F 
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an organizing property would be like a system of phonological 
description that puts the two sets [i p z] and [i a re] on the 
same level because both contain three phonemes (see Section 
3-3). The distinctive feature approach to phonology seeks to 
make relevant groupings of phonemes fully explicit by detailing 
their basic organizing properties; a similar taxonomy for 
pictorial organization is needed. 

Another study that throws light on aesthetic simplicity is 
Attneave's 'Physical Determinants of the Judged Complexity 
of Shapes'. A set of shapes was shown in quick succession to the 
subjects and then repeated more slowly while the subjects 
ranked them from 1 to 6 in complexity. There were four differ­
ent groups of subjects, each given the shapes in a different 
order. Attneave found that go per cent of the responses were 
predicted by the following generalities: (a) The greater the 
number of independent turns (curves or angles), the greater 
the complexity. (b) Symmetrical shapes were more complex 
than asymmetrical shapes with the number of independent 
turns held constant, but symmetrical shapes were less complex 
than asymmetrical shapes with total number of turns held 
constant. (c) The higher the arithmetic mean of algebraic 
difference in degrees between successive turns, the greater the 
complexity.35 

The factors mentioned in (a) and (c) are similar to the ones 
Hochberg and his colleagues thought to be predictive of 
apparent three-dimensionality (see Section 4.2). The second 
factor Attneave cites-symmetry-is often named as a con­
tributor to simplicity.36 According to Attneave's experiment, a 
bilaterally symmetrical ink blot would be judged simpler than 
an asymmetrical ink blot whose left side was the same as that 
of the symmetrical ink blot and whose right side had a com-

35 Attneave's 'Physical Determinants of the Judged Complexity of Shapes' also 
claims that the matrix grain has no impact on judged complexity nor were curved 
shapes thought to be more complex than angular ones. Attneave concludes that 
judged complexity and the amount of information that the psychologist uses to 
construct his figures need not coincide. For example, more information is needed to 
specify a curved shape (x,y and the radius of curvature) than to specify an angular 
shape (x,y). Note that neither of these resultsjarswithourexplicationofsimplicity. 

36 See, for example, Birkhoff's Aesthetic Measures. Weyl's Symmet1y gives an 
interesting overview of some uses that have been made of symmetry in the visual 
arts and provides a mathematical characterization of symmetry in terms of 
transformational invariance. 
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pletely different pattern (although the same number of turns). 
Notice that Attneave's guessing experiment would probably 
yield the result that subjects make fewer errors on the sym­
metrical ink blot than on the asymmetrical one. In another 
experiment, Attneave showed that a symmetrical picture is 
easier to remember than an asymmetrical one occupying the 
same number of cells. a? 

Within our theory, bilateral symmetry contributes to the 
simplicity of a form by making one side of a figure highly 
predictable from our knowledge of the other. More precisely, 
the transformations that carry each side into the other are 
simpler functions for a symmetrical form than for an asym­
metrical form with the same number of angles or curves. To 
see this, imagine transformations for each of the two ink blots 
just mentioned, which carry one side of the ink blot into the 
other. Let the axis of symmetry be they-axis. For the sym­
metrical ink blot, all we need know about an arbitrary point p 
to answer the question 'What is the image of p ?' is the distance 
between p and the axis of symmetry. To calculate this, we need 
know only the ordinate of the coordinate of p. However, for 
the asymmetrical ink blot, we must know more about p than 
its distance from they-axis if we are to be able to answer the 
question. Bilateral symmetry contributes to simplicity because 
the equation defining one side of a symmetrical figure in terms 
of the other is simpler than the counterpart equation which 
describes an asymmetrical figure with the same number of 
turns. Similar considerations would account for rotational 
symmetry as a simplifying factor. 

We have concentrated so far on the aesthetic simplicity of 
'meaningless' patterns. The difference in simplicity that we saw 
between the two pictures in Figure 10 could apply just as easily 
to two bolts of cloth and has nothing to do with taking these 
two pictures to be representations of the world. We might say 
that we compared them as physical objects rather than as 
messages or hypotheses. I now want to consider the simplicity 
of pictures as meaningful representations. Using the method 

37 Attneave, 'Symmetry, Information, and Memory for Patterns'. In this 
experiment, each square of a grid either contained one dot or was blank. Attneave 
also found that random patterns were harder to remember the more cells they 
occupied and that symmetrical patterns were no easier to remember than asym­
metrical ones with the same information content. 
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of representation R( ), we can work backwards from pairs of 
hypotheses h and h', such that we have strong intuitions that h 
is simpler than h', to pairs of pictures p and p', such that 
R(p) = h and R(p') = h'. Here are two likely pairs of ex­
amples: a picture of a crowd of men each wearing wildly 
different coloured clothing and each engaged in a different 
activity and a picture of a few men wearing the same clothing 
and doing the same thing; an architectural plan of a building 
which is richly ornamented and an architectural plan of the 
same building without its ornaments. The counterpart sentence 
for each picture is a conjunction of existential hypotheses. By 
Russell's razor (Section 2.2), the former of each pair is simpler. 

We began this section by noting that simplicity is put to 
different uses in aesthetic and epistemic contexts. We choose 
hypotheses in part for their simplicity, where 'choose' means 
'reasonably regard as true'. However, the role of simplicity in 
aesthetic 'choice' is very poorly understood; presumably, the 
notion of choice involved here is something like 'aesthetically 
prefer'. In spite of the little that is known about the role of 
simplicity in aesthetic valuations, two very extreme cases seem 
to exist in which human preferences are rather clear. Dember 
has argued that we show a marked taste for complexity; we 
tend to avoid environments which are too homogeneous and 
impoverished of sensation. as Conversely, it seems obvious that 
we avoid environments that are too chaotic and rich in sur­
prises. Attneave has noted that a very fine-grained picture 
made of random scatterings ofblack and white dots tends to be 
viewed as perfectly homogeneous; here, the tremendous in­
formation overload is 'averaged out' .39 Presumably, these two 
tendencies exist side by side, and we seek some middle ground. 
Between the two extremes of perfect randomness and perfect 
homogeneity, different people tend to seek different optimal 
arrangements. 40 

Our discussion of aesthetic simplicity has been sketchy, but 

38 Dember, The Psychology qf Perception. 
39 Attneave, 'Informational Aspects of Visual Perception', p. r88. 
40 In The Psychology of Perception, p. 360, Dember discusses the ideal complexity 

level for a person at a given time with respect to a given stimulus. In 'Pattern 
Preference as a Function of Pattern Uncertainty', Dorfman and McKenna argue 
along similar lines that a person's pattern preferences reveal an ideal complexity 
level which they define in terms of the fineness of the matrix grain. 
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I hope it has been suggestive of how the relative simplicity of 
pairs of aesthetic objects can be modelled within our theory. 
Our simplicity judgements in aesthetics frequently turn on the 
qualities that were discussed in Chapter 2 as applying to 
hypotheses. Functions D( ) and R( ) provide an aesthetic 
object with a linguistic counterpart, and the simplicity of the 
object is then explained in terms of the simplicity of the corres­
ponding sentence. Much care must be taken in choosing the 
appropriate linguistic surrogate for the aesthetic object; the 
simplicity criterion can mirror no more than is fully explicit in 
the sentences to which it is applied. This suggests why it is 
difficult to imagine how the greater complexity of Mannerist 
over Renaissance painting could be explained in the facile 
fashion we explained the relative simplicity of the pictures in 
Figure 10. When simplicity comparisons are meant to be 
subtle, subtle descriptions of the objects compared must be 
provided. 

