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PREFACE

THis book is a sequel to Time and Modality. Many problems
raised in the latter have now been solved, and new ones have
been raised in their turn, and I have tried to record some of
these developments, and to carry on with some further ones.
I have also become aware of the continuing importance of some
earlier writings, including some of my own, which I was for-
merly inclined to think had been simply superseded; so I have
something to say about those too. But I have tried to make the
book self-contained, presupposing nothing but a few facts,
mostly about the better-known systems of modal logic, which
can easily be found in the literature.

I have not been able to separate philosophical speculation
very sharply from logical computation, and consequently can-
not say much that would be helpful to readers who would
like to concentrate on the former without too much of the
latter—apart from the obvious point that proofs can be skipped
without much loss in understanding of what is proved. I would
like, though, to make one small but very serious suggestion to
readers who are troubled less by symbolism as such than by
the particular symbolism employed here: it becomes much
more readable if you don’t all the time try to translate it into
some other symbolism, but get into the habit, at least with
comparatively short formulae, of reading it directly as English,
e.g. read CFFpFp straight off as ‘If it will be that it will be that
b, then it will be that p’, without first turning it into something
like FFp— Fp; and again, read CGCpqCGpGq as ‘If it will
always be that if p then ¢, then if it will always be that p, it will
always be that ¢’, without first twisting it into G(p — ¢) —
(Gp — Gq) ; and read ZqKNgFKpq directly as ‘For some ¢, both
not-¢ and it will be that both p and ¢’, instead of trying to get to
this via something like (3¢) (~ ¢ & F(p & ¢)). I have thrown
in these direct verbalizations fairly freely throughout the book,
and I hope they will be fully used not only as preliminaries
to philosophical discussion but also as elucidations of the for-
mulae to which they are attached. But I do not in general give
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such verbalizations in the middle of proofs, since what is usually
important there is just the correct manipulation of the physical
shapes, e.g. inserting an L or a G at the beginning of a formula,
or before each of the two parts of an implication, by virtue of
a given rule.

Most of my indebtednesses are made obvious enough as the
work proceeds, but there are some that I should mention here.
It was Mr. P. T. Geach who made me aware of the importance
of McTaggart, and of the positive aspect of his work; I had
thought of him before simply as an enemy. I am grateful to
Mr. Geach also, and to Mr. E. J. Lemmon, for a copious corre-
spondence which kept me in touch with new work in the logic of
time and of modality when I was back in New Zealand; and in
New Zealand itself to Professor J. M. Shorter for his able argu-
mentative presentation of a point of view (discussed in Chapter
VII) to which I had been inclined to do less than justice.

A more recent debt is to the University of California in Los
Angeles for the opportunity to lecture on these topics there,
and to the very lively tense-logicians of California for many
discussions with them about their results and mine—notably
Nino Cocchiarella in San Francisco, Dana Scott in Stanford,
and again E. J. Lemmon, in Claremont. I am grateful also to
Ian Hacking and David Berg in Vancouver, to Nicholas Rescher
and Storrs McCall in Pittsburgh, to G. H. von Wright, and
especially to Charles Hamblin in Sydney, for passing on some
of their recent results. And I have learnt much from my students
in Los Angeles, particularly Hans Kamp, Patricia Kribs, John
Clifford, and Richard Harschman. I suppose that California is
the most logically mature place in the world, and now that the
logic of tenses is pursued so widely and so vigorously there, its
raw pioneering days can be considered over. Actual publica-
tions in the field are still, however, small in number, and I
hope this book will turn out to be an introduction to a much
greater volume of material.

Finally, I would like to thank Dr. A. J. Kenny for many
suggestions made after reading the whole book in typescript,
and Miss P. Horne and Mrs. M. Heywood for doing most of the
typing. I would like to dedicate Past, Present, and Future to my
colleagues and students in the University of Manchester.
Manchester, 1966 A.N. PRIOR
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PRECURSORS OF TENSE-LOGIC

1. McTaggart's A-series (past, present, future) and B-series (earlier,
later). THE discipline which is now widely called ‘tense-logic’
is a comparatively new one, and it is worth saying something
about its early history while that is recent enough to be ac-
curately remembered. In a sense the founding father of modern
tense-logic was J. N. Findlay, who said in a paper published
in 1941 that ‘our conventions with regard to tenses are so well
worked out that we have practically the materials in them for
a formal calculus’ and that ‘the calculus of tenses should have
been included in the modern development of modal logics’.!
But Findlay’s remark, like so much that has been written on the
subject of time in the present century, was provoked in the first
place by McTaggart’s famous proof that time is unreal,? and
we may begin by looking yet again at this celebrated piece of
argumentation. For in spite of what seems to me the out-
rageousness of his conclusion, and the fallaciousness of the
reasoning which leads up to it, McTaggart presented what
might be broadly called the phenomenology of time with
singular accuracy, and drew attention to a body of facts about
time which we shall be adverting to frequently in what follows.
Indeed, one could say that there is tense-logic itself in Mc-
Taggart, though Findlay was the first to see it as such.
‘Positions in time’, McTaggart says,3 ‘as time appears to us
prima facie, are distinguished in two ways.” In the first place,
‘each position is Earlier than some and Later than some of the
others’, and ‘in the second place, each position is either Past,

T J. N. Findlay, ‘Time: A Treatment of Some Puzzles’, Australasian Journal of
Philosophy, Dec. 1941, reprinted in A. G. N. Flew’s Logic and Language (first series,
1951).

2 This first appeared as an article (“The Unreality of Time’) in Mind (1908,
PP. 457-74), republished in McTaggart’s Philosophical Studies (London, 1934).
It also reappeared in an enlarged form as ch. xxxiii of The Nature of Existence
(vol. i, Cambridge, 1927).

3 The Nature of Existence, ch. xxxiii, § 305.

824311 B



2 PRECURSORS OF TENSE-LOGIC

Present or Future. The distinctions of the former class are per-
manent, those of the latter are not. If M is ever earlier than W,
it is always earlier. But an event, which is now present, was
future, and will be past.” He then introduces the term ‘A series’
for ‘that series of positions which runs from the far past through
the near past to the present, and then from the present through
the near future to the far future’, and the term ‘B series’ for
‘the series of positions which runs from earlier to later’. He notes
that ‘the movement of time consists in the fact that later and
later terms pass into the present, or—which is the same fact
expressed in another way—that presentness passes to later and
later terms. If we take it the first way, we are taking the B
series as sliding along a fixed A series. If we take it the second
way, we are taking the A series as sliding along a fixed B
series’.!

McTaggart then argues that the B series presupposes the
A series, rather than vice versa. His argument starts from the
fact that ‘time involves change’, and that the only way in
which events can change is in respect of their A-characteristics.
If time consisted of a B series only, change could not consist in
one event ‘ceasing to be an event’ while another took its place,
for the place of events in the B series is permanent, and so are
all their other characteristics and relations except their place
in the A series. ‘T'ake any event—the death of Queen Anne, for
example—and consider what changes can take place in its
characteristics. That it is a death, that it is the death of Anne
Stuart, that it has such causes, that it has such effects—every
characteristic of this sort never changes. “Before the stars saw
one another plain’, the event in question was the death of
a Queen. At the last moment of time—if time has a last moment
—it will still be the death of a Queen. And in every respect but
one, it is equally devoid of change. But in one respect it does
change. It was once an event in the far future. It became every
moment an event in the nearer future. At last it was present.
Then it became past, and will always remain past, though
every moment it becomes further past.” To this last sentence
he adds a comment. “The past, therefore, is always changing,
if the A series is real at all, since at each moment a past event
is further in the past than it was before . . . It is worth while to

I § 306 and n.
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notice this, since most people combine the view that the A series
is real with the view that the past cannot change.’t

He goes on to consider objections to this argument that might
arise from Russell’s view of time, according to which ‘an asser-
tion that /N is present’ means no more than ‘that it is simul-
taneous with that assertion, an assertion that it is past or future
means that it is earlier or later than that assertion. . . . If there
were no consciousness, there would be events which were earlier
and later than others, but nothing would be in any sense past,
present, or future. And if there were events earlier than any
consciousness, those events would never be future or present,
though they could be past.” As to change, Russell defines this
as ‘the difference, in respect of truth or falsity, between a pro-
position concerning an entity and the time 7, and a proposition
concerning the same entity and the time 77, provided that these
propositions differ only in the fact that 7 occurs in the one
where T~ occurs in the other’. McTaggart gives the example
‘At the time 7 my poker is hot’, which may differ as to its truth
or falsity from ‘At the time 7" my poker is hot’, and if it does
so we may say that there is change.2

McTaggart has no difficulty in showing that Russell’s trans-
lation of propositions about the A series into propositions about
the relative positions in the B series of described events and the
time of assertion (or of judgement), just will not do. ‘The battle
of Waterloo is in the past’, he points out, is something which
was once false and is now true. But ‘“The battle of Waterloo is
earlier than this judgment’ is something which is ‘either always
true, or always false’.3

Against Russell’s account of change, McTaggart has two
arguments of which only one is to the point, whether it is cogent
or not, and is as follows: The B series is not the only series of
positions ‘at’ which propositions can be true or false. For
example, ‘“The meridian of Greenwich passes through a series
of degrees of latitude. And we can find two points in this series,
S'and §’, such that ““at .S the meridian of Greenwich is within the
United Kingdom” is true, while the proposition “at $’ the
meridian of Greenwich is inside the United Kingdom is false.
But no one would say that this gave us change. Why should
we say so in the case of the other series?” One might answer,

T § 311 and n. 2 §313. 3 §§ 317-18.
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I suppose, that the word ‘change’ is defined precisely in terms
of differences in truth-value between propositions which men-
tion different positions in the B series, and not in terms of
differences in truth-value between propositions which mention
different positions in any other series. But McTaggart argues
that there is nothing so arbitrary about it as this. These dif-
ferences constitute change because they have to do with some-
thing first being so and then merely having been so—because
the B series is simply a reflexion of the A series.! ‘Earlier’ and
‘later’ are in fact to be defined in terms of past, present, and
future. ‘The term P is earlier than the term Q if it is ever past
while Q is present, or present while Q is future.” This definition,
though it is given in a much later chapter of The Nature of
Existence than the one in which his main argument proceeds,?
is of some importance here. For it means that anything we
want to say in the B-series language can be translated into the
A-series language, whereas the converse does not hold (as may
be seen from the battle of Waterloo example).

2. McTaggart’s argument against the reality of the A-series. Having
satisfied himself that there can be no time worth the name
without an A series, McTaggart goes on to argue that the
A series, and therefore time itself, involves a contradiction. The
contradiction, as first presented,’ is simply that (sTEp 1) the
characteristics of pastness, presentness, and futurity are
mutually exclusive, and yet (if the A series is real), ‘every event
has them all’. This, as it stands, is not very convincing, as
McTaggart realizes. ‘It is never true, the answer will run, that
M is present, past and future. It is present, will be past, and
has been future. Or it is past, and has been future and present, or
again is future, and will be present and past. The characteristics
are only incompatible when they are simultaneous, and there
is no contradiction to this in the fact that each term has all of
them successively.’* These tensed verbs, however, are said to
require explanation, and the explanation, according to Mc-
Taggart, is (sTEP 2) that ‘when we say that X has been 7, we
are asserting X to be 1" at a moment of past time. When we
say that X will be ¥, we are asserting X to be 1"at a moment of
future time. When we say that X is 1" (in the temporal sense of
T § 316. 2 Ch. li, § 610. 3 § 329. 4 §330.
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“is”), we are asserting X to be 7"at a moment of present time.’
From the last sentence it is clear that we are to understand the
‘being ¥ at’ whichever sort of moment it is, as a non-temporal
‘being’. We must presumably understand similarly the last ‘is’
in the sentence that follows: “Thus our first statement about
M—that it is present, will be past, and has been future—means
that M is present at a moment of present time, past at some
moment of future time, and future at some moment of past
time.” But what are a ‘moment of present time’, a ‘moment of
past time’, and a ‘moment of future time’? Pastness, presentness,
and futurity cannot permanently characterize ‘moments’ any
more than they can permanently characterize events. ‘If M
is present, there is no moment of past time at which it is past.
But’ (sTEP 3) ‘the moments of future time, in which it is past, are
equally moments of past time, in which it cannot be past’ (italics
mine).! So the contradiction is restored in a new guise. ‘If we
try to avoid this by saying of these moments what had been
previously said of M itself—that some moment, for example,
is future, and will be present and past—then “is” and “‘will
be’” have the same meaning as before. Our statement, then,
means that the moment in question is future at a present
moment, and will be present and past at different moments of
future time. This, of course,” McTaggart says, ‘is the same
difficulty over again. And so on infinitely.’2

This seems a perverse conclusion. We are presented, to begin
with (in STEP 1), with a statement which is plainly wrong (that
every event is past, present, and future). This is corrected
to something which is plainly right (that every event either
is future and will be present and past, or has been future and
is present and will be past, or has been future and present and s
past). This is then expanded (in STEP 2) to something which,
in the meaning intended, is wrong. It is then corrected to
something a little more complicated which is right. This is then
expanded (in sTEP 3) to something which is wrong, and we are
told that if we correct this in the obvious way, we shall have to
expand it to something which is again wrong, and if we are
not happy to stop there, or at any similar point, we shall have
to go on ad infinitum. Even if we are somehow compelled to move
forward in this way, we only get contradictions half the time,

T §331. 2 §332.
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and it is not obvious why we should regard these rather than
their running mates as the correct stopping-points. But why
do we have to make the wrong moves in any case? At least after
the first few times, when we’ve seen the trouble it gets us into,
why not pass to the corrected version immediately?

McTaggart’s underlying assumption, which generates each
of the moves that lead us to a contradiction, appears to be
that ‘has been’, ‘will be’, and the strictly present-tense ‘is* must
be explicated in terms of a non-temporal ‘is’ attaching either an
event or a ‘moment’ to a ‘moment’. McTaggart himself ob-
serves, however, that ‘propositions which deal with the place
of anything in the A series’, such as ‘The battle of Waterloo
is in the past’, and ‘It is now raining’, are of a kind which can
be ‘sometimes true and sometimes false’. The ‘is’ that occurs
in such propositions therefore cannot be non-temporal. We can
perhaps eliminate the oblique tenses by attaching phrases like
‘is past’ and ‘is future’ to descriptions of events, so that ‘X has
been 1” becomes ‘X’s being 1" is past’, ‘X will be ¥ becomes
‘X’s being 1 is future’, and a more complex example such as
‘X will have been ¥’ becomes ‘The being-past of X’s being ¥
is future’; but in all these examples the ‘being’ in ‘being 17
and in ‘being past’, and the ‘is’ in ‘is past’ and ‘is future’, must
be the present-tense ‘being’ and ‘is’ if these expansions are to be
accurate. This means that complexes like the being past of X’s
being 7, and the being future of the being past of X’s being ¥,
are subject to the same series of mutations as X’s being 1 itself.
There is nothing extraordinary or disastrous about this; we do
not have to rush to stop it at all costs; it is simply the nature
of an A series as McTaggart himself describes it at the beginning
of his discussion, and his contradictions arise from trying to
turn it into a B series.

One other point should be noticed here. Since the being
past, say, of some event, is itself something that can go on in
the past, present, or future, and since the being past of some-
thing is not a momentary matter but on the contrary, once it
has started, is a permanent matter, it is not quite right to say
that past, present, and future are ‘mutually exclusive’ deter-
minations of those things to which they apply. One and the
same state of affairs may sometimes obtain in the past, present,
and future, and is bound to do so if it persists for any length of
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time. This is true, moreover, not only of such abstract states of
affairs as the being past of an event, but also, e.g., of the being
hot of a poker. Even in such cases, of course, the being present
of the state is one thing and its being past or future another
thing, and as regards ‘positions’ in time (if there are such
things) McTaggart’s incompatibility thesis no doubt holds.

3. Broad’s criticism of McTaggart; temporal predicates and tenses.
That McTaggart’s troubles arise from trying to describe an
A-series without using tenses (not even the present-tense ‘is’) is
pointed out in Broad’s exhaustive analysis of the argument.!
Broad goes on to suggest that if we are going to admit one
temporal copula (‘is’), as it seems we must, we might as well
admit the others (‘has been’ and ‘will be’), and drop the tem-
poral predicates ‘past’, ‘present’, and ‘future’. For the alter-
natives are (1) to analyse, say, ‘It will rain’ and ‘It has rained’
as ‘An event characterized by raininess is now future’ and
‘...is now past’, which needs one temporal copula and at
least two temporal predicates (three if ‘It is raining’ is to be
expanded analogously), or (2) to analyse them as ‘An event
characterized by raininess will be present’ and ‘... has been
present’, which needs one temporal predicate and (with the
present tense either in the form ‘It is raining’ or in the form
‘An event...is now present’) all three copulas. Nothing is
gained by these analyses, and they carry the misleading sug-
gestion that when, say, it has rained, then over and above the
raininess which ‘has been, and no longer is being, manifested
in my neighbourhood’, there is (non-temporally) a ‘rainy
event’, which ‘momentarily possesses the quality of presentness
and has now lost it and acquired . . . pastness’.2

Broad claims even to find a logical defect in talk of events,
or as he puts it ‘event-particles’, as ‘acquiring presentness’ and
then losing it. If this did happen, he says, ‘the acquisition and
loss of presentness by this event-particle is itself an event-
particle of the second order, which happens to the first-order
event-particle. Therefore every first-order event-particle has
a history of indefinite length. ... Yet, by definition, the first-
order event-particle...has no duration, and therefore can

t C. D. Broad, Examination of McTaggart’s Philosophy, vol. ii (Cambridge, 1938),
ch. xxxv, p. 315. 2 Ibid., pp. 315-16.
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have no history, in the time-series along which presentness is
supposed to move.” Broad considers it a merit of J. W. Dunne
to have seen that the full development of such a view requires
an infinity of higher and higher order time series. He himself
blocks this development by distinguishing between genuine
‘qualitative change’ and what he calls ‘absolute becoming’. The
phrase ‘become present’ is only grammatically similar to such
phrases as ‘become louder’, and there is no sense of ‘change’
which covers both of them. To ‘become present’, in fact, is
Just to “become”...; i.e. to ‘“‘come to pass”...or, most
simply, to “happen” °. Such ‘absolute becoming’ is presupposed
in all change, and therefore cannot be treated as a case of it;
probably, indeed, it cannot be analysed at all.t

We shall have more to say of this later, but it should be
observed here that the problem which Broad sees, if it is one,
could arise even without dropping into talk of event-particles
as ‘becoming present’, ‘becoming past’, and so forth. For what-
ever is going on will have gone on, and will have gone on longer
and longer ago; we are landed with this ‘history’ of what
goes on as soon as we use even such a moderately complicated
tense as the future perfect.

4. Findlay's tense-logical laws. That part of Findlay’s 1941
article which deals with McTaggart charges him, as Broad’s
examination does, with trying to impose conditions appropriate
to a tenseless language upon a tensed one. Findlay insists that
there is nothing untidy or illogical about a tensed language as
such; on the contrary, even the use of tenses in natural lan-
guages is systematic and sure-footed enough to contain (in the
words of our first quotation from this essay) ‘practically the
materials for a formal calculus’. Of the ‘calculus of tenses’
which he says ‘should have been included in the modern de-
velopment of modal logics’, all that Findlay says is that it ‘in-
cludes such obvious propositions as that

x present = (x present) present
x future = (x future) present = (x present) future;
also such comparatively recondite propositions as that
(%) - (x past) future;
¥ pp. 277-81.
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i.e. all events, past, present, and future, wil/ be past’. The last
law is unfortunately symbolized; the formula suggests that
everything will have been the case (even permanent falsehoods);
but it is easily enough amended to

‘((x present) or (x past) or (x future)) — (x past) future’.

All of these laws, one suspects, are inspired by McTaggart’s
discussion. The last reminds us, for example, of McTaggart’s
initial picture of events which were future becoming present
and then moving further and further into the past, and the
first two recall the iterations he complains of in ‘the Argument’
—a future event is one which is future at a present moment and
present at a future one; a present event is present at a present
moment—only Findlay, instead of complaining of such equiva-
lences and implications and trying to block them (as even Broad
does at some points), treats them exactly as they ought to be
treated, as laws of the complicated but far from chaotic logic
of the A series.

There is a hint of these laws also in the long passage from
Augustine’s Confessions which forms the subject of the earlier
part of Findlay’s article, though the relevant remarks are in
later sections than those on which Findlay concentrates. Since
men foresee the future and recall the past, and ‘that which is
not, cannot be seen’, Augustine is tempted to say that even
past and future events and moments in some sense ‘are’, and
that there is some ‘secret place’ from which they come and to
which they go. But this, he goes on, will not be of much help
after all, for wherever ‘time past and time to come’ may ‘be’, ‘they
are not there as future, or as past, but present. For if there also
they be future, they are not yet there; if there also they be past,
they are no longer. Wheresoever then is whatsoever is, it is only
as present.’! ‘x future’, in fact, ‘= (x present) future.” The same
thing is more directly stated in Aquinas’s dictum, commenting
on Aristotle, that praeteritum vel futurum dicitur per respectum ad
praesens (‘things are called past and future with respect to the
present’), which he explains by adding, Est enim praeteritum quod
Suit praesens, futurum autem quod erit praesens (‘For that is past
which was present, and future which will be present’).2 The

I Augustine, Confessions, bk. xi, chs. xvii, xviii.

2 Aquinas, In Aristotelis Libros Peri Hermeneias et Posteriorum Analyticorum Expositio
(Marietti, Turin, 1955), comment on De Interpretatione, 16° 17-19.
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dictum is equally well elucidated by the converse point, that what
is said to be future is thereby said to be future now (and may
cease to be so later), and what is said to be past likewise is said
to be so now (though it may not always have been so); i.e.
‘¢ future = (x future) present’ and ‘x past = (x past) present’.

5. Smart’s argument that events do not change. So far as I know, the
first attempt to produce a calculus of the type Findlay wanted
to see was my own, in the early 1g950s. In the intervening ten
years, however, much was written which was relevant to such
a task, and two items in particular should be noticed. One
was J. J. C. Smart’s paper ‘The River of Time’,! which was
basically hostile to any such enterprise, but helped nevertheless
to make clear what had to be done. Smart, like Broad, or at
least like Broad in one mood, disliked talk of ‘events’ as ‘chang-
ing’. ‘Things change, events happen.’ Events are indeed said to
become present and to become past, but these changes are
spurious. That they are so, Smart claimed to show by giving
a Russellian analysis of tensed utterances, and showing that
this analysis cannot give the same meaning to the tenses of ‘to
be past’ and ‘to be future’ as it gives to straightforward verbs
like ‘to be red’ and ‘to be green’. Saying that (1) a boat ‘was
upstream, is level, and will be downstream’, he says, means
just ‘that occasions on which the boat is upstream are earlier
than this utterance, that the occasion on which it is level is
stmultaneous with this utterance, and that occasions on which
it is downstream are lafer than this utterance’. In this, he ob-
serves, ‘was’, ‘is’, and ‘will be’ are correlated with ‘earlier than’,
‘simultaneous with’, and ‘later than’ applied to one and the
same utterance. On the other hand, the translation of (2) “The
beginning of the war was future, is present, will be past’ is “The
beginning of the war is later than some utterance earlier than
this one, is simultaneous with this utterance, and is earlier than
some utterance later than this one’. Here the triad of relations
is attached to different utterances. ‘This’, he claims, ‘shows how
misleading it is to think of the pastness, presentness, and
futurity of events as properties. . . . It shows how utterly unlike
“this event was future and became past’™ is to “this light was
red and became green”.’

! In Mind, Oct. 1949, pp. 483-94, reproduced in Flew’s Essays in Conceptual
Analysis (1956).
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This argument, however, is a little sophistical. In the first
place, if we literally applied Smart’s analysis of example (1) to
example (2) we would not get what he says we would, but
would get rather: ‘Occasions on which the beginning of the
war is future are earlier than this utterance, the occasion on
which it is present is simultaneous with this utterance, and
occasions on which it is past are later than this utterance’; in
which the triad of relations is attached to the same utterance,
exactly as in example (1). Smart only gets his result when he
attempts to eliminate not only the three tensed verbs but the
adjectives ‘future’, ‘present’, and ‘past’ as well. He has, in fact,
equated (2) with (3) “The war was going to begin, is now be-
ginning, and will have begun’, and applied his analysis to the
secondary as well as the primary tense-inflexions of these verbs.
His equation of (2) with (3) seems to me reasonable enough,
and it does suggest that the verbs ‘is past’, etc., can in general be
dispensed with in favour of more complicated tensing of more
ordinary verbs. This does not mean, though, that in the more
abstract version the simple tenses have to be treated differently
from other simple tenses (as shown above, they don’t). Nor does
it mean that events don’t really change; it means only that
changes of events with respect to their pastness, etc., are re-
ducible to more complicated changes of less abstract entities
with respect to less abstract properties.

Even, however, when we have reduced (2) to (3), it remains
true that interior futures and pasts (the ‘going to’ in ‘was going
to’, and the ‘have’ in ‘will have’) do not relate us to the same
utterance (‘this utterance’) as the exterior futures and pasts do.
But for whom is this fact supposed to be awkward? The analysis
of the content of tensed utterances in terms of B-series relations
to the utterance itself is quite unplausible even when the tenses
used are simple, as McTaggart and Broad both saw. But when
it is applied to tenses such as the future perfect, it becomes
downright fantastic. Where the B-series relation is only supposed
to be to the very utterance which is being analysed, the utterance
at least in a sense guarantees its own existence, so that it is at
least true that the event said to be past, say, is earlier than the
utterance in question, even if this fact isn’t (as the theory says
it is) what the utterance is intended to convey. But when the
analysis requires us to relate the events to other utterances, of
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which there may very well not have been any (or not be going
to be any) at the time at which they would be required, it
becomes quite obviously wrong. How are we to analyse, for
example, ‘Eventually ali speech will have come to an end’?
What Smart’s recipe would give is ‘“The end of all utterances is
earlier than some utterance later than this one’, which trans-
lates something empirically possible into a self-contradiction.
It is in any case implausible—as Smart himself insists when
presenting this material in the context of his own thesis that
events do not change—that the same tenses, used within the
same utterance, should take us in one part of the sentence to
one utterance and in another to quite a different one. The real
moral of Smart’s paper is that the Russellian analysis of tenses
breaks down, as so many false theories in this area break down,
as soon as we remember that there is such a tense as the future
perfect.

6. Reichenbach on the time of speech and the time of reference; the
nature of presentness. Someone who did not forget this, in the late
1940s, was Hans Reichenbach, in the section on “The Tenses of
Verbs’ in his Elements of Symbolic Logic (1947). Reichenbach
learnt from Jespersen that in seeing how tenses work we have to
consider not only the time of utterance on the one hand and
the time at which the event spoken of occurs on the other,
but also a ‘point of reference’ which may be, though it need
not be, different from either. When we say, for example, ‘I
shall have seen John’, the remark directs us, not in the first
place to the time at which my seeing of John occurs, but to
a time later than that, with reference to which my seeing of
John is past. Reichenbach exhibits the characteristic features
of this case by the following diagram (where S is the ‘point of
speech’, R the ‘point of reference’, and E the ‘point of event’):

I i J P
T 1 I
s E R
The past perfect, ‘I had seen John’, comes out analogously as
: t +—
E R s

Jespersen only used this ‘three-point structure’ to explain these
two tenses, but Reichenbach extended it to cover many others,
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such as the simple past, ‘I saw John’, which he represents as

i {
T U

R.E S

and the present perfect, ‘l haveseen John’, which he represents as

i il
T T

E S.R

This new distinction throws some light on Smart’s difficulties
with the future perfect, and indeed could be used to construct
a partial defence of his point of view. For whereas with the
present perfect the pastness expressed by ‘have’ represents
the event’s preceding a point of reference which coincides with
the point of speech, with the future perfect the pastness ex-
pressed by ‘have’ represents the event’s preceding a different
point of reference (even if it does not represent its preceding
a different utterance). Reichenbach’s scheme, however, will
not do as it stands; it is at once too simple and too complicated.

It is too simple because, although we do not ordinarily use
them, we can easily construct more complicated tenses than
the future perfect, e.g. ‘I shall have been going to see John’.
Here there are in effect two points of reference, which might be
(though there are other possibilities) as in the following repre-
sentation:

1 Il Il >
T N T

-+
s R2 E Rl

But once this possibility is seen, it becomes unnecessary and
misleading to make such a sharp distinction between the point
or points of reference and the point of speech; the point of
speech is just the first point of reference. (This, no doubt, de-
stroys Reichenbach’s way of distinguishing the simple past and
the present perfect; but that distinction needs more subtle
machinery in any case.) This makes pastness and futurity
always relative to some point of reference—maybe the first one
(i.e. the point of speech) or maybe some other. Because Reichen-
bach’s analysis fell short of this generalization, it was in some
ways a hindrance rather than a help to the construction of
a logic of tenses; at all events, no such logic could get going
until this generalization had been made. Findlay and his pre-
cursors were already ahead of Reichenbach here. His law
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‘¢ future = (¥ future) present = (x present) future’, and
Aquinas’s Est futurum quod erit praesens, show a perception that the
essence of ‘presentness’ does nof lie in coincidence with the
point of speech; there is a future presentness and a past present-
ness also. Broad is closer to the truth (though he draws the
wrong moral from what he sees) when he says that to be (or
become) present is simply to happen. It is a kind of zero tense-
inflexion; the presentness of a happening is simply its happen-
ing; Findlay’s ‘¢ present = (x present) present’ is in fact
merely an instance of something still more general, namely
‘4 = x present’ or ‘x present = #’, from which his law about
the future (that the futurity of the presentness of a happening
is just the futurity of its happening) also follows.

English speakers find it hard to see these things quite clearly;
for in English sentences the point of view of the speaker
dominates even subordinate clauses. When an English speaker,
for example, wants to say on Tuesday that someone complained
on Monday of a sickness that he had that day, the correct form
of words will be ‘He said he was sick’, although the man was in
fact complaining not of a then-past but of a then-present sick-
ness, and his own words would have been ‘I am sick’. I am told
that in modern Greek it is otherwise, though there is the same
change of the pronoun as with us; that is, their wording would
be that corresponding to ‘He said that he is sick’. And indeed in
classical Latin, although the subordinate sentence is rendered
by an accusative and infinitive, it is the present infinitive that is
used, Dixit se esse aegrum (not Dixit se fuisse aegrum). Similarly,
on the few occasions on which we use phrases like ‘It was the
case that’, in English, they are not followed by the present but
the past; we say ‘It was the case that he was sick’, not ‘It was
the case that he s sick’, thus hiding from ourselves the fact that
it is the past presentness of his being ill, not its past pastness, to
which we are alluding. That it is not a past pastness is indeed
obvious enough to those who know the language; but that it is
a past presentness is perhaps not obvious enough, and we are
tempted to think that what is now past is perhaps a timeless
propositional ‘content’.

The formal importance of this conception of presentness
(‘x present = %°) is that it underlies, and is required by, the
systematic definition of complex tenses in terms of simpler ones.
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For suppose we do take the view that tensed utterances can
be formed by attaching some sort of modifier to timeless pro-
positional contents, e.g. that ‘I shall see John’ amounts to
something like ‘(Me seeing John) future’, where the element
in brackets is supposed to be a non-temporally characterized
‘content’. Then if attaching ‘future’ to such a content forms
a future-tense sentence, ‘(Me seeing John) future’ will not itself
be the sort of thing ‘future’ or ‘past’ can be attached to, since
it is not a content but a tensed sentence. The building up of
complexes like Findlay’s ‘(x past) future’ requires that tensing
be an operation of which the subjects are themselves tensed
sentences, and when we have got inside all other tensing to
the ‘kernel’ of the complex, its tense will have to be the present.

These considerations settle immediately the semantic cate-
gory to which such tense-forming operators must belong. They
must be expressions that form sentences from sentences, and so
must come out of the same box as the ‘not’ or ‘It is not the case
that’ of ordinary propositional logic, and the ‘Necessarily’ or
‘It is necessary that’ of ordinary modal logic. Findlay had
again put his finger on what was needed when he said that
a calculus of tenses should have emerged with the ‘modern
development of modal logics’. In fact, however, it was a new
look at an ancient development of modal logic which caused
the calculus to crystallize.

7. Time and truth in ancient and medieval logic. In 1949 P. T.
Geach made the following comment in a critical notice! of
Julius Weinberg’s Nicolaus of Autricourt: A Study in 14th Century
Thought: ‘Such expressions as ““at time #” are out of place in
expounding scholastic views of time and motion. For a scholas-
tic, “Socrates is sitting” is a complete proposition, enuntiabile,
which is sometimes true, sometimes false; nof an incomplete
expression requiring a further phrase like “at time #”’ to make
it into an assertion.” Today this has perhaps become a common-
place of logical history, but in 1949 it was quite widely in-
formative. It was certainly informative to myself; I had taken
it for granted that it was not only correct but also ‘traditional’
to think of propositions as incomplete, and not ready for ac-
curate logical treatment, until all time-references had been so
! In Mind, vol. 58, no. 30 (April 1949), pp. 238—45.
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filled in that we had something that was either unalterably
true or unalterably false. Geach’s remark sent me to the sources.
The ‘Socrates is sitting’ example is not only in the scholastics
but in Aristotle, who says that ‘statements and opinions’ vary
in their truth and falsehood with the times at which they are
made or held, just as concrete things have different qualities
at different times; though the cases are different, because the
changes in truth-value of statements and opinions are not
properly speaking changes in these statements and opinions
themselves, but reflexions of changes in the objects to which
they refer (a statement being true when what it says is so, and
ceasing to be true when that ceases to be so). This scemed to
me to throw a little light on Aristotle’s better-known opinion
that “There will be a sea-battle tomorrow’ might be (because
of the indeterminacy of the situation) ‘not yet’ definitely true
or definitely false. That things might change to being true or
false from not being definitely either, is certainly a more radical
view than that they might change from being true to being
false and vice versa, but it is not as far from this as it is from
the view that the passage of time is quite irrelevant to the
truth and falsehood of propositions. And in both theories
changes in respect of truth and falsehood are thought of as de-
manded by changes in the fact referred to—from a being so
to a not being so (or vice versa) in the simpler case, and from
a being indefinite to a being definite in the other.!

In 1949 there appeared? an article by Benson Mates on
‘Diodorean Implication’, later incorporated in his book on
Stoic Logic (1953). This included some material about the views
of Diodorus Chronos on the definition of the possible and the
necessary. Diodorus seems to have been an ancient Greek W. V.
Quine, who regarded the Aristotelian logic of possibility and
necessity with some scepticism, but offered nevertheless some
‘harmless’ senses that might be attached to modal words. The
possible, Diodorus suggested, might be defined as what either
is or will be true, the necessary as what both is and always will
be true, and the impossible as what both is and always will be

I Cf. A. N. Prior, “Three-valued Logic and Future Contingents’, Philosophical
Quarterly, Oct. 1953. I thought then that the logic of tensed propositions could be
three-valued and that of tenseless propositions two-valued.

2 In the Philosophical Review, vol. 58 (1949), pp. 234—42.



PRECURSORS OF TENSE-LOGIC 17

false (not that these are quite what Quine would offer). He had
an argument, to which we shall turn in a later chapter, pur-
porting to show that even on premisses which Aristotelians
might be expected to grant, what neither is nor will be true
cannot be. Mates, in attempting to formalize the thought of
Diodorus, made free use of expresssions like ‘p at time #* (Geach,
reviewing Stoic Logic later,” naturally did not miss this, and
amplified his remarks on Weinberg); I wondered if it could
be done some other way, and tried writing Fp for ‘It will be
that p’, by analogy with the usual modal Mp for ‘It could be
that p’. Apart from trying to fill in the gaps in the Diodorean
‘Master Argument’, I was intrigued by another problem.
Modern modal logic being full of dubia (e.g. does being possibly
possible imply being possible?), and presented in the form of
a number of alternative systems, one naturally wondered which
of these systems the Diodorean definitions would yield. De-
finitions alone, however, yield nothing at all; to get a logic of
the possible from its definition in terms of the future, one must
also have a logic of futurity. The construction, or at least the
adumbration, of a calculus of tenses could not wait much longer.

8. Symbolism and metaphysics. The symbolizing of ‘It will be that
¢’ in a similar way to the symbolizing of ‘It could be that p’
and ‘It is not the case that p’ could in itself have metaphysical,
or if you like anti-metaphysical, significance. I did not myself
draw much of this out of it until I had done a good deal of
‘calculating’, but it was there to be drawn. Findlay wrote his
‘Time’ essay when he was much influenced by Wittgenstein,
and Wittgenstein had already said in the Blue Book (dictated
1933—4): ‘It is the substantive “time’ which mystifies us. If we
look into the grammar of that word, we shall feel that it is
no less astounding that man should have conceived of a deity of
time than it would be to conceive of a deity of negation or dis-
junction.’? Nor is that the only substantive that troubles us here
by sending us to seek for a corresponding substance. ‘Event’ is
a trouble-maker too, as Broad saw, though he mistook both
the trouble and the remedy.

Broad’s difficulty about instantaneous ‘event-particles’ having

I In the Philosophical Review, vol. 64, no. 1 (Jan. 1955), pp. 143-5.
2 L. Wittgenstein, The Blue and Brown Books (Blackwells, 1958), p. 6.
824311 C
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an indefinitely long history was felt by G. E. Moore also. ‘An
event which was present, is past.” And ‘every event has, when
it is present, a characteristic which it does not possess at any
other time—a characteristic which is what we mean by saying
that at that time and no other it is present’. But against this
we may say ‘that no event possesses any characteristic at any
time except the time at which it is. ... It certainly can’t be,
as language suggests, that the same event is at all times, and
possesses at one a characteristic which it doesn’t possess at
others. That would assimilate an event to a thing which persists
and has at one time a quality which it hasn’t got at others.’
The time at which an event ‘is present, means the time at
which it is. How can an event have a characteristic at a time
at which it isn’t?’r Broad and Moore are making too much of
the transitory character of their ‘event-particles’; the difference
between events and ‘persisting things’ is more fundamental
than that; the real point, one might say, is not that events ‘are’
only momentarily, but that they don’t ‘be’ at all. ‘Is present’,
‘is past’, etc., are only quasi-predicates, and events only quasi-
subjects. ‘X’s starting to be ¥ is past’ just means ‘It has been
that X is starting to be 17, and the subject here is not ‘X’s
starting to be 7” but X. And in ‘It will always be that it has
been that X is starting to be 17, the subject is still only X; there
is just no need at all to think of another subject, X’s starting to
be 7, as momentarily doing something called ‘being present’
and then doing something else called ‘being past’ for much
longer; and no need to argue as to whether X’s starting to be
Y ‘is’ only at the moment when it does the thing called being
present, or also throughout the longer period when it does
the other thing. It is X which comes to have started to be %,
and it is of X that it comes to be always the case that it once
started to be 17; the other entities are superfluous, and we see
how to do without them, how to stop treating them as subjects,
when we see how to stop treating their temporal qualifications
(‘past’, etc.) as predicates, by rephrasings which replace them
with propositional prefixes (‘It has been that’, etc.) analogous
to negation.2

v The Commonplace Book of G. E. Moore (ed. C. Lewy; Allen & Unwin, 1962).
Notebook II (c. 1926), entry 8 (p. 97).
2 Cf., with this and with what follows, A. N. Prior, ‘Time after Time’, Mind,
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This move also puts to rest the Dunne-ish spectre of an in-
finity of time-series one within the other. Nothing is left of that
one except cases in which one propositional prefix governs
another, as in ‘It will be the case next year that it was the
case 53 years ago that I am being born’ (i.e. I will be 53 next
year). For this, no special or extraordinary ‘will be’ (no ‘will be’
from a new time-series) is required, but just the same old ‘will
be’ that we have in, say, ‘It will be the case next year that
I am in England’. I can ‘be in England’ and ‘be 53 at the same
time. (This is the truth, as regards time, behind Newton’s
“Times and spaces are, as it were, the places of themselves as
of all other things’.) Nor is the interior ‘having been’, in this
example, a special one. There is of course a difference between
plain having-been (having been alive for 53 years) and being
on the way to having been, just as there is a difference be-
tween sitting down and being about to sit down; but the sitting
down or the having-been that one is on the way to is just
ordinary sitting down or having-been, not a sitting down of
some peculiar sort or a having-been in some peculiar time-
series. In being 53 next year, i.e. in having then existed for
53 years, what I shall be doing is exactly what my older friends
have done already; not some quite different thing involving a
quite different time-series merely because it is governed by
a ‘shall be’.

Nor do we need still further time-series for recording ‘birth-
days of birthdays’, as when we say ‘Next year it will be three
years since I was fifty’. Once again we are just piling on prefixes
— It will be the case next year that (it was the case g years ago
that (it was the case 50 years ago that (I am being born))).’
And once again these prefixes are just the ordinary ones. It will
be 3 years since I became 50 in exactly the same sense as it
will be g years since Wilson became Prime Minister; these
things happened in the same year—not the election in ordinary
time and my birthday in super-time—and if we keep our syntax
straight, we will find no reason why this should not be so. The
formation-rules of the calculus of tenses are not only a prelude
to deduction but a stop to metaphysical superstition.

April 1958, pp. 2446, and Changes in Events and Changes in Things (University of
Kansas, 1962).
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THE SEARCH FOR THE DIODOREAN
MODAL SYSTEM

1. The tense-logical basis of Diodorean modal logic. THE rudimen-
tary tense-logic employed in my own first attempt to analyse
the ‘Master-argument’ of Diodorus! was closely geared to the
modal systems of von Wright’s Essay in Modal Logic, which had
appeared shortly before (in 1951), though my symbolism was
that of Lukasiewicz (N« for ‘Not o’; Caf for ‘If o then §’;
Kof for ‘Both « and B’; 4aB for ‘Either « or B’; Eaf for ‘If
and only if « then 8’; Mo for ‘Possibly «’; and La for ‘Neces-
sarily «’). Von Wright subjoined to propositional calculus (with
the rules of substitution and detachment) the definition of
‘Necessarily o’ (La) as ‘Not possibly not o’ (NVAMN«); the rule of
necessitation RL, that if « is any theorem so is Necessarily-«
(Fa —F Lo); the modal extensionality rule RE, that if it
is a theorem that « is equivalent to 8, it is a theorem that
‘Possibly o’ is equivalent to ‘Possibly 8’ (F Eaf —— F EMaMB);
and the axioms that if p is true it is possible (CpMp), and that
possibly either p or ¢ if and only if either possibly p or possibly
q (EMApgAMpMyg). These postulates sufficed for the system he
called M; for his system M’, equivalent to the Lewis system S4,
he added the axiom that what could be possible is possible
(CMMpMp); and for his system M”, equivalent to the stronger
Lewis system S5, he added the axiom that what could be im-
possible is impossible (CMNMpNMp).

All of von Wright’s postulates but the last (the S5 one) are
easily seen to be intuitively plausible if we define ‘Possibly &’
(Mo) as ‘Either it is or it will be the case that o’ (4oFo). For
example, if it is the case that p it either is or will be the case
that p (CpMp), and if it is or will be the case that it is or will
be the case that p, it is or will be the case that p (CMMpMp).
Moreover, his postulates are not only intuitively plausible but

t ‘Diodorean Modalities’, Philosophical Quarterly, July 1955, pp. 205-13.
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formally provable, if we adopt a ‘logic of futurity’ which is
exactly similar to his middle system M’ (equivalent to S4), with
F for his M, except for the absence of CpFp. This last (‘Whatever
is, will be’) is implausible, but is not needed to obtain CpMp,
since ‘If p then either p or it will be that p’ (CpApFp) follows
from the propositional calculus alone (CpApg). Von Wright’s
S5 axiom CMNMpNMp is not only intuitively implausible if
read as ‘If it is or will be that it neither is nor will be that p,
then it neither is nor will be that p’ (i.e. if it is or will be that
something will settle into permanent falsehood, it has already
done so0) ; it can also be in a manner shown formally to be wrong
by deducing from it the even more obviously implausible tense-
logical formula CFNFpNFp (‘If it will be that p will never be
the case, then p—right now—will never be the case’).

In order to keep the parallel with von Wright’s system
exact, a tense-prefix G, meaning ‘It will always be the case
that—’, was defined as NFN (‘It will never be the case that
not—"), just as ‘Necessarily’ (L) is defined as ‘Not possibly not’
(NMN). Using this, it was possible to formulate, for example,
the rule that if « is a theorem, so is ‘It will always be that o’.
It is not usual for grammarians to count ‘will always’ as a
special tense, though from a logical point of view it is certainly
out of the same box as ‘will sooner or later’ (‘will at some time’)
which is what the plain ‘will’ normally means; but whether it
be called a tense or not, it is an expression of central importance
in the logic of tensed sentences, and originally found its way
there through the modal analogy, and from Diodorus, who saw
that it had to be used in explicating the ‘necessity’ that would
correspond to his sense of ‘possible’.

The handful of postulates so far listed sufficed to show that
the Diodorean modal system is at least as strong as Lewis’s S4,
but does not contain his S5. It was noted, however, that every-
thing in S5 (including CMNMpNMp) would be tense-logically
plausible if the past as well as the future were brought into the
definition of M, i.e. if Ma were read ‘a either is or will be or has
been the case’. (The S5 law CMNMpNMp then amounts to ‘If
it is the case at some time that it is not the case ever that p,
then indeed it is not the case ever that p’.) The formal proof of
this, however, required a logic of pastness as well as of futurity,
and was not attempted in this article.
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2. A matrix for Diodorean modality. In the 1956 John Locke
Lectures on Time and Modality (largely prepared in 1955, and
published in 1957), the Diodorean concepts of possibility and
necessity were represented by an infinite matrix or truth-table,
in which 1 and o were used to represent truth and falsity at
a given instant, and the ‘values’ assigned to propositional
variables were not just 1 and o but all infinite sequences of
these. The sequence for ‘Not p’ (Np) was taken to have o
wherever that for p had 1, and 1 wherever it had o; and that for
‘p and ¢’ (Kpq) to have 1 at all points where both the p-sequence
and the g-sequence had 1, and elsewhere o. The sequence for
‘Possibly p* (Mp) was taken to have 1 at a given point so long
as the p-sequence had a 1 either there or further to the right,
and after that the Mp sequence was to have o’s (representing
the idea that ‘Possibly p’ is true so long as p itself either is or
will be so)—for example, if p’s sequence is

oroooror1ioo (and then all 0’s)
Mp’s is
rrrrrrrrrioo (and then all o%s).

The sequence for ‘Necessarily p’ (Lp) was to have 1 at a given
point if and only if p had a 1 from that point on, and elsewhere
Lp was to have o (representing the idea that ‘Necessarily p’
is not true until p is and always will be so). For example, with
the above p-sequence the Lp-sequence is o’s all through, and
with this for p

orooo1orrioor (and then all 1’s)

the Lp sequence is
0000000000001 (and then all 1’s).

A modal formula was taken to be ‘verified’ by the matrix if
and only if all assignments of sequences to its variables gave
the formula as a whole the sequence with 1’s throughout (this
sequence, that is to say, was ‘designated’).

This matrix can easily be shown to verify all theses of the
Lewis system S4, but not to verify all those of S5. In view of
the earlier examination of the Diodorean system, this was to
be expected. But the caution of the earlier article was thrown
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away in Time and Modality, and it was asserted there! that the
system verified by the ‘Diodorean’ matrix was precisely S4, i.e.
that the matrix was ‘characteristic’ for S4, verifying all its
theses and no others. At the time this assertion, though un-
proven, was not quite as rash as it would now appear to be.
The only important system that had then been proposed as
being possibly weaker than S5 and in any case stronger than
S4 was the one which W. T. Parry? had called S4.5, which
added to S4 the thesis CLMLpLp, “What is necessarily possibly
necessary is necessary’. In Diodorean terms this meant that
if it is and always will be that it either is or will be that it is
and always will be that p, then it now is and always will be
that p. This is complicated, but a little reflection makes it clear
that it could be falsified by any p which eventually will be
true for good, but has not yet quite reached that state. The
matrix did falsify S4.5 as well as S5. The assertion in Time and
Modality was wrong, all the same; and to see one of the points
at which it was wrong, a little more should be said about Parry’s

S4.5.

3. Modal systems between S4 and S5. In all the Lewis modal
systems, we may use complexes of L’s and M’s to construct
modal assertions of indefinite length, e.g. LMLLMLMp. But
in S4, owing to such theses as CLpLLp and CMMpMp, any one
of these can be shown to be equivalent to one or other of the
following seven, with the implications as shown:

/\

\ LMLp M~y

\Mlp/

Counting the negations of these as further ‘modalities’, this

gives 14 distinct modalities for S4. But if Parry’s S4.5 thesis

CLMLpLp is added, LMLp becomes equivalent (by this and

other laws) to Lp, and MLMp to Mp, reducing the number
! pp. 23; see also p. 121, n. I.

2 W. T. Parry, ‘Modalities in the Survey System of Strict Implication’, Fournal
of Symbolic Logic, vol. 4, no. 4 (Dec. 1949), p. 150.
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of distinct modalities at least to 10, namely the following 5
with their negations: Lp, MLp, LMp, p, and Mp. This would
also happen if we collapsed LMLp, not upwards to Lp, but down-
wards to MLp, and MLMp not downwards to Mp, but up-
wards to LMp; we would then have the following simple

scheme:
Lp Mp

N Mlp —— = LMp -

This collapsing will occur if we add to S4 the thesis CMLpLMLp,
which therefore cannot be in S4, the 14 modalities of that
system being known to be not further reducible. I noticed
early in 1957, however, that this thesis CMLpLMLp is one
which the Diodorean conception of modality will verify. This
fact is a little clearer with the shorter thesis CMLpLMp, from
which my one, given S4, is deducible. (This simplification is
due to Geach, in 1957.) In Diodorean terms, CMLpLMp means
that if it is or will be that it is and always will be that p, then
it is and always will be that it is or will be that p. This follows
easily from the tense-logical truth that if it will be that it will
always be that p, then it will always be that it will be that p,
CFGpGFp. The converse of this, it may be observed here, is
not the case; Gp means ‘it will always uninterruptedly be’ (‘it
will never not be’), and if p is something whose truth and false-
hood will always alternate, it will be true to say ‘It will always
be that it will be that p’ (GFp), but not to say ‘It will be that it
will always be’ (FGp), since p will never come to be uninter-
ruptedly true. Geach called the modal principle CMLpLMp the
‘quantifier shift’ law, because of its structural resemblance to
the law of predicate logic that if there is something that every-
thing ¢’s, then everything has something that it ¢’s (though
once again not vice versa—Everyone shaves someone’ doesn’t
imply that there is any one individual that everyone shaves).
Another proof that the Diodorean system is stronger than
S4 was discovered a little earlier in 1957 by E. J. Lemmon.
His counter-example was the formula ALCLpLqLCLqLp (‘Either
necessarily-p necessarily implies necessarily-g, or necessarily-g
necessarily implies necessarily-p’). It is not easy either to show
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mtuitively that this formula is Diodorean,! or to show that it
is not in S4. But it was early found equivalent? to another
counter-example discovered at the same period by Hintikka,
namely CKMpMgAMEpMgMEqMp,? and although this looks
complicated, its tense-logical plausibility is very easy to see
indeed. It follows, given the Diodorean definition of M, from
the tense-logical formula

CKFpFgAAFKpqFKpFaFKqFp,

i.e. if p is going to be true (Fp), and ¢ also (Fg), then one or other
of three alternatives must obtain: either (1) p and ¢ will be
true together (FKpq), or (2) p will be true and then ¢, i.e. it will
be that (p, and it will be that ¢), FKpFg, or (3) ¢ will be true
and then p (FKgFp). What the Hintikka formula itself says,
interpreted in the Diodorean way, is that if it is or will be that
p (Mp) and is or will be that ¢ (Myg), then either (i) it is or will
be that (p, and it is or will be that ¢), or (ii) it is or will be that
(¢, and it is or will be that p). When the alternatives embedded
in (i) and (ii) are fully sprcad out, they are found to cover
precisely the (1), (2), and (3) of the formula in F, together with
the cases we get when either or each of p and ¢ is present rather
than future.

The Lemmon formula ALCLHLgLCLgLp can be shown more
easily than the Hintikka one not to be in S4. Lemmon’s proof
depended on certain relations between S4 and the intuitionist
calculus of Heyting which were discovered by Goédel and
proved by McKinsey and Tarski.# Suppose we ‘translate’ in-
tuitionist formulae into modal ones as follows: Have all simple
propositional variables, and all intuitionist negation and im-
plication signs, immediately preceded by an L, and leave con-
junction and disjunction signs as they are. For example, such

I Such an intuitive proof is given in A. N, Prior’s ‘Diodorus and Modal Logic:
A Correction’, in the Philosophical Quarterly, July 1958, pp. 226—30. The conjecture
at the end of this article is, however, a false one.

2 A proof of the equivalence is given in A. N. Prior’s ‘K1, K2 and Related Modal
Systems’, Notre Dame Fournal of Formal Logic, vol. 5, no. 4 (Oct. 1964) pp. 299-304.
(Strictly, what Hintikka’s axiom is here proved equivalent to is Lemmon’s as
shortened by Geach.)

3 Hintikka gives a variant of this formula in his review of Time and Modality in
the Philosophical Review, vol. 67 (1958), pp. 401—4.