4·5 Perspicuity 

In this chapter, we have used the ideas of a method of 
representation R( ) and a method of description D( ) to talk 
about the simplicity of pictures. R(p) is true of any scene that 
p pictures and D(p) describes p. R(p) and D(p), both being 
hypotheses, can be subjected to the simplicity criterion. The 
question arises of how these two functions are related. That is, 
given two pictures or sentences41 p and p', can one predict the 
relative simplicity of R(p) and R(p') from that of D(p) and 
D (p') or vice versa? 

In Sections 2.6 and 3.5, we noticed that a system of notation 
is perspicuous if the simplicity of hypotheses is manifest in the 
surface properties of the notation. The functions D( ) and 
R( ) enable us to define perspicuity as follows: 

A system S is perspicuous iff for any p, p' formulatable in 
S, D(p) >. D(p') iff R(p) >. R(p'). 

Thus, when the system considered is perspicuous, the answer 
to the question of the previous paragraph is yes. If Sis a system 
of notation and p and p' are sentences, then 'formula table in S' 

41 If pis a sentence, then R(p) ~ p. 
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merely means constructable via the basic vocabulary and the 
formation rules of S. If Sis a system of representation and p and 
p' are pictures, the meaning of 'formulatable in S' is less easily 
specified. Roughly, Swill include a potential infinity of pictures 
each subject to certain general constraints (possibly including 
a family of kinds of perspective). For our purposes, S may be 
thought of as composed of all pictures that we would intuitively 
take to be representational. 

One way a system of notation can be perspicuous is if the 
simplicity of hypotheses is manifested in the length of their 
minimum representations (which is exactly what Chomsky and 
Halle were trying to achieve; see Chapter 3). For example, 
according to our theory 
( 10) (x)(Fx) 
is simpler than 

(ua) (x) (Gx ::::> Fx). 

Now let us suppose that the respective relevant descriptions of 
(I o) and (I I a) are: 

(I 2) There is a line of type containing just seven inscriptions. 

(I 3) There is a line of type containing just ten inscriptions. 

(I2) is simpler than (I3) because (I2) more closely approxi­
mates the optimally simple case in which all the spaces in a line 
of type are blank (see Section 2.2 on the relationship between 
simplicity, perfect homogeneity, and the way hypotheses can 
approximate perfect homogeneity). If this parity between the 
simplicity of hypotheses and the simplicity of their relevant 
descriptions could be maintained for every pair of hypotheses 
formulatable in a given notation, the notation would be 
perspicuous. 42 

Developing a perspicuous notation for any reasonably ex­
pressive language would be a formidable task. Since (I o) is 
simpler than its negation, universal and existential hypotheses 
might be expressed as (x)( . .. ) and --'(x)( . .. ), respectively. 
Furthermore, in Section 3.6 we argued that 

(I4a) (x)[(Gx v Hx) ::::> Fx] 

42 Notice that if S were a system of descriptions made of elementary descriptions 
plus rules for building up compounds, then S would be perspicuous if simple 
properties were given short names. 
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is simpler than (IIa). To allow a counting measure to reflect 
this, we might introduce a predicate '1' which is defined as 
equivalent to 'G or H'. (IIa) and (I4a) would then be re­
formulated as 

(I I b) 
and 

(x)[(Ix & ,.._,Hx) => Fx] 

(x) (Ix => Fx). 

Now the counting measure yields intuitive results. 
However, this notational convention brings with it as many 

problems as it solves. Given that we intuitively believe that 

(I sa) 

is simpler than 

(I6a) 

(x)(Gx) 

(x)(Gx v Hx), 

reformulating ( I6a) in terms of 'I' leads the counting measure 
astray: 

(I 6b) (x)(Ix). 

Similar problems arise when we try to mirror the intuition that 
(IIa) is less simple than (x)(Gx =Fx). 

This raises the question of whether there could be a perfectly 
perspicuous system of representation. Our rather discouraging 
comments on the possibility of perfect perspicuity for a lan­
guage carry over to the case of representational pictures. In our 
discussion in Section 4.2 we saw that members of various 
figure families in Figure g are not equally simple when taken 
as two-dimensional drawings, although many of them have the 
same three-dimensional interpretations. These examples defeat 
the claim to perfect perspicuity by providing pairs of pictures 
p and p' such that D(p) >s D(p') and R(p) =. R(p'). Just as 
the set of all sentences must be narrowly restricted if per­
spicuity is to be possible, so the set of all representational line 
drawings must be substantially limited if there is to be any hope 
of defining a perfectly perspicuous system of representation. In 
both cases, it seems somewhat unlikely that perfect perspicuity 
is attainable for any moderately rich representational system. 

Other qualities of hypotheses and their representations can be 
relevant to the perspicuity of a system of notation. Thus, our 
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characterization of perspicuity in terms of simplicity is less a 
definition than an example of how a system can be perspicuous. 
Onomatopoeia constitutes a further example. In a poem, if a 
theme of violence and conflict is mirrored in the sounds of 
the words, the harmony of form and content exemplifies 
perspicuous representation. Here, as in our example having to 
do with simplicity, properties of what the message says (There 
is conflict ... ) are mirrored in properties of how the message 
says it (harsh sounds). Within standard musical notation, pitch 
is perspicuously represented while tempo and rhythm are not. 
Thus, as might be expected, a system of notation may be 
perspicuous in some respects but not perspicuous in others. 

In the light of these diverse considerations, we can modify 
and generalize our initial definition of perspicuity. Where <P is 
a measure of a semantic property (like how simple a hypothesis 
is) and F is a measure of a syntactic property (like how many 
inscriptions there are in a minimum representation of a hypo­
thesis) within a system of representationS, we can say that <Pis 
perspicuously represented in S by F just in case 

For any p, p' formulatable in S, <f(p) > <f(p') iff F(p) > 
F(p'). 

4· 6 Conclusion 
Much work remains to be done on the psychological pheno­

mena touched on in this chapter and on other phenomena as 
well. For example, the often-referred-to connection between 
simplicity and difficulty needs to be worked out. Using the 
framework of experiments developed by Bruner, Goodnow, and 
Austin,43 we might conjecture that the connection runs some­
thing like this: A subject would be told to guess a predeter­
mined concept by choosing objects one at a time from a group 
of objects and asking whether the item he has chosen falls under 
the concept or not. After learning from the experimenter 
whether or not the chosen item falls under the concept, the 
subject would try to guess what the concept is. The sequence 
would be repeated until the subject attains the concept. The 
hypothesis would be that the longer on average it takes sub­
jects to guess the concept, the less natural the concept is. This 
connection between simplicity and difficulty seems clearest in 

43 Bruner, Goodnow, and Austin, A Study of Thinking. 
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the case of disjunctive categories; the more unrelated categories 
strung together in a disjunction, the longer it would take to 
guess the concept. However, the conjunctively defined concept 
A & B & C seems at times to be more difficult to attain than 
the concept A, where A, B, and C arc logically independent 
natural concepts. If we accept the claim of Section I .8 that 
A & B & C is no less natural than A, this would be a case 
where difficulty and naturalness part ways. Similar problems 
occur when the concept to be attained is a natural one in 
virtue of a theory that the subject believes but does not imme­
diately call to mind. In this case, a disjunctive set which is not 
natural might be attained more easily than a natural one. 
These difficulties do not vitiate the possible significance of 
some connection between naturalness and difficulty but merely 
define some of the parameters that a study of the connection 
might take into account.44 

Further instances of elementary inference-making might be 
fruitfully seen from the point of view of a theory of simplicity. 
Given our general tendency to favour no-change hypotheses 
(see Section 2.1), the child's development of the concepts of 
object permanence45 and conservation of liquids46 can be 
regarded as involving a preference for simplicity. The advent in 
the child ofboth of these cognitive capacities might be explained 
in terms of the child's applying an already present simplicity 
criterion to new properties and transformations rather than in 
terms of the acquisition of some fundamentally new thought 
schema.47 Similarly, the philosophically interesting pheno­
menon of continuing the series might profitably be conceived 

44 Attneave's 'Physical Determinants of the Judged Complexity of Shapes' 
claims that complex visual objects are harder to reproduce from memory, to 
name, and to match. His 'Symmetry, Information, and Memory for Patterns' 
shows that a symmetrical pattern is remembered more easily than an asymmetrical 
one occupying the same number of cells. Rosch's 'Natural Categories' uses the 
difficulty of learning certain concepts as evidence for their unnaturalness. 

45 See, for example, Bower's 'The Development of Object Permanence: Some 
Studies of Existence Constancy', his 'The Object in the World of the Infant', 
Bower and Patterson's 'Stages in the Development of the Object Concept', and 
Piaget's The Construction of Reality in the Child, pp. 1-g6. 

46 See, for example, Piaget's The Child's Concept of Number, Chaps. r and 2, and 
Bruner, Oliver, and Greenfield's Studies in Cognitive Growth, Chaps. 9 and 10. 

47 In 'Interactive Processes in Visual Percept:on', p. 353, Mackay says: 'The 
perceptual mechanism functions on the principle of Fisher's null hypothesis­
taking stability as the norm, and demanding adequate evidence before making any 
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of as involving a simplicity criterion. The conjecture would in 
part be that a person's choice of the next member of a series is 
dictated by the simplest general rule. For example, in the 
series I, I, I, I, __ ,the next number chosen will be I rather 
than, say, 3, since I is generated by a rule that is simpler than 
any rule that generates 3· 

Investigations along these lines as well as more detailed work 
on the areas already discussed constitute one half of the pro­
gramme of discovering what interesting content there might be 
in our initial conjecture that perceiving and theorizing obey a 
simplicity criterion. The other half of the programme consists 
in work on the nature of theorizing itself. Both the psycholo­
gical hypotheses and the views of theorizing cited here should 
be taken as preliminary and incomplete. But from this merely 
temporary vantage point, it seems reasonable to think that the 
different levels of cognitive processing have similar structures. 

change in the world-as-perceived, and in every case making the minimal change 
(however surprising) that will match such new evidence as may arise.' See also 
Mackay's 'The Stabilisation of Perception during Voluntary Activity'. Quine's 
principle of minimum mutilation says that the same constraint applies to theorizing. 
See, for example, his Philosophy of Logic, p. 7· 
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Justification 

5. I Justification and Description 

The theory that I have been elaborating and defending can 
be said to justify the use of simplicity in hypothesis choice on 
the grounds that informativeness is one of our goals in choosing 
hypotheses and, according to the theory, simplicity is informa­
tiveness. But what justifies the theory of simplicity? Since it is a 
theory like any other, its justification derives from its being 
sufficiently supported and simple. That is, we should assess the 
adequacy of the theory by subjecting it to the canons of 
hypothesis choice outlined in Section 1.9. In part, this involves 
applying the theory to itself. To give substance to the dual 
claim that the use of simplicity is justified relative to our theory 
and that our theory is justified relative to the rules of hypothesis 
choice, we must first give some account of what a justification 
is. I will do this by examining Goodman's views on the rela­
tionship between justifying induction and describing it.l His 
position is built on a fundamentally correct analogy between 
deductive and inductive inference. The view I will present 
differs from Goodman's while remaining true to the spirit of 
his analogy. 

Traditionally, philosophers have viewed the tasks of justi­
fying induction and describing it as being quite separate. 
Conceivably, one could have a descriptively adequate account 
of our inductive practice that fails to provide a justification of 
that practice. Conversely, one could have a justification of 
induction without having more than an intuitive grasp of what 
our inductive practice is. The former might result in an anthro­
pological theory that describes certain forms of thought and 
behaviour; the latter might provide us with a licence for 

1 Goodman's account of this relationship constitutes a considerable part of the 
novelty of his new riddle of induction, which is presented in his Fact, Fiction, and 
Forecast, Chap. 3· 
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following our inductive intuitions without giving us any deep 
insight into how those intuitions work. 

That justification and description are independent in this way 
is rejected by Goodman in the strongest terms: 

Principles of deductive inference are justified by their conformity 
with accepted deductive practice. Their validity depends upon 
accordance with the particular deductive inferences we actually 
make and sanction. If a rule yields inacceptable inferences, we drop 
it as invalid. Justification of general rules thus derives from judg­
ments rejecting or accepting particular deductive inferences. 

This looks flagrantly circular .... But this circle is a virtuous one. 
The point is that rules and particular inferences alike are justified 
by being brought into agreement with each other .... The process 
of justification is the delicate one of making mutual adjustments 
between rules and accepted inferences; and in the agreement lies 
the only justification needed for either. 