4 J. C. C. McKinsey and Alfred Tarski, ‘Some Theorems about the Sentential
Calculi of Lewis and Heyting’, Fournal of Symbolic Logic, vol. 13, no. 1 (Jan. 1948),
pp. I-15.
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a ‘translation’ of ANpNNp would be ALNLPLNLNLp, or (since
in the modal logic 4 = CN) CNLNLp)LNLNLp, which the
equivalence of M and NLN contracts to CMLpLMLp (my own
formula of the last paragraph but one). Again, such a ‘transla-
tion’ of the intuitionist ACpgCqp would be ALCLpLqLCLqLp—
Lemmon’s formula. The Gédel-Tarski-McKinsey theorem is
that an intuitionist formula is an intuitionist thesis if and only if
its modal ‘translation’ is a thesis of S4. In fact neither ANpNNp
nor ACpqCqp are intuitionistic theses, from which it follows
that neither my formula nor Lemmon’s is an S4 one. They are
also—Lemmon’s formula as it is, and mine when stated as an
alternation—excluded from S4 by a more general considera-
tion. In intuitionistic logic, nothing of the form ‘Either « or g’
is provable unless either the component « is provable on its
own, or B is. From this it follows (given the Godel-McKinsey—
Tarski theorem) that an alternation of modal formulae which
‘translates’ an intuitionist alternation, will not be in S4 unless
one of its alternants is. But neither LCLpLq nor LCLgLp is a
theorem of S4 (we can refute either by putting a logically true
formula for the antecedent and a logically false one for the con-
sequent; so not ALCLpLgLCLqLp).

The relation of the formulae ANpNNp and ACpqCqp to the
intuitionist calculus was being studied at this time by M. A. E.
Dummett. The result of adding the former to Heyting’s cal-
culus he called KC, and the result of adding the latter, LC.
He was able eventually to show that the full classical pro-
positional calculus contains LC but is not contained in it, and
that the same relation holds between LLC and KC, and between
KC and Heyting’s calculus.? This result gave an added interest
to the modal systems formed by adding CMLpLMp (equivalent
in S4 to the translation of the KC axiom ANpNNp) and
ALCLpLqLCLgLp (the translation of the LC axiom ACpqCqp)
respectively to S4. Dummett and Lemmon named the former
system S4.2 and the latter S4.3, and showed that they stood
between S4 and S5, thelatter above the former, exactlyas KGand
LCstand between Heyting’s calculus and classical 2-valued logic.2

! Michael Dummett, ‘A Propositional Calculus with Denumerable Matrix’,
Fournal of Symbolic Logic, vol. 24, no. 2 (June 1959), pp. 97-106. (Dummett had these
results in 1957.)

2 M. A. E. Dummett and E. J. Lemmon, ‘Modal Logics between S4 and S5’,
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Some minor results of this period were that, given S4,
Lemmon’s axiom for S4.3 can be replaced by the slightly
shorter ALCLpgLCLgp (Geach), and that W. T. Parry’s S4.5 is
not between S4 and S5 at all but equivalent to S5 (the Sg
formula CMLpLp is provable in it).

4. Kripke’s ‘branching time’ matrix for Sg, and Lemmon’s for S4.2.
In 1958, another contribution was made to the clearing of this
jungle. Saul A. Kripke independently communicated a proof
that the Diodorean system is not S4. His refuting formulae
were ALMpLMMNp (a variant of the ‘quantifier shift’ formula)
and Hintikka’s; and he also gave a matrix which was charac-
teristic for S4. For ‘values’ of the propositional variables, instead
of linear series of momentary truth-values, he took forking ones
or ‘trees’, and observed that the different branches could be
thought of as the different alternative futures that could issue
from each given point of time. That is, he proposed translating
the Lp of S4 not as ‘p is true now and will be throughout the
actual future’ but as ‘p is true now and will be throughout all
possible futures’, and its Mp not as ‘p either is true now or will be
at some point in the actual future’ but as ‘p is either true now
or will be true at some point in some possible future’. (This, he
pointed out, made S4 relevant to the discussion of indeter-
minism, which was the topic of some later chapters in Time and
Modality, and at which we shall later be looking again here.)
It is easy to see how this model can provide exceptions to
Hintikka’s S4.3 axiom CKMpMgAMEpMgMEqMp. For sup-
pose p to be true in some possible future only, and ¢ in some
other possible future only. We will then have both Mp and Mg
in their two futures, but neither now nor in any possible future
do we have p either accompanied or followed by ¢ (i.e. we do
not have MKpMyg), and neither now nor in any possible future
do we have ¢ either accompanied or followed by p (i.e. we do
not have MKqgMp).

Lemmon has produced a modification of Kripke’s model for
S4 which distinguishes S4.2 from S4.3. If we use a series of
momentary truth-values which indeed may fork, as in Kripke’s
S4 model, but in which all such divergings are followed by

Leitschrift fiir Mathematische Logik und Grundlagen der Mathematik, vol. 5 (1959),
PP. 250-64. Lemmon had the results here mentioned by the end of 1957.



28 SEARCH FOR THE DIODOREAN MODAL SYSTEM

later convergings, so that we-do have a single line in the end,
we can still construct the above counter-example to the Hin-
tikka axiom, but we can no longer construct counter-examples
to the S4.2 axiom CMLpLMp. We can think of this as represent-
ing a time-series in which there are alternative possible imme-
diate futures, but only one ultimate future. Some theologians,
for example, and some Marxists, write as if this is how things
are. It should be added, however, that there is a difficulty about
the use of Lemmon’s S4.2 model to represent this point of view.
A time-series that we could diagram as follows:

_._<>+

forks towards the past as well as towards the future, and if
there is really only one possible future after the fork, then what
that future is, which includes what will have been the case in the
future, can depend only on ‘possible pasts’—one would have
to say that once we’re past the fork there is no actual past but
only the two possible pasts. Some philosophers, indeed, have
accepted this consequence. Lukasiewicz, for example, once
wrote: ‘If, of the future, only that part is real today which is
causally determined by the present time; . .. then also, of the
past, only that part is real today which is still active today in
its effects. Facts whose effects are wholly exhausted, so that
even an omniscient mind could not infer them from facts
happening today, belong to the realm of possibility. We cannot
say of them that they were but only that they were possible.
And this is as well. In the life of each of us there occur grievous
times of suffering and even more grievous times of guilt. We
should be glad to wipe out these times not only from our
memories but from reality. Now we are at liberty to believe
that when all the consequences of those fatal times are ex-
hausted, even if this happened only affer our death, then they
too will be erased from the world of reality and pass over to the
domain of possibility.’r But in general, I suspect, people are
much less inclined to talk like this about the past than they

t Yukasiewicz, & Jagadnien Logiki i Filozofit (Problems of Logic and Philosophy) :
O Determinizmie, p. 126. My attention has been drawn to this passage, and it has
been translated, by P. T. Geach. It is also included in Storrs McCall’s forth-
coming collection Polish Logic (Clarendon Press), pp. 38-39.
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are to say that there is no actual future but only various possible
futures until we are past the dividing point. But if we don’t
thus say that the past (as opposed to the several possible pasts)
is just wiped out at the end of the day, we cannot say that it
will all be the same in a hundred years’ time, no matter what
happens in between; since one thing that will be different will
be what, by then, fas been the case. We shall, however, be in-
dicating a mitigation of this conclusion in Chapter VII, Sec-
tion 5.

5. Dummett’s Formula in D but not in S4.3, and its Presupposition of
Discreteness. To return to Kripke’s comments of 1958, he sug-
gested that a correct axiomatization of the Diodorean system,
which we may from now on call D, would be obtained by
adding the Hintikka axiom to S4. As this axiom expresses the
linearity of actual time perspicuously, this looked right. In fact,
however, it wasn’t, at leastif Dis taken to be the system for which
the Time and Modality matrix is characteristic. For Dummett dis-
covered in 1958 a formula which that matrix verified but which
could be shown not to be in S4.3 (i.e. the system given by
adding Kripke’s, Lemmon’s, or Hintikka’s axiom to S4).T This
formula was a long one, but was shortened by Geach to
CLCLCpLppCMLpp.

This is still not easy to interpret, but in 1961 I managed to
discern the drift of it, how it might be intuitively justified, and
why the Time and Modality matrix verified it.2

By ordinary modal logic the offending formula is equivalent
to CKMLPpLCNp MEKpMNpp. For

CLCLCpLppCMLpp
= CMLpCLCLCpLppp (by ECpCqrCqCpr)
= CMLpCLCNpNLCpLpp  (by ELCpqLCNgNp)
= CMLpCLCNpMEPNLpp  (by ENLCpgMEpNg)
= CMLpCLCNpMEpMNpp (by ENLpMNp)

= CKMLpLCNpMEpMNpp (by ECpCqrCKpgr)
Here the component KpMNp, if M« is defined with Diodorus

as AaFuo, is equivalent to KpFNp. For in ‘p and it either is or will

! Dummett and Lemmon, op. cit., pp. 263—4.
2 See A. N. Prior, ‘Tense Logic and the Continuity of Time’, Studia Logica,
vol. 13 (1962), pp. 133-48.
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be that not p’, the ‘is’ alternative is not a genuine one, since
‘p and it is the case that not p° would be self-contradictory.
If the long formula (thus modified) is false, there must be cases
in which its two antecedents (MLp and LCNpMEPFNp) are
true, and its consequent (p) false. Let us suppose we have such
a case, i.e. a p for which we have

(1) MLp,
(2) LCNpMEPFNp, and
(3) Np.
Since we have (1) MLp, i.e. ALpFLp, then either

(1.1) Lp already, in which case p already; but this is excluded
by (3);
or (all that’s left)

(1.2) not Lp yet, but sooner or later Lp (i.e. p for ever);
therefore sooner or later p-false for the last time.

Consider now what happens when we reach the moment when
p is false for the last time. At this moment we will have Np, and
therefore by (2) we will have MEKpFNp, i.e. ‘it (is or) will be
the case that p is true and then false’; so this isn’¢ the last moment
of p’s falsehood. Case (1.2) therefore is as unrealizable as case
(1.1), and therefore the combination of (1), (2), and (3) is im-
possible, and the Dummett formula is a law.

In this argument, however, a dubious step is taken under
(1.2). For if time is dense, i.e. if between any distinct moments
of time there is an intervening moment, p could be false for
a while, and then true for ever, without there being any last
moment of p’s falsehood. For there may be a definite first
moment of p’s permanent truth, and p be false up to then, in
such a way that however close any moment of p’s falsehood
may be to the first moment of its permanent truth, we can
always find a still closer moment at which it is not yet finally
true. The Dummett formula is verified by the Time and Modality
matrix simply because this possibility is not allowed for there,
the ‘truth-value histories’ of propositions being represented in
the matrix by discrete sequences of momentary truth-values.
With this feature discarded, it was possible to re-open the
question as to whether S4.3 suffices (as both Kripke and Hin-
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tikka had in effect said that it did) for the logic of that ‘possi-
bility’ which is just presentness-or-futurity, and that ‘necessity’
which is just presentness-and-permanent-futurity.

That S4.3 does so suffice, and that S4.3 plus the Dummett
formula suffice for the system characterized by the discrete
matrix, were shown, by different methods, by Kripke in 1963
and by Bull in 1964.* The problem of axiomatizing Diodorean
modal logic was thereby solved, and in spite of many false
moves, a great deal learnt about both time and modality on
the way.

We can now for the moment drop modality, and consider
what was happening in the meantime to tense-logic itself.

I R. A. Bull, ‘An Algebraic Study of Diodorean Modal Systems’, Journal of
Symbolic Logic, vol. 30, no. 1 (March 1965), pp. 58-64.
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THE TOPOLOGY OF TIME

1. Analysis of the Master-argument of Diodorus. DIODOREAN
modality is defined in terms of the future only, but the Diodorean
defence of it, the ‘Master Argument’, required also some re-
ference to the past. As recorded by ancient writers, the argu-
ment is that the following three propositions cannot all be true:

1. Every true proposition concerning the past is necessary.
2. The impossible does not follow from the possible.
3. Something that neither is nor will be is possible.

But the first two are generally admitted; therefore we must
deny the third, and admit that whatever neither is nor will be
the case is not possible, i.e. that the possible is simply what
either is or will be true. To get them into symbolic form, we
introduce the following past-tense counterparts of Fo and Ga:

Pa for ‘It has been the case that o’
Hu for ‘It has always been the case that o’.

The first two propositions in the above allegedly inconsistent
triad may be re-worded as follows:

1. Whatever has been the case cannot now not have been
the case (CPpNMMNPp).

2. If p necessarily implies ¢, then if ¢ is not possible, p is not
possible (CLCpgCNMgNMp).

And the denial of the third, which is what Diodorus is out to
prove from these two, may be represented as follows:

3’. If anything both is not true and will not be true, it is not
possible (CKNpNFpNMp).

There are clearly some unstated premisses in this proof, and
in the second part of my first paper on Diodorus I tried to
find reasonably plausible additions which would make the
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argument valid. Such premisses cannot, of course, include the
Diodorean definition of the possible as that which is or will be
true; this would give 3" without any further assistance, but it
would hardly be convincing, since it is precisely his rather
bizarre definition of the possible that the argument seems de-
signed to defend. And his passage from 1 and 2 to g’ apparently
was convincing to the ancients, since the Stoic Chrysippus was
driven by it (coupled with his own distaste for g') to deny 2,
and Cleanthes (who had the same distaste) to deny 1.

The additional premisses which I suggested were the follow-
ing two:

4. From a thing’s being the case it necessarily follows that
it has always been going to be the case (LCpHFp), or at
all events has never-been never-going-to-be the case
(LCpNPNFp, the preceding expanded by Df. H);

and

5. Of whatever is and always will be false (i.e. what neither
is nor ever will be true), it has already been the case that
it will always be false (CKNpNFpPNFp),

for since it is now false and will always be so hereafter, it was
the case at least at the moment just gone that it would be always
false thereafter. Given these premisses, the argument does in-
deed take us to the Diodorean conclusion. Schematically, we
have

KENpNFp — PNFp (by 5)
— NMNPNFyp (by 1)
— NMp (by 4 and CLC)NPNFpCNMNPNFpNMp,
i.e. 2 g/NPNFp).

Whether the premisses 4 and 5 not only are plausible, and
yield the conclusion, but can be found in ancient writers, is
a more difficult question to which O. Becker has given some
attention since this article appeared.! It is quite clear that 4 at
least is enunciated and discussed both in Aristotle’s De Inter-
pretatione, ch. g9, and in Cicero’s De Fato. Cicero asks, Potest . . .

I O. Becker, ‘Zur Rekonstruktion des “Kyrieuon Logos” des Diodoros Kronos’,
in Erkenntnis und Verantwortung (Festschrift fur Theodor Litt, Diisseldorf, 1961),
Pp. 250-63.

824311 D
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quicquam esse, quod non verum fuerit futurum esse? (‘Can that be, of
which it was not true that it was going to be?’). Of proposition 5,
more will have to be said later.

2. Some early postulates for past and future. The logic of the past,
and of the past and future together, was treated more systema-
tically than in ‘Diodoran Modalities’, in an address on ‘The
Syntax of Time Distinctions’ which I read in 1954, and which
was published in 1958.! There was also, in the later paper, a
streamlining of the axiomatization already done, made possible
by Sobocinski’s demonstration in 1953 of the equivalence of
von Wright’s weakest modal system M to the system T of R.
Feys, which takes L as undefined, defines M as NLJN, and adds
to propositional calculus only the one new rule RL(Fa — FLa),
and the axioms ‘If necessarily p then p’ (CLpp) and ‘If p neces-
sarily implies ¢, then if p is necessary so is ¢’ (CLCpqCLpLq).2
This suggested re-axiomatizing the system of ‘Diodoran
Modalities’ by taking G (‘It will always be the case that’) as
undefined, defining ' as NGN (‘It will be true that’ = ‘It will
not always be false that’) and adding to propositional calculus
the one rule RG (Fa — FGa) and the one axiom ‘If p will always
imply g, thenifp will always be the case, so will ¢ (CGCpqCGpGy).
Sobocinski’s proofs of T from M were easily adapted to the
proof of the earlier tense-logical postulates from these; but it
was obvious that neither set was anything like complete for the
field.

In the ‘logic of futurity’ alone, although CGpp (‘What will
always be, already is’) and CpFp (‘What is, will be’) are counter-
intuitive, their syllogistic product CGpFp (“What will always be,
will be’) seems plausible enough, and so do certain special cases
of CpFp, namely CFpFFp (‘If it will be that p, it will be—in
between—that it will be’) and CNFpFNFp (‘If it will never be
that p, then it will be that it will never be that ). These are of
course the converses of the Sg4-like thesis CFFpFp and the un-
desirable Ss-like one CFNFpNFp respectively. In the absence
of CpFp, the pair CGpFp and CFpFFp were added to the postu-

! In Franciscan Studies, 1958, pp. 105-20. (‘Diodoran Modalities’ appeared in
1955, but was written by early 1954.)
2 B. Sobociniski, ‘Note on a Modal System of Feys-von Wright’, Fournal of Com-

puting Systems, July 1953.
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lates mentioned above as further axioms, and CNFpFNFp
proved from them.

To this basis for the ‘logic of futurity’ a series of analogous
postulates were added to give the logic of pastness, together
with two special axioms involving both tenses together, namely
CpGPp (“What is the case will-always have-been the case’) and
CpHFp (“‘When anything is the case, it has always been the case
that it will be the case’). The first of these ‘mixing principles’
I had found in Ockham’s Tractatus de Praedestinatione, the re-
printing of which by the Franciscan Institute in 1945 had
helped to make people aware in that decade of some of the
scholastic views on logic and time. Ockham says in this work:
St haec propositio sit modo vera: Haec res est, quacumque re demonstrata,
semper postea erit haec vera: Haec res fuit (‘If this proposition, This
thing is, be once true, whatever be the object pointed to, then
for ever after will this be true: This thing was’).® The other
‘mixing principle’ CpHFp was proposition 4 in my reconstruc-
tion of the Master Argument. It is derivable from Ockham’s
principle, and Ockham’s from it, by systematically replacing
future-tense symbols (G and F) by the appropriate past ones
(H and P respectively), and vice versa. It is observed in ‘The
Syntax’ that a rule permitting us to do this with any thesis
will cut the axioms by half. Hamblin, using such a rule in 1958,
called it a ‘mirror-image rule’.

Summing up, the system of this paper adds to propositional
calculus the definition of F' as NGN and P as NHN, the rule
RG toinfer FGa from Fa, the mirror-image rule, and the follow-
ing axioms:

A1, CGCpeCGpGq Ag. CFFpFp
A2. CGpFp A4. CFpFFp
As. CpGPp

The use of Ag and A4 with G undefined is a little inelegant,
since these amount by definition to CNGNNGNpNGNp and its
converse; the equivalent CGpGGp and CGGpGp would have
been better. But these postulates, and slight variations on them,
have remained part of the basis of tense-logic in most subsequent
formalizations, both my own and other people’s. It is now
known that they are all independent, and that only one

t Franciscan Institute edition, p. 4.
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addition is needed to make them complete for an infinite, dense
and linear time-series. That they were incomplete was already
noted in this paper, it being clear even then that something
expressing linearity was needed to prove the S5law CMNMpNMp
in the tense-logical sense in which it holds, i.e. with M« short
for AAaFaPo (‘p at some time’).

Findlay’s initial impetus was reflected in the 1954 paper by
a proof from the above postulates of his law CAApPpFpFPp,
‘Whatever is or has been or will be the case, will have been
the case’. There is no point in reproducing this proof here, but
some deductions may nevertheless be made from the above
postulates simply to bring out the structure of the system a
little. In the first place, it is clear that RG (to infer FGa from
Fo) and A1 (CGCpgCGpGg) will together enable us to pass from
any proven implication FCof, to the implication FCGaGB (we
go from FCoB to FGCof by RG, and from this to FCGaGB by
substitution in A1, and detachment). This derived rule (to
infer FCGaGPB from FCof) may be called RGC, and can be
used to prove others like it. In particular, we have

T1. CGCpgGCNgNp (CCpqeCNgNp, RGC)
T2. CGCNgNpCGNgGNp (A1 p/Ng, g/ Np).
Tg. CCGNgGNpCNGNpNGNg (CCpgCNgNp, subst.)
T4. CGCpgCNGNpNGNg (T1, T2, Tg, syll.)
Ts. CGCpgCFpFg (T4, Df. F).

This, with RG, gives us the derived rule to infer FCFaFB from
FCoB, which we may call RFC. From these results we can
further get, by using the mirror-image rule, the rules RHC
and RPC, to infer FCHaHB and FCPoPB from FCop. From these
(given that Eof is just the conjunction of Caff and CBx) we can
obtain analogous laws about logical equivalence, i.e. that from
FE«f we may infer FEGaGB, FEFaFB, FEHoHB, and FEP«PB
(we could call these rules RGE, RFE, etc.). With all these in
our hands, we can carry out such further proofs as the follow-
ing:

T6. EGpGNNp (EpNNp, RGE)
T7. EGNNpNNGNNp  (EpNNp, subst.)
T8. EGPNNGNNp (T6, T, E-sylL.)

Tg. EGPNFNp (T8, DE. F).
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Tg means that even though G is not defined as NFN in this
system (but rather F as NGN), it is still logically equivalent
to it. Similarly A and NPN. We also have

Tit. ENNGNoGNp  (ENNpp, subst.)
Tra. ENGPNGNNp  (T6, CEpgENpNg)
T13. ENFpGNp (T11, DE. F)
Tr14. ENGpFNp (T12, DE. F).

Similarly, NP is logically equivalent to HN, and NH to PN.
Further, we have

T15. EGCpgGNEKPNg (ECpgNEKpNg, RGE)
T16. EGNpNFp (T13, CEpgEqp)
Ti17. EGNEpNgNFEpNg (T16, subst.)

T18. EGCpgNFEKpNg (T15, T16, E-syll.),

i.e. it will always be the case that p implies ¢, if and only if it will
never be the case that p is true together with not-¢. In none of
these proofs, it should be noticed, has any axiom been used
but A1 (and its mirror image), and these laws and rules for G
and F on the one hand, and for H and P on the other, closely
parallel laws and rules for L and A that are analogously
provable in the modal system T (= von Wright’s M).

Another theorem, using the same very restricted basis, which
we will sometimes find useful later, is CKGpFgFKpq, ‘If p will
always be true, and ¢ will be true sooner or later, then p-and-¢q
will be true sooner or later’, and its image CKHpPqPKpq.
These correspond to the modal thesis, known to Aristotle, that
if p is bound to be true and ¢ could be, the conjunction of p and ¢
could be, CKLpMgMKpg.* We prove it thus:

T1g9. CGpCGCpqGq (A1, Comm)

T20. CGpCNGgNGCpq (T19, CCpCarCHCNrNg)
Ta21. CGpCNGNgNGCpNg (T20, g/Ng)

T22. ENGCpgFKpNg (T18, CEpNgENpq)
T23. ENGCpNgFKpq (T22, NNp = p)

T24. CGpCFgFKpq (T21, Df. F, T23)
Te25. CKGpFgFKpq (T24, p.c.)

T Strictly speaking Aristotle uses the allied form CKMgNMpMKgNp, i.e. if ¢
could be true though p is bound to be false, we could have the conjunction of g-true
and p-false. (An. Pr. 34 10-11.)
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It should also be noted that Ag, CpGPp, and its mirror image
CpHFp, may be replaced by CFHpp and CPGpp, since

FCpGPp = FCNpGPNp (each from the other by p/Np and if
necessary NNp = p)

FCNGPNpp (by ECNpgCNgp)

FCNGNNPNpp (by NNp = p)

FCFHpp (by F = NGN, H = NPN).

FCpHFp = HCPGpp similarly.

o

3. Corresponding postulates in the logic of the B series. “The Syntax
of Time Distinctions’ also contains a systematic correlation of
the logic of what McTaggart called the A series (the address’s
main topic) with that of what he called the B series. In the
B-series logic, the propositions of the above system are treated
as predicates expressing properties of dates, represented by the
name-variables x, 9, z, etc., px being read as ‘p at &’, and the
form lxy is introduced for ‘x is a later date than y»’. An arbitrary
date z being used to represent the time of utterance, Fp is
equated with ZxKlxzpx (‘For some x, x is later than z, and p
at x°, i.e. ‘p at some date later than the date of utterance’),
Pp with ZxKlzxpx (i.e. ‘p at some date which the date of utterance
is later than’), Gp as IIxClxzpx (‘For all x, if x is later than g,
then p at #’, i.e. ‘p at all dates later than the date of utterance’)
and Hp as IIxClzxpx. Given these B-series ‘definitions’ of the
A-series operators, the rule RG, the axioms Ar and Ag, and
their mirror images, follow by ordinary quantification theory
(proof is given, in the paper, for A5 only, but is simple enough
for the others). The other postulates are said to be obtainable
by putting various conditions on the relation /; Ag (CFFpFp),
in particular, to require the transitivity of /; A2 (CGpFp), ‘the
law Zxlxz, asserting that there is a date later than any given
date’; and A4 (CEpFFY), ‘the law ClxzZyKlixylyz, asserting that
between any two dates there is an intermediate date’. The law
CMNMpNMp (with Ma for AAdaFaPa) is shown to require the
law of trichotomy AAIxylxylyz, ‘Either the date x is identical
with the date y or it is later than y or it is earlier’. Asymmetry,
ClxyNlyx, is also laid down for ‘later than’—reasonably enough
—but no law in the tensed system is said or shown to depend
on it; and today it seems clear that no law does depend on it.
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These are already in principle independence proofs of Ag,
A2, A4, and CMINMpNMp, since each will disappear, and the
rest be left, if we remove the condition on [ which corresponds
to it, and the correspondences bring out the special features of
time which each axiom expresses—features which in some
cases might well be questioned. (Independence proofs for A1
and Aj, which express no such special features, are more
elusive, but were found by Hacking and Berg in 1965.) Non-
transitive temporal succession is perhaps hard to image, but
C. L. Hamblin has recently (1965) suggested one such possi-
bility. Suppose time is circular, but as it were changes its sign
half-way round. In a cycle taking 3 ‘aeons’, say, to complete,
perhaps it will be the case one aecon hence that it will be the
case one aeon later that p, but that will bring us to a point
which is not itself later but one ‘aeon’ earlier than now, so that
it is not any interval ‘hence’, but one aeon ago; i.e. although
we have FFp here, we do not have Fp but Pp. And only Ag
(CFFpFp) would fail in such a time-scheme.

The correlation of the converse axiom 4, CFpFFp, with time’s
density seems obvious; if time were discrete, then it could be
that something will be the case for the last time in the moment
that is just to come; there will then be no moment at which it
will be the case that it will be the case (the two ‘wills’ take us
to at least fwo moments hence, and by that time, ex Aypothest,
p is true no more). It should be added, however, that if ‘later
than’ were reflexive, i.e. if every date were later than itself, /zz,
the law ClxzZyKixylyz would be trivially verifiable (by putting
z for our ») even if time were not dense. It would still imply the
B-series version of CFpFFp, but now as a special case of CpFp,
which reflexivity gives very easily. We get reflexivity, of course,
if we suppose time to be circular, but adopt, not the convention
of the previous paragraph, but the simpler convention that any
point we reach by going round in one direction is future (later
than now) and any point from which we are reached by going
round in that same direction is past (earlier than now). Every
point than automatically becomes both later than and earlier
than itself, and whatever is true will be true (CpFp), namely
on the next time round. Also, even if time is atomic, ‘it will
be that p’ will always imply ‘it will be that it will be that p’
if time is thus circular; for even if p ceases to be true just after
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the next moment, it will start again when we are far enough
round.

In correlating A2, CGpFp, with time’s forward infinity
(IIzZxlxz), we need to remember that Gp is still equivalent to
NFNp, even ifit is no longer that by definition. That is, whether
we take F or G as primitive, the truth-conditions of Fp are that
it is true if and only if p is true at some subsequent moment,
and false otherwise, and of Gp, that it is false if and only if p
is false at some subsequent moment, otherwise true. If there is
an end of time, then az that end, when there are 7o subsequent
moments, Gp (= ‘it will not be the case that not p’) is vacuously
true (nothing ‘will be’ the case then) and Fp (= ‘it will be that
p’) false. This G is in fact like the Boolean version of the Aristo-
telian form ‘Every X is a 17, which (since it is equivalent to
‘Nothing is at once an X and not a 1”) is automatically true
if nothing is an X. It is easier, all the same, to see that if time
has an end we do not always have, and in particular do not
have at the end of time, the law CNFpFNp (‘If it won’t be that p,
it will be that not p’); and if the present use of G is at this
point a little counter-intuitive, the intuitive Gp (for which Gp as
well as Fp is false at the end of time, so that Gp can even then
imply Fp) can easily be defined in terms of the present one
as KGpFp (cf. the definition of a strong ‘Every X is a 1” as the
Boolean weak one with ‘and something is an X”).

These considerations apply, mutatis mutandis, to the past. If
time had a beginning, the mirror image of A2, i.e. CHpPp,
would have to go; and if time had a beginning but not an end,
or vice versa, the mirror-image rule itself would have to go, since
we would have one of this pair of mirror images but not the other.

It may be added here that the proof of Findlay’s law depends
on axiom 2, and that if time has an end, ‘It will have been that
¢’ is not implied by p itself, by ‘It has been that p’, or even by
‘It will be that p°’. For maybe it will be that p only at time’s
last moment, and that is too late for it later to have been that p.
This is another bit of tense-logic that McTaggart knew about,
and summed up in his own way (with its mirror image) by
observing that ‘if the time-series has a first term, that term
will never be future’ (‘has never been’ would have been better),
‘and if it has a last term, that term will never be past’.!

1 The Nature of Existence, ch. xxxiii, note to § 329.
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The proof in ‘The Syntax of Time Distinctions’ that non-
linear time, i.e. time for which we do not have the law of tricho-
tomy AAIxylxylyx, would deprive us of CMNMpNMp, is a little
sketchy and unsure. It is more obvious that non-linearity would
deprive us of the law CKFpFqAAFKpqFKpFgFKqFp mentioned
in the last chapter, and this was used as an axiom to express
linearity in some later postulate sets. The ‘forking’ indeter-
ministic time-series used by Kripke in his model for S4 would be
non-linear; the counter-example used in the 1954 address was
the time-series of relativity theory. ‘Relativity theory distin-
guishes between an absolute and a relative sense of “later”, and
if lxy means “x is absolutely later than »”, the law of asymmetry
holds (no time is at once absolutely earlier and absolutely later
than the same time) but the law of trichotomy does not (time
x may be neither absolutely earlier nor absolutely later than
time y without being identical with time y); whereas if /xy only
means “x is later than y from some point of view”, the reverse is
the case.’

These correlations of the ‘PF calculus’ with an ‘/-calculus’
were suggested by the Russellian method of eliminating tenses,
but they were not intended to serve the same end, and a caution
is given in the paper against treating the arbitrary date z of the
[-calculus as a serious explication of the ‘now’ which is implicit
in the formulae of the other. The interpretation of the latter
within the former is, indeed, ‘a device of considerable metalogical
utility’; and it might have been added that as applied to theorems
it is harmless, since /-theorems are formulae which hold of any
date z, and PF-theorems are formulae which are now and always
have been and always will be true. But ‘“now” is not the name
of a date (it has the same meaning whenever it is used, but does
not refer to the same date whenever it is used)’. Metaphysically,
a translation the other way round would be desirable. ‘How
this could be achieved in detail has yet to be investigated, but
as a first step we may point out that ““The date of p’s occurrence
is later than the date of ¢’s occurrence’ seems to be equivalent
to “It either is or has been or will be the case that it both
is the case that p and is not but has been the case that ¢”
(AAKpKNqPgPEpKNgPgFKpK NgPg).” The negative part of this
is perhaps not necessary; without it, the formula is a variation
on McTaggart’s definition of ‘earlier’.
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4. U-calculi and modal logics. The ‘metalogical utility’ of associat-
ing tense-logical systems with systems developed within pre-
dicate logic and the theory of ordering relations is in fact not
only ‘considerable’ but enormous, and something like it (the
details vary) is now standard procedure in handling questions
of independence and completeness not only in tense-logic, but
also, even especially, in modal logic. In some notes made in
1956, C. A. Meredith related modal logic to what he called
the ‘property calculus’ in the following way: Suppose we use
a, b, ¢, etc., as name-variables, and U as a constant 2-place
predicate. What the sentence-form Uab means does not matter.
It was later suggested by Geach that we might take a, b, c,
etc., to name worlds, and Uab to mean that world 5 is ‘accessible’
from world @; but again, what ‘accessibility’ is supposed to
mean does not matter. We can treat the sentences of modal
logic as if they expressed properties of these objects, i.e. we can
use them as predicates in the forms pa, pb, ga, ¢b, etc. On
Geach’s interpretation, we can take the specimen form pa to
mean that a is a world in which it is true that p. Complex modal
sentences express complex properties which are related to com-
plex sentences of the property calculus as follows:

(Mp)a = N(pa)
(Cpg)a = C(pa)(ga)

(where the N and the C on the left form complex properties, and
those on the right form complex propositions).
And

(Lp)a = ITbCUabpb
(Mp)a = ZbKUabpb

(where ITh means ‘for all »” and Zb means ‘For some ’); i.e.
using Geach’s interpretation, ‘p is necessarily true in world o’
means ‘p is true in all worlds accessible from a’ (or following
the formula more closely, ‘For all b, if Uab, pb’) and ‘p is possibly
true in &’ means ‘p is true in some world accessible from «’
(‘For some b, Uab and pb’). A modal proposition is a theorem
if and only if it is provably true in any arbitrarily chosen world.
Different modal systems arise if different conditions are put
upon the relation U. If reflexivity alone is imposed, i.e. if our
only special axiom for U is Uaa, we obtain von Wright’s system
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M, or the equivalent system T of Feys. (CLCpgCLpLg)a and the
rule to infer F(La)a from H(o)a follow, given ordinary quantifica-
tion theory, from the definitions alone (cf. the position of the
rule RG and the axiom CGCpgCGpGq in the ‘l-calculus’). For
the axiom CLpp, we expand (CLpp)a first to C(Lp)apa, and then to

CITbCUabpbpa,
which is provable as follows:
C (1) IIBCUabpb

K (2) CUaapa (1, CITbdbéa)
K (3) Uaa (Axiom)
(4) pa (2, 3).

(Here we assume the antecedent of the theorem and prove, bit
by bit, a conjunction of which the desired consequent is the
last member.)! If we add further that U is transitive, i.e. if
we add the further special axiom CUabCUbcUac, we obtain S4.
The S4 axiom CLpLLp, applied as a predicate to a, gives a
proposition which expands first to C(Lp)a(LLp)a, and then to
CIIbCUabpbIIcCUac(Lp)c (avoiding unnecessary identifications
of variables), and then to

CIToCUabpbIIcCUaclldCUcdpd.

Since consequent-quantifiers binding variables not in the ante-
cedent can be brought to the beginning of an implicational
formula, this in turn yields

HeITdCITbCUabpbCUacCUcdpd,
which is provable as follows:

IIcITdC (1) ITBCUabpb
C (2) Uac
C(3) Ucd
K (4) Uad (2, 3, CUacCUcdUad)
K (5) CUadpd (1, CITbpbdd)
(6) pd (45 5)-

Make the further addition of symmetry for U, i.e. add also
CUabUba, and we obtain S5. In Diodorean modal logic, the

! For a further account of ‘suppositional proofs’ of this kind see A. N. Prior,
Formal Logic, 2nd. ed. (Oxford, 1962), App. II, second part.
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‘worlds’ are clearly instantaneous states of the world, and Uab
means that 4 is either identical with a or one of its temporal
successors, and we have to consider what conditions on U
are appropriate to this interpretation. In my examination in
1961 of the apparently Diodorean Dummett formula

CLCLCPLppCMLpp,

I found we could only derive this, as applied to an object
in a Meredith-style ‘property calculus’, by assuming for U an
inductive principle which, along with other assumptions, made the
time-series appear a discrete one. The principle was constructed
as follows: NUba, which means that a neither is identical with
b nor succeeds it, amounts to saying that a precedes 4. And

KNUbalIcCNUbcUca,

i.e. ‘a precedes b, and whatever precedes b either is identical
with @ or precedes it’, amounts (given other assumptions) to
saying that a immediately precedes b. If we abridge this to ZYab,
the inductive principle is

C(ITbCHbITCYcbde) (ChalldCUdagd),

i.e. if it is the case with every b that if ¢ of b then ¢ of whatever
immediately precedes it, then for any a, if ¢ of a then ¢ of all
its predecessors.!

There are connexions between this technique and on the
one hand the analogies between modal systems and topo-
logical algebras worked out by Tarski and McKinsey, and on
the other hand the semantical treatments of modal logic de-
vised by Hintikka, Kanger, and Kripke? (some resemblances
between the correlations made in “The Syntax of Time-Distinc-
tions’ and his own later work have been drawn out by Kanger) ;3
and the methods have perhaps been given their widest generali-
zations in recent work by Dana Scott and E. J. Lemmon on the
‘algebraic’ approach to modal semantics.+

! The proof of the Dummett formula from this and the other assumptions is in
‘Tense-Logic and the Continuity of Time’ (Studia Logica, vol. 13).

2 See, especially, Kripke’s paper on ‘Semantical Considerations on Modal
Logic’, Acta Philosophica Fennica, Fasc. 16 (1963), pp. 83-96.

3 Stig Kanger, review of ‘The Syntax of Time-Distinctions’, Fournal of Symbolic
Logic, vol. 27 (1962), p. 114.

4 See, e.g. E. J. Lemmon’s ‘Algebraic Semantics for Modal Logics’, Fournal of
Symbolic Logic, vol. 31 (1966), pp. 46-65 and 191-218; and a forthcoming book,
Intensional Logics, by E. J. Lemmon and Dana Scott.
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Most of these developments are beyond the scope of the
present work, but one or two problems which arise may be
mentioned. The ‘U-calculus’ clearly contains many formulae
which cannot be put in the form («)a, where « is a formula of
tense-logic or of modal logic. The basic conditions which may
be put upon the relation U, for example—Uaa, (reflexivity),
CUabCUbcUac (transitivity) and so forth—are in general not of
this form. And it is not in general necessary that such condi-
tions should entail propositions of this form, i.e. should be
‘reflected’ in a modal logic or tense-logic, and one might ex-
pect some of them not to. It seems in fact that irreflexivity
(NUaa) and asymmetry (CUabNUba), among others, are not
so reflected. And there is as yet no systematic way of sorting out
conditions on U which are thus reflected and ones which are
not. It is also often a tricky matter to determine which con-
ditions on U are so tied to particular modal or tense-logical
theses that the modal or tense-logical system containing them
is ‘complete’ for the type or ordering in question, though the
techniques of Scott and Lemmon have greatly facilitated the
solution of problems of this sort.

From the point of view of such investigations, a tense-logic
is best considered as a species of modal logic with two primitive
operators instead of one; though normal tense-logics are not
‘modal’ in the sense of containing FCOpp or FCpOp for the
operators in question. There are, however, weakened modal
logics, not containing these theses, which have been studied
for their purely formal interest,! and some of these may be
equated with rather weak tense-logics.

5. Hamblin’s 15-tenses theorem and its basis. To return now to the
consequences that may be drawn from particular tense-logical
postulates, an intriguing metatheorem was discovered in 1958
by Charles Hamblin in Sydney. This was a counterpart of the
theorem that there are only five non-equivalent affirmative
modalities in S4.9; it is to the effect that if we consider any
sequence (including the null-sequence) of symbols drawn from
G, H, F, and P as a ‘tense’, any possible ‘tense’ (in this sense)

I See, e.g., Ivo Thomas, “Ten Modal Models’, Fournal of Symbolic Logic, vol. 2g,
no. 3 (Sept. 1965), pp. 125-8. Thomas’s work follows more directly on Meredith’s
than some of the other items cited.
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is equivalent (given certain plausible postulates) to one or
other of a group of 15, between which the implication-relations
are as follows:

Nl oS

7/
Gp—FGp— GFp —=Fp

(The dotted implications were not noticed by Hamblin until
1965.) It is interesting to follow these out intuitively. GHp, ‘It
will always be that it has always been that p’ is clearly true if
and only if p is omnitemporal, i.e. if it is and always has been
and always will be that p; and the same is true of its mirror
image HGp. GHp implies FHp, since quite generally G implies
F. FHp, ‘It will be that it has always been that p’, is true only
if it is already the case that p has always been true, i.e. FHp
implies Hp, though not vice versa. Similarly, if it is true now that
it has always been that p, it has been true before that it has
always been that p, CHpPHp, though again not vice versa. These
three cases might be diagrammed as follows, with the vertical
line representing the present moment, and the covering strip
the times at which p is said to be true:

FHp 1 -

Hp ——————— -

PHp >
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If ithasbeen thatithasalways been, PHp, thenit has always been
that it has been, HPp, though not vice versa; HPp might be true
and PHp false if phas alwaysbeen true on and off, but never uninter-
ruptedly (cf. the discussion of MLp and LMp in the preceding
chapter). If it has always been that p has been, then p has been,
CHPpPp. If p has been so (and also if it is), it will-always have-
been-so, CPpGPp and CpGPp (cf. Ockham). And finally, what
will-always have been so will have been so, CGPpFPp. (FPp, as
in Findlay’s law, is the ‘deposit’ left by all the rest; it is true if
we find p true at any time at all). The lower 8 are of course the
mirror images of the upper ones. Also, the right-hand 8 are
‘duals’ of the left-hand 8, i.e. if we have ¢p on the left, we have
an equivalent of N¢Np at the reflecting position on the right;
e.g. HPp = NPHNp (for HP = NPNNHN = NPHN), and
GPp = NFHNp (Gp = NFNNHN = NFHN). If we wish to
prove that in every case the prefixing of a new symbol will
yield an equivalent of something already in the table, we only
need consider one quadrant, since the corresponding equiva-
lences with mirror images and duals easily follow. With the top
left-hand quadrant the effect of such prefixing works out as
follows:

HG PG G FG

HG PG PG FG
HG HG HG FG
HG FG FG FG
HG G G FG

QD

i.e. PHG = HG, PPG = PG, PG = PG, etc. The first column
is easy; it follows from the fact that if p is true at all times, it is
true at any time that it is true at all times. Some of the rest
are easy, some more difficult, to establish; but in all cases the
proofs of the equivalences must rest, in the end, on rules and
axioms.

The basis used by Hamblin was adjusted to the use of F and
P as primitives, with G and H defined as NFN and NPN re-
spectively. He subjoined to the propositional calculus three
rules—to infer FNFNa from Fa, to infer FEFaFB from FEaf,
and the mirror-image rule; and for axioms, the implication
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Hi. CNFNpFp (CGpFp) and four equivalences which he stated
semi-verbally as follows:

Ho. F(p or q) = Fp or Fg Hy. (p or Pp) = NFNPp
Hg. FFp =Fp Hjs. (p or Pp or Fp) = FPp.

Hs, EAApPpFpFPp, is Findlay’s law combined with its converse
CFPpAApPpFp; this latter could have replaced Hs, and is a par-
ticularly powerful formula; it constitutes one way of reflecting
time’s linearity. With this ‘von Wright’ type of axiomatization,
however, it is easier to proceed from equivalences than from im-
plications. For example, we have the following proof (retaining
Hamblin’s ‘equational’ presentation, but condensing the
equated items):

1. AANpPNpFNp = FPNp (Hs p/Np)

2 NAANpPNpFNp = NFPNp (1, CEpgENpNg)

3. KENNpNPNPNFNp = NFPNp (2, NApg = KNpNg)

4. KEpHpGp = NFPNp (3, Df. H, Df. G, NNp = p)
5. PNp = NNPNp (p.c.)

6. FPNp = FNNPNp (5, second rule)

7. NFPNp = NFNNPNp (6, CEpgENpNg)

8. NFPNp = GHp (7, Df. G, Df. H)

9. KKpHpGp = GHp (4, 8, E-Syll.)

This also combines an easily provable implication, this time
CGHpKEKpHpGp, with a very powerful one, CKEKpHpGpGHp,
which is useful as an axiom in systems with G and H as primi-
tives.

Hy, EApPpGPp, can be split into the two implications
CGPpApPp and CApPpGPp, and the latter split further into
CpGPp (Ockham) and CPpGPp. The last of these is superfluous,
since substitution in the preceding yields CPpGPPp, which can
be condensed to CPpGPp by a suitable use of the mirror image
of Hg (EPPpPp). The remaining component, CGPpApPp, is in-
teresting. It tells us that not only will it be ‘always true that
it has been that p’ if p either is or has been true, but if it will
always be true that p has been true, then p either is true or has
been. Contraposing this, if p neither is nor has been true, it will
not always be true that p has been true; and giving its mirror
image, if p neither is nor will be true, it has not always been
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true that p will be true. The force of this last (CKNpNFpNHFp)
may be given by slightly rephrasing it thus: If p neither is nor
ever will be true, then it hasn’t been true right up to the last
moment that p will be true. And that’s the plausibility of
it—if p is now and always will be false then it has already been
true in the past, at least at the moment just past, that p will
never be true any more—it hasn’t always been true, because
at least in the moment just past it wasn’t true, that p would
ever be true again.

This is precisely Proposition 5 in the reconstruction of the
Master Argument of Diodorus. And it is interesting to be given
a basis for tense-logic from which it is provable. Just this
Proposition 5, however, had begun about 1960 to strike me as
dubious. Theses which appeal, in order to gain intuitive plausi-
bility, to what was the case at ‘the moment just past’, are
liable to commit one to the view that time is discrete. What
if there is 7o ‘moment just past’, but between any past moment,
however close to the present, and the present itself, there is
another moment still past? On this supposition, Proposition 5
in fact fails, and on the corresponding supposition about the
future, Hamblin’s H4 fails too. It could be that p is now false
for the first time, though it will never be true again; and in
this case it has always been true that p will be true; even in
the very near past, bringing us as close as we like to the first
moment of its falsehood, ‘it will be true’ must still have a tiny
interval to verify it. As to Hy, ‘It will always be that p has been
true’ certainly does imply that ‘¢ has been true’ will be true
in the very near future; but however near we make it, this is
still compatible with p’s being false now and throughout the
past, i.e. with it being false that p either is or has been true.

What is most awkward about Hamblin’s basis, however, is
not this thesis in itself, with its suggestion that time is discrete,
but its combination with Hg, EFFpFp, which as strongly sug-
gests that time is no¢ discrete. The system is not actually in-
consistent; as T. J. Smiley pointed out, its postulates all come
out true if we let Fp = Pp = p (instantaneous time), and we
shall see that they also do so on a less radical re-interpretation.
But it is not a very happy intuitive basis for proving the theorem
of the 15 tenses. Fortunately it turns out that the theorem can
be equally well proved if the equivalence Hy is replaced by the

824311 E
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corresponding one-way implication CApPpGPp, or (to cut out
superfluities) simply by CpGPp. It cannot be proved, however,
if Hg, EFFpFp, is dropped or weakened. If time is discrete, and
Fp does not entail FFp, there are not 15 but an indefinite number
of distinct tenses, even using F alone. For Fp would be true, and
FFyp false, if p were going to be true at the next moment for
the last time; FFp true and FFFp false if p were going to be
true for the last time at the next moment but one; and so on.

6. Cocchiarella’s tense-logic, and differences between linear and branch-
ing time. Another basis for tense-logic with P and F as primitives
was provided in 1965 by N. B. Cocchiarella.r Not wishing to
commit logic to either the discreteness or the denseness of time,
Cocchiarella dropped the axiom CFpFFp; not wishing to commit
it to time’s being infinite both ways any more than to its not
being so, he also dropped CGpFp; and not wishing to commit
it to time’s being altogether similar (e.g. in respect of infinity)
in both directions, he dropped the mirror-image rule and
simply gave the mirror-images of his axioms separately. This
left him, as far as purely propositional tense-logic went (he also
had postulates for tensed predicate-logic and identity theory),
with the rules to infer FNPNa and to infer FNFN« from Fa,
and the axioms

C1.1. CNPNCpgCPpPq C1.2. CNFNCpqCFpFq
C2.1. CpNFNPp Ca2.2. CpNPNFp
Cg.1. CPPpPp Cg.2. CFFpFp

C4.1. CKPpPqAAPKpqPKpPgPKqPp

C4.2. CEKFpFqAAFKpqFKpFgFKqFp
Cs.1. CFEpPqAAFKqFpKqFpKPgFp

Cs.2. CPKpFgAAPKqPpKqPpKFqPp

Here the Cr’s are the appropriate variants of CGCpgCGpGg, and
the C2’s of CpGPp; the Cg’s are familiar expressions of the
transitivity of ‘earlier’ and ‘later’, and the C4’s of time’s linearity.
The Cy’s are like the last, but bring both tenses in; Cs.1,
for example, says that if it has been the case that (p is true and
g will be), then either (1) it has been the case that (g is true

! References to this writer are to his Ph.D. thesis for the University of California
in Los Angeles, entitled ‘Tense and Modal Logic: A study in the topology of tem-
poral reference’.
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and p has been), or (2) ¢ is true now and p has been, or (3) ¢
will be true and p has been.

The conception of logical ‘purity’ underlying Cocchiarella’s
excisions is a questionable one. It has indeed been sometimes
said that tense-logic is really not logic but physics, or that it
has a good deal of physics ‘built into it’. Perhaps it is; the line
between logic and other subjects seems to me in any case not
an easy one to draw except arbitrarily, and it’s not difficult to
think of arbitrary ways of drawing it that would exclude the
operators P and F altogether (and these would be not very
arbitrary ways at that). But it seems a bad way to draw the
line if there are admitted truths expressible solely in certain
terms (e.g. with no constants but P, F, and truth-functions) on
both sides of it, so that some truths expressible in one and the
same technical vocabulary count as ‘logical’ truths and some
do not. Perhaps, of course, the physics (if that’s what it is) is
bad physics; and the truths (if that’s what they are) not ad-
mitted very widely, or not by the experts; and that’s more
serious. But if we want to be really safe, it’s odd to begin by
insisting on linearity, and it might be better (as Lemmon has
suggested) to confine one’s ‘basic’ laws to those which put no
special assumptions on the earlier-later relation at all, i.e. the
rules and the Cr’s and C2’s (though even these we shall later
find reasons to query). Lemmon calls this ‘minimum’ system K,.

Cocchiarella’s limited system, whatever the justification for
the limitations, has its features of interest. It is too weak to
prove the 15-tenses theorem, but it is strong enough for its
Diodorean-modal fragment (i.e. the logic of M and L with Mp
= ApFp and Lp = KpGp) to be still S4.3. It is also strong
enough for its modal fragment with Mp = AApFpPp and Lp =
KEKpGpHp still to be Ss. Infinity and denseness, in other words,
i.e. CGpFp and CFpFFp and their images, do not yield any
special modal theorems, in either of the tense-logical senses of
modality. And all the assumptions used by Cocchiarella are
needed—you won’t get the results just mentioned in anything
weaker.

Not all the axioms are needed however. Later in 1965 I was
able to show that the Cg’s could be replaced by a shorter pair—
Cs.1 by CKEpHpGpGHp, and Cg.2 by its mirror image
CKEKpGpHpHGp. Or alternatively (and more neatly when P and
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F are the primitives), by the equivalent transposed forms
CFPpAApPpFp and CPFpAApPpFp. The proof of Cg.2 from the
latter is as follows:

1. CPFpAApPpFp
2. CKpFgKFgGPp (CpGPp)
3. CKFgGPpFKqPp (CKFpGqFKpq)
4. CKpFgFKqPp (2, 3, Syll)
5. CPKpFgPFEqPp (4, RPC)
6. CPKpFgAAKqPpPRqPpFEKqPp (5, 1)
7. CFRgPpFq (p.c., RFQ)
8. CPKpFqPp (p.c., RPC)
9. CPKpFqCFKqPpKFqPp (7, 8, p.c.)
10. CPRKpFqAAKqPpPEqPpKFgPp (6, 9, p.c.).