All this applies equally well to induction. An inductive inference, 
too, is justified by conformity to general rules, and a general rule 
by conformity to accepted inductive inferences. Predictions are jus­
tified if they conform to valid canons of induction; and the canons 
are valid if they accurately codify accepted inductive practice.2 

An illuminating way to evaluate Goodman's analysis is to 
pursue his analogy between deductive and inductive inference. 
We can view a set of syntactic rules for propositional inference 
as fulfilling a descriptive function; it explicates our intuitions 
that some inferences are reasonable in a way that others 
clearly are not. That is, within a restricted but potentially 
infinite class of arguments, we can informally divide the 
arguments into two groups, and the syntactic rules replicate 
this sorting process by providing a test which separates the 
arguments in (approximately) the same way. 

Now suppose that we want to choose between making an 
inference I and an inference 1', where I conforms with these 
syntactic rules and I' violates them. If we decide to make 
inference I, the justification would take the following form: By 
following the syntactic rules, we ensure that our inference is 
valid in the sense that true premisses guarantee true conclusions. 
Since we can readily identify validity as one of our goals in this 

2 Goodman, Fact, Fiction, and Forecast, pp. 63-4; quoted in Scheffler, The Anatomy 
of lnquily, pp. 316-17. 
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particular inference situation, following the dictates of the 
propositional calculus is justified, so we make inference I. This 
justification has two components. On the one hand, we were 
able to identify certain (semantic) purposes which we had in 
the particular inference situation; on the other hand, we were 
able to show (by the familiar truth table method, say) that this 
goal is achievable by following certain (syntactic) rules.a Thus, 
by identifying a goal and showing that a given method will 
achieve that goal, we succeed in justifying that method as a 
method for reaching the desired end. 

In the case just described, we might have decided not to 
conform to the rules of the propositional calculus, perhaps 
because we wanted to infer beyond the data (i.e., to make a 
nondeductive inference). This ambition requires that we not 
follow the dictates of a deductive logic, and so the propositional 
calculus, for all of its descriptive adequacy, has no normative 
impact on our decision. Thus, in cases where we do obey the 
canons of propositional logic, our inference is not justified 
merely because it conforms with the propositional calculus. 
The inference is justified because conforming with the pro­
positional calculus guarantees that the inference has certain 
properties that we regard as desirable. 

Applying this lesson to nondeductive inference, we see that 
the fact that general rules fit particular inferences is not 
sufficient to justify any inference. A descriptively adequate 
account of our inferential practice provides a justification of 
that practice only if it embodies parameters that we can take 
as goals in hypothesis choice. The precise desiderata of non­
deductive inference are currently a matter of conjecture. But 
suppose we had a descriptively adequate theory of nondeduc­
tive inference based on simplicity and evidential support of 
the kind outlined in Section I .g. By this I mean that the theory 
accounts for the vast majority of our intuitions that a given 
hypothesis is more reasonable than another by showing that the 
former is in some sense simpler or better supported than the 
latter. We could then justify a particular inference by showing 
(r) that it conforms with the rules of this theory and (2) that in 

3 I am ignoring here the nontrivial problem of saying how the truth table 
method 'shows' that following certain rules 'ensures' valid arguments. This will 
not affect the force of the analogy between deductive and nondeductive inference. 
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making this particular inference we want to maximize simpli­
city and support. 

The inevitable response to such a suggestion is to demand a 
justification of our desire for hypotheses that are supported 
and simple. Our desire for support-however this key notion is 
finally explicated-seems to derive from our wanting hypotheses 
to be relatively safe bets, given the evidence on which they are 
based. Similarly, the explication of simplicity I have offered 
allows us to explain why simplicity is desirable in terms of our 
wanting theories to anticipate nature, to render experience 
redundant. In fact, the way in which the theory of simplicity 
shows how diverse desiderata are reducible to simplicity makes it 
plausible to say that our desire for theories is in fact a desire for 
simplicity. Of course, one might go on to ask why we should 
want our theories to be relatively safe and informative. One 
might just as well demand a justification for wanting the argu­
ments to which we apply deductive canons of inference to 
be truth-preserving. Justification is always relative to a goal, 
and one may always go on to ask for a justification of a goal. 
But no matter how far back one pushes these questions, no 
pristine justification will be uncovered which is goal-inde­
pendent. Support and simplicity are as manifestly desirable in 
nondeductive inferences as truth-preservation is in deductive 
inferences. So the persistent question of 'Why this goal?' is as 
much and as little an objection to a justification of induction 
as it is an objection to a justification of deduction. Notice that 
this argument does not justify induction so much as show how an 
adequate description of our inferential behaviour could begin 
to provide such a justification. 

In contrast to the above theory of inference with its combined 
policy of simplicity and support, let us assume that our intui­
tive judgements about the reasonableness of hypotheses are 
explicated in terms of the optimization of some set of proper­
ties P. Suppose further that we could not identify the proper­
ties contained in P as goals that we have in our inductive 
practice. In this case, we would have a description of induction 
that failed to justify any inductive inference. If we fill in the set 
of properties P with support and entrenchment, we see why it is 
that some people balk at accepting entrenchment as a solution 
to the (old) problem of induction, even if it does happen to 
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provide an adequate description of our inductive practice. 4 

The basis of this hesitation is that some people are reluctant to 
identify entrenchment as a goal in inductive inference.s If the 
task of describing induction and the task of justifying induction 
were the same, then the problem of motivating entrenchment 
would never arise.6 

Thus, it is at least possible to obtain an adequate description 
of inductive practice that fails to justify any inductive inference. 
On the other hand, any general and fully explicit justification 
of inductive practice must be preceded by a description of what 
inductive practice is, because an attempted justification that 
lacks a general description is in the position of not being able 
to say what it is that stands in need of justification. Goodman's 
attempt to collapse justification into description fails because 
it glosses over the fact that description becomes justification 
only when parameters in the description align themselves 
with goals that we designate as desirable. Goodman sees his 
views on justification as harking back to Hume. Ironically, the 
analysis of justification that I am offering also finds its origins 
in Hume, but I am applying Hume's idea of justification in 
ethics to the problem of justification in epistemology. 7 

4 See Goodman, Fact, Fiction, and Forecast, Chap. 3, for Goodman's distinction 
between the old and the new problem of induction and Chap. 4 for a discussion of 
the notion of entrenchment. 

5 Scheffler's The Anatomy qf Inquiry, pp. 314-26, and Grunstra's 'The Plausi­
bility of the Entrenchment Concept' try to overcome this reluctance by showing 
how entrenchment may be seen as desirable. 

6 The goals we have in theorizing, although now imperfectly understood, are 
themselves governed by second-level desires about what our goals in theorizing 
should and should not be. That our first-level goals are not sui generis but are 
subject to higher constraints explains how a description of practice can sometimes 
undermine the justification of that practice. Nietzsche tried to base his normative 
critique of morality on a description of the goals and motives underlying moral 
practice. He relied on our wanting our ethical judgements not to be based on 
weakness, mediocrity, and resentment. Nietzsche hoped to use this second-level 
assumption of ours to make the transition from an allegedly correct description of 
moral practice to a discrediting of that practice. 

7 Goodman's identification of justification and description is in harmony with 
his rejection of intensional notions. For if there is a descriptive predicate that picks 
out all and only the ordered pairs of beliefs and contexts such that each belief is 
justified in the context associated with it, then the strict extensionalist will claim 
that the distinction between the property designated by the descriptive predicate 
and the property of being justified is a distinction without a difference. Thus, 
rejecting Goodman's notion of justification commits one to thinking that it makes 
sense to say that two coextensive predicates can pick out different properties. 
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5.2 Justifying Simplicity 

From the vantage point of this account of justification, it 
becomes clear why the following demand is wholly misplaced: 
'Choosing simple theories over more complex ones is justified 
only if simple theories are more likely to be true than complex 
ones.' This position on what is required to justify simplicity I 
will call 'pro ba bilism'. s A theory of hypothesis choice based on 
high probability alone is not even descriptively adequate (as 
argued in Section r.g), and identifying justified theories with 
maximally probable ones is tantamount to a form of scepticism 
that refuses to venture beyond the evidence and its conse­
quences. If it is granted that other parameters besides high 
probability are relevant in hypothesis choice, then the demand 
that simplicity be justified in terms of high probability seems 
to be an odd fixation. What would be wrong with justifying 
simplicity in terms of other desiderata (e.g., in terms of infor­
mativeness) ? 

Unless he is a sceptic, the probabilist is usually under the 
illusion that simpler theories are in general more likely to be 
true. However, this supposition is incorrect. A theory that goes 
beyond the evidence by systematizing what appear to be un­
related data is simpler, and less probable, than the evidence 
itself. 9 Here simplicity and support are at odds with each other 
and our policies of hypothesis choice at times favour accepting 
a loss in support if it means a gain in simplicity. 

Perhaps the probabilist's position can be reformulated. Take 
two theories that seem to be equally supported by the evidence. 
What reason is there to suppose that the simpler of the two is 
more likely to be true? An example of such a case might be 
the curve-fitting problem. Two different curves are defined at 
all points and pass exactly through each data point. Why should 
we think that the smooth curve is more probably true? To 
answer the probabilist here, let us first compare this case to the 

8 My comments on probabilism are to some extent recapitulations of what should 
be familiar Popperian themes. See Popper's Logic of Scientific Discovery. In Gambling 
with Truth, Levi recognizes that there is a parameter in hypothesis choice that goes 
beyond the desire for truth. The analysis of justification that I have given is 
in harmony with his picture of hypothesis choice as a goal-directed activity. 

9 Moreover, it is a property of our theory that if T--+ T', then T > 8 T'. 
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one just discussed. Formerly, we were quite willing to sacrifice 
support to gain simplicity, and none but the sceptic would say 
that such a trade-off is unjustified. In the second case, no trade­
off is required. We can take the simpler hypothesis without any 
loss in support. Surely if the first choice is justified, the second 
one is too. Simplicity seems to have a binding force above and 
beyond any link it may have with probability. 

Experience might nevertheless reveal that of two equally 
supported hypotheses, the simpler one more often turns out 
to be false. Based on this induction over past inductions, we 
might decide to countermand our disposition to opt for simple 
theories. However, this decision would not represent a rejection 
of simplicity altogether; in this case, we have decided in our 
second-level induction to view our sample of past inductions as 
representative of what will happen in future cases of inference. 
That is, we make use of a simplicity criterion which bids us 
view the sample class as typical of the total class. From this 
meta point of view, it is simpler to reject simple object theories. 
However, after this initial decision, we would try to find out 
why our inductions usually turned out false. This might lead 
us to revise our set of natural predicates (our P-system) in such 
a way that simplicity remains a criterion in hypothesis choice, 
although now simplicity judgements would be relative to a 
different set of natural predicates,lO 

In the idea of a second-level induction over past inductions 
lies the key to the ounce of truth that probabilism contains. 
Our model of hypothesis choice combines desiderata of support 
and simplicity. Choosing the manner in which one wields a 
simplicity criterion may itself be viewed as a problem in 
hypothesis choice, to be decided by examining past cases of 
application. If past cases of application tend to yield satisfactory 
results, we apply our second-level simplicity criterion and decide 
to act in the future as we have in the past. If past cases of 
application tend to yield unsatisfactory results, we likewise 
apply our second-level simplicity criterion and decide to modify 
our policies in the future, since if we did not, past shortcomings 
would continue into the future. Thus, our decision on how 
to apply simplicity considerations in hypothesis choice is 

10 It is difficult to imagine a coherent nonsceptical system of hypothesis choice 
in which simplicity is consistently violated. 

S-F* 
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influenced by past experience. But simplicity has a deeper claim 
on our inductive practice than probabilism would suggest. The 
very way in which we look to past success and failure embodies a 
simplicity criterion; the paths of coherent revision in method 
that past experience suggests will involve the use of simplicity 
to varying degrees and relative to modified systems of natural 
predicates. 

Thus, the position I am defending at once acknowledges that 
simpler theories are more likely to be true (in the sense ex­
plained previously) and denies that the justification of simpli­
city depends on this fact. This might seem paradoxical in view 
of the use made of the likelihood of simple theories. We some­
times throw out anomalous data in order to obtain simpler 
theories, and surely we are justified in regarding such ostensible 
pieces of evidence as false only if simpler theories are more 
probable. But as we have seen, our somewhat attenuated 
admission that simpler theories are more likely is itself inferred 
from past theorizing, and the inferential policy used itself 
includes a simplicity constraint. That simplicity is irreducible 
and sui generis may seem less paradoxical once we recall that our 
desire for theories in large measure reduces to a desire for 
simplicity. Diverse desiderata like accuracy, generality, and 
univocal treatment of disparate phenomena reduce to simpli­
city as we have explicated it. And as we have seen, we are 
interested in theories in spite of their being less probable than 
some weaker but less satisfying alternatives. 

Thus, it is no more reasonable to claim that simplicity is 
justified because simple theories are more likely than it is to 
claim that likelihood is justified because likely theories are more 
simple. Support and simplicity are irreducibly distinct goals in 
hypothesis choice. Yet, our search for simplicity is not immune 
to the corrective lessons which we can draw from examining 
the reliability of past practice. The point is that simplicity is so 
central to hypothesis choice that even when we use our past 
experience with simplicity as a guide to future applications, our 
efforts presuppose the applicability of canons of simplicity. 
Past experience is not irrelevant to the justification of simplicity; 
rather, all the facts of past experience together with the goal of 
support are inszifficient to justify simplicity. 