(1o is just Cy.2 with the first two alternants exchanged.)
Lemmon then showed that my abridgements were in turn de-
rivable from Cj4.1 and C4.2, so that the Cg5’s are simply super-
fluous. (This leaves the C2’s as the only ‘mixed’ axioms, and in
fact the remaining ones in F are complete for linear and
transitive futurity, and those in P for the like in pastness—
another Lemmon result.) Lemmon’s proof of CKKpGpHpHGp
from Cy4.2 is as follows (using Lp for KKpGpHp):

1. CKFNpFLpAAFKNpLpFKNpFLpFKLpFNp (C4.2)
. CKFNpFLpFAAKNpLpK NpFLpKLpFNp

(1, CAFpFqFApq)
. CPKFNpFLpPFAAKNpLpKNpFLpKLpFNp (2, RPC)

N

3

4. CKLpPFNpKHFLpPFNp (CGpHFY)

5. CKLpPFNpPKFNpFLp (4, CKHpPgPKpq)

6. CKLpPFNpPFAAKNpLpKNpFLpKLpFNp (5, 3)

7. CKNpFLpKNpFHp (CLpHp, from
Df. L; RFC)

8. CKNpFLpENpp (7, CFHpp)

9. NENpFLp (8, NKNpp)

10. NKLpFNp (CLpGp, from
Df. L)

11. NENpLp (CLpp)

12. NAAKNpLpKNpFLpKLpFNp (11, 9, 10)

13. HGNAAKNpLpKNpFLpKLpFNp (12, RG, RH)
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14. NPFAAKNPLpKNpFLpKLpFNp (13, HGN = NPF)

15. NKLpPFNp (14, 6)
16. CLpNPFNp (15)
17. CLpHGp (16)

It is interesting to group the axioms which go together in these
deductions. They are:

Cy4.1. CKPpPgAAPKpgPKpPqPKqPp
{CKKpH[)G[)GHp
Cs.1. CFKpPqAAFKqFpKqFpKPqFp
Cq.2. CKFpFgAAFKpqFKpFqFKqFP
I1 {CKKPG[)H[JHG[J
Cs.2. CPEpFqAAPKqPpKqPpKFqPp

If the true picture of time is given by the branching futures of
Kripke’s model for S4, so that there are alternative routes into
the future but only one way back from any point into the past,
all the laws of Group I remain, but all those of Group II cease
to hold. As we saw earlier, if we find p and ¢ in separate possible
futures and nowhere else, it both ‘will’ be that p and ‘will’ be
that ¢, but in no possible future do we have either p and ¢
simultaneously, or p and then ¢, or ¢ and then p (refuting C4.2).
Again, suppose that p is true now, and always has been true but
has in the past had chances of being false which it just has not
taken; it has no more of these now, however (it has got set in
its ways, ‘addicted’ to being true), and will be true throughout
all possible futures (thus verifying Gp as well as Hp and p). Under
these conditions GHp will be true—throughout all possible
futures now, one will on looking back have to say that p has
always been true—and hence CKEpHpGpGHp will be verified.
But HGp will not be true—it has not always been the case that p
would be true throughout all possible futures; there were once
possible futures in which it was going to be false. Hence
CKEpGpHpHGD is here no law. Finally, for Cs.2, suppose that
it was once the case that p was true and also that ¢ was going
to be true in one possible future; that possibility, however, has
not materialized, and we find neither of them true anywhere
else in the picture. Then ‘p is true and ¢ “will”” be’ (i.e. in some
possible future) was once the case (PKpFg); but it is not true
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either that it has been the case that ¢, and p before that (PKgPp),
or that ¢ is true now and p has been (K¢Pp), or that g ‘will’ be
true and p has been (for ¢ won’t be now, even in a merely possible
future).

Cocchiarella himself considers a time-series in which there
are divergent paths in both directions, so that we have neither
the formulae of Group II nor those of Group I. He identifies
this with the ‘causal time’ of relativistic physics, and notes that
if the Diodorean necessity is defined in terms of #his time-series
its postulates are not those of S4.3 but those of S4.T It might
be added, further, that with this non-linear time the definition
of Lo as KKaGoHx does not yield S5, or even S4—with this
definition, a linearity axiom is required even for the proof of
CLpLLp. On the other hand, even Lemmon’s minimal system
K, (and a fortiori Cocchiarella’s ‘causal’ system, which does
have CGpGGp) yields with this definition of L the formula
CpLMp, which is not in S4. The proof is as follows:

C(1) p

K (2) AApPpFp (1, CpApq)

K (3) GPp (1, CpGPp from Ky)

K (4) GAApPpFp  (3; Cqdpg, CpApg, RGC)
K (5) HFp (1, CpHFp)

K (6) HAApPpFp  (5; Cgdpg, RHC)
K (7) KK(2)(4)(6)
(8) LMp (7, Df. M, Df. L).

CpLMp is a characteristic thesis of what is sometimes called the
‘Brouwersche’ modal system, which is in between T and Ss,
and independent of S4. It has been studied by Hintikka and
Kripke, and corresponds to a U-logic in which the sole con-
ditions on U are reflexiveness and symmetry. With Lo for
KKoGoHo, the L-fragment of the system K is exactly the
Brouwersche system (Lemmon, 1966). Whether, with this L,
the L-fragment of Cocchiarella’s system is also the Brouwersche
system or something between it and Sg, is not known; but
certainly the Diodorean definition of La as KaGa gives different

T Cf., J. Hintikka, in ‘The Modes of Modality’, Acta Philosophica Fennica, Fasc.
16 (1963), p. 76. Cocchiarella discusses the point, not in the final version of his
thesis, but in an abstract, ‘Modality within Tense Logic’, forthcoming in the
Fournal of Symbolic Logic.
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L-fragments with the two tense-logics—with K, not S4, but
only the system T (Lemmon).

That Lo = KKaGaHax does not give S5 in non-linear time
was already noted in ‘The Syntax of Time Distinctions’; that
it does not even give S4 is a new result, but there is a closely
allied result in Carnap’s development of what he calls ‘space-
time topology’.! Carnap here gives axioms for the earlier-later
relation in the ‘local proper time’ of relativistic physics, laying
it down that this relation is transitive, irreflexive, dense, in-
finite both ways, and not branching in either direction. He then
defines ‘genidentity’ as the logical sum of identity, earlier-than
and later-than (i.e. ¥ and y are genidentical point-instants if
either ¥ = y or x is earlier than y or x is later than »); and he
is only able to prove that genidentity is transitive (the property
corresponding to the assertion of CLpLLp for the above-defined
L) by using the axioms which exclude branching. On the other
hand, to prove that genidentity is symmetrical (the property
corresponding to the assertion of the ‘Brouwersche’ thesis
CpLMp) and reflexive (the property corresponding to CLpp)
he only has to appeal to the definition of this relation.

7. Further simplifications by Scott and Lemmon. A slightly less
cautious tense-logic than Cocchiarella’s, but otherwise more
compact, has been presented by Dana Scott.z Scott takes G
and H as primitive (with F defined as NGN and P as NHN), and
(subjoining as usual to the propositional calculus with substitu-
tion and detachment) has the rules to infer +Ga and FHa from
Fa, and the axioms CGCpgCGpGyq, CpGPp, CGpFp, CGpGGp, and
CKEpGpHpHGp, with their mirror images. The system is thus
committed to time’s infinity (by CGpFp) but not to its density
(lacking CGGpGp). Its most interesting feature is the representa-
tion of linearity by the comparatively short CKKpGpHpHGp
and its mate; Scott having been able to prove the longer
Hintikka-style axioms from these. One gets a system equivalent
to Hamblin’s (corrected) by adding CGGpGh.

Certain further economies are possible at another point.

1 R. Carnap, Introduction to Mathematical Logic (1954 ; translation 1958), Part II,
ch. 9. The main results of this chapter are already in his dbriss der Logistik (1929).

2 In a Hume Society talk (with thermofaxed summary, Stanford University}
entitled ‘The Logic of Tenses’ (Dec. 1965).
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If we drop the mirror-image rule, it is not necessary to lay down
the mirror images of all the axioms. In particular, if we have
Lemmon’s K¢ complete (i.e. rules RG and RH; Cocchiarella’s
Cr’s and C2’s, or my own A1 and Ag with their images), and
CGpGGp ( = CFFpFp) we can prove its mirror image as a
theorem (this result is due to Lemmon); similarly with the
‘density’ axiom CGGpGp (= CFpFFp). In the latter case, the
proof is as follows:

1. CGGPpGPp (CGGpGp, p|Pp)
2. CGpGPp (CpGPp, RGC; 15 Syll)

3. CFHpFp (2 p|Np, CCpgCNpNg, p = NNp, NGN = F,
NPN = H)

4. CFHHpFHp (3, p/Hp)

5. CFHHpp (4, CFHpp)

6. CHFHHpHp (6, RHC)

2. CHHpHp ~ (CpHFp, p/HHp; 6; Syll).

On the other hand the axioms for non-ending and for non-
branching are independent of their mirror images, and vice
versa.

On the whole these last results are ones we should expect;
if a relation is transitive, for example, it follows that its con-
verse is transitive, and if a series ordered by a certain relation
is dense, so is the series ordered by the converse relation; but
if the series ordered by a relation has a first term, it does not
follow that the one ordered by the converse relation has.
Linearity, however, presents a slight problem. In ‘The Syntax
of Time-Distinctions’ the linearity of time was taken to be ex-
pressed by the ‘law of trichotomy’ for the earlier-later relation,
AAIabUabUba, and from this we obviously get the same law
for the converse relation. This law, however, is a stronger one
than we need to express non-branching from earlier to later;
for that we nced only the conditional principle

CUabCUacAAIbcUbcUch,

and this does not entail non-branching going backwards, which

would be
CUbaCUcaAAIbcUbcUch.

One other discovery of the Californian tense-logicians is that
it makes a difference to one’s tense-logic whether time is
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conceived as merely dense (like the series of rational numbers)
or strictly continuous (like the reals). This was first noticed
by Richard Montague, working with Cocchiarella. The dif-
ference between the logic of merely dense and that of strictly
continuous time will be discussed in the course of the next
chapter.

8. Correction of Hume on past and future. Before going on to that,
it is worth making one philosophical point. J. F. Bennett re-
cently described Leibniz as having discovered, and Hume as
having re-discovered, the principle that ‘if Q is an immediate
consequence of P then there cannot be a time-reference in Q
later than the latest time-reference in P’.* One thing that the
development of tense-logic makes quite clear—if it was not
clear before—is that this alleged ‘discovery’ is in fact a false-
hood (consider, e.g., the law CpGPp, “What is so will-always have
been so’). And it was clear before—as usual, to McTaggart.
The point arises where McTaggart is discussing an early theory
of C. D. Broad’s that the passage of time, or ‘absolute becoming’,
consists in the adding of more and more layers on to the totality
of ‘fact’. The past and present belong to this totality, but not
the future; and from this Broad deduces that there are no facts
for propositions or judgements about the future to accord or
discord with, so that such propositions or judgements are, strictly
speaking, neither true nor false. ‘Dr. Broad’s theory must be
false’, McTaggart comments, ‘if the past ever intrinsically de-
termines the future’, i.e. entails truths about it. ‘If X intrin-
sically determines a subsequent 7, then (at any rate as soon
as X is present or past, and therefore, on Dr. Broad’s theory,
real) there must be a subsequent 7.... And if that ¥ is not
itself present or past, then it is true that there will be a future
7, and so something is true about the future.” That the past
does sometimes ‘intrinsically determine’ the future, McTaggart
shows by some examples, of which the simplest is that ‘if Smith
has already died childless, this intrinsically determines that no
future event will be a marriage of one of Smith’s grandchildren.’2
Bennett’s reference to Hume is of course to those passages3 in

! Jonathan Bennett, ‘A Myth about Necessity’, Analysis, vol. 21, no. 3 (Jan.
1961), pp. 59-63. 2 The Nature of Existence, ch. xxxiii, § 337-8.

3 They are mostly to be found in the Enquiry concerning Human Understanding,
Section IV.
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which he denies that we have any rational basis for our sup-
position ‘that the future will resemble the past’. ‘Let the course
of things be allowed hitherto ever so regular; that alone...
proves not that, for the future, it will continue so.” He perhaps
comes closest to the principle enunciated by Bennett when he
says that ‘past Experience can be allowed to give direct and certain
information of those precise objects only, and that precise
period of time, which fell under its cognizance’, and there is
no rational justification for extending this experience to ‘future
times’ and ‘other objects’. And one suspects that he would have
assented to Bennett’s principle if that had been put to him;
but all that his argument really requires is something much
less sweeping, namely that CPpFp, and even CHPpFp, are not
laws of any normal tense-logic.



IV
NON-STANDARD TENSE-LOGICS

1. Theses which assume that time is either discrete or circular. LoGICAL
purity, at least if one has departed from it so far as to have
a tense-logic at all, is something of a will-o’-the-wisp. The
logician must be rather like a lawyer—not in Toulmin’s sense,!
that of reasoning less rigorously than a mathematician—but in
the sense that he is there to give the metaphysician, perhaps
even the physicist, the tense-logic that he wants, provided that
it be consistent. He must tell his client what the consequences
of a given choice will be (e.g. that without denseness, infinity,
and linearity you don’t get the Hamblin reductions), and what
alternatives are open to him; but I doubt whether he can, qua
logician, do more. We must develop, in fact, alternative tense-
logics, rather like alternative geometries; though this is not to
deny that the question of what sort of time we actually live in,
like the question of what sort of space we actually live in, is
a real one, or that the logician’s exploration of the alternatives
can help one to decide it. It is, anyhow, worth seeing what the
logic of discrete time, finite time, branching time, circular time,
etc., are like, and also how far we can go without committing
ourselves on this issue or that. This is the direction which the
investigations of Hamblin, Scott, and Lemmon, for example,
have now taken.

We may begin by glancing at discrete time. One thesis that
has been associated with discrete time is the Diodorean
CEKpGpPGp, or CpCGpPGp, discussed in the preceding chapter.
Another is CKFNpFGpFENpGp, ‘If both it will be that not p,
and it will be that (it will always be that p), then it will be that
both (not-p now, and p for ever after)’, i.e. if p hasn’t yet stopped
being false but sooner or later is going to, there will be a last
moment of its falsehood. This was used verbally in our informal
proof of Dummett’s formula CLCLCpLppCMLpp in Chapter 2;

1 S. E. Toulmin, The Uses of Argument.
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if the symbolic form is appended to, say, Cocchiarella’s tense
logic (from which CFpFFp is absent), and M and L are defined
in the Diodorean way, the Dummett formula is provable. As a
first step, we prove

CFGpCLCNp MEpFNpp.

We make use, where we wish to, of the fact that the laws for
the Diodorean L and M defined in Cocchiarella’s system are
those of S4.3, and it will be useful to introduce the form 1p
(‘p is true for the last time’) as short for KpNFp. This gives

TNp = KNpGp
NYNp = NENpGp = CNpNGp = CNpFNp (= CGpp).

The proof (quite closely reproducing our informal one) is as
follows:

C (1) FGp
C (2) LCNpMEPFNp
K (3) LCNpMFNp (2, LCMEKpgMy)
K (4) LCNpAFNpFFNp (3, Df. M)
K (5) LCNpFNp (4, LCFFpFp)
K (6) CNpFNp (5, CLpp)
I((7) CNpKFNpFGp (1, 6)
K (8) CNpFENpGp (= CNpFYNp), from 7 and the
discreteness thesis
CKFNpFGpFENpGp
K (9) GCNpFNp = GNYNp (5, CLpGp)
K (10) NFYNp (9, GN = NF)
(11) p (8, 10, CCNpgCNgp).
From this we proceed as follows:
1. CFGpCLCNpMEPFNpp (just proved)
2. CFKpGpCLCNp MEpFNpp (1, CFKpqFyq)
3. CKpGpCLCNp MEPFNpp (CKpqCrp, subst.)
4. CAKpGHFEpGpCLCNpMEPFNpp (3, 2, CCprCCqrCApgr)
5. CMLpCLCNp MEpFNpp (4, Df. M, Df. L).

This, as was noted in Chapter II, is equivalent to the Dummett
formula. Cocchiarella’s system plus CKFNpFGpFENpGp thus
yields, as its Diodorean-modal fragment, the system which
Bull has shown to be complete for discrete Diodorean modality.
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This last is more than can be said for the formula CoCGpPGp.
For this (with Dff. M, L) yields no more than S4.3 even when
rather freakishly combined with CPpPPp, as in Hamblin’s
original system. In this system we can carry out the following
derivation:

1. CpCGpPGp

2. CpCGpPPGp (1, CPpPPp)

3. CHCGpPp (2, CPGpp, RPC)

4. CGpCGGPHPGp (3, subst.)

5. CGpPGp (4, CGpGGp, CCpCqrCCHqCpr)
6. CGpp (5, CPGpp)

Since FCpFp is easily deducible from FCGpp (FCGpp — FCGNpNp
= FCpNGNp), and FCGpFp follows from both, this deduction
shows that the axiom Hi1 is superfluous in Hamblin’s original
system. Moreover, CGpp, or the equivalent CpFp, may replace
CpCGpPGp, or the equivalent CGPpApPp, in that system, since
we can then carry out the following deduction:

1. CpFp

2. CpPp (1, MI)
3. CGpPGp (2, subst.)
4. CpCGPPGp (3, CgCpy)-

This suggests the following more compact axiomatization of a
system equivalent to Hamblin’s: Take G and H as primitive,
define F as NGN and P as NHN, and add to propositional
calculus (with substitution and detachment) the rule RG to
infer FGa from Fa, the mirror-image rule, and the following
axioms:

A1. CGCpgCGpGyg

A2. CGpp

Ag. CGpGGp (the converse follows from Ag)
Ay4. CpGPp

As. CGpCHpGHp (initial Cp superfluous by A2).

If we drop the mirror-image rule and lay down mirror images
separately, we need not bother to do this with A2 and Ag.
That Ag (in the presence of RG, A1, A4, and their images)
entails its own image, has been already mentioned; that A2
does so, we show thus:
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1. CGPpPp (A2, p/Pp)
2. CpPp (A4, 1, syll)
3. CHpp (2, p/Np; CCNpgCNgp; DE. P).

The formulae CGpp (‘What will always be so, is so now’) and
CpFp (“What is so will be so’), and their images, are ones which
would hold if time were circular. They express the reflexiveness
of the earlier-later relation in circular time (i.e. everything
being earlier than itself); and the reflexiveness of any relation
entails that of its converse (the U-counterpart of the proof of
CHpp from CGpp). But not all theses which would hold in circular
time are provable in this system; e.g. CGpHp and CFpPp are
not so provable. For all the postulates of this system are satisfied
if we read G as ‘It is and always will be’ and H as ‘It is and
always has been’, i.e. Diodorean ‘necessity’ and its mirror
image, but it is easy to find counter-examples to CGpHp in this
sense, i.e. to “‘Whatever is and always will be so, is and always
has been so.” The system is, I suspect, complete for this inter-
pretation; at least it contains all the laws of S4.g3 with G for L
(since Scott’s result means that we can get CKFpFqAAFKpq-
FEpFgFKqFp, and this with CpFp gives CKFpFgAFKpFqFKqFp,
i.e. Hintikka’s law) ; and similarly of course for H. It is interest-
ing that with this G and H there are the same 15 affirmative
‘tenses’ or ‘modalities’ as there are with G and H more normally
interpreted—no more and no less, and with the same implica-
tion lines, except that the main diagonals go Hp — p — Fp and
Gp — p — Pp instead of FHp — p — HFp and PGp — p — Gp,
and this change makes the dotted lines superfluous. On the new
interpretation, however, the result does not depend on time’s
being assumed to be dense, since here CGGpGp does not carry
that implication; though neither, on this interpretation, does
CpCGpPGp carry the opposite implication. With G and H inter-
preted in the new way, the difference between discrete and
dense time is not expressible.
In this calculus, Gp and KpGp are equivalent (FCKpGpGp
anyway, and FCGpp — FCGpKpGp by CCpeCpKgp). Hence the
-logic of a Diodorean L defined in this system will be precisely
that of G, i.e. S4.3, and from this the Dummett formula for
discrete Diodorean modality is known not to be deducible.

If we return to Hamblin’s original postulates, take his
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equivalence Hq. EApPpGPp, break it up into two implications,
and retain CApPpGPp, but replace the converse by the other
formula which is normally associated with time’s discreteness,
CKFNpFGpFENpGp, we obtain a much stronger system. Not
only can we prove Dummett’s formula, but we can also prove
(remember that the system also contains EFpFFp) all that is
involved in the idea of time’s being circular. For we have the
following deduction:

1. CKFNpFGpFENpGp
2. CNFENpGPNKFNPFGp (1, transp.)
3. CGNKGpNpNEKFGpNGp (2, Kpg = Kgp, NF = GN,

FN = NG)
4. CGCGppCFGpGp (3, NEpNg = Cpq)
5. CGGpGp
6. CFGGpGGp (5, RGj 4)
7. CFGpGp (6, GG = G)
8. CHFGpHGp (7, RHC)
9. CHGpHPGp (CHpPp, RHC, HH = H)
10. CHGpHp (CPGpp, RHC; g)
11. CGpHGp (8, CoHFY)
12. CGpHp (11, 10).
And for the other consequence of time’s circularity we have
13. CGpPGp (11, CHpPp)
14. CGpp (13, CPGpp).

12 makes G and H logically equivalent, and the laws of both
are now those of the Lewis modal system S5; the only distinct
tenses are Gp (= Hp), p, and Fp (= Pp).

2. Postulates for circular time. The above system has the mirror-
image rule among its postulates, but E. J. Lemmon has ob-
served that we do not really need this rule in order to turn
CGpHp into an equivalence. His own very weak system K
suffices for this, and indeed if that system be given we can
deduce from any one of the following formulae all of the re-
mainder: CGpHp, CHpGp, CFpPp, CPpFp, CFGpp, CPHpp, CHGFp,
CpHPp. We have, for instance,

1. CGpHp
2. CFGpFHp (1, RFC)
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3. CFGpp (2, CFHpp)

4. CFGPpPp (3, p|Pp)

5. CFpPp (CoGPp, REC; 4)

6. CHpGp (5, pINp; CCpeCNgNp; NPN = H,
NFN = G)

7. CPHpPGp (6, RPC)

8. CPHpp (7, CPGpp)

o. CPHFpFp (8, piFp)

10. CPpFp (CpHFp, RPC; o)

11. CGpHp (10, p/Np; CCpgCNgNp; NFN = G,

NPN = H).

We could obviously have started this proof-circle equally well
at 3, 5, 6, 8, or 10. K¢ with one of these axioms alone, however,
does not give us S5 for G (= H), but needs to be supplemented
by CGpGGp and CGpFp (or CGpp). In the associated U-calculus,
the symmetry of U (in circular time, if @ is earlier than b, then
b is earlier than a) suffices to give us 1, 3, 5, etc., but for CGpGGp
we need transitivity, and for CGpp reflexiveness (in circular
time, everything is earlier than itself).

But the simplest way to axiomatize circular time is to define
G as H, or both as L, and use known postulates for S5 (e.g. RL,
CLCpqCLpLq, CLpp, CNLPLNLp). There would no doubt be a
certain artificiality in this, since even in circular time we can
distinguish the past direction from the future one, but it is only
the sort of artificiality which is equally present, for example,
in systems of propositional calculus in which ‘Not p’ is defined
in terms of a primitive ‘neither’ as ‘Neither p nor p’. The
circular Gp and Hp are equivalent functions in the sense that
any proposition satisfying either satisfies the other, and also
in the sense of being completely interchangeable in the present
calculus, e.g. we have NGp and KpNGp where and only where
we have NHp and KpNHp. But if we enriched the calculus with
functions like ‘x knows that p’, we would not want to equate
‘x knows that it hasn’t happened’ with ‘x knows that it won’t
happen’ (since time might well b¢ circular without everybody
knowing it) ; just as we would not want to equate ‘x knows that
not p’ with ‘x knows that neither p nor p’ (x might well not have
worked out that equivalence). Moreover, if we enrich our cal-
culus merely with new types of tense-operators, namely ones
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containing a reference to specific intervals, we can distinguish
even in circular time between happening such and such a time
hence and happening that time ago (we shall return to this
point in Chapter VI).

We also distinguish P and F even in circular time if we adopt
the rather different convention about them that was mentioned
in the last chapter as giving a non-transitive earlier-later re-
lation; i.e. the convention according to which we don’t call a
thing future or past if it’s so far round the circle as to be closer to
us the other way. Hamblin calls this an ‘east-west’ tense-logic,
‘in the sense in which California is east but not west of Sydney,
and west but not east of Manchester’. He has pointed out that
we have some further choices here about how we shall treat
‘antipodal’ moments, if there be such. If there were, for example,
just three moments, arranged thus:

bvc
a

we might take a’s future to extend as far as ¢, or only as far as b;
if there were four, arranged thus:

b > c

A Y

a —a d

we might regard ¢ as being both in a’s past and in its future
or as being in neither (though on either view it is in the future
of a’s future). With a dense infinity of moments there are
similar but more complicated choices. In general, if we do not
allow antipodal moments to be both past and future, we will
have as a law CFGpPp; while if we do, we will have CGpPp.
Given Lemmon’s minimal system K;, CFGpPp is deductively
equivalent to each of the theses CGGpHp, CFGGpp, and to each
of their mirror images and duals, and its own. We have, e.g.

1. CFGpPp
2. CFGGpPGp (1, p|Gp)
3. CFCGpp (2, CPGpp)

4. CHFGGpHp (3, RHC)

824311 F
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5. CGGpHp (4, CpHEFp)

6. CPpFFp (5, | Np, CCpgCNgNp, NNp = p, NHN = P,
NGN = F)

7. CPHpFFHp (6, p/Hp)

8. CPHpFp (7, CFHpp).

8 is the mirror image of 1, and from it we can work back to 1
through the mirror images of 2—7. The axiom CGpPp for the
other system is deductively equivalent to CGGpp, and to the
mirror image and dual of that, and its own mirror image and
dual (cf. the inter-deducible axioms for circularity taken the
other way). With respect to Ki, CFGpPp and CGpPp are
mutually independent (as the triangular example shows), and
we may deduce CGpFp from the latter but not from the former—
not from the former, because Ki+CFGpPp is consistent with
reading both Gp and Hp as Cpp, an interpretation which rejects
CGpNGNp (i.e. CCopNCNpNp) ; but from the latter, as follows:

1. CKGpGqGKpq (provable in Ky)
2. CKGpGNpGEpNp (1 g/Np)

3. CGEpNpPEKpNp (CGpPp)

4. CPKpNpNHNEpNp  (Df. P)

5. CKGpGNpNHNEPND (2, 3, 4, syll.)

6. HNKpNp (NKpNp, RH)

7. NKEGpGNp (5, 6, CCpNgCqNp)
8. CGPNGNp (7, CNEpgChNg).

3. Postulates for the next and the last moment, in discrete time. For
a logic of discrete but not necessarily circular time we need to
add some appropriate axiom to a form of tense-logic, e.g. Scott’s
or Cocchiarella’s, which does not assert CGGpGp. Perhaps
CEKFNpFGpFENpGp would be sufficient, though this is not
known. Scott has proved completeness for a slightly different
type of system for discrete time, one in which G and H are not
the only undefined tense-symbols, but are supplemented by two
others for ‘It will be true at the next instant that p” and ‘It was
true at the last instant that p’. We could write 7p and 17 for
these new forms (after ‘tomorrow’ and ‘yesterday’). They are
not definable in terms of G and H. We can, indeed, define ‘p
will be true at the next instant jfor the last time’ as KFpNFFp, ‘p
will be true at the next instant but one for the last time’ as
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KFFpNFFFp, etc.; but the simple ‘¢ will be true in the next
instant’, “—in the next but one’, etc. (i.e. Tp, TTp, etc.) cannot
be quite got this way. Conversely, we cannot hatch G, H, F, or
P, out of T and 17 only more specific forms of Fp like Tp,
ATpTTp, AATpTTHpTTTp, etc., and finite approaches to Gp
like Tp, KTpTTp, etc. So Scott takes both pairs (G, H, and
T, Y) as primitive, and has proved completeness for the system
in which his GH postulates are supplemented by the following
axioms:

Ti. CGpTp Yi. CHpYp

T2. ENTNpTp Yo. ENYNpYp
Tg. CTCpeCTpTq Y3. CYCpgCYpYyq
Ty4. CpYTp Yy4. CpTYp

Ts. CTpCGCpTpGp  Ys5. CYpCHCpYpHp.

The last pair are ‘inductive’ axioms; the first states that if p
will be true at the next instant then if it will always be that if
p is true it is true the instant after, then p will be true for ever;
ditto for ‘has been’ in the other.

The usefulness of systems of this sort does not depend on
any serious metaphysical assumption that time is discrete; they
are applicable in limited fields of discourse in which we are
concerned only with what happens next in a sequence of dis-
crete states, e.g. in the workings of a digital computer.!

Scott’s system for G, H, ¥, T appears to have been developed
from one which he had devised by 1964 (proving its complete-
ness) in which the following postulates for 7 and 1" were sub-
joined to Godel’s axiomatization of S5 for L (‘at all times’):

1. ELpTLp 2. ELpLTp
3. ETNpNTp 4. ETCpeCTpTq
5. ETYpp

6. CLGpTpCLCqYqCMEpqLApg

The last ‘inductive’ axiom says that if p-now always implies
p-next, and ¢g-now always implies g-just-past, and at some time
both p and ¢, then at all times either p or ¢ (since from the
time at which both, we will have p all the way forward, step
by step, and ¢ all the way back, step by step). Of the other

1" Cf. H. Greniewski, K. Bochenek, R. Marczynski, ‘Application of Bi-elemental
Boolean Algebra to Electronic Circuits’, Studia Logica, ii (1955), Pp. 7-74.
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axioms, at least 4 may be replaced by the corresponding im-
plication. For, firstly, the rule to infer F7a from « may be
established as follows:

bo — FLa (RL, from Ss)
—HFL.Ta  (by2)
— T (by CLpp, from Sgs).

This, with CTCpgCTpTy, yields the rule

RTC: FCoB — FCTaTPB.
We then have

7. CTEpNgTp (p.c., RTC)
8. CTEpNgT Ng (p.c., RTC)
9. CTKpNgKTpT Ng (7, 8, p.c.)

10. CTNCpqTKpNg (p.c., RTC)

11. CKTpTNgKTpNIq  (p.c., 3)
12. CTNCpgKTpNTq (10, 9, 11, Syll)

13. CTNCpgNCTpTIq (12, p.c.)
14. CNTCpgNCTpTIq (13, 3)
15. CCTpTqTCpq (14, p.c.).

This is the converse implication that makes up the rest of 4.
(This adapts a proof given by Rescher in another connexion.)
From 4 in turn we can get

16. ETEpqETp1q,
and from this the rule that if FET«7B then FEap, thus:

FETaTB — FTEaB (by 16)
— FLTE«B (by RL)
— FLEaB (by 2)
— FEaB (by CLpp).

This rule—we may call it RET—is useful in proving the
mirror images of the axioms; e.g.

17. ETYTpTp (5, p|Tp)
18. EYTpp (17, RET).

This system suggested to Lemmon (in 1964) the following for the
future only, with G read as ‘It is and always will be’ (Dio-
dorean necessity):
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RG:— Fa — FGa
A1, CGpp A2. CGCpeCGpGyq
Ag. ETNpNTp  A4. ETCpeCTpTq
As. ETGpGTp  A6. CGpTGp
Ay. CGCpTpCHGh.
From these he proved S4.8 plus the Dummett discreteness for-
mula in G; and from these for G and 7, plus an analogous set
for H and 7, the mixing axioms ET1pp and EYTpp, and the
definition of Scott’s L as KGpHp, he proved Scott’s L-1-T
postulates. Since the ordinary Gp is equivalent in this system to
TGp, Scott’s 1965 system ought also to be capable of develop-
ment within this one.

Scott’s 1965 system does not separate off the theses in G and
H only which assume discrete time; nor do any of these systems
separate off from the rest the pure logic of 7 and Y. The
axiomatization of the logic of T alone, however, has been
solved by G. H. von Wright and J. Clifford.” The postulates
for which von Wright establishes completeness are not directly
formulated in terms of Scott’s 7 but in terms of another 7,
a dyadic operator such that the form Tpg may be read as p
now and ¢ next’ (i.e. in the next state or instant). But as Clifford
points out, von Wright’s T is definable in terms of Scott’s, by
Tywpg = KpTeq; and Scott’s can be defined in terms of von
Wright’s, by Tgp = T,Cppp (‘p next’ = ‘if-p-then-p now and
p next’); so that they cover precisely the same area. Von
Wright subjoins to the propositional calculus with substitution
and detachment the rule of extensionality for 7 (from FEof
to infer FEfafB, where f is any function of propositions in the
system) and the following four axioms:

A1, ETApqArsAAATprTpsTqrTgs (‘Distributivity’)

A2. EKTpqTrsTKprKgs (‘Co-ordination’)

A3. EpTpAgNg (‘Redundancy’; cf. the definition of Scott’s

T above.)

A4. NTpKgNg (‘Impossibility’).

The rule of extensionality could perhaps be replaced by some-
thing less comprehensive, e.g. the pair FEaf — FETayTBy and

I G. H. von Wright, ¢ ““And Next” °, Acta Philosophica Fennica, Fasc. 18 (1965),
PP. 293—304; J. Clifford, ‘Tense logic and the logic of change’ (revision of the
Rudolf Carnap Prize essay at the University of California in Los Angeles, 1965),
Logique et Analyse, No. 34 (June 1966), pp. 219-30.
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FEaB — FETyaTyp. Clifford shows that von Wright’s system is
derivable, given the definition of his 7, from the axioms 1.
CTNpNTp, 2. CNTpTNp, and 3. CTCpqCTpTq, and the rule to
infer FTo from ta. Here 1 and 2 are equivalent to Scott’s T2,
and g is Scott’s T3, so Clifford’s axioms amount to the only two
of Scott’s in which T is the only tense-operator (his rule follows
from Scott’s RGand T1). ¥'can be axiomatized in the same way;
Clifford has also shown that the logic of the two together needs
nothing beyond their separate postulates except CpYTp and
CpTYp.

4. The logic of ‘and then’. Von Wright’s ‘And Next’ system is
a development of the logic of change sketched in his Norm and
Action.t Miss Anscombe has a related logic, not of ‘and next’,
but of ‘and then’, or more precisely ‘It was the case that $ and
then it was the case that ¢’.2 This Tpq is not definable in terms
of Scott’s 7, but it is definable in terms of the P of ordinary
tense-logic, as PKPpq, ‘It has been the case that (it has been the
case that p, and now it is the case that ¢)’. The converse de-
finability is also possible if we take time to be non-discrete,
since we can then define Pp as Tp(pp, ‘It was the case that p
and then it was the case that if-p-then-p’ (or any other thing
that is true at all times). In discrete time these are not quite
equivalent, for if Pp is true because p has just been true, there
is no past moment between then and now for Cpp to hold in.
If, however, we modify the meaning of 7pq to AKPpgPKPpq, i.e.
‘It either is or has been the case that (it has been that p, and it is
the case that ¢)’, Pp is equivalent to this sense of 7pCpp in any
sort of tense-logic.3

For Miss Anscombe’s T, as she points out, we can establish
such laws as CTTpqrTpq, CTTpgrITqr and CTTpqrTpr, and we
can define ‘It has been the case repeatedly that p’ as TTpNpp,
‘It has been that (p and then not p and then p)’. Hence even
in a non-discrete tense-logic we can distinguish between ‘p has
been true at least one distinct time’ (Pp), ‘p has been true at
least two distinct times’ (77pNpp), ‘p has been true at least

1 Norm and Action (London, 1963), ch. ii.

2 G. E. M. Anscombe, ‘Before and After’, Philosophical Review, vol. 73, no. 1
(Jan. 1964), pp. 3-24.

3 This modification, for this purpose, was suggested independently by Geach
and Cocchiarella.
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three distinct times’ (777 TpNppNpp) and so on. This has the
following consequence. In non-beginning, non-ending, non-
discrete linear time there are precisely fifteen non-equivalent
forms using only P, H, F, G, and a single propositional variable.
Using P, F, and N (and defining H and G), or using H, G, and
N (and defining P and F), there are exactly thirty such forms,
the preceding and their negations. (Hamblin’s theorem was in
fact originally presented as one that there are exactly thirty
‘tenses’, ; being allowed to enter into the definition of a ‘tense’.)
But if we ask how many non-equivalent forms we can construct
using P, F (or H, G), N, and K, using the same propositional
variable throughout each formula, the number immediately
rises to infinity, since we have, for example, the series of 7-N
forms just mentioned. We may contrast tense-logic at this point
with, say, the modal system Sg, in which there are three non-
equivalent forms using L, M and a variable, six using L and N
(or M and N), and sixteen using L, N, and K.

5. Mere denseness and Dedekindian continuity. At the opposite pole
from discreteness is strict Dedekindian continuity, though at
certain points this combines features of discreteness and density.
It is characteristic of a merely dense series that two adjacent
segments of it may each have no first and no last member. To
take the stock example, the rational numbers may be divided
completely into those that are less than the square root of 2
and those that are greater, but there is no largest rational that
is less than the square root of 2, and no smallest one that is
greater (you can always get a little closer both ways). In the
real numbers, however, the square root of 2 is itself included,
and there is no room among them for ‘gaps’ of the sort just
described; hence with any two adjacent segments, either there
is a largest real number in the lower segment but no smallest
one in the upper, or vice versa. (If there were both a largest
number in the lower and a smallest in the upper, the series
would be neither continuous nor dense, but discrete.) This
feature of continuous series means that they share certain more-
or-less inductive principles with discrete ones, and confusion
with discrete series can be excluded by combining these with

! Cf. R. Carnap, ‘Modalities and Quantification’, Journal of Symbolic Logic,
June 1946, p. 48.
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postulates for density (e.g. in tense-logic, CGGpGp). One such
inductive principle, noted by Cocchiarella, is the following:

CGpCHGCGpPGpHG).

In a dense series with gaps there could be counter-examples to
this. Take a case where time is divided into an earlier part
throughout which p is false and a later part throughout which
it is true, but let there be no last instant of p’s falsehood or first
instant of p’s truth, and let the present instant be within the
period of its truth. The first antecedent Gp, ‘It will always be
that p’, will now be true; and all the times at which Gp is true
will be ones at which it was also true at least a little bit before,
i.e. we will have the other antecedent HGCGpPGp; but the
consequent HGp, asserting the truth of p throughout the whole
of time, will be false. But if this sort of situation is precluded by
its having to be the case either that there is a last time at which
p is false or a first at which it is true, such counter-examples to
Cocchiarella’s formula cannot be constructed. If, for instance,
there is a last moment of p’s falsehood, this will be a moment
at which we have Gp but not PGp (refuting the antecedent
HGCGpPGp, and so establishing the implication); while if
there is a first moment of p’s truth, this will be a time at which
we have Gp but not PG, if there is no last moment of p’s false-
hood.

6. Postulates for beginning and ending time. These questions concern
time’s minima; we turn now to its maxima. In the matter of
time’s infinity both ways, we may again simply drop those
axioms which commit us to this (as Cocchiarella does), or lay
down ones which positively preclude it. Ending and beginning
time were possibilities which entered in a small way into the
discussions of Diodorean modal logic in the late 1950s. Lemmon
and Dummett in 1959 noticed some of the effects of taking the
Time and Modality matrix for D and reversing it, i.e. using in-
definitely long strings of truth-values coming back from a fixed
point instead of going forward to one, but determining the
values of L and M as usual. This amounted to using the
Diodorean definitions in an ending time. Their main result
was that this verified the formula ELMpMLp. This will be
seen on reflection to be natural enough. MLp is true only if p
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eventually reaches a point at which it is true and after which it
is never false; LMp is distinguished from this by being also true
if p never reaches a time after which it is never false, but also
never reaches a time of being false which is not followed by
a later time of being true. If time comes to an end, however,
these two conditions coincide, both being met if and only if p
is true at the last moment of time, no matter what goes on
before that; hence, with such a picture, we have CLMpMLp as
well as its converse. Modal systems containing CLMpMLp,
with or without its converse, have been studied more recently
by Sobocinski and others.!

This suggests that CGFpFGp might be a law in ending time,
but it is not; nor is anything whatever of the form CGaFB,
since at the end of time anything of the form G« will be true
and anything of the form F false. The latter (that anything of
the form ‘It will be that B is false at the end of time) is obvious
immediately; the former (that anything of the form ‘It will
always be that «’ is true at the end of time) depends on our
understanding G as equivalent to NFN; for any o, at the end
of time it will be false that « is ever going to be false. One
formula that is a law if time has an end is AGpFGp, or to give
a more intuitive equivalent, ANFpFNFp. Whatever p might be,
the first disjunct of this (NFp) is bound to be true at the last
moment of time (whether or not it is true before that), and
therefore the other component (FNFp) is bound to be true up to
the end of time (though at the end, it will be false) ; hence one
or the other of them, and therefore the whole disjunction, will
be true always. Of other laws which hold in more normal
systems, CGpFp and CGpFGp will be true up to the last moment
of time, but false at that moment, and the same is true of the
non-standard principle CGFpFGp; the converse of the last,
CFGpGFp, and for that matter the plain GFp, is true at the
last moment of time only. The same things may be said,
mutatis mutandis, if time had a beginning.

If we attempt to combine the ending-time principle
ANFpFNFp, or AGpFGp, with the non-ending-time principle

I B. Sobocinski, ‘Remarks about Axiomatizations of Certain Modal Systems’,
Notre Dame Journal of Formal Logic, vol. 5, no. 1 (Jan. 1964), pp. 71-80; A. N. Prior,
‘K1, K2 and Related Modal Systems’, ibid., vol. 5, no. 4 (Oct. 1964), pp. 299~
304; B. Sobocinski, ‘Modal System S4.4’° and ‘Family K of the non-Lewis Modal
Systems’, ibid., pp. 305-12 and 313-18.
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CGpFp, we obtain results which are not merely odd, like time
being circular, but downright contradictory. For we will have:

1. AGpFGp
2. CGpFp
3. AFpFGp (1, 2, p.c.)
4. CNFpFGp (3, 4 = CN)
5. CNENCPpFGNCpp (4, pINCpp)
6. GCpp (Chp, RG)
7. FGNCpp (5, 6, G = NFN)
*8. NGFCpp (7 FG.N NGNNFNN = NGF)
9. FCpp (2, 6)
*10. GFCpp (9, RG).
(The auxiliary theses used here are all in the minimal tense-
logic K,.)

The law AGpF Gp also differs from all the pr1n01plcs we have
so far considered, whether in discrete, dense, continuous, linear,
or branching time, in that it is not consistcnt with equating
both Gp and Fp (and Hp and Pp) with the plain p. For whereas
this turns, say, CGpFp into Cpp, and CGCpgCGpGq into CCpqChy,
and CpGPp into Cpp, it turns AGpFGp into App, which by CAppp
gives the simple p as a thesis (and therefore by substitution
anything at all as a thesis).

If we combine ending time with discreteness, using both
AGpFGp and CKFNpFGpFENpGp, we can very easily prove
CFpFEpNFp, i.e. ‘If it sooner or later will be that p, then it
sooner or later will be that p-for-the-last-time’. This is an
intuitively obvious consequence of this combination. Con-
versely, from CFpFKpNFp we can prove each of AGpFGp and
CEKFNpFGpFENpGp.

7. Tense-logic as giving the cash value of assertions about time. Postu-
lates of the sort we have been considering can be regarded as
giving the meaning of such statements as ‘time is continuous’,
‘time is infinite both ways’, and so forth. This is different from
saying that such postulates give the meaning of the expressions
that occur in them, in particular of F, H, G, and P. Talk of this
sort seems to me confused. Apart from any other objections,? if

T See A. N. Prior, “The Runabout Inference-Ticket’, Analysis, vol. 21, no. 2
{Dec. 1960), pp. 38-39; and ‘Conjunction and Contonktion revisited’, ibid., vol.
24, no. 6 (June 1964), pp. 191-5.
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different postulates for F, G, H, and P define different meanings,
then people who say that time has no end, for example, and
who therefore agree to CGpFp, and people who say that it has
an end, and who therefore agree to AGpFGp, are not really
contradicting one another, since they are using words with
different meanings and simply talking past one another. There
are no such objections, however, to saying that what is meant
by time’s having an end is precisely that for any p, either
already it will never be the case that p, or it will be the case that
it will never be the case that p (or to put it another way, that
it either is the case, or will be the case, that nothing—not even
that such-and-such has occurred—uwill be the case any more).
Or to saying that what is meant by time’s being circular is
precisely that for any p (however detailed or comprehensive),
if it is or has been the case that p, then it will be the case that
p again. Or to saying that what is meant by time’s being dense
(‘continuous’ in the looser sense) is precisely that if it- will be
the case, however soon, that p, then it will be the case, even
sooner, that it will be the case that p. And there is some positive
advantage in saying that this is the sort of thing we mean when
we make remarks of this kind. For if taken literally, statements
like ‘Time will have an end’, “Time is circular’, ‘Time is con-
tinuous’, etc., suggest that there is some monstrous object called
Time, the parts of which are arranged in such-and-such ways
(a common idea is that of a string on which events are strung
like beads) ; and such statements cease to carry such suggestions
when they are interpreted as short-hand for statements which
do not even appear to mention any such entity, but simply
talk about what will have been the case, etc.!

It is true that in our technical work, when we are deciding
which formulae express discreteness, finitude, etc., we always
turn to ‘U-calculi’ in which the terminology is decidedly more
abstract, and time appears as something like a class of classes
of propositions ordered by a certain relation. This in itself,
however, doesn’t make U-calculi more than handy diagrams;
they need not be taken with any great metaphysical seriousness.
Much more awkward is the fact that many of the conditions
which might be put upon the relation U in a U-calculus are
not expressible as theses in G and H. For example, although

! This, I take it, is the point of Wittgenstein’s remark in the Blue Book.
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symmetry, giving circular time, can be expressed by making
CGpHp a tense-logical thesis, it does not appear that we can
so express the position that time is not circular. But there is more
to tense-logic than has so far been given, and certain enrich-
ments of the symbolism can be expected to fill these gaps.
Much can be done, for instance, simply by making explicit
the quantifiers over sentential variables that are implicit in
saying that something is a thesis, i.e. that for all p, such and
such holds.” If we bring that into the symbolism, we can also
say that for some p, such and such does not hold, e.g. that
for some p, it will always be that p but has not always been that
p; which does state non-circularity. We shall later see, indeed,
that the U-calculus can be defined within a not much enlarged
GH one.

! That such quantifications do not commit us to new entities I have argued
elsewhere, e.g. in ‘Oratio Obliqua’, Proc. Arist. Soc., Supplementary vol. 38

(1963), pp. 115-26.
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THE LOGIC OF SUCCESSIVE
WORLD-STATES

1. The de-trivializing of modality: ‘the world’. SMILEY’s proof of
the consistency of most tense-logics (that they survive the inter-
pretation Gp = Hp = FP = Pp = p) applies to most modal
logics also. For example, the rule to infer FLx from Fo becomes
one to infer ko from ta, CLCGpgCLpLg become CCpgCpg, and
CLpp, CLpLLp and even the S5 CMLpLp become Cpp, when L
and M are thus trivialized. It is sometimes felt that while this
does prove consistency, it also shows that the modal operators
are insufficiently characterized by these calculi. This defect
may be remedied in various ways. One may, for example, devise
modal calculi for which such an interpretation is no¢ possible;
for example, the Lewis calculi which are sometimes called S6,
S7, and S8, in which MMp is a thesis, cannot be so interpreted.
Or one may follow Lukasiewicz and Thomas in introducing
not only the ‘turnstile’ I to indicate that what follows is a thesis,
but also the reversed turnstile 1 to indicate that what follows
is not a thesis, and have such ‘rejections’ as 1CpLp and HCMpp.
Or we may—as Lewis himself does—introduce propositional
quantifiers, say IIp for ‘For all p* and Zp for ‘For some ’, and
have such theses as ZpKMpNp, ‘Something is possible but not
true’.! Or, finally, one may introduce some contingent pro-
positional constant, i.e. some specific proposition a such that
FKaMNa.

The trouble with the last alternative is that it is difficult to
find a contingent proposition which is of sufficient logical
interest to merit a place in a logical calculus. C. A. Meredith?

I An extension of S5 of this sort is touched upon at the end of Saul A. Kripke’s

‘A Completeness Theorem in Modal Logic’, Journal of Symbolic Logic, vol. 24, no. 1

(March 1959), pp. 1-14.
2 (. A. Meredith and A. N. Prior, ‘Modal Logic with Functorial Variables and

a Contingent Constant’, Notre Dame Fournal of Formal Logic, vol. 6, no. 2 (April
1965), pp. 99-109.
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has suggested that one logically interesting contingent pro-
position is ‘the world’ as defined in the first sentence of Witt-
genstein’s Tractatus—‘everything that is the case’. For this ‘sum
of all truth’, Meredith introduces the symbol , with the axioms

I. 2 (‘the world is the case’)
2. GpLCnp  (‘the world is everything that is the case’)
3. CLnp (“the world is not necessary’).

Literally, 2 says that if it is the case that p, then ‘the world’
necessarily 1mphes that p; and g that if ‘the world’ is necessary,
anything at all is the case. The more straightforward NLz
would do here, but Meredith’s variant makes it possible to
define N in terms of z. In a modal calculus with these axioms
subJ01ned the rule to infer FLa from Fa will not hold, since #
is a thesis but Lz is anything but; Meredith therefore subjoms
it to a modal logic which does not have this rule, though it
contains the same theses in C, N, and L as Lew1s s S5. This
calculus will not survive the translation of Lp as p, and for con-
sistency Meredith gives a 4-valued matrix, which can be inter-
preted by supposing that there are only two possible worlds,
(the actual one) and 7, and the four ‘values’ that propositions
can take are ‘true in both worlds® (i.e. necessarily true), ‘true
in the actual world only’ (i.e. contingently true), ‘true in the
alternative world only’ (i.e. contingently false) and ‘false in
both worlds’ (i.e. necessarily false), and the laws are those
formulae which always hold (i.e. for all values of their variables)
either in this world only or in both. The matrix is

CII n 7l 0|L
I | I n 7 o 1
¥ g 1 I 7l 7l o)
I I n 1 n o
0 I I I I 0

It has been pointed out by R. Suszko that this solution to the
problem of preventing confusion between Lp, Mp, and p can
be assimilated to the preceding one by dropping Meredith’s
constant, and introducing instead a function Wp which asserts
in effect that p has the properties of that constant, i.e. that p
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is a truth so comprehensive that all other truths follow from it.
With propositional quantifiers, we can define Wpas KpIIqgCqLCpq,
‘p is a truth, and for any g, if ¢ is true then p necessarily implies
it’. This immediately gives us Meredith’s first two axioms under
a condition, i.e. we get CWpp and CWpCqLCpq. For the third,
we need to lay it down that there is at least one contingent
truth, ZpKpMNp, from which it follows that the totality of
truth is contingent, CWpMNp (or CWpNLp, or CWpCLpq). This
procedure has the advantage of not committing us to the view
that there are in fact any such all-comprehensive propositions,
still less that there is exactly one of them; though we can lay
down ZpWp as a further axiom if we wish to, and we can easily
prove that if p and ¢ are both all-comprehensive truths they
are necessarily equivalent, CWpCWqLEpq.

2. Instantaneous world-states. There are the same different possible
solutions to the problem of precluding the trivialisation of tense-
logic. We may, on the one hand, adopt a non-standard tense-
logic which will not survive Smiley’s translation of the symbols,
e.g. the one for an ending time with FAGpFGp. Or we may
introduce a rejection sign and put it before, say, GCpFp. Or we
may introduce propositional quantifiers and introduce such
axioms as ZpKpFNp, ‘Something is now true which will be
false’. Or we may introduce a constant for a proposition that
expresses the total present state of the world, with axioms
similar to Meredith’s. Or we may introduce a function Wp
which means that p is a present truth from which everything
that is now true permanently follows, i.e. KpIlgCqLCpg, where
Lo = KKoHoGo, or if you like L = GH. Note carefully what
the last part of this definition says; it means that if p expresses
the total present world-state, and ¢ is now true, then although
both p and ¢ may be false at other times (and also p may be
false and g¢ still true), the relation between them. is such—p
so contains ¢g—that the implication of ¢ by p will be true even at
those other times, in fact at all times, however the world
changes. (The now-true proposition ¢ need not of course
always be implied at other times by what is then the totality of
truth, and if it is false it won’t be, but it will be implied even
then by what is now the totality of truth.)

It is also possible to drop the propositional quantifiers and
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simply introduce the function Wp as a new primitive, laying
down for it the axioms

Wi. CWpp
Wa. CWpCqLCpq.

In making a few deductions from these postulates, it will be
simplest to subjoin them, in the first instance, to a tense-logic
strong enough to yield for L, defined as above (and M analo-
gously, or as NLX), the Lewis system S5. We may begin with
the theorem that if p gives the total present world-state it is
permanently equivalent to the assertion that it gives the total
present world state, CWpLEpWp. For whenever p is the totality
of what is then true, it is true (LCWpp), and if p permanently
implies whatever is true, it permanently implies that it does so
(LCpWp). Moreover, not only if now, but if at any time p is the
totality of what is then true, it is permanently equivalent to
the statement that it is that. This follows from the preceding
result, thus:

T1. CWpLEpWD (just proved)

Teo. LCWpLEpWP (T1, RL)

Tg. CMWpMLEpWp (T2, CLCpqCMpMyg)
T4. CMWPLEpWp (T3, ML = L).

Another theorem is that if at any time p is the totality of what
is then true, then whatever ¢ may be, either p permanently
implies ¢ or p permanently implies not ¢. Proof:

Wa. CWpCqLCpq
Ts5. CWpCNgLCpNg (Wa2, subst.)
T6. CWpCAgNgALCpqgLCpNg (W, T,
CCpCqsCCpCrtCpCAgrAst)
T7. CWpALCpqLCpNg (T6, AgNg)
T8. CMWpMALCpgLCpNg (T4, RL, CLCpgCMpMq)
Tg. CMWpAMLCpgMLCpNg (T8, MApqg = AMpMy)
Tro. CMWpALCpgLCpNg (T9, ML = L).