Probabilism pales in comparison with its robust ancestor, the 
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principle of the uniformity of nature. Where probabilism tried 
to forge a link between simplicity and truth by asserting that 
the simpler of two hypotheses is more likely to be true, the 
principle of the uniformity of nature tries to connect simplicity 
and truth by claiming that the world really is simple. This 
principle runs foul of the fact that the world can be described in 
a variety of ways, all equally true but unequally simple. To 
which of these descriptions corresponds the simplicity of the 
world? Perhaps we can identify the simplicity of the world with 
the simplicity of its simplest (and reasonably complete) des­
cription. We can then formulate the position on justification 
associated with the principle: Using simplicity in hypothesis 
choice is justified only if there exists a true (and reasonably 
complete) description of the world that is more than minimally 
simple. 

Thus formulated, the principle fails. In any world, no matter 
how complex, we should like as simple a (true) description of 
that world as possible. Granting that our hypotheses should not 
be simpler than the world they describe, we grant only a truism: 
Our hypotheses should not be simpler than the simplest true 
description of the world; i.e., our hypotheses should not be 
false. Thus, our desire for simple theories persists even in the 
face of complex phenomena. The relative complexity of the 
world cannot account for this goal. The goal is a property of our 
theorizing which claims our allegiance regardless of how com­
plex the world may be. 

With the removal of the objections that probabilism and the 
principle of the uniformity of nature can make to our justifica­
tion of simplicity in terms of informativeness, it only remains to 
justify our theory, which equates simplicity and informativeness. 
According to our account of what a justification is, we must 
discern our goals in creating a theory of simplicity and show that 
the theory achieves them. These goals are precisely those of all 
theorizing. The theory of simplicity, to be an acceptable theory, 
must be sufficiently simple and supported. 

The support of our theory is the degree to which it fits the 
facts of our inferential practice. We have seen how the theory 
captures many preferences and policies that intuitively seem 
to be instances of 'choosing the simpler alternative'. In Chapter 
2, I argued that some desiderata (such as accuracy and good 
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extra logical strength) which appear to be quite distinct from 
simplicity are in fact reducible to simplicity. It is an open 
question how much of the rich fabric of our simplicity intui­
tions can be mirrored within the theory and how many other 
desiderata of hypotheses can be explicated by the theory of 
hypothesis choice. For example, we devoted comparatively 
little attention to different kinds of mathematical equations, 
so it remains to be seen how the simplicity of other kinds of 
equations can be accommodated in the theory. Besides captur­
ing notions of simplicity that have to do with inferential policies, 
the theory also unites epistemic simplicity with formal and 
asethetic simplicity. Furthermore, connections were made with 
properties lying beyond simplicity-for example, with natural­
ness and perspicuity. Thus, the theory seems to apply to facts 
about cognition that extend beyond the domain of what we 
initially thought to be simplicity judgements. 

That the theory unites diverse intuitions about simplicity 
within a common logical structure means that it would be 
simpler than one which requires different explicans for different 
varieties of simplicity judgements. Yet the question of the 
simplicity of our theory of simplicity is not of decisive import­
ance. At this stage in the development of theories of simplicity, 
we would be well advised to accept a theory that is somewhat 
less simple than the one I have proposed if it were better sup­
ported by the facts of our inferential practice. Within our 
theory of hypothesis choice, this means that theories of sim­
plicity are still struggling to push their support above the 
requisite minimum. Once this is achieved, competitors may 
then be chosen for their relative simplicity. 

One of the main problems for our theory is explaining the 
notion of support that is simplicity's partner in the rules for 
hypothesis choice. We have assumed only that if one hypothesis 
implies another, the former is not more supported than the 
latter. This stipulation is consistent with explicating support in 
terms of probability. It is, of course, possible that once an ade­
quate theory of support is provided, no separate constraint 
of simplicity will be required, since the model will already 
include those preferences which now go under the rubric 
of simplicity. Such an outcome would not show that sim­
plicity is superfluous; rather, the problems of explaining and 
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justifying simplicity would be assimilated into the theory of 
support. 

The applications we made of the theory of simplicity occa­
sionally led us to revise some of our initial intuitions. That not 
all of our pretheoretical judgements are preserved in theory is 
no novelty for philosophical explications or for science in 
general. Moreover, the fact that such revision is possible and 
even necessary has important consequences for the kinds of 
criticisms of a theory that can count as important. The best 
criticism of the present theory of simplicity would be a better 
theory; the worst would be some scattered and idiosyncratic 
intuitions that are not richly connected in the nexus of our 
theoretical judgements. This is not to say that violated intui­
tions provide no basis for criticism, but only that their signifi­
cance is to be pondered seriously. In advance of a better theory, 
intuitive judgements will provide bases for criticism to the 
degree that they are systematic and central. 

5·3 Simplicity and Realism 

Past discussions of simplicity have often involved an unhappy 
alliance between methodology and metaphysics. Convention­
alists, instrumentalists, and verificationists often cited the im­
portance of simplicity in hypothesis choice as substantiating 
their antirealist view of theories. A realist might draw the wrong 
lesson from this proposed connection and try to support realism 
by arguing against the importance of simplicity in hypothesis 
choice. Both of these strategies are misguided; there is a connec­
tion between the use of simplicity in hypothesis choice and a 
realistic view of the hypotheses so chosen, but the connection is 
not a simple one. 

Conventionalism, instrumentalism, and verificationism agree 
that two observationally equivalent theories cannot be incom­
patible. If two theories have all the same predictions in obser­
vations, then whatever choice there is between them is a choice 
between equally true but (perhaps) unequally convenient 
alternatives. Realism parts ways with these views in its insis­
tence that two observationally equivalent theories may differ 
in such a way that one is true and the other is false. 

A methodology provides a set of reasons for choosing be­
tween alternative hypotheses and differentially attributing truth 
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and falsity to them. We will call a methodology complete if, 
for any two hypotheses, the methodology provides a ground 
for regarding one as true and the other as false just in case the 
two hypotheses are incompatible. Complete methodologies may 
allow that there are circumstances in which one cannot choose 
between incompatible alternatives. For example, insufficient 
evidence may prevent one from making a unique choice. Yet, 
for a complete methodology this agnostic stance is in principle 
only temporary; if two hypotheses are incompatible, then one 
can specify a condition which, if satisfied, would provide a 
sufficient reason for making the choice. 

Metaphysics and methodology are connected by this idea of 
completeness. If realism is true, a complete methodology must 
provide a basis for choosing between some observationally 
equivalent theories and regarding some as true and others as 
false. If realism is false, then a complete methodology must 
not provide such a basis. Thus, a complete realist methodology 
will (I) distinguish between some observationally equivalent 
theories in such a way that (2) the basis for the distinction 
justifies differential attributions of truth. We now must examine 
our theory of simplicity to see (I) under what conditions it 
equates the simplicity of two hypotheses and when it distin­
guishes them, and (2) when such simplicity judgements can 
serve as a reason for regarding some hypotheses as true and 
others as false. Determining these properties of our simplicity 
criterion will allow us to see whether it favours one meta­
physical position more than another. 