We might in fact have begun by defining a form Q p meaning
‘p is the totality of truth at some time’, i.e. is a ‘possible world’
in the present sense of ‘possible’, as: KMpIIgALCpgLCpNg; and
then defined Wp as KpQ p. The simple IIgALCpgLCpNg is true
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not only of ‘worlds’ but also of impossibilities, i.e. (in this
context), what is never true, since these permanently imply all
propositions, so we might have defined a form Op, meaning
‘p is either a world or an impossibility’, as IIgALCpqLCpNg, and
then defined Q p as KMpOp. The separate logic of O and Q,
especially of Q ,is worth investigating, but here we will simply
prove occasional theses about the equivalent MW. The ordinary
modal variant of Op corresponds to what Carnap calls ‘L-
completeness’, and that of Q p to what he calls being an ‘L-
state’, though in Carnap these are relativized to a language.!
In general the negation of a logically strong proposition is
a comparatively weak one, e.g. to contradict an Aristotelian
universal form ‘Every §'is P’ we don’t need to assert the equally
‘extreme’ proposition ‘No § is P’ but only the comparatively
mild ‘Some § is not P’. It might therefore appear that in order
to contradict so immense an assertion as the totality of truth
we need only say something very feeble, which cannot possibly
itself be a ‘world-proposition’; so that there ought to be a
theorem that if p is a ‘world-proposition’, ‘not p’ is not,
CMWHNMWNp (= CQpNQNp). This cannot, however, be
proved from the basis given. What can be proved is that if p and
Np are both world-propositions, they are the only world proposi=
tions, at least in the sense that every world-proposition is perma-
nently equivalent to one or the other of them. We may symbolize
this as CMWpCMWNpLAWpWNp, and prove it as follows:

C (1) MWp

C (2) MWNp

K (3) LEWpp (1, Tg)

K (4) LEWNpNp (2, T4)

K (5) LApNp (4pNp, RL)
(6) LAWPpWND (3, 4, 5)-

We can also prove a kind of converse of this, namely that if
there are exactly two world-states, each is permanently equiva-
lent to the negation of the other; i.e. if there are at most two
world-states, then if they are not one and the same (or per-
manently equivalent), each is equivalent to the other’s negation,
CLAWpWGCNLEpgLEpNg. From this it follows that if a world-
state is always either p or g, it is always ecither p or Not-p,
T R. Carnap, Introduction to Semantics (1941), pp. 94, 107.
824311 G
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CLAWPpWGLAWPpWNp. (Cf. the n and 7 of Meredith’s con-
sistency-matrix.)

3. The logic of ‘worlds’ and Laplacean determinism. One proposi-
tion which follows immediately from W2 (by substituting FIWg
for p) is
(a) CWpCFWqLCpFWy,

‘If p gives the present total world-state, then if ¢ is a future
total world-state, p permanently-implies that ¢ is a future total
world-state’. All future world-states, in other worlds, are implied
by the present one. It would be pleasant (or disastrous, accord-
ing to taste) if we could use this as a logical proof of Laplacean
determinism; but putting it to that use would be cheating.
For this ‘totality of present truth’ is understood as including
all such future-tense propositions as are true now, including
such truths as there may now be about what the future world-
states are; Laplacean determinism, I think, asserts the de-
ducibility of the future from rather more restricted premisses,
or perhaps claims that the ‘totality of present truth’ in our
sense is deducible from a set of propositions giving (a) the
totality of ‘present’ truth in a more restricted sense, and (b)
certain permanent natural laws. That proposition (A) is not
itself Laplacean appears plainly from the fact that it still holds
within a kind of tense-logic which is quite un-Laplacean,
namely one without a future-tense linearity axiom, in which
there are alternative futures. In this system, it may be remem-
bered, KKpHpGp (Lp) does not imply HGp (though it does
imply GHp), and it might be thought to strengthen W2 if we
replaced L there by HG, i.e. if we read it as CWpCgHGCpq.
But this alteration would still not make W2 deterministic. For
the only information about the future that is conveyed by FIWgq
in a branching time system is that ¢ gives one of the momentary
‘total world-states in some possible future course of events, and
all that the present total world-state permanently implies (i.e.
all that follows whenever the total world state is as it is now)
is that ¢ could be a future world state. This is certainly less than
the Laplacean theory.

4. Non-repetition, repetition, and world-state-hood. One point at
which it does make a difference (in branching time) whether
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we use GH or HG to define the L in the definition of Wp as
K; quCqLCpq, is the following: If we use GH, we can prove that
ifpisa proposmon true at the present time only, then for such
a p we have W, in the sense of this definition, i.e. besides being
true it will permanently imply (‘materially imply’, of course)
whatever is now true. What we have to prove here is
CKKpHNpGNpIlgCqGHCpq, and the proof is as follows:

IIgC (1) p
C (2) HNp
C (3) GMp
C(4)q
K (5) Cpq (4, CqCpq)
K (6) HCpg  (CNpCpg, RHC; 2)
K (7) GGpg  (CNpCpg, RGC; 3)
(8) GHCpg (4, 5, 6, CKKpHpGpGHp).

(Informally: now, when ¢ is true, it is materially implied by
anything, e.g. by p; at all other times, when p is false, p materially
implies anything, such as ¢.) This oddity reflects the difference
between merely permanent implication and logical implication.
The theorem can also be proved with an M before both ante-
cedent and consequent, i.e. if p is or has been or will be true
at one time only, then it is a ‘world’ proposition in the sense
defined, though not necessarily the present one. (We get this
result directly from the last by RMC.) And in a linear time-
scheme, in which we have the mirror image of the thesis used
in proving line (8) above, we can also prove line (8) with HG
for GH. But in a time-scheme with alternative futures, in which
we do not have this mirror image, this proof will fail. In-
tuitively, what KKpHNpGNp will now mean is that p is now
true, and as it happens has always been false (but might not
have been) and is bound to be false for all time hereafter. It is
as if it had never until now tried being true, and having tried
it once, is scared off it for all possible future time. (We can drop
this anthropomorphism, if it’s worrying, by supposing it to be
a proposition about an individual behaving like this with re-
spect to some particular thing.) And it might in fact have tried
it in the past without being scared off, and then repeated it
under different circumstances, and so not have permanently-
materially-implied all the circumstances of its original occur-
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rence; this unfits it for being a ‘world’ proposition with W
defined in terms of HG.

Wp does not conversely entail that p is true at one time only;
but because of the comprehensiveness (however ‘extensional’)
attributed to p by Wp, in the sense of W which would justify
Wa, a number of theorems can be proved about the repetition
of total world states, if any such thing should occur. For example,
it can be proved that if ‘we have had all this before’ (all of it),
we’ll have it all again, CWpCPWpFWp. Intuitively, the point
is simple. If we had before the same totality of truth that we
have now, then part of what we had then will have been that
we were going to have it all later, so that that must be among
the things that we have now. Or formally:

G () Wp
C (2) PWp
K (3) HFWp (1, CpHFp)
K (4) PKWpFWp (1, 3, CHpCPgPKgp)
K (5) PLCWPFWp (4, CEWpgLCpq)
K (6) LCWpFWp (5, PL=1L)

(7) EWp (1, 6).

Again, if we have had it all once before, we have had it twice,
CWpCPWpPKWpPWp. (Analogous reasoning.) And it can be
shown metalogically that we can prove any theorem to the
effect that if we have had it all at least z times before we have
had it all at least n-1 times before; so that if we have had it
all once before there is no limit to the number of times we have
had it all before.

It might, in fact, be thought provable that if it is the case
now that we have had it all before, then it has always been the
case that we have had it all before, CWpCPWpHPWpH. This
does not, however, seem to be provable in any tense-logic of the
kind we have been considering which leaves open the possibility
(or positively asserts) that time is dense. The difficulty is to
show that when we have an indefinite number of repetitions
going back into the past, they must take us indefinitely far
back; it could be (so far as we can show with this apparatus)
that there is a point at which and before which we don’¢ strike
this ‘world’ again, though it is repeated an indefinite number of
times as we approach this point. In a metric tense-logic such as
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we shall be considering in the next chapter, with variables for
intervals, we can distinguish between being at different inter-
vals from our imagined border, so that the worlds in this ap-
proaching series could not be completely the same if there were
any such border; and in fact in such a logic CWpCPWpHPWp
is provable. It is also provable in the logic of discrete time, which
has, for instance, the thesis CKPpPNPpPKpNPp (allied to the
thesis CKFNpFGpFENpGp discussed in the last chapter). For
let us suppose we have Wp and PWp but not HPWp, i.e. that
we have Wp, PWp and PNPWp (NH = PN). We can then prove
a contradiction thus:

*

C (1) Wp
* C (2) PWp
C (3) PNPWp
K (4) PKWpNPWp (2, 3, CKPpPNPpPEKpNPp)
K (5) PLCWpNPWp (4, RPC)
K (6) LCWpNPWp (PL =1L)
(

7) NPWp (1, 6).
We can also prove, even without assuming discreteness or
using interval-variables, that if we have had it all before, then

we have also had-before everything between this time and the
last time, i.e. CWpCPEKqPWpPEqPy.

5. The definition of tenses in terms of Diodorean modalities. A further
facet of the logic of total momentary states is the following:
Diodorus defined the possible as what is or will be; is there
any way of defining simple futurity in terms of Diodorean
‘possibility’? As a start, one might try defining ‘it will be’ (Fp)
as ‘It is not, but either-is-or-will-be’ (KNpMp, Diodorean M).
But this obviously will not do; for ‘it will be’ is not understood
as excluding ‘it is’, even though it does not entail it. P. T. Geach,
however, has suggested a modification of this which is not open
to this objection. ‘It will be that p’, he suggests, can be equated
with ‘For some ¢, ¢ is not the case, but it either-is-or-will-be
that both-p-and-¢’, i.e. Fp = ZgKNgMKpq. For if p is going to
be true later (whether it is true now or not), there will surely
be some proposition which will be true contemporaneously with
it but is not true now.! If we do define Fp in this way, and use

! Geach’s definition was suggested by McTaggart’s dictum that ‘there could be
no time if nothing changed’ ( The Nature of Existence, ch. xxxiii, § 309).
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the system S4.3 for M, it is not hard to prove that Mp is
equivalent to ApFp, in this sense of F; i.e. we can prove
EMpApZqKNgMKpq in quantified S4.3. Indeed, we can prove
it in quantified M or T. It is equivalent to the following three
implications.

1. CMpApZqKNgMEKpq
2. CpMp
3. CZgKNgMEKpgMp

Of these, 2 is an axiom of M. And since 4 =CN, 1 =
CMpCNpZgRENgMEpq, which follows by instantiation from
CMpCNpENpMEpp (CMpMEpp is of course in M and T). 3§ =
IqCKNgMEKpgMp, which simply adds an antecedent in
CMEKpgMp. In other words we can prove in Geach’s system the
equivalence corresponding to the definition of the Diodorean
M (as ApFp) in the ordinary tense-logical systems.

But can we prove in the ordinary systems, enriched with pro-
positional quantifiers (with the ordinary rules for these), the
equivalence corresponding to the definition of F in Geach’s
system, i.e. EFpXgKNgMKpq, i.e. EFpZqKNqAKpqFKpq? Here
KNgAKpgFKpq is equivalent to AKNgKpgKNgFKpg, and since
the alternative KNgKpq is self-contradictory it can be ignored,
and what we have to prove is simply

EFpXqKNgFKpq

Of the two implications that go to make up this, the proof
of CZgRENgFEpqFp is simple. This = IIgCKNgFKpqFp, which
follows from CFEKpgFp (which we have even in Lemmon’s mini-
mal system Ky, but the converse implication CFpXgKNgFKpq
is another matter. Note, in the first place, that ZgKNgFKpq,
‘Some proposition is now false but is going to be true along with
p’, is equivalent to ZgKg¢FKpNg, ‘Some proposition’—namely
the negation of the one we first thought of—*is now frue but
is going to be false at some time when p is true’. And this is the
negation of IIgCqNFEpNg, or IIgCqGCpq. And this means that
if we could prove that Fp implies 29K NgFKpg, we could prove
it inconsistent with IIgCqgGCpq. But if Fp is inconsistent with this,
it is inconsistent with the stronger proposition IlgCgHGCpyq, i.e.
Wp. In other words, we could prove that if anything, say p,
is going to be the case in the future, then this p cannot give the

} — CApEqENGMEpgMp.
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total present state of the world—that the present world-state
is not going to be repeated. It is not really surprising that the
equivalence corresponding to Geach’s definition should give
us this; for if p were the present total world-state, and Fp
asserted its future repetition, there couldn’t be a ¢ that was
false now but would be true at the time of §’s later occurrence,
for then that wouldn’t be a genuine repetition of the fofal present
state (which includes ¢’s falsehood).

The consequences of Geach’s suggestion can be developed
with greater formal neatness if we put it in terms of G and the
Diodorean L. Geach’s definition of F yields a definition of Gp
equivalent to IlgCqLCNpg, i.e. ‘Any ¢ which is now true, is and
always will be implied by not p’—given Gp, this true ¢ is
(materially) implied by not-p now because it is true, and will
be implied at all future times by not-p because at all future
times not-p will be false. Alternatively, and equivalently, we
might define Gp as IIgCqLCNgp, i.e. ‘p is and always will be
implied by the denial of any ¢ which is now true’—given Gp,
this denial will now imply p because it (i.e. Ng) is now false,
and it will do so at all future times because p is then true and
so ‘implied’ by anything. This last definition yields a neat proof
of CGCpqCGpGyq, using only the system T for L. We have to
prove

CIIrCrLCNrCpqCIIsCsLCNspITtCtLCNtg,

and do it thus:

IItC (1) IIrCrLCNrCpq
C (2) IIsCsLCNsp

C(3) ¢

K (4) CtLCNtCpq (1, U.I)

K (5) CtLCNtp (2, U.L)

K (6) LCNtCpq (4> 3)

K (7) LCNip (55 3)

(8) LCNig (7, 8)
(CLCpCqrCLCpgLCpr is in T). We also have

oo — Lo

— FLCNgLo (by CLgLCpq)

— FCgLCNgLo (by CpCqp)

— F1gCqLCNgLo (by U.G.)
— FGa (by Df. G).
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And we have

1. CLpp

2. CLpLCNgp (CLgLCpq)

3. CLpCgLCNgp (2, CCpgCpCry)
4. CLpIlgCgLCNgp (3, II2)

5. CLpGp (4, Dt. G)

6. CLyKpGp (1, 5, CCpgCCprCpKqr)
7. CIIgCqLCNpgCpLCNpp  (U.IL)

8. CGpCpLCNpp (7, Df. G)

9. CKpGpLCNpp (8, CCqCprCEpgr)
10. CKpGpLp (9, CLCNppLp)
11. ELpKpGp (6, 10),

which corresponds to the definition of the Diodorean L in
ordinary tense-logic. But if, conversely, we could prove in
ordinary tense-logic that Gp not only implies but is equivalent
to IIqgCqLCNpg, this will make GNp equivalent to IIgCqLCpq,
which is implied by Wp (since what permanently implies every
proposition now true, implies and always will imply it). Hence
we would have CWpGNp, or CWpNFp, i.e. the present total
truth will never be true again.

6. Development of the U-calculus within the theory of world-states. The
‘worlds’, or instantaneous total states of the world—the p’s such
that MWp—of the present chapter, are clearly the same as the
‘worlds’ for which a, b, ¢, etc., may stand in the U-calculi
sketched in Chapter III, and it is not difficult to bring these
two ‘logics of worlds’ together. To do this, let us begin by
slightly modifying both. Firstly, instead of treating the pro-
positions of tense-logic, as they occur in the U-calculus, as pre-
dicates of worlds, and writing ‘It is the case in the world a that
p’, or ‘It is the case at the instant a that p’, simply as pa, let
us use the form Tap. Our basic stipulations then take the forms

Ut. ETaNpNTap

Uz2. ETaCpqCTapTaq
Us. ETaGpIIbCUabTbp
Uy4. ETaHpITbCUbaThp.

Conditions on U may be stated as before, and proofs take very
much the same shape. If only tensed propositions may be sub-
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stituted for p and similar variables and if they enter the calculus
only as substitutions for p, etc., then although it is not quite
said that such propositions are predicates of worlds or instants,
they do only occur as part of the form Tax which does seem to
predicate something of a world or instant, and which anyhow
expresses a function of a world or instant, namely ‘It is the case
in (at)—that o’. But if the variables p, etc. are the very variables
used in the propositional calculus to which, with quantification
theory, the U-calculus is appended, then there would seem to
be nothing syntactically wrong with such formulae as T67ap
or TbUac, or, conversely, with FTap or PUbc. And there will be
nothing semantically wrong with it either if the U-calculus can
be given an interpretation within tense-logic. Such an inter-
pretation, moreover, could be metalogically useful. It is easy
enough to deduce tense-logical formulae preceded by Tz in the
U-calculus, and to show, for example, that transitivity
(CUabCUbcUac) gives the S4-type formula TaCGpGGp; but it
would be good to have means also of showing that CGpGGp
gives transitivity.

Just such a translation is possible if we treat a, b, ¢, etc., as
a sub-class of propositional variables, restricted to the (possible)
world-propositions of the present chapter, for which we can lay
down axiomatically

A1, Ma
A2. ALCapLCaNp

where Mo = A4oaPoFo and Lo = KKaHoGa. The variables
a, b, ¢, etc., may be substituted for p, ¢, r, etc., in the basic
tense-logic used (e.g. we have CGCapCFaFp by substitution in
CGCpqCFpFyg), but not vice versa; for a, b, ¢, etc., we can only
substitute other world-variables (e.g. we do not have FMp from
A1). Even complexes like Na are not substitutable for world-
variables, though of course they are well-formed and are sub-
stitutable for p, ¢, r, etc. (If a expresses the total world-state at
some instant, Na will not express the total world-state at any
instant—unless there are only two instants—though of course
it expresses something.) We may now define T and U as follows:

Tpq = LCpq
Upq = LCqPp (= TqPp).
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These definitions are quite general; but in practice we consider
mainly the special cases which have the forms Tap and Uab.
Tap, ‘It is the case in world a that p’, is thus equated with
LCap, ‘The total world-state a is one which permanently implies
that p’, and Uab, “World a is earlier than world &’, with TbPa,
‘It is true in world & that it has been the case that the world-
state is a’. The equivalence (EUabTbPa) corresponding to this
definition of Uab is provable in the U-calculus, if we add to it,
for the truth in a world of a proposition which is itself a world,
the stipulation Taa (every world is true in itself) and CTablab
(the only world-proposition which is true in any world is that
world-proposition itself). We then have, for CUabTbPa,

C (1) Uab
K (2) KUabTaa (1, Taa)
K (3) ZcKUcbTea (2, E.G.)
(4) TbPa (3, E (4) (3) from Uyg);

and for CTbPaUab, i.e. CZcKUcbTcaUab,

IIcC (1) KUcbTca
K (2) KUcblca (1, CTablab)

(3) Uab (2, CIpgCopeyq).

Our present concern, however, is not with proofs within the
U-calculus, but with proofs of the postulates of the U-calculus
within tense-logic supplemented by A1, A2, Df. T, and Df. U.

Positively, we can prove Ur and U2 from Lemmon’s minimal
tense-logic K¢ with these supplementations. Splitting the
equivalences U1 and Uz into their component implications, we
have to prove

Ur.1. CTaNpNTap Ur.2. CNTapTaNp
Uz.1. CTaCpgCTapTaq U2.2. CCTapTaqTaCpq.

We may begin with Uz.1, which expands to CLCaCpgqCLCapLCayq,
this being provable in K as follows (the L fragment of K4, it will
be remembered, has all the laws of the ‘Brouwersche’ modal
system, i.e. T+CpLMp):

1. CCaCpqCCapCagq (p.c.)
2. CLCaCpqLCCapCaq (1, RLC)
3. CLCaCpgCLCapLCag (2, CLCpgCLpLq, Syll).
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Of the others, Ur.2 expands to. CNLCapLCaNp, which, since
A = CN, is just A2. Ur.1r expands to CLCaNpNLCap, which
amounts to the denial of the conjunction KLCaNpLCap. We
show this conjunction false (and so Ur.1 true) by proving from
it the denial of Ma, i.e. A1, thus:

C (1) LCaNp

C (2) LCap

K (3) LCaKpNp (2, 1, CLCpqCLCprLCpKqr)

K (4) LNa (35 NEpNp, RL; CLCGpgCLNgLND)
(5) NMa (4, LN = NM).

(The theses appealed to in the proofs of lines (3) and (4) may
be proved in the same way as U2.1.) Finally we prove Uz.2
from the rest without expanding T, except in this proof of a rule
(call it RT) to infer FTao from Fa:

Fa — FCaa (by CpCqgp)
— FLCac  (by RL).

We then prove CCTapTaqTaCpq by similar steps to those used
in the proof of CCTpTqTCpq in Scott’s 1964 system for discrete
time (Section g of Chapter IV).

But whether Ug and U4 are provable without a strengthen-
ing of the basis somewhere, is less certain. The best I have
been able to come up with are the following ‘proofs’ of
CTaGpIIbCUabTbp and CTaHpITbCUbaTbp (which are im-
plicational halves of Ug and Uy):

IT6C (1) LCaGp (= TaGp)
C (2) LCbPa (= Uab)
K (3) LHCaGp (1, ?)
K (4) LCPaPGp (3, CHCpqCPpPy)

K (5) LCPap (4, CPGpp)
K (6) LChp (2, 5, L-syll)
(7) Ttp (6, DE. 7).
For our half of U4, we can prove the lemma CKbpLCbp, thus:
C (1) Kbp

K (2) NCbNp (1, p.c.)
K (3) NLCbNp (2, CLpp)
(4) LCbp (3, A2),
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and then we have, for the main theorem:

IIG (1) LCaHp (= TaHp)
C (2) LCaPb (= Uba)
K (3) LCaPKbp (1, 2, CKHpPqPKpq)
K (4) LCaPLCbp (3, lemma)
K (5) MPLCbp (4, A1, CLCpqCMpMq)
K (6) LCbp , ?)
(7) Top (6, DE. T).

We can remove the queries from these proofs if we can prove
CLCapLHCap and CMPLCapLCap in K¢+A1+A2. And if we can
do this, the following result, in which we add CPPpPp to our
basis and prove the transitivity of U, is significant:

C (1) LCbPa (= Uab)
C (2) LCcPb (= Ubc)
K (3) LHCbPq (1, CLCapLHCap ?)
K (4) LCPbPPa  (3; CHCpgCPpPg, RL)
K (5) LCPbPa (4, CPPpPp)
K (6) LCcPa (1, 2, 5)
(7) Uac (6, Df. U).

In this line of investigation, as in others, we can probably
dispense with world-variables, if we wish, by adding to our
theses conditions corresponding to the axioms Ar and Az, e.g.
in the calculus without world-variables we would aim to prove,
instead of ETaNpNTap, the thesis

CKMpIIgALCpqCLONGETpNr N T pr.

—
(&2

7. ‘States’ consisting of combinations of Hamblin tenses. In the type
of tense-logic for which Hamblin’s 15-tense theorem holds, there
is a species of ‘state’ proposition which is not at all a complete
world-state proposition, but which nevertheless has some logical
interest. This is a conjunction with fifteen conjuncts, each of
which is one of the fifteen tenses or its negation, each of the
tenses being covered one way or the other, and all applied to
a single proposition. There are 215 different conjunctions, each
incompatible with each of the others. Indeed the great majority
of them are internally inconsistent ; but there are upwards of 50
which are not. In all of these there are redundant components
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which can be sheared off, since if one of the fifteen tenses is
affirmed all those which it implies can be taken for granted,
and if one of them is denied, the denials of all those which
imply it can be taken for granted. Some specimens are the
following:

(a) HGp; this implies the affirmation of all the rest.

(b) KKPGpNHpPHp (= KKPGpPNpPHp) where PGp implies
Gp, FGp, GFp, Fp, HFp, PFp p, and GPp; PHp implies
HPp; and NHp implies NFHp and NHGp.

(¢) KPGpNHPp (= KPGpPHNY).

We might diagram these three as follows, with the vertical line
for the present moment, past to the left, future to the right, an
open strip above the horizontal for times of truth, and a filled
in one below it for times of falsehood:

(a) HGp

(b) KKPGpPNpPHp
KPGpPHNp

© m— !

The bits without covering or shading may be filled in in dif-
ferent ways which propositions of the class we are considering
do not distinguish (they do give a set of mutually exclusive and
collectively exhaustive determinations of p, but finer discrimina-
tions are possible within most of them). One thing which is
clear with each of these three, however, is that they have come
to stay. In the diagram, moving the vertical line to the right
makes no difference to the general shape of the picture, and
formally, for each state « in this group (we may call them
‘Kribs states’, after the initiator of this line of investigation),
we may prove CaGa. The proofs are quite simple; that for (c)
goes thus:

1. CPGpGPGp (CPpGPp, p|Gp)
2. CPHNpGPHNp (ibid., p/HNp)
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3. CKPGpPHNpKGPGpGPHNp (1, 2, CCprCCqsCEpgKrs)
4. CKPGpPHNpGKPGpPHNp (4, CKGpGqGEpy).

Not all Kribsstates are thus permanent; some of them, indeed,
are essentially borderlines, and cannot have any duration at all.
This applies, for instance, to all the states which combine the
denial of PGp or of FHp with the affirmation of Gp or of Hp.
The simplest case of this sort is KENpHpGp, ‘p is false now but
always has been true and always will be’. And most of the states
are bound, by the information contained within them, to give
place to different ones sooner or later, and to go through a
cycle which finishes either with something permanent (some
combination either of Gp or of GNp with various additions
about the past) or with an oscillating pair (containing or imply-
ing KGFpNFGp, i.e. KGFpGFNp, or GEKFpFNp). Sometimes
what the next state will be is unambiguous, and sometimes
there will be alternative possible successors; and sometimes
there may be not only no next moment (there is no next
moment in dense time) but no next state either, but rather a
period of fuzziness during which between any pair of moments
in which p is true there will be one at which it is false (giving,
of course, a different Kribs state), and between any pair of
moments at which p is false there will be one at which it is true.
Note. For the filling-in of the gaps in Section 6, see Appendix B, Sections 3 and 4.
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METRIC TENSE-LOGIC

1. The syntax of intervals. I have mentioned the possibility of
enriching tense-logic with variables representing intervals.
A system of this sort was sketched in Time and Modality, with the
form Pnp for ‘It was the case the interval n ago that p’, and Fnp
for ‘It will be the case the interval n hence that p’. Along with
these go quantifiers, giving us ZnFnp for ‘For some =, it will be
the case the interval # hence that p’; IInFnp for ‘For all n, it will
be the case the interval » hence that p’; and similarly with P.
ZnFn, IInFn, ZnPn, IInPn may be respectively abridged to the
F, G, P, and H of the preceding chapter, provided that there is
no free n in what follows them.
The proviso is necessary, because, for example
(A) ‘For some n, it will be the case the interval » hence that
both (i) I am drinking and (ii) it will be the case the inter-
val n later that I am ill’ (ZnFnKpFng)

means something slightly different from

(B) ‘It will be the case sooner or later that both (i) I am
drinking and (ii) it will be the case the interval z later
that I am ill’ (FKpFng).

For (A) is a complete proposition, and means that some time
after now I shall be drinking, and exactly the same amount
of time after that I shall be ill. (B), on the other hand, is a still
open sentence, and doesn’t say anything definite until the
variable 7 is replaced by a specific interval or else bound by
a new quantifier somewhere. If we put a Zn at the beginning of
(A) it will be vacuous, and leave the sense unaltered ; if we put
it at the beginning of (B) it will give us
(C) For some n, it will be the case sooner or later that both
(1) I am drinking, and (ii) it will be the case the interval
n later that I am ill’,
t Ch. ii.
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and this means something a little less specific than (A), namely
that I am going to be drinking and then be ill, without anything
about the illness being twice as far away from now as the
drinking. The F of (B) and (C) can, however, be replaced by
a quantification over intervals, provided that the variable used
is not n, e.g. we could give (C) as ZnZmFmKpFnq.

It ought not to be necessary to say that quantifications of
this sort do not imply that intervals are entities. ZnPnp, ‘It was
the case at some time or other that p’ is just a generalization
of remarks like ‘It was the case this time yesterday that p’, in
which there are no named entities except any which may be
named by expressions within p. There is, however, a more
subtle mistake that may be made here. In this symbolism the
n has no meaning apart from the preceding P, and it cannot
get into the proposition that follows it except in the company
of that P. In ordinary speech we can be misled into carving
sentences up in a different way. ‘I was sick yesterday’ suggests
that ‘yesterday’ modifies ‘sick’, and that being sick-yesterday
is a particular way of being sick. It is not; it is, if it is anything
at all like that, a way of having been sick; and more accurately,
‘having been yesterday’ is a way of having been. Buridan! has
an instructive puzzle about this. If Socrates will run tomorrow
(Sortes curret cras), is it true to say that he will be running to-
morrow (Sortes erit currens cras)? The problem here has nothing
to do with differences between performances and activities; put
all that on one side. The pro argument is that ‘Socrates will be
running tomorrow’ is the normal and proper way of putting
‘Socrates will run tomorrow’ into the standard logical form
with subject (Sortes), copula (erit) and predicate (currens). The
difficulty is one of applying the rule that a future-tense pro-
position is true if and only if the corresponding present-tense
proposition will be true. For ‘Socrates runs tomorrow’, i.e. Sortes
currit cras with the ordinary present tense (not the journalistic
‘runs’), is never true and never will be. Buridan’s answer is that
when the verb is spread out into copula and predicate, ‘to-
morrow’ does not modify the predicate but the copula; the
predicate is not currens cras, but the copula is erit cras. And when
the rule for the truth of such propositions is being applied, the
‘tomorrow’ must be taken right out of the present-tense pro-

v Sophismata, ch. 4, sophisma 5.
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position which is going to be true then; it belongs in fact with
the ‘will be true’ that is said of it—the present-tense Sortes
currit (with the ‘tomorrow’ out of it) will-tomorrow be true.
Similarly with ‘Socrates argued last year’; it should be spread
out to ‘Socrates was-last-year arguing’, and it’s plain Socrates-
is-arguing which was-last-year the case.

2. Postulates for metric tense-logic. In axiomatizing the metric
system, it is convenient to think of variables m, =z, etc., as
representing numbers measuring the intervals. These may be
drawn from the real numbers, or only from the rationals, or
only from the integers; which we do here will influence what
is provable from our postulates. Other differences depend on
whether we draw upon the whole range of such numbers—
positive, negative, and zero; or only upon those greater than
or equal to zero, i.e. zero and the positives; or only upon the
positives. In theses we may substitute for them any expressions
which denote numbers of the sort being used, and we may re-
place any such expression by an arithmetically equivalent one,
e.g. m by (n+m—n).

If we use the whole range, only one tense-logical primitive
will be needed; let it be ¥, and let Pnp be defined as F(—n)p.
We may then subjoin to propositional calculus and quantifica-
tion theory the rule

RF: Fa——> FFna
and the axioms

FO :CFopp FC :CFnCpgCFnpFnq
FN1:CFnNpNFnp FF :CFmFnpF(m-n)p
FN2:CNFnpFnNp FII:CIInFmFnpFmIInFnp.

These (apart from the last, which replaces an FX) are sub-
stantially the postulates in Time and Modality, except that there
they are set up for the future only (apart from FO), with
negative values of n excluded. Similar postulates are used by
Rescher for the calculus with negative numbers allowed, and
with Pn as F(—n) ;! he uses CIInFnpp in place of FO, and the law

FK:CFnKpqKFnpFnq

T Nicholas Rescher, ‘The Logic of Chronological Propositions’, Mind, Jan.
1966.

824311 H
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in place of FC. These last differences are of course trivial; it is,
as Rescher points out, an easy matter to prove either set of
postulates from the other. He also points out that, given FN1
and FNg, it is easy to prove the converses of the remaining
axioms.

The use of negative numbers, however, is far from tri-
vial. It enables Rescher and Meyer to prove, for example,
CFEmIInFnpIinFnp, from which we get CXmFmIInFnpIInFnp, i.e.
CFGpGp. In the proper sense of ‘It will be that’ and ‘It will
always be that’, this is quite counter-intuitive, but in Rescher’s
system F in effect means ‘It is or has been or will be that’ and
G ‘It is and always has been and always will be that’, which
gives them the properties of the M and L of S5 (e.g. CMLpLp).
In this system it doesn’t in fact matter whether we choose our
measure numbers from the reals, the rationals, or the integers;
the differences between discrete, merely dense and continuous
time do not appear—as far as the symbols go, the system has
all the laws, trivially (e.g. it has CFpFFp because it has CpFp,
and it has CKFNpFGpFENpGp because both antecedent and
consequent are inconsistent—think of them as KMNpMLp and
MENpLp in S5, where MLp = Lp).

If we want to make finer distinctions within the system, we
must reinstate the difference between past and future. As a
first step, we may exclude negative numbers from our interval-
measures (still leaving zero), replace the definition of Pnp as
F(—n)p by a mirror-image rule, and add the mixing axioms

FP1 :CFmPnpF(m—n)p, form =n
FP2 :CFmPnpP(n—m)p, forn—=m
FPII:CIInFmPnpFmIInPnp.

The provisos on FP1 and FP2 are of course needed because only
non-negative numbers are to be used in the formulae. We add,
however, a rule that if something holds under both provisos
we may drop them. The following proof will illustrate this:

IImIInC (1) Fmp
C (2) Fnq
K (3) F(m+n—m)q (2)
K (4) FmF(n—m)g, forn>m (3, Cnv. FF)
K (5) FmKpF(n—m)g, for n = m (1, 4, Cnv. FK)
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(6) FmKpZiFlg, forn=m (5, EG)
(7) AFmEpZIFlgFnKqZkFkp,
for n > m (6, CpApq)
(8) F(nt+m—n)p (1)
(9) FnF(m—n)p, form >n (8)
(10) FnKqF(m—n)p, for m = n (2, g)
(11) FnKqZkFkp, form =n (10)
(12) AFmEKpZIFlgFnKqZkFkp,
form = n (11, CpAgp)
(13) AFmKpZIFlgFnKqZkFkp (7, 12, drop provisos)
(14) AZmFmKpZIFlgZnFnKqZkFkp
(13, EG)
(15) AFKpFqFKqFp (14, Df. F).

What has been proved here is in effect CKFpFqAFKpFgFKqFp,
i.e. Hintikka’s axiom for S4.g with F for M. Since Fnp in this
system includes the case FOp, a ‘zero future’ which is equated
with the present, the proper meaning of the form ZnFnp is ‘It
is or will be the case that p’, i.e. Diodorean possibility. In the
full past-future calculus developed in this way, we have a basis
for Hamblin’s original system, with F and P for Diodorean
possibility and its mirror image; at least, we have exactly that
if we let our measure-numbers be the rationals, and at least
that if we let them be the reals or the integers.

It is important to notice that in the above proof we are not
able to proceed as follows:

K
K
K
K
K
K
K
K
K

—K  (5) FmEKpF(n—m)q, forn > m
—K (6") AFmKpF(n—m)qFnKqF(m—n)p, for n = m

(5, CpApg)
—K (10) FnKqF(n—m)p, form =n

—K (11") AFmEpF(n—m)qFnKqF(m—n)p, for m = n
(10, CpAgp)
—K (12") AFmEKpF(n—m)qFnKqF(m—n)p
(6', 11, drop provisos)

For (6'), (11'), and (12’), except where m = n, are ill-formed
on both provisos (in each case, unless m = n, either n—m or
m—n will be a minus quantity).

If we distinguish the present totally from the past and the
future by discarding the forms FOp and POp and drawing upon
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positive numbers only for our interval-measures, we must
change the provisos in FP1 and FP2 above to ‘for m > »’ and
‘for n > m’, and add the further axiom

FPg:CFnPnpp.

This amounts to ‘CFmPnpp, for m = n’, and provisos are now
to be dropped when something holds under all three of the
possible ones. Within this basis we can construct GH-calculi
or PF-calculi of the more standard sort described in Chapter
III. The above proof of Hintikka’s law for the Diodorean
M, for example, can be replaced by a similar proof (using three
provisos instead of two) of the analogous law, with three alter-
natives, for the proper future, i.e.

CKFpFgAAFKpqFKpFgFKqFp.1

The device of provisos can be dropped, at least in the middle
system, if we incorporate not only arithmetical expressions but
also arithmetical propositions, such as m = n, into the body of
our calculus; but this must be done with circumspection. It
will not do, for example, to replace FP1 (in the third system) by

C(m = n)CFmPnpF(m—n)p,

for when m < n, F(m—n)p will still be ill-formed. Geach, how-
ever, has pointed out that this difficulty may be overcome by
using |m—n| for the absolute difference between m and =, i.e.
the non-negative number that measures the difference between
them, whichever way it goes. FP1 and FP2 can then be re-
placed by the pair:

C(m = n)CFmPnpF|m—n|p
C(n = m)CFmPnpP|m—n|p.

As with the non-metric systems, if we drop the mirror-image
rule in favour of separate mirror images of the other rules and
axioms, it is not necessary to do this with all of them. For
example, given the rest, at least PP is derivable from FF, and
in the ‘middle’ system, PO from FO, thus:

Pop — PoFop (PF1, conv.) — Fop (PF2) — p(FO).

! For another proof within this calculus, and for further discussion of metric
tense-logic generally see A. N. Prior, ‘Postulates for Tense Logic’, American Philo-
sophical Quarterly, April 1966.
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3. Interaction of the A series and the B series. This apparatus en-
ables us to state precisely some relations between McTaggart’s
A series and his B series. It is important, as we have scen, not
to treat the A series asifit were a B series; just that constitutes
McTaggart’s Fallacy. It was, however, practically his only fallacy
in this area, and it should not lead us to imagine that the A series
and the B series are so distinct that they cannot be brought into
a common context. As McTaggartsaid, the A series ‘slides along’
the B series and vice versa; ‘later and later terms pass into the
present’ and ‘presentness passes to later and later terms’. Itis a
particular merit of Rescher’s article, referred to above, that he
makes it quite clear that what he calls ‘chronologically in-
definite’ time-references can occur within what he calls ‘chrono-
logically definite’ ones, i.e. that what can be or not be the case
at a given date may be something tensed, e.g. that it will be
raining, and the relations between the two series can be given
by such simple rules as that it is (permanently, or maybe even
tenselessly) the case at ¢ that ‘it will be the case the interval 2
hence that p’ if and only if it ‘is’ the case at ¢-+n that it simply
is (present-tense) the case that p.

It is also clear from Rescher’s article that we may, con-
versely, embed dated propositions within tensed ones. It has,
indeed, been pointed out by Broad! that our ordinary use of
dates and of words like ‘earlier’ and ‘later’ is tensed rather
than tenseless. ‘Before either battle had happened it would have
been true to say ‘“There will be a battle at Hastings and there
will be a battle at Waterloo 749 years later”. . .. During the
battle of Hastings it would have been true to say “There is
a battle going on at Hastings and there will be a battle at
Waterloo 749 years later”. At any intermediate date it would
have been true to say’, etc., etc. ‘No one but a philosopher
would say, “The Battle of Hastings precedes the Battle of
Waterloo by %749 years™.” Moore also, commenting on McTag-
gart’s ‘If M is ever earlier than N, it is always earlier’, similarly
comments, ‘Queen Anne’s death was earlier than Marlborough’s
(merely another way of saying “Anne died before Marl-
borough”): that is true now; but it was not always true; e.g.in
55 B.C. it was true that Anne would die before Marlborough,
but not that she did die before Marlborough. The only thing

1 Examination of McTaggart’s Philosophy, vol. 2, pp. 29-89.
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that both was true in 55 B.c. and is true now is the proposition
“Either Anne will die before Marlborough, or Anne did die
before Marlborough, or Anne is dying before Marlborough”,
and this alternative proposition certainly is true now, was true
at every past moment, and will be true at every future.” Dated
propositions, in short, are not a-temporal, but certain disjunc-
tions of dated propositions are true at all times. McTaggart
apparently ‘imagines that “either was at some time earlier, or is
now earlier, . . . or will at some time be earlier’” entails some
proposition that could be expressed by “‘is earlier’” where “is”
is used timelessly, as it is said to be in “twice 2 is 4”’: but is there
any such proposition? If there isn’t, then he is using it as short
for the disjunction.’t

Even the ‘omni-temporality’ of such disjunctions, and of
forms that may be ‘short for’ them, means that the prefixing
of tense-operators to them (with or without stated intervals)
is a little trivial. The rule of truth for such complexes would
be simply that ‘It is (was, will be) the case that p’, where p is
of this sort, is true if and only if the simple p is. If, however, it
is maintained that either dated propositions or any other
propositions (e.g. Moore’s exampleof ‘242 = 4’) are non-
temporalin the sense thatit ‘makes nosense’ to prefix tense-opera-
tors to them, we do encounter one serious problem, namely,
does it make sense to prefix such operators to compounds, e.g.
conjunctions and disjunctions, of which one part is temporal
and the other not? Wittgenstein says that ‘the logical product’,
i.e. conjunction, ‘of a tautology and a proposition says the same
as the proposition. Therefore that product is identical with the
proposition.’? Equating non-temporal propositions with Witt-
genstein’s ‘tautologies’, if they are true, and with his ‘contra-
dictions’, if they are false, this would suggest that if we use
a, b, etc., for non-temporals and p, ¢, etc. for temporals, Kap
is the same proposition as p when a is true, and the same as a
when that is false; and Aap is the same as p when a is false, and
as @ when that is true. It is certainly the case that if a is time-
lessly true, the truth-value of Kap will be liable to vary with

Y The Commonplace Book of G. E. Moore, pp. 404—5. Cf. also Moore’s Lectures
on Philosophy, pp. 9-10.

2 Tractatus, 4. 465. The possible relevance of this passage to this problem, and
the solution it suggests, were pointed out to me by Miss G. E. M. Anscombe.
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that of p, while that of Aap will be timelessly fixed as true, and
if a is timelessly false, the truth-value of Aap will be liable to
vary with that of p, while that of Kap will be timelessly fixed
as false. But if this means that it makes sense to prefix, say, ‘It
will be the case that’ to Kap if a is true and does not if it is false,
and that the converse holds with 4ap, this is a very awkward
formation-rule indeed. Still, in a formal calculus one could
perhaps allow ‘vacuous’ tense-operators to be prefixed to non-
temporal propositions. Or one may question, with Moore,
whether there are in fact any such. ‘“5 is a bigger number than
3" is said to be “timelessly” true; but we certainly can correctly
say ‘“‘is bigger now, always was bigger, and always will be

bl ’l

bigger”.

4. The logic of dates. The interactions between the A series
and the B series which emerge from Rescher’s paper may be
summed up as follows: If we use the form 7ap to mean ‘It is
the case at the date a that p’, its laws are very similar to those
of the Fnp of our simplest interval-calculus, the one in which
Prp is defined as F(—n)p. They are as follows:

RT:ta — FTax
TN1:CTaNpNTap TII1:CllaTapp
TN2:CNTapTaNp TII2:CIIbTbpTallbThp

TC:CTaCpgCTnpTag TT:CTaTbpThbp

The difference appears in the last axiom where the correspond-
ing law FF is CFmFnpF(m-+n)p. If we co-ordinate the numbers
used in dating with those used in interval-measurement, we also
have CTaFmpT(a+m)p, and (since dated statements do not
alter in truth-value) CFmTapTap. If we use the F and P of our
third interval-calculus, in which interval-variables stand for
positive numbers, but allow date-variables to stand for positive,
negative, and zero numbers, the mixing laws are

TF:CTaFnpT(a+n)p

TP:CTaPnpT(a—n)p

FT:CFnTapTap

PT:CPnTapTap.

(The converses of these are derivable.)

¥ Commonplace Book, p. 405. Cf. also Some Main Problems of Philosophy, p. 294:
‘For my part, I cannot think of any instance of a thing, with regard to which it
seems quite certain that it is, and yet also that it is not now.’
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These mixing laws, together with the pure T postulates, may
be obtained within our third interval calculus (with a slight
enrichment) if we define dates in terms of intervals in sub-
stantially the way in which this is done in actual dating systems.
To say that a certain event occurred in A.D. 1066 is to say,
approximately, that it occurred 1066 years after the birth of
Christ (or the putative birth of Christ, i.e. after a time so many
years before the Church gave the calendar its present shape).
That is, it is to say that it was the case when the event occurred
that it had been the case 1066 years before that Christ was
being born; or to use our tidied-up version of English, that
it was the case then that both (a) the event is occurring, and
(b) it was the case 1066 years ago that Christ is being born.
Formally, we introduce into metric tense-logic a propositional
constant ¢, representing the event taken as the origin of our
dating system; and using M« as short for AdoPoFo (cf. Moore’s
interpretation of McTaggart’s ‘is’), we give the following three-
part definition of the form Tap:

Tap = MEKep, for a = o
Tap = MEKPadp (or MKdFap), for a > o
Tap = MEKF(—a)¢p (or MEHP(—a)p), for a < o.

For example, ‘It is or has been or will be the case that (p at
the date —144.6)’ is translated as ‘It is or has been or will be
that both (a) it will be the case 144.6 years hence that Christ
is being born, and (b) p’, or as ‘It is or has been or will be that
both (a) Christ is being born, and (b) it was the case 144.6 years
ago that p’.1

Some of the postulates above, e.g. TF and TP, follow very
easily from these definitions and the postulates earlier laid down
for metric tense-logic. Take TF,i.e. CTaFnpT(a+n)p. Fora = o,
the antecedent = MK¢Fnp, and the consequent = T(o+n)p =
Tnp, with n > o, which again = MK¢Fnp. For a > o, the
antecedent

TaFnp = MEK¢$FaFnp = ME$F(a+n)p,

and the consequent 7T{(a+n)p, a+n being greater than o,
also = MK¢F(a+n)p. Where a < o, either a is numerically
greater than n, i.e. the positive number (—a) is greater than », or
(—a) < n. In the first case, TaFnp = MK$P(—a)Fnp, which,

1 Cf. Time and Modality, p. 19.
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since (—a) > n, = MEK$P(—a—n)p = MK$P(—(a+n))p. And
in this case T(a+n)p, since a+n < o, also = MEKPP(—(a-+n))p.
In the other case, where (—a) < n and a-n, or n—(—a), > o,
TaFnP =MEK$P(—a)Fnp = ME$F(n—(—a))p = MKPF(a+n)p
=T(a+n)p.

Others of the Rescher postulates, e.g. TN2 (CNTapTalNp)
require for their proof, in addition to the definitions and
ordinary metric tense-logic, some special postulate or postulates
for the constant ¢, e.g. that it is a ‘world’ proposition in the
sense of the last chapter, or the rather stronger postulate (en-
tailing that time is not circular) that ¢ is true at a single instant
only, MK¢ NP$NF¢. In connexion with the second alternative,
it is worth observing that an important theorem about unique
propositions, i.e. ones true at a single instant only, is provable
in metric tense-logic, namely that if at any time there is a pro-
position true at that time only, then at every time there is a
proposition true at that time only. In particular, if p is true
at one time only, Pnp and Fnp are true at one time only, for
each n. So if ¢, the origin-event, is true at one time only, then
every statement of the form ‘It was the case the interval n ago
that ¢’ and ‘It will be the case the interval » hence that ¢ is
true at one time only. This is a variant of the argument that
no instantaneous world-state can ever be repeated in its totality,
for at A.D. 1966.23, for instance, the totality of truth will in-
clude the truth that it is A.p. 1966.23, and this will not be true
at any other time. We can now see that this argument can be
put forward without assuming that there are actual objects
called Dates which acquire Presentness and then instantly lose
it; all that the argument need mean is that it is or has been or
will be true once only that it was the case the interval z ago
that the-origin-event-is-occurring (and true once only that this
will be the case the interval z» hence). The argument only
works in this form, however, if uniqueness can be postulated
for the origin-event itself.

5. Metric circular time. If time is taken to be circular, the intro-
duction of specific intervals makes it possible to distinguish the
two ways of going round the circle. In circular time (on its
simplest interpretation), whatever will be has been, and what-
ever will always be has always been, and vice versa, so that
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we cannot distinguish G from H or F from P; but it does not
follow that what will be the case this time tomorrow was the
case this time yesterday, i.e. we do not have EPnpFnp as a law.
What we do have in circular metric tense-logic is a new sort of
constant, the interval « that represents a complete cycle; and
for this we have such laws as

(1) EFxpp,

and where sk represents any integral multiple of « that is
greater than 7,

(2) EFnpP(skc—n)p,
e.g. if « itself is greater than n, we have
(3) EFnpP(k—n)p

From (2), CIInPnpIInFnp, i.e. CHpGp, is easily deducible, as
CGpp is from (1).

6. Enlargement of tense-logic to make metric concepts definable. It is
arguable that not only the use of dates but the use of measured
intervals is a comparatively sophisticated and artificial pro-
cedure, and measured intervals ought to be definable within
a tense-logic of a more ‘primeval’ sort.! Just as dating in prac-
tice involves the introduction of an origin-event into a logic
of measured intervals, so interval measurement involves the
synchronizing of events with the phases of some cyclical process.
‘It was the case this time yesterday that p’, for example,
amounts to ‘It was the case that p when the sun was last in its
present position’. The theory of interval measurement would
therefore appear to be built upon propositions of the form ‘It
was the case that p the last time it was the case that ¢’. But
propositions of this form do not seem to be definable in terms
of the indefinite P and F of our first type of tense-logic. For
example, PKNgPKqp does not give us quite what we want; it
means ‘It was the case that p on some previous occurrence of ¢,
separated from now by at least one moment or period of ¢’s
falsehood’. This is compatible with ¢ and Ng having alternated

I The artificiality of quantification over intervals is stressed by P. T. Geach in
his review of Time and Modality in the Cambridge Review, 4 May, 1957, p. 543.
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more than once between now and the time we say that p and ¢
were true together. On the other hand,

K(PKNqPKqp)(NPKgPENqPEKqp)

is too strong. For while this indeed says that p was true the
last time that ¢ was, it also says that p was never true on any
occasion of ¢’s truth previous to that one, and we want to leave
that open.

Hans Kamp has pointed out (1966) that what is needed here
is something in between the merely ‘topological’ tense-logic
with P, H, F, and G and the fully ‘metric’ sort with Pn and Fn;
and he has begun the development of just such a system. As
primitives it uses a pair of two-place functions which may be
represented as Ppg and ¥pq. The former of these means ‘g has
been true from some past time at which p was true, up to (but
not necessarily including) now’. In a metric tense-logic sup-
plemented by arithmetic, this function would be equivalent to

ZnKPnpIImC(m < n)Pmgq,

and in a U-calculus with Uab interpreted as ‘a before b’ we
would have

ETa®pgZbKUbaKToplIcCKUbcUcaTeq,

i.e. @pq is the case at a if and only if for some b earlier than q,
p is true at b, and for all ¢ between b and g, ¢ is true at ¢. But
these, at all events the first, are not definitions; this is a more
fundamental calculus in terms of which there is some hope
that Pnp can be defined. ¥ is simply the future-tense analogue
of @. What certainly can be defined in terms of @ is the desired
function ‘p the last time that ¢’, which is ®KpgNy, ‘¢ has been
false from some past time at which p and ¢ were true together,
up to now’. We can also define the simple Pp as PpCpp, ‘The
tautology Cpp has been true from some past time at which p
was true, up to now’.

The converse function PCppp, which we may abridge to
H'p, is of some interest also. It may be read as ‘p just before
now’, meaning that p has been uninterruptedly true from some
past time up to (but not necessarily including) now. This func-
tion is not equivalent to, though with dense time it implies,
NH'Np, which it is therefore useful to abridge to P’p. Both
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H'p and H'Np will be false if there is what I have called a
‘fuzz’ of p’s and Np’s in the immediate past, i.e. if between any
past moment of p’s truth and the present, however close, there
is a moment of p’s falsehood, and counversely. This counter-
example is not available, of course, in discrete time, and indeed
in discrete time H’p is true, in a vacuous way, whatever p might
be. For H'p is true if p is true at all times between some past
time and the present; but in discrete time there is one past
time (the one just past) such that there is no time between it and
the present, so that any proposition to the effect that if a time
is between that one and the present, p is true at it, will be
vacuously true. But in dense infinite time Hp — H'p — P'p — Pp.
Kamp has investigated the ‘tenses’ constituted by sequences
of P, H, F, G,P', H', F', and G', and has found that although
they are infinite in number (even in the dense infinite time that
yields only fifteen for P, H, F, G on their own) they have quite
a definite implicational pattern. In discrete time, Kamp has
also pointed out, Scott’s function ¥p, ‘¢ at the moment just
past’, is definable as @pp. (If p was true at the moment just past,
there is a moment, viz. the one just past, at which we have
both p-true-then, and also p-at-all-times-between-then-and-
now, since there is no time between then and now. And if p
was true at some past time and at all times since, it was true
at the moment just past.)

For a start towards the axiomatization of this area of tense-
logic, the U-counterparts of the following postulates for @ and
¥ (Prior, 1966) are provable without imposing any conditions
on the relation U, and they are sufficient, with their mirror
images, to yield the whole of Lemmon’s minimal system K:

Ri:ta — FNONay
R2:FCoB — FHCPyaDyB
A1 :CNONCpgrCPprDgr
A2:CDNYNpggp.

The key proofs are as follows:

T1:CCppCqq (p.c.)

T2:COrCppDrCqq (T1, R2)
Tg:CNONCpgCrrCPpCrrdgCrr (A1)

T4 :CNONCpgCNCpgNCpaC PpCppDPgCqq (T3, T2)
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* T5:CNPNCpgCPpPg (T4, Df. P)
T6:CONYNpCqqCqqp (A2)
T7:CONPNpCNpNpCqqp (T6, T2)
T8:CONTNCNPNPCNYNpCNpNpNENpCNpNpp (T8, T2)
* Toq:CPNFNpp(T8, Df. P, Df. F)
* RH:Fa — FNONaCNoaNa (R1)
— FNPN«  (Df. P).

In proving the U-counterparts of the postulates, we may begin
by observing that, since

Ta®af = ZbKUbaKThollcCUbCUcaTcB
and ToNa = NTba,
TaPNof = ZbEUbaKNTboIlcCUbCUcaTcB
and
TaNONoB = NTaDNof
= NZbKUbaKNTbollcCUbcCUcaTcB
= ITbCUbaNKENTballcCUbcCUcaTcB

= IThCUbaCNTbaNIIcCUbcCUcaTcB
= ITbCUbaCIIcCUbcCUcaTcBTba.