Our account of simplicity organizes hypotheses into equiva­
lence classes, where the equivalence relation is logical equiva­
lence. Two logically equivalent hypotheses must be equal in 
( epistemic) simplicity. They may differ in aesthetic simplicity, 
but that is just to say that their descriptions (perhaps in terms 
of the number of inscriptions they contain) differ in epistemic 
simplicity. Just as the lengths of the words 'caterpillar' and 'dog' 
are irrelevant to deciding whether caterpillars are longer than 
dogs, so too is aesthetic simplicity irrelevant to epistemic 
simplicity and to hypothesis choice in general. Our theory of 
simplicity explains the difference between aesthetic and epis­
temic simplicity; it explains away the faulty intuition that 
aesthetic simplicity is involved in hypothesis choice. As we have 



JUSTIFICATION 173 

seen, only in the context of a perspicuous notation would there 
be any correlation between epistemic and aesthetic simplicity. 
But the prospects for perfect perspicuity arc dim. 

Although logically equivalent hypotheses must be equal in 
simplicity, observationally equivalent hypotheses need not be. 
It is this fact that makes it possible for our account to be assi­
milated into a realistic methodology. Of course, this proposed 
assimilation would be blocked if it could be shown that sim­
plicity is not a ground for differential attributions of truth and 
falsity. But as we have argued before, simplicity is as serious a 
ground as there can be for regarding some hypotheses as true 
and others as false. Simplicity is a ground for attributions 
of truth and falsity, not because simple hypotheses are more 
likely to be true, but because our goals in accepting and 
rejecting hypotheses as true or false involve a commitment to 
constructing informative hypotheses. 

Yet, the suspicion may linger that simplicity is really not a 
ground for attributions of truth and falsity because simplicity 
is subjective, mind-dependent, or 'relative to our conceptual 
scheme'. This kind of devaluation of simplicity can be blocked 
by pointing to the deep affinities we saw between simplicity 
and support. The simplicity of a hypothesis is relative to a stock 
of predicates; the support of a hypothesis is relative to a body of 
evidence. Some evidential statements are true and are relevant 
to choosing between competing hypotheses; some predicates 
really do pick out natural properties and are likewise relevant 
to choosing between hypotheses. Our goal of making reliable 
and fruitful conjectures involves seeking out such evidence and 
predicate systems. This parity between simplicity and support 
means that an objective attitude towards one should bring 
with it an objective attitude towards the other. 

As we have seen, simplicity can be crucial in choosing be­
tween low-level observational generalizations. If the choice 
between two observational hypotheses at least partially hinges 
on simplicity, and if one views the difference between observa­
tional hypotheses realistically, then one must regard simplicity 
as constituting a legitimate ground for differential attributions 
of truth and falsity. But this very same criterion for hypothesis 
choice can be applied to theories. There is nothing in the 
simplicity criterion that sanctions the first application but 
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proscribes the second. Any methodology that wishes to regard 
choice between observational generalizations as properly 
involving accepting one hypothesis as true and rejecting the 
other hypothesis as false but wishes to treat choice between 
theories as involving choices between equivalent alternatives 
must superimpose an additional story on all that we have said 
about simplicity. The simplicity criterion is blind to any al­
leged difference between theories and observations. 

Similar comments apply to those who wish realism to be 
subject matter specific. For example, if one wishes to hold that 
observationally equivalent theories in physics can be incom­
patible but that observationally equivalent theories in psy­
chology cannot be incompatible, our account of simplicity will 
not provide him with any arguments. Again, this is because our 
account of simplicity is largely formal. In general, if h is simpler 
than h' relative to predicate family p, the result of judiciously 
substituting some predicates for others (in conformity with 
footnote 2 of Chapter 1) will preserve this simplicity ordering. 
The simplicity criterion is blind to differences in subject 
matter. 

According to our explication of simplicity, a simplicity cri­
terion distinguishes between observationally equivalent theories. 
According to our justification of simplicity, a difference in 
simplicity between two hypotheses counts as a reason for 
differential attributions of truth and falsity. These two facts 
place our account of simplicity within a realist methodology. 
An antirealist would be untroubled by our claim that sim­
plicity distinguishes between observationally equivalent hypo­
theses; indeed, conventionalists have insisted on this all along. 
The antirealist would reject our proposed justification. Al­
though he might allow that simplicity is a reason for differen­
tial attributions of truth and falsity in the realm of observa­
tional generalizations, he would deny that it is such a ground in 
the case of observationally equivalent theories. 

The antirealist's attitude towards a simplicity criterion which 
distinguishes between observationally equivalent theories has 
important ramifications for how such a criterion is to be 
assimilated into a complete antirealist methodology. The anti­
realist must so arrange the rules of hypothesis choice that 
they do not overstep what he takes to be the bounds of truth; 
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the rules must never differentially attribute truth and falsity 
in cases where there is no difference in truth value to be divined. 
If the methodology is to treat pairs of hypotheses differently 
according to whether they arc observationally equivalent or 
not, or according to whether they arc observational or theore­
tical, or according to their subject matter, further constraints 
must be placed on the simplicity criterion, since the criterion is 
blind to just these differences, as noted earlier-

Adding such further constraints is possible, but as we have 
seen (e.g., in Section 2.1) there is always a presumption against 
distinctions and divisions. One treats the choice between two 
observational hypotheses, the choice between two observa­
tionally noncquivalent theories, and the choice between two 
observationally equivalent theories alike unless one can find 
compelling reason to treat them differently. It is simpler to give 
all hypotheses equal treatment under the rules for hypothesis 
choice and to leave the rules for hypothesis choice unfettered 
by these further constraints. 

The methodology of realism allows canons of simplicity, as 
well as other principles of hypothesis choice, a perfectly uni­
versal application over the domain of hypotheses; any differ­
ence that these canons detect between hypotheses counts as a 
reason for regarding some hypotheses as true and others as 
false. The methodology of antirealism must either limit the 
application of rules for hypothesis choice to less than the full 
domain of sentences, or it must claim that the results of some 
applications count as grounds for attribution of truth while 
others do not. In either event, the methodology of antirealism 
emerges as less simple than the methodology of realism. 
Although not decisive in itself, this is a considerable advantage 
that realism can claim. 
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Rules for Constructing the Contribution 

a Hypothesis Makes to Answering 

a Question 

THE contribution a hypothesis makes to answering a question 
contains all the information about the individuals and properties 
queried that the hypothesis provides. The contribution can be 
thought of as the last line of a deduction which begins with the 
hypothesis itself and aims at yielding an answer to the question; the 
contribution is as close as the hypothesis can come to yielding an 
answer. In Section 1.4, rules were given for constructing the con­
tribution, H*; but these rules applied only in special cases where 
two assumptions (given in footnote 8) held sway. The following is a 
completely general set of rules for constructing H*. We assume that 
a hypothesis H in prenex normal form is formally relevant to a 
question Q.in that an answer predicate in Q.essentially occurs in H. 
This predicate is attached to constants as it occurs in the answer and 
is attached to bound variables as it occurs in H. When the question 
is identified with its (single) answer schema, H* is constructed by 
treating the dummy constant(s) in the answer schema as real 
constant(s). 