Hence, for the U-counterpart of R1, we have

FTaax — FTbha (substitution; «, being a purely tense-logical
formula with no &’s in it, will be unaltered)

— FCUbaCIIcCUbCUcaTcBTho (by CpCaCrp)
— FITbCUBbaCIIcCUbcCUcaTcBTha (by U.G.)
= FTaNDNap.

The U-counterpart of R2 is
FTaCof — FTaCDyadyp.

Of this, the antecedent = FCTaaTaB = HIfCTfaTfB (by U.G.),
which last we shall import as an antecedent in proving the
consequent of the rule. This consequent may be expanded as
follows:

TaCPyadyp
= CTaPyaTadof
= CZbKUbaKThyIIcCUbcCUcaTco
—2dKUdaKTdyl1eCUdeCUeaTef
= ITbCUbaCTbyCIIcCUbcCUcaTco
—2dKUdaKTdyIIeCUdeCUeaTeP
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This last we prove as follows:
ITC (1) IIfCTfoTfB (imported from antecedent of rule)

C (2) Uba

G (3) Tby

C (4) IIcCUbCUcaTco

K (5) IIeCUbeCUeaTeo (4)

K (6) IIeCTeaTeB (1)

K (7) IeCUbeCUeaTeB (5, 6)
K (8) KUbaKTbyIIeCUbeCUeaTep (2,3, 7)

(o) ZdKUdaKTdyIleCUb:CUeaTef (8, E.G.).

Here the steps from (4) to (5) and from (1) to (6) are made by
the re-lettering of bound variables which is directly or con-
sequentially permitted in all normal systems of quantification
theory (EIlx¢xIIy$y). There will be similar steps in the proof
of A1. For this axiom we have, to begin with,
Ta (A1) = TaCNONCpgrCPprDgr
= CTaNONCpgrCTaDprTadgr
= CTa®prCTaNDNCpgrTaDgr
= CXZbKUbaKTbpIIcCUbcCUcaTcr
—CTaNONCpgrTadgr
= IIBCKUbaK TbpIIcCUbcCUcaTcr
—CTaNONCpqrTaDgr.

And this, using in the second line the expansion of TaNON
worked out above,
= ITbCKUbaKTbpIIcCUbCUcaTcr
—CIIdCUdaCI1eCUdeCUeaTerCTdpTdg
— ZfKUfaKTfqlIgCUfgCUgaT gr,
which we prove as follows:
IIC (1) Uba
C (2) Top
C (3) IIcCUbCUcaTcr

C (4) I1dCUdaCIIeCUdeCUeaTerCTdpTdy
K (5) CUbaCIIeCUbeCUeaTerCThpTbq (4, U.L)

K (6) ITIeCUbeCUeaTer (3)

K (7) Ty (5, 1, 6, 2

K (8) ITgCUbgCUgaTgr (3)

K (9) KUbaKTbqllgCUbgCUgaTgr (1,7, 8)
(10) ZfKUfaKTfqlIgCUfgCUgaTgr (9, E.G.).
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Finally, for A2, CON¥Npgqp, note first that the antecedent

TaDNVNpgq
= ZbKUbaKTO NV NpgIIcCUbcCUcaTcq.

And within this (using the analogue of the form we found above
for TaN®N),

ToN¥Npg
= IIdCUbdCIIeCUbeCUedTeqT dp.

From the antecedent expanded at this point also, we have to
prove Tap, and do so as follows:

IT6C (1) Uba
C (2) IdCUbACIIeCUbeCUedTeqTdp
C (3) IcCUbCUcaTeq
K (4) CUbaCIIeCUbeCUeaTeqTap (2, U.L.)
K (5) I1eCUbeCUeaTeq (3)

(6) Tap (4, 1, 5).

7. Geach’s definitions of Kamp’s constants. It should be added to
all this, however, that if we are prepared to use the techniques
and assumptions which enable Geach to define F'in terms of the
Diodorean M (see last chapter), we can define @ and ¥ in
terms of P and F. That is, we can do it if we allow ourselves
(a) the use of propositional quantifiers, and (5) some such assump-
tion as that at each instant there is something which is true
at that instant only. Kamp’s @pq, ‘It was the case that p, and
it has been the case that ¢ from then till now’, clearly implies
Miss Anscombe’s function 7pg, ‘It was the case that p and then
¢’, definable as PKPpq. It is not, on the other hand, implied by
this (‘p and then ¢’ does not imply ‘¢ and then g-ever-since’).
On the other hand, ®pq is implied by, but does not imply, the
conjunction of Tpq and NT7TpgNg (‘We have had p-and-then-g,
but have never had p-and-then-g-and-then-not-¢’). But if at
each time when p is true there is a proposition (say r) which is
true at that time only, then ‘p and g-ever-since’ does imply (as
well as being implied by) ‘For some 7, it has been that p-and-r
and then ¢, and it has never been that p-and-r and then ¢ and
then not ¢’, i.e.

ZrKTKprgNTTKprqNg.
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This definition adapts an analogous direct definition of ‘p the
last time that ¢’ given by Geach (1966). In view of his pre-
viously mentioned definition of F' in terms of the Diodorean M,
this means that the whole of tense-logic in @ and ¥, and not
only the P-F fragment of this, may be developed in terms of
Diodorean possibility and its past-tense counterpart, with
propositional quantifiers. What postulates we require for such
development over and above the known postulates for the
Diodorean M and its image (i.e. ‘Hamblin’s original system’,
of Chapter IV), and ordinary postulates for quantification, is
not fully known; nor is it clear what is the weakest system that
can be obtained in this way.

The last question is important, because when it is said that
in using Geach-style definitions we must ‘assume’ that, say,
time is non-circular, it is not meant that Geach-style definitions
will only give us, say, Ki, if it is laid down axiomatically that
time is non-circular. The position is rather that if we use such
definitions we shall be able easily to prove equivalences (e.g.
EFpZqKNgMEKpq, EQpgZrKTKprgNTTKprqNg) which are only
plausible if the non-circularity assumption is made; i.e. we
cannot build in this way systems which are so weak as to be
non-committal on this point.

One final piece of pure speculation: in constructing a logic
of measured intervals within a ‘@-¥ logic’, supplemented by
suitable and plausible assumptions about origin-events and
periodic processes, it may well be necessary to consider the
relevance of relativistic physics, and this may result in a rather
different type of Prn—Fn logic from that sketched earlier in this
chapter. But this is a development which I am not at all com-
petent to pursue, and the remaining two chapters will be
concerned with complications connected with philosophical
problems of a more traditional kind.

Note. If we define Q1gp, ‘p the last time that ¢, as PKgpNg, we may define

Qngp, °p the nth time ago that ¢, as 21¢R(n-1)gp, ‘(p the n-1th time ago that ¢)
the last time that ¢’.



VII
TIME AND DETERMINISM

1. Arguments for the incompatibility of foreknowledge (and fore-truth)
and indeterminism). THE eighteenth-century American philo-
sopher Jonathan Edwards, in his Enquiry into the freedom of the
will, has a simple argument to show that God’s foreknowledge
is just as inconsistent with a real contingency in future events as
his directly foreordaining them would be.! In an earlier part
of this work,? he had observed that there are three ways in
which ‘the subject and predicate of a proposition’ may have
such a ‘full, fixed, and certain connexion’ as to make the ‘thing
affirmed’ in that proposition ‘necessary’. He mentions first
something like logical necessity: ‘it may imply a contradiction
to suppose them not connected.” Then—and this is going to be
important—°‘the connexion of the subject and predicate of a
proposition, which affirms the existence of something, may be
fixed and made certain, because the existence of that thing is
already come to pass; and either now is, or has been; and so
has as it were made sure of existence. . .. Thus the existence
of what is already come to pass is now become necessary; ’tis
become impossible it should be otherwise than true, that such a thing has
been’ (italics mine). Thirdly, there may be a consequential neces-
sary connexion between the subject and predicate. ‘Things
which are perfectly connected with other things that are neces-
sary, are necessary themselves, by a necessity of consequence.’
Edwards notices at this point that ‘all things which are future,
or which will hereafter begin to be, which can be said to be
necessary, are necessary only in this last way’. If their existence
were ‘necessary in itself’, they ‘always would have existed’, and
ex hypothesi they have not ‘already come to pass’. So ‘the only
way that anything that is to come to pass hereafter, is or can

 Jonathan Edwards, 4 Careful and Strict Enquiry into the Modern Prevailing Notions
of that Freedom of Will which is supposed to be Essential to Moral Agency, Virtue and Vice,

Reward and Punishment, Praise and Blame (1764), Part II, Section xii, subsection i.
2 Part I, Section iii.

824311 I
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be necessary, is by a connexion with something that is necessary
in its own nature, or something that already is, or has been:
so that the one being supposed, the other certainly follows’.
He might have added, surely, that what is a necessary con-
sequence of something ‘necessary in itself” would also ‘always
have existed’, so that it is only by necessary connexion with
what ‘has already come to pass’ that what is still merely future
can be necessary.

That way, however, it also must be necessary, and this is the
nerve of his later argument about foreknowledge. ‘I observed
before’, he says, ‘that in things which are past, their past exis-
tence is now necessary ... tis too late for any possibility of
alteration in that respect: ’tis now impossible, that it should be
otherwise than true.’ That’s his Point (1). Point (2) is thatif there
is such a thing as a ‘divine foreknowledge of the volitions of free
agents’ (the paradigm case, in all these discussions, of supposedly
contingent future events), then ‘that foreknowledge...is a
thing which already /as, and long ago kad existence; and so . . .
it is now utterly impossible to be otherwise, than that this fore-
knowledge should be, or should have been’. Point (3): “Those
things which are indissolubly connected with other things that
are necessary, are themselves necessary. As that proposition
whose truth is indissolubly connected with another proposition,
whichis necessarily true, isitselfnecessarily true’. Thisis the modal
formula CLCpgCLpLg. And Point (4): ‘if there be a full, certain and
infallible foreknowledge of the future existence of the volitions
of moral agents, then there is a certain and indissoluble con-
nexion between those events and that foreknowledge.” Being
known necessarily implies being true. Therefore, ‘by the pre-
ceding observations, those events are necessary events; being
infallibly and indissolubly connected with that whose existence
already is, and so is now necessary, and can’t but have been’.

Edwards insists that in his Part (4) he is not saying that
God’s foreknowledge causes things to happen, any more than his
‘after-knowledge’ does. ‘Infallible Foreknowledge may prove the
Necessity of the event foreknown, and yet not be the thing
which causes the Necessity.” Edwards further argues, I think
with some cogency as well as ingenuity, that if ‘God’s Fore-
knowledge is not the cause, but the effect of the existence of the
event foreknown, this is so far from shewing that this Fore-
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knowledge does not infer’ (i.e. prove) ‘that Necessity of the
existence of that event, that it rather shews the contrary the
more plainly. Because it shews the existence of the event to be
so settled and firm, that it is as if it had already been; . .. its
future existence has already had actual influence and efficiency,
and has produced an effect, Prescience: the effect exists already,
and as the effect supposes the cause, . . . and depends entirely
upon it, therefore it is as if the future event, which is the cause,
had existed already.’

The logical terminology of these passages is a little anti-
quated; there’s too much about subjects and predicates in it,
and too much talk of events as ‘existing’ rather than happening.
But the broad pattern of it is powerful. Nor was Edwards the
first to invent it. In discussing ‘Whether God knows singular
future contingents’, Aquinas! mentions an objection to the pro-
position that he does, which runs as follows: Given any true
proposition of the form ‘If p then ¢’, if the antecedent p is ab-
solutely necessary, the consequent ¢ is absolutely necessary. The
phrase est necessarium absolute does not here mean quite the same
as Edwards’s first, more or less logical, kind of necessity. It
means that ¢ does not just appear as a component of a necessary
implication, but is itself a necessary truth (in whatever sense of
‘necessary’ may be relevant). The schoolmen made a distinction
here between necessitas consequentiae, necessity of theimplication,
and necessitas consequentis, necessity of the implied proposition.
The form ‘If p then necessarily ¢’ need not mean that from the
truth of p it follows that ¢ is itself a necessary truth, i.e. it need
not mean ‘If p then necessarily-¢’; it may only mean that from
the truth of p (which could quite well be the contingent truth
of p) the truth of ¢ (which again could quite well be the con-
tingent truth of ¢) necessarily follows, i.e. it may mean ‘If p then-
necessarily ¢’. This is not really a necessity of ¢ at all, but only
a necessary connexion between ¢ and something else. Pro-
ponents of the argument we are now considering are sometimes
charged with confusing these two senses of ‘If p then necessarily
¢’ ; but the charge is groundless. They have in fact usually been
perfectly well aware of the distinction ; what they are exploiting
is a certain logical relation that does exist between the two sorts

I De Veritate, Q. 2, Art. 12, Obj. 7. For a fuller analysis of this argument see
A. Prior, ‘The Formalities of Omniscience’, Philosophy, April 1962.
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of necessity (or the two points at which the necessity may
operate), namely that where not only the implication as a whole, but
also the implying proposition, is necessarily true, there the implied
proposition is necessarily true also. This is of course the modal
thesis CLCpgCLpLq again. Where authorities are cited here, the
appeal is generally to Aristotle’s Anal. Pr. 34223 or Anal. Post.
75%4-12.

The objector’s second premiss is that ‘If anything is (already)
known to God’ (est scitum a deo), ‘then that thing will be.” But
the antecedent of this, at least if it is true at all, is necessary,
if only because God already has come to know the thing, so
that nothing can now make him not have known it—quod fuit,
non potest non fuisse (what has been, cannot now not have been).
And so—the corollary is too obvious for Thomas to bother
drawing it explicitly—what God already knows will happen
isn’t now contingent at all. Where authority is cited here, the
appeal is usually to Aristotle’s Nicomachean Ethics 11398 ff. and
to his De Caelo 283P12.

It is the foreknowledge as such that is incompatible with
contingency by this argument; that it is God’s foreknowledge,
is immaterial. In Cicero’s De Fato,® the same point is made in
connexion with astrological principles such as ‘If anyone is born
under the Dog Star, he will not die at sea’. From this it follows
that if Fabius (who is now living) was born under the Dog
Star, ke will not die at sea. But here the antecedent is necessary,
since ‘all true past-tense propositions are necessary’, and so the
consequent must be true. This is put forward by Cicero as
a kind of argument which Diodorus would use. It does have
something of the flavour of the Master-argument; like the latter,
it is directed against those who argue that we have no control
over the past but think we have some over the future; and in
both cases the trick appears to be that of conveying the ad-
mitted necessity from the past to the future by means of some
proposition that necessarily connects the two.

An astrologer’s prophecy is rather a weak support for such
a connexion, and indeed Cicero is not here defending the
fatalistic conclusion but using it to denounce astrology. And
even God’s foreknowledge is not as widely accepted nowadays
as it was either in Aquinas’s Europe or in Edwards’s America.

1 Capp. vi, vii.
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But there are principles of tense-logic that can be, and have
been, put to the same purpose. The most lucid statement of the
tense-logical argument that I know of is that of the fifteenth-
century Louvain philosopher Peter de Rivo.! His central point
is that if, before a given event occurs, statements asserting its
future occurrence were already true, we could use this to set
up an argument exactly like the ones discussed by Cicero and
Aquinas (both of whom de Rivo quotes). For, from the truth,
already, of ‘X will be 17 it necessarily follows that X will be ¥
(there is an appeal here to the “Tarskian’ principle enunciated
in Aristotle’s Categories 14P13-1%); if that were true already its
truth would be now beyond prevention (inimpedibile), for we
have no power over the past (ad preteritum non est potentia) ; but
only the unpreventable follows from the unpreventable; so if
‘X will be 17 is true already, that X will be ¥ is already in-
evitable.2 The presentation is a little metalinguistic; but not
at all points; e.g. he indicates at one point that what he is
attacking (in order to avoid Wyclif’s ‘execrable determinism’)
is the view that ‘of whatever is now the case it was earlier true
that it was going to be the case’, CpPFp.

There are portions of Aristotle’s famous ‘sea-battle’ chapter
(De Interpretatione, Ch. g) which read as if the same argument
is being put forward. Certainly Cicero credits Epicurus with
the view that in order to escape determinism we must deny
that predictions about issues which are still genuinely open
are either true or false (de Rivo’s conclusion).

2. Formalization of these arguments. In trying to formalize these
arguments, let us use L for an undefined ‘necessarily’, i.e. not
for ‘is or will be’ or for ‘is or has been or will be’ but for some-
thing more like ‘now-unpreventably’ (‘necessary’ propositions
are those outside our power to make true or false). Then one
of the main premisses of these arguments would appear to be

1. CPpLPp, “‘Whatever has been the case now-unpreventably
has been the case’.

t The papers in the de Rivo controversy have been collected together, with an
excellent introduction, in L. Baudry’s La Querelle des Futurs Contingents (Louvain
1465-75) : Textes Inédits (Paris, 1950).

2 Baudry, op. cit. pp. 70 ff., 80-81, 85-86.
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We then proceed thus:

2. CPFEpLPFp (1 p|Fp), i.e. ‘If it has been that it will be that
b, it now-unpreventably has been that it will be that p’.

3. CFpPFp, ‘Of what will be, it has been the case that it will
be’.

4. CFpLPFp, ‘Of what will be, it now-unpreventably has been
the case that it will be’. (2, 3, syll.)

5. CLGpgCLpLg.

And now, if we have something like

6. LCPFpFp, ‘Necessarily if it has been the case that it will
be, it will be’,

we could go by 5 and 6 to
7. CLPFpLFp,

and from this and 4 to the fatalistic conclusion
8. CFpLFp.

But this formalization won’t do, as 6 is plainly false, and so
would be its counterpart in the theological version of the
argument, ‘Necessarily if it has been the case that God knows
that it will be the case, it will be the case’, or more colloquially,
‘If God knew that it would be the case, it will be the case’. This
is false, i.e. as a law, simply because by the time of utterance
what was going to happen, or what God knew would happen,
may have already happened, and it may not be going to hap-
pen again. Cicero in using his example about the Dog Star
was sufficiently aware of this problem to suppose the argument
to be going on before Fabius had already died and thereby
already fulfilled or falsified the prophecy.

What we really want to say, at the point where 6 has been
put, is that its having been the case some time before now that
it would be the case a longer time later (e.g. its having been the
case yesterday that I was going to smoke two days later) neces-
sarily implies that it will now be the case not quite so much later
(in the example, that I will be smoking tomorrow). Something
from metric tense-logic would give us what we want here,
namely LCPmF(m-+n)pFnp. Given this, with corresponding
modification of the other formulae, we have
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1. CPmpLPmp

2. CPmF(m-+n)pLPmF(m~+n)p (1, subst.)

3. CFnpPmF(m—+-n)p

4. CFnpLPmF(m~-n)p (3, 2, syll.)
5. CLCpgCLpLq

6. LCPmF(m--n)pFnp

7. CLPmF(m--n)pLFnp (5, 6)

8. CFnpLFnp (45 7, syll.)

In this version, the tense-logic is less questionable (though
it can be questioned, as we shall see), but it might be said that
the relation affirmed in 1 between necessity and the past is
not quite the one being asserted by the propounders of the
argument. What the propounders of the argument are ascribing
to the past, it may be said, is a kind of necessity which is or
entails unalterableness. Things may indeed become ‘necessary’
in this sense which were not so before; decisions, or the mere
march of events, may close possibilities which were formerly
open; we may say that a thing is now necessary because it is ‘too
late’ for it to be otherwise—it has as it were ‘lost its chance’ of
being false—but once this happens, it has happened for good
and all; to say that a thing’s being thus and so has become
necessary is to say that from now on it must stay that way.
But the past is only unchangeable in the sense that what has
been the case will-always have been the case. It is not un-
changeable, as we have already seen, in the sense that once
a certain proposition, say that ‘there will be a sea-battle a day
hence’, has come to be true, that proposition is bound to stay
true. If that proposition was true yesterday, what is bound to be
true today is not that there will be a sea-battle a day hence
but that there is a sea-battle today.? Nor is the past unchangeable
in the sense that if something was the case the interval n ago
(say this time yesterday), then it will always be the case that it
was the case the interval n before. (‘I had sausages for breakfast
yesterday’ may be true today and false tomorrow.) Even if we
do have CPpGPp (and so CPFpGPFp), we not only don’t have
CPFpGFp, but don’t even have CPnpGPnp. (This is McTaggart’s
objection to the dictum that the past doesnot change.) But what
our new law 1 states is that if it was the case the interval n ago

! This point was made by Suarez.
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that p, then it is now necessary that it was the case the interval
n ago that p. It is ‘necessary’—and yet the least little bit later
it is perhaps not even true, the truth then being not Pnp but
P(m+n)p (where m is that least little bit). If there is any neces-
sity here, it is, or at least is liable to be, a quite momentary one,
and what sort of necessity would this be?

I am inclined to think, however, that this objection is frivo-
lous. The change in truth-value that is mentioned here is itself
inevitable; it is not something that we by our choice, or some
chance turn of events, can bring about; and it does not alter
the fact that at each instant what happened the interval =z
before cannot then not have happened the interval n before.
There may, all the same, be other objections to the law 1, in
both its forms.

Perhaps the argument comes through most intuitively of all
in a mixed tensed and dated calculus in the style of Rescher.
Suppose we again use the form Tap for ‘It is true at date a that
p’, with the postulates

RT: ta — FTaa;
and TGC: CTaCpgCTapTayq,

from which we can derive the rule

RTC: HCof — FCTaaTap.

We add to this (following Rescher) the form Dap for ‘It is
determined at a that p, DaFnp expressing the pre-determination
of p and DaPnp its post-determination. For D we have the
following laws:

RD: ta — FDax
DC: CDaCpgCDapDag,

from which we get

RDC: FCoB — FCDaaDap,

and we also have
DP: CTaPnpDaPnp.

This (if it is true at ¢ that it was the case z ago that p, it is deter-
mined at @ that it was the case, etc.) is the usual law of universal
post-determination (quod fuit, non potest non fuisse). From this we
can prove universal pre-determination as follows:
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1. CEnpPmF(m+-n)p (from tense-logic)
2. CTaFnpTaPmF(m-n)p (1, RTC)

3. CTaFnpDaPmF(m+n)p (2, DP, syll.)

4. CPmF(m+-n)pFnp (from tense-logic)
5. CDaPmF(m--n)pDaFnp (4, RDC)

6. CTaFnpDaFnp (3, 5, syll.).

3. The classical answers to these arguments. In ancient accounts
of the Diodorean Master-argument and of the reception it met
with, we are told that one Stoic logician, Cleanthes, was driven
by it to deny that past-tense truths are always necessary, while
another, Chrysippus, was driven to deny that the impossible
cannot follow from the possible. In reacting to the argument
we are now considering, some have followed Cleanthes, and
others have denied the tense-logical principle that if ever S is
P’ is true, then ‘S will be P’ formerly was true. The first line
was taken notably, in the Middle Ages, by William of Ockham,
who said that the principle that what has been cannot now
not have been only applies to past-tense propositions which
are not equivalent to future-tense ones (in the way in which ‘It
was the case yesterday that it would be the case two days later
that I-am-smoking’ is equivalent to ‘It will be the case tomorrow
that I am smoking’).! The fifteenth-century critics of Peter de
Rivo, notably Ferdinand of Cordova, put a similar proviso on
the principle ad preteritum non est potentia, and argued that we do
have some power over that much of the past which consists in
the past truth of future-tense propositions.2 (By deciding whether
to smoke or not to smoke tomorrow, I decide whether or not
to make it have been true yesterday that I would smoke two
days later.)

The other line, that a thing’s being the case today does no¢
imply that it was true yesterday that it would be the case a day
later, was taken by Aquinas and de Rivo; and among the
ancients, according to Cicero, it was taken by Epicurus; and
according to many, it was taken before that by Aristotle. The
ancient and medieval proponents of the second alternative did
not say that before a future event was ‘already present in its
causes’ (as Aquinas put it), it would have been false to say

* Ockham, Tractatus de Praedestinatione (Franciscan Institute edition, 1945), p. 6.
2 Baudry, op. cit. p. 159.
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that it was going to happen, but rather that it would have been
neither true nor false to say this. “‘With what is now the case’,
Peter de Rivo says, ‘it need not have been previously either
true or false to say that it was going to be the case.’

4. Formalization of the Ockhamist answer. 1 propose now to take
each of these escape-routes in turn (though I shall modify the
second a little), and see how it can be formalized; and will
begin with the first solution, i.e. the Ockhamist one. In saying
that the rule that truths about the past are necessary only
applies to those past-tense propositions which are not equivalent
to future-tense ones, Ockham is not saying that past-tense
propositions which are equivalent to future-tense ones are never
necessary. They would presumably be necessary at least if the
equivalent future-tense ones were, e.g. if FnCpp is a necessary
truth, so presumably is PmF(n+m)Cpp. But only past-tense pro-
positions which are not logically equivalent to future-tense
ones are, so to speak, necessary in virtue of their pastness. It is
a little difficult, however, to put this into a law. We are trying
to lay down postulates of which the purpose is precisely to help
us find out what is logically equivalent to what; Ockham’s rule
only seems to be operable when this is already done; but it is one
of the things we need to be able to use in finding out what are
the laws of the system.

Still, there is something about the very structure of a past-
tense proposition equivalent to a future-tense one which does
enable us to see whether a given past-tense proposition could
fall into this category or not. Curious special cases apart (e.g.
the plain PrCpp being equivalent to FrnCpp because both express
logical laws), past-tense propositions are equivalent to future-
tense ones only if they have a subordinate future-tense clause
within them, as in FEPmF(m+n)pFnp. Even so, it is not easy to
lay down a law for past-tense propositions which will exclude
even these ones. The plain FCPpLPp or FCPnpLPnp, for example,
does not itself have any future-tense operators in it, but cannot
express the restricted law we want, since we can immediately
put future-tense operators in it by substitution for p; indeed,
with free substitution of propositional formulae for propositional
variables, how can we possibly keep them out?

Restrictions on substitution-rules, however, are not im-
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possible to operate, and there is a further very strong reason
for believing that they are hardly avoidable here. Ancient and
medieval writers who have laid it down that we have no power
over the past (and Edwards later on too), have generally made
a similar remark about the present; we may cite here Aristotle’s
much-discussed remark in his ‘sea-battle’ chapter that ‘What-
ever is, when it is, is necessarily, and whatever is not, when it is
not, necessarily is not.” It is the future only which is ‘open both
ways’. But if we just lay down FCpLp without any restrictions
on substitution, we will have a much quicker proof that the
future is necessary too, than any we have yet given; it will just
be CpLp with the substitution p/Fp. Under these conditions, the
necessity-operator L in fact becomes quite vacuous.

Accepting, then, that we must restrict substitution-rules, the
restriction must be based on the division of propositions into
two classes—on the one hand, those which as it were challenge
comparison with the world as it already is, and which we cannot
possibly make true or false by any decision that is now open to
us, because they express the given situation in which any de-
cisions of ours must be made; and on the other hand there are
propositions, like ‘Eclipse will win’, which so look beyond the
present to the future that they must as it were lie on the table
until the race is run. This is not to mean, with respect to the
latter class of propositions, that they are not yet either true
or false; but their ‘wait and see’ character so infects whatever
compounds they enter into that the present-tense assertion that
such a proposition is now true has itself this ‘wait and see’
character and must just lie on the table until the verifying event
occurs; and ditto statements before now that the thing would
happen after now.!

One simple way of restricting substitution is to use one sort
of proposition variables, say the usual p, ¢, 7, etc., to stand for
propositions of all the kinds that the system contains (in this
case, both for those which we cannot now make true or false
and for the ‘wait and see’ ones which we sometimes can), and
another sort of propositional variables, say q, b, ¢, etc., only for

1 At this point, and quite generally in my understanding of the position that I
have called ‘Ockhamist’, I am very much indebted to discussions with J. M.
Shorter in 1957-8. Shorter has convinced me, in particular, that the very non-
standard semantics which are said on pp. 94-95 of Time and Modality to be involved
in the Ockhamist position of G. Ryle, are not so involved.



124 TIME AND DETERMINISM

propositions with a particular internal structure.! Here we
shall use the restricted variables only for propositions expressing
what Peter de Rivo calls the ‘now-unpreventable’, i.e. pro-
positions which in general have no trace of futurity in them.
We use the term ‘formulae’ to cover all the propositional
formulae of the system, and define these inductively as follows:

(1) Propositional variables (of both sorts) are formulae.

(2) If « and B are both formulae, so are No, Caf (Kop, etc.),
ITne, Zna, Pro, Fro, and La.

(3) There are no others.

We use the term ‘A-formulae’ to cover only a subclass of these,
defined as follows:

(1) A-variables (i.e. a, b, ¢, etc.) are formulae.

(2) If « and B are both A-formulae, so are No,Caff (Kap, etc.),
ITno, XZne, and Pra.

(3) If « is any formula, L is an A-formula.

(4) There are no others.

Pna, for example, is an A-formula by clause (2) of the definition,
but Fra is not; nor, consequently, is PmFna. On the other hand,
LFna and even LFnp are A-formulae; that something (even
something future) is now-unpreventable, is itself (when true)
now-unpreventable.

Even with this last bit of liberality, the conditions on the
formation of A-formulae might be thought to be too restrictive.
For example, P(n+m)Fma is not an A-formula by our definition,
although it is not equivalent to any future-tense formula but
rather to the simple past-tense Pra, so that we do want, in an
Ockhamist logic, to have CP(n-+m)FmaLP(n+m)Fma. But
although we cannot directly obtain this by substitution in the
law CaLa for A-formulae, we shall find that it is easily derivable
in the system in other ways, and similarly with other formulae
which are not themselves A-formulae but are logically equiva-
lent to these.

We lay it down, then, that any formula may be substituted
throughout a thesis for one of the unrestricted propositional
variables p, ¢, r, etc., and that only A-formulae may be sub-

! For an earlier use of this technique, applied to a different problem, see Time
and Modality, App. B. Cf. also here, ch. V, Section 6.
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stituted for the A-variables a, b, ¢, etc. We then take over the
whole of the metric tense-logic of the third sort discussed in
the last chapter, i.e. with Pr and Frn both primitive and with
interval-measures restricted to positive numbers, and the whole
of it still formulated with unrestricted variables; except that the
mirror-image rule is restricted to formulae not containing L;
and we add the following postulates for L (‘now-unpreventable’) :

RL:Fa— FLa
L1. CLpp LF:CLFnpFnLp
Lo. CLCpqCLpLq L¥II:CIInFmLEnpFmIInLFnp
L3. CNLpLNLp LPII:CIInFmLPnpFmIInLPnp
LA:CaLa

RL, L1, Lo, and Lg give us for this undefined L the modal
system S5. Substitution in LA will give us, e.g. CPraLPna, but
not CFnalLFna or CPmFnalPmFna. However, if any formula B
is logically equivalent to any A-formula «, we can prove
CBLB as follows:

Cof (hyp.)

CBo (hyp.)

CaLo (LA, subst.)
CL«LB (1, RL, Lo)
CBLB (2, 3, 4, sylL).

In a case of the type just mentioned, we also have CaLB (by 3
and 4). For example, let « be the simple A-variable @ and 8 be
PnFna. For our 2 and 1 we then have CPrnFnaa and CaPnFna,
which are provable by substitution in the mirror images of FP3
and its converse. Hence we can prove CaLPnFna, e.g. if I am
now smoking, it now-unpreventably was the case this time
yesterday that I would be smoking a day later. On the other
hand, there is no way of proving CaPnLFna, which would assert
(with the same a) that if I am now smoking then it was the case
this time yesterday that I then-unpreventably would be smoking
a day later; and it would of course be intuitively awkward if
we could prove this.

An alternative formalization would be one in which the only
propositional variables are A-variables, formulae and A-
formulae being defined as before (except that the first clause in
the definition of ‘formula’ only refers to one type of variable).

QP
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The substitution-rule would then be to replace variables by
A-formulae, and LA would be the only axiom in the strict
sense of a single formula laid down axiomatically; the rest
would be replaced by the corresponding axiom schemata, e.g.
FPi1 by the schema CFnPnoo and L1 by CLaw, it being under-
stood with each schema that all results of putting formulae (of
any sort) in the place of Greek letters are axioms; e.g. CLFnaFna
and CFnPnFnaFna are axioms. The theses of the modified system
would be all the theses of the original one which only use
A-variables, including ones obtained in the original system by
substitution in formulae using the unrestricted variables.

For the Ockhamist system in this second form, we may define
an Ockhamist model as a line without beginning or end which
may break up into branches as it moves from left to right (i.e.
from past to future), though not the other way; so that from
any point on it there is only one route to the left (into the past)
but possibly a number of alternative routes to the right (into
the future). In each such model, formulae are assigned truth
values (truth or falsehood) in accordance with the following
prescriptions: ‘

(1) Each propositional variable is arbitrarily assigned a single
truth-value at each point.

(2) A prima-facie assignment to Fna at a given point x for
a given route to the right of x, gives it the value assigned
to a at the distance n along that route from x. (If the line
branches within this distance, there may be different
prima-facie assignments to Fro at x.)

(3) The prima-facie assignment to Pno at a given point x for
a given route for « to the right of x, gives it the value
assigned to o, for that route, at the distance n to the
left of x. From the latter point as far as x, the only right-
ward route for o« which is considered is the one that passes
through x.

(4) The assignment to Lo at x gives it truth if « is given truth
in all its prima-facie assignments at x; otherwise false-
hood.

(5) Truth-functions and quantifications as usual.

A formula is verified by an Ockhamist model if all actual and
prima-facie assignments to it in the model give it truth; and we
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might define the Ockhamist system as consisting of those for-
mulae which are thus verified by all Ockhamist models. Whether
the postulates earlier listed yield all such formulae, i.e. whether
they are complete for Ockhamist tense-logic, is not known.

To illustrate the use of an Ockhamist model, consider the
following portion of one,

R

x )’\t

where xy = m, yz = yt = n, and the proposition a is true at
%, 9, and z and false at ¢. Because a is true at z, the prima-facie
value of F(m-+-n)a at x for the route xyz is truth; and that of
PmF(m--n)a at y for the route yz for F(m-+n)a beyond y, is also
truth. But because ais false at¢, the prima-facie value of F(m+-n)a
at x for the route xy¢ is falsehood, and that of PmF(m-n)a at y for
the route y¢ for F(m-+n)a beyond y is also falsehood. Hence the
assignment to LF(m-+n)a at x, and that to LPmF(m--n)a at , are
both falsehood. CFnpLPmF(m--n)a is therefore false at y on the
assignment for the route xyz; since Fnp is true at y using this
route, while LPmF(m+-n)a is simply false.

On the other hand, since Fna is assigned truth at y for the
route yz, PnFna is true at z regardless of what happens to y
beyond z, for at the distance z to the left of 2, i.e. at y, Fna is
assigned truth for the only route from y which passes through z.
The only value assigned to PrnFna at z is therefore truth, so that
we can assign truth at this point to LPnFna also, and to CaLPnFna.
On the other hand, LFna is false at y, (since Fna has one prima-
facie assignment of falsehood there, namely that using the route
yt), and PnLFna therefore false at z, and CaPnLFna false there too.

5. Ultimately converging time. Before passing on to the alternative
to the Ockhamist system, it is worth observing that the device
of restricting substitution by the use of special variables may
be extended to deal with another point. I suggested in an carlier
chapter that ‘It will all be the same in a hundred years’ time,
no matter what we do now’ cannot be guife true, since what
we do now will at least make a difference to what will have been
the case by then. But people who make this sort of remark may
well complain that that’s not the sort of thing they intend it to
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apply to. Indeed, what is normally meant would exclude a
great deal more than this. But even ifit is intended quite sweep-
ingly—even if what is meant is that whatever free play we may
now have, all that is to happen after a certain time is quite
fixed—it must be understood as not applying to the future truth
of past-tense propositions, or there just couldn’t ¢ any ‘free
play’ in the meantime.

The logical problem involved here is exactly analogous to
that involved in developing a precise concept of post-deter-
mination which will not entail predetermination. It will not
quite do to say that it is already determined what present-tense
and future-tense propositions will be true after a certain time,
though we have some choice as to what past-tense propositions
will be true then; for the future-tense propositions of that time
will include ones like ‘It will be the case tomorrow that it was
the case 50 years ago that ’, and maybe we don’t want to say
that it is now quite determined which of those will be true;
while on the other hand the past-tense propositions of that time
will include ones like ‘It was the case 50 years ago that it would
be the case 500 years later that p’, and we do want to say that
it is now determined which of #hose are to be true; and as to
the present-tense propositions of that time, these could include
all of them, since ‘It is the case that—"’ is prefixable to anything.
We need to formulate the thesis of remote predetermination in
terms of a class of propositions which are ‘non-past’ in much
the same way as our A-formulae above are ‘non-future’.

6. Formalization of the Peircean answer, and comparison with the
Ockhamist. Turning now to the other way of answering the
argument from post-determination to predetermination, that
of denying that Fnp always implies PmF(n+m)p, I begin by
modifying the ancient and medieval presentation of this alter-
native at one point. What is said by writers like Peter de Rivo
is that predictions about an as yet undetermined future are
neither true nor false. It did seem to me in the early 1g950s that
this was the only way to present an indeterminist tense-logic,
but in Time and Modality two alternatives to this were mentioned,
one the Ockhamist position developed in Ryle’s Dilemmas
(which, however, I misrepresented) and the other the alterna-
tive which I now want to pursue further. What here takes the
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place of a third truth-value is a sharp distinction between two
senses of ‘It will not be the case the interval n hence that p’. This
may mean either

(A) ‘It will be the case the interval n hence that (it is not
the case that p)’, i.e. FaNp;

or

(B) ‘It1is not the case that (it will be the case the interval
hence that p)’, i.e. NFnp.

‘Will’ here means ‘will definitely’; ‘It will be that p’ is not true
until it is in some sense settled that it will be the case, and ‘It
will be that not p’ is not true until it is in some sense settled
that not-p will be the case. If the matter is not thus settled, both
these assertions, i.e. Fnp and FnNp, are simply false. The weak
form (B) can therefore be true for two quite different reasons;
it may ‘not be the case that p will be the case’ at the time
stated, NFnp, because it is already settled beyond any pos-
sibility of reversal that it wil/ be not-the-case; or that it will be
may ‘not be the case’ yet simply because it isn’t yet settled
either way. There is no question now of denying the Law of
Excluded Middle 4p/Np; this still holds even in the special case
AFnpNFnp; and moreover the allied metalogical ‘Law of Bi-
valence’, that every proposition (even ‘It will be the case the
interval n hence that p’, spoken of something as yet undeter-
mined) is either true or false, is not abandoned either (under
the circumstances mentioned, ‘It will be the case the interval n
hence that p’ is simply false, no matter how things turn out
later on). Nor is it denied that the Law of Excluded Middle
will be true in every particular case; we have, e.g. FndpNp
(‘It will be the case tomorrow that either there is a sea-battle
going on or there isn’t’). What is denied is that we always have
AFnpFnNp, i.e. that it always either will be the case that not
p or will be the case that p.

This position clearly entails some radical modifications of
the metric tense-logical system set up in the last chapter. For
instance, although we can keep FN1, CFaNpNFnp, (‘If it will
be then that not p, it won’t be then that p’), we have to drop
FNo, CNFnpFnNp (‘If it won’t be then that p, it will be then that
not p’). This destroys the proofs of the converses of the remaining

824311 K
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axioms involving F, and we will need to lay down separately (at
least in a first axiomatization) those that do still hold. We need
also to watch the relations between F and 4 and K. Since we still
have FC, we can prove CFnKpgKFnpFng and CAFnpFngFndpqg,
but CKFnpFngFnKpg would seem to require separate assertion
and CFnApgAFnpFng no longer holds (e.g. as was observed
in the last paragraph, we have FndpNp but not AFnpFnNp).
Also, since we have PN2, CNPnpPnNp, as well as PNi,
CPnNpNPnp, but do not have FNo2, the mirror-image rule
must go, and the mirror images that hold must be separately
asserted. Mixtures of F' and P have a particularly complicated
logic; we have CPmpFnP(m—-n)p and CpFnPnp and their con-
verses but not their mirror images, though we do have the con-
verses of their mirror images, i.e. we do have CPnF(m-n)pFmp
and CPnFnpp.

Shorter pointed out in 1957 that in the system now being
considered, which I shall call ‘Peircean’ for reasons that I shall
give below, the rather strong ‘will be’ is simply the Ockhamist
‘necessarily will be’, the Ockhamist ‘will be’ being untranslat-
able. We can in fact characterize the Peircean system as that
fragment of the Ockhamist system in which there are no
variables but A-variables, and F does not occur except as im-
mediately preceded by an L, which last symbol now becomes
redundant and so may be dropped. For example, in O (the
Ockhamist system) CaLFnPna is provable thus:

1. CaFnPna
2. CLaLFnPna (1, RL, La2).
3. CaLFnPna (LA, 2, syll.),

so that CpFnPnp holds in P (the Peircean system). But CaPnLFna
is not provable in O, and so CpPrFnp not in P. Again, we have
CLFnNaNLFna in O, and so FN1 in P; but not CNLFnaLFnNa
in O, and so not FN2 in P.

To the Ockhamist, Peircean tense-logic is incomplete; it is
simply a fragment of his own system—a fragment in which
contingently true predictions are, perversely, inexpressible. The
Peircean can only say ‘It will be that p” when p’s futurition is
necessary; when it is not necessary but will occur all the same,
he has to say that ‘It will be that p’ is false; the sense in which
it is true eludes him. But to the Peircean, the Ockhamist seems
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to treat what is still future in a way in which it would only be
proper to treat what fas been future—he views it as it would be
proper to view it from the end of time. For the Peircean can
give a sense in his own language to past Ockhamist futures,
provided that they are far enough past. He can, that is, give
a sense to the Ockhamist ‘It was to be’, PmFnp, and even to ‘It
was contingently to be’, KPmFnp NPnLFnp, provided that m > n
and that there is not too much future in what is represented
by p. The former is simply, in the P language, P(m—n)p, and
the latter, KP(m—n)p/NPmFnp. For example, the Ockhamist ‘It
was the case two hours ago that Eclipse would win an hour
later’ is in Peircean just ‘Eclipse won an hour ago’, and ‘It was
the case two hours ago that Eclipse would win an hour later,
but not that he kad to’ is in Peircean ‘Eclipse won an hour ago,
but it was not the case two hours ago that he would win an
hour later’.

The Peircean can, I think, even give instruction in the use of
Ockhamist tenses, as these are used, e.g. in betting. (We don’t
refuse to pay up on the grounds that when the man said ‘Eclipse
will win’ what he said was false—or even on the grounds that
what he said was neither true nor false—because the matter
was still undecided when he said it.) Using ‘was’ and ‘wiLr’
for the Peircean past and future, and ‘was’ and ‘will’ for the
Ockhamist, the Ockhamist’s

“‘Your statement of an hour ago, “Eclipse will win in an hour’s
time”’, was true’

goes into Peircean as

‘It was the case an hour ago that you were saying “Eclipse
will win”, and now he is winning’.

What cannot be said in Peircean is the Ockhamist’s ‘It is to be’
(where this does not mean ‘It is bound to be’), i.e. his Fnp, or his
PmFnp where n > m. But even of this it can be said in a Peircean
metalanguage,

‘If an Ockhamist is now saying “It will be the case an hour
hence that Eclipse is winning”, then it wiLL (now-
unpreventably will) be the case an hour hence that either
his statement was true or it was false.’
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(The dependent ‘was’ being defined as before.) This is just
a case of the Peircean theorem CpFnAKPnpgKPnpNg.

Nor does the Peircean logic need to be characterized as a
fragment of the Ockhamist one. For it could also be charac-
terized as consisting of all those theses which are verified in all
Peircean models, a Peircean model being like an Ockhamist
model except that the truth-value assignments are as follows:

(1) and (2): Assignments to variables, and prima-facie assign-
ments to Frna, as in the O model.

(3) The actual assignment to Fna at x gives it truth if all its
prima-facie assignments do; otherwise falsehood.

(4) The assignment to Pna at x gives it the value actually
assigned to x at the distance 7 to the left of x (on the line
connected to x).

(5) Truth-functions and quantifications as usual.

It is difficult to define within Peircean logic a ‘necessity’ for
which we can say that all truths about the past, but not all
about the future, are necessary. For the F of this logic only
enables us to state such truths about the future as are necessary.
What we can do is to define a sense of ‘possibly will’ which is
distinguishable from the plain ‘will’, although the analogous
sense of ‘possibly was’ is not distinguishable from the plain
‘was’. Mnp, for ‘It possibly will be the case the interval » hence’,
is simply ‘It is not the case that it will be the case the interval
n hence that not p’, NFnNp, which is true if either it definitely
wiLL be the case that p or the matter is still undecided. But
NPnNp is true if and only if Prp is (we have this by PN1 and
PN2). This corresponds less closely to ancient and medieval
formulations than to C. S. Peirce’s description of the past (with,
of course, the present) as the region of the ‘actual’, the area of
‘brute fact’, and the future as the region of the necessary and the
possible.” That is why I call this system ‘Peircean’.

7. The Peircean senses of ‘will’. The GH system which we obtain
from Peircean tense-logic by writing Go and Ha for ITnFno and
ITnPno is axiomatizable, in its own terms, as follows. Subjoin
to propositional calculus, with substitution and detachment,
the rules to infer FGa and FHa from Fa, and the axioms

* Collected Papers of C. S. Peirce, 5. 459 and 6. 368.
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Ar.1. CGCpeCGpGy A1.2. CHCpqCHpHg

Az.1. CGpNGNp A2.2. CHpNHNp
Ag.1. CGpGGp Ag.2. CHpHHp
Ag.1. CpGNHNp Ag.2. CPHNGNp

As. CpCHpCGpGHp

(the question of denseness, etc. being left open). The only non-
standard feature here is of course the absence of any mirror
image of A5. The disappearance of this from time-systems with
a branching future—in which no possible future is singled out
as the actual one, and Gp means ‘It is true throughout all
possible futures’—has already been commented on in Chapter
II1. It might be thought that more would have to go than this;
in particular, if A4.2 is abridged to CpHFp, “What is the case has
always been going to be the case’, this seems to be one of the first
things that ought to go (since we don’t have, e.g. CpPnFnp, on
which that would seem to depend). Just for this reason, how-
ever, the NGN of A4.2 has not been abbreviated to F; if we
do read F as simply an abbreviation for NG, all that Fp means
is that it could come to pass that p, i.e. p is not false-throughout-
all-possible-futures, and if p is actually occurring it certainly
has always been the case that p is not false-throughout-all-
possible-futures (for it to be occurring, there must always have
been some possible future which included it). And what A4.2
requires in the underlying calculus P to prove it is not CpPnFnp
but the weaker CoONPrFnNp (if p is the case, then it was not the
case n ago that it definitely would, » later, be false’), which is
in P. (It is equivalent to CpPrnMnp in the terminology of the
last paragraph.)

The F-function which means ‘It definitely will be that’, without
going so far as ‘It definitely will always be that’, and for
which CpHFp is to be rejected in a Peircean-style system, is not
definable in terms of G. Something like it, however, could be
defined in terms of the Peircean Fr and introduced into the GH
calculus independently. The NGN function is, in P, an abridge-
ment of NIInFnN; the other F could be ZnFn, which in P is not
equivalent to the former, but stronger. Certainly Zn = NIInN,
but this turns ZnFn into NIInNFn, not into NInFnN, and in
the absence of CNFnpFnNp we cannot prove CIInNFnpIInFn/Np,
and so not the transposed form CNIInFnNpNIInNFnp.
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Even the Peircean ZnFn, however, does not give us guite the
F we want. If NGN is too weak, XnFn is in one way too strong.
It tells us that there is some instant, future to now, such that
it is now-unpreventably the case that whatever it is will then
be the case; what is really wanted is the assertion that the
thing is bound to happen some time or other (not that there
is some time at which it is bound to happen). We want to say,
in other words, ‘On every route into the future, there is some-
where a point at which p is the case’, but not “There is a distance
such that p is the case that distance along every route’, which
is what XnFnp says. We cannot express what we want in P,
because we have no machinery for quantifying over routes. We
can do it, in a manner, in O. The Peircean ZnFnp is the Ock-
hamist ZnLFnp (For some n, it is bound to happen 7 hence);
what we want is rather the Ockhamist LZnFnp (‘It is bound to
happen some time’). This won’t go into Peircean because that
language incorporates the Ockhamist F only as that is imme-
diately preceded by an L.

Once again, however, this does not mean that we have to
describe the language we are after as a fragment of Ockhamist
language. We can say that we are after a GHF system (P can
still be defined as NHN) consisting of all formulae that are
verified by all GHF ‘models’ of a certain type—infinite branch-
ing lines again, and truth-values now assigned, in each model,
as follows:

(1) Each variable has an arbitrary assignment of truth or
falsehood at each point on the line.

(2) Go is assigned truth at x if « is assigned truth at every
point to the right of x on every line connected to x; other-
wise falsehood.

(3) Fo is assigned truth at x if « is assigned truth at some
point or other, to the right of x, on each line connected
to x; otherwise falsehood.

(4) Ha is assigned truth at x if o is assigned truth at all
connected points to the left of x; otherwise falsehood.

(5) Truth-functions as usual.

This will certainly falsify CpHFp, though the pure GH portion

of the calculus will have the same axioms as before, including
CpHNGNp.
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8. Propositions that are neither true nor false. It is a little vexing
that no one has yet been able to formalize satisfactorily the
ancient and medieval view that predictions of future contin-
gencies are ‘neither true nor false’. It is well known that this
view provided the original stimulus for ¥.ukasiewicz’s g-valued
logic. But that logic has some features which are very counter-
intuitive even when we do take the possibility of ‘neuter’ pro-
positions seriously; in particular, a conjunction of two neuter
propositions is neuter, even in the case where one is the negation
of the other. If “There will be a sea-battle’ is neuter or un-
decided, it is no doubt reasonable that “There will be no sea-
battle’ should be neuter or undecided too; but not that ‘There
both will and won’t be a sea-battle’ should be—that, surely, is
plain false. On the other hand, it is equally unplausible to make
the conjunction of two neuters automatically false; if they’re
independent, it is natural that their conjunction should be
neuter too. The truth-functional technique seems simply out
of place here.

Recently Storrs McCall' has attempted to characterize the
ancient and medieval position (of which he gives an accurate
and well-documented presentation) by means of rules of truth
for ‘tenseless dated propositions’ referring to a time ¢, and
asserted at different times. His rules are that

(1) p(t,) is true at #, itself if p(z,),
(2) it is true at a time earlier than {, if there is at that time
‘some condition sufficient to make p(#,) true at #,’,
(3) if p(t,) is true at any time it is true at all later times,
and
(4) p(t,) is not true under any other conditions.

An analogous set of conditions is given for falsity, and from his
stipulations as a whole it follows that if at any time earlier
than ¢, there are not sufficient conditions either to make p(¢,)
true at £, or to make it false at #,, then at that earlier time, it is
neither true nor false. The conditions are said to be easily
adaptable to tensed propositions, but they are so only, so far
as I can see, to ones of the form ‘It will be (was, is) the case at ¢,
that p’. The ancient and medieval view is certainly mirrored
with some accuracy in McQCall’s stipulations; but how they
I In ‘Temporal Flux’, American Philosophical Quarterly, Oct. 1966.
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work with a detailed linguistic structure, what sort of a calculus
we might get (except that we don’t have to deny FApNp), is
left unsaid.

Perhaps ‘neither true nor false’ is simply a possible way of
describing the kind of falsehood which ‘It will be that ¢’ has,
in Peircean logic, when the matter is undecided. It is the actual
value we assign to a formula in a Peircean model at points
where that formula has different prima-facie values for different
routes. In particular, we assign ‘neuter’ to Kaf, where that,
as well as one or both of its parts, has different prima-facie
values for different routes; otherwise, as where B = Na, we
assign it falsehood. But how we proceed from there—what use
we make of this bit of terminology—I do not know; and I
cannot help suspecting that the theory of ‘neuter’ propositions
only arose through a lack of machinery for distinguishing be-
tween the two senses of ‘will not be’, i.e. NFn and FnN.

Note. Postulates for Peircean metric tense logic (with Fnp for the
function written Mnp on p. 132) may now be found, as part of
an improved presentation of metric tense logic generally, in my
‘Stratified Metric Tense Logic’, Theoria 1967.



VIII
TIME AND EXISTENCE

1. Modalized and tensed predicate logic; the standard systems. So far
we have in a sense considered only tensed propositioral logic,
although we have had quantifiers binding propositional
variables and interval variables. We must now consider some
of the problems which arise in tensed predicate logic, with quan-
tifiers binding individual variables, i.e. variables which (unlike
the ones so far used) do stand for genuine names of individual
objects.

Here again we have, to begin with, the experience of modal
logic to draw upon. One of the principal pioneers in this area
was Ruth Barcan Marcus,” who took certain Lewis modal
systems and appended to them (a) some normal postulates
for quantification over individual variables, and (4) a special
‘mixing axiom’, CMZxdxZxMdex, ‘If it could be that something
¢s, then there is something that could ¢’. This is nowadays
often called the ‘Barcan formula’. We shall for the moment
postpone consideration of the formula’s intuitive plausibility,
and simply mention one broad feature of the system to which
these postulates give rise.

It makes the modal operations behave rather like further
quantifiers, ‘possibly’ resembling ‘For some x’ and ‘necessarily’
resembling ‘For all #’. We have, in particular, the following
equivalences and implications:

(1) ELIIx¢xIIxLéx, ‘Necessarily everything ¢s = Everything
necessarily ¢s’ (cf. EITyIIx¢xyIIxIIydxy, ‘Everything has
everything ¢-ing it = Everything ¢s everything’).

(2) CLIIx¢xMIlx¢x, ‘If necessarily everything ¢s, then pos-
sibly everything ¢s’; but not vice versa.

! Ruth C. Barcan, ‘A Functional Calculus of First Order based on Strict
Implication’, Fournal of Symbolic Logic, vol. 11, no. 1 (March 1946), pp. 1-16. Cf.
also R. Carnap, ‘Modalities and Quantification’, ibid., vol. 11, no. 2 (June 1946),

PP. 33-64.
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(3) CIIxL$xZxLx, ‘If everything necessarily ¢s then some-
thing necessarily ¢s’; but not vice versa.

(4) CMIIxdxIIxMéx, ‘If it could be that everything s,
then everything could ¢’, but not vice versa (cf.
CZylIxdxyllxZydxy, ‘If something has everything ¢-ing
it, then everything ¢s something’, but not vice versa).

(5) CZxL$xLZx¢x, ‘If something is bound to ¢, then it is
bound to be that something ¢s’, though not vice versa.

(6) CIIxM¢xZxMdx, but not vice versa.

(7) CLZx¢pxMZxx, but not vice versa.

(8) EMZxdxZxMepx.

Law (1) as well as Law (8) is sometimes also called a (or the)
‘Barcan formula’.

It seems a straightforward matter to produce a tensed pre-
dicate logic which will have similar laws, and similar warnings
(I mean the ‘not vice versas’). For example, it was noticed in
the Middle Ages that Semper fuit homo, ‘Always there has been
(at least one) man’, does not entail that there is at least one
man who has existed always, i.e. we do not have CHZx¢xZxHex,
any more than we have CLZx¢$xZxLéx, the converse of (5)
above. Medieval logicians managed, in fact, to be remarkably
at home in this area; but what they are most noted for is not
the development of a system analogous to the above, but rather
their construction of ingenious objections to it, and indeed also
to some of the above modal principles themselves. Buridan,
for example, objected to (4) that it could be that everything is
God (MIIx¢x), and that this actually was the case before the
creation (PIIx¢x), and would be the case if God were to
annihilate all other beings; but it is just not true that everything
could be God (IIxM¢x), or that everything has been God
(ITxPgx)—most of us neither have been nor could be.!

2. Ancient, medieval, and modern objections to coming to be, being
brought into being, and being prevented from being. Implicit objections
to a tensed predicate logic of this sort are to be found not only
in technical logical works but in general philosophical discus-
sions of the concept of coming to be, and this not only in the
medieval period but in the ancient and modern periods also.

t Sophismata, ch. 4, sophisma 13.
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There is, for example, the following argument recorded in
Aristotles Physics.!

‘The first of those who study science . . . say that none of
the things that are . . . comes to be . . ., because what comes
to be must do so either from what is or from what is not,
both of which are impossible. For what is cannot come to be
(because it is already), and from what is not nothing could
have come to be (because something must be present as
a substratum).’

I think this argument might be summed up in the following
diagram:
N.B. l B.

Here the left-hand compartment represents the realm of non-
being, the right-hand compartment the realm of being, and
the arrow the path of something that is supposed to come to
be. But if the left-hand compartment really does represent the
realm of non-being, the portion of the arrow on that side of
the line has no business to be there—on that side of the line
there justisn’t anything to carry out this part of the performance.
That leaves the right-hand compartment, but whatever it is
that is going on there, it cannot be ‘coming to be’, for what’s
in that compartment is what already is. The argument seems
to me conclusive, though it should be noted that however it
tells against the conception of coming to be, it does not make it
impossible for a thing to start to be, i.e. to exist for the first time
—this takes place unambiguously on the right-hand side, and
at least as far as this argument goes, there is no reason why such
things should not take place there. But this line of argument
tells strongly against a formula which would be easily obtain-
able if we appended ordinary laws of quantification theory to
most of the tense-logics we have been considering, namely
ClxdxPZxFéx, ‘If something is ¢-ing (e.g. existing), then there
used to be something that was going to be ¢-ing.’

A very similar argument was mentioned by Thomas Aquinas
as a possible objection to the doctrine of creation out of nothing.2

T 1912 23-32.

2 Aquinas, De Potentia Dei, Q .3, Art. 1, Obj. 17. The philosophical importance
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The objection runs:
“The maker gives being to that which is made. If then God
makes a thing out of nothing, he gives being to that thing.
Hence either there is something that receives being, or there
is nothing. If nothing, then nothing receives being by that
action of God’s, and thus nothing is made thereby. If some-
thing, . . . God makes a thing from something already exist-
ing, and not from nothing.’
The concept of being brought or ‘launched’ into existence has
the same difficulties as that of ‘coming’ into existence. The
same diagram will do for this as for the preceding; the only
difference is that the object is supposed to be helped over the
fence between non-being and being; and once again, if the
starting point really s non-being, there is just nothing there
to be helped; and if not, it is not existence that the thing is being
helped to, since it already has it. With problems of this sort
in mind, P. T. Geach! has suggested that bringing a man into
being out of something, i.e. making something a man, may
be reported by the form:

(1) For some x (God has brought it about that (x is a man));
while making a man out of nothing may be reported by:

(2) It is not the case that (i); but God has brought it about

that (for some x (x is a man)).

The fact that the second part of (ii) does not imply (i) means
that there is no Barcan formula for ‘bringing it about that’. It
may be noted that we also have a distinction here like that made
in Buridan’s sophisma of the man who says ‘I promise to give
you a horse’.2 I cannot actually give you a horse without there
being some horse that I give you, but I can promise to give
you a horse without there being any particular horse that I
promise you. Similarly, what God does in creating a man out
of nothing, on Geach’s account of it, is not to say ‘Let this
man be’, and then this man is, but rather to say ‘Let 4 man be’
(maybe a man with such-and-such further detailed specifica-
tions) and then this man is. There is no ‘this’ until the man
is already there.

of Aquinas discussions of this subject was first brought home to me by A. Sertil-
langes, L’Idée de Création et ses Retentissements en Philosophie.

' P. T. Geach, ‘Causality and Creation’, Sophia (Melbourne), vol. 1, no. 1
(April 1962), pp. 1-8. 2 Sophismata, ch. 4, sophisma 15.
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An allied point emerges from a passage in Jonathan Edwards,!
where he is maintaining that God has no freedom of choice
since a perfect being will always choose the best possible course.
To the objection that God can at least decide either way if the
choice is morally indifferent, Edwards replies that no choices
are. But it might be said that if God has placed two exactly
similar objects, at their creation, in different places, it could
have made no moral difference if he had placed them the other
way round. Edwards’s first answer to this is that if the objects
really differ in nothing but their position, there is no difference
between the two alleged alternatives.

He recognizes, however, that it might be said that the objects
(he makes them two spheres) are supposed numerically different,
so that there is a difference between 4 being at X and B at ¥, and
the opposite placing of them. His reply to this is obscure, but
it suggests that even if A’s being at X and B at ¥ is different
from the other placing, God’s creating A at X and B at 1" couldn’t
have been a different divine decision from creating B at X and
4 at 7. For if it were, all sorts of other choices might also have
confronted him, of a kind which are clearly ridiculous.

‘If, in the instance of the two spheres, perfectly alike, it be
supposed possible that God might have made them in a con-
trary position; that which is made at the right hand, being
made at the left; then I ask, whether it is not evidently
equally possible, if God had made but one of them, and that
in the place of the right-hand globe, that he might have made
that numerically different from what it is, and numerically
different from what he did make it; though perfectly alike,
and in the same place ... ? Namely, whether he might not
have made it numerically the same with that which he has
now made at the left hand, and so have left that which is
now created at the right hand, in a state of non-existence?
And if so, whether it would not have been possible to have
made one in that place, perfectly like these, and vyet
numerically different from both? And let it be considered,
whether from this notion of a numerical difference in bodies,
perfectly alike, . . . it will not follow, that there is an infinite
number of numerically different possible bodies, perfectly

2 Op. cit., Part IV, Section viii.
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alike, among which God chooses, by a self-determining
power, when he sets about to make bodies.’

This conclusion does not follow from that ‘notion’, but it does
follow, or something like it does, from the notion that indivi-
duals have a distinct identity before they exist. If God can say
‘Let this go here, and that go there’ of things that do not yet
exist but will do so, there is nothing to stop him from making
decisions about what not only does not yet exist but will never
do so. And indeed the supposition of qualitative likeness in
the end-products is a superfluous circumstance; if God can say
even ‘Let this be a perfect sphere and that a dented one’ of
things that do not yet exist but will do so, there is again nothing
to stop him from making decisions about what not only does
not yet exist but never will (‘Let that just stay as it is’). Edwards
takes this to be obviously absurd, and the same would be true,
I suggest, of similarly particularized prophecies. Suppose some
gifted gipsy or Cornish man to go into a trance in 1850 and say
‘Next century there will be a person called A. B. with such-
and-such a character and history, and a person called M. N.
with such-and-such a different character and history’; and then
suppose the man suddenly to get worried and say ‘No, perhaps
it’s the second man I meant who is going to be called A. B. and
have the first character and history, and the first who will be
called M. N. and have the second’, and then he gets still more
worried and says ‘Perhaps I am even more wrong than that,
and it is neither of the persons I meant who will do and suffer
these things, but two quite different individuals altogether’.
These worries are surely senseless, and the alternatives a¢ that
time not distinct.!

Ryle, in our own period, has made a similar point to
Thomas’s, not about the conferring but about the prevention of
existence:

‘If my parents had never met, I should never have been
born . . . So we want to say that certain circumstances would
have prevented me from being born...But then there
would have been no Gilbert Ryle . . . for historians to des-
cribe as not having been born ... What does not exist . ..
cannot be named, individually indicated or put on a list,
! Cf. A. N. Prior, ‘Identifiable Individuals’, Review of Metaphysics, Dec. 1960.
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and cannot therefore be characterised as having been pre-
vented from existing.’

The same diagram does for this as for the others, except that
one pictures the object’s progress, while in the realm of non-
being, as meeting with an obstruction, thus:

N.B. B.

l

But once again it is absurd to suppose anything of this sort
going on there, while if one transfers the arrow and the obstruc-
tion to the other side, it cannot represent something being pre-
vented from starting to exist, but only something that already
exists being destroyed. Ryle goes on:

“This point seems to me to bring out an important dif-
ference between anterior truths and posterior truths, or be-
tween prophecies and chronicles. . . . After 19oo there could
be true and false statements . . . mentioning me. But before
... 1900 there could not be true or false statements giving
individual mention to me. ... While it is still an askable
question whether my parents are going to have a fourth son,
one cannot use the name “Gilbert Ryle’’ or use as a pronoun
designating their fourth son the pronoun “he”. Roughly,
statements in the future tense cannot convey singular, but only
general truths.’ !

(Only roughly, because they might convey truths about the
future feats of already existing individuals.) ‘It will be that
someone is the Ryles’ fourth son’ does not entail ‘It is true of
someone that /e will be the Ryles’ fourth son’ ({CFZx¢xZxFdx).

3. Ampliation. There are certain movements of quantifiers inside
and outside other operators which look as if they would be
easy, but which in cases like the preceding have encountered

¥ G. Ryle ‘Dilemmas’, pp. 25-27. The same topic is nicely handled by Michael
Frayn in ‘The men who never were’, Observer, 277 Feb., 1966, p. 10.
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obstacles; and the immediate source of these obstacles is obvious
enough. When a quantifier is governed by, say, a tense operator,
it is natural to think of it as ranging over such objects as there
may be at the time to which the tense operator takes us; for
example, ‘It will be that something ¢s’ is most naturally read
as ‘It will be, at some future time, that something then existing
¢s’. On the other hand, a quantifier preceding any such operator
is naturally taken to be governed by the ‘It is the case that—’
which is prefixable to anything we say, and therefore to range
over what now exists. And where these ranges do not coincide—
as is bound to be the case where we are considering what now
is but once was not, or (in the case of modal logic) what
in fact is, but need not have been—we have to tread care-
fully.

Medieval logicians had considerable sensitivity to problems
of this sort, but in their solutions to them were hampered by
an inadequate analysis of quantifiers and tenses. They mostly
handled propositions like ‘Some man will be running’ in which
the sign of quantity was attached to some specific common
noun and the sign of tense to a following verb. They held that
a noun like ‘man’ normally stands for (supponit pro) presently
existing men, in the sense that any presently existing man’s
#-ing, and only a presently existing man’s ¢-ing, will verify
‘Some man ¢s’. But where the verb is tensed, and in some other
circumstances, the suppositio of the subject-noun will be widened
or ‘ampliated’ to include also objects to which it was applicable,
or to which it will be (depending on the tense of the verb).
‘Some man will be running’, for example, would be verified by
a man’s running in the future, even if that man doesn’t exist
yet. This ruling had some odd consequences; Buridan! was
compelled to agree, for example, to Senex erit puer, ‘An old man
will be a boy’, on the grounds that this means that someone
who s or will be an old man (e.g. someone who is now a baby,
or unborn) will be a boy. To give the sense of ‘No old man
will be a boy’ in which that is true, one has to say explicitly
‘Nothing that now is an old man will be a boy’. But many
knots were untied this way, e.g. they could say that ‘Some
house doesn’t exist’ is false although it appears to follow from
‘Nothing that has perished exists, and some house has perished’;

¥ Sophismata, ch. 4, sophisma 4.
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for the minor in this means ‘Some present or past house has
perished’ while the conclusion means ‘Some present house
doesn’t exist’.

With tense-operators and quantifiers both prefixed to open
sentences, we can let the range of the quantifier be settled by
the order in which the different prefixes go. If we do this, how-
ever, we may have to do more than be careful in this part of our
tense-logic; there could be repercussions in the propositional
part of it too. In developing this point, we may start from an
objection that was raised against one of the ‘Barcan formulae’
a few years ago by John Myhill.t

4. Objections to standard modal logic suggested by Mphill, Ramsey,
and Chrysippus. Myhill, in discussing the formula CIIxLéxLITx¢x,
starts from the assumption that not only whick objects the uni-
verse contains, but also fow many of them there are, must be a
contingent matter. Suppose there are in fact five—a, b,¢,d, and e.
Then a is necessarily identical with a (everything is necessarily
identical with itself), and so is necessarily either identical
with a or identical with 4 or identical with ¢ or identical with 4
or identical with ¢ (CLpLApq). Similarly, b is necessarily identical
with &, and therefore with a or & or ¢ or d or e. They are all, in
fact, each for its own reason, necessarily either identical with
the 1st or with the 2nd or with the grd, etc. If we let this neces-
sary disjunction of identities be ¢, we have here IlxLéx. But
there didn’t have to be just 5 individuals, so it didn’t have to
be true that everything is either a or b or ¢ or d or ¢, i.e. we don’t
have LIIx$x; and so we have a counter-example to the Barcan
formula. Or, if the Barcan formula is true, there aren’t just 5
individuals, for if there were the Barcan formula would lead
us from that to a falsehood. Nor, by similar reasoning, can
any finite number n be the number of individuals, if the
Barcan formula is true; so if it is true the number of individuals
would be infinite. But drawing this conclusion also would
make the number of individuals in the universe a logical
matter. So the Barcan formula can’t be true, and must be

dropped.
If it can be, that is. Myhill’s description of what he is

T J. Myhill, ‘Problems arising in the Formalisation of Intensional Logic’,
Logique et Analyse, April 1958, pp. 76-83.
824311 L
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dropping it from is not very clear. He says that the system he is
after consists of a normal basis for predicate calculus together
with ‘the’ axioms for Lewis’s S5, the ‘rule of necessitation’ (toinfer
FLa from Fo), and nothing else; above all not CIIxLéxLIIxex.
But if by ‘the’ axioms for S5 he means Lewis’s own original
ones, these all start in effect with LC, and are geared to rather
special rules; neither C-detachment nor the rule of necessitation
will get any theorems from them at all (except the axioms, and
substitutions in them, preceded by L’s). He almost certainly
means Godel’s formalization, with CLpp, CLCpgCLpLg, and
CNLpLNLp subjoined to propositional calculus, or to predicate
calculus, with RL. But if this is what he means, he is not in
a position just to take or leave the Barcan formula, since on
that basis it is provable.!

In the original Barcan basis, indeed, the equivalent formula
was an independent axiom, and so could be dropped if desired,
because the modal system used was not S5 but a weaker one.
One might, therefore, consider meeting Myhill’s problem by
weakening his modal logic to, say, S4. That quantified S4,
without special additions, does not contain CIIxLéxLIIx¢x,
was shown by Lemmon in 1960.2 Lemmon has also shown,
however, in 1965, that this formula is provable in the quanti-
fied ‘Brouwersche’ system, i.e. T-+CpLMp, or CMLpp, as
follows:

1. CMIIxLpxMLx (CHxxipx, p/Ldp; RMC)
2. CMIIxLéxdx (1, CMLpp)

3. CMITxLpxITxdx (2, IT2x)

4. CLMIIxLéxLIIx¢x (3, RLC)

5. CIIxL$xLITxdx (4, GpLMDP).

We have already seen that the system B is what we get for
Lo = KKaGaHo even when for G and H we use the ‘minimal’
tense-logic K. So, however helpful or plausible it may be to
dismiss the Barcan formula from modal logic by working from
S4 (or something weaker) instead of S5, this move doesn’t look

! For the proof, from this basis, of the equivalent formula CMZx¢xZxMd¢x,
see A. N. Prior, ‘Modality and Quantification in S5°, Fournal of Symbolic Logic,
vol. 21, no. 1 (March 1956), pp. 60-62.

2 E. J. Lemmon, abstract in Journal of Symbolic Logic, vol. 25, no. 4 (Dec. 1960),
PpP. 391-2.
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as if it will work in tense-logic. Indeed, the above proof only
needs slight modification to obtain, in K, a Barcan formula
for G; for we have the following:

1. CPIIxGpxPGex (CIIxyxix, $/Go; RPC)
2. CPIIxGoxdx (1, CPGpp)

3. CPIIxGéxIIxdx (2, IT2x)

4. CGPIIxGpxGIIxdx (3, RGQ)

5. CIIxGxGIIxdx (4, CpGPp).

A Barcan formula for H may be proved analogously, and appro-
priate ones for F and P by contraposition from these. (Coc-
chiarella had in 1965 a similar direct proof of CPZx¢xZxPex
and its F-image in which, although his system is stronger than
K, he used only theses which are in fact in K.) And even in
modal logic as ordinarily interpreted there is abundant evidence
that something more radical is needed than the weakening of
S5 to one of the other standard systems.

Only very weak modal assumptions are made in an argu-
ment quite like the first part of Myhill’s which F. P. Ramsey
put forward over thirty years before.” Ramsey did not hold
that ‘no proposition concerning the cardinality of the universe
(except the one asserting its non-emptiness) is necessary’; on
the contrary, he believed that any such proposition would be
either a tautology or a contradiction—either necessary or im-
possible. He adopted the view of Wittgenstein’s Tractatus that
‘For all x, ¢’ is just short for the long conjunction ‘¢a and ¢b
and ¢c...’, and that what the latter form apparently needs
to have added before it can yield the former, namely ‘a, b, ¢, . . .
are all the individuals’, is, when true, logically necessary.
Similarly propositions of the form ‘a, b, ¢. .. are not all the
individuals’ are, when true, necessary. Those who object to
this, he says, will surely admit that (1) ‘numerical difference
and identity are necessary relations’, that (2) “There is an x
such that “‘fx”’ follows from “/fa”’’ and that (3) ‘whatever follows
necessarily from a necessary truth is itself necessary’. Suppose
now that the universe in fact contains not only the objects
a, b, and ¢ but a further object d. By (1) it will be a necessary
truth that 4 is not identical either with a or with 4 or with ¢,

! In ‘Facts and Propositions’, Proc. Arist. Soc., supp. vol. 8 (1927), reproduced in
The Foundation of Mathematics
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and by (2) and (3) it follows from this that it is a necessary
truth that there is something that is neither ¢ or 4 or ¢, i.e. that
these are not all the individuals.

It should be noticed that Ramsey does not first say that
because 4 is necessarily other than g, b, and ¢, therefore there
is something that is necessarily other than them, i.e. he does not
argue from Léd to ZxLéx, and then from this to ‘Necessarily there
is something that is other than them’, LXx¢x, using one of the
formulae from the Barcan calculus of which we have learnt
to be suspicious. He just uses CpdZxpx, CLCpgCLpLg, and he gets
his L¢d (and so LZx¢x from the other two) from the assumption
that ‘numerical difference and identity are necessary relations’.
This assumption has certainly been much criticized in recent
years, but he wrote in 1927, and the assumption was hardly
ever questioned until Mrs. Marcus proved it (or at least proved
it for identity) ten years later. Remember that he didn’t mean
by it anything like “The Morning Star is necessarily identical
with the Evening Star’; he operated with Russellian proper
names, and his ClxpLIxy meant simply that each thing cannot
but be that individual thing that it is (what would it be for it to
be something else?), and his CNIxyLNIxy that nothing can be
another thing. This isn’t quite so obvious as he and his con-
temporaries thought. But it is certainly not the only premiss of
Ramsey’s that can be questioned, if we do not like his conclu-
sion.

One of the others, CLGpgCLpLg, was long ago questioned by
Chrysippus. This law is one which occurs in Aristotle with
variations; he says not only that what necessarily follows from
the necessary is itself necessary, but also that what necessarily
follows from what is possible is itself possible (CLCpgCMpMy),
and that the impossible does not follow from the possible. It was
this last form with which Chrysippus was most concerned. It
was, as we have seen, a premiss of the Diodorean ‘Master
argument’, but although it is mentioned in connexion with
that argument that Chrysippus did not accept this premiss, the
only near-detailed account that we have of why he did not
accept it has nothing to do with Diodorean definitions of possi-
bility, but has rather to do with worries about non-existence.
He is said to have argued that ‘If Dion is dead, this man is dead’,
uttered when Dion is being indicated, is a ‘sound conditional’
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in which the consequent follows from the antecedent, but that
while it is possible for Dion to be dead, ‘this man is dead’ could
never be true, since if Dion did not exist there would be no
such proposition as the one that it now expresses.! This argu-
ment has not in general struck historians of logic as impressive,
and I too find it a little unconvincing because of the obscurity
of the sense in which ¢ (Dion) is supposed to entail ¢ (this man).
I believe, however, that very little alteration of it does produce
a reason for denying CLCpgCMpMg, or anyhow for denying
CNMNCpgCMpMg, and also for denying the tense-logical
CNPNCpqCPpPyg.

Before making this amendment, however, a little should be
said in defence of Chrysippus’s contention that under certain
circumstances we would not only not be able to express certain
propositions which we now can, but there would be no such
propositions; and the analogous view in tense-logic that there
have been times at which not only were men not able to express
certain propositions which they now can, but there were no such
propositions. This view is in a way already implicit in the
comments that have been made above on coming to be, being
brought into being, and being prevented from being, and
especially in Ryle’s discussion of the last. But its justification
will be clearer if we look at one more philosopher’s discussion
of existence, modality, and time ; only in this example quantifica-
tion will definitely not be involved, so that there can be no
suggestion that all our troubles are with that.

5. Moore on what might not have existed, and on what once did not
exist. Russell has often said that it does not make sense to attach
‘exists’ or ‘does not exist’ to what he calls a logical proper name,
i.e. an expression whose function in a sentence is purely to
indicate which object we are talking about, and not to describe
the object in any way. We can attach ‘exists’ or ‘does not exist’
to a description, e.g. “The man on the moon exists’ and then
the predicate is eliminable by certain well-known means. But
‘This exists’, ‘This does not exist’ are senseless. This, however,
has been questioned by Moore, and it seems to me that Moore

1 See W. C. Kneale and Martha Kneale, The Development of Logic, p. 126; and
M. Kneale, ‘Logical and Metaphysical Necessity’, Proc. Arist. Soc. 1937-8, pp. 253—
68.
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at this point propounds a view which fits much better than
Russell’s own view does into Russell’s general logical position.
What Moore suggests® is that “This exists’ and ‘This does not
exist’ are not necessarily senseless, but may be so used that if
they are not senseless, the former is bound to be true and the
latter false. For if the function of “This’ in a sentence is purely
to indicate the object the sentence is about, then if in fact no
object is indicated, no sentence containing this “This’ really says
anything, and of course ‘This exists’ and ‘This doesn’t exist’
fall with the rest. But if “This’ does pick out the object intended,
what ‘This exists’ says will have to be the case and what “This
doesn’t exist’ says, cannot be. It may be noted that although
Russell rejects “This exists’ as ill-formed, the form ‘x is identical
with x’ as used in Principia Mathematica has exactly the pro-
perties that are ascribed to ‘This exists’ by Moore, and could
be used to define it.

One reason Moore gives for believing that ‘This exists’ can
have a sense at least of this sort, is that “This might not have
existed’ is something which is certainly not without meaning
and which is in general true. The bearing of this fact on the
main argument is, I think, that a compound sentence cannot
be meaningful if a component sentence in it is not, and “This
exists’ is a component out of which “This might not have existed’
is constructed. The construction is presumably ‘It could have
been that (it is not the case that (this exists))’, MNE!x (using
‘Elx’ for ‘x exists’). But if this is the construction, what is said
is surely not true. For Moore himself says that “This doesn’t
exist’, i.e. ‘It is not the case that this exists’, is not true under
any circumstances in which it says anything, and so far as I
can see it never could be; so MNE!x is bound to be false. But
there is a sense of “This might not have existed’ in which what it
says could be the case (and generally is), i.e. the sense: ‘It is
not the case that (itis necessary that (x exists))’ NLE!x. There are,
then, no possible states of affairs in which it is the case that
NE!x, and yet not all possible states of affairs are ones in which
E'x. For there are possible states of affairs in which there are no

1 G. E. Moore, ‘Is Existence a Predicate?’, Proc. Arist. Soc. supp. vol. 15 (1936),
reproduced in Philosophical Papers. The same points are developed in Moore’s
Lectures on Philosophy (1966), p. 40, and above all in the quite perfect little piece
on ‘Necessity’ (from lectures of 1925-6) on pp. 129-31.
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facts about x at all; and I don’t mean ones in which it is the case
that there are not facts about x (for that would itself be one, if true),
but ones such that iz isn’¢ the case in them that there are facts about x.

The relation of existence to time is similar, and Moore
was as clear about this as he was about possibility.! ‘I don’t
exist now’ and ‘This doesn’t exist now’, he says, ‘are self-con-
tradictory’. But ‘ “I might not have existed now (at ¢,)”’ or “This
mightn’t” are not, because what they mean is merely that there
would have been no contradiction in my saying of myself in
the past “I shan’t exist at £,”*, and will be no contradiction in my
saying of myself in the future “I didn’t exist at ¢,’’. He is then,
however, careful to add, ‘No-one could, of course, have said
of “this” in the past “‘this won’t exist at ¢, unless this did
exist at the past moment in question; nor could anyone say of
“this” in the future ““this didn’t exist at £, unless “this” exists
at the future moment in question.’ It is clear from this that if
someone says fruly ‘I didn’t exist at #;’, the truth of this cannot
consist in there having been a fact at ¢, which someone could
have expressed by then saying ‘This doesn’t exist’, since that is
always ‘self-contradictory’; i.c. it doesn’t mean ‘It was the case
at ¢, that (I don’t exist)’; it can only mean ‘It was not the case
at ¢, that (I exist)’, i.e. it now is not the case that my existence
was the case then—it’snot that my non-existence then was the case.

All this just follows from the rubbing out of the line in the
left-hand compartment of the diagram about coming-to-be.
There are just no facts at all in that compartment. And one
thing should now be said about the tense-logical law which I
said this rubbing-out falsified: CZx¢xPLxFdx, ‘If something ¢s
(e.g. exists) then it was the case that something was going to
¢ (e.g. exist)’. The quantifiers can go from this; I mean, it
still has to be denied if you leave it at CgpxPF¢x, ‘If this exists,
it has been going to exist’; or indeed if you leave it at CpPFp.

6. Arguments against some common principles of modal and tense-logic.

We can now return to Chrysippus and Ramsey, and the laws

CLCpqCLpLq and CLCpgCMpMy. Since NL # MN (we have, e.g.

sometimes NLE!x but never MNE!x), we cannot simply equate

L, ‘true in all possible states of affairs’, with NMN, ‘false in

none’; and we need to consider whether the L in these laws
T The Commonplace Book of G. E. Moore, p. 329; cf. also pp. 236-7.
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really means ‘true in all’ or just an abridgement of ‘false in none’.
Taken in the former sense, the laws are true, but of very limited
application (what is ‘true in all states of affairs’?); in the latter
sense, they are not true. Consider CNMNCpgCMpMy first, with
a Chrysippus-like example. “This man doesn’t exist’, we may
agree with him is in no circumstances true, where the ‘this’ is
supposed to identify an individual, though in some circum-
stances there may be no such proposition as the one that it now
expresses. That is, we don’t have MNE!a, though we don’t have
LE!a either. And ‘If nothing exists, this man doesn’t’ is never
false (NMNCNZxE!xNE!a), for it is true whenever there is such
a proposition. And it is possible that nothing should exist,
MNZxElx. So here we have an NMNCaf and an Mo which
are true, though the corresponding MB, namely MNEla, is
false; i.e. CNMNCpqCMp Mg does not universally hold. And the
example is almost Chrysippus’s own, except that I have replaced
his ‘Dion doesn’t exist’ by ‘Nothing exists’, the entailment by
which of ‘This man doesn’t’ is perhaps clearer. It is perhaps
a little contentious to say that it could be that nothing exists,
but if one held that being of the basic sort one is, e.g. being
a man, is ‘essential’ or ‘necessary’ in anything that s of that
sort, one could say that it could not be false that if no man exists
then this man doesn’t, that it could be that no man exists, and
that it couldn’t be (isn’t the case in any possible state of affairs)
that precisely this man doesn’t exist.

We can deal similarly with Ramsey and his world of four
individuals. Where ¢d is ‘d is neither a nor b nor ¢’ we do have,
I think, NMNC¢dZxx, ‘It could not be false that if 4 is neither
a nor b nor ¢ then something is neither & nor 4 nor ¢’. We also
have NMN¢d, ‘It could not be false that d is neither @ nor &
nor ¢’, though there could just be no such proposition as this
one, and would be if any one of 4, b, ¢, or d, were non-existent.
But NMNZx¢x, ‘It could not be false that (something is neither
a nor b nor ¢)’, is not true, for this would be false if 4 didn’t
exist (really false, and not itself non-existent, since it doesn’t
mention d). So we don’t have here CLCpgCLpLg in the sense of
CNMNCpgCNMNpNMNg.

In tense-logic, counter-examples to CNPNCpgCPpPq (‘If it has
never been false that if p then ¢, then if it has been that p, it has
been that ¢’) are easier to construct. To falsify it we need only
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find some object x which has been in existence longer than some
other object y, some ¢ which was true of x before y existed but
has not been since, and some ¢ which has never been true of y
at all, and let our p be ¢x and our ¢ be Apxpy. One could, e.g.
adapt a modal example used in Time and Modality* with God
for x and me for », ‘God alone exists’ for ¢x, and ‘I don’t exist’
for ¢y (it has never been false, though it has sometimes been
unstatable, that if God alone exists then either God alone exists
or I don’t exist; it has been the case—on the Christian hypo-
thesis—that God alone exists; but since ‘Either God alone
exists or I don’t exist’ has been statable it has never been true).
But there is no need to bring God or existence into it. For
example, we could use ‘That’ to indicate a small child who
has never, among other things, driven a Cadillac, and ‘this’
to indicate an older person who went to school before this child
was born but hasn’t done so since. We then have

(1) Ithas never been false that if this person is going to school
then either this person is going to school or that person is
driving a Cadillac (NPNChxAdxpy).

(There was, indeed, no such proposition as this before that
person existed, but the proposition has never been false.) We
also have

(2) It has been the case that #his person is going to school
(Péz).
On the other hand we don’t have

(3) It has been the case that:either this person is going to
school or that person is driving a Cadillac (PA¢xy).

For since that person started to exist both parts of the disjunction
have been false, and so the whole disjunction false, and before
that person existed there was no such proposition as the last
disjunct (‘that person’—meaning the one we mean now—°is
driving a Cadillac’), and so no such proposition as the disjunc-
tion; which disjunction, therefore, expresses something that
has never been the case, falsifying (3) and so falsifying C(1)

C(2)(3)-
' P. 49.
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7. The modal system Q , its modifications, and its adaptation to tense
logic. In Time and Modality there is adumbrated a modal system
called Q, intended as a reasonably strong modal logic which
would nevertheless lack such dubious principles as CNLpMNp
and CNMNCpgCMpMg, and which could be combined with
a normal quantification theory without yielding the dubious
principles in the mixed field that have been mentioned earlier.
Q) was not axiomatized but was characterized by a matrix, the
possible values of propositions being infinite sequences of 1, 2,
and/or o, the first member never being a 2. A 2 at a point
in a sequence meant that there is no such proposition as the
one in question in the world represented by that point. All
compounds have 2s at any places where any of their components
have 2s (where there is no such proposition as p, there are no
functions of p either). Otherwise, the Np sequence interchanges
the 1s and os of the p-sequence; the Kpg sequence has 1s
where both the p-sequence and the g-sequence do; otherwise
os; Mp has 1s everywhere (always apart from where the 2s
are) if p has 1s anywhere; Lp has os everywhere (apart from
the 2s) unless p has 1s everywhere (everpwhere—no 1sin Lp if p
has 2s). A formula is a law if its sequence never has os in it
for any values of its variables.

No set of postulates was then known for which this matrix was
characteristic, but in a paper published in 1964,' R. A. Bull
proved completeness for a set which took as undefined my
own strong L (‘true in all worlds’) and a weaker L equivalent
to my NMN (‘false in none’). As a corollary to this result, it
was possible to prove completeness for some simpler postulates
which I had put forward tentatively in 1959, taking as un-
defined my original M and a function Sp, suggested by J. L.
Mackie, which could be read as ‘always statable’ and was
equivalent to LCpp (strong L).2 My original Lp could then be
defined as KSpNMNp, ‘p always statable and never false’. The
postulates, subjoined to propositional calculus with substitution
and detachment, were as follows:

RSt :FCS«Sp, where p is any variable in o;

! R. A. Bull, “The Axiomatisation of Prior’s Modal Calculus Q’, Notre Dame
Fournal of Formal Logic, vol. 5, no. 3 (July 1964), pp. 211-14.

2 A. N. Prior, ‘Notes on a Group of New Modal Systems’, Logique et Analyse,
April 1959, pp. 122-7.
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RS2 FCSpCSqCSr . . . Sa, where p, ¢, 7,...are all the
variables in «;

RSM: FCuf — FCSpCsq . . . CMapB, where B is fully modalized
(i.e. all its variables within the scope of an § or M) and
p, q...are all the variables in 8 that are not in g;

and the axiom CpMp. If FSp is added to this, Lp collapses to
NMNp and the system becomes Sg (this amounts to removing
the possibility of propositions just not figuring in certain
worlds; or removing all sequences with 2s from the matrix).

I presented Q as a ‘logic for contingent beings’; meaning
by that a logic in which one could intelligibly say that some
beings are contingent and some necessary. Lemmon pointed
out that a real ‘logic for contingent beings’ would exclude the
second group, and one would get it by deleting from Q’s
matrix all sequences 7ot containing 2s, and perhaps axiomatize
it by adding FNSp to Q’s postulates. Lemmon also noticed two
other possible modifications of Q. In one, we delete from Q’s
matrix all sequences which contain both 1s and os but not 2s;
a possible axiomatization is by adding FCSpCMpp to Q. Here,
as in Q , there is room for both necessary and contingent beings,
but all truths which are purely about necessary beings (and
therefore always statable—have no 2s in their sequences) are
themselves either necessary or impossible; though ones which
are about both necessary and contingent beings—e.g., perhaps,
‘g is the number of the planets’—may be contingent. Finally,
we may delete from Q’s matrix all sequences whatever that have
both 1s and os; and add FCMpp to the postulates. This makes
Mp = p and Lp = KSpp, ‘necessarily statable and actually
true’. If we call a proposition ‘pure’ if it contains no references
to particular contingent beings, and ‘impure’ if it has such
references (even if what it says of such beings is just, e.g. that if
they’re red they’re red), the ‘necessary’ truths and falsehoods
of this last system are the ‘pure’ truths and falsehoods, and the
‘contingent’ ones the ‘impure’ ones. The matrix for this is
equivalent to a 4-valued one.

A modification of tense-logic analogous to Q) has still to be
attempted, though Q can of course be taken over as it stands
with L for the temporal ‘always’, M for ‘sometimes’, NMN for
‘never not’ and NLJN for ‘not always’. One or two details of the
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presupposed GPHF calculus are obvious. For example, we do
have CHCpqCHpHg but don’t have CNPNCpqCPpPg (H and P
are not interdefinable) ; and we don’t have the rule RH, to infer
FHa from Fa. For example we have FCIIx¢xdy, ‘If everything
¢s then y ¢s°, this being true for any y of which the formula can
say anything, i.e. any y there is; but we don’t have FHCIIx¢xdy,
‘It has always been that if everything ¢s then y does’, for even
ClIx¢xdy’s which are true now were not true—or anything
else—before y existed. Whether we should have a rule to infer
the weaker FNPNa from Fa, is a tricky question. Ordinary
quantification theory and identity theory gives us FZxlxx,
‘Something is itself’, which we can equate with ‘Something
exists’, and this with the proposed rule would give us FNPNZxIxx.
‘It has never been false that (something exists)’, i.e. it has never
been the case that nothing exists. We can deal with this problem
either (1) by having some non-standard quantification theory
with identity in which ZxIxx is not provable, or (2) by denying
the rule to infer FNPNa from ta, or (3) justifying FNPNZxIxx,
e.g. on the grounds that before anything existed there was no
such proposition, and therefore no such true proposition, as
N2ZxIxx. This last may sound even trivially right—if there’s
nothing how can there be propositions?—but propositional
‘existence’ is not to be taken as literally as that: it is a being-
the-case-or-not rather than a literal being; so that bit of univer-
sal instantiation won’t do. Nor is N2xIxx directly about any
individual in the way that Nlaa would be, so we can’t argue
that there would be no such proposition in an empty universe
because there would be no such object there as the one that
it is about.

The correct answer, i.e. the answer which is in accordance
with the intuitions behind this sort of system, seems to me to be
as follows: We dismiss solution (2), on the grounds that the rule
to infer FNPNa from Fa simply reflects the fact that what is
meant by calling a formula a ‘theorem’ of this system is that
any constants that we put for its free variables will give us some-
thing which is never false. We can then either accept NPNZxIxx
as a theorem in its normal sense, as meaning that the universe
has never in fact been empty, or if we do not wish to commit
ourselves on this point, reject ZxIxx as a theorem, i.e. as some-
thing we commit ourselves to as being never false. If we take
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this last line, however, we shall have to modify the rule of
detachment, since both Jaa and ClaaZxIxx are certainly theorems
in the above sense, but Zx/xx is not. A form of quantification
theory with just this peculiarity, designed to cope with the
possibility of empty universes, was put forward by Mostowski
in 1951.1 Mostowski modifies detachment to:

If all individual variables free in « occur free in B, then if

Fa and FCoB then FB.

In other respects his quantification theory is normal; e.g.
it has both +C¢pZxdx and FCIIxpxdy, and the rule to infer
FlIxa from Fo. This complication also affects the analogous
modal system Q , and in Time and Modality> 1 did foresee trouble
with detachment in extensions of Q, though I was over-
optimistic about the possibility of retaining it at the present
point.

The construction of a U-calculus corresponding to a Q-like
tense-logic also presents problems, but it would seem that
it would contain CTaNpNTap but not its converse CNTapTaNp;
that it would have both CTaCpgCTapTaq and CTaKpgKTapTaq
and their converses; that P, H, F, and G would have to be
dealt with separately by

TP:ETaPpZbKUbaTbp
TH:ETaHpITbCUbaTbp
TF:ETaFpZbKUabTbp
TG:ETaGpIIbCUabTbp;

that the rule to infer F7ax from ko would have to be replaced
by one to infer FNTaN« from Fo, and perhaps also one (call
it RTC) to infer FCTaaTaf from FCop if B had no free variables
not in «; and that « would be a thesis in a tense-logic if and
only if NTaNo were a thesis in the corresponding U-calculus.
We could then derive, e.g. the rule corresponding to that to
infer FNPNa« from Fa, as follows:

1. NTaN«
2. NTbNo (1 subst.; o is unaffected since, being a tense-
logical formula, it contains no a’s)

T A. Mostowski, ‘On the Rules of Proof in the Pure Functional Calculas of the
First Order’, Journal of Symbolic Logic, vol. 16, no. 2 (June 1951), pp. 107-11.
2 pp. 45-47 and 46, cf. also p. 6o.
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3. CUbaNTbNu (2, CpCqp)

4. ITbCUbaNTb N« (3, UG)

5. NZbKUbaTbNo (3)

6. NTaPNu (5, TP)

7. CTaNNpTap (CNNpp, RTC)

8. NTaNNPN« (6, 7, CChgCNgNP).

Various special conditions on U could be imposed as before, but
they would not have exactly the same consequences.

8. Tensed predicate logic with now-empty names, in Cocchiarella,
Rescher, and Hamblin. Current work on tensed and modalized
predicate calculi tends to avoid these problems by approaching
the matter in another way, i.e. with a different ‘rule of amplia-
tion’. For instance, in the tensed predicate calculi of Cocchiarella
it is boldly ruled that x, y, and z are the particular individuals
they are even before and after they exist, and he has quantifiers
that range over the whole bunch of them at all times. Identifi-
able individuals thus conceived can of course ‘come into
existence’, and be brought into existence too, though it is ques-
tionable whether the latter would be seriously describable as
creation out of nothing. It certainly doesn’t fit Geach’s formula
for that, for when God gives existence, and human existence
in particular, to one of these patients in the waiting room, we
can say ‘For some already given x, God brings it about that
x is a man’. We can also answer Buridan’s objections to
CPIIx¢xIIxPéx. For in the relevant sense of ‘everything’ it has
never been the case (even on the Christian hypothesis) that
everything is God—there always have been #’s of which we
could say ‘Now that isn’t God’, though before the creation the
only ones we could say this of would be still awaiting existence.
The laws of this kind of tensed quantification are ‘Barcanian’
and there is just no question, in a system of this type, of revising
the underlying propositional tense-logic at all.

If we have some means of symbolizing the form ‘x now exists’,
we can define, in a system of this type, another sense of ‘every-
thing’ namely ‘everything that actually exists’, in terms of
which such objections as Buridan’s could still be put up, but
now the law to which he objects wouldn’t have the form
CPIIx¢xIIxP¢x but rather CPIIxCixdxIIxCihxPex, ‘If it has been
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that (everything that is ¢s) then everything that s has ¢d’,
and thisisn’t a law in any system;'e.g. ‘It has been that (everyone
in room E is a gambler)’ doesn’t imply that everyone who is
now in room E has been a gambler. For it could be that room
E was once full of gamblers but now has some other people in
it who have never gambled in their life. Similarly it could be
that although the Existence room once had no one but God in
it, now it has others in it too.

The use of ‘Elx’ (‘x actually exists’) to define ‘Everything-
real’ and ‘Something-real’ in terms of the unrestricted ‘Every-
thing’ and ‘Something’ (‘Everything-real ¢s’ as ‘Everything
¢s-if-it-exists’ and ‘Something-real ¢s’ as ‘Something exists-and-
¢s’) is recommended by Rescher.! Cocchiarella reverses the
procedure by adding an undefined restricted universal quantifier
to his unrestricted one, defining the particular quantifiers in
terms of the corresponding universals in the usual way, and
then using the restricted particular quantifier to define ‘x
actually exists’ as ‘Something-real is identical with x°. However
the restricted quantifiers are introduced, we can define the less
restricted ‘Something that exists or will exist will ¢’ as ‘It will
be that (something-real ¢s)’ and similarly with the past; just as
we would do with a Q-like system in which the non-existent
is not allowed to be individually designated. Rescher is mis-
taken, however, in suggesting that his restricted quantifiers
behave exactly as the Q-like ones do. They do, indeed, involve
us in similar departures from Barcan-type principles for mixing
quantification and tensing, but in pure quantification theory
Rescher’s and Cocchiarella’s restricted quantifiers are much
less well-behaved than the Q-type ones. What is done at this
point, in fact, is to save standard tense-logic (and unrestricted
detachment) by dropping standard quantification theory; for
example, with wide-ranging names but restricted quantifiers
it is no longer a law that if a ¢s then something ¢s, for maybe
the only a that ¢s doesn’t yet exist (and so doesn’t count as
‘something’, in the sense of ‘something real’). The unrestricted
quantifiers do of course have the standard laws.

Cocchiarella raises the question whether the unrestricted
quantifiers are really needed, and decides that they are—rightly,
it seems to me, given his comprehensive use of names. We have

I N. Rescher, ‘On the Logic of Chronological Propositions’, Mind, Jan. 1966.
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seen that appropriately placed tense-operators and restricted
quantifiers will suffice to define forms like ‘Something that is
or will be real will ¢’, and it might be thought that the un-
restricted ‘Something ¢s’ could be defined quite generally as ‘It
either is or has been or will be that something-real ¢s’; and
‘Everything ¢s’ analogously. But if we permit x’s for which ‘¢
does not exist’ is now true, there must surely be some sense of
‘something’ in which we can infer from this that something does
not exist; but the proposed translation of this conclusion—It
is or has been or will be that (something-that-exists does not
exist)’—is simply false.

Cocchiarella’s system is consistent with using the form ¢a to
cover not only assertions about what does not yet or does not
any longer exist but also assertions about ‘objects’ which do not
exist and never have existed and never will; though this inter-
pretation could be precluded by introducing an axiom to the
effect that ‘everything’ either exists or has existed or will exist.
(Such an axiom would be easily formulable in Cocchiarella’s
system.) It was, indeed, suggested by Hamblin in 1958 that
tense-logic needs three quantifiers—one corresponding to the
liberal interpretation of Cocchiarella’s ‘possible’ quantifier, one
to its more restricted interpretation, and one to Cocchiarella’s
‘actual’ quantifier; taking Zx¢x in the first sense as primitive,
he defined the third sense (in the manner of Rescher) as
ZxKE!x$x and the second as PFXxKE!x¢x. Other modifications
are also possible; for example, Dana Scott has devised a system
in which names can apply to things before and after as well as
during their existence but before and after their existence in-
dividuals are indistinguishable (cf. Edwards).

In modal logic also, of course, we can avoid the complications
of the system Q by quantifying over possibilia. In both areas, in
fact, we have a choice between a certain amount of awkward-
ness and a certain amount of superstition. Presumably because
the notion of a mere possibile is somewhat less ‘tight’ and
logically demanding than that of a merely past or merely future
individual, modal logicians have been more ready than tense
logicians to accept solutions in which mere possibilia are in-
cluded among the individuals that names may designate, but
only the ¢-ing of some (or all) actual individuals is allowed to
verify the assertion that something (or everything) ¢s. Such
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a solution has been developed, for example, by Kripke, who
minimizes the resulting mess in quantification theory by having
no theses with free variables. In particular, he does not and
in his system cannot assert FCIIx¢xdy, ‘If everything-real ¢s
then y ¢s’, which could yield a false proposition if the name of
a mere possibile were put for y; he merely asserts FIIyCIIx¢xdy,
ie. ‘It is true of anything real that if everything real ¢s then
that thing ¢s’. This system is ‘Myhillian’ in the sense of having
S5 and most of quantification theory but not CITxL$xLIIxdx,
but it achieves this only by a deliberate impoverishment of
the formal machinery.

Kripke has, however, a suggestion in a footnote which could
be developed in some interesting directions, both in modal logic
and in tense-logic. The suggestion might be re-stated in the
following way: Medieval logicians distinguished between pre-
dicates (like ‘is red’, ‘is hard’, etc.) which entail existence, and
predicates (like ‘is thought to be red’, ‘is thought of’, etc.)
which do not.2Suppose we use ¢, i, etc., for predicates generally,
and f, g, etc., for the former sub-class of predicates. f, g, etc.,
are substitutable for ¢, ¢, etc., but not vice versa; and com-
plexes like Nf, Mf, etc., are substitutable for ¢, etc., but not
for f, etc. (such complexes are predicates, but are not predicates
entailing existence). Similarly with more than monadic pre-
dicates. What Kripke then says is that we could add to his
axioms the ‘closure’ of the formula CKfyllxdxdy, i.e. we could
add IIyCKfyIlx¢xpy. This, however, would be a redundant
addition, since it follows in his system from IIyCIIx¢xdy, which
he already has. The more interesting thing that these new
variables make possible would be the reformulation of his
system with free variables, and with CIIx¢xdy replaced by the
qualified form CfyCIIx¢xpy. The restricted variables in fact
offer another way of expressing the idea of existence—the last
formula amounts to ‘If y exists, then if everything ¢s, y ¢s’. Given
this axiom, the unqualified CIIxfxfy and Cfpxfx are easily
provable for the restricted predicates. We have

1. CHCIIxdxdy

T S. A. Kripke, ‘Semantical Considerations on Modal Logic’, Acta Philosophica
Fennica, Fasc. 16 (1963) pp. 83-94.

2 See, e.g., W. Burleigh, De Puritate Artis Logicae Tractatus Longior (Franciscan
Institute, 1955), pp. 57-55.
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2. CHCIIxNgxNpy (1 ¢/ N¢)

3. CHCHYNIIxNgx (2, CCpCaNrCpCrNg)

4 CHChZxds (3, DE %)

5. CHCIyZxfx (4 $If)

6. ChZxfx (5, CCpCpgChq)

7. CITyfHCIIxfxfy (1 ¢/f, II1)

8. CIIxfxCIIxfxfy (8, re-lettering of bound variables)
9. ClIxfxfy (8, CCpCpqaCpy).

We could also use Cocchiarella’s ‘possible quantifiers’ with
the normal rules, and then use the restricted predicates to
define ‘x exists’ as Zffx, and so to define the ‘actual’ quantifiers
in the usual way.

9. Tensed ontology. As was pointed out in Time and Modality, we
can also keep a standard modal logic or tense-logic, and a very
simple quantification theory too, if we just have no Russellian
individual name-variables at all, bound or free, but only devices
for referring to individuals obliquely, as in Lesniewski’s ‘onto-
logy’. The awkwardness which #his procedure forces upon us is
a necessity for distinguishing operators which form complex pre-
dicates from ones which form the corresponding complex pro-
positions. For example, where @ and 4 do not stand for proper
but for common names, ‘For some a (it will be that (the a is
a b))’ is equivalent to ‘It will be that (for some a (the a is a 4))’
(Barcan formula); but neither of these is equivalent to ‘For
some a, the a is a thing-that-will-be-a-4’. And more funda-
mentally, dropping the quantifier, ‘It will be that (the a is a 5)’
is not equivalent to “The «a is a thing-that-will-be-a-4’. For the
latter implies, but the former does not, that what will be a &
now exists, since only what exists can properly be called “The
@’ ; or more accurately, the form “The ais a 4°, whatever 4 might
be (even if it is of the form ‘thing-that-will-be-a-4’) implies
“The a exists’, i.e. “The a is an object’, or “There is such a thing
as the a’; but the form ‘It will be that the @ is a b’ only implies
‘It will be that there is such a thing as the ¢’. On the other
hand, ‘It will be that the a is a 8’ implies that what will be a &
will be the a when it is a b, whereas ‘The « is a thing-that-will-
be-a-b’ does not imply this (it may, for all that this tells us,
have ceased to be the a by the time it is a b).

If we symbolize “The a is a b’ as eab, and the term ‘object’ as
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V, we have as a law CeabeaV; and indeed the form eaV, ‘The
a is an object’, can be defined as Zbeab (‘There is something
that the @ is’), so that our law amounts to the existential
generalization CeabZbeab. If we write fb for the term ‘thing
that will be a &’, we obtain CeafbeaV, or CeafbZbeab, by sub-
stitution for free 4. But we do not have CFeabZbeab, but only
CFeabXbFeab (and CFeabFXbeab).

Again, ‘It has not always been true that (the a exists)’,
NHeaV, is equivalent to ‘It has at some time been false that
(the a exists)’, PNeaV; but the former is not equivalent to “The
a is a thing-that-has-not-always-existed’, eanhV, nor the latter
to ‘The a is a thing-that-at-some-time-was-non-existent’,
eapnV, or eap, writing A for nV, i.e. ‘non-object’, ‘non-exister’;
nor are these last two forms equivalent to one another. Taking
the first point first: ‘It has not always been that (the a exists)’
does not say that any particular object has lasted for a finite
time only, but rather that it is only for a finite time that any-
thing at all has been ‘the a’; whereas ‘The a is a thing-that-has-
not-always-existed’ does say the first thing, but is compatible
with ‘The a exists’ having always been true, though different
things have been ‘the &’ at different times.