1. If H has an initial existential quantifier, instantiate it with 'qk' 
where k is the lowest number such that 'qk' has not been used 
before. Repeat this step until the first quantifier is not existential. 

2. Choose an answer predicate P in question Q. (not previously 
selected) such that P essentially occurs in H. 

3· Choose an essential occurrence of P in H (not previously 
selected). 

4· Assign distinct numbers i from I ton to the argument places of 
Pin Q. (in an order not previously selected). 

5· Take the ith numbered place i = I, 2, ... , n (not previously 
selected) of Pin Q.. Find the corresponding place in the occur­
rence of Pin H (that was selected in 3). 

6. If the variable in that place is bound to a universal quantifier 
and has not already been instantiated, instantiate it uniformly 
with the constant in the ith place of the answer predicate. 
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7· If the variable in that place is bound to an existential quantifier 
and has not already been instantiated, instantiate it uniformly 
with the constant 'qk', where k is the lowest number such that 
'q,c' has not been used before. 

8. Repeat 5 through 7 until every constant in the series of constants 
attached to P in Q. has been selected and every variable in the 
corresponding series of variables in H has been instantiated. 

g. At this pointj distinct constants have been used; some or all of 
the quantifiers in H have been instantiated. Now start with the 
left-most quantifier remaining. If it is universal, form j + 1 

instantiations, using thej names already used and one new one 
as the replacing constants. If the left-most quantifier is existen­
tial, form one instantiation using 'qk', where k is the lowest 
number such that 'qk' has not been used before. Repeat this 
procedure until all the quantifiers have been eliminated and 
r quantifier free instantiations of H have been formed. Conjoin 
these together and call the conjunction 'Ht', where k is the 
lowest number such that 'Ht' has not been used before. 

10. Write H~ in a shortest conjunctive normal form and cross out 
the clauses that are neither formally relevant to Q. nor formally 
relevant to a clause in H~ that is formally relevant to Q., nor 
formally relevant to a clause that is formally relevant to a 
clause that is formally relevant to Q., etc. Call what remains 
'H;.' where k is the lowest number such that 'H~' has not been 
used before. 

I 1. Repeat 4 through 10 until every way of numbering the argument 
places of Pin Qhas been selected. 

I2. Repeat 3 through I I until each essential occurrence of Pin H 
has been selected. 

I 3· Repeat 2 through I 2 until each answer predicate that essentially 
occurs in H has been selected. 

I4. Conjoin all of the H*s thus formed. This conjunction is the con­
tribution H* that H makes to answering Q. 

These rules satisfy the self-sufficiency condition (see p. 10). That 
is, if H implies an answer Ai, so does H*. To see this, notice first of 
all that if H+ (i.e., the conjunction of H+s formed by rule g) implies 
Ai, so does H*. This follows from the fact that H* is constructed 
from H+ by crossing out clauses in a conjunctive normal form 
representation of H+ that cannot help those clauses in H+ that are 
formally relevant to Ai to yield Ai (see rule 10). It remains to show 
that if H implies Ai, so does H+. At this point we appeal to Quine's 
main methodl wherein we can show that a quantified hypothesis H 

1 Quine, Methods of Logic, pp. 161-4. 
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implies an unquantified hypothesis Ai by forming a set of instantia­
tions of H. The adequacy of this method guarantees that if H 
implies Ai, so does a finite conjunction of instances of H. Our H+ is a 
conjunction of instances obtainable by the main method; moreover, 
the instances of H that are excluded from H+ would not help the 
instances in H+ to imply Ai; they would just contain more new 
names (i.e., not occurring in Ai) than those used in rule g. To see 
that the instances constructed via our rules together imply Ai if any 
conjunction of instances does, consider the hypothesis 

(3y)(3z)(x)(w){Fx & [(Fy & Fz) ::::> Gw]} 
relative to the question (Ga, ,..._,Qa). The two instances of H that 
together suffice to imply an answer to Q. are 

Fq1 & [(Fq1 & Fq2) ::::> Ga] 
Fq2 & [(Fq1 & Fq2) ::::> Ga]. 

Of course, there are further instances of H generated by returning 
to the variables 'x' and 'w'. These further instances play no role in 
guaranteeing the self-sufficiency of H with respect to Q. ; all but two 
of these further instances are excluded from H+. Although there may 
be infinitely many names that are candidates for replacing con­
stants, the fact that Ai contains a finite number of names and H a 
finite number of bound variables guarantees that if H implies Ai, 
a finite conjunction of instances of H (constructed by letting the 
names in Ai serve as replacing constants and then using a limited 
number of new names) will also imply Ai. 

A further example may help show how these rules work. We will 
construct H* for the hypothesis that says that the relation R is 
transitive (seep. 81), 

(x)(y)(z)[(Rxy & Ryz) ::::> Rxz], 
relative to the question (Rab, ,..._,Rab). Notice that there are three 
occurrences of the answer predicate 'R' in the hypothesis, each 
linked to a different series of variables. Following rule 12, we must 
focus on each of these occurrences in turn, yielding the following 
three partial instantiations: 

(z)[(Rab & Rbz) ::::> Raz] 
(x)[(Rxa & Rab) ::::> Rxb] 
(y)[(Ray & Ryb) ::::> Rab]. 

Each of these partial instantiations has one bound variable left, and 
according to rule g, each must be instantiated three times: with 'a', 
with 'b', and with the new name 'c'. That makes nine full instantia­
tions. Each of these H+s contains no irrelevant clauses (see rule 10), 
so the conjunction of these nine is H*. 

These rules will generate an H+ containing more than one in-
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stance of H when a predicate in H essentially occurs more than once 
and is linked to different series of variables at its several occurrences. 
This is illustrated by the above two examples. H+ will also contain 
more than one instance of H when repetitions in the series of vari­
ables attached to P in H fail to match repetitions in the series of 
constants attached toP in Q.. For example, the H+ of the hypothesis 

(x) (Rxx) 
relative to the question (Rab, ,..._,Rab) is 

Raa & Rbb, 

although relative to the question (Raa, ,..._,Raa), its H+ rs simply 
'Raa'. 
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