The other point is trickier. Note, firstly, that “The a is a
non-object’, ead, is always false, since anything of the form
‘The a is a b (even eadl itself) implies that the a is not a non-
object, but an object (though ‘It is not the case that the a is an
object’, ‘There is no such thing as the a’, NeaV, which is no¢
of the form eab, is sometimes true). Note, secondly, that it is
a reasonable law that if the « is a thing-that-has-been-a-b then
it has been the case that something is a b (though it may not then
have been ‘the a’), i.e. we have CeapbZcPech, even if we don’t
have CeapbPeab. Hence, putting /A for b, we have CeapAZcPecA.
But ecA has always been false, for any ¢, i.e. NXcPecA, and so
Neap, i.e. it cannot be the case that the a is a thing-that-has-
been-a-non-object. On the other hand, it can be the case that
the a is a thing-that-has-not-always-been-an-object, eankV.
It would seem that the tensing of terms is not only not definable
by means of the tensing of propositions, but itself has something
Q-like about it, however orthodox the tensing of propositions
may be. Even if PN has the same force as NH, pn (as in pnV,
i.e. pA) isn’t interchangeable with nh.
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It was also pointed out in Time and Modality that in tensed
ontology there are some advantages in taking as undefined,
not the ‘weak’ form eab, meaning “The only thing that is now
an a is now a b’, but the ‘strong’ form e€’ab, meaning ‘An a
which is the only thing ever to be an g, is a #°. Certain observa-
tions made there about these two forms were improved upon
by Geach in 1957. A succession of increasingly shorter single
axioms that were found by Lesniewski for untensed ontology
included the following:

1. IlallbEeabKK XcecallcIldCKecaedaecdlIcCecaech (1920)
2. HallbEeabKXcKecaechIIcITdCK ecaedaecd (1921)
3. IlallbEeabXcKeacech (1929)

It was noted in 7Time and Modality that 1 does, but g does not,
hold for the plain ¢ of tensed ontology; that 1 does not hold in
tensed ontology if € is replaced throughout by €', though it
does hold if this replacement is made only in the right-hand
argument of the main equivalence, this giving us a way of de-
fining € in terms of €’. Geach pointed out that what has just
been said of 1 is equally true of the shorter formula 2 (from
which 1 can be deduced, and vice versa, without appealing
to any principles which hold in untensed but not in tensed
ontology), and also that the shortest formula of all, 3, does
hold if € is replaced by €.

An e-type function of tensed ontology which has still to be
investigated, but which has some useful properties if taken as
undefined, is the simple ‘The only thing ever to be an a is now
a b, this being understood 7ot as implying that the thing is now
an a (but still as implying that it either is or has been or will
be one). Reinterpreting €’ in this way, the weak e is still de-
finable in terms of it, though not quite so simply as in terms of
the €’ of Time and Modality. With the latter, we can equate

(o) The only thing that is now President of the United States
is a Texan (eab)
with

(B) For some ¢, a ¢ which is the only thing ever to be a ¢ is
now both President of the United States and a Texan
(ZeKecae’ch),



and

For any ¢ and d, if a ¢ which is the only thing ever to be
a ¢, and a d which is the only thing ever to be a d, is
now President of the United States, then a ¢ which is the
only thing ever to be a ¢ is now a d (IIcI1dCK€ cae'dae’cd).

(At least, we can assert this equivalence if we assume that for
every object there is some ¢ which it now is and which nothing
else has ever been.) If in this equivalence we drop the phrases
‘a ¢ which is’ and ‘a d which is’, i.e. if we use the new €', we
cannot be sure of the ‘is now a d’ with which the equivalence
finishes up; but the equivalence will hold if we replace it by ‘is
or has been or will be a &’, i.e. if we make the last clause

IIcITdCK e cae’daAAe’cdPe'cdFe’cd.

(This only assumes that for every object there is some ¢ which
it, but never anything else, is or has been or will be.) Or (using
the stronger assumption) we could make the last clause

IIcIIdCK e’ caKe'cde'dde’cd.

(The €'ab of Time and Modality is definable in terms of the new
one as Ke'abe'aa.)

The definability of e means that forms like eafb are definable
in terms of forms like €'afb, and this is important because in
these last the tensing of a term can be replaced by ordinary
propositional tensing. We simply equate

(«) The only thing ever to be an a is now a future-b (e'afb)
with

(B) The only thing ever to be an a now exists (Zce’ac) and
it will be that the only thing ever to be an a is a b (Fe'ab).

The forms €’ankV, ‘The only thing ever to be an a is a thing
that has not always existed’ and €'apn¥, or €'apA, “The only
thing ever to be an a is a thing-that-was-once-a-non-existent’,
can then be distinguished by equating the former with

The only thing ever to be an a exists (Zce’ac, or €’aV) and
it has not always been the case that the only thing ever to
be an a exists (NHe'aV),
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and the latter with

The only thing ever to be an a exists, and it has been the

case that the only thing ever to be an 4 is a non-existent
(Pe'anV),

this being in turn equivalent to

The only thing ever to be an a exists, and it has been the
case that (i) the only thing ever to be an a exists, and (ii) it

is not the case that the only thing ever to be an a exists
(PK€e'aVNe'al),

of which the last component is impossible. The point here, I
think, is not so much that »k is different from pn, as that with
complex terminal prefixes, juxtaposition is not associative; the
forms we are really distinguishing are €'a(pn)V and €'ap(aV).
The difference is roughly between ‘thing that formerly did not
exist’ and ‘thing that was formerly a non-existent’. It is an
ambiguity like the scope-ambiguity which arises in Russell’s
theory of descriptions; and it would be of no importance if we
could be sure that forms with complex terms are in this system
entirely dispensable in favour of complex propositions. With
complex predicate terms, this seems certainly so, and subject
terms can always be put into the predicate position by means
of the equivalence

Ee'ab2cKKe'cbMe'calldLCe'daMe de.

(‘The only thing ever to be an a is a 4 if and only if for some ¢,
1. the only thing ever to be a ¢ is a b, 2. the only thing ever to
be a ¢ is or has been or will be an 4, and 3. for any d, if ever
the only thing ever to be a d is an g, then the only thing ever
to be a d is or has been or will be a ¢.’)

To give the meaning of the form €'ab in Cocchiarella’s system
with free individual variables, we read @ and & as verbs, and
the whole becomes

For some x now existing, it is now the case that bx, and
it is or has been or will be the case that ax, and for any y
that exists or ever has existed or ever will, it is and always
has been and always will be the case that if ay then Iyx.

Note that both of Cocchiarella’s kinds of quantifier are required
here—an external ‘particular actual’ one and an internal
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‘universal possible’. The definition of the same form in a Q-type
system presents difficulties which I do not at present know how
to overcome. The last clause cannot be rendered

(A) It is and always has been (H) and always will be (G) that
for any (real) y, if ay then Iyx,

for times of which it is not the case that x exists at them, will
be times at which ‘For any y, if ay then [yx’ is not true but un-
statable, i.e. with transitory x’s this clause (A) will never be
satisfied. But neither can it be

(B) It is not and has never been (NP) and will never be (NF)
that for some y, ay and Nlyx,

for this can be satisfied too easily—it will be if the only times
at which other things a’d were ones at which Nyx was (through
the absence of x) unstatable.

10. Internal and external complexity in systems with free individual
variables. Having to distinguish between the formation of com-
plex predicates and the formation of the corresponding complex
propositions, is a complication which some writers have found
it worth while to bear with even in systems which do contain
free individual variables. One encounters it, in particular, in the
development by G. E. Hughes and D. G. Londey of the logic
of ‘empty universes’.!

In beginning their treatment of first-order predicate logic,
indeed, Hughes and Londey do without individual name-
variables altogether, and simply form quantified propositions
directly from predicates. Using their technique, but modifying
their symbolism, we may write II¢ for ‘Everything ¢s’ and
Z¢ for ‘Something ¢s’. Complex predicates are formed in the
same ways as complex propositions, so that we have forms like
ZN¢ for ‘Something doesn’t-¢’, to be contrasted with NZ$
‘It is not the case that something-¢s’; and XKy, ‘Something
#-s-and-ys’, to be contrasted with KX$Z), ‘Something ¢s and
something s’. In an empty universe X¢ (‘Something ¢s’) is
never true, while IT¢ (= NZN¢) always is, so that a logic which
allows for such a possibility will lack the law CIT¢Z¢.

' G. E. Hughes and D. G. Londey, The Elements of Formal Logic (Methuen,
1965), chs. 26 and 36.
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When Hughes and Londey eventually introduce individual
name-variables, they allow the form ¢x to have a meaning in
an empty universe, or at least they allow the question as to
whether it is or is not the case in such a universe that ¢x to be
a genuine one, and they rule that in fact it is in such a universe
not the case that ¢x, for any ¢. This decision would seem to
make the negation of ¢x, i.e. Ngx, automatically rue in such
a universe; but if we allow N¢ as a special case of ¢, the same
decision would seem to make N¢x automatically false. To avoid
this contradiction, Hughes and Londey distinguish the form
N(¢x), which is always true in an empty universe, from the
form (N¢)x, which is always false there. They have the law
Céx2$, corresponding to ChyZxdx in the usual systems, but not
CIi¢¢x, corresponding to ClIxdxpy. The usual proof of the
latter from the former by substitution and contraposition fails.
Substitution takes us from C¢xZ¢ to C(Ng)xZ(N¢), and then
contraposition to CNZ(N$)N(Ng)x, but we cannot pass from
this to CNEN¢ex, as N(Ng)x does not imply NN(éx), and so ¢x.

It is obvious that these devices could be used in tense-logic
with individuals that exist at some times but not at others.
In sketching such an extension I shall adopt a suggestion of
Hughes—not, however, put forward in the book—for eliminat-
ing brackets. We simply write ‘x ¢s’, not as ¢x, but as x¢, so that
‘x is a non-¢-er’ becomes xN¢, while ‘It is not the case that x ¢s’
becomes Nx$. Similarly ‘x is a thing-that-once-¢d’ can become
xP¢, while ‘It was once the case that x ¢d’ becomes Px¢. ‘x now
exists’, xE!, is definable as xCé¢. Cxdx¢ differs from this in being
true of non-existents as well. In their predicate calculus for non-
empty universes only, they have the axiom CNx¢xN¢, while
in their predicate calculus for empty and non-empty universes
alike, this is weakened to CZYCNxpxN¢. In a logic to cope with
terms which may be empty even when the universe is not, this
needs to be further weakened to CxyyCNxpxN¢ (the other would
say in effect that x is either a ¢-er or a non-¢-er, i.e. x exists,
provided that something exists, even something else). From this
(and Cx¢$Z¢) we can obtain CxpCIIpxé, which may be compared
with the formula CfyCIIx¢xdy in the Kripke-like logic men-
tioned at the end of Section 8.

In listing and in some cases proving some specimen laws of
this sort of tense-logic, we may note that the system has a rule
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(call it Rx) that if o’ and B’ are constructed from predicate-
variables in the same way as a and B are constructed from
propositional ones, then if FCof in the propositional calculus,
then FCxa'x8" in this predicate calculus. We now have

1. CxpxCo (CpCpp, Rx)

2. Cx¢xE! (1, Df. EY)

3. CxP¢xE!, ‘If x is a former-a-er, then x now exists’ (2,
4/P4)

4. CPx¢PxE! ‘If formerly x ¢'d, then formerly x existed’
(2, RPC)

5. CxP¢Pxd, ‘If x is a former-¢-er, then formerly x ¢'d’
(see below)

6. CxP$PxE!,  ‘If x is a former-¢-er, then formerly x
existed’ (5, 4, syll.).

Probably 5 needs to be laid down as a special axiom, though
its analogue CxN¢Nx¢ is provable from the Hughes-Londey
predicate-calculus basis as a theorem. Its converse CPxéxPé (‘If
formerly x ¢’d then x is a former-¢-er’) is no more a law than
is CNxdpxN¢ (‘If x does not ¢ then x is a non-¢-er’) ; nor of course
is CPx¢xE! (‘If formerly x ¢’d then x now exists) ; nor, though we
have CZP¢$PZ¢ (‘If something formerly-¢’d then formerly some-
thing-¢’d’) do we have CPZ¢ZP¢ (Barcan formula: ‘If formerly
something-¢’d then something formerly-¢’d’). We have already
seen that quantification theory in this system is a little eccentric;
but it does seem to be another way of preserving standard
propositional tense-logic. Its main defect is that there are
difficulties in extending this type of symbolism beyond the
monadic predicate calculus; but these may not prove insuper-
able.

11. The difficulties of doing without non-existents. One argument in
favour of the view that if we are to use individual name-variables
at all, we should let them cover non-existents, is that we often
want to express relations between what now exists and what
does not, e.g. that I am taller than my great-grandfather was.
Comparisons of this sort, however, present problems even when
they are not between objects that do not exist simultaneously.
Take, e.g. ‘I am fatter than I was’, or its equivalent ‘T used to
be thinner than I am’. One thing that tense-logic is designed
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precisely to facilitate is talk of persisting objects, and one thing
that it is designed precisely to avoid is the introduction of
pseudo-entities like ‘me-at-#’, ‘me-at-¢"”, etc.; so a tense-logician
will not want to make ‘I used to be thinner than I am’ express
a comparison between such entities. But ‘I used to be thinner
than I am’ certainly cannot mean ‘It was the case that (I am
thinner than I am)’, since this is something that never was the
case.! We have two choices here, it seems to me. If sizes and
distances are absolute, we can say ‘For some girths G and G’,
it was the case that my girth is G and it is the case that my girth
is G, and G is (i.e. is-always) less than G’.” And if sizes and
distances are relative, what we have is ‘for some object x (e.g.
the standard foot), it was the case that I am thinner than x, and
it is now the case that I am not thinner than x.” The comparison
between myself and my great-grandfather can, at least up to
a point, be dealt with similarly—‘It was the case that (for some
¥, ¥ is my great-grandfather and is of height H), and my height
is H', and H' is greater than H.’

There remains a difficulty about the compound ‘It was the
case that (for some x, x is my great-grandfather)’, i.e. ‘someone
was my great-grandfather’, or ‘I am someone’s great-grandson’.
If we take the firm line with which we started, and admit no
facts directly about non-existent individuals, and if y’s great-
grandfather ceased to exist before y started to, there cannot
now be, or ever have been, any facts of the simple form ‘x is »’s
great-grandfather’. However, we can analyse ‘someone was »’s
great-grandfather’ into a complex of relations between con-
temporaries in some such way as this: ‘It was the case that (for
some 2, y is born to z, this resulting from the fact that it was
the case that (for some w, w has intercourse with z, and it was
the case that (for some #, z is born to #, this resulting from the
fact that...)))’, and so on; the whole being a fact directly
about y only, and the aRb forms which enter into the com-
ponent general facts (to the effect that it was the case that for
some . . .) all expressing relations between contemporaries. But
however we get around particular examples, it may well be

! I owe this simple puzzle to P. T. Geach. (It is related to one raised by Moore
in his Lectures on Philosophy, p. 8, point (3).) The Schoolmen, it is worth noting,
described relations as ‘unreal’, or as partly so, when either (a) they hold between
objects which do not both exist when they hold or (5) they hold between an object
and itself,
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felt to be intolerable to have to deny that there are ever genuine
ungeneralized relations between non-contemporaries.

12. The admission of past existents but not future ones. There is
something to be said for a combination of solutions in which
we are, broadly speaking, awkward about future objects and
superstitious about past ones. Things that have existed do seem
to be individually identifiable and discussable in a way in
which things that don’t yet exist are not (the dead are meta-
physically less frightening than the unborn). Inhabitants of
this half-way house can use names that refer to past and present
objects only, and quantifiers that mean ‘Something that is or
has been’ and ‘everything that is or has been’. (Additional
quantifiers restricted to what now is could be introduced to
define ‘exists’ in Cocchiarella’s manner, but that predicate
could also be introduced in other ways, and the restricted quan-
tifiers defined in terms of it.) This procedure would still elimi-
nate, e.g. CNPNCpqCPpPg but it would not assail its mirror
image CNFNCpqCFpFg; e.g. if it will never be false that if
nothing exists then this man doesn’t exist, then if it will be
that nothing exists it will be that this man doesn’t; for now that
he has come to be there will always be facts about him. Again,
Buridan’s objection to CPIIx¢xIIxPdx will stand, but one will
not be able to make the same objection to CFIIx¢xIIxFex.
‘If it will be that everything is God then everything will be
God’ will hold, if only because it cannot now ever be that every-
thing is God—even after I cease to exist, I, for example, will
be a countable exception to ‘For all x, x is God’.

In sorting out the ‘Barcan formulae’ which would be true
and false in this system, it is simplest to consider what happens
when we combine the quantifiers with a specific Pn and Fr rather
than with the generalized forms. We then have these laws for
the past:

CZxPndxPnZixpx

CPnZxdpxZxPnex
CIIxPngxPnllxdx

and these for the future:

CZxFndxFnZxdx
CFnllx¢pxIIxFnéx,
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but we lack these three:

CPnllxdxIIxPngx
CFnZx¢xXxFnex
CIIxFngxFnllx¢x.

(The reflection that the values of bound variables may receive
additions but no deletions as time passes, makes it easy to work
out these results intuitively.)

It has been suggested (e.g. by A. J. Kenny) that the naming
of past individuals is easier than the naming of future ones
merely because of the indeterminacy of the future. There can
be facts directly about future individuals just as there can be
facts directly about past ones, so long as their future existence
is as definite as the past existence of the others is. I suspect,
however, that this possible connexion between the subject of
the present chapter and that of the last may be best exhibited
in systems which do not use individual names at all but only
the individualizing propositional forms of tensed ontology,
embedded in something like a Peircean GHF logic rather than
a standard GH one. Forms like €’ab, Pe’ab, and Fe'ab would
normally be taken as entailing that there is or has been or
will be such a thing as the 4, or ‘the only thing ever to be an a’;
we need perhaps a stronger ¢, so used that the corresponding
forms are all false unless there is or has been or definitely will be
(strong Peircean F) such a thing as the a (e.g. ‘XY’s fourth
child’). In such a logic, however, there will be complications
not only when the only object that might satisfy such a descrip-
tion as ‘the a’ does not yet exist (as when it is not yet definite
that X7 will have a fourth child) but also when the description
might be satisfied by some object that does exist, though it is
not yet definite that it will be, or when it is not yet definite
which presently-existing object will satisfy it. Some of these
problems have already been discussed, in a preliminary way,
in Time and Modality,' and there is nothing I could add now
to what is said there. We know rather more today about in-
deterministic propositional tense-logic than was known in 1956,
but not much more about tensed ontology.

13. Summary of possible positions. To sum up, this is still the un-
tidiest and the most obscure part of tense-logic, though even
! pp. 101-3.
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here the alternatives that are open to us are beginning to emerge
with some clarity. We may (1) treat past and future alike, and
given that we do so, we may (1.1) allow that there are facts
directly about individuals of the form ¢a. Then we may (1.11)
allow there to be such facts only about presently existing in-
dividuals, in which case our propositional tense-logic will be
complicated in a Q:like way. If, however, we allow Zx¢x to be
a fact so long as there are facts of the form ¢a, our quantification
theory will be of a standard sort (we will have both FCéyZxdx
and FCIIxdxdy); though detachment will have to be restricted.
Or we may (1.12) allow that there are facts, of the form d¢a,
which are directly about non-existent as well as existent in-
dividuals. This will give us a comparatively uncomplicated pro-
positional tense-logic of one of the sorts discussed in Chapters III
and IV. If (1.121) (Rescher and Cocchiarella) we still allow
Zx¢px to be a fact so long as there are facts of the form ¢a, i.e.
if we allow non-existent as well as existent individuals to be
values of bound variables, our quantification theory will again
be of the standard sort. But Elx will not be a law, and we shall
need somehow to distinguish existent from non-existent in-
dividuals. We may (1.1211; Rescher) do this by an undefined
function Elx, or we may (1.1212; Cocchiarella) introduce ad-
ditional quantifiers such that Zx¢x is only true if there are facts
of the form ¢a in which a is existent; and the theory of these
quantifiers will not be of the standard sort, but will lack either
CéyZxdx or Cllxpxdy or both (normally both). Or we may
(1.122), while allowing facts of the form ¢a directly about non-
existent individuals, use only ‘restricted’ quantifiers of the sort
just described (a procedure which is more of a live option in
modal logic than in tense-logic). Or we may (1.2) not allow
there to be facts directly about individuals, and use the a in ¢a
for common names only, though one thing that this form could
stand for might be ‘There is exactly one @’, and another might
be “The only a there is, is a ’. This will again give us a com-
paratively uncomplicated propositional tense-logic, and if we
allow Zx¢x to be a fact as long as there are facts of the form ¢a,
a standard quantification theory also; but complex predicates
(e.g. negative ones and tensed ones) may have to be formed in
a different way from complex propositions. This last type of
complication might also be accepted in alternatives 1.212 and
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1.22 (Hughes and Londey). And finally, we might (2) treat
past and future differently, with one type of solution for future-
existers and a different one for past-existers; there are obviously
many different ways of doing this.

I would like to finish, however, with a philosophical rather
than a formal remark, though it may turn out to have a bearing
on our formalisms. The problems of tensed predicate logic all
arise from the fact that the things of which we make our pre-
dications, the ‘values of our bound variables’, include things
that have not always existed and/or will not always do so. And
this, I think, is a fact; it is unplausible to say either that the
only things that are genuine individuals are ‘ultimate simples’
which exist throughout all time and merely get rearranged in
various ways, or that there is only a single genuine individual
(the Universe) which gets John-Smithish or Mary-Brownish in
such-and-such regions for such-and-such periods. But the alter-
native to these two unsatisfactory theories has been presented
in these pages a little too crudely; we are not really presented
with a stark starting-to-be of an individual object with no
antecedents whatsoever. Very roughly, countable ‘things’ are
made or grow from bits of stuff, or from other countable ‘things’,
that are already there. The precise logic of this process just
hasn’t been worked out yet, and until it has been, it seems
likely that any tensed predicate logic can only be provisional
in character.!

! For a rather unsatisfactory beginning of such an investigation, see A. N. Prior,

‘Time, Existence and Identity’, Proc. Arist. Soc., 1965-6, pp. 183-92. (On p. 189,
line 17, ‘all times’ should be ‘that time’.)
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POSTULATES FOR MODAL LOGIC,
TENSE-LOGIC, AND U-CALCULI

(All postulates are for appending to propositional calculus with sub-
stitution and detachment.)

I. MODAL LOGIC

(Only systems of modal logic with established correlations with
systems of tense-logic are included.)

§ 1. Gidel-Feys systems (L undefined)
§ 1.1. Feys’s (1950) system T (= von Wright’s M of § 2.1)
Df. M: M = NLN

RL:ta— FLa
Axioms: 1. CLCpqCLpLyq, 2. CLpp.

§ 1.2. The system S4 (Godel’s axiomatization, 1933): T+CLpLLp.
§ 1.3. The system S5 (Godel, 1933): T-+CNLpLNLp (or CMLpLp).

§ 2. Von Wright’s (1951) systems (M undefined)
§2.1. The system M (=T of § 1.1):

Df. L:L = NMN
RL:Foe — FNMNa
RE:}FEof — FEMoMB
Axioms: 1. EMApgAMpMg; 2. CpMp.
(If Ax.1 is replaced by CNMNCpgCMp Mg, RE may be dropped, and
the equivalence to T made more obvious.)
§ 2.2. The System M’ (= S4): M+CMMpMp.
§ 2.3. The system M" (= S5): M+CMNMpNMp (or CMpLMpP).

§ 3. Systems between T and S5
§ 8.1. The ‘Brouwersche’ system, or system B: T—+CpLMp (or CMLpp).

§3.2. The system Sg.2: S4+CMLpLMp (simplified from Prior’s
CMLpLMLp; Geach 1957).
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§ 3.3. The system Sq¢.3: S4+ALCLpgLCLgp (simplified from Lemmon’s
ALCLpLgLCLgLp; Geach 1957), or CKMp MgAMEp MgMEqMp
(Hintikka, 1957).

§ 3.4. The ‘Diodorean’ system D: S4.3+CLCLCPpLppCMLpp (sim-
plified from Dummett’s CLCLCpLpLpCMLpLp, Geach 1959;
completeness proved by Kripke 1963, and Bull 1963).

II. TENSE LOGIC
§ 4. The minimal tense-logic K, (Lemmon, 1965)
§ 4.1. With G and H undefined:

Df. F:F = NGN Df. P:P = NHN
RG:ta — FGx RH:te — FHx
Axioms:
1.1. CGCpgCGpGy 1.2. CHCpgCHpHq
2.1. CNHNGpp 2.2. CNGNHpp.
§ 4.2. With F and P undefined:
Df. G:G = NFN Df. H:H = NPN
RG:ta — FNFNx RH:ta — FNPNu
Axioms:
1.1. CNFNCpqCFpFy 1.2. CNPNCpgCPpPq
2.1. CPNFNpp 2.2. CFNPNpp.

Notes. (a) The 2’s, in each case, are abbreviable to CPGpp and
CFHpp, and could be replaced by CpGPp and CpHFp.

(b) With La for KaGoa, or Ma for AaFa, the ‘modal’ fragment of
K, is the system T of § 1.1, or M of § 2.1.

(¢) With La for KKaGaHx, or Mo for AAaFaPa, the ‘modal’
fragment of K is the system B of § 3.1.

§ 5. Standard enlargements of the minimal system

§ 5.1. Axioms to be drawn upon, for addition to K:
3. CGpGGp (= CFFpFp = CHpHHp = CPPpPp = CFHpHp =
CPpGPp = CPGpGp = CFpHFp; Lemmon, 1965)
4. CGGpGp (= GFpFFp = CHHpHp = CPpPPp = CHpHFp =
CPGpPp = CGpGPp = CFHpFp)
5.1 CGOPNGNp (= CNFNpFp = CNFpFNp = CGNpNGp =
NGNCpp = FCpp)
5.2. CHpNHNp (= CNPNpPp = CNPpPNp = CHNpNGp =
NHNCpp = PCpp)
(Definitionally, 5.1. = CGpFp and 5.2 = CHpPp.)
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6.1. CKEpFqAAFKpqFKpFqFRqFp (= AGCHCGgrGCNgCGrg; Lem-
mon, 1965) (= AGCpCGpgGCGgp; C. Howard, 1966)
6.2. CKPpPqAAPKpqPKpPgPKqPp (= AHCpCHqrHCNpCHrq =
AHCpCHpqHCHgp)
7.1. CKKpGpHpHGp (= CPEpAApFpPp)
7.2. CKKpHpGpGHp (= CFPpAApPpFp).
§ 5.2. System of ‘The Syntax of Time-Distinctions’ (1954) for dense, non-
ending, non-beginning time
Add 3, 4, 5.1, and 5.2 to K.
§ 5.3. System for relativistic causal time (Cocchiarella, 1965; super-
fluous axioms deleted).
Add 3 only to K.
With La for KaGa, or M« for AaGa, the ‘modal’ fragment is
S4 of § 1.2. or § 2.2.
§ 5.4. System for linear time (Cocchiarella, 1965; superfluous axioms
deleted).
Add 3, 6.1 and 6.2 to K.
With Lo for KaGo or Ma for AaGa, the ‘modal’ fragment is
S4.3 of § 3.3.
With La for KKaGaHa or Mo for AAaGaHe, the ‘modal’ fragment
is S5 of § 1.3 or § 2.3.
§ 5.5. System for linear, non-ending, non-beginning time (Scott, 1965).
Add g, the 5’s and the 7’s to K.
‘Modal’ fragments as in § 5.4.
§ 5.6. System for dense, linear, non-ending, non-beginning time (Prior,
1965; superfluous axioms deleted).
Add 3, 4, the 5’s and the 7’s.
‘Modal’ fragments as in § 5.4.

§ 5.7. System designed for the work of 5.6 (Hamblin, 1958) and in fact
giving logic of F as “is or will be’ and P as ‘is or has beer’. (F and
P undefined, dff. G and H as in § 4.2).
RG:ta — FGa
RE:FEaB — FEFoFB
RMI: In any thesis we may simultaneously replace every
F by P, every P by F, every G by H, and every H by G.

Axioms: 1. CGpFp
2. EFApqAFpFq 4. EApPpGPp
3. EFFpFp 5. EAApPpFpFPp.

§ 5.8. Equivalent system with G and H undefined.
RG, RMI, and Axioms 1. CGCpgCGpGy, 2. CGpp, 3. CGpGGp,
4. CpGPp, 5. CGpCHpGHp; or simply add 2, 3, 5, and 5’s
image to K;.
824311 N
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§ 6. Systems for circular time

§ 6.1. Without change of sign
Add to § 5.3 the axioms
1. CGpHp (= CHpGp = CFpPp = CPpFp = CFGpp =
CPHpp = CpGFp = CpHPp; Lemmon, 1965).
2. CGpp (= CHpp = CpFp = CpPp).
3. CGpGGp.
§ 6.2. With change of sign, and antipodes both past and future (Lemmon
1965).
Add to K the axiom CGpPp (= CHpFp = CGGpp = CHHpp
= CpFFp = CpPPp).
§ 6.2. With change of sign, and antipodes neither past nor future.
Add to K; the axiom CFGpPp (Hamblin, 1965), which =
CPHpFp = CGpHPp = CHpGFp = CGGpHp = CHHpGp =
CPpFFp = CFpPPp = CFGGpp = CPHHpp = CHpGFFp =
CpHPPp.

§ 7. Systems for the next moment (T) and the last moment (V')
§ 7.1. For appending to S5 (of § 1.3) for undefined L (‘always’) (Scott,

1964):
1. ELpTLp 2. ELpLTp
3. ETNpNTp 4. ETCpqCTpTyq
5. ETYpp

6. CLCpTpCLCqYqCMEKpqLApq.
§ 7.2. For use with G for ‘It is and always will be’ and H as ‘It is and
always has been’ (Lemmon, 1964,).
Use RG and axioms 1 and 2 of § 5.8, and the axioms 3.
ETNpNTp, 4. ETCpeCTpTq, 5. ETGpGTp, 6. CGHpTGp,
7. CGCpTpCpGp, and 8. ETYpp; and their mirror images.

§ 7.3. For use with normal G and H (Scott, 1965).
Add to the system of § 5.5 the axioms 1. CGpTp, 2. ENTNpTp,
3. CTCpgCTpTy, 4. CpYTp, 5. CTHpCGCHTpGp, and their

mirror images.

§ 7.4. For use alone (Clifford, 1965):
RT: to— FTw, FYw
Axioms: 1. CTNpNTp, 2. CNTpTNp, 3. CTCpeCTp1q, 4.
CpYTp, and their mirror images.
(Axioms with only T suffice for formulae with only T’; ditto 1)
§ 7.5. Equivalent of T-fragment with dyadic primitive (von Wright, 1965).
(The primitive form is Tpq for ‘¢ now and ¢ next’.)
RE:FEaB — FEfafB (for any f of the system).
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Axioms: 1. ETApqArsAAATprTpsTqrTgs, 2. EK TpgTrsTKprKys,
3. EpTpAqNg, 4. NTpKqNg.

III. U-CALCULI

§ 8. Basic U-T postulates

Ui. ETaNpNTap

U2. ETaCpgCTapTaq
and for tense-logic

Us. ETaGpIIbCUabThp

Uq4. ETaHpIIbCUbaTbp
and for modal logic

Us. ETalpIIbCUabThp.

(All for appending not merely to propositional calculus with sub-
stitution and detachment, but to first-order predicate calculus with
identity.)

If and only if Fa in the modal system determined by RL: kg — FLa,
and the axiom A1. CLCpgCLpLg, then FTaw in the system determined
by Ui, Ug, and Us.

If and only if Fa in K of § 4, then FTao in the system determined
by Ui, U2, Ug, Ug.

§ 9. Correspondences between U-calculi, modal logics, and tense-logics
(mostly suggested by Lemmon)

Wewrite ‘y ~ 8 for ‘ta in the modal logic determined by RL, A1,
and }B, if and only if FTax in the U-calculus determined by Ui,
Uz, Us, and F, or for ‘ta in the tense-logic determined by K¢+F8,
if and only if FTaa in the U-calculus determined by Ui, Uz, Ug,
Uy, and Hy’.

§ 9.1. Correspondence of formulae

1. Uaa (reflexiveness) ~ CLpp (CGpp, CHpp)
2. CUabUbL (right re-

flexiveness) ~ LCLpp (GCGpp)
3. CUabUba (symmetry)  ~ CpLMp (CpGFp)
4. CUabCUbcUac (tran-

sitiveness) ~ CLpLLp (CGpGGp)
5. CUabCUacUbc ~ CMLpLp
6. CKUabUacAUbcUch ~ CKMpMgAMEKpMgMEqMp
7. CKUabUacZdKUbdUcd

(cenvergence) ~ CMLpLMp
8. CKUabUacAAIbcUbcUch

(non-branching to ~ CKFpFqAAFKpq-
right) -FEKpFqFKqFp
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9. CKUbaUcaAAIbcUbcUch

(non-branching to

left) ~ CKPpPqAPKpqPKpPgPKqPp
10. ZbUab (existence of
successor) ~ CGpFp (CLpMp)
11. 2bUba (existence of
predecessor) ~ CHpPp
12. ZbKUabUba ~ CGGpp (CLLpp)

13. CUabZcKUacUch (‘den-

sity’) ~ CGGpGp (CLLpLp).

§ 9.2. Entailments of formulae

(Where n and m are numbered conditions from § g.1, ‘n entails m’
means that (@) if the U-formula 7 is added as an axiom to the lower
predicate calculus, m is deducible from it, and also that (4) if the
modal formula n is added as an axiom to the modal system deter-
mined by RL and A1, or the tense-logical formula # is added to Ky,
the modal or tense-logical formula m is deducible.)

I entails 2, 10, 11, 12, I13.

2 entails 13, and is entailed by 1, 5, 6.
3 entails 7.

5 entails 2, 6, 8.

6 entails 2, 8, and is entailed by 5.

v is entailed by 3.

10 is entailed by 1, 12.

11 is entailed by 1, 12.

12 entails 10, 11, and is entailed by 1.
13 is entailed by 1, 2.

(1-+5) entails 3, 4.

(3+4) entails 5.

(1+6) entails 7.

§ 9.3. Correspondence of systems
(‘Condition »’ means the U-condition 7 of § 9.1, supposed added
to the basic postulates of § 8.)

System T of § 1.1 ~ condition 1

System S4 of § 1.2 ~ (1+4)

System S5 of § 1.3 ~ (1+5), i.e. (1+3+4)
System B of § 3.1 ~ (1+3)

System S4.2 of § 3.2 ~ (144+7)

System S4.3 of § 3.3 ~ (1+4+6)

System of § 5.3 (Cocchiarella, re-

lativistic causal time) ~ 4

System of §5.4 (Cocchiarella,

linear time) ~ (4+8+9)
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System of § 5.5 (Scott: doubly in-

finite linear time) ~ (4+8-+9+10+411)
System of §5.6 (Prior: dense

Scott) ~ (4+8+9+10+11+13)
System of § 6.1 (normal circular

time) ~ (1+3+4) (as S5)

System of § 6.2 (‘east-west’ cir-
cular time with antipodes) ~ I2.
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MISCELLANEOUS FURTHER DEVELOPMENTS

1. Von Wright's ‘and next’ and ‘and then’ calculi; ‘and next’ and metric
tense-logic. Von Wright’s calculus for ‘and next’, sketched in Chapter
IV, Section 3, has been supplemented by a calculus for another Tpq
which he reads as ‘¢ and then ¢’. He means by this, not quite what
Miss Anscombe means, but simply ‘It is now the case that p and it
will sooner or later be the case that ¢’. This does not seem a very
idiomatic use of ‘and then’, except when the whole form is governed
by some operator removing it from the actual present—°‘It was the
case that (p now and ¢ to come)’ and ‘It will be that (p now and ¢ to
come)’ might well be read as ‘It was the case that p and then ¢’
and ‘It will be that p and then ¢’; but we would hardly use this form
for the simple ‘4 now and ¢ to come’. This, however, is not of much
importance, and von Wright’s function lends itself to fairly simple
formal treatment.

Von Wright! repeats his axioms for ‘and next’, namely (in our
modification of his symbolism)

Ar. ETApqArsAAATprTpsTqrTqs  Ag. EpTpAqNg
A2, EKTpqTrsTKprKys A4. NTpKqNg

(to be subjoined to propositional calculus with substitution, detach-
ment and a rule of extensionality, licensing the interchange of
logically equivalent expressions); and he notes that A2 may be re-
placed by the shorter CKTpqTprTpKqr. The postulates for ‘and then’
are the same, except that A2 has to be lengthened somewhat. Von
Wright lists them, taken in this sense, as

Bi. ETApqArsAAATprTpsTqrTgs  B3. EpTqAqNg

B2. EKTpqTrsTKprAAKqsTqsTsq B4. NTpKqNg.
He notes that B2 may be replaced by the slightly shorter

B2'. EKTpqTprTpAAKqrIqrTyg,
or by the pair

B2.1. CKTpqTprTpAAKgrTgrirg

B2.2. CTpTqrTpr.

' G. H. von Wright, ‘And Then’ (1966), the Comm. Phys. Math. of the Finnish
Society of Sciences, vol. 32, no. 7 (1966).
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It is clear that this new Tpq is easily definable within ordinary
tense-logic as KpFg. Conversely, Fp is definable within the ‘and then’
calculus as TCppp, or as Ttp, where = is any arbitrary tautology.
(A3 and A4, and of course Bg and B4, amount to EpTpr and NTpN+
respectively.) Given these definitions, it is easy to show that the ‘and
then’ calculus is equivalent to a future-tense calculus with the axioms
(subjoined to propositional calculus with substitution, detachment,
and the rule to infer FEFaFf from FEaf):

F1. EFApqAFpFy

Fo. EKFpFqAAFKpqFKpFqFKqFp
F3. FApNp (or Fr)

F4. NFEpNp (or NFN7)

We get F1 from Br by putting = for p and ¢ and dropping repeated
disjuncts from the result; F2 and F4 from B2’ and B4 (in the form
NTpN7) by putting = for p; Fg from B3 by putting = for p and de-
taching the first 7). Or we could replace F2 by the corresponding
implication, plus CFFpFp (derivable as B2.2 p/, ¢/7). The equivalence
ETpgKpTCqqq, corresponding to the definition of Tpq in the F system
as KpFy, is less summarily but still quite simply provable. And the
converse derivations of the T postulates from the F ones are not
difficult either. Von Wright himself equates his 7 system with a
tense-logic (which he describes as a ‘modal’ logic) with G rather
than F as primitive, and as postulates, ‘duals’ of the above (e.g.
EGKpgK GpGq instead of F1). In both cases, the tense-logic is equiva-
lent to the future-tense portion of Scott’s for linear, transitive, in-
finite time, i.e. the system of § 5.5 of Appendix A.

For past and future together von Wright has a mirror image
of the form 7pg which means ‘¢ now and ¢ earlier’, and which we
may write here as 1pq. The full system has the T postulates and their
images, and the pair of mixing axioms

ETpYgrAATKprqTpTrgK YprTpq
EYpTqrAAYKprgYpYrgKTprYpq.

If we equate Pp with Yrp, and Ypq with KpPg, and remember that
K7p = p, the substitution p/r in these gives

EFKqPrAdARrFqFKrFgKPrFq

and its image. These are the Cocchiarella axioms which Lemmon
showed to be superfluous, together with their converses, from which
we can derive the K¢ theses CpGPp and CpHFp used in Lemmon’s
proofs. (The converse of CFKqPrAAKrFq, etc. entails that we have,
among other things, CK7FqFKgPr, and therefore, by contraposition,
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CNFEqPrNKrFg, and so CGCgNPrCrNFg, and so by substitution
CGCNPgNPqCqNFNPq, and so CgNFNPq by detaching GCNPgNPg.)
CTEKprqTpYqr and its image, from which these Ky theses follow,
could replace von Wright’s longer pair.

For a two-way ‘and next’ calculus von Wright’s ‘mixing axioms’
are ETpYqrTKprq and its image. These can, I think, be replaced by
CTpYqrTrq and its image.

Both the ‘and next’ and the ‘and then’ calculus can be given
axiomatizations that are more in the logical style of Feys’s system T
than of von Wright’s M. The most compact postulate-sets of this
sort which I have been able to find are those which follow; when
von Wright’s equivalences are expanded to pairs of implications it
will be clear that the Feys-style postulates are more compact than
his, though they do not lead so rapidly to normal forms and decision-
procedures. I shall follow von Wright in putting an 4 before the ‘and
next’ axioms and a B before the ‘and then’ ones. In both cases the
axioms are to be subjoined to propositional calculus with sub-
stitution, detachment, and the rule

Fa — FNTpNa,

For ‘and next’ we have

A1. CNTpNCqrCTpqTpr
A2, CpCTqrTpr Ay. CpCNTpqTpNg (or TCppCpp)
A3. CTpgp As. CTpNgNTpg.

(The completeness of this basis is most simply shown by deducing
from it Clifford’s postulates for Scott’s monadic 7.) For ‘and then’
we have
Bi. CNTpNCqrCTpqTpr
B2. CpCTqrTpr  B4. CpCNTpqTpNg (or TCppCpp)
B3. CTpqp Bs. CTpTqrTpr
B6. CKTpqTprTpAAKqrTqrTry.

In ‘reading off’ these postulates, it may be noted that the form
NTpNg, ‘Not (p now and not-¢ next)’ or ‘Not (p now and not-g
later)’, is equivalent to ‘If p now then ¢ next’ (first system) or ‘If
p now then ¢ at all future times’ (second system). A1 therefore
amounts to ‘If (if p now then if-g-then-r next) then if (p now and ¢
next) then (p now and r next)’, while B1 amounts to ‘If (if p now
then if-g-then-r at all later times) then if (# now and ¢ later) then
(p now and r later)’.

The A and B axioms have 1, 2, 3, and 4 in common; and B5 and 6
are simply von Wright’s B2.2 and 2.1. Independence proofs for our
A4, B4, A, Bs, and B6 are simple. A4 (= By), CpCNTpqTpNg, is the
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only axiom which depends on time being supposed non-ending; it
asserts in effect that if ever anything, say p, is true, then something—
either ¢ or not-g—is true later. The corresponding axiom in von
Wright’s set is EpTpAgNg. As is the only A-axiom which will not
survive the reading of T as ‘and then’, and Bj the only B-axiom
which will not survive the reading of T as ‘and next’. Ag, CTpNgNTpq
(= CTpgNTpNg), assumes that there is some one interval by which
T always takes us forward (if this were not so, p-now might be
followed by Ng at one later time and by ¢ at another) ; B, CTpTqrTpr,
assumes that there is not (if the interval mattered, it would matter
that TpTgr only guarantees that we have r two steps later, while Tpr
requires that we have it precisely one step later). The von Wright
postulate with the same peculiarity as Ag is EKTpgTrsTKprKys,
or its abridgement CKTpqTprTpKgr. As (like its von Wright counter-
part) also assumes that the future does not fork (if it did, we might
have Ng one step along one fork and ¢ one step along another); in
the B set this is expressed, in the manner appropriate to unspecified
intervals, by B6, with its obvious resemblance to the Hintikka-style
linearity postulate for F.

B1, 2, and g and the 7Y thesis CTKprqTpYqr, with their mirror
images, determine a T7Y-calculus which is equivalent, given the
definitions of F in terms of T and vice versa, to the ‘minimal’ tense-
logic K. The main relevant deductions in the T-calculus are

1. CNT=NCpgCT~pTrq  (B1 p/r, q/p 1/q)

* 2. CNFNCpqCFpFq (1, Df. F)
3. CTpqT=q (B2 p/r, qlp, 1/g; )
4. CTpgKpTrq (B3, 3, CCpgCCprCpEyr)
5. CKpTrqTpq (B2 g/, r/g, CCpCqrCKpqr)
6. ETpgkpTrq (4, 5)

* . ETpgKpFg (6, Df. F).

(7 is the equivalence corresponding to Df. 7 in the F system.)

In the 4 system, while it is essential that T should take us forward
by a single specific interval, this interval doesn’t have to be an ‘atom’
of discrete time. As Rescher and Garson have observed,! the ‘and
next’ system is interpretable within metric tense-logic with Tpq
taken to mean that p is true now and ¢ true after any specific interval,
so long as the same interval is used throughout the system, i.e.
Tpq = KpFng for some constant n. The Feys-style postulates for this
T are particularly easy to deduce from normal postulates for metric
tense-logic, given this definition. A2 and Ag, with Tpq expanded to
KpFngq, become simple substitutions in the propositional-calculus laws

T Nicholas Rescher and James W. Garson, ‘A Note on Chronological Logic’,
1966, forthcoming in Theoria.
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CpCKqrKpr and CKpgp; and A1, A4, and Ag use both the laws for K
and laws for Fu. Our Feys-style B postulates (for ‘and then’) similarly
follow very directly from standard sets for the ‘topological’ F (one
doesn’t have to go through the ‘equivalential’ variant of these given
above).

Rescher and Garson also point out that, conversely, metric tense-
logic may be developed within the ‘and next’ calculus, provided
that only the integers are used in measuring intervals. There are
various ways in which this may be done. If we use only non-
negative integers, the future-tense portion of metric tense-logic may
be developed within the ‘and next’ calculus by using the inductive
definition Fop = p

F(n+1)p = TrFnp.

And once again, proofs are easier with the Feys-style axiomatization.
For example, we prove FN2, CNFnpFn/Np, as follows: For n = o,
this is just CNpNp. And given any n for which we have FCNFnpFnNg,
we may prove it for n+1. For CNF(n--1)pF(n+1)Np expands to

CNT+FupT+FnNp,

which we canr prove syllogistically, since (¢) we have CNT+Fnp T+ NFnp
by A4 p/, g/Fnp and detachment of 7, and (b) we have

CT+NFnpTrFnNp

from the inductive hypothesis by RT and Ar. Similar, but simpler,
inter-translations are possible with Scott’s monadic 7. (Tp = Fnp
and F(n+1)p = TFnp.)

A further point about von Wright’s ‘and next’ system. When
Kripke pointed out in 1958 that my Time and Modality matrix for
Diodorean modality was not characteristic for S4, he also pointed
out that a matrix which I gave at the same time for the system M or
T was not characteristic for that system either. In this matrix, the
elements are again sequences of 0’s and 1’s, the sequence for Lp hav-
ing a 1 at a given place if and only if the sequence for p has a 1 both
there and at the immediately succeeding place. (This verifies such
non-T formulae as CKMEpgMEpNgLp.) In 1966 the same correc-
tion was made independently by K. Segerberg, who pointed out
that an Lp for which this matrix would be characteristic would be
one defined within von Wright’s ‘and next’ system as Tpp, Tpq
being conversely definable as KpRMqCqLg (M = NLN).

Segerberg’s L is that of the Diodorean-modal fragment of a future-
tense calculus in which G is equated with Scott’s monadic T, and
which therefore has the postulates RG, CGCpgCGpGq, CNGpGNp,
and CGNpNGp. This corresponds to a U-calculus in which we have,
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beside U1, Ug, and Ug, the condition CUabCUaclbc. This condition
entails but is not entailed by the non-branching condition

CUabCUacAAUbcUcblbe,

and it neither entails nor is entailed by transitivity (cf. the resem-
blances and differences between von Wright’s two 77s); it is satis-
fied, in a non-branching future, by the interpretation of Uab as ‘a is
earlier than 4 by the specific interval #»’ (cf. Rescher’s interpretation
of von Wright).

2. Minimal one-way tense-logic. In Appendix A, § 8 and § g, refer-
ence is made to a modal or quasi-modal system determined by
RL: ta— FLa and A1. CLCpgCLpLq, subjoined to propositional
calculus with substitution and detachment. This system has been
called 7(C) by E. J. Lemmon, to whom we owe the result that we
have ta in this system ifand only if we have FTax in the U-calculus
determined by Ui (ETaNpNTap), U2 (ETaCpgCTapTagq), and Us
(ETaLpIIbCUabThp), without any special conditions on U such as re-
flexiveness, transitivity, etc.! It is, in effect, the system 7 minus the
axiom CLpp, and is equivalent to von Wright’s system M minus the
axiom CpMp. If we read L as G, it gives the purely future-tense
fragment (and if weread L as H, the purely past-tense fragment) of
the minimal tense-logic K;.

3. On the range of world-variables, and the interpretation of U-calculi in
world-calculi. In Chapter V, Section 6, it is suggested that we use
variables a, b, ¢, etc., for instantaneous world-states, with the two

axioms Ai. Ma Ao, ALCdpLCd.N ﬁ 5

where Ma = A4oaPaFa and La = KKaHoGa, and it is further sug-
gested that, given the definitions LCap for Tap and TbPa for Uab,
we should be able to prove the postulates of a given U-calculus from
the corresponding tense-logic plus the above for ‘worlds’. In par-
ticular, we should be able to prove the minimal U-postulates

Ui, ETaNpNTap Ug. ETaGpIIbCUabThp
Uz. ETaCpgCTapTaq  Ug. ETaHpITbCUbaTbp

using the minimal tense-logic K. In that section, Ur and U2 are in
fact thus proved, and the left-to-right implications in Ug and Uy
are proved using a stronger tense-logic than K¢, in which we have
such non-K theses as CLpLHp. It can now be shown that the unsolved
problems here (proving Ug and Uy using only K; and Ar and A2)
are not soluble as stated, but are soluble in slightly modified forms.

T E. J. Lemmon, ‘Algebraic Semantics for Modal Logics I’, Fournal of Symbolic
Logic, vol. 31, no. 1 (March 1966), pp. 46-65.
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It will be useful to begin with an objection which might be made to
the postulate A1. We may observe that A1 is equivalent to CNadPaFa,
‘If it is not now the case that g, then it either has been or will be the
case that @’, and there is something a little curious about this. If a
is a world-state-proposition it will be a very ‘strong’ proposition in
the sense of implying a great deal (as, indeed, A2 makes clear), so
that its negation will be a very weak one, implying very little; and
yet, by A1 as rephrased, it is strong enough to imply APaFa, and
this seems a very substantial consequence. Again, are there not many
possible combinations of the world’s elements that may very well never
be realized, and ought not our d’s, s, etc., to stand for these too?

There is much that needs to be disentangled here; though we
shall see the objector has a point. In the first place, we should
avoid the temptation to think of world-propositions as being singled
out from others in virtue of their form, or as having a certain ex-
tensiveness of intuitive content (as asserting that so-and-so, the
‘so-and-so’ being a conjunction whose conjuncts are or could be all
facts about what is, what has been, and what will be). This concep-
tion of a world-proposition (I start with it myself) has some usefulness,
but we must get away from it in the end. In the second place, we
must avoid confusing the rather artificial sense which we here assign
to M with ‘possibility’ in some ordinary modal sense, e.g. logical
possibility. These misconceptions are connected; it is only pro-
positions with this vast content which will be both (@) ‘possible’ in
the ordinary modal sense, and () ‘L-complete’ in the modal sense.
And if we were considering a calculus involving bot% ordinary modal
and tense-logical notions, it would certainly be necessary to divide
possible total world-states into ones which are realized at some time
or other and ones which are never realized. But in Chapter V,
Section 6, and here, we are considering a calculus which has no
provision for the expression of ordinary ‘logical’ possibility, so that
if we are to consider world-states other than the actual one, they
must be ones whose relation to the actual one is expressible in tense-
logical terms, and here A4aPaFa gives the a’s almost (though as we
shall see not quite) as broad as range as we can get. Also, in a purely
tense-logical calculus we cannot measure the relative ‘strength’ and
‘weakness’ of propositions by their content or by what they necessarily
imply ; we can only say that p is ‘stronger’ than ¢ if p is at no time the
case without ¢ being the case, although ¢1is at some time the case without
» being the case; so that even a proposition with very little content
couldstill be ‘strong’ in thissenseifithappened tobe very seldom true.

A world-state proposition in the tense-logical sense is simply an

! It was in fact made to me by Mr. Richard Campbell, of Magdalen College.
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index of an instant; indeed, I would like to say that it is an instant,
in the only sense in which ‘instants’ are not highly fictitious entities.
To be the case at such-and-such an instant is simply to be the case
in such-and-such a world; and that in turn is simply to be the case
when such-and-such a world-proposition is the case. In this sense of
‘instant’ it is a tautology that a world-proposition is true at one
instant only (it is true only when that world-proposition is true) and
so is as ‘strong’ as any proposition that is ever true can be; though if
time is circular it will not follow from this that if a world-proposition
is true it neither has been nor will be true (for in circular time, ‘has
been’ and ‘will be’ bring us back eventually to the same instant).
It is also a tautology that anything that is true at one instant only
will serve as a world-proposition; for however trivial its content it
will be ‘strong’ enough to imply permanently whatever is true, i.e.
it will never be true without all the things that are true-at-that-
instant being true (either it will be false, or those things will be true
along with it—their being ‘true at that instant’ just is their being
true along with this proposition).

(I ought to remark here that my desire to sweep ‘instants’ under
the metaphysical table is not prompted by any worries about their
punctual or dimensionless character but purely by their abstract-
ness. That some things are ‘instantaneously true’ I do not doubt,?
and ‘p now instantaneously’ is an assertion easily expressible in
Kamp’s calculus of @ and . It amounts to ‘¢ now but Np just before
and just after now’, i.e. KKpH'NpG'Np, where H'p = OCppp, ‘p
throughout the interval between some past time and now’; and G'p
= WCppp. This use of H' and G’ was pointed out to me in 1965 by
Richard Harschman, before their definition by Kamp in terms of his
functors. But ‘instants’ as literal objects, or as cross-sections of a
literal object, go along with the picture of ‘time’ as a literal object,
a sort of snake which either eats its tail or doesn’t, either has ends
or doesn’t, either is made of separate segments or isn’t; and this
picture I think we must drop. Cf. Chapter IV, Section 7.)

If we are to use the above conception of ‘worlds’ and ‘instants’ to
identify the values of the variables for earlier and later instants in
a U-calculus with the values of the variables for ‘worlds’ in a calculus
that has them, our axioms for worlds ought to give us exactly one
world for each element in the domain of the relation U. In fact the
axioms A1 and A2 of Chapter V, Section 6, do not quite do this.
A1, Ma, secures that each world-proposition is true at some time or
other; but there ought also to have been a postulate securing that

! See the argument in Broad’s Examination of McTaggart’s Philosophy, vol. ii,
PP- 2735, substantially reproduced in Miss Anscombe’s ‘Before and After’ (Philo-
sophical Review, Jan. 1964), sect. 8 (pp. 17 fF.).
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every point of time has a world-state which ‘occupies’ it (or which
it is). What we want here is simply Zaa, from which we derive LZaa
by RL. We may call Zaa Ag, but in what follows we shall only be
using a derivative of it, asserting that if anything is ever true there is
some world-state ‘in’ which it is true, i.e. which permanently implies
it: CMpZaLCap. We may call this Ag'. In deriving it from Ag we
use the Barcan formula (BF) for worlds, which we know we have
when given atleast the system B for L and M. (We are concerned here
with the gearing of tense-logics to U-calculi of the standard sort.)
We also make use of the theorem of quantification theory that
although we do not have CK2xpxZxpxZxKxpx (‘If both something
¢s and something s then something both ¢s and ys’), we do have
CKZxdxpZxKdxp (‘If something ¢s, and p is the case, then there is
something such that: it ¢s, and p is the case’). The proof is:

C (1) Mp
K (2) LZaa (A3, RL)
K (3) MKZaap (1, 2, CKMpLqMEpq)
K () MEaKap  (3)
K (5) ZaMKap (4, BF)
K (6) ZaNLCaNp (5)
(7) ZaLCap (6, A2).

We cannot expect to derive a U-calculus within the corresponding
tense-logic plus the calculus of worlds, unless the latter has Ag added
to it. (A3 is needed, we shall find, for the derivation of the right-to-
left implications in Ug and Uy.) Even with this addition, moreover,
we cannot expect to do it in any tense-logic but one for linear (non-
forking) time, if we define M« as A4daPaFo and La as KKaHaGo.
I have found it simplest to make this point clear to myself by
associating U-calculi with linear diagrams. In the world-calculus
within which (together with some tense-logic) we wish to develop the
U-calculus, we want Lp to mean in effect that p is true all over the
diagram, and Mp that p is true somewhere in the diagram. And it is
only in linear time that p is true-somewhere-on-the-diagram if and
only if it either is true now, or has been true, or will be true. For
consider a non-linear diagram such as the following, where Fp is
true at a given point if and only if p is true at some connected point
towards the right, and Pp if and only if p is true at some connected
point towards the left:

b e

O\ ‘ N,
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Let the world d be what is the case now. Then each of a, d, ¢, and f
satisfy the condition ‘It either is true now (like d) or has been true
(like @) or in some future will be true (like ¢ and f)’. But the ‘could-
have-beens’ b and ¢ do not satisfy this condition, although they are
‘true-somewhere-on-the-diagram’.

Further, we can only be sure that even a, ¢, and f satisfy the condi-
tion if the earlier-later relation is taken to be transitive. Transitive-
ness seems, indeed, to be assumed in any representation of futurity
by being ‘somewhere’ to the right and of pastness by being ‘some-
where’ to the left. The only non-transitive models of the earlier-later
relation with which I am acquainted are ones in which this element
of pure direction is supplemented by one of distance. In Hamblin’s
circular model, for instance, FFp ceases to give Fp if we go too far
around the circle. FFp also takes us too far to give Fp if we read the
latter as ‘p is just about to happen’, i.e. as Scott’s Tp or von Wright’s
‘Cpp and next p’. In any case it is clear that our worlds will fail to
‘cover the diagram’ unless we do have CFFpFp (and consequently
CF"pFp for each n), if all we say to give them a place on the diagram
is AdaPaFa.

Is there any alternative but still tense-logical definition of M which
will be satisfied by whatever is true at any point on a time-diagram,
even in the absence of special assumptions about the character of the
earlier-later relation? If so, this is obviously the A which should
be used (with the corresponding NMN as L) in the postulates for
‘worlds’. As a step towards such a revision, it may be pointed out
that we certainly do not need to postulate complete linearity in
order to find @ tense-logical function which will be satisfied by
whatever is true anywhere on the diagram. For even if we do have
forking, provided that we have it in one direction only, and also have
transitivity, anything true at any point on the diagram will satisfy
a function M’ which, if we still used Ma for AdaPaFa, would be
defined as MM. We then have

M'p = AA(AApPpEp)(PAApPpED)(FAApPpFp)

= AA(AApPpFp)(AAPpPPpPFp)(AAFpFPpFFp)

= AAApPpFpPFp
Here the second line comes from the first by EPApgAPpPq and
EFApgAFpFq, which are in K, and the third from the second by
(a) re-grouping disjuncts and dropping repeats, and (b) dropping dis-
juncts which imply ones that are already present (CCpgEAApqrAqr),
either by CPPpPp and CEFpFp (transitivity) or CFPpAApPpFp (non-
forking in the past—see Chapter III, Section 7). Similarly the new
L'y = KKKpHpGpHGp. In the diagram given above, the new M'p
covers the ‘could-have-been’ worlds b and ¢, for which we have PF
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(it was the case that they would be found in what was then one of
the ‘futures’). And any possible sequence of Ps and Fs by which we
can be taken around the diagram will imply one or other of the
four disjuncts in our new M’, e.g. we have CPFPpM’p by

PFPp — P(AApPpFp), by CFPpAApPpFp and RPC;
— AAPpPPpPFp, by EPApgAPpPq;
— APpPFp, by CPPpPp
— AAApPpFpPFp, by CpAgp, etc.;

and CFPFpM'p by

FPFp — AAFpPFpFFp
—> AFpPFp — M'p.

Forking in both directions, however, as in the ‘relativistic causal’
time-sequence discussed by Cocchiarella, could take us to ‘times’
not covered by this M’. For this could give us alternative pasts as
well as alternative futures, and such patterns as

_

which might represent a PFPa where we do not have either a (a is
not true now), or Pa (a has not been true), or Fa (a will not be true),
or even PFa (it has not been that ¢ in what was once a future).
One way of covering cases of this sort, and harder ones, is by intro-
ducing into our formal calculus the numerical superscripts that are
often informally used by modal logicians for repeated M’s and L’s,
as in CLpL2p for CLpLLp, and we could define a new M" o as ZnM"a,
where Mo = AAaPaFa, and M1« = M*M"«. This works in non-
transitive worlds too. Even in K;we have the metatheorem that if
¢ is some sequence of Ps and Fs, there is some 7 such that ¢p logically
implies M"p. For example, CFPEpMMMp is provable even in Kj,
since

d

MMMp=A...... Fd4..... PApPpFp)
=A...... AF..... FPApPpFp)
=4...... AA.. ... AFPpFPPpFPFp),

and the same repeated use of EFApgAFpFg and EPApqAPpPg will
secure the required result with longer sequences of Ms. In general
if ¢ has n symbols in it, ¢p implies M7 (and so ZnM"p). Similarly,
if ¢ is any sequence of Hs and Gs, and has zn symbols in it, L? (and so
IInL"p) implies p. Intuitively, M" is ‘It is or has been or will be that
it is or has been or will be that ...’ till n repetitions are reached;
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while ZnMma is ‘It is or has been or will be that «, or else it is or has
been or will be that it is or has been or will be that «, or else it is or
has been or will be that (the preceding) . ..’ and so on ad infinitum.

These considerations suggest two lines of advance in this area. In
the first place, we may retain our original simple definition of M«
as AAxPaFa, but only expect to get results with this if a transitive
and linear tense-logic is used. This being understood, we can be
satisfied with the proofs already found for the left-to-right implica-
tions in Ug and U4, and can start trying to prove the right-to-left
ones; and also, of course, the condition of linearity on U (transitivity
we have in fact done). We can also attempt to prove Ui-Ug4, and
the appropriate conditions on U, in particular weaker tense-logics
with the definitions of M suitably adjusted ; e.g. in transitive partly
forking time using M’. I shall not attempt any of these proofs at this
point, but will do something a little like it, but simpler. There is an
even more simpliste definition of Mo than AAoPaFo which only
‘covers the diagram’ if we take time to be not merely linear but
circular, in the most straightforward sense (i.e. without change of
sign at the antipodes). For this we can have M« = Pu = Fa, and
our underlying tense-logic will be simply S5 for this M. The proofs
given in Chapter V, Section 6, of course still go through, including
the proof of CUabCUbcUac (transitivity). This leaves us with the
right-to-left implications in Ug and Uy, and CUabUba (symmetry)
and Uaa (reflexiveness) still to be proved. Our definition of Uab as
TbPa is now equivalent to TbMa, i.e. LCbMa, so Uaa is LCaMa,
which we obtain in S5 from CpMp and RL. CUabUba, i.e.
CLCbMaLCaMb, we may prove ad absurdum thus:

C (1) LCbMa

C (2) NLCaMb

K (3) LCaNMb (2, A2)

K (4) LCMaMNMb (3, CLCpgLCMpMy)
K (5) LCMaNMb (4y CMNMpNMp)

K (6) LCMaNb (5, LCNMpNp)
K (7) LCbNb (1, 6)
(8) NMb (7, CLCPNPNMp),

which contradicts A1 (so that the combination of (1) and (2) is
unallowable). Given this result, U4 follows from Ug (since it only
differs from Ug in having Uba where the latter has Uab), and we
prove the right-to-left implication CIT6CUabTbpTaLp by first proving
the lemma CTMapTalp thus:

C (1) LCMap
K (2) LCLMaLp (1, CLCpgLCLpLq)
824311 o
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(3) LCaLp (2, LCPLMp)

and then proving CII6CUabTopTMap by reductio ad absurdum as
follows:

C (1) IT6CLCbMaLCbp
C (2) NLCMap
K (3) MKMaNp (2, ENLCpgMEpNg)
K (4) ZbLCbKMaNp (3, A3)
K (5) ZBLCbENpp (4, 1)
(6) ZbNMb (5)

which contradicts II6Mb (from A1 and RL).

The second line of advance is to prove Ur-Uyg using Ky with
a radically modified M, perhaps with the M” mentioned above.
The logic of this function, and of the corresponding L”, is S5, even
within Ky. For it can be shown that the laws of L', i.e. IInL?,
include the analogues of RL, CLCpqCLpLg, CLpp, CLpLLp, and CMLpp
(the last two together giving CMLpLp: ML — MLL — L). The in-
finity of the range of n gives us CIInL"pIInL*ITnL"p (though it doesn’t,
we may notice, give us the plain CL"pL"L"p; we cannot get this with-
out CLpL'L1p, which is not provable in K;). We have all of the
others for L'a, i.e. KKaHaGa, and it can be shown that if we have
Fa — kL, CL"CpgCL"pL"q and CL"pp for any n we have them for
n+1 also. We get Fa — FLL"« from the hypothesis Fa — FL" to-
gether with Fo — FLa (with L« for our a), and with the axioms we
have

1. CL"CpqCL pL"q (Hyp.)

2. CL pp (Hyp.)

3. CLL*CpqLCL"pL"q (1, RLC)

4. CLCLYLrqCLL pLL"q (CLCpqCLpLyq, subst.)
* 5. CLL*CpgCLL*pLL"q (3, 4, Syll)

6. CL"LpLp (2, p/Lp)
* 7. CL"Lpp (6, CLpp, Syll).

From these results (and quantification theory) it is clear that if « is
a law so is JInL”x (at least, if the system has the symbolism), that
IInL"Cpq implies that IInL"p implies ITnL"q, and that ITnL"p implies
p. CXnMIInL7pp is slightly more complicated. We have, first, the
following inductive proof of CM"L"pp, given that we have CMLpp
for Mt and L':

1. CM*Lrpp (Hyp.)

2. CMPLLpLp (1, p/Lp)

3. CMM"L"LpMLp (2, RMC)

4 CMM"L'Lpp (4, CMLpp, Syll).
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Now CZnMInL pp is equivalent to CZmMmIInL pp, which in turn
is equivalent to IImCM™IInL"pp, which we prove thus:

IImC (1) M™IInL"p
K (2) MmLmp (1, UI)
(3) (2, lemma just proved).

One by-product of this result is the removal of a possible charge
of arbitrariness against our proposed definition of the form Uab, ‘a
is an earlier world than 4. Why TbPa, ‘It is true at b that the world-
state was formerly &’, rather than TaFb, ‘It is true at g that the
world-state will eventually be 5’ ? Given that the L in terms of which
T is defined is one for which we have S5, and that it implies all
sequences of G and H, we can prove the equivalence of these two
forms; one implication in it by reductio ad absurdum thus:

C (1) LCbPa
C (2) NLCaFb
K (3) LCaNFb (2, A2)
K (4) LCaGNb (3, NF = GN)
K (5) LLCaGNb (4, CLpLLp)
K (6) LHCaGNb (5, CLpHp, RLC)
K (7) LCPaPGNb (6, CHCpgCPpPg, RLC)
K (8) LCPaNb (7, CPGpp)
K (9) LCbNb (8, 1)
(10) NMb (9),

which contradicts A1. (The converse implication is proved similarly.)
A consequence of this equivalence is that our proof in Chapter V,
Section 6, of CTaGpIIbCUabTbp, i.e. CLCaGpITbCLChPaLChbp, may,
be paralleled by an exactly similar proof of CTaHpIToCUbaTbp,
which we may now equate with CLCaHpCLCbFaLCbp. Both proofs,
moreover, involve only laws which we do have for the L we are now
employing (in particular, we have CLpLHp and CLpLGp, from
CLpLLp, CLpHp, and CLpGp).

Another equivalence which we may prove with our new L is that
of TaGp with TPap. That the former implies the latter is provable
as follows:

C (1) LCaGp

K (2) LHCaGp (1, CLpLHp)

K (3) LCPaPGp (2, CHCpqCPpPg, RLC)
(4) LCPap (3, CPGpp)

and that the latter implies the former, as follows:
C (1) LCPap
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K (2) LGCPap (1, CLpLGYP)
K (3) LCGPaGp (2, CGCpgCGpGg, RLC)
(4) LCaGp (3, CpGPp).

Given this equivalence, we may equate the right-to-left implication
in Ug, i.e. the implication of TaGp by IIbCUabTbp, with
CII6CUabTbpT Pap, which we prove ad absurdum thus:

C (1) ITbCLCHPaLChp

C (2) NLCPap

K (3) MEPaNp (2)

K (1) ZbLCbKPaNp (3, A3)

K (5) ZeLChENpp (4, 1)
(6) ZbNMb (5),

contradicting IT6Mb (cf. the analogous proof of CIIbCUabTbpTaLp
in circular time). The right-to-left implication in U4 may be proved
similarly. Since our original proofs of Ur and U2 assume nothing
for L that is not in Feys’s 7, and so can be carried through with this
L also, we have now shown how to develop the entire minimal U-
calculus within the world-calculus and the minimal tense-logic K;.

Our new L, on the other hand, is not 00 strong for what we require
of it, and in particular our proof of CUabCUbcUab (transitivity of U)
in Chapter V, Section 6, will not go through, even with this L, if
our underlying tense-logic is only K, since that proof uses not only
CLpLLp but CPPpPp.

When we pass from K to stronger systems, the conditions on U
which correspond to added tense-logical axioms sometimes involve
the function Jab, ‘a is the same instant as 4’, which therefore requires
some interpretation in the world-calculus if the present methods are
to be carried further. A natural translation would be LEab, but in
fact LCab (Tab) will do, since from this we can prove LCba (and so
LEab) ad absurdum as follows:

C (1) LCab

C (2) NLCba

K (3) LCbNa (2, A2)

K (4) LCaNb (3)

K (5) LCaKbNb (1, 4)
(6) NMa (5)

contradicting A1. For this I we have Jaa (obviously) and also (in-
ductively) ClabCéadb, where ¢o is any function of « that may be
constructed within the system.
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As an example of the proofs that are now possible we may take
that of the U-condition

CUabCUabAAUbcUcblbe,
which is equivalent to
CUabCUacCNUbcCNUcbIbe,
from its tense-logical counterpart
CRKFpFqAAFKpqFKpFgFKqFp.

(22) LChe

We have
C (1) LCaFb (= Uab)
C (2) LCaF¢ (= Uac)
C (3) NLCbFc (= NUbc)
C (4) NLCcFb (= NUcbh)
K (5) LCaAAFKbcFEbFcFRcFb (1, 2, Hyp.)
K (6) LCbNFc (3, A2)
K (7) LCeNFb (4, A2)
K (8) LNKbFc (6)
K (9) LNKcFb (7)
K (10) LGNKbFe (8, CLpLGp)
K (11) LGNKcFb (9, CLpLGY)
K (12) LNFKbFc (10)
K (13) LNFKcFb (r1)
K (14) CLCaFKbFeNMa (12)
K (15) CLCaFEcFbNMa (13)
K (16) NLCaAFKbFcFKcFb (14, 15, A1)
K (17) LCaNAFKbFcFKcFb (16, A2)
K (18) LCaFKbc (5, 17)
K (19) LCaFLCbhc (18, CKbcLChbc)
K (20) LCaLCbe (19, CELpLp)
K (21) MLCbe (20, A1)

(21, CMLpLp).

Summing up, and tidying up: With Lla for KKaHaGa, we define
L as IInL"; we use a, b, ¢, as variables standing for those propositions
for which we have A1. Ma, A2. ALCapLCaNp, and Ag. Zaa; we
define Uab as LCaFb, Tap as LCap, and lab as LCab. This gives us all
we need for moving freely in and out of U-calculi from the tense-
logics to which they correspond. We can also see more clearly the
sense in which the B series is definable in terms of the A series
but not vice versa. The tensed p can only enter the B-series logic as
part of the form Tap (which, however, is itself tense-logically de-
finable) ; the B-series logic has no counterpart of the simple tensed p.
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4. The uniqueness of the time-series. The introduction of forms like L7,
with quantification over the numerals, into the object-language, is
in some ways a clumsy device, and it may be worth considering its
replacement by the use of infinitely long sentences, with forms like
L*$ as abridgements. For proofs such as the last one in the last
section, a simpler basis still is possible, namely one in which we
introduce L (i.e. the L used in the world-axioms, and in the de-
finitions of T, U, and I) without defining it at all, as a special primi-
tive (with M as NLN) with the postulates S5-+CLpGp-+CLpHp. But
however handy this may be as a symbolic simplification, to say that
we must proceed this way, i.e. that this L is not only not defined in a
particular calculus but is undefinable in tense-logical terms, is a move
that would have profound effects both philosophically and formally.
It would mean that we cannot reduce the U-calculus (the logic
of the B series) wholly to tense-logic (the logic of the A series) after
all; and this could be regarded as advantageous or disadvantageous,
according to our point of view.

If Lp, asserting that p is true ‘all over the diagram’, i.e. in all the
instantaneous world-states there are, is not tense-logically defined,
it is possible to raise the question as to whether there are several
distinct time-series, not themselves temporally connected. And only
if Lp is not tense-logically definable can we raise this question; for to
define L tense-logically would be to define it by means of past and
future tensings (either straightforward ones or more subtle ones like
Kamp’s @ and ¥) which take their start from our ‘now’ (or as I
would prefer to put it, from what really is now the case). Only in a
U-calculus which stands at least partly on its own feet, with at least
a non-tense-logically-defined L among its primitives, can we assert
or deny that ‘our’ time-series stands alone. We can then do it, e.g. by
asserting or denying that Lp = IInL"p. For to assert this, and still
more directly to make the equivalent assertion that Mp = ZnL"p,
will make the postulate Ma (A1) assert that every term in the field
of the relation U is in some way temporally connected with the
present world. If, on the other hand, L is defined as IInL"?, and is
regarded as only intelligible in some such terms, there is just no
alternative to this equivalence.

It may be felt that this very fact is an argument in favour of nof
defining L in this way. For is not the question as to whether ‘our’
time-series (whatever its structure) is unique, a genuine one? I
would urge the following consideration against saying that it is, or
at all events against saying it too hurriedly: It is only if we have
a more-or-less ‘Platonistic’ conception of what a time-series is, that
we can raise this question. If, as I would contend, it is only by tensed
statements that we can give the cash-value of assertions which pur-
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port to be about ‘time’, the question as to whether there are or
could be unconnected time-series is a senseless one. We think we
can give it a sense because it is as easy to draw unconnected lines
and networks as it is to draw connected ones; but these diagrams
cannot represent fime, as they cannot be translated into the basic
non-figurative temporal language. If we try so to translate them, we
produce contradictions which are a kind of inverse of McTaggart’s,
like ‘Right now there are things going on which stand in no tem-
poral relation to what is going on right now’, “There are things
going on which neither are going on, nor will be going on, nor have
been going on, nor even will have been going on, nor have been
going to have been going on—not anything like that at all—there
really are’. We can only avoid stating this hypothesis in such self-
contradictory terms by saying that there timelessly ‘are’ worlds in
which, or instants at which, such-and-such is the case, such-and-such
has been the case, such-and-such will be the case (ZaTap, ZaTaPp,
ZaTaFp), these worlds or instants being temporally unconnected
with ¢his one (the present one) ; this talk of worlds and instants being
itself irreducible to talk of what is, has been, will be, will have been,
etc.

The question as to the uniqueness of the time-series is thus one
of quite a different order from the questions as to whether time is
endless or ending, discrete or dense or continuous, circular or non-
circular, branching or non-branching, etc. For to raise it as a genuine
question is not merely to invite us to consider a non-standard tense-
logic, but to suggest that there are truths about time which are not
tense-logically expressible. It is not, indeed, to deny outright the
existence of an A series, or the possibility and worth of a tense-
logic, but it is to deny its primacy, and to relativize it to a B series,
a sequence of ordered ‘positions’ which is tenselessly ‘there’ (and
which may well be only one of a number of such series).

This is a point at which McTaggart seems to me to have been
a little too light-hearted. He considers, but rejects, an argument
that an A series cannot be essential to time because there may be
other B series, though not other A series, than our own. He has no
difficulty in disposing of this in the case where the other B series is
fictitious.! The series of adventures of Don Quixote, ‘it is said, does
not form part of the A series. I cannot at this moment judge it to be
either past, present or future. Yet, it is said, it is certainly a B series.
The adventure of the galley-slaves, for example, is earlier than the
adventure of the windmills’. The answer is easy; the adventure of
the galley-slaves was not earlier than the adventure of the windmills

t The Nature of Existence, ch. 33, §§ 319-21.
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because neither of them occurred at all. Certainly it is said that,
and a credulous reader might belicve that, the one was earlier than
the other, but this means that it is said or believed that the one was
past when the other was present or occurring. B-series terms, in
short, may be replaced by their A-series definitions within the scope
of operators like ‘It is said that’, ‘It is believed that’, as well as
within more straightforward ones. But McTaggart deals less satis-
factorily with the argument that ‘there might be in reality several
real and independent time-series’.! He admits that if this were so,
‘no present would be the present’. But then, he replies, ‘no time
would be the time—it would only be the time of a certain aspect of
the universe. It would be a real time-series, but I do not see that the
present would be less real than the time’. And again, ‘if there were
any reason to suppose that there were several distinct B series, there
would be no additional difficulty in supposing that there should
be a distinct A series for each B series’. Right; but these are A series
which are in some way definable ‘for’ various B series or ‘times’; the
definition cannot go the other way. Nor can the non-unique ‘present’
of this hypothesis be the pervasive ‘present’ of a fundamental tense-
logic, for which ‘It is (now) the case that p’ is equivalent to the
plain p, and the plain p to ‘It is (now) the case that ’. So it seems to
me that anyone who insists that the A series is fundamental must
Just deny this possibility.

I am sure that these observations have some bearing on the topic
of the next section, tense-logic in the theories of relativity; I wish
I were clearer as to what that bearing is. In anticipating that section,
I feel a bit like someone who, having delivered a Berkeleian attack
on the differential calculus, will shortly be nevertheless using it.
Point-instants (and even events) seem as mythical to me as matter
did to Berkeley; and what I understand of the theory of relativity
leaves me about as happy as the calculus left him. Still, it’s Science,
so in the meantime we can only try (as I shall be trying in the next
section) to do our sums right, however obscure their meaning; and
wait for Weierstrass.

We may now turn to the formal consequences of defining or not
defining L as IInL". If there are questions (genuine or spurious)
which this definition prevents us from raising (or prevents us from
using the symbol L to raise), there are also theorems which it enables
us to prove (this is the other side of the same coin). Obviously, the
theorem ELpIInL"p (which the definition turns into a mere notational
abridgement of EIInL"pIInL"p); but, in consequence, much else
besides. In particular, the definition yields the metatheorems that

Y The Nature of Existence, ch. 33, §§ 322—-3.
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(1) if we subjoin CGpGGp, CKEKpHpGpHGpH, and CKKpHpGpGHp

(i.e. the tense-logical expressions of transitivity and non-branching
both ways) to K, Lip (= KKpHpGp) becomes equivalent to Lp;
that (2) if we add the first and just one of the other two, L2 = L; and
that (3) if we add CGpGGp, CGpHp, and CGpp (postulates for cir-
cularity), even the plain G = L. To prove (1), for example, we first
prove CL1pL2p as follows:

C (1) Lp
K (2) KKpHpGp (1, Df. LY)
K (3) HHp (2, CHpHH}p)
K (4) HGp (2, CKKpHpGpHGp)
K (5) KKHpHHpHGp (2, 3, 4)
K (6) HKKpHpGp (5, CKHpHqHEKpq from K)
K (7) HL (6, Df. L)
K (8) GLp (analogously)
(9) L'L'p (1, 7, 8, Df. L1).

By putting L7p for p throughout this proof, we can prove CL*+1pL"+2p
for any n, and this gives us CL'pL" inductively, and so CL'pIInL"p,
i.e. CKKpHpGpLp, by quantification theory.

This result in turn yields new proofs of U-conditions from tense-
logical postulates. It was remarked by Lemmon in 1965 that there
seems to be no purely tense-logical formula which corresponds
exactly to the U-condition AAUabUbalab, which he calls strict or
strong linearity. There are indeed tense-logical formulae, e.g.
CKEpHpGpHGp and CKEpHpGpGHp, which correspond exactly to
non-branching in both directions, i.e. to the pair of conditions:

CUabCUacAAUbcUcblIbc
CUbaCUcaAAUbcUcblbe.

But, Lemmon pointed out, these conditions and these formulae are
compatible with there being several unconnected time-series each
of which is separately linear; the categorical A4UabUbalab is not
compatible with this, and it is this exclusion of the possibility of
distinct time-series which no purely tense-logical formula seems to
capture.! But we do capture it by the formula proved above,
CKEKpHpGpLp, which says in effect that if p is and always has been
and always will be true, it is true in all the worlds there are. This
intuitively excludes a plurality of time-series, and can be used for-
mally to prove the strict linearity condition on U. For we can use it

1 This point is developed in Cocchiarella’s thesis, ‘Tense Logic’, ch. 3, § 4;
see his notes 8, 12, and 13.
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to prove an absurdity from the denial of all three disjuncts in
AAUabUbalab, thus:

C (1) NLCaFb (= NUab)
C (2) NLCbFa (= NUba,
C (3) NLCab (= Nlab)
K (4) LCaNFb (1, A2)
K (5) LCbNFa (2, A2)
K (6) LCaNb (3, A2)
K (7) LCaGNb (4)
K (8) LCFaNb (5)
K (9) LCHFaHNb (8, CLpLHp, CHCpqCHpHg)
K (10) LCaHNb (9, CpHFp)
K (11) LCaKKENbHNbOGNG (6, 10, 7)
K (12) LCaLNb (11, CKEpHpGpLp)
K (13) LMb (A1, RL)
(14) NMa (12, 13),

which contradicts A1. The truth of Lemmon’s contention thus de-
pends on whether CKEpHpGpLp is a purely tense-logical formula or
not. If L is not tense-logically defined, it is not, and Lemmon’s
contention stands; but if it is defined as ITnL", it is, and a plurality
of time-series is tense-logically excluded.

We have an analogous result with circular time. Circularity in
the sense of the transitivity, symmetry, and reflexiveness of U does
not in itself preclude there being a number of distinct circular time-
series; for this we need FUab, i.e. ‘Every world is earlier than (and
later than) every other’, and we could obtain this if we had CGpLp,
proving it ad absurdum thus:

C (1) NLCaFb (= NUab)

K (2) LCaNFb (1, A2)

K (3) LCaGNb  (2)

K (3) LCaLNb (3, CGpLp)

K (5) LMb (A1, RL)
(6) NMa (45 5)s

contradicting A1. And we do obtain CGpLp from the usual circularity
axioms if we define L as IInL", but if we take it as undefined (with
postulates S5-+CLpHp+CLpGp), we do not.

In a U-calculus which is not tense-logically anchored, but is
taken as basic, and in which tensed formulae (and formulae with L)
occur only as second arguments of the functor T (i.e. in which the
tensed proposition o is replaced by the tensed predicate T ), some of
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the last-mentioned results may be presented as follows: To the usual
basic equivalences Ur-U4 we add

Us:ETaLpITbThp.

It is well known that with this for L we have all S5 theses preceded
by Ta; and it is easy to prove TaCLpGp and TaCLpHp. The converses
TaCGpLp and TaCHpLp are provable if we add FUab to our basis,
i.e. if we equate U with the universal relation; and TaCKKpGpHpLp
if we lay down tAA4UabUbalab, i.e. if we equate (U w U w I), the
logical sum of U, its converse and identity, with the universal rela-
tion. Unconnected U-series would be excluded by laying it down that
the ancestral of the logical sum of U and its converse and identity
relates every a and b, i.e. HU w Uw)4ab, or HU w T w 1), = V.
Given this, we may prove FUab from U’s being transitive, reflexive,
and symmetrical, and F44UabUbalba from its being transitive and
non-divergent both ways.

5+ The tense-logical discrimination of special from general relativity.! It has
now become almost a commonplace that if we use La, following
Diodorus, for KoL, then (a) if our tense-logic is geared to the earlier-
later relation of classical physics, the resulting Diodorean-modal
system is S4.3, whereas (b) if our tense-logic is geared to the earlier-
later relation, or one of the earlier-later relations, of relativistic
physics, the resulting Diodorean-modal system is S4. This seems
to me to need a small correction, and I would suggest that while S4
does indeed give the Diodorean-modal logic appropriate to the
general theory of relativity, the Diodorean-modal logic appropriate
to the special theory is at least S4.2.

The position appears to be as follows. Both theories of relativity
admit a ‘local proper time’ which is linear, and so yields a tense-
logic with S4.3 as its Diodorean-modal fragment, but there is not
just one but an indefinite number of such ‘local proper times’, and
a distant event b may be earlier than an event ¢ in the frame of
reference associated with one such ‘proper time’, and later in an-
other. This, however, is only true within limits, and in some cases
an event b is earlier or later than an event a with respect to all
frames of reference, and so may be said to be ‘absolutely’ earlier
or later. In particular, if the space-time points ¢ and & could con-
ceivably be linked by the path of a light-signal, one of them will be
absolutely earlier than the other, and the other absolutely later. It is
for this public or causal relativistic time that we can construct tense-
logics with the other Diodorean-modal fragments mentioned.

I In this section I am indebted to Mr. E. E. Dawson for checking my physics.
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The difference between S4, S4.2, and S4.3, it will be recalled,
is that the weakest system S4 assumes only that the earlier-later
relation is transitive, the strongest system S4.3 in addition precludes
branching, and the intermediate system S4.2 does not completely
preclude branching, but does preclude it unless the branches even-
tually meet again. It is not immediately obvious that the line-patterns
associated with these theories have anything to do with the theory
of relativity; but forget this picture; we are now on to another, in
which we are concerned not with the meeting of lines but with the
eventual overlapping of ever-enlarging illuminated volumes. In
terms of U-calculi—of pure algebra, as it were—the condition corre-
sponding to the S4.2 axiom CMLpLMp (the underlying tense-logical
axiom would be CFGpGFp) is given by

CUabCUac2dKUbdUcd,

‘If both b and ¢ are in &’s future, then there is some d which is in the
future of both of them’, or ‘If 4 and ¢ are both later than g, then
some d is later than both of them’. If we read Uab as asserting that the
space-time point b is within the forward ‘light-cone’ of a, the above
formula will assert that if two space-time points b and ¢ are both
within the forward light-cone of some point g, then there is some
point d which is within the forward light-cone of both of them.
The point is simply that all the forward light-cones eventually
intersect one another. We have a pattern more or less like this:

Here the points b and ¢ are both within the forward light-cone of q,
and however distant they are, their own forward light-cones will
eventually intersect, and there will be points such as d within both,
which will therefore be absolutely future to both of them. And if,
at g, it will be the case, say at b, that something or other will always
be the case (will fill all of &’s forward light-cone), then at a it will
always be the case, i.e. it will be the case at any point ¢ within @’s
forward light cone, that the thing will eventually be the case some-
where in ¢’s forward light-cone, namely after ¢’s cone enters &’s
(e.g. at d); or in short, CFGpGFp. This condition is met in the
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space-time of special relativity; at least it is met if we assume that
time has no end. (In this space-time, we might say, all futures tend
to merge, but if time stopped some futures would be left separated.)
In general relativity, however, the condition need not be met, as that
theory allows for the possibility of light ‘cones’ which so twist away
from one another that after a while they never intersect at all.

Special-relativity tense-logic would seem to be obtained by adding
to K the axioms CGpGGp, CGpFp, CFGpGFp, and the mirror images
of the latter two; with CGGpGp if we wish to assert denseness.

In both relativistic theories there are points or ‘worlds’ which are
neither in the past nor in the future of a given point or ‘world’, nor
yet identical with it, though they will be connected with it by some
sequence of Ps and Fs—in our diagram, for example, it will be true
at b that it will be the case (at d, for instance) that it has been the
case that ¢, and also that it has been the case (at g, for instance) that
it will be the case that ¢; and vice versa. In special relativity, in fact,
we have the theorem that whatever is the case anywhere in space-
time will have been the case—in the notation of the last section,
CEZmM™pFPp, or CMpFPp; with its mirror image. From CMpFPp
and ITaMa (A1 of world-logic) we easily obtain ITaFPa, which is very
like Findlay’s own symbolizing of his theorem CAApPpFpFPp; the
Findlay formulation is in fact correct for worlds, both classically
and in special relativity. We could also say, in special-relativity
tense-logic: CMpM?2p; or CL*pLp. In dense special-relativity tense-
logic, we even preserve Hamblin’s 15-tense theorem.

The key formula CUabCUacZdKUbdUcd may be proved from
CFGpGFp, using the methods of the last two sections, as follows:
FCFGpGFp yields FLCFGpGFp by RL, and this yields FCTaFGpTaGFp
by CLCqrCLCpgLCpr and T = LC. This in turn gives us, by U1-Uy,

CZbKUabI1eCUbeTepI1cCUacZdK UedTdp

which is deductively equivalent, by quantification theory, to
CUabCI1eCUbeTepCUacZdK UcdT dp.

Substitution of Pb for p in this, and the definition of Uaf as TSBPa,
yields

CUabCIIeCUbeUbeCUacZdK UcdUbd,
from which the second antecedent IIeCUbeUbe may be detached,
giving (apart from a permutation of conjuncts at the end) the re-
quired formula.

6. Alternative axioms for non-branching. 1 shall show in this section the
deductive equivalence, with respect to K, of the following three
formulae
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A. CRKFpFqAAFKpqFEKpFqFKqFp
B. AGCpCGpgGCGgp (due to C. Howard)
C. CPFpAApPpFp

1 shall prove A from B, and B from A and C. (Lemmon’s proof of
C from A is given in Chapter III.)
In proving A from B, we first prove the following modification
of it:
D. CGCpaCGCHGaCGCNgGNCNGNpGy,

i.e. we prove that GGpg, GCpGg, GCNgGNp, and NGNp jointly imply
Gq. By B, these four antecedents, if they are all true, must either
be true together with GCgCGgNp or together with GCGNpq (since
substitution in B gives AGCGCGgNpGCGNpq as a law). But not. the
former, since GCpq and GCqCGgNp yield (by GC-syllogism) GCpCGgNp,
and so GCG¢CpNp, and so GCGgNp. But this, with GCpGy, yields
GCpNp, and so GNp, contradicting the last antecedent NGNp. So
they can only be true in conjunction with the other alternative
GCGNpq. But this, with the antecedent GCNgGNp, yields GCNgq, and
so Gg, the final consequent. From D, now proved, we obtain A by
elementary transpositions thus:

D = CNCNGNpGgNKK GCpgGCpGqGCNgGNp
= CNCNGNpGgAANGChgNGChGaNGCNgGNp
= CKNGNpNGAAFKpNgFKpNGgFENgNGNp
= CKFpFNgAAFKpNgFKpFNgFKNgFp,

which yields A by the substitution ¢/Ng and double negation.
In proving B from A we first transform it by elementary trans-
positions into

NEFEpK GpNgFK GgNp,

and prove that the conjunction here denied is impossible. For by
A this conjunction, i.e. K(FKpKGpNg)(FKGgNp), entails

AA (1) FK(KpKGpNg)(KGgNp)
(2) FE(KpKGpNg)(FKGqNp)
(3) FE(FEpKGpNg)(KGgNp).

Here the alternative (1) is impossible because it asserts the future
truth of a conjunction in which one component is p and another
Np; (2) is impossible because the second main conjunct entails FNp,
which contradicts Gp in the other main conjunct; and (3) because
the first main conjunct entails F Vg, contradicting Gy in the other.
In proving B from C we again do it by proving the impossibility
of the conjunction K(FKKpGpNg)(FKGgNp). By CpGPp the second
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conjunct entails GPFKGqNp, and by CKFpGqFKpq this with the
first conjunct yields

FK(KEpGpNg)(PFKGgNp),
and this by C yields

FK(KKpGpNg)(AAK GgNpPK GgNpFK GgNp),
and so
FAA (1) KKKpGpNgKGgNp
(2) KKEKpGpNgPKGgNp
(3) KKKpGpNgFKGqNp.

Here the alternative (1) is never possible, since p and Np are both
among its conjuncts; (2) because PKGgNp entails PGg and so g,
contradicting the conjunct Ng; and (3) because FKGgNp entails
FNp, contradicting the conjunct Gp.

These proofs make it clear that G may replace A not only in a
comparatively strong tense-logic such as Scott’s, but also with no
auxiliary assumptions but those of K.

Non-branching in both directions is given not only by the com-
bination of one of these axioms with its mirror image but also by
laying down the Sq law CMMpMp for M« defined as AdaPaFa. (If
this works, the stronger S5 law CMNMpNMp, of which it was noted
in ‘The Syntax of Time-Distinctions’ that it seems to assume non-
branching, will clearly work also. We just prove CMMpMp from
itin the usual way, and then proceed as below.) By Df. M, CMMpMp
expands to

CAA (v) AdpPpFp (= Mp) |
(2) PAApPPFp (= PMp) | (= MMp)
(3) FAApPpFp (= FMp) |
(4) AApPpFp (= Mp).

This is deductively equivalent to the three theses C (1) (4), C (2) (4),
C (3) (4), of which the first may be dropped, being a mere sub-
stitution in Cpp. Then C (2) (4) = CPAApPpFpAApPpFp =
CAAPpPPpPFpAApPHFp — CPFpAApPpFp, and the mirror image is
proved from C (3) (4) similarly.

2. Tenses defined in terms of Diodorean modalities. In Chapter V, Section
5, it was shown that if we use an L for which we have at least the
system T, and define Gp as IIgCqLCNgp, we can prove at least the
postulates of the future-tense portion of K (i.e. the postulates of
Lemmon’s modal system T(C) with G for L), and can also prove
the equivalence of Lp to KpGp (cf. Diodorus). The question was
then raised as to the deducibility of stronger tense-logics from
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correspondingly stronger modal logics, given this definition. For in-
stance, if we add CGpGGp to K, and define Lp as KpGp, the resulting
modal logic is known to be S4, i.e. T+H+CLpLLp; if, conversely, we
start from S4, and use the above definition of G, do we obtain K-+
CGpGGp? This particular question, at least, can now be answered
in the negative.

We may note to begin with that if Lp is equivalent to KpGp,
CLpLLp will be equivalent to CKpGpGGp (CLpLLp = CKpGpKLHGLp
= CKpGpKKpGpGEpGp = CEKpGpGEpGp = CEKpGpEKGpGGp =
CEpGpGGp). So part of our problem is: Given K, could CKpGpGGp,
or CHCGHGGp, be laid down as a thesis without CGpGGp becoming
one? The answer is that it certainly could if we had CpGGp; for
since KpGp implies both p and Gp, it will imply GGp if either of
those does. One way of obtaining a system with CpGGp (and so
CpCGpGGp) but not CGpGGp is to suppose there are only two world-
states, and let Gp be true in a given state if and only if p is true in the
other one. We would then have CpGGp, which would now assert
that what is true in a given state is true in the other of the other
one, i.e. in the given one; but we would not have CGpGGp, which
would assert that what is true in the other state is thereby true in the
other of the other, i.e. in the given one.

We may give this independence proof a more formal character
by using the following Meredith-style 4-valued matrix in which
the value 1 means ‘true in both worlds’; » means ‘true in world n
only’; @, ‘true in 7 only’; and o, ‘true in neither’:

C|l|1naol|l N|G|L
* 1 n @i O o I 1
n 1 1 71 A 7 n o
n 1 n I n n n o
o I I 1 1 I o o

It will be found that the column for Lp is what we would get by
defining it as KpGp and using the column for G, and that CLpLLp,
but not CGpGGp, = 1 for all values of p. This matrix exactly charac-
terizes a ‘tense-logic’ defined by the following axioms (subjoined to
propositional calculus with substitution, detachment, and RG):

A1. CGCpeCGpGq  A2. CNGHGNp
As. CGNpNGp  Ag. CHGGp.

A1-3 are what one gets by putting G for Scott’s monadic T; A4
expresses the special character of this G, and its converse is easily
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obtained from it by A2 and 3. (A4 gives CNpGGNp by substitution,
and this = CNGGNpp = CGNNGpp = CGGpp.) Any verification of
a formula by the 4-valued matrix may be turned very simply into
a deduction from these postulates. For in the first place, the four
possible assignments of values can be expressed within the system as
follows (taking n to be the present world and 7 the other):

p =1 (i.e. p true in both) as KpGp

p = n (i.e. p true in n only) as KpNGp

p =7 (i.e. p true in 7 only) as KNpGp

p = o (i.e. p true in neither) as KNpNGp.

The basic evaluations summed up in the matrix may then be ex-
pressed as provable implications, as in the following samples:

Gn = fimeans: If p = n, Gp = 7, i.e. if KpNGp then KN(Gp) G(Gp):
CEKpNGpENGpGGp, provable from p.c. and Agq (CpGGp).

Nn = means: If p = n, Np =7, i.e. if KpNGp then KN(Np) G(Np):
CEpNGpENNpGNp, provable from p.c. and A2 (CNGpGNp).

Ciio = n means: If p = 77 and ¢ = o then Gpg = n, i.e. if KNpGp
and KNgNGq then KGpgNGCpq: CKNp GpCENGNGgRCpaNGCpq,
provable from p.c. and A1 transposed to CGpCNGgNGCpq.

The use of the matrix to evaluate more complex formulae, e.g. the
calculation CGnGGn = CGnGi = Cfin = n, can be mirrored by de-
ductions from the implications enshrined in the matrix; in this case
we prove that if p =n, Gp =7, and GGp consequently n, and
CGpGGp consequently #, i.e.

C (x) KpNGp (p = )
K (2) KENGpGGp (Gp = 7)
K (3) KGGPNGGGp (GGp =n; from 2 by Gi=n, ie.
CENpGPEGpNGGp, with Gp put for p)
(4) KCGpGGpNGCGpGGp (CGpGGp = n; from 2 and 3§ by
Ciin = n, i.e. CKNpGpCKqNGqg— KCpgNGCpg, with Gp for
p and GGp for q).

Finally, if f(p) works out as 1 for all values of p, this means that if
p = 1, n, i or o then f(p) = 1, i.e. if KpGp or KpNGp or KNpGp or
KENpNGp then Kf(p)Gf(p); this being proved (disjunct by disjunct)
by the above methods, we get Kf($)G(p) unconditionally, and so
f(p), by detaching AAAKPpGPEPNGHENpGHPENpNGp, which is a
substitution in a p.c. theorem. The extension of this procedure to
cases involving more than one variable is fairly obvious.

This, however, is a G-primitive system, so that we have not yet
quite shown that we can have CLpLLp without CGpGGp if we take L

824311 P
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as primitive and define Gp as IIgCqLCNgp. We may justify this last
step by observing that when 1, n, i and o are all the ¢’s (or ‘values of
¢’) that there are, IIgCgLCNgp amounts to

KKK(CILCN1p)(CnLCNup)(CALCN7ip) (CoLCNop)

which with the given column for L works out as 1, %, 1, 0 when
p = 1, n, fI, 0 respectively, exactly as in the given column for G.

It was obvious all along that added G-theses cannot always be
got back from resulting added L-theses, since in some cases the
latter do not exist; e.g. if we add CGGpGp (density) or CGpFp (non-
ending) to K, this does not enrich the Diodorean L system in any
way (we already have CLLpLp and CLpMp in T, the Diodorean
fragment of K). What is now clear is that even when the strengthen-
ing of the tense-logic does strengthen its Diodorean-modal fragment,
we do not, or at all events do not always, get the tense-logical
strengthening back when we start from the resultant strengthening
of the modal system.

This does not mean that we cannot have L-primitive, G-defined
tense-logics containing such theses as CGpGGp, CGGpGp and CGpFp.
We can obviously obtain such systems simply by laying down as
axioms the definitional expansions of these theses, e.g. by laying
down CGpGGp in the form

CITqgCqLCNgpITrCrLCNrITsCsLCNsp.

But we cannot obtain them by laying down L-theses (valid in the
tense-logics concerned) which do not contain propositional quan-
tifiers. Short of that, however, we can sometimes make instructive
simplifications. For example, the formula FCpp is deductively equiva-
lent (given K;) to CGpFp, and may replace it as an expression of
non-endingness. Geach’s definition of F'in terms of the Diodorean M
(equivalent to the above definition of G in terms of L) turns FCpp
into ZgKqMENqCpp. But since KrCpp is interchangeable (even in T)
with the plain r, this may be simplified to ZgKgMNg, ‘For some g,
it is the case that ¢, but (is or) will be the case that not ¢’. Considered
as a version of ‘There is more time to come’ (as entailed by this as
well as entailing it), this very nicely reflects McTaggart’s ‘There
could be no time if nothing changes’, the original inspiration of
Geach’s definition. Again, in the above expansion of CGpGGp, only
the first quantifier is essential, given S4 for L.

8. Independence proofs for Ki. Hacking and Berg have the following
independence proof for CGCpgCGpCq: Let k be some true proposition
which is ‘atomic’ with respect to the functions of the system (i.e.
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it is not a negation or a tensing of one of the propositions of the
system, or an implication of one of them by another) and is not an
axiom or theorem of the system. Let us write p = ¢’ for ‘¢ and ¢
have the same truth-value’ and ‘p is ¢’ for “The proposition that p
is the same proposition as the proposition that ¢’. Let Hp = p for
all p, and let Gp = p except when p is k, and then let Gp = o.
(Gp thus amounts to ‘It is the case that p, and p is not %.) Since k&
is atomic, Np is never k, so GNp always = Np, and Fp = NGNp =
NNp = p. Since £ is not a theorem, we never have F, so o always
gives FGa. CHCpgCHpHq = CCpgCpg = 1; CFHpp = Cpp = 1;
CPGpp = Cpp (when p is not k) or Cop (when p is k), which in both
cases = 1. But when ¢ isk, and p = 1 but is not ¥, CGCpqCGpGq =
CGCpkCGpGE = CCpkCpo = CC11C10 = C10 = 0. This interpreta-
tion also verifies
CGpGGp, CGGpGp, CGpFp, CKFpFgAAFKpgFKpFqFKqFp

and their mirror images, so that CGCpgCGpGq is independent of
these also. Independence of CHCpgCHpHq may be established by
interchanging the roles of G and H. If we axiomatize with a mirror-
image rule instead of mirror images of the axioms, we can use the
same model but with Hp = Gp instead of Hp = p.

Where the system is axiomatized with a mirror-image rule,
CPGpp can be proved independent by letting H = G and so P = F,
and otherwise interpreting the symbols normally (Hacking and
Berg). This turns CPGpp into CFGpp, which is not a law of normal
future-tense logic. (It is obvious that p may be going-to-be-always-
true without being true now.) If we have no mirror-image rule, but
lay down CPGpp (or CpHFp) and CFHpp (or CpGPp) separately,
we can prove them separately independent by using the following
modification of the U-calculus (due to Lemmon, 1965): Let us have
worlds or instants ordered not by one but by two relations, say
U and 7, and let

TaGp = ITbCUabThp
TaHp = ITbCYabTbp.

If we read Uab as ‘b is later than &’ and Yab as ‘b is earlier than a’,
these amount to:

Gp is true at a if and only if p is true at all instants later than a
Hp is true at a if and only if p is true at all instants earlier than a.

Normally, of course, we suppose that 1 is simply the converse of U,
i.e. Yab = Uba, but let us drop this assumption, and replace it by
he one-way implication CYabUba. TaCpHFp, i.e.

CTapITbCYabZcKUbcTcp,



is then provable thus:

IILC (1) Tap
C (2) Yab
K (3) Uba (2, CYabUba)
K () KUbaTep (1, 3)
(5) ZeKUbcTcp (4, E.L).

But in the absence of CUabYba, a similar proof of TaCpGPp is im-
possible. If, conversely, we lay down CUabYba but not CYabUba, we
can prove TaCpGPp but not TaCpHFp. The provability of the U-
theses corresponding to the other postulates of Ky is obviously un-
affected by this modification.

9. Anticipations of later developments in Eof’s calculus of instants. In
Chapter I, in listing the precursors of modern tense-logic, I ought
not to have omitted the calculus which Jerzy Lo§ devised in 1947
in an attempt to formalize Mill’s canons of induction. The calculus
appeared in the Annales Universitatis Mariae Curie-Sklodowska, Section
F, vol. 2 (for 1947, published in 1948), pp. 269—301, and was sum-
marized and reviewed by Henry Hiz in the Fournal of Symbolic Logic,
vol. 16, No. 1 (March 1951), pp. 58-59. (I only know the paper
through Hiz’s review.) Lo$’s calculus has no tense-operators, but
does use propositional variables p;, p,, etc., to stand for what might
be ‘satisfied’ at one instant and not at another. He also has variables
t1, s, etc., to stand for instants and n,, ny, etc., for temporal intervals;
the form Ui, p, for ‘p, is satisfied at ¢,’, and 6 n, for ‘the instant n;
later than ¢,’. He abridges IIp,EUt, p, Uty p, to ptyt,, which may be
read as ‘4, and ¢, are the same instant’. This calculus influenced
my own formulation of a ‘calculus of dates’ (using the form Utp) in
Time and Modality, and also has points of resemblance to Rescher’s
systems of 1965. It will facilitate comparisons if we give £.0§’s axioms
in the symbolism of Chapter 6, Section 4, supplemented by San for
‘the instant # later than @’, and Iab for ‘a and b are the same instant’,
(Zab, it should be remembered, is short for IIpETapTbp, and TSanp
is equivalent to TaFnp in the symbolism of Chapter 6, Section 4.)
The axioms then become:

1. ETaNpNTap

2. CTaCpgCTapTaq

3, 4, and 5. TaCCpqCCqrCpr, TaCpCNpg, TaCCNppp
6. CIllaTapp

7 and 8. ZbISanb, Zb1Sbna

9. ZHpITbETbplab.
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Axioms 1-5 have as consequences all propositional-calculus theorems
preceded by Ta (cf. the rule, in Rescher’s systems and mine, to infer
FTax from Fa). 7 would seem to be replaceable by the permission
to substitute any expression of the form San for instant-variables in
theses, though it brings out the fact that this permission assumes
that there is an instant at any arbitrary interval after, as 8 asserts
that there is at any interval before, any given instant. ¥.0§ apparently
thought that this requires ‘that there be an infinite number of con-
stants which can be substituted for the variables representing in-
stants’; Hiz argued in his review that this would only be the case
if we had an axiom, say CISanbNlab, excluding circularity. Axiom g,
the ‘clock axiom’, asserts in effect that ‘to every instant of time a
function can be assigned (e.g. the description of the position of the
hands of a clock) which is satisfied only at that instant’. ¥.0§ regarded
it as ‘our only weapon against the metaphysical and extrasensual
conception of time’. His point of view seems in fact to have been
very close to that of Sections g and 4 of this appendix. The clock
axiom, one might say, might justify (or might reflect) our identification
of an ‘instant’ with a proposition true at that instant only; it corre-
sponds to the postulates Taa and CTableb in a system using instant-
variables as a special sub-class of propositional ones.

Y.o$§ found that his axiom rather trivialized his formulation of
Mill’s canons, and thought they might appear less trivial as con-
sequences of an ‘axiom of causality’ which he formulated as
ZpETSanpTaq, asserting that for any a, ¢, and n, there is a p which is
true n later than a if and only if ¢ is true at a. But given tenses,
this is trivial also, since Png will automatically meet this condition.
So will Tag, given nested 7-ing with the normal law ETbTaqTaq
(true at b that g is true at g, if and only if ¢ true at a).
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